WO2021070279A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2021070279A1
WO2021070279A1 PCT/JP2019/039799 JP2019039799W WO2021070279A1 WO 2021070279 A1 WO2021070279 A1 WO 2021070279A1 JP 2019039799 W JP2019039799 W JP 2019039799W WO 2021070279 A1 WO2021070279 A1 WO 2021070279A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
converter
value
power
conversion device
Prior art date
Application number
PCT/JP2019/039799
Other languages
French (fr)
Japanese (ja)
Inventor
基 豊田
貴昭 ▲高▼原
大斗 水谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/039799 priority Critical patent/WO2021070279A1/en
Priority to JP2021551000A priority patent/JP7183445B2/en
Publication of WO2021070279A1 publication Critical patent/WO2021070279A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • an AC / DC converter that controls the power factor improvement of an AC power supply and converts the AC power from the AC power supply into DC power and a DC side connected to the DC side of the AC / DC converter to perform voltage conversion of the DC power.
  • a power conversion device including a DC / DC converter to be performed and a DC capacitor connected between the positive and negative DC bus lines between the AC / DC converter and the DC / DC converter is disclosed.
  • the aim is to reduce the size of the device.
  • the ripple voltage of the DC voltage that fluctuates at a frequency twice the power supply frequency increases, especially when the AC power supply is single-phase.
  • An increase in the ripple voltage causes an increase in the switching loss of the element and an increase in the size of the device due to an increase in the withstand voltage of the parts used. Therefore, the following power conversion devices capable of suppressing the ripple voltage without increasing the capacity of the DC capacitor are disclosed.
  • the capacity of the DC capacitor can be reduced, so that a small power conversion device can be provided.
  • the positive terminal of the DC capacitor 3 is connected to the positive DC bus connecting the P terminal on the DC output side of the AC / DC converter 10 and the P terminal on the DC input side of the DC / DC converter 20. Further, the N-side terminal of the DC capacitor 3 is connected to a negative-side DC bus connecting the N-terminal on the DC output side of the AC / DC converter 10 and the N-terminal on the DC input side of the DC / DC converter 20.
  • the DC capacitor 3 has an energy buffer function and smoothes the difference between the power input by the AC / DC converter 10 and the power output by the DC / DC converter 20.
  • the control circuit 30 has a gate signal G10 (G10c, G10d) to the semiconductor switching elements 10c and 10d, and a gate signal to the semiconductor switching elements 21a, 21b, 21c, 21d based on the voltage and current information detected by each sensor.
  • G21 (G21a, G21b, G21c, G21d) is generated to control the AC / DC converter 10 and the DC / DC converter 20, respectively.
  • Vac is the voltage effective value of the AC power supply 1
  • Iac is the current effective value of the AC power supply 1
  • Vdc is the DC voltage component of the DC capacitor 3
  • Vout is the voltage effective value of the load 5
  • Iout is the load 5.
  • Each is shown as an effective value of the current flowing through.
  • the AC / DC converter 10 has a leg in which diode elements 10a and 10b are connected in series with each other, and a leg in which semiconductor switching elements 10c and 10d are connected in series with each other. Then, the AC / DC converter 10 boosts the voltage while controlling the AC current iac flowing in the current limiting reactor 2 with a high power factor by high-frequency switching of these legs, and outputs DC power. It is a power factor converter.
  • the voltage ripple command generator 40 uses the AC voltage vac and the load voltage Vout detected by the sensor to control the DC voltage Vdc of the DC capacitor 3 to the DC voltage on which the desired voltage pulsation is superimposed. Generate the value Vdc_ripple (details below). The generated ripple voltage command value Vdc_ripple is input to the power factor command calculator 60 and the intermediate voltage command calculator 80.
  • the gate signal generator 31 controls the gate signals G10c and G10d to the semiconductor switching elements 10c and 10d by PWM (Pulse Width Modulation) control for comparing the duty ratio signal Duty_PFC calculated by the power factor command calculator 60 with the carrier frequency. Is output.
  • the gate signal generator 32 gates to the semiconductor switching elements 21a, 21b, 21c, and 21d by PWM (Pulse Width Modulation) control for comparing the duty ratio signal Duty_Vdc calculated by the intermediate voltage command calculator 80 with the carrier frequency.
  • the signals G21a, G21b, G21c, and G21d are output.
  • the carrier frequency may be a sawtooth wave or a triangular wave.
  • FIG. 3 is a control block diagram of the voltage ripple command generator 40 according to the first embodiment.
  • the voltage ripple command generator 40 generates the ripple voltage command value Vdc_ripple by using the AC voltage Vac of the AC power supply 1 and the load voltage Vout of the load 5 detected by the sensor.
  • the ripple voltage command value Vdc_ripple is a voltage command value for controlling the DC voltage Vdc of the DC capacitor 3 to a DC voltage on which a desired voltage pulsation is superimposed.
  • This ripple voltage command value Vdc_ripple is generated based on the ripple command value Ripple represented by the following equation (1).
  • Ripple (( ⁇ 2Vac- (Vout / N)) * K1) sin ⁇ t + (Vout / N) ...
  • N is the turns ratio of the high-frequency isolation transformer 23
  • K1 is a correction coefficient of 1 or more.
  • the signal 42 is generated by multiplying the deviation 41 by the correction coefficient K1 (K ⁇ 1) set in the voltage corrector 49.
  • the PLL calculator 43 multiplies the signal 42 by a sine wave sin ( ⁇ t) having the same period as the AC voltage vac to generate a sine wave signal 44 synchronized with the AC voltage vac.
  • the absolute value generator 45 generates a full-wave rectified waveform signal 46 by full-wave rectifying the sine wave signal 44.
  • the Ripple command value represented by the above equation (1) is generated by adding the DC voltage Vdc of the DC capacitor 3 obtained from the detected load voltage Vout to the full-wave rectified waveform signal 46.
  • the ripple range limiter 47 limits the upper limit of the voltage pulsation to be equal to or less than the set first value by using the correction coefficient K2 (K2 ⁇ 1) set by the voltage corrector 48.
  • the ripple voltage command value Vdc_ripple is generated by limiting the lower limit value of the voltage pulsation to be equal to or higher than the set second value.
  • the voltage pulsation superimposed on the DC voltage Vdc is not only the case where it becomes a full-wave rectified waveform of a sine wave, but also the DC waveform part where the peak part of the full-wave rectified waveform of a sine wave is cut. In some cases, the waveform may be a mixture of the sine wave portion. In any of these cases, the superimposed voltage pulsation is a voltage pulsation having a waveform that is minimized at the zero cross phase of the AC voltage vac and maximized at the peak phase.
  • the control for adjusting the ripple voltage command value Vdc_ripple so that the maximum value of the superimposed voltage pulsation is equal to or less than the first value is called the maximum value limit control, and the minimum value of the superimposed voltage pulsation is the second value.
  • the control for adjusting the ripple voltage command value Vdc_ripple so as to exceed the value is called the minimum value limit control.
  • the maximum value adjustment control and the minimum value adjustment control are not limited to those that perform both at the same time, and at least one of the maximum value adjustment control and the minimum value adjustment control may be performed. For example, if the amplitude of the voltage pulsation in the Ripple command value is within the voltage range from the second value to the first value, the limitation by the maximum value adjustment control and the minimum value adjustment control becomes unnecessary.
  • FIG. 4 is a control block diagram of the power factor command calculator 60 according to the first embodiment.
  • the power factor command calculator 60 uses the PLL calculator 61 to generate a sine wave sin ( ⁇ t) having the same period as the AC voltage vac with respect to the effective value command Iac * of the AC current iac as the first current command value. It is multiplied to generate a sine wave signal 62 synchronized with the AC voltage vac1. After that, a signal 64 indicating the deviation between the absolute values of the alternating current iac detected by the sensor and the sine wave signal 62 is generated. The voltage command 65 is generated by controlling the signal 64 by PI so as to follow the command value.
  • Duty_FF 1-
  • the intermediate voltage command calculator 80 generates a control value 82 by P-controlling the deviation 81 between the DC voltage Vdc detected by the sensor and the ripple voltage command value Vdc_ripple.
