JP2016157590A - Electromagnetic induction heating coil and electromagnetic induction heating cooker - Google Patents

Electromagnetic induction heating coil and electromagnetic induction heating cooker Download PDF

Info

Publication number
JP2016157590A
JP2016157590A JP2015034621A JP2015034621A JP2016157590A JP 2016157590 A JP2016157590 A JP 2016157590A JP 2015034621 A JP2015034621 A JP 2015034621A JP 2015034621 A JP2015034621 A JP 2015034621A JP 2016157590 A JP2016157590 A JP 2016157590A
Authority
JP
Japan
Prior art keywords
coil
electromagnetic induction
induction heating
layer coil
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015034621A
Other languages
Japanese (ja)
Inventor
一洋 田口
Kazuhiro Taguchi
一洋 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie Konetsu Co Ltd
Original Assignee
Mie Konetsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie Konetsu Co Ltd filed Critical Mie Konetsu Co Ltd
Priority to JP2015034621A priority Critical patent/JP2016157590A/en
Publication of JP2016157590A publication Critical patent/JP2016157590A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic induction heating coil and an electromagnetic induction heating cooker that can prevent disturbance of magnetic flux occurring in a coil and heat a heating target object uniformly and has high efficiency.SOLUTION: An electromagnetic induction heating coil includes a first layer coil in which a winding is spirally wound from the outer periphery to the inner periphery, a second layer coil in which a winding is spirally would subsequently from the innermost periphery of the first layer coil in the same direction to the outer periphery, and a pair of outgoing lines which are drawn out from the outermost peripheries of the first layer coil and the second layer coil and supply power to the first layer coil and the second layer coil.SELECTED DRAWING: Figure 1

Description

本発明は、コイルに流した電流により磁束を発生させ、この磁束によって被加熱物を電磁誘導加熱させる電磁誘導加熱コイル及び該電磁誘導加熱コイルを用いた電磁誘導加熱調理器に関する。   The present invention relates to an electromagnetic induction heating coil that generates a magnetic flux by an electric current passed through the coil and electromagnetically heats an object to be heated by the magnetic flux, and an electromagnetic induction heating cooker using the electromagnetic induction heating coil.

従来、電磁誘導加熱コイル(以下、単に「コイル」と称することがある。)には、同一平面上に渦巻き状に巻線を巻いたコイルが広く採用されている。このようなコイルでは、コイルの内径側の空間(コイルが巻かれていない箇所)は、磁束の通路となるので適正な空間、すなわちコイルの内径が必要となる。この空間を確保するためのコイルの最外周長と最内周長の比率は、最外周長/最内周長=3以下であり、好ましくは2.5以下である。   2. Description of the Related Art Conventionally, coils that are wound in a spiral on the same plane have been widely used as electromagnetic induction heating coils (hereinafter sometimes simply referred to as “coils”). In such a coil, the space on the inner diameter side of the coil (where the coil is not wound) serves as a path for magnetic flux, so that an appropriate space, that is, the inner diameter of the coil is required. The ratio of the outermost circumference length and the innermost circumference length of the coil for securing this space is the outermost circumference length / the innermost circumference length = 3 or less, preferably 2.5 or less.

ところが、コイルの外径は被加熱物体の外径に制約され、また、コイルの内径は巻き数や高周波電源との負荷整合性の関係から大きくすることができない。このため、最外周長/最内周長の比率が3を超えることが多く、係る場合、コイルの内径側の空間における磁束密度が、被加熱物体近傍の磁束密度に比べて異常に高くなる。そして、通過しきれない磁束はコイル内径空間に近接する渦巻きコイルを通過せざるを得なくなり、コイルの温度上昇や加熱効率の低下を招いていた。   However, the outer diameter of the coil is constrained by the outer diameter of the object to be heated, and the inner diameter of the coil cannot be increased due to the number of turns and the load matching relationship with the high-frequency power source. For this reason, the ratio of the outermost circumference length / the innermost circumference length often exceeds 3. In such a case, the magnetic flux density in the space on the inner diameter side of the coil is abnormally higher than the magnetic flux density in the vicinity of the object to be heated. And the magnetic flux which cannot pass has been forced to pass through the spiral coil close to the coil inner diameter space, leading to an increase in coil temperature and a decrease in heating efficiency.

このため、コイルの温度上昇を抑制し、負荷の電磁誘導加熱に適したインダクタンスを得ることを目的として、特開2000−340352号公報に、複数のコイルを積層させ、これらのコイルを直列接続させてコイル全体の巻き数を増加させる、又は並列接続させて必要な巻き数を細い線径のコイルで作ることができる電磁誘導加熱装置が開示されている。そして、これらのコイルに電力を供給するため、コイルの両端部には一対の引出線が設けられている。   For this reason, for the purpose of suppressing the temperature rise of the coil and obtaining an inductance suitable for electromagnetic induction heating of the load, JP 2000-340352A is laminated with a plurality of coils, and these coils are connected in series. Thus, there is disclosed an electromagnetic induction heating device that can increase the number of turns of the entire coil, or can be connected in parallel to make a necessary number of turns with a thin wire diameter coil. And in order to supply electric power to these coils, a pair of leader line is provided in the both ends of the coil.

特開2000−340352号公報JP 2000-340352 A

しかし、従来採用されている電磁誘導加熱コイル及び特許文献1に記載されているコイルでは、図10に示すように、一方の引出線116aはコイル701の最外周に設けられ、そのままコイル701の外側に引き出されるが、他方の引出線116bはコイル701の最内周に設けられ、コイルの近傍を、巻線を横切る様にして引き出されている。このため、引出線に発生する磁界によって、コイルから発生される磁界が錯乱され、加熱の効率が低下するとともに、被加熱物の均一な加熱が難しくなるという課題があった。   However, in the conventionally employed electromagnetic induction heating coil and the coil described in Patent Document 1, one lead wire 116a is provided on the outermost periphery of the coil 701 as shown in FIG. The other lead wire 116b is provided on the innermost circumference of the coil 701, and is drawn out so as to cross the winding around the coil. For this reason, the magnetic field generated from the lead wire causes the magnetic field generated from the coil to be confused, which reduces the heating efficiency and makes it difficult to uniformly heat the object to be heated.

本発明は、上記の点に鑑みなされたもので、一対の引出線をコイルの最外周に設けることで、引出線がコイルの巻線を横切らないように構成し、これによりコイルに発生する磁束の乱れを防止し、高効率、かつ被加熱物を均一に加熱できる電磁誘導加熱コイル及び電磁誘導加熱調理器を提供することを目的とする。   The present invention has been made in view of the above points, and by providing a pair of lead wires on the outermost periphery of the coil, the lead wire is configured not to cross the coil winding, thereby generating magnetic flux in the coil. It is an object of the present invention to provide an electromagnetic induction heating coil and an electromagnetic induction heating cooker that can prevent the disturbance of heat and can efficiently heat an object to be heated.

本発明の電磁誘導加熱コイルは、
外周から内周に向かって巻線が渦巻き状に巻かれる第1層コイルと、
前記第1層コイルの最内周から続けて同じ方向かつ外周に向かって渦巻き状に巻線が巻かれる第2層コイルと、
前記第1層コイル及び前記第2層コイルの最外周から引き出され、前記第1層コイル及び前記第2層コイルに電力を供給する一対の引出線と、
を備えることを特徴とする。
The electromagnetic induction heating coil of the present invention is
A first layer coil in which the winding is spirally wound from the outer periphery toward the inner periphery;
A second layer coil in which a winding is wound spirally in the same direction and toward the outer periphery continuously from the innermost periphery of the first layer coil;
A pair of lead wires that are drawn from the outermost circumference of the first layer coil and the second layer coil and supply power to the first layer coil and the second layer coil;
It is characterized by providing.

本発明の電磁誘導加熱コイルによれば、外周から内周に向かって巻線が渦巻き状に巻かれる第1層コイルと、第1層コイルの最内周から続けて同じ方向かつ外周に向かって渦巻き状に巻線が巻かれる第2層コイルとを備えるため、第1層コイルと第2層コイルが直列に接続されるとともに、これらのコイルの両端が、コイルの最外周に設けられる構成となる。これにより、第1層コイル及び第2層コイルに電力を供給する引出線が、これらのコイルの最外周から引き出される。このため、引出線が巻線を横切ることがなく、コイルに発生する磁束を、引出線で乱すことがなくなる。また、コイルが2層となっているため、最外周長と最内周長の比率を3以下にすることが容易となる。なお、第2層コイルの巻線を第1層コイルの巻線と同じ方向に巻くとは、第2層コイルの巻線と第1層コイルの巻線とで、電流の向きが同じになるように巻くことを意図する。   According to the electromagnetic induction heating coil of the present invention, the first layer coil in which the winding is spirally wound from the outer periphery toward the inner periphery, and the same direction and toward the outer periphery continuously from the innermost periphery of the first layer coil. Since the first layer coil and the second layer coil are connected in series, and both ends of these coils are provided on the outermost periphery of the coil. Become. Thereby, the lead line which supplies electric power to a 1st layer coil and a 2nd layer coil is pulled out from the outermost periphery of these coils. For this reason, the lead wire does not cross the winding, and the magnetic flux generated in the coil is not disturbed by the lead wire. Further, since the coil has two layers, the ratio of the outermost circumference length to the innermost circumference length can be easily set to 3 or less. The winding of the second layer coil in the same direction as the winding of the first layer coil means that the direction of the current is the same in the winding of the second layer coil and the winding of the first layer coil. Is intended to be wound as

本発明の電磁誘導加熱コイルの好ましい例は、
前記第1層コイルの巻線と前記第2層コイルの個々の巻線が、前記第1層コイル及び前記第2層コイルの面と直交する方向に重ねられた一組の巻線をなしていることを特徴とする。
A preferred example of the electromagnetic induction heating coil of the present invention is:
The windings of the first layer coil and the individual windings of the second layer coil form a set of windings that are stacked in a direction perpendicular to the surfaces of the first layer coil and the second layer coil. It is characterized by being.

