JP2016148082A - Production method of thermal spray material - Google Patents

Production method of thermal spray material Download PDF

Info

Publication number
JP2016148082A
JP2016148082A JP2015025454A JP2015025454A JP2016148082A JP 2016148082 A JP2016148082 A JP 2016148082A JP 2015025454 A JP2015025454 A JP 2015025454A JP 2015025454 A JP2015025454 A JP 2015025454A JP 2016148082 A JP2016148082 A JP 2016148082A
Authority
JP
Japan
Prior art keywords
thermal spray
spray material
ingot
pulverized
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015025454A
Other languages
Japanese (ja)
Inventor
中井 毅
Takeshi Nakai
毅 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2015025454A priority Critical patent/JP2016148082A/en
Publication of JP2016148082A publication Critical patent/JP2016148082A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal spray material not separating each of different kinds of components, in a sprayed coating comprising a mixture of the different kinds of components.SOLUTION: Raw material powder of different kinds of ceramics is pulverized and simultaneously mixed to obtain mixed powder. Then, the mixed powder is melted in an electric furnace, cooled and coagulated to obtain an ingot, and thereafter the ingot is pulverized and classified into prescribed particle diameters, to thereby produce a thermal spray material.SELECTED DRAWING: Figure 2

Description

本発明は、セラミックスの溶射被膜を形成するために使用される溶射材料の製造方法に関する。   The present invention relates to a method for producing a thermal spray material used for forming a thermal spray coating of ceramics.

各種部材の表面処理として溶射被膜を形成することが行われており、溶射被膜の中には異種成分の混合物からなる溶射被膜も知られている。例えば、特許文献1では、蛍光体粉末と、蛍光体粉末よりも融点が低い無機物質との混合物からなる溶射被膜を形成している。また、特許文献2では、昇華するセラミックスと、昇華しない金属とを用いて溶射被膜を形成している。また、特許文献3では、MgOとAlとからなる溶射被膜を形成して耐食性を高めている。 As a surface treatment of various members, a sprayed coating is formed. Among the sprayed coatings, a sprayed coating made of a mixture of different components is also known. For example, in Patent Document 1, a sprayed coating formed of a mixture of phosphor powder and an inorganic substance having a melting point lower than that of the phosphor powder is formed. Moreover, in patent document 2, the sprayed coating is formed using the ceramic which sublimates and the metal which does not sublime. In Patent Document 3, to enhance the corrosion resistance by forming a thermal sprayed coating made of MgO and Al 2 O 3 Prefecture.

異種成分からなる溶射被膜を形成する場合、従来では、異種の原料粉末をそのまま所定割合で混合して電気炉で溶解し、冷却凝固してインゴットとし、インゴットを粉砕して所定の粒径に分級した溶射材料を使用している。しかし、従来の溶射材料は、異種の成分同士が均一に分散せずに、一部、各成分が単体のまま存在しており(図3参照)、このような溶射材料を用いると、得られる溶射被膜において、粗大な塊が多数分散するなど、異種の成分同士が分離した組織を形成して十分な膜強度や膜特性が得たれないことがある。   In the case of forming a sprayed coating composed of different components, conventionally, different raw material powders are mixed as they are in a predetermined ratio, melted in an electric furnace, cooled and solidified into an ingot, and the ingot is pulverized and classified to a predetermined particle size. The sprayed material is used. However, the conventional thermal spray material does not disperse different types of components uniformly, and some of the components exist as they are (see FIG. 3), and can be obtained by using such a thermal spray material. In the thermal spray coating, a large number of coarse lumps are dispersed, and a structure in which different components are separated may be formed, and sufficient film strength and film characteristics may not be obtained.

特開2005−264099号公報JP 2005-264099 A 特表2008−534782号公報Japanese translation of PCT publication 2008-53482 特許第4733819号公報Japanese Patent No. 4733819

本発明はこのような状況に鑑みてなされたものであり、異種成分の混合物からなる溶射被膜において、異種の成分同士が分離しないような溶射材料を提供することを目的とする。   This invention is made | formed in view of such a condition, and it aims at providing the thermal spray material which does not isolate | separate different components in the thermal spray coating which consists of a mixture of different components.