  • a control value 84 that controls the current flowing through the reactor 24 for current control is generated.
  • the voltage command signal 85 obtained by adding the load voltage Vout to the control value 84 is standardized by dividing the DC capacitor voltage command value Vdc_ripple by the winding ratio N to generate the duty ratio signal Duty_Vdc. ..
  • the AC / DC converter 10 driven based on the duty ratio signal Duty_PFC thus generated controls the alternating current iac to a high power factor and an arbitrary value. Further, the DC / DC converter 20 driven based on the duty ratio signal Duty_Vdc generated in this way controls the DC voltage Vdc of the DC capacitor 3 to a DC voltage on which a desired voltage pulsation is superimposed.
  • FIG. 6 is a diagram showing the energy secured by the DC capacitor in the power conversion device of the comparative example.
  • FIG. 7 is a diagram showing energy secured by the DC capacitor 3 in the power conversion device 100 of the present embodiment.
  • the waveforms of the input power Pin, the output power Pout, the AC current iac, and the AC voltage vac, which are input to the DC capacitor are shown, and the energy secured by the DC capacitor is shown in shaded areas.
  • the power conversion device of the comparative example shown in FIG. 6 has a circuit configuration in which an AC / DC converter and a DC / DC converter that perform power conversion accompanied by power factor improvement control of an AC power supply are connected via a DC capacitor.
  • the voltage of the DC capacitor 3 is not controlled as in the control circuit 30 of the present embodiment.
  • the DC power (output power Pout) is set to an ideal waveform, and the pulsation of the frequency component twice the AC voltage is not considered.
  • the load current iout also pulsates due to the pulsation of the DC voltage Vdc synchronized with the AC voltage vac, and the output power Pout pulsates in synchronization with the AC voltage vac. Since the power output by the DC / DC converter 20 pulsates in synchronization with the AC voltage vac in this way, most of the AC power from the AC power supply 1 can be directly output to the load 5. Therefore, as shown in FIG. 7, the energy secured by the DC capacitor 3 with respect to the output power Pout is small. Since the amplitude of the voltage pulsation superimposed on the DC voltage Vdc is adjusted as shown in the equation (1), the power pulsation in the output power is also within the permissible range.
  • FIG. 8 is a diagram showing main waveforms in the simulation results when the power conversion device 100 of the present embodiment is used.
  • FIG. 9 is a diagram showing main waveforms in the simulation results when the power conversion device of the comparative example is used.
  • the capacity of the DC capacitor capable of obtaining the same power factor as the power conversion device 100 of the present embodiment is used.
  • the input power is several kW and a constant voltage source is connected to the load 5.
  • a diagram showing the AC voltage vac, the DC voltage Vdc of the DC capacitor 3, and the load voltage Vout, a diagram showing the AC current iac, and a diagram showing the load current iout are shown side by side.
  • the capacity of the DC capacitor used in the power conversion device of the comparative example of FIG. 8 is 1 mF, and the capacity of the DC capacitor 3 used in the power conversion device 100 of the present embodiment of FIG. 9 is 10 ⁇ F. Therefore, it can be seen that the capacity of the DC capacitor 3 can be reduced to 1/100 by using the power conversion device 100 of the present embodiment.
  • the amplitude of the voltage pulsation in the Ripple command value shown in the equation (1) is the difference between the maximum value of the detected AC voltage Vac and the value obtained by dividing the load voltage Vout by the turns ratio N (Vout / N) (FIG. 8). (Shown as B in the above) is multiplied by one or more correction coefficients K1. As a result, the amplitude of the voltage pulsation of the DC voltage Vdc becomes B or more. That is, the maximum value of the voltage pulsation of the DC voltage Vdc is equal to or higher than the maximum value of the AC voltage vac.
  • the capacity of the DC capacitor of the power converter of the comparative example is reduced in the operating state shown in FIG.
  • the amplitude of the ripple voltage of the double frequency component of the AC power supply 1 generated in the voltage of the DC capacitor increases, and when the lower limit of the ripple voltage becomes equal to or lower than the AC voltage, a state of step-down operation occurs.
  • the power factor control of the AC current iac becomes unstable and the control fails. Therefore, in the power conversion device of the comparative example, there is a limit to the capacity reduction of the DC capacitor, and it becomes difficult to significantly reduce the capacity.
  • the load 5 serves as a constant voltage source, a current in which a pulsating component superimposed on the voltage of the DC capacitor flows flows in both the power conversion device 100 of the present embodiment and the power conversion device of the comparative example.
  • the power conversion device 100 of the present embodiment has a larger amplitude of voltage pulsation at the DC voltage Vdc. Therefore, the pulsation of the current flowing through the load 5 also becomes large, but the pulsation of the current can be within the permissible range by adjusting the amplitude of the voltage pulsation.
  • the center of amplitude (reference voltage Vout / N) in the sinusoidal wave before full-wave rectification synchronized with the AC voltage vac is located above the maximum value of the AC voltage vac (not shown), it is superimposed. If the voltage pulsation is adjusted to be synchronized with the AC voltage vac, the DC voltage Vdc does not fall below the AC voltage vac even if the voltage pulsation is superimposed on the DC voltage Vdc. Therefore, it may be determined whether or not the amplitude of the voltage pulsation needs to be adjusted according to the value of the center of amplitude (reference voltage Vout / N) in the sine wave before full-wave rectification.
  • the AC / DC converter 10 may be a conversion circuit having a power factor improving PFC (Power Factor Rectification) function, and may be configured by a one-stone PFC circuit, a totem pole system, or an interleave system.
  • the DC / DC converter 20 may be a converter having a transformer, and may be configured by a flyback converter, a half-bridge system, or a center tap system.
  • the power conversion device of the present embodiment configured as described above is An AC / DC converter that converts AC power from an AC circuit into DC power and controls the power factor improvement of the AC power, and a DC / DC that is connected to the DC side of the AC / DC converter and performs voltage conversion of DC power.
  • the control unit controls the DC voltage of the DC capacitor to a DC voltage on which a voltage pulsation having a waveform having a waveform that becomes a minimum value at the zero cross phase and a maximum value at the peak phase of the AC voltage from the AC circuit is superimposed.
  • a command value is generated, and at least one of the AC / DC converter and the DC / DC converter is controlled by using the ripple voltage command value. It is a thing.
  • the control circuit controls the DC voltage of the DC capacitor to the DC voltage on which the voltage pulsation having the waveform having the minimum value at the zero cross phase of the AC voltage and the maximum value at the peak phase is superimposed.
  • the load current is pulsated by the voltage pulsation of the DC capacitor that matches the waveform of the AC voltage, and the output power is pulsated according to the AC voltage.
  • the energy secured by the DC capacitor can be significantly reduced, so that the capacity of the DC capacitor can be reduced and a small power conversion device can be realized.
  • the power conversion device of the present embodiment obtains a high effect when the AC power supply has a single phase, but the same effect can be obtained with a multi-phase AC power supply.
  • the control unit adjusts the ripple voltage command value so that the maximum value of the voltage pulsation is equal to or less than the set first value, and the second value in which the minimum value of the voltage pulsation is set. At least one of the minimum value limit control for adjusting the ripple voltage command value so as to be as described above is performed. It is a thing.
  • the voltage value applied to each element constituting the power conversion device can be limited to suppress the increase in size of the device due to the increase in withstand voltage, and at the same time, the loss of the circuit can be reduced. In this way, a smaller and more efficient power conversion device can be realized.
  • the AC / DC converter is a step-up AC / DC converter that rectifies and boosts the input AC voltage.
  • the control unit adjusts the ripple voltage command value so that the maximum value of the voltage pulsation is equal to or higher than the maximum value of the AC voltage. It is a thing.
  • the superimposed voltage pulsation is adjusted so that the maximum value of the voltage pulsation of the DC capacitor is equal to or greater than the maximum value of the AC voltage. Therefore, when a step-up AC / DC converter is used, the AC cycle The boosting operation can be compensated for the entire cycle. In this way, the power factor control can be stabilized, and a more efficient and highly reliable power conversion device can be realized.
