JP2016152665A - Vehicle driving system - Google Patents

Vehicle driving system Download PDF

Info

Publication number
JP2016152665A
JP2016152665A JP2015028151A JP2015028151A JP2016152665A JP 2016152665 A JP2016152665 A JP 2016152665A JP 2015028151 A JP2015028151 A JP 2015028151A JP 2015028151 A JP2015028151 A JP 2015028151A JP 2016152665 A JP2016152665 A JP 2016152665A
Authority
JP
Japan
Prior art keywords
power
pulsation
phase
resonance
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015028151A
Other languages
Japanese (ja)
Other versions
JP2016152665A5 (en
JP6349269B2 (en
Inventor
徹 杉浦
Toru Sugiura
徹 杉浦
雄一郎 野崎
Yuichiro Nozaki
雄一郎 野崎
周一 立原
Shuichi Tachihara
周一 立原
昌高 綾田
Masataka Ayata
昌高 綾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015028151A priority Critical patent/JP6349269B2/en
Priority to CN201610048369.9A priority patent/CN105897023B/en
Priority to GB1602392.1A priority patent/GB2537020B/en
Priority to DE102016202419.1A priority patent/DE102016202419B4/en
Publication of JP2016152665A publication Critical patent/JP2016152665A/en
Publication of JP2016152665A5 publication Critical patent/JP2016152665A5/ja
Application granted granted Critical
Publication of JP6349269B2 publication Critical patent/JP6349269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • B60L9/28Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/30Electric propulsion with power supply external to the vehicle using ac induction motors fed from different kinds of power-supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact vehicle driving system for an AC electric vehicle traveling over different-frequency tracks of AC wiring.SOLUTION: A vehicle driving system for a vehicle traveling on a track having a first electric vehicle wire installed to supply first single-phase AC power and a track having a second electric vehicle wire installed to supply second single-phase AC power having a higher frequency includes a first power converter for converting the single-phase AC power supplied from the first electric vehicle wire or the second electric vehicle wire into DC power to output it to a DC power wire, a second power converter for converting the DC power output to the DC power wire into three-phase AC power, a vehicle driving electric motor to which the three-phase AC power is supplied, a resonance filter connected to the DC power wire in parallel with the first power converter and having a resonance point at a frequency band twice larger than that of the first single-phase ASC power, a voltage detector for detecting the voltage of the DC power wire, and pulsation suppression means for controlling the output of the second power converter according to the detection value of the voltage detector, and suppressing pulsation superimposed on the three-phase AC power.SELECTED DRAWING: Figure 1

Description

本発明は車両の駆動システムに係り、特に交流電気車の主変換器にて発生するビート現象を抑制する制御技術に関する。
The present invention relates to a vehicle drive system, and more particularly to a control technique for suppressing a beat phenomenon that occurs in a main converter of an AC electric vehicle.

交流架線から供給される電力を入力とする鉄道車両の駆動システムは、単相交流電力を直流電力に変換するコンバータと、コンバータにより出力される直流電力を任意の周波数の三相交流電力に変換するインバータと、インバータにより出力される交流電力により駆動される主電動機から構成されている。また、コンバータとインバータを繋ぐ直流回路を直流ステージと呼ぶ。   A railcar drive system that receives power supplied from an AC overhead line converts a single-phase AC power into DC power, and converts DC power output by the converter into three-phase AC power of an arbitrary frequency. An inverter and a main motor driven by AC power output from the inverter are included. A DC circuit connecting the converter and the inverter is called a DC stage.

直流ステージの電圧は、架線から供給される単相交流電圧を全波整流して生成される為、交流架線周波数の2倍の周波数が重畳する性質がある。一方で、インバータにより直流電圧を交流電圧に変換すると、インバータの出力電圧にはインバータ基本波の周波数と前記直流電圧の振動周波数の和と差の成分が現れる。特に周波数の差の成分については、インバータ基本波の周波数と直流電圧の振動周波数が近づくほど当該差の周波数成分は低くなり、これに併せて主電動機のインピーダンスも低下することから、主電動機の電流が当該差の周波数で脈動することが知られている。一般的にこの脈動はビート現象と呼ばれている。
Since the voltage of the DC stage is generated by full-wave rectification of a single-phase AC voltage supplied from the overhead wire, there is a property that a frequency twice as high as the AC overhead wire frequency is superimposed. On the other hand, when a DC voltage is converted into an AC voltage by the inverter, components of the sum and difference of the frequency of the inverter fundamental wave and the vibration frequency of the DC voltage appear in the output voltage of the inverter. In particular, for the frequency difference component, the closer the frequency of the inverter fundamental wave and the vibration frequency of the DC voltage are, the lower the frequency component of the difference becomes, and the impedance of the main motor also decreases accordingly. Is known to pulsate at the difference frequency. Generally, this pulsation is called a beat phenomenon.

上述したビート現象を抑制する方法としては、交流架線の2倍の周波数を共振点とする共振フィルタを設置する方法や、インバータのスイッチング制御により、インバータの出力電圧の周波数を調節して、インバータの出力電圧のビート現象の周波数成分を抑制するビートレス制御等の方法がある。共振フィルタを設置する方法は、特許文献1(EP1288060A)に開示されており、ビートレス制御については特許文献2(特開平11−164565)にその構成が開示されている。
As a method for suppressing the beat phenomenon described above, a method of installing a resonance filter having a resonance point with a frequency twice that of the AC overhead line, or a switching control of the inverter is used to adjust the frequency of the output voltage of the inverter. There is a method such as beatless control for suppressing the frequency component of the beat phenomenon of the output voltage. A method of installing a resonance filter is disclosed in Patent Document 1 (EP12888060A), and a configuration of beatless control is disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 11-164565).

EP1288060AEP1288060A 特開平11−164565号公報Japanese Patent Laid-Open No. 11-164565

しかしながら上述した各特許文献1,2に記載されたビート現象を抑制する技術には以下に述べる課題があった。   However, the technique for suppressing the beat phenomenon described in each of Patent Documents 1 and 2 described above has the following problems.

まず,特許文献1に記載された共振フィルタを用いる場合、交流架線の周波数の異なる複数区間から成る路線を走行し、複数周波数の交流電力を電源とする交流電気車は,それぞれの周波数に合わせた共振フィルタを搭載する必要があり,車上機器(共振フィルタ)が大型化するという問題がある。   First, in the case of using the resonance filter described in Patent Document 1, an AC electric vehicle that runs on a route composed of a plurality of sections with different frequencies of AC overhead wires and uses AC power of a plurality of frequencies as a power source is adjusted to each frequency. There is a problem that it is necessary to mount a resonance filter, and the on-board equipment (resonance filter) increases in size.

一方、特許文献2に記載されたビートレス制御を用いる場合,周波数の低い交流電源から電力供給を受けるときに、直流ステージのコンバータとインバータに対して並列接続される平滑コンデンサの静電容量を十分に大きくしないと、インバータの出力電圧の脈動を抑えることができなくなる。そのため、周波数の低い交流電源から電力供給を受ける場合には、出力する交流電圧を安定化させるために、直流ステージの平滑コンデンサの静電容量を大きくする必要があり、車上機器(平滑コンデンサ)が大型化するという問題がある。
On the other hand, when using the beatless control described in Patent Document 2, when power is supplied from a low-frequency AC power supply, the capacitance of the smoothing capacitor connected in parallel with the converter and inverter of the DC stage is sufficient. If it is not increased, pulsation of the output voltage of the inverter cannot be suppressed. Therefore, when receiving power supply from an AC power source with a low frequency, it is necessary to increase the capacitance of the smoothing capacitor of the DC stage in order to stabilize the output AC voltage. There is a problem of increasing the size.

上記の課題を解決するために、特許請求の範囲に記載の構成を採用する。   In order to solve the above problems, the configuration described in the claims is adopted.

第一の単相交流電力を供給する第一の電車線が設置された路線と、前記第一の単相交流電力よりも周波数の高い第二の単相交流電力を供給する第二の電車線が設置された路線を走行する車両の車両駆動システムにおいて、
前記第一の電車線もしくは前記第二の電車線から供給された単相交流電力を直流電力に変換し、直流電力線に出力する第一の電力変換装置と、
前記直流電力線に出力された前記直流電力を三相交流電力に変換する第二の電力変換装置と、
当該三相交流電力が供給される車両駆動用の電動機と、
前記第一の電力変換装置と並列に直流電力線に接続され、前記第一の単相交流の二倍の周波数帯に共振点を有する共振フィルタと、
前記直流電力線の電圧を検出する電圧検出器と、
前記電圧検出器の検出値に応じて前記第二の電力変換装置の出力を制御し、前記三相交流電力に重畳する脈動を抑制する脈動抑制手段を備えることにより実現できる。
A line on which a first train line for supplying first single-phase AC power is installed, and a second train line for supplying second single-phase AC power having a frequency higher than that of the first single-phase AC power In a vehicle drive system for a vehicle that travels on a route where is installed,
A first power converter that converts single-phase AC power supplied from the first train line or the second train line into DC power and outputs the DC power line;
A second power conversion device that converts the DC power output to the DC power line into three-phase AC power;
An electric motor for driving the vehicle to which the three-phase AC power is supplied;
A resonance filter connected to a DC power line in parallel with the first power converter, and having a resonance point in a frequency band twice that of the first single-phase AC;
A voltage detector for detecting the voltage of the DC power line;
This can be realized by controlling the output of the second power conversion device according to the detection value of the voltage detector and by providing pulsation suppression means for suppressing pulsation superimposed on the three-phase AC power.

本発明によれば、周波数の異なる複数区間を運行する交流電気車の車上機器を小型化することが可能となる。

ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to reduce in-vehicle apparatus of the alternating current electric vehicle which operate | moves the several area where frequencies differ.