上記課題を解決するために本発明は、異種のセラミックスの原料粉末を粉砕しながら混合して混合粉末とし、前記混合粉末を電気炉で溶解し、冷却凝固してインゴットを得た後、前記インゴットを粉砕して所定の粒径に分級することを特徴とする溶射材料の製造方法を提供する。好ましくは、前記インゴットを粒径10〜50μmに分級する。   In order to solve the above-mentioned problems, the present invention provides a mixed powder obtained by pulverizing different ceramic raw material powders, melting the mixed powder in an electric furnace, cooling and solidifying to obtain an ingot, and then the ingot. A method for producing a thermal spray material, characterized in that is pulverized and classified to a predetermined particle size. Preferably, the ingot is classified to a particle size of 10 to 50 μm.

本発明によれば、異種の原料粉末を粉砕しながら混合するため、得られる溶射材料において、一方の成分の塊の中に、他方の成分の微細な粒子が分散している。そのため、本発明で得られた溶射材料を用いることにより、粗大粒子が無く、組織が均一で、膜強度及び膜特性に優れた溶射被膜が得られる。   According to the present invention, since different kinds of raw material powders are mixed while being pulverized, in the obtained thermal spray material, fine particles of the other component are dispersed in the lump of one component. Therefore, by using the thermal spray material obtained in the present invention, a thermal spray coating having no coarse particles, a uniform structure, and excellent film strength and film characteristics can be obtained.

電食防止用絶縁転がり軸受の一例を示す断面図である。It is sectional drawing which shows an example of the insulated rolling bearing for electric corrosion prevention. 本発明の製造方法で得られたジルコニア−アルミナ系溶射材料を撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the zirconia alumina-sprayed material obtained with the manufacturing method of this invention. 従来の製造方法で得られたジルコニア−アルミナ系溶射材料を撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the zirconia-alumina type thermal spray material obtained with the conventional manufacturing method. 実施例1及び比較例1の各溶射被膜の破壊靭性値の測定結果を示すグラフである。It is a graph which shows the measurement result of the fracture toughness value of each sprayed coating of Example 1 and Comparative Example 1. 実施例1及び比較例1の各溶射被膜の破壊電圧値の測定結果を示すグラフである。It is a graph which shows the measurement result of the breakdown voltage value of each sprayed coating of Example 1 and Comparative Example 1. 実施例1及び比較例1の各溶射被膜の断面組織を撮影した電子顕微鏡写真である。2 is an electron micrograph of a cross-sectional structure of each thermal spray coating of Example 1 and Comparative Example 1. FIG.

以下、本発明に関して図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明において、溶射材料の種類、組成には制限はなく、ここではジルコニア−アルミナ系溶射材料を例示する。   In the present invention, the type and composition of the thermal spray material are not limited, and zirconia-alumina thermal spray material is exemplified here.

尚、ジルコニア−アルミナ系溶射材料からなる溶射被膜は、絶縁性能に優れるため、例えば電食防止用転がり軸受に使用されている。電動モータや発電機の回転軸を支承する転がり軸受では、軸受自体に帰路電流やモータ軸電流等が流れて電食が発生して寿命を著しく短縮してしまう。そのため、図1に示すように、内輪1の外周面に形成した内輪軌道2と、外輪3の内周面に形成した外輪軌道4との間に複数の転動体5を設けるとともに、絶縁層6として、外輪3の外輪軌道面4を形成した面以外の面、即ちその外輪3の外周面7、軸方向の両端面8,8、並びに外周面7と両端面8,8とを連続する湾曲部9,9にかけて、ジルコニア−アルミナ系セラミックスからなる溶射被膜を形成して絶縁性を付与している。   In addition, since the thermal spray coating which consists of a zirconia-alumina type thermal spray material is excellent in insulation performance, it is used for the rolling bearing for electrolytic corrosion prevention, for example. In a rolling bearing that supports a rotating shaft of an electric motor or a generator, a return current, a motor shaft current, or the like flows in the bearing itself, which causes galvanic corrosion and significantly shortens the life. Therefore, as shown in FIG. 1, a plurality of rolling elements 5 are provided between an inner ring raceway 2 formed on the outer peripheral surface of the inner ring 1 and an outer ring raceway 4 formed on the inner peripheral surface of the outer ring 3, and an insulating layer 6 is provided. As described above, the surface of the outer ring 3 other than the surface on which the outer ring raceway surface 4 is formed, that is, the outer peripheral surface 7 of the outer ring 3, the axial end faces 8, 8, and the outer peripheral face 7 and the end faces 8, 8 are continuously curved. A thermal spray coating made of zirconia-alumina ceramic is formed on the portions 9 and 9 to provide insulation.