  • the voltage pulsation has a waveform obtained by full-wave rectifying a sine wave synchronized with the AC voltage. It is a thing.
  • the power conversion device of the present embodiment configured as described above is In a configuration in which the reference voltage at the center of the amplitude of the sine wave is equal to or less than the maximum value of the AC voltage.
  • the control unit The ripple voltage command value is adjusted so that the amplitude of the voltage pulsation is equal to or greater than the difference between the maximum value of the AC voltage and the reference voltage. It is a thing.
  • the amplitude of the superimposed voltage pulsation is changed to the AC voltage. Control so that it is greater than or equal to the difference between the maximum value of and the reference voltage.
  • the boosting operation can be compensated by surely setting the DC voltage to the maximum value or more of the AC voltage over the entire AC cycle. In this way, the power factor control can be stabilized, and a more efficient and highly reliable power conversion device can be realized.
  • the power conversion device of the present embodiment configured as described above is The first value and the second value are determined based on at least one of the computing power of the control unit, the response speed of the control unit, and the withstand voltage of the semiconductor element constituting the power conversion device. It is a thing.
  • the power conversion device of the present embodiment configured as described above is In a configuration in which the output voltage of the DC / DC converter is constant and the AC current from the AC circuit follows the set first current command value.
  • the control unit The alternating current is controlled by controlling the AC / DC converter based on the first current command value.
  • the DC voltage of the DC capacitor is controlled to the DC voltage on which the voltage pulsation is superimposed. It is a thing.
  • control circuit can be applied even when the input current from the AC circuit is made to follow the command value.
  • the power conversion device of the present embodiment configured as described above is
  • the DC / DC converter An isolated DC / DC converter equipped with an isolation transformer having a primary coil and a secondary coil.
  • the control unit calculates the minimum value of the voltage pulsation based on the turns ratio of the isolation transformer. It is a thing.
  • the second value that limits the lower limit of the voltage pulsation can be derived based on the circuit constants in the DC / DC converter.
  • the load voltage is divided by the turns ratio N and the correction coefficient K2 is multiplied. It is also possible to set with the specified value.
  • the lower limit of the voltage pulsation based on the load voltage can be set, so that the power factor control can be stabilized, and a more efficient and highly reliable power conversion device can be realized.
  • Embodiment 2 the second embodiment of the present application will be described with reference to the parts different from the first embodiment.
  • the same parts as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the main circuit configuration of the power conversion device according to the second embodiment is the same as that of the first embodiment, and the configuration of the control circuit 230 is different.
  • FIG. 11 is a control block diagram of the control circuit 230 of the power conversion device according to the second embodiment.
  • the control circuit 230 includes a voltage ripple command generator 40, a power factor command calculator 260, an intermediate voltage command calculator 280, an output current command calculator 290, and gate signal generators 31 and 32. Since the voltage ripple command generator 40 and the gate signal generators 31 and 32 have the same configuration as that of the first embodiment and have the same operation, the description thereof will be omitted.
  • the ripple voltage command value Vdc_ripple generated by the voltage ripple command generator 40 is input to the power factor command calculator 260, the intermediate voltage command calculator 280, and the output current command calculator 290.
  • the intermediate voltage command calculator 280 generates the voltage command value Vdc_ref of the DC capacitor 3 by using the input ripple voltage command value Vdc_ripple and the DC voltage Vdc detected by the sensor.
  • the generated voltage command Vdc_ref is input to the power factor command calculator 260.
  • the power factor command calculator 260 uses the input ripple voltage command value Vdc_ripple, the voltage command Vdc_ref, and the AC current iac, AC voltage vac, DC voltage Vdc, and load voltage Vout detected by the sensor. While controlling the power factor of the current iac to a high power factor, a duty ratio signal Duty_PFC that causes the DC voltage Vdc to follow the command value is generated.
  • the output current command calculator 290 uses the input ripple voltage command value Vdc_ripple, the AC voltage vac, the load voltage Vout, and the load current iout detected by the sensor, and the duty ratio signal Duty_iout that controls the load current iout. To generate.
  • control circuit 230 configured as described above.
  • the detailed configurations of the power factor command calculator 260, the intermediate voltage command calculator 280, and the output current command calculator 290 that constitute the control circuit 230 will also be described.
  • FIG. 12 is a control block diagram of the intermediate voltage command calculator 280 according to the second embodiment.
  • the intermediate voltage command calculator 280 calculates the deviation 281 between the DC voltage Vdc detected by the sensor and the ripple voltage command value Vdc_ripple. Then, the intermediate voltage command calculator 280 PI-controls this deviation 281 to calculate the voltage command value Vdc_ref.
  • FIG. 13 is a control block diagram of the power factor command calculator 260 according to the second embodiment.
  • the power factor command calculator 260 performs PI control so that the power factor of the alternating current iac becomes 1 while making the DC voltage Vdc of the DC capacitor 3 follow the command value.
  • the power factor command calculator 260 derives the instantaneous power Pout (t) of the output power Pout with the power factor set to 1, which is represented by the following equation (3).
  • the power factor command calculator 260 generates a signal 261 by multiplying the load current command value iout * as the second current command value and the load voltage Vout detected by the sensor. After that, by adding the voltage command value Vdc_ref generated by the intermediate voltage command calculator 280, the power command 262 on which the desired voltage pulsation is superimposed is calculated. Next, the instantaneous power command value 265 is calculated by multiplying the power command 262 by a waveform signal 264 including a delay of 90 degrees in a double cycle of the AC voltage vac generated by the PLL calculator 263.
  • the instantaneous power 266 based on the AC voltage vac detected by the sensor and the AC current iac is calculated, and the deviation 267 between the instantaneous power command value 265 and the sensed instantaneous power value 266 is controlled by PI to generate the voltage command value 268.
  • the signal 261 is generated by multiplying the load current command value iout * and the load voltage Vout detected by the sensor, but the load current iout detected by the sensor may be used instead of the load current command value iout *. Good.
  • the control is performed using the load current command value iout *, a command value that is not affected by components such as noise can be generated, so that control with a higher power factor becomes possible.
  • this voltage command value 268 is standardized by dividing it by the ripple voltage command value Vdc_ripple, and by adding the signal of the FF control calculator 269, a duty ratio signal Duty_PFC capable of responding to a steep fluctuation of the sensor value is generated. To do.
  • the calculation of the FF control calculator 269 is the same as that of the equation (2) shown in the first embodiment.
  • FIG. 14 is a control block diagram of the output current command calculator 290 according to the second embodiment.
  • the output current command calculator 290 calculates the duty ratio signal Duty_iout such that the load current iout follows the command value.
  • the output current command calculator 290 delays the load current command value iout * as the second current command value by 90 degrees with respect to the double cycle of the AC voltage vac generated by the PLL calculator 291.
  • a signal 293 is generated by multiplying the included waveform signal 292. By doing so, the current pulsation synchronized with the AC voltage vac, which is twice the cycle of the AC voltage vac generated in the DC voltage Vdc of the DC capacitor 3, is output to the load 5.
  • the difference 294 between the signal 293 and the load current iout detected by the waveform sensor is PI-controlled to generate a signal 295 that controls the current flowing through the reactor 24 for current control.
  • the signal 296 obtained by adding the load voltage Vout to the signal 295 is standardized by dividing by the signal 297 obtained by multiplying the ripple voltage command value Vdc_ripple by the winding ratio N to generate the duty ratio signal Duty_iout.
  • the duty ratio signal Duty_PFC and the carrier wave generated in this way are PWM-controlled to generate gate signals G10c and G10d to the semiconductor switching elements 10c and 10d, and AC.
  • the AC current iac is controlled to a high power factor by the / DC converter 10.
  • the gate signal generator 32 generates gate signals G21a, G21b, G21c, and G21d to the semiconductor switching elements 21a, 21b, 21c, and 21d by PWM-controlling the duty ratio signal Duty_Vdc and the carrier wave generated in this way.
  • the DC / DC converter 20 controls the DC voltage Vdc to a DC voltage on which a desired voltage pulsation is superimposed.