第一の実施例における駆動システムの構成を示す図The figure which shows the structure of the drive system in a 1st Example. 第二の実施例の構成を示す図The figure which shows the structure of a 2nd Example. 第三の実施例の構成を示す図The figure which shows the structure of a 3rd Example. 第一の実施例における電源周波数と平滑コンデンサ静電容量の関係を示す図The figure which shows the relationship between the power supply frequency in 1st Example, and a smoothing capacitor electrostatic capacitance.

以下に、本発明の実施の形態について、図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

本発明における第1の実施例を図1を用いて説明する。図1に本実施例における車両駆動システムの構成を示す。   A first embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a configuration of a vehicle drive system in the present embodiment.

1は集電装置、2は変圧器、5はコンバータ、コンバータ5を構成する5a、5b、5c、5dはコンバータ5のスイッチング素子、6は共振フィルタ回路、共振フィルタ回路6を構成する6aは共振リアクトル、6bは共振コンデンサ、8は平滑コンデンサ、9はインバータ、インバータ9を構成する9a、9b、9c、9d、9e、9fはインバータ9のスイッチング素子、11は電動機、21は車輪である。   1 is a current collector, 2 is a transformer, 5 is a converter, 5a, 5b, 5c, and 5d constituting the converter 5 are switching elements of the converter 5, 6 is a resonance filter circuit, and 6a that constitutes the resonance filter circuit 6 is resonance. Reactor, 6b is a resonance capacitor, 8 is a smoothing capacitor, 9 is an inverter, 9a, 9b, 9c, 9d, 9e, 9f constituting the inverter 9 are switching elements of the inverter 9, 11 is an electric motor, and 21 is a wheel.

また、3は変圧器2の二次側電圧を測定する電圧検出器、4は変圧器2の二次側電流を測定する電流検出器、7は平滑コンデンサ8の両端電圧を測定する電圧検出器、10は主電動機11の電流を測定する電流検出器である。   3 is a voltage detector for measuring the secondary side voltage of the transformer 2, 4 is a current detector for measuring the secondary side current of the transformer 2, and 7 is a voltage detector for measuring the voltage across the smoothing capacitor 8. Reference numeral 10 denotes a current detector for measuring the current of the main motor 11.

さらに、22は第一の交流電源、23は第一の交流電源22とは周波数の異なる第二の交流電源、24は第一の交流電源22の電力を車両に供給する第一の電車線、25は第二の交流電源23の電力を車両に供給する第二の電車線、26は第一の電車線24と第二の電車線25を絶縁する無電化区間、27は車両の軌道である。   Further, 22 is a first AC power source, 23 is a second AC power source having a frequency different from that of the first AC power source 22, 24 is a first train line for supplying the power of the first AC power source 22 to the vehicle, Reference numeral 25 denotes a second train line for supplying electric power from the second AC power source 23 to the vehicle, 26 denotes a non-electric section that insulates the first train line 24 and the second train line 25, and 27 denotes a track of the vehicle. .

本実施例では一例として、コンバータ5は2レベル単相フルブリッジの電力変換装置、インバータ9は2レベル三相フルブリッジの電力変換装置としているが、コンバータ及びインバータは、これ以外の形態の電力変換装置、例えば3レベル回路で構成することも可能である。   In this embodiment, as an example, the converter 5 is a two-level single-phase full-bridge power conversion device, and the inverter 9 is a two-level three-phase full-bridge power conversion device. However, the converter and the inverter are in other forms of power conversion. It is also possible to configure with a device, for example a three level circuit.

本駆動システムは、車両を加速および減速させるための装置であり、車両は第一の交流電源22より供給される交流電力を電車線24と軌道27を介して、もしくは第二の交流電源23より供給される交流電力を電車線25と軌道27を介して、集電装置1および車輪21より入力させる。加速時においては、この入力された交流電力を主変圧器2にて降圧し、コンバータ5にて直流電力に変換する。直流に変換された電力は平滑コンデンサ8により平滑された後、インバータ9にて交流電力に逆変換され、主電動機11に供給されることで、可変速駆動により車両を加速する。
また減速時には、主電動機11の回生ブレーキにより発生する交流電力はインバータ9にて直流電力に変換される。直流に変換された電力は平滑コンデンサ8により平滑された後、コンバータ5にて交流電力に逆変換され、主変圧器2で昇圧された後,集電装置から電車線24もしくは電車線25に戻される。
This drive system is a device for accelerating and decelerating the vehicle. The vehicle uses AC power supplied from the first AC power supply 22 via the train line 24 and the track 27 or from the second AC power supply 23. The supplied AC power is input from the current collector 1 and the wheel 21 via the train line 25 and the track 27. During acceleration, the input AC power is stepped down by the main transformer 2 and converted to DC power by the converter 5. The electric power converted into direct current is smoothed by the smoothing capacitor 8 and then reversely converted into alternating current power by the inverter 9 and supplied to the main motor 11 to accelerate the vehicle by variable speed driving.
During deceleration, AC power generated by the regenerative brake of the main motor 11 is converted into DC power by the inverter 9. The electric power converted into direct current is smoothed by the smoothing capacitor 8, then reversely converted into alternating current power by the converter 5, boosted by the main transformer 2, and then returned from the current collector to the train line 24 or 25. It is.

この周波数の異なる電車線24と電車線25のどちらから電力の供給を受けているかの識別は、電圧検出器3による電圧の周波数を検知することにより行うことが可能であり、他にも車両の位置検出技術を用いることで可能である。この位置検出手段としては、図示しない軌道回路を用いた検出手段や、車両の速度情報を積算して求めた走行距離情報を用いた検出手段、又は、GPSを用いた検出手段が適用できる。後述する共振フィルタおよびビートレス制御部によるビート抑制機能は、このような電圧検出器や位置検出技術により識別された電源に応じて切り替えることができる。仮に、電車線24の電源周波数が電車線25の電源周波数よりも低い場合、電車線25から電力供給を受けていると判断した場合には、ビートレス制御部を動作させて、ビートレス制御による脈動抑制を行う。また、電車線24から電力供給を受けていると判断した場合には、共振フィルタにより脈動抑制が行われる。共振フィルタによる脈動抑制を行う場合には、ビートレス制御は不要となるため、ビートレス制御を停止させても良いが、停止させずに動作させたままでも良い。
It is possible to identify whether the electric power is supplied from the train line 24 or the train line 25 having a different frequency by detecting the frequency of the voltage by the voltage detector 3. This is possible by using position detection technology. As this position detection means, a detection means using a track circuit (not shown), a detection means using travel distance information obtained by integrating vehicle speed information, or a detection means using GPS can be applied. The beat suppression function by a resonance filter and a beatless control unit, which will be described later, can be switched according to the power source identified by such a voltage detector or position detection technique. If the power frequency of the train line 24 is lower than the power frequency of the train line 25 and if it is determined that power is being supplied from the train line 25, the beatless control unit is operated to suppress pulsation by beatless control. I do. In addition, when it is determined that electric power is supplied from the train line 24, pulsation is suppressed by the resonance filter. When performing pulsation suppression using a resonance filter, beatless control is not necessary, and therefore the beatless control may be stopped or may be operated without stopping.

続いて同図の100はコンバータ5の電力変換制御を行うコンバータ制御装置である。101は電源位相検出器、102は正弦波発生器、103と106、108は減算器、104は電圧制御器、105は乗算器、107は電流制御器、109はPWM制御器である。
Next, reference numeral 100 in the figure denotes a converter control device that performs power conversion control of the converter 5. 101 is a power supply phase detector, 102 is a sine wave generator, 103 and 106 and 108 are subtractors, 104 is a voltage controller, 105 is a multiplier, 107 is a current controller, and 109 is a PWM controller.

コンバータ制御装置100は、主変圧器2の二次側電圧を電圧検出器3にて検出し、その電気角を電源位相検出器101にて検出する。正弦波発生器102は、その電気角の情報に基づいて電源電圧と同位相で振幅が1となる正弦波を生成する。   Converter control device 100 detects the secondary voltage of main transformer 2 with voltage detector 3 and detects the electrical angle with power supply phase detector 101. The sine wave generator 102 generates a sine wave having the same phase as the power supply voltage and an amplitude of 1 based on the electrical angle information.

それと並列に、平滑コンデンサ8の直流電圧Edを電圧検出器7より検出し、減算器103にて直流電圧指令Ed*から直流電圧Edを減算する。電圧制御器104は、その減算結果に基づいて直流電圧Edを指令値Ed*に一致させるための二次電流実効値指令Is*を生成する。この指令Is*と正弦波発生器102で発生させた正弦波を乗算器105で乗算して、主変圧器2の二次電流指令is*を生成する。この二次電流指令is*は主変圧器2の二次電圧と同位相で、これによりコンバータ5の入力を力率1になるように制御する。   In parallel with this, the DC voltage Ed of the smoothing capacitor 8 is detected by the voltage detector 7, and the subtractor 103 subtracts the DC voltage Ed from the DC voltage command Ed *. The voltage controller 104 generates a secondary current effective value command Is * for making the DC voltage Ed coincide with the command value Ed * based on the subtraction result. The command Is * and the sine wave generated by the sine wave generator 102 are multiplied by a multiplier 105 to generate a secondary current command is * for the main transformer 2. The secondary current command is * has the same phase as the secondary voltage of the main transformer 2, and thereby controls the input of the converter 5 to have a power factor of 1.

その後、二次電流指令is*と電流検出器4より検出する二次電流isを減算器106で減算する。電流制御器107は、その減算結果に基づいて交流電圧指令ecを生成する。その後、減算器107で二次電圧esから交流電圧指令ecを減算して、この減算結果に基づきPWM制御器109でコンバータパルス指令Scを生成する。   Thereafter, the subtractor 106 subtracts the secondary current command is * and the secondary current is detected by the current detector 4. The current controller 107 generates an AC voltage command ec based on the subtraction result. Thereafter, the subtractor 107 subtracts the AC voltage command ec from the secondary voltage es, and the PWM controller 109 generates a converter pulse command Sc based on the subtraction result.