本発明の電磁誘導加熱コイルの好ましい例によれば、第1層コイルの巻線と第2層コイルの個々の巻線が重ねられ、一組の巻線をなしているため、個々の巻線に発生する磁力が合わされ、巻線が重ねられた方向に磁束が延びるように放射される。これにより、被加熱物に磁束が到達しやすくなり、被加熱物をより効率的に加熱することができる。   According to a preferred example of the electromagnetic induction heating coil of the present invention, the windings of the first layer coil and the individual windings of the second layer coil are overlapped to form a set of windings. Are generated so that the magnetic flux extends in the direction in which the windings are overlapped. Thereby, the magnetic flux easily reaches the object to be heated, and the object to be heated can be heated more efficiently.

本発明の電磁誘導加熱コイルの好ましい例は、
隣接する前記一組の巻線同士の間に隙間が設けられていることを特徴とする。
A preferred example of the electromagnetic induction heating coil of the present invention is:
A gap is provided between the pair of adjacent windings.

また、本発明の電磁誘導加熱コイルの好ましい例は、
隣接する前記一組の巻線同士の離間距離が、前記巻線の軸間距離で前記巻線の径の1倍を超えて1.5倍以下であることを特徴とする。
Moreover, the preferable example of the electromagnetic induction heating coil of this invention is:
The spaced distance between the pair of adjacent windings is more than 1 times the diameter of the windings and 1.5 times or less as the inter-axis distance of the windings.

これらの本発明の電磁誘導加熱コイルの好ましい例によれば、コイルが、一組の巻線と、隣接する他の一組の巻線との間に隙間を有する粗巻きとされているため、広範囲を加熱することができる。また、隣接する他の巻線の磁束の影響を受けにくくなるため、巻線が重ねられた方向に磁束がより延びるように放射される。また、最外周長と最内周長の比率の自由度を増すことができる。これらにより、より効率的に被加熱物を加熱することができる。   According to these preferable examples of the electromagnetic induction heating coil of the present invention, the coil is a coarse winding having a gap between one set of windings and another set of adjacent windings. A wide range can be heated. Moreover, since it becomes difficult to receive the influence of the magnetic flux of other adjacent windings, the magnetic flux is emitted so as to extend further in the direction in which the windings are overlapped. Moreover, the freedom degree of the ratio of outermost periphery length and innermost periphery length can be increased. As a result, the object to be heated can be heated more efficiently.

本発明の電磁誘導加熱コイルの好ましい例は、
前記一組の巻線が、内周側に傾斜されていることを特徴とする。
A preferred example of the electromagnetic induction heating coil of the present invention is:
The set of windings is inclined toward the inner peripheral side.

また、本発明の電磁誘導加熱コイルの好ましい例は、
前記傾斜の角度が、前記第1層コイル及び前記第2層コイルの面方向に対して60度以上90度未満であることを特徴とする。
Moreover, the preferable example of the electromagnetic induction heating coil of this invention is:
The inclination angle is not less than 60 degrees and less than 90 degrees with respect to the surface direction of the first layer coil and the second layer coil.

これらの本発明の電磁誘導加熱コイルの好ましい例によれば、一組の巻線が、コイルの内周側に向かって傾斜されているため、磁束の放射される向きもコイルの内周側に傾斜させることができる。これにより、巻線が存在しないコイルの中心部においても被加熱物を加熱することができる。また、被加熱物の電磁誘導加熱コイルに対向する面が、電磁誘導加熱コイルに向かって凸状をなし、コイルの外周側においてコイルと被加熱物との距離が離れる場合であっても、磁束が被加熱物に届きやすくなり、被加熱物を効率的に加熱することができる。   According to these preferred examples of the electromagnetic induction heating coil of the present invention, since the set of windings is inclined toward the inner peripheral side of the coil, the direction in which the magnetic flux is radiated is also on the inner peripheral side of the coil. Can be tilted. Thereby, a to-be-heated object can be heated also in the center part of the coil in which no winding exists. In addition, even if the surface of the object to be heated facing the electromagnetic induction heating coil is convex toward the electromagnetic induction heating coil and the distance between the coil and the object to be heated is increased on the outer peripheral side of the coil, the magnetic flux Can easily reach the object to be heated, and the object to be heated can be efficiently heated.

本発明の電磁誘導加熱コイルの好ましい例は、
傾斜の角度が前記一組の巻線の外周側より内周側が大きく構成され、
最外周の前記一組の巻線の傾斜の角度が前記第1層コイル及び前記第2層コイルの面方向に対して60度以上であり、
最内周の前記一組の巻線の傾斜の角度が前記第1層コイル及び前記第2層コイルの面方向に対して90度以下であることを特徴とする。
A preferred example of the electromagnetic induction heating coil of the present invention is:
The angle of inclination is configured such that the inner peripheral side is larger than the outer peripheral side of the set of windings,
The angle of inclination of the set of windings on the outermost periphery is 60 degrees or more with respect to the surface direction of the first layer coil and the second layer coil,
An inclination angle of the pair of windings on the innermost circumference is 90 degrees or less with respect to a surface direction of the first layer coil and the second layer coil.

本発明の電磁誘導加熱コイルの好ましい例によれば、外周側にある一組の巻線は傾斜が強くされ、内周側にある一組の巻線は直立又は直立に近くなる。このため、磁束の放射される向きを一組の巻線毎に変えることができ、設計の自由度が増す。また、コイルに対向する面が凸状に構成されている被加熱物においても、被加熱物の面の略全域で該面に対して一組の巻線が略直角になり、磁束が効率よく被加熱物に作用する。   According to a preferred example of the electromagnetic induction heating coil of the present invention, the set of windings on the outer peripheral side is strongly inclined, and the set of windings on the inner peripheral side becomes upright or close to upright. For this reason, the direction in which the magnetic flux is emitted can be changed for each set of windings, and the degree of freedom in design increases. In addition, even in a heated object having a convex surface facing the coil, a set of windings are substantially perpendicular to the surface of the object to be heated over almost the entire surface of the object, so that the magnetic flux is efficiently Acts on the object to be heated.

本発明の電磁誘導加熱コイルの好ましい例は、
前記第1層コイル又は前記第2層コイルの最外周から続けて同じ方向に巻かれるとともに、前記第1層コイル又は前記第2層コイルの最外周のみに巻線が重ね巻きされる第3層コイルをさらに備え、
前記引出線の一方が前記第1層コイル又は前記第2層コイルの最外周から、前記引出線の他方が前記第3層コイルから引き出されることを特徴とする。
A preferred example of the electromagnetic induction heating coil of the present invention is:
The third layer is wound in the same direction continuously from the outermost periphery of the first layer coil or the second layer coil, and the winding is wound on only the outermost periphery of the first layer coil or the second layer coil. A coil,
One of the lead wires is drawn from the outermost periphery of the first layer coil or the second layer coil, and the other lead wire is drawn from the third layer coil.

本発明の電磁誘導加熱コイルの好ましい例によれば、コイルの最外周にて第3層コイルが設けられているため、当該部分における磁束がより強力な物となるとともに、重ねられた方向により強く磁束を放射させることができる。これにより、被加熱物との距離が離れやすい外周部において、被加熱物をより効率的に加熱することができる   According to the preferred example of the electromagnetic induction heating coil of the present invention, since the third layer coil is provided at the outermost periphery of the coil, the magnetic flux in the part becomes stronger and stronger in the superimposed direction. Magnetic flux can be radiated. As a result, the object to be heated can be heated more efficiently in the outer peripheral portion where the distance from the object to be heated is easily separated.

本発明の電磁誘導加熱調理器は、
上述のいずれかの電磁誘導加熱コイルと、
前記電磁誘導加熱コイルに電力を供給するための電源部と、
前記電磁誘導加熱コイルの上方に設けられ、被加熱物を載置させるための天板と、
を備えることを特徴とする。
The electromagnetic induction heating cooker of the present invention is
Any of the electromagnetic induction heating coils described above;
A power supply for supplying power to the electromagnetic induction heating coil;
A top plate provided above the electromagnetic induction heating coil for placing an object to be heated;
It is characterized by providing.

本発明の電磁誘導加熱調理器によれば、上述した電磁誘導加熱コイルと同様の作用効果を奏することができる。   According to the electromagnetic induction heating cooker of this invention, there can exist an effect similar to the electromagnetic induction heating coil mentioned above.

以上説明したように、本発明の電磁誘導加熱コイル及び電磁誘導加熱調理器によれば、一対の引出線をコイルの最外周に設けることで、引出線がコイルの巻線を横切らないように構成し、これによりコイルに発生する磁束の乱れを防止し、高効率、かつ被加熱物を均一に加熱できる。   As described above, according to the electromagnetic induction heating coil and the electromagnetic induction heating cooker of the present invention, the pair of lead wires are provided on the outermost periphery of the coil so that the lead wires do not cross the coil winding. Thus, the disturbance of the magnetic flux generated in the coil can be prevented, and the object to be heated can be heated uniformly with high efficiency.