  • FIG. 15 is a diagram showing a simulation waveform using the power conversion device 100 of the present embodiment.
  • FIG. 16 is a diagram showing a simulation waveform using the power conversion device of Comparative Example 1.
  • FIG. 17 is a diagram showing a simulation waveform using the power conversion device of Comparative Example 2.
  • Both the power conversion devices of Comparative Examples 1 and 2 have a circuit configuration in which an AC / DC converter and a DC / DC converter that perform power conversion with an AC power supply power factor improvement control are connected via a DC capacitor. Have. Further, it is assumed that the power conversion device of Comparative Example 1 does not control the voltage of the DC capacitor 3 as in the control circuit 30 of the present embodiment. Further, it is assumed that the power conversion device of Comparative Example 2 controls to superimpose an AC current command having a minimum value in the zero cross phase of the AC voltage and a maximum value in the peak phase on the DC current command.
  • the capacity of a DC capacitor capable of obtaining a power factor similar to that of the power conversion device 100 of the present embodiment is used.
  • the input power is several kW and a constant voltage source is connected to the load.
  • a diagram showing the AC voltage vac, the DC voltage Vdc of the DC capacitor 3, and the load voltage Vout, a diagram showing the AC current iac, and a diagram showing the load current iout are shown side by side.
  • the capacity of the DC capacitor 3 used in the power conversion device of the present embodiment of FIG. 15 is 10 ⁇ F, and the capacity of the DC capacitor 3 used in the power conversion device of Comparative Example 1 of FIG. 16 is 1 mF. Further, the capacity of the DC capacitor 3 used in the power conversion device of Comparative Example 2 of FIG. 17 is 10 ⁇ F, which is the same capacity as that of the power conversion device of the present embodiment.
  • both the power conversion device of the present embodiment and the power conversion devices of Comparative Examples 1 and 2 have twice the frequency of the AC power supply 1 superimposed on the voltage of the DC capacitor 3. A current with superimposed components flows. Since the power conversion device of the present embodiment and the power conversion device of Comparative Example 2 are controlled so that the pulsation of the current flowing through the load 5 is a sine wave, it is compared with Comparative Example 1 in which the current control is not performed. The pulsation of the electric current becomes large.
  • the amplitude of the voltage ripple superimposed in the power conversion device of the present embodiment can be within an allowable range by adjusting the amplitude so as to be within a desired range.
  • the waveform signal shown in the power factor command calculator 260 and the output current command calculator 290 which includes a delay of 90 degrees in the double cycle of the AC voltage vac, is ⁇ 3rd value degree with respect to 90 degrees. Margin may be included. This third value may be set within a phase range in which the DC voltage Vdc of the DC capacitor 3 on which the voltage pulsation is superimposed is secured to be equal to or higher than the AC voltage Vac from the AC power supply 1.
  • the power conversion device of the present embodiment configured as described above is In the control in which the output voltage of the DC / DC converter is constant and the output current of the DC / DC converter follows the set second current command value.
  • the control unit The output current is controlled by controlling the DC / DC converter based on the second current command value.
  • the DC voltage of the DC capacitor is controlled to the DC voltage on which the voltage pulsation is superimposed. It is a thing.
  • the same effect as that of the first embodiment can be obtained, and the energy secured by the DC capacitor can be significantly reduced. Therefore, the capacity of the DC capacitor can be reduced, a small power conversion device can be realized, and the control circuit can be DC. It can also be applied when the output current from the / DC converter is made to follow the command value.
  • the power conversion device of the present embodiment configured as described above is The control unit Using the second current command value or the detected output current of the DC / DC converter and the detected output voltage of the DC / DC converter, the instantaneous power value of the output power of the DC / DC converter is determined. Derived and Based on the instantaneous power value, the power factor improvement control of the AC / DC converter is performed. It is a thing.
  • the power conversion device of the present embodiment configured as described above is
  • the control unit A waveform that is 90 ⁇ third value degree out of phase with the phase of the AC voltage is superimposed on the second current command value at a period twice that of the AC voltage.
  • the third value is set to a value at which the DC voltage of the DC capacitor on which the voltage pulsation is superimposed is equal to or higher than the AC voltage from the AC circuit. It is a thing.
  • the output current of the DC / DC converter is superposed with the pulsation synchronized with the AC voltage, which has a period twice the AC voltage.
  • the current limiting reactor 2 may be divided into a positive generatrix and a negative generatrix of the AC power supply 1 and arranged. As a result, the positive and negative current paths are not biased, so that the generation of common mode noise in the circuit can be suppressed.
  • FIG. 18 is a block diagram showing a schematic configuration of the power conversion device 300 according to the first embodiment.
  • the configuration of the DC / DC converter 320 is different from the configuration of the DC / DC converter 20 shown in the first embodiment.
  • the DC / DC converter 320 is composed of a step-down chopper, and includes semiconductor switching elements 21a and 21b and a reactor 24 for current control.
  • a constant voltage source such as a battery is connected to the load 5 as in the first embodiment.
  • the output voltage is a fixed value. It is assumed that the input AC current is controlled to an arbitrary value.
  • the configuration of the control circuit of the present embodiment is the same as that of the control circuit of the first embodiment.
  • the operation of the power conversion device 300 according to the third embodiment will be described. Since the operation of the power conversion device 300 is the same as the operation of the power conversion device 100 according to the first embodiment, the description thereof will be omitted. Further, since the operation of the AC / DC converter 10 is the same as that of the first embodiment, the description thereof will be omitted.
  • the operation of the DC / DC converter 320 is different from that of the isolated DC / DC converter 20 of the first and second embodiments. Based on the gate signal 321 from the control circuit 30, the DC / DC converter 320 converts the DC voltage of the DC capacitor 3 into a rectangular wave by the switching operation of the semiconductor switching element 21a and the semiconductor switching element 21b, and together with the reactor 24 for current control. By smoothing to a DC voltage with the smoothing capacitor 4, a stepped-down voltage is generated.
  • control circuit 30 since the control circuit 30 has a configuration in which the DC / DC converter 320 does not have an isolation transformer, the turns ratio N used in the generation of the duty ratio signal Duty_PFC and the duty ratio signal Duty_Vdc shown in the first embodiment. Is calculated as 1. Since the operation of the other control circuits 30 is the same as that of the first embodiment, the description thereof will be omitted.
  • the same effect as that of the first embodiment can be obtained, the energy secured by the DC capacitor can be significantly reduced, the capacity of the DC capacitor can be reduced, and a small power conversion device can be realized. it can.
  • the DC / DC converter 20 may have any configuration as long as it is a non-insulated DC / DC converter, and may be configured by a step-up chopper and a buck-boost chopper.
  • the lower limit of the voltage pulsation may be derived based on the duty ratio of the DC / DC converter 320. As a result, the lower limit value of the voltage pulsation based on the load voltage can be set, so that the power factor control can be stabilized.
  • AC circuit 1 AC power supply (AC circuit), 3 DC capacitor, 10 AC / DC converter, 20,320 DC / DC converter, 23 high frequency isolation transformer (isolation transformer), 23a primary side coil, 23b secondary side coil, 30,230 control Circuit (control unit), 100, 300 power converter.

Abstract

A power conversion device (100) is provided with: an AC/DC converter (10) that converts AC power from an AC circuit (1) into DC power, and performs power factor improvement control; a DC/DC converter (20) that performs voltage conversion for the DC power; and a DC capacitor (3) that is connected between the AC/DC converter (10) and the DC/DC converter (20), wherein a ripple voltage command value is generated for controlling the DC voltage of the DC capacitor (3) to a DC voltage on which voltage pulsation having a waveform exhibiting a minimum value at the zero cross phase and a maximum value at the peak phase of the AC voltage from the AC circuit (1) is superposed, and the AC/DC converter (10) and/or the DC/DC converter (20) is controlled by using this ripple voltage command value.

Description

電力変換装置Power converter
 本願は、電力変換装置に関するものである。 This application relates to a power conversion device.