このコンバータパルス指令Scをコンバータ5に入力し、コンバータパルス指令Scに基づいて5a〜5dをスイッチングさせることで、直流電圧Edを一定に制御する。
The converter pulse command Sc is input to the converter 5, and the DC voltage Ed is controlled to be constant by switching 5a to 5d based on the converter pulse command Sc.

さらに同図の200はインバータ9の電力変換制御を行うインバータ制御装置であり、201は座標変換器、202と203は減算器、204は電流制御器、205はビートレス制御器、206は加算器、207はPWM制御器である。   Furthermore, 200 in the figure is an inverter control device that performs power conversion control of the inverter 9, 201 is a coordinate converter, 202 and 203 are subtractors, 204 is a current controller, 205 is a beatless controller, 206 is an adder, Reference numeral 207 denotes a PWM controller.

インバータ制御装置200は、電流検出器10より検出した三相交流電流iu、iv、iwを座標変換器201に入力してd軸電流Idとq軸電流Iqを生成する。減算器202にて、d軸電流指令Id*からd軸電流Idを減算し、減算器203にて、q軸電流指令Iq*からq軸電流Iqを減算する。電流制御器204は、減算器202と減算器203でそれぞれ算出された減算結果に基づいて主電動機11の可変速運転に必要な変調率Vc、出力周波数Fi、出力偏角δを計算する。ビートレス制御器205は、電圧検出器7で検出された平滑コンデンサ8の直流電圧Edに基づいて出力周波数の補正値ΔFiを出力し、加算器206は出力周波数Fiと補正値ΔFiを加算して出力周波数指令Fi*を生成する。その後、PWM制御器207は、変調率Vc、出力周波数指令Fi*、出力偏角δに基づいてインバータパルス指令Siを生成し、インバータ9に入力することで、主電動機11を駆動させる。
The inverter control device 200 inputs the three-phase alternating currents iu, iv, iw detected by the current detector 10 to the coordinate converter 201 and generates a d-axis current Id and a q-axis current Iq. The subtracter 202 subtracts the d-axis current Id from the d-axis current command Id *, and the subtractor 203 subtracts the q-axis current Iq from the q-axis current command Iq *. The current controller 204 calculates a modulation rate Vc, an output frequency Fi, and an output deflection angle δ necessary for variable speed operation of the main motor 11 based on the subtraction results calculated by the subtractor 202 and the subtracter 203, respectively. The beatless controller 205 outputs an output frequency correction value ΔFi based on the DC voltage Ed of the smoothing capacitor 8 detected by the voltage detector 7, and an adder 206 adds the output frequency Fi and the correction value ΔFi and outputs the result. A frequency command Fi * is generated. Thereafter, the PWM controller 207 generates an inverter pulse command Si based on the modulation factor Vc, the output frequency command Fi *, and the output deflection angle δ, and inputs the inverter pulse command Si to drive the main motor 11.

ここで、複数周波数の交流電力の周波数に合わせた複数の共振フィルタを搭載した場合には,車上機器(共振フィルタ)が大型化するという課題があり、ビートレス制御を用いる場合には,周波数の低い交流電源に備えて、直流ステージの平滑コンデンサの静電容量を大きくする必要があり、車上機器(平滑コンデンサ)が大型化するという課題がある。また、平滑コンデンサの静電容量を大きくした場合の他の問題として、コンバータ又はインバータの短絡故障時に流れる放電電流が大きくなり二次故障のリスクが増大するという問題がある。   Here, when a plurality of resonance filters matched to the frequency of the AC power of a plurality of frequencies are mounted, there is a problem that the on-board equipment (resonance filter) becomes large, and when using beatless control, the frequency of In preparation for a low AC power source, it is necessary to increase the capacitance of the smoothing capacitor of the DC stage, and there is a problem that the on-board equipment (smoothing capacitor) increases in size. Further, as another problem when the capacitance of the smoothing capacitor is increased, there is a problem that the discharge current that flows at the time of a short-circuit failure of the converter or the inverter increases and the risk of a secondary failure increases.

そのため詳細は後述するが、本実施例は2種類以上の電源周波数をもつ路線に乗り入れる鉄道車両において、直流電圧に重畳する交流電源電圧の2倍の周波数の脈動に起因して主電動機11の電流に現れるビート現象を抑制するために、共振フィルタ6とビートレス制御器205の両方を備えており、周波数の最も低い架線電圧に対しては、共振点が交流電源電圧の2倍の周波数となる共振フィルタ6を用いて直流電圧に重畳する交流電源電圧の2倍の周波数の脈動を抑制するとともに、それ以外の周波数の架線電圧に対しては、インバータのスイッチング制御であるビートレス制御により主電動機の電流に生じる脈動を抑制することを特徴とする。   Therefore, although details will be described later, in the present embodiment, the current of the main motor 11 is caused by the pulsation of the frequency twice the AC power supply voltage superimposed on the DC voltage in a railway vehicle that is on a route having two or more types of power supply frequencies. In order to suppress the beat phenomenon appearing in the resonance frequency, both the resonance filter 6 and the beatless controller 205 are provided, and for the overhead line voltage having the lowest frequency, the resonance point has a resonance frequency twice that of the AC power supply voltage. The filter 6 is used to suppress pulsation at a frequency twice that of the AC power supply voltage superimposed on the DC voltage, and for the overhead line voltage at other frequencies, the current of the main motor is controlled by beatless control that is inverter switching control. It is characterized by suppressing the pulsation that occurs.

一例として、交流電源として16.7Hzと50Hzの2種類を持つ路線を走行する鉄道車両に本発明を適用する場合を考えると、周波数の低い16.7Hzの交流電源に対してはハードウェアである共振フィルタにより直流電圧に重畳する交流電源電圧の2倍の周波数の脈動を抑制するとともに、周波数の高い50Hzの架線電圧に対しては、ソフトウェアであるビートレス制御により主電動機の電流に生じる脈動を抑制する。
As an example, considering the case where the present invention is applied to a railway vehicle traveling on a route having two types of 16.7 Hz and 50 Hz as an AC power source, it is hardware for an AC power source with a low frequency of 16.7 Hz. The resonance filter suppresses pulsation at twice the frequency of the AC power supply voltage superimposed on the DC voltage, and suppresses pulsation that occurs in the main motor current by beatless control, which is software, for high-frequency 50 Hz overhead wire voltage To do.

まず、直流ステージに共振フィルタ6が無い場合における直流電圧Edの脈動について以下に説明する。   First, the pulsation of the DC voltage Ed when the resonance filter 6 is not provided in the DC stage will be described below.

交流車の直流電圧Edの脈動は、コンバータ5の整流に起因するものと、インバータ9の電圧変換に起因するものがある。
The pulsation of the DC voltage Ed of the AC vehicle is caused by the rectification of the converter 5 and that caused by the voltage conversion of the inverter 9.

コンバータ5の整流に起因する脈動は、単相交流の整流により発生するものなので、当該脈動の主な周波数帯は架線電圧の2倍の周波数となる。このときの直流電圧Edの脈動とビートレス制御に必要な平滑コンデンサ8の静電容量との関係を数(1)に示す。

Figure 2016152665
Since the pulsation caused by the rectification of the converter 5 is caused by the rectification of the single-phase alternating current, the main frequency band of the pulsation has a frequency twice the overhead wire voltage. The relationship between the pulsation of the DC voltage Ed at this time and the electrostatic capacity of the smoothing capacitor 8 necessary for beatless control is shown in Equation (1).

Figure 2016152665

ここで、ΔEcfは直流電圧の脈動幅、Pは車両駆動システムの最大電力、ωcは架線電圧の角周波数、Cfは平滑コンデンサ8の静電容量、Ecfは直流電圧の直流分である。   Here, ΔEcf is the pulsation width of the DC voltage, P is the maximum power of the vehicle drive system, ωc is the angular frequency of the overhead wire voltage, Cf is the capacitance of the smoothing capacitor 8, and Ecf is the DC component of the DC voltage.

数(1)から分かるように、直流電圧の脈動幅ΔEcfは架線電圧の交流周波数ωcに反比例する。
As can be seen from the equation (1), the pulsation width ΔEcf of the DC voltage is inversely proportional to the AC frequency ωc of the overhead line voltage.

一方でインバータの電圧変換に起因する脈動は、直流を三相交流に変換することにより発生するものなので、当該脈動の主な周波数帯はインバータの出力周波数の6倍の周波数となる。このときの直流電圧の脈動とビートレス制御に必要な平滑コンデンサ8の静電容量の関係を数(2)に示す。

Figure 2016152665
On the other hand, the pulsation resulting from the voltage conversion of the inverter is generated by converting direct current into three-phase alternating current, so the main frequency band of the pulsation is a frequency six times the output frequency of the inverter. The relationship between the pulsation of the DC voltage at this time and the electrostatic capacity of the smoothing capacitor 8 necessary for beatless control is shown in equation (2).