本発明では、ジルコニア原料粉末と、アルミナ原料粉末とを、所定比率で混合した混合物を、粉砕しながら混合する混合装置に投入する。混合装置としては、原料粉末を更に粉砕するための粉砕メディアを充填した混合機、例えばビーズミルやボールミル、アトライター等を用いる。そして、得られた混合粉末を電気炉に投入して溶解し、冷却凝固してインゴットを得る。その後、インゴットを粉砕して所定の粒径に分級して溶射材料が得られる。   In the present invention, a mixture in which zirconia raw material powder and alumina raw material powder are mixed at a predetermined ratio is charged into a mixing device for mixing while pulverizing. As a mixing device, a mixer filled with a pulverization medium for further pulverizing the raw material powder, for example, a bead mill, a ball mill, an attritor or the like is used. Then, the obtained mixed powder is put into an electric furnace to be melted and cooled and solidified to obtain an ingot. Thereafter, the ingot is pulverized and classified to a predetermined particle size to obtain a thermal spray material.

図2はこのような本発明の製造方法で作製したジルコニア−アルミナ系溶射材料(アルミナ:ジルコニア=8:2)を撮影した電子顕微鏡写真であるが、粉砕しながら混合することにより、母材となるアルミナの塊の中に微細なジルコニア粒子が多数分散した溶射材料になる。これに対し、従来のように、ジルコニア原料粉末とアルミナ原料粉末とを、そのまま混合しただけでは、図3に示すように、ジルコニア単体の塊とアルミナ単体の塊とが混在した溶射材料になる。   FIG. 2 is an electron micrograph of a zirconia-alumina-based thermal spray material (alumina: zirconia = 8: 2) produced by such a production method of the present invention. A sprayed material in which a large number of fine zirconia particles are dispersed in an alumina lump. On the other hand, if the zirconia raw material powder and the alumina raw material powder are simply mixed as in the prior art, as shown in FIG. 3, a thermal spray material in which the zirconia single mass and the alumina single mass are mixed is obtained.

そして、本発明の製造方法で作製した溶射材料を用いることにより、得られる溶射被膜は組織が均一で、膜強度及び膜特性に優れるようになる。   And by using the thermal spray material produced with the manufacturing method of this invention, the structure of the thermal spray coating obtained becomes uniform and becomes excellent in film | membrane intensity | strength and a film | membrane characteristic.

以上、本発明に関して、ジルコニア−アルミナ系の溶射材料を例示して説明したが、溶射材料は目的に応じて種々の異種のセラミックス原料粉末を組み合わせることができ、2成分に限らずより多成分であってもよい。また、溶射材料は特定の溶射方法に特化したものではなく、種々の溶射方法に適応可能である。   As described above, the present invention has been described by exemplifying the zirconia-alumina-based thermal spray material. However, the thermal spray material can be combined with various kinds of ceramic raw material powders depending on the purpose, and is not limited to two components, but includes more components. There may be. Moreover, the thermal spray material is not specialized for a specific thermal spraying method, and can be applied to various thermal spraying methods.

以下に実施例及び比較例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。   Examples The present invention will be further described below with reference to examples and comparative examples, but the present invention is not limited thereby.