 従来より、交流電源の力率改善制御を行い、該交流電源からの交流電力を直流電力に変換するAC/DCコンバータと、該AC/DCコンバータの直流側に接続され、直流電力の電圧変換を行うDC/DCコンバータと、上記AC/DCコンバータと上記DC/DCコンバータとの間の正負直流母線間に接続される直流コンデンサとで構成される電力変換装置が開示されている。このような、交流電源の力率改善制御を伴って電力変換するAC/DCコンバータとDC/DCコンバータとが直流コンデンサを介して接続される構成の電力変換装置では、装置の小型化を狙うために直流コンデンサの容量を低減させると、特に交流電源が単相の場合では、電源周波数の2倍の周波数で変動する直流電圧のリプル電圧が増大する。リプル電圧の増大は、素子のスイッチング損失の増加に加え、使用部品の耐圧増加に伴う装置の大型化を招く。そこで、直流コンデンサの容量を増大することなく、リプル電圧を抑制できる以下のような電力変換装置が開示されている。 Conventionally, an AC / DC converter that controls the power factor improvement of an AC power supply and converts the AC power from the AC power supply into DC power and a DC side connected to the DC side of the AC / DC converter to perform voltage conversion of the DC power. A power conversion device including a DC / DC converter to be performed and a DC capacitor connected between the positive and negative DC bus lines between the AC / DC converter and the DC / DC converter is disclosed. In such a power conversion device having a configuration in which an AC / DC converter and a DC / DC converter that convert power with an AC power supply power factor improvement control are connected via a DC capacitor, the aim is to reduce the size of the device. When the capacity of the DC capacitor is reduced, the ripple voltage of the DC voltage that fluctuates at a frequency twice the power supply frequency increases, especially when the AC power supply is single-phase. An increase in the ripple voltage causes an increase in the switching loss of the element and an increase in the size of the device due to an increase in the withstand voltage of the parts used. Therefore, the following power conversion devices capable of suppressing the ripple voltage without increasing the capacity of the DC capacitor are disclosed.
 即ち、従来の電力変換装置では、上記AC/DCコンバータおよび上記DC/DCコンバータを出力制御する制御回路において、上記単相交流電源のゼロクロス位相で最小値、ピーク位相で最大値となる交流電流指令を直流電流指令に重畳して上記DC/DCコンバータの出力電流指令を生成し、該出力電流指令を用いて上記DC/DCコンバータを出力制御することで、許容される電力脈動をDC/DCコンバータから出力させる(例えば、特許文献1参照)。 That is, in the conventional power converter, in the AC / DC converter and the control circuit that controls the output of the DC / DC converter, the AC current command that becomes the minimum value at the zero cross phase and the maximum value at the peak phase of the single-phase AC power supply. Is superimposed on the DC current command to generate the output current command of the DC / DC converter, and the output control of the DC / DC converter is performed using the output current command to control the allowable power pulsation of the DC / DC converter. Is output from (see, for example, Patent Document 1).
国際公開番号WO2016/075996 (段落[0010]~[0055]、図1~図12)International Publication No. WO2016 / 075996 (paragraphs [0010] to [0055], FIGS. 1 to 12)
 上記従来の電力変換装置では、直流コンデンサの出力電流に対して、設定された波形の交流電流成分を重畳することで、直流コンデンサの容量を増大することなく直流コンデンサにおけるリプル電圧を抑制している。しかしながらこのような構成の電力変換装置では、直流コンデンサの容量をより減少させた場合にリプル電圧が増大するため、直流コンデンサの低容量化に限界があった。そのため、装置を十分に小型化できないという課題があった。
 本願は、上記のような課題を解決するための技術を開示するものであり、直流コンデンサの低容量化が可能な小型の電力変換装置の提供を目的とする。
In the above-mentioned conventional power conversion device, the ripple voltage in the DC capacitor is suppressed without increasing the capacity of the DC capacitor by superimposing the AC current component of the set waveform on the output current of the DC capacitor. .. However, in the power conversion device having such a configuration, the ripple voltage increases when the capacity of the DC capacitor is further reduced, so that there is a limit to reducing the capacity of the DC capacitor. Therefore, there is a problem that the device cannot be sufficiently miniaturized.
The present application discloses a technique for solving the above-mentioned problems, and an object of the present application is to provide a compact power conversion device capable of reducing the capacity of a DC capacitor.
 本願に開示される電力変換装置は、
交流回路からの交流電力を直流電力に変換し、前記交流電力の力率改善制御を行うAC/DCコンバータと、該AC/DCコンバータの直流側に接続され、直流電力の電圧変換を行うDC/DCコンバータと、前記AC/DCコンバータと前記DC/DCコンバータとの間の正負の直流母線間に接続される直流コンデンサと、前記AC/DCコンバータおよび前記DC/DCコンバータを制御する制御部と、を備え、
前記制御部は、前記直流コンデンサの直流電圧を、前記交流回路からの交流電圧のゼロクロス位相で最小値、ピーク位相で最大値となる波形を有する電圧脈動が重畳された直流電圧に制御するリプル電圧指令値を生成し、前記リプル電圧指令値を用いて、前記AC/DCコンバータ、前記DC/DCコンバータの少なくとも一方を制御する、
ものである。
The power converter disclosed in the present application is
An AC / DC converter that converts AC power from an AC circuit into DC power and controls the power factor improvement of the AC power, and a DC / DC that is connected to the DC side of the AC / DC converter and performs voltage conversion of DC power. A DC converter, a DC capacitor connected between the positive and negative DC bus lines between the AC / DC converter and the DC / DC converter, a control unit that controls the AC / DC converter and the DC / DC converter, and the like. With
The control unit controls the DC voltage of the DC capacitor to a DC voltage on which a voltage pulsation having a waveform having a waveform that becomes a minimum value at the zero cross phase and a maximum value at the peak phase of the AC voltage from the AC circuit is superimposed. A command value is generated, and at least one of the AC / DC converter and the DC / DC converter is controlled by using the ripple voltage command value.
It is a thing.
 本願に開示される電力変換装置によれば、直流コンデンサの低容量化が可能となるため、小型の電力変換装置を提供できる。 According to the power conversion device disclosed in the present application, the capacity of the DC capacitor can be reduced, so that a small power conversion device can be provided.
実施の形態1による電力変換装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the power conversion apparatus according to Embodiment 1. 実施の形態1による電力変換装置の制御回路の制御ブロック図である。It is a control block diagram of the control circuit of the power conversion apparatus according to Embodiment 1. FIG. 実施の形態1による電圧リプル指令生成器の制御ブロック図である。It is a control block diagram of the voltage ripple command generator according to Embodiment 1. FIG. 実施の形態1による力率指令演算器の制御ブロック図である。FIG. 5 is a control block diagram of a power factor command calculator according to the first embodiment. 実施の形態1による中間電圧指令演算器の制御ブロック図である。FIG. 5 is a control block diagram of an intermediate voltage command calculator according to the first embodiment. 比較例の電力変換装置における直流コンデンサが担保するエネルギーを示す図である。It is a figure which shows the energy secured by the DC capacitor in the power conversion apparatus of the comparative example. 実施の形態1による電力変換装置の直流コンデンサが担保するエネルギーを示す図である。It is a figure which shows the energy secured by the DC capacitor of the power conversion apparatus according to Embodiment 1. FIG. 本実施の形態1による電力変換装置を用いたシミュレーション波形を示す図である。It is a figure which shows the simulation waveform using the power conversion apparatus by this Embodiment 1. 比較例による電力変換装置を用いたシミュレーション波形を示す図である。It is a figure which shows the simulation waveform using the power conversion apparatus by the comparative example. 実施の形態1による電力変換装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the power conversion apparatus according to Embodiment 1. 実施の形態2による電力変換装置の制御回路の制御ブロック図である。It is a control block diagram of the control circuit of the power conversion apparatus according to Embodiment 2. 実施の形態2による中間電圧指令演算器の制御ブロック図である。It is a control block diagram of the intermediate voltage command arithmetic unit according to Embodiment 2. 実施の形態2による力率指令演算器の制御ブロック図である。It is a control block diagram of the power factor command calculator according to Embodiment 2. 実施の形態2による出力電流指令演算器の制御ブロック図である。It is a control block diagram of the output current command arithmetic unit according to Embodiment 2. 本実施の形態2による電力変換装置を用いたシミュレーション波形を示す図である。It is a figure which shows the simulation waveform using the power conversion apparatus by this Embodiment 2. 比較例1による電力変換装置を用いたシミュレーション波形を示す図である。It is a figure which shows the simulation waveform using the power conversion apparatus by the comparative example 1. FIG. 比較例2による電力変換装置を用いたシミュレーション波形を示す図である。It is a figure which shows the simulation waveform using the power conversion apparatus by the comparative example 2. FIG. 実施の形態3による電力変換装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the power conversion apparatus according to Embodiment 3.
