JP2016156403A - Insulated roller bearing for electric corrosion prevention - Google Patents

Insulated roller bearing for electric corrosion prevention Download PDF

Info

Publication number
JP2016156403A
JP2016156403A JP2015033049A JP2015033049A JP2016156403A JP 2016156403 A JP2016156403 A JP 2016156403A JP 2015033049 A JP2015033049 A JP 2015033049A JP 2015033049 A JP2015033049 A JP 2015033049A JP 2016156403 A JP2016156403 A JP 2016156403A
Authority
JP
Japan
Prior art keywords
insulating layer
insulating
rolling bearing
mass
corrosion prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015033049A
Other languages
Japanese (ja)
Inventor
中井 毅
Takeshi Nakai
毅 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2015033049A priority Critical patent/JP2016156403A/en
Publication of JP2016156403A publication Critical patent/JP2016156403A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the film strength by decreasing the vacancy of an insulated film in an insulated roller bearing for electric corrosion prevention on which a ceramic insulation layer is formed.SOLUTION: An insulated roller bearing for electric corrosion prevention has an insulated film including, as a main ingredient, alumina (AlO) containing calcia (CaO) of 10-40 mass% on a surface other than a surface on which a raceway surface of at least one bearing ring is provided.SELECTED DRAWING: Figure 1

Description

本発明は、軌道輪をセラミック製の絶縁層で被覆した電食防止用絶縁転がり軸受に関する。   The present invention relates to an insulating rolling bearing for preventing electric corrosion in which a bearing ring is covered with a ceramic insulating layer.

電動モータや発電機等、各種電気機器等の回転軸を支承する転がり軸受では、軸受自体に帰路電流やモータ軸電流等の電流が流れてしまう。転がり軸受に電流が流れた場合、電流の通路となる部分に電食が発生して、転がり軸受の寿命を著しく短縮してしまう。このような電食の発生を防止するため、転がり軸受を構成する外輪や内輪の表面に絶縁層を形成して軸受に電流が流れないようにした電食防止用絶縁転がり軸受が使用されている。   In a rolling bearing that supports a rotating shaft of various electric devices such as an electric motor and a generator, a current such as a return current and a motor shaft current flows through the bearing itself. When a current flows through the rolling bearing, electrolytic corrosion occurs in a portion serving as a current path, and the life of the rolling bearing is remarkably shortened. In order to prevent the occurrence of such electric corrosion, an insulating rolling bearing for preventing electric corrosion has been used in which an insulating layer is formed on the surface of the outer ring or inner ring constituting the rolling bearing so that no current flows through the bearing. .

絶縁層として、樹脂層も形成されているが、絶縁性能や耐久性等からセラミックスを溶射して形成することが行われており、溶射ノズルからセラミックス材料の溶滴を軌道面以外の面、即ち、外輪の外周面及び両端面、内輪の内周面及び両端面に噴射して所定厚さの絶縁層を形成している(例えば、特許文献1〜3参照)。   A resin layer is also formed as an insulating layer, but it is formed by spraying ceramics from the viewpoint of insulation performance, durability, etc., and droplets of the ceramic material are sprayed from the spray nozzle to a surface other than the raceway surface, that is, The outer peripheral surface and both end surfaces of the outer ring and the inner peripheral surface and both end surfaces of the inner ring are sprayed to form an insulating layer having a predetermined thickness (see, for example, Patent Documents 1 to 3).

しかしながら、セラミックス材料を溶射して形成した絶縁被膜には多数の空孔が発生しており、空孔の分布にもバラツキがある。このような空孔があると、絶縁被膜が脆くなり、場合によってはクラックが発生して剥離することがある。   However, many holes are generated in the insulating coating formed by spraying a ceramic material, and the distribution of the holes also varies. If there are such holes, the insulating coating becomes brittle, and in some cases, cracks may be generated and peeled off.

特許第4795888号公報Japanese Patent No. 4795888 特許第4920066号公報Japanese Patent No. 4920066 特許第4826427号公報Japanese Patent No. 4826427

本発明はこのような状況に鑑みてなされたものであり、絶縁被膜の空孔を減少して膜強度を高めることを目的とする。   This invention is made | formed in view of such a condition, and it aims at reducing the void | hole of an insulating film and improving film | membrane intensity | strength.