本発明の一実施形態に係る電磁誘導加熱コイルを模式的に説明する図である。It is a figure which illustrates typically the electromagnetic induction heating coil which concerns on one Embodiment of this invention. 本発明の電磁誘導加熱コイルの他の例を模式的に説明する図である。It is a figure which illustrates typically the other example of the electromagnetic induction heating coil of this invention. 図2に示す電磁誘導加熱コイルのB−B線端面図である。It is the BB line end elevation of the electromagnetic induction heating coil shown in FIG. 本発明の電磁誘導加熱コイルのさらに他の例を説明する図である。It is a figure explaining the further another example of the electromagnetic induction heating coil of this invention. 本発明の電磁誘導加熱コイルのさらに他の例を説明する図である。It is a figure explaining the further another example of the electromagnetic induction heating coil of this invention. 本発明の電磁誘導加熱コイルのさらに他の例を説明する図である。It is a figure explaining the further another example of the electromagnetic induction heating coil of this invention. 本発明の電磁誘導加熱コイルのさらに他の例を説明する図である。It is a figure explaining the further another example of the electromagnetic induction heating coil of this invention. 本発明の電磁誘導加熱調理器で被加熱物を加熱している状態を説明する図である。It is a figure explaining the state which is heating the to-be-heated object with the electromagnetic induction heating cooking appliance of this invention. 本発明の一実施形態に係る電磁誘導加熱調理器の外観の一例を説明する図である。It is a figure explaining an example of the appearance of the electromagnetic induction heating cooking appliance concerning one embodiment of the present invention. 従来の電磁誘導加熱コイルを模式的に説明する図である。It is a figure which illustrates the conventional electromagnetic induction heating coil typically. 本発明の一実施形態に係る電磁誘導加熱コイルの加熱実験に使用した機器の仕様を示す図である。It is a figure which shows the specification of the apparatus used for the heating experiment of the electromagnetic induction heating coil which concerns on one Embodiment of this invention. 電磁誘導加熱コイルのコイル特性と加熱特性に係るデータを示す図である。It is a figure which shows the data which concern on the coil characteristic and heating characteristic of an electromagnetic induction heating coil. 図12に示すデータから電磁誘導加熱コイルの特性を検討するデータを示す図である。It is a figure which shows the data which examines the characteristic of an electromagnetic induction heating coil from the data shown in FIG. 図12に示すデータから電磁誘導加熱コイルの特性を検討するデータを示す他の図である。It is another figure which shows the data which investigates the characteristic of an electromagnetic induction heating coil from the data shown in FIG. 図12に示すデータから電磁誘導加熱コイルの特性を検討するデータを示す他の図である。It is another figure which shows the data which investigates the characteristic of an electromagnetic induction heating coil from the data shown in FIG. 従来の電磁誘導加熱コイルによる加熱痕と本発明の一実施形態に係る電磁誘導加熱コイルによる加熱痕とを比較する図である。It is a figure which compares the heating trace by the conventional electromagnetic induction heating coil, and the heating trace by the electromagnetic induction heating coil which concerns on one Embodiment of this invention.

以下、本発明の一実施形態に係る電磁誘導加熱コイル及び電磁誘導加熱調理器について、添付図面を参照して詳細に説明する。なお、本発明の電磁誘導加熱コイルは、本発明の電磁誘導加熱調理器に内蔵され使用されるものである。   Hereinafter, an electromagnetic induction heating coil and an electromagnetic induction heating cooker according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In addition, the electromagnetic induction heating coil of this invention is incorporated and used for the electromagnetic induction heating cooking appliance of this invention.

先ず、図9を参照して、本発明の一実施形態に係る電磁誘導加熱調理器について説明する。図9は本発明の一実施形態に係る電磁誘導加熱調理器の外観の一例を説明する図である。   First, with reference to FIG. 9, the electromagnetic induction heating cooking appliance which concerns on one Embodiment of this invention is demonstrated. FIG. 9 is a diagram illustrating an example of the appearance of an electromagnetic induction heating cooker according to an embodiment of the present invention.

図9に示すように、本実施形態の電磁誘導加熱調理器20は、他の調理設備に備え付けられるビルトイン型であり、本体部21と、操作部31とを備える。本体部21は、被加熱物を載置させるための天板22と、冷却のための通気孔が設けられた筐体23と、前記筐体23内部に本発明の一実施形態に係る電磁誘導加熱コイルと、前記電磁誘導加熱コイルに高周波電流を供給する図示しない電源部、冷却ファン、さらには電磁誘導加熱コイルの下側に配置されるフェライト、電磁誘導加熱コイルを保持するコイルベース等を備える。   As shown in FIG. 9, the electromagnetic induction heating cooker 20 of this embodiment is a built-in type that is provided in another cooking facility, and includes a main body portion 21 and an operation portion 31. The main body 21 includes a top plate 22 for placing an object to be heated, a casing 23 provided with a ventilation hole for cooling, and an electromagnetic induction according to an embodiment of the present invention inside the casing 23. A heating coil, a power supply unit (not shown) that supplies a high-frequency current to the electromagnetic induction heating coil, a cooling fan, a ferrite disposed below the electromagnetic induction heating coil, a coil base that holds the electromagnetic induction heating coil, and the like are provided. .

操作部31は、電磁誘導加熱調理器20を操作するためのもので、本体部21とケーブル32で接続されており、電源スイッチ33、出力調整つまみ34、インジケータ35等を備える。また、本体部21には、商用電源から電力を供給するための電源線25が備えられている。   The operation unit 31 is for operating the electromagnetic induction heating cooker 20 and is connected to the main body unit 21 by a cable 32, and includes a power switch 33, an output adjustment knob 34, an indicator 35, and the like. The main body 21 is provided with a power line 25 for supplying power from a commercial power source.

電源部は、一般に電磁誘導加熱調理器に使用される公知のものが採用され、商用電源の交流を直流に整流する整流回路、整流された直流を断続させるとともに、電磁誘導コイルに流れる電流の向きを変化させるスイッチング素子、及びスイッチング素子を制御する制御部(いずれも図示せず。)を備える。なお、電磁誘導加熱調理器としては、ビルトイン型に限られず、据置型、ポータブル型等の様々な態様とすることができる。   As the power supply unit, a known unit generally used for an electromagnetic induction heating cooker is adopted, a rectifier circuit that rectifies AC of a commercial power source into DC, a direction of current flowing through the electromagnetic induction coil while intermittently rectifying the DC. And a control unit (none of which is shown) for controlling the switching element. Note that the electromagnetic induction heating cooker is not limited to the built-in type, and may be various types such as a stationary type and a portable type.

次に、図1〜図7を参照して、本発明の一実施形態に係る電磁誘導加熱コイルを説明する。図1(A)〜(C)は本発明の一実施形態に係る電磁誘導加熱コイルを説明するためにコイルを模式的に示した図であり、図1(A)は第1層コイル、図1(B)は第2層コイル、図1(C)は第1層コイルと第2層コイルを重ね合わせた図である。また、図2(A)〜(C)は本発明の電磁誘導加熱コイルの他の例を説明するために、図1同様にコイルを模式的に示した図である。図3は図2(C)に示す電磁誘導加熱コイルのB−B線端面図、図4は本発明の電磁誘導加熱コイルの他の例を図3と同様の断面から説明する図、図5〜図7は本発明の電磁誘導加熱コイルのさらに他の例を説明する図である。   Next, an electromagnetic induction heating coil according to an embodiment of the present invention will be described with reference to FIGS. 1A to 1C are diagrams schematically showing a coil for explaining an electromagnetic induction heating coil according to an embodiment of the present invention, and FIG. 1A is a first layer coil, FIG. 1 (B) is a second layer coil, and FIG. 1 (C) is a diagram in which the first layer coil and the second layer coil are superimposed. FIGS. 2A to 2C are diagrams schematically showing the coil as in FIG. 1 for explaining another example of the electromagnetic induction heating coil of the present invention. 3 is an end view taken along line BB of the electromagnetic induction heating coil shown in FIG. 2C. FIG. 4 is a diagram for explaining another example of the electromagnetic induction heating coil of the present invention from the same cross section as FIG. FIG. 7 is a view for explaining still another example of the electromagnetic induction heating coil of the present invention.

図1(A)(B)に示すように、本実施形態の電磁誘導加熱コイル101は、第1層コイル111と、第2層コイル112とを備える。第1層コイル111は、外周から内周に向かって巻線が渦巻き状に巻かれる渦巻きコイルである。また、第2層コイル112は内周から外周に向かって第1層コイル111と同じ向きに巻線が渦巻き状に巻かれる渦巻きコイルである。そして、図1(C)に示すように、第1層コイル111の最内周の終端15aと、第2層コイル112の最内周の始端14bとが接続されて、双方のコイルが重ね合わされ、直列に接続された2層のコイル101を構成する。また、第1層コイル111の最外周にある始端14aと、第2層コイル112の最外周にある終端15bには、これらのコイルに電力を供給する一対の引出線16a,16bが接続される。このように構成することで、引出線16a,16bがコイルの巻線を横切ることがなく、引出線16a,16bによる磁力によって、コイルが発生する磁束を乱すことがなくなる。また、引出線16a,16bは、互いに撚化させることにより、コイルに与える悪影響を略無視できる状態にすることができる。   As shown in FIGS. 1A and 1B, the electromagnetic induction heating coil 101 of this embodiment includes a first layer coil 111 and a second layer coil 112. The first layer coil 111 is a spiral coil in which a winding is wound spirally from the outer periphery toward the inner periphery. The second layer coil 112 is a spiral coil in which the winding is wound in the same direction as the first layer coil 111 from the inner periphery toward the outer periphery. Then, as shown in FIG. 1C, the innermost end 15a of the first layer coil 111 and the innermost start 14b of the second layer coil 112 are connected, and both coils are overlapped. A two-layer coil 101 connected in series is configured. A pair of lead wires 16a and 16b for supplying power to these coils are connected to the start end 14a on the outermost periphery of the first layer coil 111 and the end 15b on the outermost periphery of the second layer coil 112. . With this configuration, the lead wires 16a and 16b do not cross the coil winding, and the magnetic force generated by the lead wires 16a and 16b does not disturb the magnetic flux generated by the coil. Moreover, the lead wires 16a and 16b can be made to be in a state in which the adverse effect on the coil can be substantially ignored by twisting each other.

なお、電流は図中の矢印で示すように、第1層コイル111と第2層コイル112とで同じ向きに流れる。また、第1層コイル111、第2層コイル112、及び一対の引出線16a,16bは、細径のエナメル線を複数本撚り合わせたリッツ線が用いられ、それぞれを1本のリッツ線で連続的に構成することができる。また、図1(A)〜(C)は、第1層コイル111と第2層コイル112を模式的に表した図であり、図中では、第1層コイル111と第2層コイル112の構成をわかりやすくするために、隣接する巻線同士が隙間を有するように粗く描いているが、実際の製品においては、ターン数及び巻線同士の隙間は種々の態様をとることができる。   The current flows in the same direction in the first layer coil 111 and the second layer coil 112 as indicated by arrows in the figure. In addition, the first layer coil 111, the second layer coil 112, and the pair of lead wires 16a and 16b are formed by using a litz wire in which a plurality of thin enamel wires are twisted, and each of them is a single litz wire. Can be configured. 1A to 1C are diagrams schematically showing the first layer coil 111 and the second layer coil 112. In the drawing, the first layer coil 111 and the second layer coil 112 are shown. In order to make the configuration easy to understand, the adjacent windings are drawn roughly so as to have a gap, but in an actual product, the number of turns and the gap between the windings can take various forms.