実施の形態1.
 図1は、実施の形態1による電力変換装置100の概略構成を示すブロック図である。
 図1に示すように、電力変換装置100は、交流回路としての単相交流電源(以下、単に交流電源1と称す)と負荷5との間に設けられ、交流電源1からの交流電力を直流電力に変換して負荷5に出力する主回路と、この主回路を制御する制御部としての制御回路30と、を備える。
Embodiment 1.
FIG. 1 is a block diagram showing a schematic configuration of the power conversion device 100 according to the first embodiment.
As shown in FIG. 1, the power conversion device 100 is provided between a single-phase AC power supply as an AC circuit (hereinafter, simply referred to as an AC power supply 1) and a load 5, and supplies AC power from the AC power supply 1 to DC. It includes a main circuit that converts it into electric current and outputs it to the load 5, and a control circuit 30 as a control unit that controls the main circuit.
 主回路は、交流電力を直流電力に変換するAC/DCコンバータ10と、このAC/DCコンバータ10の直流出力側に接続され、直流電力の電圧変換を行うDC/DCコンバータ20と、このAC/DCコンバータ10とDC/DCコンバータ20との間の正負の直流母線間に接続される直流コンデンサ3と、を備える。
 更に、主回路は、入力側に限流用リアクトル2と、出力側に平滑コンデンサ4とを備える。
The main circuit consists of an AC / DC converter 10 that converts AC power into DC power, a DC / DC converter 20 that is connected to the DC output side of the AC / DC converter 10 and performs DC power voltage conversion, and the AC / DC converter 20. A DC capacitor 3 connected between positive and negative DC bus wires between the DC converter 10 and the DC / DC converter 20 is provided.
Further, the main circuit includes a current limiting reactor 2 on the input side and a smoothing capacitor 4 on the output side.
 AC/DCコンバータ10は、この場合、セミブリッジレス回路で構成され、ダイオード素子10a、10bと、半導体スイッチング素子10c、10dとを備える。
 DC/DCコンバータ20は、この場合、絶縁型のフルブリッジコンバータ回路で構成され、半導体スイッチング素子21a、21b、21c、21dで構成させるフルブリッジインバータ21と、絶縁トランスとしての高周波絶縁トランス23と、ダイオード素子22a、22b、22c、22dで構成させる全波整流回路22と、電流制御用のリアクトル24と、を備える。
 高周波絶縁トランス23は、フルブリッジインバータ21の交流出力側に接続される一次側コイル23aと、全波整流回路22の交流入力側に接続される二次側コイル23bとを有する。
In this case, the AC / DC converter 10 is composed of a semi-bridgeless circuit, and includes diode elements 10a and 10b and semiconductor switching elements 10c and 10d.
In this case, the DC / DC converter 20 includes a full-bridge inverter 21 composed of an isolated full-bridge converter circuit and composed of semiconductor switching elements 21a, 21b, 21c, and 21d, a high-frequency isolated transformer 23 as an insulating transformer, and the like. It includes a full-wave rectifier circuit 22 composed of diode elements 22a, 22b, 22c, and 22d, and a reactor 24 for current control.
The high-frequency isolation transformer 23 has a primary coil 23a connected to the AC output side of the full bridge inverter 21 and a secondary coil 23b connected to the AC input side of the full-wave rectifier circuit 22.
 直流コンデンサ3の正側端子は、AC/DCコンバータ10の直流出力側のP側端子とDC/DCコンバータ20の直流入力側のP端子とを繋ぐ正側の直流母線に接続される。
 また、直流コンデンサ3のN側端子は、AC/DCコンバータ10の直流出力側のN端子と、DC/DCコンバータ20の直流入力側のN端子とを繋ぐ負側の直流母線に接続される。直流コンデンサ3は、エネルギーのバッファ機能を有し、AC/DCコンバータ10により入力される電力とDC/DCコンバータ20により出力される電力との差分を平滑する。
The positive terminal of the DC capacitor 3 is connected to the positive DC bus connecting the P terminal on the DC output side of the AC / DC converter 10 and the P terminal on the DC input side of the DC / DC converter 20.
Further, the N-side terminal of the DC capacitor 3 is connected to a negative-side DC bus connecting the N-terminal on the DC output side of the AC / DC converter 10 and the N-terminal on the DC input side of the DC / DC converter 20. The DC capacitor 3 has an energy buffer function and smoothes the difference between the power input by the AC / DC converter 10 and the power output by the DC / DC converter 20.
 また、交流電源1の交流電圧vac、直流コンデンサ3の電圧Vdc、平滑コンデンサ4の電圧である負荷電圧Voutが、それぞれ電圧センサにより検出されて制御回路30に入力される。さらに、交流電源1からの交流電流iacと負荷5に流れる負荷電流ioutが、それぞれ電流センサにより検出されて制御回路30に入力される。 Further, the AC voltage vac of the AC power supply 1, the voltage Vdc of the DC capacitor 3, and the load voltage Vout which is the voltage of the smoothing capacitor 4 are detected by the voltage sensor and input to the control circuit 30. Further, the AC current iac from the AC power supply 1 and the load current iout flowing through the load 5 are detected by the current sensors and input to the control circuit 30.
 なお、AC/DCコンバータ10とフルブリッジインバータ21とに用いられる半導体スイッチング素子は、ダイオードが逆並列に接続されたIGBT(Insulated Gate Bipolar Transistor)、ソース・ドレイン間にダイオードが接続されたMOSFET(Metal Oxide Semiconductor Fiel Effect Transistor)などを用いることが好ましい。また、帰還ダイオードはIGBT、MOSFETに内蔵されたダイオードを用いても良く、外付けに別途ダイオードを設けても良い。 The semiconductor switching elements used in the AC / DC converter 10 and the full bridge inverter 21 are IGBTs (Insulated Gate Bipolar Transistor) in which diodes are connected in antiparallel, and MOSFETs (METal) in which diodes are connected between the source and drain. It is preferable to use an Diode Semiconductor File Effect Inverter) or the like. Further, as the feedback diode, a diode built in the IGBT or MOSFET may be used, or a diode may be separately provided externally.
 また、直流コンデンサ3は、アルミ電解コンデンサ、フィルムコンデンサ、セラミックコンデンサ、タンタルコンデンサ、EDLC(Electric double-layer capacitor 電気二重層キャパシタ)などで構成できる。またリチウムイオンバッテリなどのバッテリで構成しても良い。
 また、負荷5は、直流電圧で駆動する電気機器、もしくはバッテリ、キャパシタなどの電力蓄積要素でも良い。
Further, the DC capacitor 3 can be composed of an aluminum electrolytic capacitor, a film capacitor, a ceramic capacitor, a tantalum capacitor, an EDLC (Electric double-layer capacitor electric double layer capacitor) and the like. Further, it may be composed of a battery such as a lithium ion battery.
Further, the load 5 may be an electric device driven by a DC voltage, or a power storage element such as a battery or a capacitor.
 制御回路30は、各センサにより検出される電圧、電流情報に基づいて、半導体スイッチング素子10c、10dへのゲート信号G10(G10c、G10d)、半導体スイッチング素子21a、21b、21c、21dへのゲート信号G21(G21a、G21b、G21c、G21d)をそれぞれ生成して、AC/DCコンバータ10およびDC/DCコンバータ20を制御する。
 なお、以下の説明において、Vacは交流電源1の電圧実効値、Iacは交流電源1の電流実効値、Vdcは直流コンデンサ3の直流電圧成分、Voutは負荷5の電圧実効値、Ioutは負荷5に流れる電流実効値としてそれぞれを示す。
The control circuit 30 has a gate signal G10 (G10c, G10d) to the semiconductor switching elements 10c and 10d, and a gate signal to the semiconductor switching elements 21a, 21b, 21c, 21d based on the voltage and current information detected by each sensor. G21 (G21a, G21b, G21c, G21d) is generated to control the AC / DC converter 10 and the DC / DC converter 20, respectively.