上記課題を解決するために本発明は、下記の電食防止用絶縁転がり軸受を提供する。
(1)互いに同心に配置された、それぞれが金属製である1対の軌道輪と、これら両軌道輪の互いに対向する面に形成された1対の軌道面同士の間に転動自在に設けられた、それぞれが金属製である複数個の転動体とを備え、少なくとも一方の軌道輪の軌道面を設けた面以外の面を、セラミック製の絶縁層により被覆した電食防止用絶縁転がり軸受において、
前記絶縁層が、カルシア(CaO)を10〜40質量%の割合で含有するアルミナ(Al)を主成分とすることを特徴とする電食防止用絶縁転がり軸受。
(2)前記絶縁層が、合成樹脂を含有する封孔剤により封孔処理されていることを特徴とする上記(1)記載の電食防止用絶縁転がり軸受。
In order to solve the above problems, the present invention provides the following insulated rolling bearing for preventing electrolytic corrosion.
(1) Provided in a freely rollable manner between a pair of raceways arranged concentrically and made of metal, respectively, and a pair of raceways formed on opposite surfaces of these raceways. And a plurality of rolling elements each made of metal, and a surface other than the surface provided with the raceway surface of at least one of the race rings is covered with a ceramic insulating layer to prevent electric corrosion. In
An insulating rolling bearing for electrolytic corrosion prevention, characterized in that the insulating layer is mainly composed of alumina (Al 2 O 3 ) containing calcia (CaO) in a proportion of 10 to 40% by mass.
(2) The insulating rolling bearing for electrolytic corrosion prevention according to (1), wherein the insulating layer is sealed with a sealing agent containing a synthetic resin.

本発明の電食防止用絶縁転がり軸受は、絶縁層として、カルシアを特定量含有するアルミナからなる溶射被膜を形成したものであり、この溶射被膜は従来の溶射被膜よりも空孔の発生量が少なく、膜強度に優れるため、高い絶縁効果を長期間維持できる。   The insulating rolling bearing for preventing galvanic corrosion of the present invention is formed by forming a thermal spray coating made of alumina containing a specific amount of calcia as an insulating layer, and this thermal spray coating has more voids than a conventional thermal spray coating. Since the film strength is small and the film strength is excellent, a high insulating effect can be maintained for a long time.

本発明の電食防止用絶縁転がり軸受の一例を示す断面図である。It is sectional drawing which shows an example of the insulated rolling bearing for electric corrosion prevention of this invention. CaO含有量と空孔率との関係を示すグラフである。It is a graph which shows the relationship between CaO content and porosity. CaO含有量と破壊靭性値との関係を示すグラフである。It is a graph which shows the relationship between CaO content and fracture toughness value.

以下、本発明に関して図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明において、電食防止用絶縁転がり軸受の構造には制限はなく、例えば図1に示す電食防止用絶縁転がり軸受を例示することができる。図示される電食防止用絶縁転がり軸受では、内輪1の外周面に形成した内輪軌道2と、外輪3の内周面に形成した外輪軌道4との間に複数の転動体5を設けるとともに、外輪3の外輪軌道4を形成した面以外の面、即ちその外輪3の外周面7、軸方向の両端面8,8、並びに外周面7と両端面8,8とを連続する湾曲部9,9にかけて絶縁層6を形成している。このような電食防止用絶縁転がり軸受では、外輪3を金属製のハウジングに内嵌支持した状態では、絶縁層6が外輪3とハウジングとを絶縁する。その結果、外輪3とハウジングとの間に電流が流れなくなり、他の軸受構成部材に電食が発生しなくなる。   In the present invention, the structure of the electric rolling prevention insulating rolling bearing is not limited, and for example, the electric corrosion prevention insulating rolling bearing shown in FIG. 1 can be exemplified. In the illustrated insulating rolling bearing for preventing electric corrosion, a plurality of rolling elements 5 are provided between the inner ring raceway 2 formed on the outer peripheral surface of the inner ring 1 and the outer ring raceway 4 formed on the inner peripheral surface of the outer ring 3, A surface of the outer ring 3 other than the surface on which the outer ring raceway 4 is formed, that is, an outer peripheral surface 7 of the outer ring 3, axial end surfaces 8, 8, and a curved portion 9, which continuously connects the outer peripheral surface 7 and both end surfaces 8, 8. 9, the insulating layer 6 is formed. In such an electric rolling prevention insulating rolling bearing, the insulating layer 6 insulates the outer ring 3 from the housing in a state where the outer ring 3 is fitted and supported in a metal housing. As a result, no current flows between the outer ring 3 and the housing, and no electrolytic corrosion occurs on other bearing components.

また、図示は省略するが、内輪1の内輪軌道2を形成した面以外に絶縁層を形成してもよい。   Although not shown, an insulating layer may be formed on the inner ring 1 other than the surface on which the inner ring raceway 2 is formed.