また、図1(C)に示す電磁誘導加熱コイル101では、第1層コイル111と第2層コイル112とが、面としては重なっているが、個々の巻線同士がコイルの面に直交する方向に重ねられ、一組の巻線をなしているのは、図中のA−A線の近傍のみである。   Further, in the electromagnetic induction heating coil 101 shown in FIG. 1C, the first layer coil 111 and the second layer coil 112 overlap as surfaces, but individual windings are orthogonal to the surface of the coil. It is only in the vicinity of the line A-A in the figure that is superimposed in the direction and forms a set of windings.

次に、図2(A)〜(C)を参照して、電磁誘導加熱コイル201の他の例を説明する。図2(A)に示す第1層コイル211は、外周から内周に向かって巻線が渦巻き状に巻かれる渦巻きコイルであり、図2(B)に示す第2層コイル212は、内周から外周に向かって第1層コイル211と同じ向きに巻線が渦巻き状に巻かれる渦巻きコイルである。そして、第1層コイル211及び第2層コイル212は、図2(C)に示すように、コイル同士を重ね合わせ2層の電磁誘導加熱コイル201としたとき、互いのコイルの巻線の軌跡が合わない部分を渡り部Pとして、直線状にして折り曲げている。この渡り部Pは図中において、第1層コイル211は左下から右上に向かって折り曲げられ、第2層コイルは右下から左上に向かって折り曲げられる。このような渡り部Pを設けることで、第1層コイル211及び第2層コイル212は、個々の巻線同士をコイルの面に直交する方向に重ね、一組の巻線をなすようにすることができるとともに、渡り部Pにおいては、第1層コイル211の巻線と第2層コイル212の巻線とが、X字状に交差し、渡り部Pにおける磁束の錯乱を防止することができる。   Next, another example of the electromagnetic induction heating coil 201 will be described with reference to FIGS. The first layer coil 211 shown in FIG. 2A is a spiral coil in which the winding is spirally wound from the outer periphery toward the inner periphery, and the second layer coil 212 shown in FIG. Is a spiral coil in which the winding is spirally wound in the same direction as the first layer coil 211 from the outer periphery to the outer periphery. As shown in FIG. 2C, when the first layer coil 211 and the second layer coil 212 are two-layer electromagnetic induction heating coil 201 by overlapping the coils, the locus of the winding of each other coil is used. The part which does not fit is used as the crossing part P, and is bent into a straight line. In the crossing portion P, the first layer coil 211 is bent from the lower left to the upper right, and the second layer coil is bent from the lower right to the upper left. By providing such a crossover portion P, the first layer coil 211 and the second layer coil 212 overlap each other in a direction perpendicular to the surface of the coil to form a set of windings. In addition, at the transition portion P, the winding of the first layer coil 211 and the winding of the second layer coil 212 intersect in an X shape to prevent magnetic flux confusion at the transition portion P. it can.

この、個々の巻線をコイルの面と直交する方向に重ねた電磁誘導加熱コイル201を、図3を参照してさらに説明する。図3は、図2(C)のB−B線端面図と、その一部分を拡大した図である。既に述べたように、この電磁誘導加熱コイル201では、個々の巻線がコイルの面と直交する方向に重ねられ、それぞれの重ねられた巻線が一組の巻線OS1をなしている。これは、図中の円内の拡大図に示すように、被加熱物側の巻線(上側の巻線)と、被加熱物と反対側の巻線(下側の巻線)の中心軸同士がコイルの面と直交する方向の概念上の線L1上にあるということである。このようにすることで、個々の巻線同士の磁束が合わさり、コイルの面と直交する方向、すなわち被加熱物がある方向に磁束が長く延びるように放射され、被加熱物を効率的に加熱することができる。なお、当該電磁誘導加熱コイル201において、隣接する一組の巻線OS1同士の中心軸の離間距離、すなわち巻線ピッチP1は、巻線の径(2r)と略同じに構成されている。   The electromagnetic induction heating coil 201 in which the individual windings are stacked in a direction orthogonal to the coil surface will be further described with reference to FIG. FIG. 3 is an end view taken along line BB in FIG. 2C and an enlarged view of a part thereof. As already described, in this electromagnetic induction heating coil 201, individual windings are stacked in a direction orthogonal to the plane of the coil, and each stacked winding forms a set of windings OS1. As shown in the enlarged view in the circle in the figure, this is the central axis of the winding on the heated object side (upper winding) and the winding on the opposite side of the heated object (lower winding) That is, they are on a conceptual line L1 in a direction perpendicular to the surface of the coil. By doing so, the magnetic fluxes of the individual windings are combined and radiated so that the magnetic flux extends long in the direction orthogonal to the coil surface, that is, the direction of the heated object, and efficiently heats the heated object. can do. In the electromagnetic induction heating coil 201, the distance between the central axes of a pair of adjacent windings OS1, that is, the winding pitch P1, is substantially the same as the diameter (2r) of the winding.

次に、図4を参照して、電磁誘導加熱コイルのさらに他の例を説明する。図4は、図3と同じ位置及び角度で切断した、電磁誘導加熱コイル301の端面図及びその一部の拡大図である。図4に示すように、この電磁誘導加熱コイル301は、渦巻き状に構成され重ねられた第1層コイル311と第2層コイル312からなる一組の巻線OS2が、隣接する他の一組の巻線OS2との間に隙間S1を有する粗巻きとされている。このように粗巻きとすることで、重ねられた一組の巻線OS2に発生する磁束φが、隣接する他の巻線の磁束の影響を受けにくくなり、磁束φがより巻線が重ねられた方向に放射され、被加熱物をより効率的に加熱することができる。また、巻線の長さを同じとしながらコイル自体の面を大きくすることができ、広範囲を加熱することができるとともに、コイルの最外周長と最内周長の比率の調整の自由度を増すことができ、効率のよい加熱をすることができる。   Next, still another example of the electromagnetic induction heating coil will be described with reference to FIG. FIG. 4 is an end view of the electromagnetic induction heating coil 301 cut at the same position and angle as FIG. 3 and an enlarged view of a part thereof. As shown in FIG. 4, this electromagnetic induction heating coil 301 is composed of a set of windings OS <b> 2 composed of a first layer coil 311 and a second layer coil 312 that are spirally configured and stacked, and another set of adjacent windings OS <b> 2. The winding is a coarse winding having a gap S1 between the winding OS2. By using the coarse winding in this way, the magnetic flux φ generated in the pair of windings OS2 is less affected by the magnetic fluxes of other adjacent windings, and the magnetic flux φ is more overlapped with the windings. The object to be heated can be heated more efficiently. In addition, the surface of the coil itself can be enlarged while keeping the winding length the same, and a wide range can be heated, and the degree of freedom in adjusting the ratio of the outermost circumference length to the innermost circumference length of the coil is increased. Can be efficiently heated.

なお、隣接する一組の巻線OS2同士の離間距離は、巻線の軸間距離で巻線の径の1倍(2r)を超えて1.5倍(3r)以下であることが好ましく、当該電磁誘導加熱コイル301の隣接する一組の巻線OS2同士の離間距離は、巻線の径の1.5倍(3r)に構成されている。これは、一組の巻線OS2同士の離間距離が広すぎると、被加熱物に対する磁束の密度が低下し、コイルの加熱効率が悪くなる傾向があるためである。   The spacing distance between a pair of adjacent windings OS2 is preferably 1.5 times (3r) or less and more than 1 time (2r) of the diameter of the winding in the distance between the axes of the windings. The separation distance between a pair of adjacent windings OS2 of the electromagnetic induction heating coil 301 is configured to be 1.5 times (3r) the diameter of the winding. This is because if the distance between the pair of windings OS2 is too large, the magnetic flux density with respect to the object to be heated tends to decrease, and the heating efficiency of the coil tends to deteriorate.

次に、図5を参照して、電磁誘導加熱コイルのさらに他の例を説明する。図5は、図3と同じ位置及び角度で切断した、電磁誘導加熱コイル401の端面図及びその一部の拡大図である。図5に示すように、この電磁誘導加熱コイル401は、重ねられた第1層コイル411と第2層コイル412からなる一組の巻線OS3が、その軸間距離において巻線の径の1.5倍(3r)に離間されるとともに、内周にむかって傾斜され断面略ハの字となっている。このように、一組の巻線OS3を離間させるとともに、コイルの内周に向かって傾斜させることにより、拡大図に示すように、一組の巻線OS3に発生する磁束φが、被加熱物に近い側(上側)かつ内周側に向かって放射され、コイルの中心部のように巻線が存在しない場所においても、被加熱物を加熱することができる。また、被加熱物の電磁誘導加熱コイル401に対向する面(底面)が、電磁誘導加熱コイル401に向かって凸状となっていて、被加熱物の外周においてコイルと被加熱物との距離が離れていても、磁束が被加熱物の底面の中心に向かって放射されるため、被加熱物に磁束が届きやすくなる。   Next, still another example of the electromagnetic induction heating coil will be described with reference to FIG. FIG. 5 is an end view of the electromagnetic induction heating coil 401 cut at the same position and angle as FIG. 3 and an enlarged view of a part thereof. As shown in FIG. 5, this electromagnetic induction heating coil 401 is composed of a pair of windings OS3 each composed of a first layer coil 411 and a second layer coil 412 that are superposed on each other with a winding diameter of 1 at the distance between the axes. It is spaced apart by 5 times (3r), and is inclined toward the inner periphery to have a substantially C-shaped cross section. Thus, by separating the set of windings OS3 and inclining toward the inner periphery of the coil, as shown in the enlarged view, the magnetic flux φ generated in the set of windings OS3 is changed to the object to be heated. The object to be heated can be heated even in a place where there is no winding, such as the central part of the coil. Moreover, the surface (bottom surface) facing the electromagnetic induction heating coil 401 of the object to be heated is convex toward the electromagnetic induction heating coil 401, and the distance between the coil and the object to be heated is the outer periphery of the object to be heated. Even if they are separated, the magnetic flux is radiated toward the center of the bottom surface of the object to be heated, so that the magnetic flux easily reaches the object to be heated.