In the following description, Vac is the voltage effective value of the AC power supply 1, Iac is the current effective value of the AC power supply 1, Vdc is the DC voltage component of the DC capacitor 3, Vout is the voltage effective value of the load 5, and Iout is the load 5. Each is shown as an effective value of the current flowing through.
 次に、電力変換装置100を構成する各部の動作について説明する。
 AC/DCコンバータ10は、ダイオード素子10a、10bが互いに直列接続されたレグと、半導体スイッチング素子10c、10dが互いに直列接続されたレグとを有する。そしてAC/DCコンバータ10は、これらレグを高周波スイッチングすることで、限流用リアクトル2に流れる交流電流iacを高力率に制御しながら電圧を昇圧し、直流電力の出力を行う昇圧型の高力率コンバータである。
Next, the operation of each part constituting the power conversion device 100 will be described.
The AC / DC converter 10 has a leg in which diode elements 10a and 10b are connected in series with each other, and a leg in which semiconductor switching elements 10c and 10d are connected in series with each other. Then, the AC / DC converter 10 boosts the voltage while controlling the AC current iac flowing in the current limiting reactor 2 with a high power factor by high-frequency switching of these legs, and outputs DC power. It is a power factor converter.
 この力率制御において、AC/DCコンバータ10は、交流電圧Vacの正の交流周期においてダイオード素子10aと半導体スイッチング素子10cとをオン状態とするモードで限流用リアクトル2に正の電圧を印加する。そして、ダイオード素子10aと半導体スイッチング素子10dとをオン状態とするモードで限流用リアクトル2に負の電圧を印加する。また、負の交流周期においては、ダイオード素子10bと半導体スイッチング素子10dとをオン状態とするモードと、ダイオード素子10bと半導体スイッチング素子10cとをオン状態とするモードとを用いる。こうして限流用リアクトル2に流れる電流の増減を制御し、交流電源1からの入力力率が1になるように交流電流iacを高力率制御する。 In this power factor control, the AC / DC converter 10 applies a positive voltage to the diversion reactor 2 in a mode in which the diode element 10a and the semiconductor switching element 10c are turned on in the positive AC cycle of the AC voltage Vac. Then, a negative voltage is applied to the current limiting reactor 2 in a mode in which the diode element 10a and the semiconductor switching element 10d are turned on. Further, in the negative AC cycle, a mode in which the diode element 10b and the semiconductor switching element 10d are turned on and a mode in which the diode element 10b and the semiconductor switching element 10c are turned on are used. In this way, the increase / decrease of the current flowing through the current limiting reactor 2 is controlled, and the AC current iac is controlled at a high power factor so that the input power factor from the AC power supply 1 becomes 1.
 DC/DCコンバータ20は、直流コンデンサ3を介したAC/DCコンバータ10からの出力直流電圧を、フルブリッジインバータ21において、ゲート信号G21に基づいて半導体スイッチング素子21a~21dをON/OFF制御することにより、高周波交流電圧に変換する。その後、この高周波交流電圧を、電気的に絶縁しながら二次側コイル23bにより昇圧または降圧して、全波整流回路22により直流電圧へと整流する。整流後、電流制御用のリアクトル24と平滑コンデンサ4とにより高周波成分を除去して負荷5に直流電力を供給する。 The DC / DC converter 20 controls the output DC voltage from the AC / DC converter 10 via the DC capacitor 3 in the full bridge inverter 21 to turn on / off the semiconductor switching elements 21a to 21d based on the gate signal G21. Converts to a high-frequency AC voltage. After that, the high-frequency AC voltage is boosted or stepped down by the secondary side coil 23b while being electrically insulated, and rectified to a DC voltage by the full-wave rectifier circuit 22. After rectification, the high frequency component is removed by the reactor 24 for current control and the smoothing capacitor 4, and DC power is supplied to the load 5.
 以下、制御回路30の構成と、その動作の概要について図2を用いて説明する。
 図2は、実施の形態1による電力変換装置100の制御回路30の制御ブロック図である。
 制御回路30は、電圧リプル指令生成器40と、力率指令演算器60と、中間電圧指令演算器80と、ゲート信号生成器31、32と、を備える。
Hereinafter, the configuration of the control circuit 30 and the outline of its operation will be described with reference to FIG.
FIG. 2 is a control block diagram of the control circuit 30 of the power conversion device 100 according to the first embodiment.
The control circuit 30 includes a voltage ripple command generator 40, a power factor command calculator 60, an intermediate voltage command calculator 80, and gate signal generators 31 and 32.
 電圧リプル指令生成器40は、センサで検出した交流電圧vac、負荷電圧Voutを用いて、直流コンデンサ3の直流電圧Vdcを、所望の電圧脈動が重畳された直流電圧に制御するためのリプル電圧指令値Vdc_rippleを生成する(詳細は後述)。
 生成されたリプル電圧指令値Vdc_rippleは、力率指令演算器60と中間電圧指令演算器80とに入力される。
The voltage ripple command generator 40 uses the AC voltage vac and the load voltage Vout detected by the sensor to control the DC voltage Vdc of the DC capacitor 3 to the DC voltage on which the desired voltage pulsation is superimposed. Generate the value Vdc_ripple (details below).
The generated ripple voltage command value Vdc_ripple is input to the power factor command calculator 60 and the intermediate voltage command calculator 80.
 力率指令演算器60は、入力されたリプル電圧指令値Vdc_rippleと、センサにより検出された交流電流iac、交流電圧vac、直流電圧Vdcと、を用いて、交流電流iacの力率を高力率に制御するデューティ比信号Duty_PFCを生成する。
 中間電圧指令演算器80は、入力されたリプル電圧指令値Vdc_rippleと、センサにより検出された負荷電流iout、負荷電圧Vout、直流電圧Vdcと、を用いて、直流コンデンサ3の直流電圧Vdcを指令値に追従させるデューティ比信号Duty_Vdcを生成する。
The power factor command calculator 60 uses the input ripple voltage command value Vdc_ripple and the AC current iac, AC voltage vac, and DC voltage Vdc detected by the sensor to increase the power factor of the AC current iac. Generates a duty ratio signal Duty_PFC to be controlled to.
The intermediate voltage command calculator 80 uses the input ripple voltage command value Vdc_ripple and the load current iout, load voltage Vout, and DC voltage Vdc detected by the sensor to command the DC voltage Vdc of the DC capacitor 3. Generates a duty ratio signal Duty_Vdc to follow.
 ゲート信号生成器31は、力率指令演算器60により演算されたデューティ比信号Duty_PFCとキャリア周波数とを比較するPWM(Pulse Width Modulation)制御により、半導体スイッチング素子10c、10dへのゲート信号G10c、G10dを出力する。
 ゲート信号生成器32は、中間電圧指令演算器80により演算されたデューティ比信号Duty_Vdcとキャリア周波数とを比較するPWM(Pulse Width Modulation)制御により、半導体スイッチング素子21a、21b、21c、21dへのゲート信号G21a、G21b、G21c、G21dを出力する。
 なお、キャリア周波数は、ノコギリ波でもよく三角波でも良い。
The gate signal generator 31 controls the gate signals G10c and G10d to the semiconductor switching elements 10c and 10d by PWM (Pulse Width Modulation) control for comparing the duty ratio signal Duty_PFC calculated by the power factor command calculator 60 with the carrier frequency. Is output.
The gate signal generator 32 gates to the semiconductor switching elements 21a, 21b, 21c, and 21d by PWM (Pulse Width Modulation) control for comparing the duty ratio signal Duty_Vdc calculated by the intermediate voltage command calculator 80 with the carrier frequency. The signals G21a, G21b, G21c, and G21d are output.