Figure 2016152665

ここで、ωiはインバータの出力電力が最大となる点における角周波数である。直流ステージに共振フィルタ6を持たないシステムでは、インバータのビートレス制御によりインバータの交流出力電圧の脈動を抑制する必要があるため、数(1)と数(2)に示された平滑コンデンサの静電容量Cfを有する必要がある。 そのため、交流架線が2種類の路線、例えば交流架線の周波数が16.7Hzと50Hzの場合では、下記の3つの直流電圧脈動に対して、ビートレス制御を用いてインバータの交流出力電圧の脈動を抑制する必要がある。
(a)架線周波数16.7Hzの場合のコンバータ5の整流に起因する直流電圧脈動
(b)架線周波数50Hzの場合のコンバータ5の整流に起因する直流電圧脈動
(c)インバータ動作における直流電圧脈動が最大となる条件での直流電圧脈動

ここで、インバータ動作における直流電圧脈動が最大となる条件とは、インバータ9の出力電圧が最大となる場合である。鉄道車両のインバータ装置は、電圧利用効率を高くするために、定格速度の半分程度に対応するインバータ周波数Fiで出力電圧を飽和させ、それ以上の速度ではインバータ周波数Fiのみを制御する。この出力電圧が飽和する速度を、V/f終端速度といい、この終端速度よりも高い速度においてはインバータの出力電力が最大となり、直流電圧の脈動幅ΔEcfも最大となる。
Here, ωi is an angular frequency at the point where the output power of the inverter becomes maximum. In a system that does not have the resonance filter 6 in the DC stage, it is necessary to suppress the pulsation of the AC output voltage of the inverter by beatless control of the inverter. Therefore, the electrostatic capacitance of the smoothing capacitor shown in the equations (1) and (2) It is necessary to have a capacitance Cf. Therefore, when the AC overhead line is of two types, for example, when the frequency of the AC overhead line is 16.7 Hz and 50 Hz, the pulsation of the AC output voltage of the inverter is suppressed using beatless control for the following three DC voltage pulsations. There is a need to.
(A) DC voltage pulsation due to rectification of converter 5 when overhead line frequency is 16.7 Hz (b) DC voltage pulsation due to rectification of converter 5 when overhead line frequency is 50 Hz (c) DC voltage pulsation in inverter operation DC voltage pulsation under maximum conditions

Here, the condition that the DC voltage pulsation in the inverter operation is maximized is a case where the output voltage of the inverter 9 is maximized. In order to increase the voltage utilization efficiency, the inverter device of a railway vehicle saturates the output voltage at an inverter frequency Fi corresponding to about half of the rated speed, and controls only the inverter frequency Fi at a higher speed. The speed at which this output voltage saturates is called the V / f termination speed. At a speed higher than this termination speed, the output power of the inverter is maximized and the pulsation width ΔEcf of the DC voltage is also maximized.

このときにビートレス制御に必要となる平滑コンデンサ8の静電容量Cfについて以下に説明する。   The electrostatic capacity Cf of the smoothing capacitor 8 required for beatless control at this time will be described below.

直流電圧Edに重畳する脈動率をkとして、コンバータ動作により発生する脈動幅をΔEcf以下としたい場合のビートレス制御に必要な平滑コンデンサ8の静電容量Cfは数(3)となる。

Figure 2016152665

Figure 2016152665
The electrostatic capacity Cf of the smoothing capacitor 8 required for beatless control when the pulsation rate superimposed on the DC voltage Ed is k and the pulsation width generated by the converter operation is to be equal to or less than ΔEcf is expressed by the following equation (3).

Figure 2016152665

Figure 2016152665


また、インバータ動作により発生する脈動幅をΔEcf以下にしたい場合のビートレス制御に必要な平滑コンデンサ8の静電容量Cfは数(4)となる。

Figure 2016152665

Figure 2016152665

Further, the electrostatic capacitance Cf of the smoothing capacitor 8 necessary for beatless control when it is desired to make the pulsation width generated by the inverter operation equal to or less than ΔEcf is the number (4).

Figure 2016152665

Figure 2016152665


例えば、直流ステージに共振フィルタ6が接続されていない車両駆動システムで、P=1630kW、Ecf=2400V、k<0.04となる条件について検討した場合、上記した3つの直流電圧脈動(a)〜(c)に対して、ビートレス制御を用いてインバータの交流出力電圧の脈動を抑制するために必要な平滑コンデンサの静電容量Cfは下記のようになる。

(a)架線周波数が16.7Hzの場合、数(3)における架線周波数ωc=2×π×16.7rad/sとなるため、架線周波数が16.7Hzの場合のコンバータ5の整流に起因する直流電圧脈動に対して、ビートレス制御を用いてインバータの交流出力電圧の脈動を抑制するために必要となる平滑コンデンサ8の静電容量は、Cf>28800μFとなる。

(b)架線周波数が50Hzの場合、数(3)における架線周波数ωc=2×π×50rad/sとなるため、架線周波数が50Hzの場合のコンバータ5の整流に起因する直流電圧脈動に対して、ビートレス制御を用いてインバータの交流出力電圧の脈動を抑制するために必要となる平滑コンデンサ8の静電容量は、Cf>9600μFとなる。

(c)インバータ動作における直流電圧脈動が最大となる場合、V/f終端の出力電力が最大になる点で、インバータ動作による直流電圧脈動ΔEcfは最も大きくなり、数(4)におけるインバータ動作周波数Fiが50Hz、各周波数ωi=2×π×50rad/sとなるため、インバータ動作による直流電圧脈動に対して、ビートレス制御を用いてインバータの交流出力電圧の脈動を抑制するために必要となる平滑コンデンサの静電容量は、Cf>3200μFとなる。

For example, in the vehicle drive system in which the resonance filter 6 is not connected to the DC stage, when the conditions of P = 1630 kW, Ecf = 2400 V, k <0.04 are studied, the above three DC voltage pulsations (a) to In contrast to (c), the capacitance Cf of the smoothing capacitor necessary for suppressing the pulsation of the AC output voltage of the inverter using beatless control is as follows.

(A) When the overhead line frequency is 16.7 Hz, the overhead line frequency ωc = 2 × π × 16.7 rad / s in the equation (3) is obtained, which is caused by the rectification of the converter 5 when the overhead line frequency is 16.7 Hz. For the DC voltage pulsation, the capacitance of the smoothing capacitor 8 required to suppress the pulsation of the AC output voltage of the inverter using beatless control is Cf> 28800 μF.

(B) When the overhead line frequency is 50 Hz, the overhead line frequency ωc = 2 × π × 50 rad / s in the equation (3), so that the DC voltage pulsation caused by the rectification of the converter 5 when the overhead line frequency is 50 Hz The capacitance of the smoothing capacitor 8 necessary for suppressing the pulsation of the AC output voltage of the inverter using the beatless control is Cf> 9600 μF.

(C) When the DC voltage pulsation in the inverter operation becomes the maximum, the DC voltage pulsation ΔEcf due to the inverter operation becomes the largest at the point where the output power at the V / f terminal becomes the maximum, and the inverter operating frequency Fi in the equation (4) Is 50 Hz and each frequency ωi = 2 × π × 50 rad / s. Therefore, a smoothing capacitor required for suppressing pulsation of the AC output voltage of the inverter using beatless control against DC voltage pulsation due to the inverter operation. The capacitance of Cf> 3200 μF.

上述した通り、周波数が低い16.7Hzの交流電圧をコンバータで直流電圧へ変換する際に発生する直流電圧脈動に対して、ビートレス制御を用いてインバータの交流出力電圧の脈動を抑制するために必要な平滑コンデンサ8の静電容量Cfが最も大きく、つづいて周波数50Hzの交流電圧をコンバータで直流電圧へ変換する際に発生する直流電圧脈動に対して、ビートレス制御を用いてインバータの交流出力電圧の脈動を抑制するために必要な平滑コンデンサ8の静電容量Cfが大きく、インバータ動作により発生する直流電圧脈動が最大となる条件おける直流電圧脈動に対して、ビートレス制御を用いてインバータの交流出力電圧の脈動を抑制するために必要な平滑コンデンサ8の静電容量Cfが最も小さくなる。
As described above, it is necessary to suppress the pulsation of the AC output voltage of the inverter using beatless control against the dc voltage pulsation that occurs when the low-frequency 16.7 Hz AC voltage is converted into a DC voltage by the converter. The smoothing capacitor 8 has the largest electrostatic capacitance Cf, and the DC output voltage pulsation generated when the AC voltage having a frequency of 50 Hz is converted into a DC voltage by the converter is used to control the AC output voltage of the inverter using beatless control. For the DC voltage pulsation under the condition that the electrostatic capacitance Cf of the smoothing capacitor 8 necessary for suppressing the pulsation is large and the DC voltage pulsation generated by the inverter operation is the maximum, the AC output voltage of the inverter using beatless control The electrostatic capacitance Cf of the smoothing capacitor 8 required for suppressing the pulsation of is the smallest.

この直流電圧脈動に対して、ビートレス制御を用いてインバータの交流出力電圧の脈動を抑制するために必要となる、電源周波数と平滑コンデンサ8の静電容量の関係を図4に示す。横軸が電源周波数で、縦軸が平滑コンデンサ8の静電容量である。同図は数(3)をもとに。直流電圧に重畳する脈動成分に対して、ビートレス制御を用いてインバータの交流出力電圧の脈動を抑制するために必要となる平滑コンデンサの静電容量を試算したものである。計算条件は上述の(a)と(b)の値を用いた。   FIG. 4 shows the relationship between the power supply frequency and the capacitance of the smoothing capacitor 8 that is necessary for suppressing the pulsation of the AC output voltage of the inverter using beatless control against the DC voltage pulsation. The horizontal axis is the power supply frequency, and the vertical axis is the capacitance of the smoothing capacitor 8. The figure is based on number (3). This is a trial calculation of the capacitance of the smoothing capacitor required to suppress the pulsation of the AC output voltage of the inverter using beatless control against the pulsation component superimposed on the DC voltage. As the calculation conditions, the values of (a) and (b) described above were used.