なお、一組の巻線OS3を傾斜させる角度α1であるが、第1層コイル411及び第2層コイル412の面方向に対して60度以上90度未満であることが好ましく、70度以上80度未満がより好ましい。これは、傾斜が強すぎると(角度が小さいと)、一組の巻線OS3のうち上側の巻線が、内側に隣接する他の一組の巻線OS3のうち下側の巻線と接触し、隣接する他の巻線の磁束の影響を受け、磁束が上側かつ内周側に向かって放射され難くなってしまうためである。なお、上記の傾斜の角度であるが、一組の巻線OS3同士の隙間S2が狭い場合は、60度以上90度未満、かつ、隣接する巻線同士が接触しない範囲とすることが望ましい。   The angle α1 for inclining the pair of windings OS3 is preferably 60 degrees or more and less than 90 degrees with respect to the surface direction of the first layer coil 411 and the second layer coil 412, and 70 degrees or more and 80 degrees. Less than degree is more preferable. This is because if the inclination is too strong (the angle is small), the upper winding of the set of windings OS3 contacts the lower winding of the other set of windings OS3 adjacent to the inside. This is because the magnetic flux is hardly emitted toward the upper side and the inner peripheral side due to the influence of the magnetic fluxes of other adjacent windings. In addition, although it is said inclination | tilt angle, when the clearance gap S2 between one set of winding OS3 is narrow, it is desirable to set it as the range which 60 to 90 degree and adjacent windings do not contact.

また、図6に示すように、一組の巻線OS4を傾斜させる角度α2,α3を、コイルの外周側と内周側で変化させる電磁誘導加熱コイル4011とすることもできる。この電磁誘導加熱コイル4011は、一組の巻線OS4の傾斜の角度が内周側になるほど漸次大きく構成され、最内周の一組の巻線OS4の角度α2が第1層コイル4111及び第2層コイル4121の面方向に対して90度とされている。なお、当該コイルにおいて、最外周における一組の巻線OS4の傾斜の角度α3は60度以上が好ましい。このように、一組の巻線OS4を傾斜させる角度を変化させることにより、コイルの最外周に設けられた一組の巻線OS4から放射される磁束はコイルの内周側に向けられ、最内周に設けられた一組の巻線OS4から放射される磁束はコイルの面に対して略直角に放射される。これにより、被加熱物の外周においてコイルと被加熱物との距離が離れていても被加熱物に磁束が届きやすくなるとともに、コイルの内周側においてコイルの面と被加熱物の面とが平行となる場所では、一組の巻線OS4が被加熱物に対して直角又は直角に近い角度となり、被加熱物に効率よく磁束を放射することができる。また、コイルの最外周長と最内周長の比率が比較的大きく、コイルの内径側の空間があまりないコイルにおいても、コイルの内径側の空間における磁束密度が必要以上に高くなることがない。なお、この電磁誘導加熱コイル4011は、一組の巻線OS4の傾斜の角度が内周側になるほど漸次大きく構成されているが、コイルの外周側から数巻分の一組の巻線は傾斜させ、それより内周側の一組の巻線は全て90度の角度とすることもできる。   In addition, as shown in FIG. 6, an electromagnetic induction heating coil 4011 in which the angles α2 and α3 for inclining the pair of windings OS4 can be changed between the outer peripheral side and the inner peripheral side of the coil. The electromagnetic induction heating coil 4011 is configured to gradually increase as the inclination angle of the pair of windings OS4 becomes the inner peripheral side, and the angle α2 of the innermost set of windings OS4 becomes the first layer coil 4111 and the first layer coil 4111. The angle is 90 degrees with respect to the surface direction of the two-layer coil 4121. In the coil, the inclination angle α3 of the pair of windings OS4 on the outermost periphery is preferably 60 degrees or more. In this way, by changing the angle at which the set of windings OS4 is inclined, the magnetic flux radiated from the set of windings OS4 provided on the outermost periphery of the coil is directed toward the inner periphery of the coil. Magnetic flux radiated from a set of windings OS4 provided on the inner periphery is radiated substantially perpendicularly to the surface of the coil. This makes it easier for the magnetic flux to reach the heated object even if the coil and the heated object are separated from each other on the outer periphery of the heated object, and the coil surface and the heated object surface are on the inner peripheral side of the coil. In a parallel place, the set of windings OS4 is at a right angle or near a right angle to the object to be heated, and the magnetic flux can be efficiently radiated to the object to be heated. Further, even in a coil in which the ratio of the outermost circumference length to the innermost circumference length is relatively large and there is not much space on the inner diameter side of the coil, the magnetic flux density in the space on the inner diameter side of the coil does not become higher than necessary. . The electromagnetic induction heating coil 4011 is configured to gradually increase as the inclination angle of the pair of windings OS4 becomes the inner peripheral side, but the set of windings corresponding to several turns from the outer peripheral side of the coil is inclined. In addition, the set of windings on the inner circumferential side can all be 90 degrees.

次に、図7(A)(B)を参照して、電磁誘導加熱コイルのさらに他の例を説明する。図7(A)(B)は、図3と同じ位置及び角度で電磁誘導加熱コイル501,601を切断した端面図である。図7(A)(B)に示すように、これらの電磁誘導加熱コイル501,601は、最外周に第3層コイル513,613を備える。これは、第2層コイル512,612の最外周から続けて同じ方向に巻かれるとともに、第2層コイル512,612の最外周のみにさらに巻線が重ね巻きされることで実現される。また、これらの電磁誘導加熱コイル501,601は、コイルに電力を供給する一方の引出線16aが第1層コイル511,611の最外周に接続され、他方の引出線16bが第3層コイル513,613に接続される。このようにすることで、コイルの最外周でさらに上下方向に磁束が強く放射され、被加熱物の外周においてコイルと被加熱物との距離が離れている場合にも被加熱物を有効に加熱することができる。   Next, still another example of the electromagnetic induction heating coil will be described with reference to FIGS. 7A and 7B are end views of the electromagnetic induction heating coils 501 and 601 cut at the same position and angle as in FIG. As shown in FIGS. 7A and 7B, these electromagnetic induction heating coils 501 and 601 include third layer coils 513 and 613 on the outermost periphery. This is realized by winding in the same direction continuously from the outermost periphery of the second layer coils 512 and 612, and further winding the winding only on the outermost periphery of the second layer coils 512 and 612. In addition, in these electromagnetic induction heating coils 501, 601, one lead wire 16a for supplying power to the coil is connected to the outermost periphery of the first layer coils 511, 611, and the other lead wire 16b is the third layer coil 513. , 613. In this way, the magnetic flux is further radiated more strongly in the vertical direction at the outermost periphery of the coil, and the heated object is effectively heated even when the distance between the coil and the heated object is large at the outer periphery of the heated object. can do.

次に、図11〜15を参照して、従来の電磁誘導加熱コイルと、本実施形態の電磁誘導加熱コイルとの比較実験のデータを説明する。図11は実験に使用した測定機器及びインバータ電源の仕様等を記載した表、図12(A)は電磁誘導加熱コイルの構造と無負荷時のコイル特性を記載した表、図12(B)は電磁誘導加熱コイルに通電させたときのコイル特性と加熱特性を記載した表である。また、図13〜15は図12(B)に示された値から電磁誘導加熱コイルの特性を検討した表である。   Next, with reference to FIGS. 11 to 15, data of a comparative experiment between the conventional electromagnetic induction heating coil and the electromagnetic induction heating coil of the present embodiment will be described. FIG. 11 is a table describing the specifications of the measuring equipment and inverter power supply used in the experiment, FIG. 12A is a table describing the structure of the electromagnetic induction heating coil and the coil characteristics at no load, and FIG. It is the table | surface which described the coil characteristic and heating characteristic when supplying with electricity to the electromagnetic induction heating coil. 13 to 15 are tables in which the characteristics of the electromagnetic induction heating coil are examined from the values shown in FIG.

なお、これらの表に示す電磁誘導加熱コイルであるが、No.1は従来の引出線の片方がコイルの最内周からコイルの巻線を横切る様に引き出されたもの、No.2は本実施形態に係る電磁誘導加熱コイルのうち図3に示す巻線ピッチが2rのもの、No.3は本実施形態に係る電磁誘導加熱コイルのうち図4に示すコイルの巻線ピッチを4rとしたもの、No.4は本実施形態に係る電磁誘導加熱コイルのうち図5に示すコイルの巻線ピッチを4rとし、一組の巻線の傾斜の角度を75度としたものである。   In addition, although it is an electromagnetic induction heating coil shown in these tables, no. No. 1 was drawn so that one of the conventional lead wires crossed the coil winding from the innermost circumference of the coil. No. 2 is an electromagnetic induction heating coil according to this embodiment having a winding pitch of 2r shown in FIG. No. 3 is an electromagnetic induction heating coil according to the present embodiment, in which the winding pitch of the coil shown in FIG. Reference numeral 4 denotes an electromagnetic induction heating coil according to the present embodiment, in which the winding pitch of the coil shown in FIG. 5 is 4r, and the inclination angle of the pair of windings is 75 degrees.