絶縁層6は、CaO(カルシア)とAl(アルミナ)とを含有する溶射材を溶射して得られる溶射被膜である。アルミナ−カルシアの融点は、他の酸化物とアルミナとの複合セラミックス、例えばアルミナ−ジルコニアよりも低いため、焼結性が改善されて空孔の発生量がより少なくなる。従って、アルミナ−ジルコニアを主成分とする絶縁層よりも膜特性、例えば耐摩耗性等が良好になる。 The insulating layer 6 is a thermal spray coating obtained by thermal spraying a thermal spray material containing CaO (calcia) and Al 2 O 3 (alumina). Since the melting point of alumina-calcia is lower than composite ceramics of other oxides and alumina, such as alumina-zirconia, the sinterability is improved and the amount of voids generated is reduced. Therefore, film properties such as wear resistance are better than those of an insulating layer mainly composed of alumina-zirconia.

この溶射被膜からなる絶縁層6において、カルシア含有量は10〜40質量%である。カルシア含有量が10質量%未満では溶射材全体として融点の低下が十分ではなく、空孔が減少しない。また、カルシア含有量が40質量%を超えると粗大化したCaO粒子が生成し、その周囲に空孔が発生して被膜の強度が低下する。CaO含有量は、20〜30質量%が好ましい。   In the insulating layer 6 made of the sprayed coating, the calcia content is 10 to 40% by mass. When the calcia content is less than 10% by mass, the melting point of the sprayed material is not sufficiently lowered, and the pores are not reduced. On the other hand, if the calcia content exceeds 40% by mass, coarse CaO particles are generated, voids are generated around the CaO particles, and the strength of the coating is lowered. The CaO content is preferably 20 to 30% by mass.

また、アルミナは高純度であることが好ましく、具体的にはNaが0.5質量%以下、Feが0.1質量%以下の高純度アルミナが好ましい。このような高純度アルミナは、例えばバイヤ−法により製造することができる。 Alumina is preferably highly pure, and specifically, high-purity alumina having Na 2 O 3 of 0.5% by mass or less and Fe 2 O 3 of 0.1% by mass or less is preferred. Such high-purity alumina can be produced, for example, by the Bayer method.

溶射材は、アルミナとカルシアとを酸素気流中の電気炉内で溶解して、アルミナ中にカルシアを均一分散させた後、得られたインゴットを粉砕・整粒して得られる。粒径は微細で、粒径が揃っていることが好ましく、粒径を5〜100μm、好ましくは10〜50μmに整粒していることが好ましい。このように整粒された溶射材を用いることにより、空孔が無く、緻密で高強度の絶縁層6を形成することができる。   The thermal spray material is obtained by dissolving alumina and calcia in an electric furnace in an oxygen stream to uniformly disperse calcia in alumina, and then pulverizing and sizing the obtained ingot. It is preferable that the particle size is fine and the particle size is uniform, and the particle size is 5-100 μm, preferably 10-50 μm. By using the sprayed material thus sized, it is possible to form a dense and high-strength insulating layer 6 without voids.

このように、絶縁層6をCaO−Al系の溶射被膜にすることにより、空孔をより少なく、具体的には空孔率を8%以下に低減することができ、膜強度を大きく向上させる。 Thus, by making the insulating layer 6 a sprayed coating of CaO—Al 2 O 3 system, the number of pores can be reduced, specifically, the porosity can be reduced to 8% or less, and the film strength can be reduced. Greatly improve.

尚、溶射方法には制限はなく、例えばプラズマ溶射法を採用することができる。また、絶縁層6の厚さにも制限はなく、従来と同様に0.5〜0.7μm程度である。   In addition, there is no restriction | limiting in the spraying method, For example, a plasma spraying method is employable. The thickness of the insulating layer 6 is not limited, and is about 0.5 to 0.7 μm as in the conventional case.

また、溶射後に封孔処理を施してもよい。空孔が多いと、全ての空孔に封孔剤が十分に浸透せず、封孔されない空孔が多く残存していたが、カルシアを特定量含有するアルミナ溶射被膜は緻密で、従来に比べて空孔が極めて少なくなっているため、この封孔処理により確実に空孔を埋めることができ、優れた絶縁性能を確保することができる。   Moreover, you may perform a sealing process after thermal spraying. When there are many holes, the sealing agent did not sufficiently penetrate into all the holes, and many holes that were not sealed remained, but the alumina sprayed coating containing a specific amount of calcia was denser than before. Since the pores are extremely small, the pores can be reliably filled by this sealing treatment, and excellent insulation performance can be ensured.