この結果より、コンバータ動作により発生する脈動を、ビートレス制御を用いて抑制するために必要となる平滑コンデンサ8の静電容量は、電源の周波数に対して反比例の関係にあることがわかる。そのため、交流架線の周波数が低い16.7Hzの2倍の周波数(低周波数)に対しては、共振フィルタ6の共振特性を合わせることで、直流電圧の脈動を抑制する。一方で、交流架線の周波数が高い50Hzの2倍の周波数(高周波数)に対しては、ビートレス制御を適用することで直流電圧の脈動ΔEcfをインバータ出力側の主電動機11に伝えないようにする。このように、共振フィルタ6とビートレス制御機能を備え、共振フィルタ6の共振特性を最も周波数の低い直流電圧脈動と一致させることで、図4に示すように、平滑コンデンサ8に必要とされる静電容量を約1/3以下に抑えることができる。
From this result, it can be seen that the capacitance of the smoothing capacitor 8 necessary for suppressing the pulsation generated by the converter operation using the beatless control is in an inversely proportional relationship with the frequency of the power source. Therefore, the pulsation of the DC voltage is suppressed by matching the resonance characteristics of the resonance filter 6 with respect to the frequency (low frequency) that is twice the frequency of 16.7 Hz where the frequency of the AC overhead line is low. On the other hand, for the frequency (high frequency) that is twice the frequency of 50 Hz where the frequency of the AC overhead line is high, the pulsation ΔEcf of the DC voltage is not transmitted to the main motor 11 on the inverter output side by applying beatless control. . In this way, the resonance filter 6 and the beatless control function are provided, and the resonance characteristic of the resonance filter 6 is made to coincide with the DC voltage pulsation having the lowest frequency. The electric capacity can be suppressed to about 1/3 or less.

ここで、ビートレス制御に必要となる静電容量は、平滑コンデンサ8と共振フィルタ6の共振コンデンサ6bの静電容量から分担できるため、共振コンデンサ6bに必要な静電容量は数(5)となる。

Figure 2016152665
Here, since the electrostatic capacity required for beatless control can be shared from the electrostatic capacity of the smoothing capacitor 8 and the resonant capacitor 6b of the resonant filter 6, the required electrostatic capacity of the resonant capacitor 6b is several (5). .

Figure 2016152665


ここでClcは共振コンデンサ6bの静電容量である。

Here, Clc is the capacitance of the resonance capacitor 6b.

さらに、共振リアクトル6aのインダクタンスおよび共振コンデンサ6bの静電容量の関係は、共振フィルタ6の共振点を架線周波数16.7Hzの2倍に定めればよいため、数(6)の関係を満たせばよい。

Figure 2016152665
Furthermore, the relationship between the inductance of the resonance reactor 6a and the capacitance of the resonance capacitor 6b can be determined by setting the resonance point of the resonance filter 6 to be twice the overhead line frequency of 16.7 Hz. Good.

Figure 2016152665

ここでLlcは共振リアクトル6aのインダクタンスである。   Here, Llc is the inductance of the resonant reactor 6a.

よって本実施例における共振リアクトル6aのインダクタンスは、数(6)を展開して数(7)により定まる。

Figure 2016152665
Therefore, the inductance of the resonant reactor 6a in the present embodiment is determined by the expression (7) by expanding the expression (6).

Figure 2016152665

上述の構成とすることにより、平滑コンデンサ8の静電容量Cfが定まれば、共振コンデンサ6bの静電容量Clcと共振リアクトル6aのインダクタンスLlcを定めることができ、複数周波数を電源とする車両駆動システムの装置容積と重量の小型化、最適化ができる。
なお、架線周波数が16.7Hzの場合のコンバータ5の整流に起因する直流電圧脈動に対して、ビートレス制御を用いてインバータの交流出力電圧の脈動を抑制するために必要となる平滑コンデンサ8の静電容量Cf>28800μFは、架線周波数16.7Hzの2倍の脈動成分を抑制するために必要な共振コンデンサ6bの静電容量や、50Hzの2倍の脈動成分に対してビートレス制御を用いてインバータの交流出力電圧の脈動を抑制するために必要な平滑コンデンサ8の静電容量Cf>9600μFと比較して非常に大きい。そのため、架線周波数16.7Hzの2倍の脈動成分を抑制するために必要な共振コンデンサ6bの静電容量と、50Hzの2倍の脈動成分に対してビートレス制御を用いてインバータの交流出力電圧の脈動を抑制するために必要な平滑コンデンサ8の静電容量Cf>9600μFをそれぞれ備えた方が、システム全体として必要なコンデンサの静電容量を小さくすることができる。
With the above-described configuration, if the electrostatic capacitance Cf of the smoothing capacitor 8 is determined, the electrostatic capacitance Clc of the resonant capacitor 6b and the inductance Llc of the resonant reactor 6a can be determined, and the vehicle is driven using a plurality of frequencies as a power source. System volume and weight can be reduced and optimized.
It should be noted that static voltage of the smoothing capacitor 8 required for suppressing the pulsation of the AC output voltage of the inverter using beatless control against the dc voltage pulsation caused by the rectification of the converter 5 when the overhead line frequency is 16.7 Hz. The capacitance Cf> 28800 μF is an inverter that uses beatless control for the capacitance of the resonance capacitor 6b necessary for suppressing the pulsation component twice the overhead line frequency of 16.7 Hz and the pulsation component twice the 50 Hz. The capacitance Cf of the smoothing capacitor 8 necessary to suppress the pulsation of the AC output voltage is very large as compared with 9600 μF. Therefore, the capacitance of the resonance capacitor 6b necessary for suppressing the pulsation component twice the overhead line frequency of 16.7 Hz and the AC output voltage of the inverter using beatless control for the pulsation component twice the frequency of 50 Hz. The capacitance of the capacitor necessary for the entire system can be reduced by providing the smoothing capacitor 8 with the capacitance Cf> 9600 μF necessary for suppressing pulsation.

また、コンバータ5ないしインバータ9に短絡故障が起きた際に、故障箇所には平滑コンデンサ8に蓄えられている電荷が放電され故障箇所に事故電流が流れることになるが、上述の構成により、平滑コンデンサの静電容量を小さくできるため電流を抑制でき、装置の二次破壊を防止することができる。
In addition, when a short circuit failure occurs in the converter 5 or the inverter 9, the charge stored in the smoothing capacitor 8 is discharged to the failure location, and an accident current flows to the failure location. Since the capacitance of the capacitor can be reduced, current can be suppressed and secondary breakdown of the device can be prevented.

本発明における第2の実施例を図2を用いて説明する。図2に本実施例の構成を示す。   A second embodiment of the present invention will be described with reference to FIG. FIG. 2 shows the configuration of this embodiment.

同図における図1と同一の箇所は同じ符号で表現しており、その部分の説明は省略する。   The same parts in FIG. 1 as those in FIG. 1 are represented by the same reference numerals, and the description thereof is omitted.

同図の12は共振フィルタを示しており、共振フィルタ12は、共振リアクトル12a、共振リアクトル12aと直列接続された共振コンデンサ12b、共振リアクトル12aと並列接続された接触器12cで構成される。   In the figure, reference numeral 12 denotes a resonance filter. The resonance filter 12 includes a resonance reactor 12a, a resonance capacitor 12b connected in series with the resonance reactor 12a, and a contactor 12c connected in parallel with the resonance reactor 12a.

共振フィルタ回路12は実施例1の共振フィルタ回路6に対して、外部から投入される投入開放指令に従い接触器12cを投入することにより、共振フィルタのリアクトルを短絡できるという特長を有する。   The resonance filter circuit 12 has a feature that the reactor of the resonance filter can be short-circuited with respect to the resonance filter circuit 6 of the first embodiment by inserting the contactor 12c in accordance with an insertion / release command input from the outside.

本実施例における車両駆動システムは、2種類以上の電源周波数を持つ路線に乗り入れる鉄道車両において、直流電圧に重畳する電源周波数の2倍の周波数の脈動に起因して主電動機11の電流に現れるビート現象を抑制するために、共振フィルタ回路12と、ビートレス制御器205の両方を備えている点では、実施例1と同一であるが、共振フィルタ12の構成部品として、共振リアクトル12aと共振コンデンサ12bの他に、接触器12cが含まれている。   The vehicle drive system according to the present embodiment is a beat that appears in the current of the main motor 11 due to pulsation having a frequency twice the power frequency superimposed on the DC voltage in a railway vehicle that enters a route having two or more types of power frequencies. In order to suppress the phenomenon, the resonance filter circuit 12 and the beatless controller 205 are both provided in the same manner as in the first embodiment, but as a component of the resonance filter 12, a resonance reactor 12a and a resonance capacitor 12b are provided. In addition, a contactor 12c is included.

本実施例では、交流電源の電源周波数に応じて直流ステージ電圧の脈動抑制の方式を切り替える。共振フィルタ12の共振周波数は、実施例1と同様に、複数の交流電源の中で、一番低い周波数の2倍に合わせて共振フィルタ12(共振リアクトル12aと共振コンデンサ12bの直列接続体)の共振周波数を定めて脈動抑制を行い、それ以外の交流電源の周波数については、ビートレス制御器205により抑制する。   In this embodiment, the DC stage voltage pulsation suppression method is switched according to the power supply frequency of the AC power supply. Similarly to the first embodiment, the resonance frequency of the resonance filter 12 is set to twice the lowest frequency among the plurality of AC power supplies, and the resonance filter 12 (series connection body of the resonance reactor 12a and the resonance capacitor 12b). The pulsation is suppressed by setting the resonance frequency, and the frequency of the other AC power source is suppressed by the beatless controller 205.

ビートレス制御器205は電圧検出器7により測定された平滑コンデンサ8の電圧に重畳する脈動の周波数により、共振フィルタ12による脈動抑制とビートレス制御による抑制を切り替える。   The beatless controller 205 switches between pulsation suppression by the resonance filter 12 and suppression by beatless control according to the pulsation frequency superimposed on the voltage of the smoothing capacitor 8 measured by the voltage detector 7.

接触器12cが投入されている状態で電圧検出器7により共振フィルタ12の共振周波数と同一の脈動を検出した場合、接触器の開放指令がビートレス制御器205より出力され、共振フィルタ12の接触器12cが開放状態になり、共振フィルタ12により直流ステージの脈動を抑制する。また、この場合にはビートレス制御は不要となるため、ビートレス制御を停止させても良いが、ビートレス制御を動作させたままにしても良い。   When the voltage detector 7 detects the same pulsation as the resonance frequency of the resonance filter 12 with the contactor 12c turned on, a contactor release command is output from the beatless controller 205, and the contactor of the resonance filter 12 is output. 12c is opened, and the resonance filter 12 suppresses the pulsation of the DC stage. In this case, since the beatless control is not necessary, the beatless control may be stopped, but the beatless control may be kept operating.