この実験であるが、木の台の上に電磁誘導加熱コイルを載置し、コイルの上にセラミック製のスペーサを置き、さらにその上に1リットルの水を入れたSUS430製の平底鍋を置き、図11に示すインバータ電源を用い水を加熱した。そして、加熱する際に水を撹拌しながら、図11に示す温度計で温度を測定し、約15℃の水温が50℃まで上昇する時間を、図11に示すストップウォッチで測定した。その結果、図12(B)に示す値が得られた。   In this experiment, an electromagnetic induction heating coil was placed on a wooden table, a ceramic spacer was placed on the coil, and a flat bottom pan made of SUS430 was placed on top of that with 1 liter of water. The water was heated using the inverter power source shown in FIG. And while stirring water when heating, temperature was measured with the thermometer shown in FIG. 11, and the time which the water temperature of about 15 degreeC rises to 50 degreeC was measured with the stopwatch shown in FIG. As a result, the values shown in FIG. 12 (B) were obtained.

次に、図12(B)に示された値から、これらの電磁誘導加熱コイルの特性を検討する。先ず、図13の表の「コイル特性」の行で、NO.2のコイルを基準として、それぞれの実測インピーダンス(値1(の行))の比率(値1’)、及び実測インダクタンス(値2)の比率を求める(値2’)。すると、それぞれのコイルにおける実測インピーダンスと実測インダクタンスの比率は略同じであり、また、コイル巻きピッチが2rのコイルと4rのコイルとは略一定の比率であることがわかる。   Next, the characteristics of these electromagnetic induction heating coils are examined from the values shown in FIG. First, in the row of “coil characteristics” in the table of FIG. The ratio (value 1 ') of the respective measured impedance (value 1 (row)) and the ratio of the measured inductance (value 2) are obtained (value 2') with reference to the two coils. Then, the ratio of the measured impedance and the measured inductance in each coil is substantially the same, and it can be seen that the coil with the coil winding pitch of 2r and the coil of 4r have a substantially constant ratio.

次に、図13の表の「加熱特性」の行で、実測のインバータ電源(INV)入力電圧(値3)と、実測のインバータ電源入力電流(値4)から、計算上のインバータ電源入力電力を求める(値5)。さらに、実測インバータ電源出力電流(値6)と、実測インピーダンス(値1)から、計算上のインバータ電源出力電力(値7)を求める。なお、これらの値を求めるとき、特段の記載がない限りは、図中の表の各欄に記載された式を用いる。   Next, in the row of “heating characteristics” in the table of FIG. 13, the calculated inverter power input power is calculated from the actually measured inverter power (INV) input voltage (value 3) and the actually measured inverter power input current (value 4). (Value 5). Further, the calculated inverter power supply output power (value 7) is obtained from the actually measured inverter power supply output current (value 6) and the measured impedance (value 1). In addition, when calculating | requiring these values, unless there is particular description, the formula described in each column of the table | surface in a figure is used.

次に、図14の表の「コイル特性」の行で、No.3とNo.4のコイルの巻線ピッチを実際に実験を行なった4rから、仮想寸法である3rに縮小したときのコイル特性を検討する。インピーダンスの比率(値1’)から、コイル巻線ピッチの寸法とインピーダンスには相関関係があることがわかるため、No.3及びNo.4のコイルの巻線ピッチが3rのときの計算インピーダンス(値1’’)を、下記式
(但し、Zcは計算インピーダンス、Zは実測インピーダンス)で求める。
また、上記式で得られた計算インピーダンス(値1’’)を基に、NO.2のコイルの実測インピーダンス(値1)を基準として、計算インピーダンス(値1’’)の比率を求める(値1’’’)。
Next, in the row of “coil characteristics” in the table of FIG. 3 and no. The coil characteristics when the winding pitch of the coil No. 4 is reduced from 4r actually tested to 3r which is a virtual dimension will be examined. The impedance ratio (value 1 ′) indicates that there is a correlation between the coil winding pitch dimension and the impedance. 3 and no. Calculated impedance (value 1 ″) when the winding pitch of coil 4 is 3r
Where Zc is the calculated impedance and Z is the measured impedance.
Further, based on the calculated impedance (value 1 ″) obtained by the above formula, NO. The ratio of the calculated impedance (value 1 ″) is obtained (value 1 ′ ″) using the measured impedance (value 1) of the coil 2 as a reference.

次に、図14の表の「加熱特性」の行で、No.3とNo.4のコイルの巻線ピッチを3rにしたときの、インバータ電源出力電力の計算と、計算したインバータ電源出力電力をコイルに流れる電流が同じになるよう換算した値を計算する。先ず、実測インバータ電源出力電流(値6)と、No.1とNo.2のコイルは実測インピーダンス(値1)で、No.3とNo.4のコイルは計算インピーダンス(値1’’)で、計算インバータ電源出力電力(値7’)を求める。   Next, in the row of “heating characteristics” in the table of FIG. 3 and no. The calculation of the inverter power supply output power when the winding pitch of the coil No. 4 is 3r and the value obtained by converting the calculated inverter power supply output power so that the current flowing through the coil is the same are calculated. First, the measured inverter power supply output current (value 6) 1 and No. The coil No. 2 has an actually measured impedance (value 1). 3 and no. The coil No. 4 calculates the calculated inverter power supply output power (value 7 ') with the calculated impedance (value 1 ").

次に、実測インバータ電源出力電流(値6)を全て16アンペアにした換算インバータ電源出力電流(値6’)での計算インバータ電源出力電力(値7’’)を、No.1とNo.2のコイルは実測インピーダンス(値1)で、No.3とNo.4のコイルは計算インピーダンス(値1’’)で求める。   Next, the calculated inverter power supply output power (value 7 ″) at the converted inverter power supply output current (value 6 ′) in which the measured inverter power supply output current (value 6) is all 16 amperes is set to No. 1 and No. The coil No. 2 has an actually measured impedance (value 1). 3 and no. The coil No. 4 is obtained with a calculated impedance (value 1 ″).

次に、図15の表で、計算インバータ電源出力電力(値7’’)から、水を加熱したときの昇温時間を求める。先ず、1リットル昇温量(図12(B)値8)にバラツキがあるため、全てのコイルの水1リットル昇温量をΔ35℃に統一する(図15値8’)。次に、水1リットル昇温量をΔ35℃に統一したことによる水1リットル昇温時間(図12(B)値9)の調整値(図15値9’)を、下記式
(但し、t’は値9’、ΔT’は35℃、ΔTは値8、tは値9)で求める。
Next, in the table of FIG. 15, the temperature rise time when water is heated is obtained from the calculated inverter power supply output power (value 7 ″). First, since there is variation in the 1 liter temperature rise amount (value 8 in FIG. 12B), the water 1 liter temperature rise amount in all coils is unified to Δ35 ° C. (value 8 ′ in FIG. 15). Next, an adjustment value (value 9 ′ in FIG. 15) of the water 1 liter temperature increase time (FIG. 12 (B) value 9) by unifying the water 1 liter temperature increase amount to Δ35 ° C. is expressed by the following equation.
(Where t ′ is a value 9 ′, ΔT ′ is 35 ° C., ΔT is a value 8, and t is a value 9).

次に、昇温量を35℃に統一したときの水1リットル昇温時間(値9’)と、実測インバータ電源出力電流(値6)での計算インバータ電源出力電力(値7)と、電流を全て16アンペアにした換算インバータ電源出力電流(値6’)での計算インバータ電源出力電力(値7’’)とで、全てのコイルに流れる電流を16アンペアにしたときの水1リットル昇温時間(値9’’’)を、下記式

(但し、t’’’は値9’’’)で求める。
Next, 1 liter of water temperature rise time (value 9 ') when the temperature increase amount is unified to 35 ° C, calculated inverter power supply output power (value 7) with measured inverter power supply output current (value 6), current Calculated with the converted inverter power supply output current (value 6 '), which is all 16 amps, and the inverter power supply output power (value 7''), the current flowing through all the coils increased to 1 liter of water when the current was 16 amps Time (value 9 ''')

(Where t ′ ″ is a value 9 ′ ″).

すると、値6’と値7’’から、同じ16アンペアの電流ながら、No.1のコイルに比べてNo.2のコイルが飛び抜けて高い出力を得ることができ、No.3及びNo.4のコイルが若干高い出力を得ることができることがわかる。また、水1リットル昇温時間も値9’’’から、No.2のコイルが飛び抜けて早く、No.3及びNo.4のコイルがNo.1のコイルと同等である。これらのことから、本実施形態に係る電磁誘導加熱コイルのうち、巻線ピッチが2r〜3rの間にあるコイルが出力が高く高効率であることがわかる。   Then, from the value 6 'and the value 7 ", no. No. 1 compared to coil No. 1. No. 2 coil can jump through and high output can be obtained. 3 and no. It can be seen that the No. 4 coil can obtain a slightly higher output. In addition, the temperature increase time for 1 liter of water from the value 9 '' ' No. 2 coil jumps through quickly, no. 3 and no. No. 4 coil is no. It is equivalent to 1 coil. From these, it can be seen that among the electromagnetic induction heating coils according to the present embodiment, a coil having a winding pitch between 2r and 3r has high output and high efficiency.

なお、No.3のコイルとNo.4のコイルの巻線ピッチがr4の効率を検討すると、電流値を16アンペアとした場合、計算インバータ電源出力電力は、16×16×インピーダンスで求められ、それぞれ0.96kWと0.93kWとなる。この値から水1リットル昇温時間(値9’’)を、下記式

(但し、t’’は値9’’、pはr4の計算インバータ電源出力電力)で求める。
結果、それぞれの水1リットル昇温時間(値9’’)は196秒と194秒となり、No.1のコイルと比べても遅くなる。
In addition, No. 3 coil and No. 3 coil. Considering the efficiency when the winding pitch of the coil 4 is r4, when the current value is 16 amperes, the calculated inverter power supply output power is obtained by 16 × 16 × impedance, which is 0.96 kW and 0.93 kW respectively . From this value, the water 1 liter heating time (value 9 ″)

(Where t ″ is the value 9 ″ and p is the calculated inverter power output power of r4).
As a result, each water 1 liter heating time (value 9 ″) was 196 seconds and 194 seconds. Compared with the coil of 1, it becomes slow.