(実施例1)
アルミナ原料粉末と、ジルコニア原料粉末とを、アルミナ:ジルコニア=8:2の割合で混合した混合粉末を、ビーズミル混合機に投入し、湿式にて粉砕しながら混合した。得られたスラリー状の混合物から水分を蒸発気化して、乾燥粉末を得た。次いで、乾燥粉末を電気炉にて溶解し、冷却凝固してインゴットを得た。そして、インゴットを粉砕して10〜50μmに分級して溶射材料とした。
Example 1
A mixed powder obtained by mixing alumina raw material powder and zirconia raw material powder in a ratio of alumina: zirconia = 8: 2 was put into a bead mill mixer and mixed while being pulverized in a wet manner. Water was evaporated from the resulting slurry mixture to obtain a dry powder. Next, the dried powder was melted in an electric furnace and cooled and solidified to obtain an ingot. The ingot was pulverized and classified to 10 to 50 μm to obtain a thermal spray material.

(比較例1)
アルミナ原料粉末と、ジルコニア原料粉末とを、アルミナ:ジルコニア=8:2の割合で混合した混合粉末を、そのまま電気炉に投入し、実施例1と同様にして溶解、冷却凝固して得たインゴットを粉砕して10〜50μmに分級して溶射材料とした。
(Comparative Example 1)
An ingot obtained by mixing a mixed powder obtained by mixing an alumina raw material powder and a zirconia raw material powder at a ratio of alumina: zirconia = 8: 2 into an electric furnace as it is, followed by melting and cooling solidification in the same manner as in Example 1. Was pulverized and classified to 10 to 50 μm to obtain a thermal spray material.

(溶射被膜の評価)
実施例1及び比較例1の各溶射材料を用い、プラズマ照射により鋼表面に膜厚300μmの溶射被膜を形成した。そして、各溶射被膜の破壊靭性値を測定して膜強度を評価した。結果を図4に示すが、実施例1の溶射被膜は、比較例1の溶射被膜よりも約3倍近く高強度であることがわかる。
(Evaluation of thermal spray coating)
Using each thermal spray material of Example 1 and Comparative Example 1, a thermal spray coating having a film thickness of 300 μm was formed on the steel surface by plasma irradiation. And the fracture toughness value of each sprayed coating was measured to evaluate the film strength. The results are shown in FIG. 4, and it can be seen that the thermal spray coating of Example 1 is nearly three times as strong as the thermal spray coating of Comparative Example 1.

また、各溶射被膜の破壊電圧値を測定して膜特性(絶縁性)を評価した。結果を図5に示すが、実施例1の溶射被膜は、比較例1の溶射被膜よりも約2倍強も高性能であることがわかる。   Moreover, the breakdown voltage value of each sprayed coating was measured to evaluate the film characteristics (insulating properties). The results are shown in FIG. 5, and it can be seen that the thermal spray coating of Example 1 is about twice as high as the thermal spray coating of Comparative Example 1.

更に、各溶射被膜の断面の電子顕微鏡写真で撮影した。図6に示すが、比較例1の溶射被膜では粗大なジルコニアが数多く点在しているのに対し、実施例1の溶射被膜では粗大なジルコニアが見られず、均一な組織であることがわかる。   Furthermore, it photographed with the electron micrograph of the cross section of each sprayed coating. As shown in FIG. 6, the sprayed coating of Comparative Example 1 has many coarse zirconia scattered, whereas the sprayed coating of Example 1 does not show coarse zirconia, indicating a uniform structure. .