一方で、接触器12cが開放されている状態で電圧検出器7により共振フィルタ12の共振周波数以外の脈動を検出した場合、接触器の投入指令がビートレス制御器205より出力され、共振フィルタ12の接触器12cが投入されて、ビートレス制御により直流ステージの脈動を抑制する。このとき、接触器12cが投入されることで、共振リアクトル12aの部分が短絡されるため、共振コンデンサ12bを直流ステージの平滑コンデンサとして用いることができる。   On the other hand, when a pulsation other than the resonance frequency of the resonance filter 12 is detected by the voltage detector 7 with the contactor 12c opened, a contactor input command is output from the beatless controller 205, and the resonance filter 12 The contactor 12c is turned on to suppress pulsation of the DC stage by beatless control. At this time, when the contactor 12c is inserted, the portion of the resonant reactor 12a is short-circuited, so that the resonant capacitor 12b can be used as a smoothing capacitor for the DC stage.

本実施例は、実施例1と比較して、直流電圧に重畳する脈動を抑制するために必要となる平滑コンデンサ8の静電容量Cfが異なる。つまり、本実施例を適用することで、共振コンデンサ12bを平滑コンデンサの一部として利用できるため、直流電圧の脈動ΔEcfを抑えるために必要となる平滑コンデンサ8の静電容量Cfを小さくすることができ、装置を小型化することができる。またビートレス制御において共振リアクトル6aで発生する損失を低減できる。   The present embodiment differs from the first embodiment in the capacitance Cf of the smoothing capacitor 8 that is necessary for suppressing the pulsation superimposed on the DC voltage. That is, by applying the present embodiment, the resonant capacitor 12b can be used as a part of the smoothing capacitor, so that the capacitance Cf of the smoothing capacitor 8 required to suppress the DC voltage pulsation ΔEcf can be reduced. The apparatus can be reduced in size. Moreover, the loss which generate | occur | produces in the resonance reactor 6a in beatless control can be reduced.

本実施例では、平滑コンデンサの電圧に基づいてビートレス制御器205が接触器12cの投入開放及びビートレス制御の動作停止を制御する形態を示したが、実施例1と同様に、電圧検出器3により検知された電圧、または位置検出手段により識別された電源周波数に基づいて、接触器12cの投入開放及びビートレス制御の動作停止を制御しても良い。
この場合、共振フィルタ12の共振周波数と一致する周波数の交流電源から電力供給を受けていると判断した場合には、接触器の開放指令が出力され、共振フィルタ12の接触器12cが開放状態になり、共振フィルタ12により直流ステージの脈動を抑制する。また、共振フィルタ12の共振周波数とは異なる周波数の交流電源から電力供給を受けていると判断した場合には、接触器の投入指令が出力され、共振フィルタ12の接触器12cが投入されて、ビートレス制御により直流ステージの脈動を抑制する。
In this embodiment, the form in which the beatless controller 205 controls the opening / closing of the contactor 12c and the operation stop of the beatless control based on the voltage of the smoothing capacitor is shown. However, as in the first embodiment, the voltage detector 3 Based on the detected voltage or the power supply frequency identified by the position detection means, the opening / closing of the contactor 12c and the operation stop of the beatless control may be controlled.
In this case, when it is determined that power is supplied from an AC power source having a frequency that matches the resonance frequency of the resonance filter 12, a contactor opening command is output, and the contactor 12c of the resonance filter 12 is opened. The pulsation of the DC stage is suppressed by the resonance filter 12. When it is determined that power is supplied from an AC power supply having a frequency different from the resonance frequency of the resonance filter 12, a contactor input command is output, the contactor 12c of the resonance filter 12 is input, Beatless control suppresses DC stage pulsation.

なお、本実施例では、コンバータ制御装置100内に、平滑コンデンサ8の電圧が共振フィルタ12の共振周波数と同一か否かを判断し、当該判断結果に基づいて、接触器12cへ投入開放の制御指令を出力し、インバータ制御装置200内のビートレス制御器205へビートレス制御の開始停止の制御指令を出力するようにしても良い。
In this embodiment, it is determined whether or not the voltage of the smoothing capacitor 8 is the same as the resonance frequency of the resonance filter 12 in the converter control device 100, and the contactor 12c is controlled to open and close based on the determination result. A command may be output, and a control command for starting and stopping beatless control may be output to the beatless controller 205 in the inverter control device 200.

本発明における第3の実施例を図3を用いて説明する。図3に本実施例の構成を示す。   A third embodiment of the present invention will be described with reference to FIG. FIG. 3 shows the configuration of this embodiment.

同図における図1と同一の箇所は同じ符号で表現しており、実施例1と同様の機能を有するためその部分の説明は省略する。   The same parts in FIG. 1 as those in FIG. 1 are represented by the same reference numerals, and have the same functions as those in the first embodiment, and thus the description thereof is omitted.

同図の共振フィルタ13は、共振リアクトル13a、共振リアクトル13aと直列接続された共振コンデンサ13b、及び共振リアクトル13aと更に直列接続された接触器13cを備え、コンバータ制御装置100は、故障検出器110を備え、インバータ装置200は、出力調整器208を備えている。   The resonance filter 13 shown in the figure includes a resonance reactor 13a, a resonance capacitor 13b connected in series with the resonance reactor 13a, and a contactor 13c further connected in series with the resonance reactor 13a. The converter control device 100 includes a failure detector 110. The inverter device 200 includes an output regulator 208.

共振フィルタ回路13は実施例1の共振フィルタ回路6に対して、外部から入力される投入開放指令に従い、接触器13cの投入と開放を自在に制御できる特徴を有する。なお、共振フィルタ13が正常動作しているときには共振フィルタ回路13の接触器13cは投入状態となっている。   The resonance filter circuit 13 has a feature that the contact filter 13c can be freely turned on and off in accordance with a closing / opening command input from the outside with respect to the resonance filter circuit 6 of the first embodiment. When the resonance filter 13 is operating normally, the contactor 13c of the resonance filter circuit 13 is in the on state.

本実施例における車両駆動システムは、共振フィルタ回路13の共振リアクトル13aないし共振コンデンサ13bが故障した際に、故障検出器110にて故障状態を検出する。その検出方法は、電圧検出器7より検出した直流電圧Edより、共振フィルタ回路の共振周波数を検出することで判別する。   In the vehicle drive system in the present embodiment, when the resonance reactor 13a or the resonance capacitor 13b of the resonance filter circuit 13 fails, the failure detector 110 detects the failure state. The detection method is determined by detecting the resonance frequency of the resonance filter circuit from the DC voltage Ed detected by the voltage detector 7.

電圧検出器7より共振フィルタ13の共振周波数以外の脈動を検出した場合、もしくは、実施例1に記載された電源周波数の識別機能により周波数が最も低い電源から電力供給を受けていると判断した場合には、ビートレス制御を実行し、ビートレス制御器は直流電圧振動に伴う主電動機11のビート現象を抑制するためのビートレス制御指令ΔSiをPWM制御器207に対して出力する。   When a pulsation other than the resonance frequency of the resonance filter 13 is detected from the voltage detector 7 or when it is determined by the power frequency identification function described in the first embodiment that power is supplied from the lowest frequency power source. The beatless control is executed, and the beatless controller outputs a beatless control command ΔSi for suppressing the beat phenomenon of the main motor 11 due to the DC voltage oscillation to the PWM controller 207.

一方、実施例1に記載された電源周波数の識別機能により周波数が最も低い電源から電力供給を受けていると判断した場合には、ビートレス制御を停止させて、共振フィルタ13により直流電圧に重畳する脈動を抑制する。ここで、ビートレス制御を停止させて、共振フィルタ13により直流ステージの脈動を抑制しているときに、電圧検出器7より共振フィルタ回路の共振周波数を検出したときは、共振フィルタ回路13に故障が発生したと判断し、故障検出器110より、共振フィルタ回路13の接触器13cに対して、接触器開放指令を出力する。これにより故障した共振フィルタ回路13を回路から切り離すことで、故障による影響を他の回路に与えないようにする。それと同時に、ビートレス制御器205と出力調整器208に故障検知情報を出力する。   On the other hand, when it is determined by the power frequency identification function described in the first embodiment that power is supplied from the power source having the lowest frequency, the beatless control is stopped and superimposed on the DC voltage by the resonance filter 13. Suppresses pulsation. Here, when the resonance frequency of the resonance filter circuit is detected by the voltage detector 7 when the beatless control is stopped and the pulsation of the DC stage is suppressed by the resonance filter 13, the resonance filter circuit 13 has a failure. The failure detector 110 outputs a contactor opening command to the contactor 13c of the resonance filter circuit 13 from the failure detector 110. As a result, the resonance filter circuit 13 that has failed is separated from the circuit, so that the influence of the failure is not exerted on other circuits. At the same time, failure detection information is output to the beatless controller 205 and the output adjuster 208.

ビートレス制御器205は、共振フィルタ13が正常動作しているときには停止しており、故障検知情報を受信したときに動作をして、直流電圧振動に伴う主電動機11のビート現象を抑制するためのビートレス制御指令ΔSiをPWM制御器207に対して出力する。   The beatless controller 205 is stopped when the resonance filter 13 is operating normally, operates when receiving failure detection information, and suppresses the beat phenomenon of the main motor 11 due to DC voltage vibration. A beatless control command ΔSi is output to the PWM controller 207.