次に、図8(A)〜(C)を参照して、本実施形態の電磁誘導加熱コイルの例を組み込んだ電磁誘導加熱調理器において、被加熱物を加熱するときの作用について説明する。図8(A)〜(C)は本発明の電磁誘導加熱調理器で被加熱物を加熱している状態を説明する図であり、電磁誘導加熱調理器及び被加熱物の端面図である。なお、本図に記載される被加熱物は、底面が下側に凸状に膨らみ底外縁部が湾曲している鍋を想定している。また、図中の矢印は、磁束が放射される向きを示している。   Next, with reference to FIGS. 8A to 8C, an operation when heating an object to be heated in an electromagnetic induction heating cooker incorporating an example of the electromagnetic induction heating coil of the present embodiment will be described. FIGS. 8A to 8C are diagrams illustrating a state in which the object to be heated is heated by the electromagnetic induction heating cooker of the present invention, and are end views of the electromagnetic induction heating cooker and the object to be heated. In addition, the to-be-heated material described in this figure assumes a pan whose bottom surface bulges downward in a convex shape and whose bottom outer edge is curved. Moreover, the arrow in a figure has shown the direction where magnetic flux is radiated | emitted.

図8(A)は、図5に示す電磁誘導加熱コイル401を組み込んだ電磁誘導加熱調理器20であり、電磁誘導加熱コイル401と、フェライト24と、天板22とを備え、さらに図示しない電源部等を備える。ここで、電磁誘導加熱コイル401に高周波電流が流されると、それぞれの巻線には磁束が発生する。そして、引出線がコイルの巻線を横切らないため、コイルに発生する磁束に乱れがなく、被加熱物40を均一かつ高効率に加熱することができる。また、この磁束は上述の通り、コイルの上側かつ内周側にむかって放射されるため、巻線のないコイルの中心部や、被加熱部40と巻線との距離が離れている外周側においても、磁束が被加熱物40に届き、被加熱物40を効率的に加熱することができる。   FIG. 8A shows the electromagnetic induction heating cooker 20 incorporating the electromagnetic induction heating coil 401 shown in FIG. 5, which includes the electromagnetic induction heating coil 401, the ferrite 24, and the top plate 22, and further includes a power source (not shown). Parts. Here, when a high-frequency current is passed through the electromagnetic induction heating coil 401, a magnetic flux is generated in each winding. And since a leader line does not cross the coil | winding of a coil, there is no disorder in the magnetic flux which generate | occur | produces in a coil, and the to-be-heated material 40 can be heated uniformly and highly efficiently. Also, as described above, this magnetic flux is radiated toward the upper side and the inner circumference side of the coil, so that the center part of the coil without winding or the outer circumference side where the distance between the heated part 40 and the winding is separated The magnetic flux reaches the object to be heated 40 and the object to be heated 40 can be efficiently heated.

また、図8(B)は、図7(A)に示す電磁誘導加熱コイル501を組み込んだ電磁誘導加熱調理器20であり、電磁誘導加熱調理器20の構成は上記同様である。ここでも、引出線がコイルの巻線を横切らないことによる有利な作用効果が発揮される。また、それぞれの巻線が上下に重ねられているため、重ねられた巻線の磁束が合わさり、磁束が上側に向かって放射される。これにより、被加熱物40に磁束が届きやすくなり、被加熱物40を効率的に加熱することができる。また、最外周は巻線が3層に重ねられているため、当該場所においてはより強く磁束が上側に向かって放射される。これにより、被加熱部と巻線との距離が離れている外周側においても、磁束が被加熱物40に届き、被加熱物40を効率的に加熱することができる。   FIG. 8B shows an electromagnetic induction heating cooker 20 incorporating the electromagnetic induction heating coil 501 shown in FIG. 7A, and the configuration of the electromagnetic induction heating cooker 20 is the same as described above. Here too, an advantageous effect is exhibited by the fact that the lead wire does not cross the coil winding. Moreover, since each winding is piled up and down, the magnetic flux of the piled winding is put together and magnetic flux is radiated | emitted toward the upper side. Thereby, the magnetic flux easily reaches the object to be heated 40, and the object to be heated 40 can be efficiently heated. In addition, since the windings are stacked in three layers on the outermost periphery, the magnetic flux is more strongly radiated upward at the place. Thereby, magnetic flux reaches the to-be-heated object 40 also on the outer peripheral side where the distance between the to-be-heated part and the winding is long, and the to-be-heated object 40 can be efficiently heated.

また、図8(C)は、図7(B)に示す電磁誘導加熱コイル601を組み込んだ電磁誘導加熱調理器20であり、電磁誘導加熱調理器20の構成は上記同様である。ここでも、引出線がコイルの巻線を横切らないことによる有利な作用効果が発揮される。また、この電磁誘導加熱調理器では、上記図8(A)と(B)との利点を合わせ持っており、磁束がコイルの上側かつ内周側に向かって放射されるとともに、最外周においてはより強く磁束を放射することができる。これにより、コイルの中心側及び外周側の双方においても、被加熱物40をより効率的に加熱することができる。   FIG. 8C shows the electromagnetic induction heating cooker 20 incorporating the electromagnetic induction heating coil 601 shown in FIG. 7B, and the configuration of the electromagnetic induction heating cooker 20 is the same as described above. Here too, an advantageous effect is exhibited by the fact that the lead wire does not cross the coil winding. In addition, this electromagnetic induction heating cooker has the advantages of FIGS. 8A and 8B, and the magnetic flux is radiated toward the upper side and the inner side of the coil. Magnetic flux can be emitted more strongly. Thereby, the to-be-heated material 40 can be heated more efficiently also in both the center side and outer peripheral side of a coil.

なお、図8において、図1〜図3に示す電磁誘導加熱コイルの作用を説明していないが、既に述べたように、加熱効率に優れたコイルであるため、通常の使用において優れた性能を発揮することは明らかである。   In addition, in FIG. 8, although the effect | action of the electromagnetic induction heating coil shown in FIGS. 1-3 is not demonstrated, since it is a coil excellent in heating efficiency as already stated, it has the outstanding performance in normal use. It is clear that it works.

また、上述の実験に使用した鍋とは異なるが、図16(A)に示すように、従来の電磁誘導加熱コイルで加熱すると加熱ムラが発生し、特に出力が高い場合において異常加熱痕が鍋に残ることがあった。これは、既に述べているように従来の電磁誘導加熱コイルでは、引出線がコイルの巻線を横切るため、コイルが発生する磁束を引出線が乱し、加熱ムラの原因となるためである。一方、図16(B)に示すように、本実施形態に係る電磁誘導加熱コイルでは、引出線がコイルから発生する磁束を乱すことはなく、略均一に加熱されている。   Moreover, although different from the pan used in the above-described experiment, as shown in FIG. 16 (A), when heating with a conventional electromagnetic induction heating coil, uneven heating occurs, and particularly when the output is high, abnormal heating traces appear in the pan. There was something that remained. This is because in the conventional electromagnetic induction heating coil as described above, the leader wire crosses the winding of the coil, so that the leader wire disturbs the magnetic flux generated by the coil and causes uneven heating. On the other hand, as shown in FIG. 16B, in the electromagnetic induction heating coil according to this embodiment, the lead wire does not disturb the magnetic flux generated from the coil and is heated substantially uniformly.

以上説明したように、本実施形態の電磁誘導加熱コイル及び電磁誘導加熱調理器によれば、引出線をコイルの最外周に設けているため、引出線がコイルの巻線を横切ることがなく、引出線によってコイルに発生する磁束を乱すことがなく、被加熱物を均一に加熱できる。また、従来の電磁誘導加熱コイルと同じ電流ながら、高出力を得ることができ、コイル損失及び回路損失を低減させることができる。また、コイルを2層とすることで、必要な巻き数を得ながらコイルの最外周長と最内周長の比率を適正なものにすることができ、コイルの内周側において、磁束がコイルの巻線自体を加熱することもない。さらに、2本の引出線を撚化することで、引出線によるコイルへの悪影響を略無視できる状態にすることができる。   As described above, according to the electromagnetic induction heating coil and the electromagnetic induction heating cooker of the present embodiment, since the lead wire is provided on the outermost periphery of the coil, the lead wire does not cross the coil winding, The object to be heated can be heated uniformly without disturbing the magnetic flux generated in the coil by the lead wire. Moreover, high output can be obtained while the same current as that of the conventional electromagnetic induction heating coil, and coil loss and circuit loss can be reduced. Moreover, by making the coil into two layers, the ratio of the outermost circumference length and the innermost circumference length of the coil can be made appropriate while obtaining the necessary number of turns, and the magnetic flux is coiled on the inner circumference side of the coil. The winding itself is not heated. Furthermore, by twisting the two lead wires, it is possible to make a state in which the adverse effect of the lead wires on the coil can be substantially ignored.

また、隣接する巻線同士に隙間を持たせる粗巻きとすることで、磁束が上下に強く放射され、被加熱物をより効率的に加熱することができるとともに、前記隙間の広さを調整することでコイルの最外周長と最内周長の比率の調整が容易となる。   In addition, by using a coarse winding that provides a gap between adjacent windings, the magnetic flux is strongly emitted in the vertical direction, and the object to be heated can be heated more efficiently, and the width of the gap is adjusted. This makes it easy to adjust the ratio between the outermost circumference and the innermost circumference of the coil.

また、重ねた第1層コイルと第2層コイルからなる一組の巻線をコイルの内周にむかって傾斜させる構成とすることで、磁束をコイルの内周側に向かって放射させることができる。これによって、コイル外周側の磁束の拡散が抑制され、底外縁部が湾曲し、底部が下に向かって凸状となっている被加熱物においても、効率よく加熱することができる。   In addition, a configuration in which a pair of windings composed of the stacked first layer coil and second layer coil is inclined toward the inner periphery of the coil, so that the magnetic flux can be radiated toward the inner periphery of the coil. it can. Accordingly, diffusion of magnetic flux on the coil outer periphery side is suppressed, the bottom outer edge portion is curved, and even a heated object whose bottom portion is convex downward can be efficiently heated.