封孔処理には合成樹脂、例えばアクリル樹脂、エポキシ樹脂、フッ素樹脂、フェノール樹脂、ポリエステル樹脂、あるいはこれらを複合した樹脂を有機溶剤に溶解または分散させた封孔剤を塗布し、乾燥させればよい。封孔剤が溶射被膜の空孔内に浸透し、合成樹脂が空孔内を充填して封孔する。   For the sealing treatment, a synthetic resin such as an acrylic resin, an epoxy resin, a fluororesin, a phenol resin, a polyester resin, or a sealing agent obtained by dissolving or dispersing a composite resin of these in an organic solvent is applied and dried. Good. The sealing agent penetrates into the pores of the sprayed coating, and the synthetic resin fills the pores and seals them.

以下に実施例及び比較例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。   Examples The present invention will be further described below with reference to examples and comparative examples, but the present invention is not limited thereby.

カルシア含有量が5、10、20、30、40または50質量%の溶射材からなるインゴットを作製し、得られたインゴットを粉砕して粒径10〜50μmに整粒してカルシア含有量の異なる溶射材を用意した。   An ingot made of a thermal spray material having a calcia content of 5, 10, 20, 30, 40, or 50% by mass is prepared, and the obtained ingot is pulverized and sized to a particle size of 10 to 50 μm to have a different calcia content. A thermal spray material was prepared.

そして、呼び番号6316の単列深溝玉軸受(外径:170mm、内径:80mm、幅:39mm)を構成する外輪の外周面及び両端面に、溶射材をプラズマ溶射したU図1参照)。溶射被膜の膜厚は、加工研磨により200μm一定とした。溶射後、成膜部分からテストピースを採取し、断面研摩後に溶射被膜の断面について下記手順にて気孔率を求めた。
(1)デジタルマイクロスコープでテストピースの断面の画像をパソコンに取り込む。
(2)取り込んだ画像を適切な閾値で2値化(黒と白の2色に変換)する。
(3)黒色部分の面積を気孔としてカウントし、「黒色部面積/測定範囲面積」から気孔率を算出する。
(4)1テストピースにつき、12箇所でこの作業を実施し、その平均値を算出する。
A single-row deep groove ball bearing having an identification number 6316 (outer diameter: 170 mm, inner diameter: 80 mm, width: 39 mm) is shown in FIG. The film thickness of the sprayed coating was fixed at 200 μm by processing and polishing. After spraying, a test piece was taken from the film forming part, and after the cross-section polishing, the porosity of the cross section of the sprayed coating was determined by the following procedure.
(1) Using a digital microscope, capture a cross-sectional image of the test piece into a personal computer.
(2) The captured image is binarized with an appropriate threshold (converted into two colors of black and white).
(3) The area of the black part is counted as a pore, and the porosity is calculated from “black part area / measurement range area”.
(4) This work is performed at 12 locations per test piece, and the average value is calculated.

結果を図2に示すが、カルシア含有量が10質量%未満で空孔率が最大で、40質量%を超えても空孔率が大きい。これに対し、カルシア含有量が10〜40質量%の範囲で空孔率が少なくなり、特に20〜30質量%の範囲で最も少なくなっている。   The results are shown in FIG. 2, and the porosity is maximum when the calcia content is less than 10% by mass, and the porosity is large even when it exceeds 40% by mass. On the other hand, the porosity is reduced when the calcia content is in the range of 10 to 40% by mass, and the lowest is particularly obtained in the range of 20 to 30% by mass.

また、被膜の強度を破壊靭性値から評価した。結果を図3に示すが、空孔率と同様の傾向が見られ、カルシア含有量が10質量%未満では空孔の多く発生していることに由来して破壊靭性値が低くなっている。40質量%超で破壊靭性値が最低になっているが、これは粗大なCaOが生成したことによる。これに対し、カルシア含有量が10〜40質量%の範囲であれば破壊靭性値が高く、特に20〜30質量%の範囲で最大になっている。市販の溶射材による溶射被膜の破壊靭性値は3MPa・m0.5程度であり、カルシアを10〜40質量%含有することにより高強度の溶射被膜が得られることがわかる。 The strength of the coating was evaluated from the fracture toughness value. The results are shown in FIG. 3, and the same tendency as the porosity is observed. When the calcia content is less than 10% by mass, the fracture toughness value is low due to the generation of many vacancies. The fracture toughness value is minimum at over 40% by mass, which is due to the formation of coarse CaO. On the other hand, if the calcia content is in the range of 10 to 40% by mass, the fracture toughness value is high, and is particularly maximum in the range of 20 to 30% by mass. The fracture toughness value of the thermal spray coating with a commercially available thermal spray material is about 3 MPa · m 0.5 , and it can be seen that a high-strength thermal spray coating can be obtained by containing 10-40 mass% of calcia.