共振フィルタ13を設置している車両駆動システムにおいて、共振フィルタ13が故障して、接触器13cによりそれを回路から切り離した場合に、平滑コンデンサ8の静電容量が不足するため、制御による全負荷での振動抑制は困難となる。一方で、直流電圧Edの振動は、平滑コンデンサ8に流れる電流に比例することから、車両の運転速度を低くして主電動機11の負荷を下げれば、平滑コンデンサ8の電流もそれに比例して小さくなるため、直流電圧の振動を小さくでき、制御による主電動機11のビート現象抑制も可能となる。そこで故障検出時は、出力調整器208に故障検知情報を入力して、電流指令を絞ることで、主電動機11に流れる電流を少なくでき、ビートレス制御によるビート現象抑制が可能となるため、共振フィルタ故障時における車両の継続運転が可能となる。   In the vehicle drive system in which the resonance filter 13 is installed, if the resonance filter 13 fails and is disconnected from the circuit by the contactor 13c, the capacitance of the smoothing capacitor 8 is insufficient. It becomes difficult to suppress vibrations at. On the other hand, since the vibration of the DC voltage Ed is proportional to the current flowing through the smoothing capacitor 8, if the driving speed of the vehicle is lowered and the load of the main motor 11 is lowered, the current of the smoothing capacitor 8 is also reduced proportionally. Therefore, the vibration of the DC voltage can be reduced, and the beat phenomenon of the main motor 11 can be suppressed by the control. Therefore, when a failure is detected, the failure detection information is input to the output regulator 208 and the current command is narrowed down to reduce the current flowing through the main motor 11 and the beat phenomenon can be suppressed by beatless control. The vehicle can be continuously operated at the time of failure.

本実施例によると、他の実施例と同様に、直流電圧の脈動ΔEcfを抑えるために必要となる平滑コンデンサ8の静電容量Cfを小さくすることができ、装置を小型化することができることに加えて、故障した共振フィルタ回路13を回路から切り離すことで、故障による影響を他の回路に与えないようにすることができる。更に、共振フィルタ回路13の故障検出時にビートレス制御を実行することで、共振フィルタ故障が発生した場合であっても車両の継続運転が可能となる。   According to the present embodiment, as in the other embodiments, the capacitance Cf of the smoothing capacitor 8 necessary for suppressing the pulsation ΔEcf of the DC voltage can be reduced, and the apparatus can be miniaturized. In addition, by separating the failed resonance filter circuit 13 from the circuit, it is possible to prevent other circuits from being affected by the failure. Further, by executing the beatless control when the failure of the resonance filter circuit 13 is detected, the vehicle can be continuously operated even when the resonance filter failure occurs.

本実施例では、故障検出器110をコンバータ制御装置100内に備える形態を説明したが、故障検出器110はインバータ制御装置200内に設けることもできる。



In the present embodiment, the embodiment in which the failure detector 110 is provided in the converter control device 100 has been described. However, the failure detector 110 may be provided in the inverter control device 200.



1 集電装置
2 主変圧器
3 電圧検出器
4 電流検出器
5 コンバータ(第一の電力変換手段)
5a、5b、5c、5d スイッチング素子
6 共振フィルタ
6a 共振リアクトル
6b 共振コンデンサ
7 電圧検出器
8 平滑コンデンサ
9 インバータ(第二の電力変換手段)
9a、9b、9c、9d、9e、9f スイッチング素子
10 電流検出器
11 主電動機
12 共振フィルタ
12a 共振リアクトル
12b 共振コンデンサ
12c 接触器
13 共振フィルタ
13a 共振リアクトル
13b 共振コンデンサ
13c 接触器
21 車輪
22、23 交流電源
24、25 電車線
26 無電化区間
27 軌道
100 コンバータ制御装置
101 電源位相検出器
102 正弦波発生器
103 減算器
104 電圧制御器
105 乗算器
106 減算器
107 電流制御器
108 減算器
109 PWM制御器
110 故障検出器
200 インバータ制御装置
201 座標変換器
202 減算器
203 減算器
204 電流制御器
205 ビートレス制御器
206 加算器
207 PWM制御器
208 出力調整器

es 二次電圧
ec 交流電圧指令
Ed 直流電圧
Ed* 直流電圧指令
Fi 出力周波数
id d軸電流
iq q軸電流
is 二次電流
iu u相電流
iv v相電流
iw w相電流
id* d軸電流指令
iq* q軸電流指令
is* 二次電流指令
Is* 二次電流実効値指令
Sc コンバータパルス指令
Si インバータパルス指令
ΔSi ビートレス制御指令
δ 出力偏角
ω 電源角周波数
t 時間
P 電力変換装置の最大電力
Ecf 直流電圧の直流分
ΔEcf 直流電圧の脈動分
Cf 平滑コンデンサの静電容量
ωc 架線角周波数
ωi 出力角周波数
k 脈動率
Llc 共振リアクトルのインダクタンス
Clc 共振コンデンサの静電容量
1 current collector 2 main transformer 3 voltage detector 4 current detector 5 converter (first power conversion means)
5a, 5b, 5c, 5d Switching element 6 Resonant filter 6a Resonant reactor 6b Resonant capacitor 7 Voltage detector 8 Smoothing capacitor 9 Inverter (second power conversion means)
9a, 9b, 9c, 9d, 9e, 9f Switching element 10 Current detector 11 Main motor 12 Resonant filter 12a Resonant reactor 12b Resonant capacitor 12c Contactor 13 Resonant filter 13a Resonant reactor 13b Resonant capacitor 13c Contactor 21 Wheels 22, 23 AC Power supply 24, 25 Train line 26 Electrification section 27 Track 100 Converter control device 101 Power supply phase detector 102 Sine wave generator 103 Subtractor 104 Voltage controller 105 Multiplier 106 Subtractor 107 Current controller 108 Subtractor 109 PWM controller 110 Failure detector 200 Inverter controller 201 Coordinate converter 202 Subtractor 203 Subtractor 204 Current controller 205 Beatless controller 206 Adder 207 PWM controller 208 Output adjuster

es Secondary voltage ec AC voltage command Ed DC voltage Ed * DC voltage command Fi Output frequency id d-axis current iq q-axis current is secondary current iu u-phase current iv v-phase current iw w-phase current id * d-axis current command iq * Q-axis current command is * secondary current command Is * secondary current effective value command Sc converter pulse command Si inverter pulse command ΔSi beatless control command δ output deflection angle ω power supply angular frequency t time P maximum power Ecf of the power converter DC DC component of voltage ΔEcf DC component pulsation component Cf Smoothing capacitor capacitance ωc Overhead angular frequency ωi Output angular frequency k Pulsation factor Llc Resonance reactor inductance Clc Resonance capacitor capacitance

Claims (6)

第一の単相交流電力を供給する第一の電車線が設置された路線と、前記第一の単相交流電力よりも周波数の高い第二の単相交流電力を供給する第二の電車線が設置された路線を走行する車両の車両駆動システムにおいて、
前記第一の電車線もしくは前記第二の電車線から供給された単相交流電力を直流電力に変換し、直流電力線に出力する第一の電力変換装置と、
前記直流電力線に出力された前記直流電力を三相交流電力に変換する第二の電力変換装置と、
当該三相交流電力が供給される車両駆動用の電動機と、
前記第一の電力変換装置と並列に直流電力線に接続され、前記第一の単相交流の二倍の周波数帯に共振点を有する共振フィルタと、
前記直流電力線の電圧を検出する電圧検出器と、
前記電圧検出器の検出値に応じて前記第二の電力変換装置の出力を制御し、前記三相交流電力に重畳する脈動を抑制する脈動抑制手段を備えることを特徴とする車両駆動システム。
A line on which a first train line for supplying first single-phase AC power is installed, and a second train line for supplying second single-phase AC power having a frequency higher than that of the first single-phase AC power In a vehicle drive system for a vehicle that travels on a route where is installed,
A first power converter that converts single-phase AC power supplied from the first train line or the second train line into DC power and outputs the DC power line;
A second power conversion device that converts the DC power output to the DC power line into three-phase AC power;
An electric motor for driving the vehicle to which the three-phase AC power is supplied;
A resonance filter connected to a DC power line in parallel with the first power converter, and having a resonance point in a frequency band twice that of the first single-phase AC;
A voltage detector for detecting the voltage of the DC power line;
A vehicle drive system comprising pulsation suppression means for controlling an output of the second power converter according to a detection value of the voltage detector and suppressing pulsation superimposed on the three-phase AC power.
請求項1に記載の車両駆動システムにおいて、
前記共振フィルタは、前記直流電力に重畳する前記第一の単相交流電力の二倍の周波数成分の脈動を吸収するとともに、
前記脈動抑制手段は、前記三相交流電力に重畳する前記第二の単相交流電力の二倍の周波数成分の脈動を抑制するように前記第二の電力変換装置の出力を制御することを特徴とする車両駆動システム。
The vehicle drive system according to claim 1,
The resonant filter absorbs a pulsation of a frequency component that is twice the first single-phase AC power superimposed on the DC power,
The pulsation suppressing means controls the output of the second power converter so as to suppress pulsation of a frequency component twice the second single-phase AC power superimposed on the three-phase AC power. Vehicle drive system.
請求項2に記載の車両駆動システムにおいて、
前記第一の電車線と前記第二の電車線のいずれかから電力供給を受けているかを判断する電源判定手段を備え、
前記第一の電車線から電力供給を受けていると判断した場合には、脈動抑制手段を停止し、
前記第二の電車線から電力供給を受けていると判断した場合には、脈動抑制手段を動作させることを特徴とする車両駆動システム。
The vehicle drive system according to claim 2,
Power supply determination means for determining whether power is supplied from either the first train line or the second train line;
If it is determined that power is supplied from the first train line, the pulsation suppression means is stopped,
A vehicle drive system characterized by operating pulsation suppression means when it is determined that power is supplied from the second train line.
請求項1ないし請求項3のいずれかに記載の車両駆動システムにおいて、
前記第一の電力変換装置と並列に前記直流電力線に接続され、前記直流電力を安定化させる平滑コンデンサを更に備え、
前記共振フィルタは、互いに直列接続された共振リアクトルと共振コンデンサを備える、ことを特徴とする電力変換装置。
The vehicle drive system according to any one of claims 1 to 3,
A smoothing capacitor connected to the DC power line in parallel with the first power converter and stabilizing the DC power;
The resonance filter includes a resonance reactor and a resonance capacitor connected in series with each other.
請求項4に記載の車両駆動システムにおいて、
前記共振フィルタは、前記共振リアクトルに対して並列に接続される接触器を更に備え、
前記電圧検出器により前記共振フィルタの共振周波数と同一の脈動を検出した場合に、前記接触器を開放し、
前記電圧検出器により前記共振フィルタの共振周波数以外の脈動を検出した場合に、前記接触器が投入されることを特徴とする車両駆動システム。
The vehicle drive system according to claim 4,
The resonant filter further includes a contactor connected in parallel to the resonant reactor,
When detecting the same pulsation as the resonance frequency of the resonance filter by the voltage detector, the contactor is opened,
The vehicle drive system, wherein the contactor is turned on when a pulsation other than the resonance frequency of the resonance filter is detected by the voltage detector.
請求項4に記載の車両駆動システムにおいて、
前記共振フィルタは、前記共振リアクトルに対して直列に接続される接触器を更に備え、
前記電圧検出器により前記共振フィルタの共振周波数の脈動を検出したときは、前記接触器を開放させると共にビートレス制御を実行し、
前記電圧検出器により前記共振フィルタの共振周波数の脈動を検出しないときは、前記接触器を投入させると共にビートレス制御を停止することを特徴とする車両駆動システム。
The vehicle drive system according to claim 4,
The resonant filter further comprises a contactor connected in series with the resonant reactor,
When detecting the pulsation of the resonance frequency of the resonance filter by the voltage detector, the beater control is performed while opening the contactor,
When the voltage detector does not detect the pulsation of the resonance frequency of the resonance filter, the vehicle drive system is characterized in that the contactor is turned on and beatless control is stopped.
JP2015028151A 2015-02-17 2015-02-17 Vehicle drive system Active JP6349269B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015028151A JP6349269B2 (en) 2015-02-17 2015-02-17 Vehicle drive system
CN201610048369.9A CN105897023B (en) 2015-02-17 2016-01-25 Vehicle drive system
GB1602392.1A GB2537020B (en) 2015-02-17 2016-02-10 Railway vehicle drive system
DE102016202419.1A DE102016202419B4 (en) 2015-02-17 2016-02-17 RAILWAY VEHICLE DRIVE SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015028151A JP6349269B2 (en) 2015-02-17 2015-02-17 Vehicle drive system