また、コイルの外周側の一組の巻線を内周側に傾斜させ、内周側の一組の巻線を直立に近くさせることで、底外縁部が湾曲し、底部が下に向かって凸状となっている被加熱物において、底外縁部及び中心部の双方の面に対し、一組の巻線が略直角となるため、被加熱物全体を効率よく加熱することができる。   In addition, by tilting a set of windings on the outer peripheral side of the coil toward the inner peripheral side and making the set of windings on the inner peripheral side close to upright, the bottom outer edge is curved and the bottom is directed downward In the object to be heated having a convex shape, a set of windings are substantially perpendicular to both the bottom outer edge part and the center part surface, so that the entire object to be heated can be efficiently heated.

また、コイルの最外周に第3層コイルを備える構成とすることで、最外周において磁束をより強力に発生させることができる。   Moreover, by setting it as the structure provided with a 3rd layer coil in the outermost periphery of a coil, a magnetic flux can be generated more strongly in the outermost periphery.

なお、上述の電磁誘導加熱コイル及び電磁誘導加熱調理器は、本発明の例示であり、発明の趣旨を逸脱しない範囲において、その構成を適宜変更することができる。   In addition, the above-mentioned electromagnetic induction heating coil and electromagnetic induction heating cooker are illustrations of the present invention, and the configuration thereof can be changed as appropriate without departing from the spirit of the invention.

101,201,301,401,4011,501,601・・電磁誘導加熱コイル、
111,211,311,411,4111,511,611,・・第1層コイル、
112,212,312,412,4121,512,612,・・第2層コイル、
513,613・・第3層コイル、
14a,14b・・始端、
15a,15b・・終端、
16a,16b・・引出線、
20・・電磁誘導加熱調理器、
21・・本体部、22・・天板、23・・筐体、24・・フェライト、25・・電源線、
31・・操作部、32・・ケーブル、33・・電源スイッチ、34・・出力調整つまみ、35・・インジケータ、
40・・被加熱物
OS1,OS2,OS3,OS4・・一組の巻線
101, 201, 301, 401, 4011, 501, 601 .. Electromagnetic induction heating coil,
111, 211, 311, 411, 4111, 511, 611,.
112, 212, 312, 412, 4121, 512, 612, ... the second layer coil,
513, 613 .. Third layer coil,
14a, 14b..
15a, 15b .. termination,
16a, 16b ... Leader,
20 .. Electromagnetic induction heating cooker,
21..Main body, 22..Top plate, 23..Housing, 24..Ferrite, 25..Power line,
31 .. Operation part, 32 .. Cable, 33 .. Power switch, 34 .. Output adjustment knob, 35 .. Indicator,
40 ... Heated object OS1, OS2, OS3, OS4 ...

Claims (9)

外周から内周に向かって巻線が渦巻き状に巻かれる第1層コイルと、
前記第1層コイルの最内周から続けて同じ方向かつ外周に向かって渦巻き状に巻線が巻かれる第2層コイルと、
前記第1層コイル及び前記第2層コイルの最外周から引き出され、前記第1層コイル及び前記第2層コイルに電力を供給する一対の引出線と、
を備えることを特徴とする電磁誘導加熱コイル。
A first layer coil in which the winding is spirally wound from the outer periphery toward the inner periphery;
A second layer coil in which a winding is wound spirally in the same direction and toward the outer periphery continuously from the innermost periphery of the first layer coil;
A pair of lead wires that are drawn from the outermost circumference of the first layer coil and the second layer coil and supply power to the first layer coil and the second layer coil;
An electromagnetic induction heating coil comprising:
前記第1層コイルの巻線と前記第2層コイルの個々の巻線が、前記第1層コイル及び前記第2層コイルの面と直交する方向に重ねられた一組の巻線をなしていることを特徴とする請求項1に記載の電磁誘導加熱コイル。   The windings of the first layer coil and the individual windings of the second layer coil form a set of windings that are stacked in a direction perpendicular to the surfaces of the first layer coil and the second layer coil. The electromagnetic induction heating coil according to claim 1, wherein: 隣接する前記一組の巻線同士の間に隙間が設けられていることを特徴とする請求項2に記載の電磁誘導加熱コイル。   The electromagnetic induction heating coil according to claim 2, wherein a gap is provided between the pair of adjacent windings. 隣接する前記一組の巻線同士の離間距離が、前記巻線の軸間距離で前記巻線の径の1倍を超えて1.5倍以下であることを特徴とする請求項3に記載の電磁誘導加熱コイル。   The separation distance between the pair of adjacent windings is more than 1.5 times and less than or equal to 1.5 times the diameter of the winding in the inter-axis distance of the windings. Electromagnetic induction heating coil. 前記一組の巻線が、内周側に傾斜されていることを特徴とする請求項3又は4に記載の電磁誘導加熱コイル。   5. The electromagnetic induction heating coil according to claim 3, wherein the pair of windings are inclined toward the inner peripheral side. 傾斜の角度が、前記第1層コイル及び前記第2層コイルの面方向に対して60度以上90度未満であることを特徴とする請求項5に記載の電磁誘導加熱コイル。   The electromagnetic induction heating coil according to claim 5, wherein an inclination angle is 60 degrees or more and less than 90 degrees with respect to a surface direction of the first layer coil and the second layer coil. 傾斜の角度が前記一組の巻線の外周側より内周側が大きく構成され、
最外周の前記一組の巻線の傾斜の角度が前記第1層コイル及び前記第2層コイルの面方向に対して60度以上であり、
最内周の前記一組の巻線の傾斜の角度が前記第1層コイル及び前記第2層コイルの面方向に対して90度以下であることを特徴とする請求項5に記載の電磁誘導加熱コイル。
The angle of inclination is configured such that the inner peripheral side is larger than the outer peripheral side of the set of windings,
The angle of inclination of the set of windings on the outermost periphery is 60 degrees or more with respect to the surface direction of the first layer coil and the second layer coil,
6. The electromagnetic induction according to claim 5, wherein an angle of inclination of the pair of windings on the innermost circumference is 90 degrees or less with respect to a surface direction of the first layer coil and the second layer coil. Heating coil.
前記第1層コイル又は前記第2層コイルの最外周から続けて同じ方向に巻かれるとともに、前記第1層コイル又は前記第2層コイルの最外周のみに巻線が重ね巻きされる第3層コイルをさらに備え、
前記引出線の一方が前記第1層コイル又は前記第2層コイルの最外周から、前記引出線の他方が前記第3層コイルから引き出されることを特徴とする請求項1ないし7のいずれか1項に記載の電磁誘導加熱コイル。
The third layer is wound in the same direction continuously from the outermost periphery of the first layer coil or the second layer coil, and the winding is wound on only the outermost periphery of the first layer coil or the second layer coil. A coil,
8. One of the lead wires is drawn from the outermost periphery of the first layer coil or the second layer coil, and the other lead wire is drawn from the third layer coil. The electromagnetic induction heating coil according to item.
請求項1ないし8のいずれか1項に記載の電磁誘導加熱コイルと、
前記電磁誘導加熱コイルに電力を供給するための電源部と、
前記電磁誘導加熱コイルの上方に設けられ、被加熱物を載置させるための天板と、
を備えることを特徴とする電磁誘導加熱調理器。
The electromagnetic induction heating coil according to any one of claims 1 to 8,
A power supply for supplying power to the electromagnetic induction heating coil;
A top plate provided above the electromagnetic induction heating coil for placing an object to be heated;
An electromagnetic induction heating cooker comprising:
JP2015034621A 2015-02-24 2015-02-24 Electromagnetic induction heating coil and electromagnetic induction heating cooker Pending JP2016157590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034621A JP2016157590A (en) 2015-02-24 2015-02-24 Electromagnetic induction heating coil and electromagnetic induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034621A JP2016157590A (en) 2015-02-24 2015-02-24 Electromagnetic induction heating coil and electromagnetic induction heating cooker

Publications (1)

Publication Number Publication Date
JP2016157590A true JP2016157590A (en) 2016-09-01

Family

ID=56826325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034621A Pending JP2016157590A (en) 2015-02-24 2015-02-24 Electromagnetic induction heating coil and electromagnetic induction heating cooker

Country Status (1)

Country Link
JP (1) JP2016157590A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172667A1 (en) * 2020-02-27 2021-09-02 엘지전자 주식회사 Induction heating device
KR102327655B1 (en) * 2020-07-10 2021-11-17 박태순 Induction To Prevent Content From Being Pressed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172667A1 (en) * 2020-02-27 2021-09-02 엘지전자 주식회사 Induction heating device
KR102327655B1 (en) * 2020-07-10 2021-11-17 박태순 Induction To Prevent Content From Being Pressed

Similar Documents

Publication Publication Date Title
JP4752879B2 (en) Planar coil
KR102021332B1 (en) Heating Module for induction range and induction range including the same
JP2009158366A (en) Electromagnetic induction heating apparatus
US8792245B2 (en) Coil assembly and electrical device having such coil assembly
JP5693505B2 (en) Induction heating cooker
CN103250465A (en) Induction heating coil and induction heating device
KR20200029988A (en) Superheated Steam Generator
JP2009064856A (en) Spiral coil
JP2016157590A (en) Electromagnetic induction heating coil and electromagnetic induction heating cooker
JP5023555B2 (en) Induction heating device
JP2009283176A (en) Magnetic flat braided wire, and coil
JP6016951B2 (en) Induction heating coil and induction heating apparatus using the same
TWI522076B (en) Induction heating conditioner
WO2019239557A1 (en) Induction heating cooker
JP4555838B2 (en) Induction heating device
JP2009164012A (en) Induction heating coil
JP6477604B2 (en) Induction heating device
KR100832312B1 (en) Induction autotimer for heating coil
KR100678383B1 (en) Heating coil of induction heating cooker
JP6818467B2 (en) Induction heating cooker
JP2013134839A (en) Induction heating coil
JP2012123910A (en) Induction heating coil and induction heating cooking device using the same
JPS62287591A (en) Induction heating cooker
JP2014216129A (en) Induction heating device and induction heating apparatus using the same
JP2009245675A (en) Induction heating cooker