1 内輪
2 内輪軌道
3 外輪
4 外輪軌道
5 転動体
6 絶縁層
7 外周面
8 端面
9 湾曲部
DESCRIPTION OF SYMBOLS 1 Inner ring 2 Inner ring track 3 Outer ring 4 Outer ring track 5 Rolling element 6 Insulating layer 7 Outer peripheral surface 8 End surface 9 Curved portion

Claims (2)

異種のセラミックスの混合物からなる溶射被膜を形成するための溶射材料を製造する方法であって、
異種のセラミックスの原料粉末を粉砕しながら混合して混合粉末とし、前記混合粉末を電気炉で溶解し、冷却凝固してインゴットを得た後、前記インゴットを粉砕して所定の粒径に分級することを特徴とする溶射材料の製造方法。
A method for producing a thermal spray material for forming a thermal spray coating comprising a mixture of different kinds of ceramics,
Dissimilar ceramic raw material powders are mixed while being pulverized to form a mixed powder. The mixed powder is melted in an electric furnace, cooled and solidified to obtain an ingot, and then the ingot is pulverized and classified to a predetermined particle size. The manufacturing method of the thermal spray material characterized by the above-mentioned.
前記インゴットを粒径10〜50μmに分級することを特徴とする請求項1記載の溶射材料の製造方法。   The method for producing a thermal spray material according to claim 1, wherein the ingot is classified into a particle size of 10 to 50 µm.
JP2015025454A 2015-02-12 2015-02-12 Production method of thermal spray material Pending JP2016148082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015025454A JP2016148082A (en) 2015-02-12 2015-02-12 Production method of thermal spray material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015025454A JP2016148082A (en) 2015-02-12 2015-02-12 Production method of thermal spray material

Publications (1)

Publication Number Publication Date
JP2016148082A true JP2016148082A (en) 2016-08-18

Family

ID=56688254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015025454A Pending JP2016148082A (en) 2015-02-12 2015-02-12 Production method of thermal spray material

Country Status (1)

Country Link
JP (1) JP2016148082A (en)

Similar Documents

Publication Publication Date Title
JP6590686B2 (en) Insulated bearing and bearing coating method
Raghukiran et al. Processing and dry sliding wear performance of spray deposited hyper-eutectic aluminum–silicon alloys
JP6267174B2 (en) Sliding member
Hong et al. Synthesis and consolidation of nanostructured W–10–40 wt.% Cu powders
JP3825231B2 (en) Method for producing hollow ceramic powder for thermal spraying
JP2015230058A (en) Electric corrosion preventing electrical insulation rolling bearing, and manufacturing method therefor
CN110434315B (en) Heating and cooling method for casting steel-copper bimetal cylinder
JP2016014413A (en) Insulating rolling bearing for the prevention of electrolytic corrosion
JP2016148082A (en) Production method of thermal spray material
JP6315761B2 (en) Self-lubricating metal composite material and self-lubricating metal matrix composite material excellent in strength, lubricity and wear resistance, and method for producing the metal composite material and metal matrix composite material
KR20180084140A (en) Process for Producing a Lead-Free Sliding Bearing Material
JP2015212576A (en) Electrocorrosion preventive insulating rolling bearing and method of manufacturing the same
KR100621666B1 (en) Low friction thermal spray coating powder for high temperature application and the making method
CN105130440A (en) Anti-oxidation silicon carbide deck and production method thereof
Mikuła et al. Copper matrix composites reinforced with volcanic tuff
JP2015175500A (en) Insulation rolling bearing for electrolytic corrosion prevention and manufacturing method thereof
Chumanov et al. Interaction between tungsten monocarbide and an iron-based metallic melt
Zou et al. High-Quality Ti–6Al–4V Alloy Powder Prepared by Plasma Rotating Electrode Process and Its Processibility in Hot Isostatic Pressing
JP2009001868A (en) Method for producing magnetic powder for powder magnetic core
JP2647523B2 (en) Thermal spraying Cr lower 3 C lower 2-NiCr composite powder manufacturing method
JP2007091488A (en) Alumina sintered compact
SU597512A1 (en) Method of manufacturing foil
Yiming et al. Microstructure of plasma sprayed Al2O3-3wt% TiO2 coating using freeze granulated powder
JP2013148127A (en) Method of manufacturing ceramic rolling element and rolling support device
JP4488324B2 (en) Composition for thermistor, method for producing the same, and thermistor using the composition