1 内輪
2 内輪軌道
3 外輪
4 外輪軌道
5 転動体
6 絶縁層
7 外周面
8 端面
9 湾曲部
DESCRIPTION OF SYMBOLS 1 Inner ring 2 Inner ring track 3 Outer ring 4 Outer ring track 5 Rolling element 6 Insulating layer 7 Outer peripheral surface 8 End surface 9 Curved portion

Claims (2)

互いに同心に配置された、それぞれが金属製である1対の軌道輪と、これら両軌道輪の互いに対向する面に形成された1対の軌道面同士の間に転動自在に設けられた、それぞれが金属製である複数個の転動体とを備え、少なくとも一方の軌道輪の軌道面を設けた面以外の面を、セラミック製の絶縁層により被覆した電食防止用絶縁転がり軸受において、
前記絶縁層が、カルシア(CaO)を10〜40質量%の割合で含有するアルミナ(Al)を主成分とすることを特徴とする電食防止用絶縁転がり軸受。
Rollers are provided between a pair of raceways arranged concentrically, each made of metal, and a pair of raceways formed on opposite surfaces of these raceways. In an insulating rolling bearing for preventing electric corrosion, comprising a plurality of rolling elements each made of metal and having a surface other than the surface provided with the raceway surface of at least one raceway ring covered with a ceramic insulating layer,
An insulating rolling bearing for electrolytic corrosion prevention, characterized in that the insulating layer is mainly composed of alumina (Al 2 O 3 ) containing calcia (CaO) in a proportion of 10 to 40% by mass.
前記絶縁層が、合成樹脂を含有する封孔剤により封孔処理されていることを特徴とする請求項1記載の電食防止用絶縁転がり軸受。   2. The insulating rolling bearing for preventing electrolytic corrosion according to claim 1, wherein the insulating layer is sealed with a sealing agent containing a synthetic resin.
JP2015033049A 2015-02-23 2015-02-23 Insulated roller bearing for electric corrosion prevention Withdrawn JP2016156403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033049A JP2016156403A (en) 2015-02-23 2015-02-23 Insulated roller bearing for electric corrosion prevention

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015033049A JP2016156403A (en) 2015-02-23 2015-02-23 Insulated roller bearing for electric corrosion prevention

Publications (1)

Publication Number Publication Date
JP2016156403A true JP2016156403A (en) 2016-09-01

Family

ID=56825489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033049A Withdrawn JP2016156403A (en) 2015-02-23 2015-02-23 Insulated roller bearing for electric corrosion prevention

Country Status (1)

Country Link
JP (1) JP2016156403A (en)

Similar Documents

Publication Publication Date Title
WO2016104606A1 (en) Insulated bearing and bearing coating method
JP5850464B2 (en) Rolling bearing for electric corrosion prevention
RU2012143608A (en) METHOD FOR OBTAINING HEAT BARRIER PROTECTION AND MULTILAYER COATING, WAY TO FORM THE HEAT BARRIER
CN105889328B (en) Electrically insulating bearing
JP2008050669A (en) Insulating rolling bearing for electrical corrosion prevention
JP2015230058A (en) Electric corrosion preventing electrical insulation rolling bearing, and manufacturing method therefor
JP2015212576A (en) Electrocorrosion preventive insulating rolling bearing and method of manufacturing the same
JP2008082415A (en) Insulated rolling bearing
JP2016014413A (en) Insulating rolling bearing for the prevention of electrolytic corrosion
JP2015209562A (en) Flame spray coating, formation method and formation device therefor, and bearing member
WO2014156205A1 (en) Rolling bearing for electric corrosion prevention
JP2016156403A (en) Insulated roller bearing for electric corrosion prevention
JPH0552223A (en) Electrocorrosion preventive rolling bearing
JP2009190959A (en) Ceramic sintered compact and rolling object
CN203009588U (en) Rolling bearing
JP2009286678A (en) Ceramic-based composite material, method for producing the same, rolling member and rolling device
JP7304710B2 (en) Thermal spraying material for electrolytic corrosion prevention rolling bearings
JP2007198519A (en) Insulating roller bearing for preventing electric corrosion
JP2016138649A (en) Rolling bearing for liquefied gas pump
US20200124100A1 (en) Rolling bearing
JP2016148082A (en) Production method of thermal spray material
JP2014145456A (en) Rolling bearing
JP2008095887A (en) Insulated rolling bearing
JP2015098882A (en) Rolling support device
JP5485922B2 (en) Rolling device

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20161214