Publications (3)

Publication Number Publication Date
JP2016152665A true JP2016152665A (en) 2016-08-22
JP2016152665A5 JP2016152665A5 (en) 2017-03-23
JP6349269B2 JP6349269B2 (en) 2018-06-27

Family

ID=55642100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015028151A Active JP6349269B2 (en) 2015-02-17 2015-02-17 Vehicle drive system

Country Status (4)

Country Link
JP (1) JP6349269B2 (en)
CN (1) CN105897023B (en)
DE (1) DE102016202419B4 (en)
GB (1) GB2537020B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021070279A1 (en) * 2019-10-09 2021-04-15
CN112874389A (en) * 2021-02-01 2021-06-01 重庆中车长客轨道车辆有限公司 Operation protection method, device, equipment and computer readable storage medium
CN113060052A (en) * 2021-04-23 2021-07-02 重庆中车长客轨道车辆有限公司 Double-flow system rail transit vehicle control system and method
JP2022140302A (en) * 2021-03-12 2022-09-26 トランスポーテーション アイピー ホールディングス,エルエルシー Vehicle control system and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3442106A1 (en) * 2017-08-08 2019-02-13 Siemens Aktiengesellschaft High voltage sensor-free drive device
DE102018215594A1 (en) * 2018-09-13 2020-03-19 Siemens Mobility GmbH Method for monitoring a suction circuit of a converter system
CN112311292A (en) * 2020-10-14 2021-02-02 中车大连电力牵引研发中心有限公司 Beat frequency suppression system and method for electric transmission system of motor train unit
JP7201952B2 (en) * 2021-03-31 2023-01-11 ダイキン工業株式会社 Motor controllers, motors, compressors, refrigerators and vehicles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233538A (en) * 1993-01-28 1994-08-19 Mitsubishi Electric Corp Controller of ac electric car
US5504667A (en) * 1993-09-07 1996-04-02 Kabushiki Kaisha Toshiba Power conversion system
US5886889A (en) * 1996-09-03 1999-03-23 Gec Alsthom Transport Sa Device and method for direct current power supply to a traction system by means of converters from different alternating current or direct current voltages
JP2000350301A (en) * 1999-06-01 2000-12-15 Toshiba Corp Power supply for accessories of rolling stock
JP2009101673A (en) * 2007-10-20 2009-05-14 Toru Ishikawa Method for preparing picture based on photograph
JP2012080659A (en) * 2010-09-30 2012-04-19 Toshiba Corp Electric vehicle driving device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA883913B (en) 1987-06-03 1989-02-22 Hitachi Ltd Inverter control apparatus
JPH0274192A (en) 1988-09-08 1990-03-14 Toshiba Corp Power conversion device
DE4408325C2 (en) 1994-03-11 1996-03-07 Siemens Ag Method for controlling an inverter of an inverter and arrangement for carrying out the method
EP1288060A1 (en) * 2001-08-31 2003-03-05 Alstom Belgium S.A. Multiple voltage power supply for railway vehicles
MX2010008059A (en) * 2008-02-13 2010-08-18 Mitsubishi Electric Corp Power converting device.
CN101877549B (en) * 2010-06-08 2012-07-25 南京航空航天大学 Method for inhibiting two-stage type orthogonal inverter input current low-frequency impulse
JP5156149B1 (en) * 2012-01-18 2013-03-06 三菱電機株式会社 Power converter
JP5975864B2 (en) * 2012-12-18 2016-08-23 株式会社日立製作所 Power converter
JP6122356B2 (en) * 2013-06-27 2017-04-26 株式会社日立製作所 Converter control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233538A (en) * 1993-01-28 1994-08-19 Mitsubishi Electric Corp Controller of ac electric car
US5504667A (en) * 1993-09-07 1996-04-02 Kabushiki Kaisha Toshiba Power conversion system
US5886889A (en) * 1996-09-03 1999-03-23 Gec Alsthom Transport Sa Device and method for direct current power supply to a traction system by means of converters from different alternating current or direct current voltages
JP2000350301A (en) * 1999-06-01 2000-12-15 Toshiba Corp Power supply for accessories of rolling stock
JP2009101673A (en) * 2007-10-20 2009-05-14 Toru Ishikawa Method for preparing picture based on photograph
JP2012080659A (en) * 2010-09-30 2012-04-19 Toshiba Corp Electric vehicle driving device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021070279A1 (en) * 2019-10-09 2021-04-15
WO2021070279A1 (en) * 2019-10-09 2021-04-15 三菱電機株式会社 Power conversion device
JP7183445B2 (en) 2019-10-09 2022-12-05 三菱電機株式会社 power converter
CN112874389A (en) * 2021-02-01 2021-06-01 重庆中车长客轨道车辆有限公司 Operation protection method, device, equipment and computer readable storage medium
JP2022140302A (en) * 2021-03-12 2022-09-26 トランスポーテーション アイピー ホールディングス,エルエルシー Vehicle control system and method
JP7422169B2 (en) 2021-03-12 2024-01-25 トランスポーテーション アイピー ホールディングス,エルエルシー Vehicle control system and method
CN113060052A (en) * 2021-04-23 2021-07-02 重庆中车长客轨道车辆有限公司 Double-flow system rail transit vehicle control system and method
CN113060052B (en) * 2021-04-23 2022-07-08 重庆中车长客轨道车辆有限公司 Double-flow system rail transit vehicle control system and method

Also Published As

Publication number Publication date
CN105897023B (en) 2019-02-26
DE102016202419A1 (en) 2016-08-18
GB2537020B (en) 2017-04-05
GB2537020A (en) 2016-10-05
CN105897023A (en) 2016-08-24
GB201602392D0 (en) 2016-03-23
JP6349269B2 (en) 2018-06-27
DE102016202419B4 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
JP6349269B2 (en) Vehicle drive system
US9327604B2 (en) Electric vehicle control apparatus and electric vehicle
JP4433099B1 (en) Power converter
JP4819970B2 (en) Electric motor drive power converter
US7723865B2 (en) Bidirectional buck boost DC-DC converter, railway coach drive control system, and railway feeder system
EP2706652B1 (en) Regenerative inverter device and inverter device using power cell unit
JP5025818B2 (en) Electric motor drive power converter
JP4906980B1 (en) AC motor control device
JP2015065732A (en) Electric power converter control circuit
JP2019201444A (en) Inverter controller and inverter control method
JP3652811B2 (en) Resonant current suppression device
JP6592611B2 (en) Power conversion device for railway vehicle and retrofit for railway vehicle and control method thereof
JP3643895B2 (en) Electric vehicle control device
JP4607562B2 (en) Power converter
WO2022130731A1 (en) Motor control device, electromechanical integrated unit, boost converter system, electric vehicle system, and motor control method
JP3772649B2 (en) Induction machine speed control device
JP7257820B2 (en) ACTIVE FILTER FOR ELECTRIC RAILWAY, CONTROL METHOD THEREOF, POWER CONVERSION DEVICE AND RAILWAY VEHICLE INCLUDING THE SAME
JP4895965B2 (en) Auxiliary power supply for vehicle
JP4835812B2 (en) Power converter
JPH0866042A (en) Stationary frequency converter
JP2012023921A (en) Electric power converter
JP2009296707A (en) Drive control system for railway vehicle

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R150 Certificate of patent or registration of utility model

Ref document number: 6349269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150