The carrier frequency may be a sawtooth wave or a triangular wave.
 このように、力率指令演算器60および中間電圧指令演算器80は、電圧リプル指令生成器40が生成したリプル電圧指令値Vdc_rippleを用いて、AC/DCコンバータ10、DC/DCコンバータ20をそれぞれ制御するためのゲート信号を生成する。これにより、リプル電圧指令値Vdc_rippleに追従する回路動作を実現する。 As described above, the power factor command calculator 60 and the intermediate voltage command calculator 80 use the ripple voltage command value Vdc_ripple generated by the voltage ripple command generator 40 to convert the AC / DC converter 10 and the DC / DC converter 20, respectively. Generate a gate signal for control. As a result, a circuit operation that follows the ripple voltage command value Vdc_ripple is realized.
 なお、本実施の形態1の制御回路30は、負荷5としてバッテリのような定電圧源が接続された場合を想定しており、図2に示した制御回路30は、出力電圧(負荷電圧Vout)が固定値で、入力交流電流iacを任意の値に制御する場合の構成である。 The control circuit 30 of the first embodiment assumes a case where a constant voltage source such as a battery is connected as the load 5, and the control circuit 30 shown in FIG. 2 has an output voltage (load voltage Vout). ) Is a fixed value, and the input AC current iac is controlled to an arbitrary value.
 次に、上記のように構成される制御回路30が行う動作の詳細について説明する。
 この動作詳細の説明において、制御回路30を構成する各部の詳細構成についても説明する。
 先ず、電圧リプル指令生成器40の構成を、図3を用いて説明する。
 図3は、実施の形態1による電圧リプル指令生成器40の制御ブロック図である。
Next, the details of the operation performed by the control circuit 30 configured as described above will be described.
In the description of the operation details, the detailed configuration of each part constituting the control circuit 30 will also be described.
First, the configuration of the voltage ripple command generator 40 will be described with reference to FIG.
FIG. 3 is a control block diagram of the voltage ripple command generator 40 according to the first embodiment.
 電圧リプル指令生成器40は、センサで検出した交流電源1の交流電圧Vac、負荷5の負荷電圧Voutを用いて、リプル電圧指令値Vdc_rippleを生成する。
 前述のように、このリプル電圧指令値Vdc_rippleは、直流コンデンサ3の直流電圧Vdcを、所望の電圧脈動が重畳された直流電圧に制御するための電圧指令値である。
The voltage ripple command generator 40 generates the ripple voltage command value Vdc_ripple by using the AC voltage Vac of the AC power supply 1 and the load voltage Vout of the load 5 detected by the sensor.
As described above, the ripple voltage command value Vdc_ripple is a voltage command value for controlling the DC voltage Vdc of the DC capacitor 3 to a DC voltage on which a desired voltage pulsation is superimposed.
 このリプル電圧指令値Vdc_rippleは、以下(1)式により表されるリプル指令値Rippleに基づき生成される。
 Ripple=((√2Vac-(Vout/N))*K1)sinωt+(Vout/N)・・・(1)
 但し、Nは高周波絶縁トランス23の巻数比、K1は1以上の補正係数。
This ripple voltage command value Vdc_ripple is generated based on the ripple command value Ripple represented by the following equation (1).
Ripple = ((√2Vac- (Vout / N)) * K1) sinωt + (Vout / N) ... (1)
However, N is the turns ratio of the high-frequency isolation transformer 23, and K1 is a correction coefficient of 1 or more.
 以下、電圧リプル指令生成器40が行うリプル電圧指令値Vdc_rippleの生成動作について説明する。
 図3に示すように、先ず、電圧リプル指令生成器40は、検出された交流電圧Vacのピーク値と、検出された負荷電圧Voutを巻数比Nで除算することにより求められる直流コンデンサ3の直流電圧Vdcとを比較した偏差41を演算する。
Hereinafter, the operation of generating the ripple voltage command value Vdc_ripple performed by the voltage ripple command generator 40 will be described.
As shown in FIG. 3, first, the voltage ripple command generator 40 obtains the DC of the DC capacitor 3 obtained by dividing the detected peak value of the AC voltage Vac and the detected load voltage Vout by the turns ratio N. The deviation 41 compared with the voltage Vdc is calculated.
 次に、偏差41に対して、電圧補正器49において設定された補正係数K1(K≧1)を乗算した信号42を生成する。
 次に、PLL演算器43により、信号42に対して交流電圧vacと同周期の正弦波sin(ωt)を掛け合わせることで、交流電圧vacに同期した正弦波信号44を生成する。
 次に、絶対値生成器45により、正弦波信号44を全波整流した全波整流波形信号46を生成する。そして、全波整流波形信号46に対して、検出された負荷電圧Voutから求められる直流コンデンサ3の直流電圧Vdcを加算することで、上記(1)式に表されるRipple指令値を生成する。
Next, the signal 42 is generated by multiplying the deviation 41 by the correction coefficient K1 (K ≧ 1) set in the voltage corrector 49.
Next, the PLL calculator 43 multiplies the signal 42 by a sine wave sin (ωt) having the same period as the AC voltage vac to generate a sine wave signal 44 synchronized with the AC voltage vac.
Next, the absolute value generator 45 generates a full-wave rectified waveform signal 46 by full-wave rectifying the sine wave signal 44. Then, the Ripple command value represented by the above equation (1) is generated by adding the DC voltage Vdc of the DC capacitor 3 obtained from the detected load voltage Vout to the full-wave rectified waveform signal 46.
 このように導出されるRipple指令値は、直流コンデンサ3の直流電圧Vdcを、交流電圧vacに同期した正弦波を全波整流した波形の電圧脈動が重畳された直流電圧に制御する電圧指令値となる。
 ここで、Ripple指令値における電圧脈動の振幅は、上記(1)式で示すように、(√2Vac-(Vout/N))*K1)により決定される。
The Ripple command value derived in this way is the voltage command value that controls the DC voltage Vdc of the DC capacitor 3 to the DC voltage on which the voltage pulsation of the waveform obtained by full-wave rectifying the sine wave synchronized with the AC voltage vac is superimposed. Become.
Here, the amplitude of the voltage pulsation at the Ripple command value is determined by (√2Vac- (Vout / N)) * K1) as shown by the above equation (1).
 次に、リプル範囲制限器47により、電圧補正器48により設定された補正係数K2(K2≧1)を用いて、電圧脈動の上限値が設定された第1値以下となるように制限し、電圧脈動の下限値が設定された第2値以上となるように制限して、リプル電圧指令値Vdc_rippleを生成する。
 この過程を踏むことで、直流電圧Vdcに重畳される電圧脈動は、正弦波の全波整流波形となる場合の他に、正弦波の全波整流波形のピーク部分がカットされた直流波形部分と正弦波形部分とが入り混じった波形となる場合もある。このいずれの場合においても、重畳される電圧脈動は、交流電圧vacのゼロクロス位相で最小となり、ピーク位相で最大となる波形を有する電圧脈動となる。
Next, the ripple range limiter 47 limits the upper limit of the voltage pulsation to be equal to or less than the set first value by using the correction coefficient K2 (K2 ≧ 1) set by the voltage corrector 48. The ripple voltage command value Vdc_ripple is generated by limiting the lower limit value of the voltage pulsation to be equal to or higher than the set second value.
By following this process, the voltage pulsation superimposed on the DC voltage Vdc is not only the case where it becomes a full-wave rectified waveform of a sine wave, but also the DC waveform part where the peak part of the full-wave rectified waveform of a sine wave is cut. In some cases, the waveform may be a mixture of the sine wave portion. In any of these cases, the superimposed voltage pulsation is a voltage pulsation having a waveform that is minimized at the zero cross phase of the AC voltage vac and maximized at the peak phase.
 なお、電圧脈動の上限値を制限する第1値は、半導体素子の耐圧から設定する。これにより直流電圧vdcが半導体素子の耐圧を超えて脈動することを防ぎ、耐圧増加に伴う装置の大型化を抑制できると共にスイッチング損失を低減できる。
 また、電圧脈動の下限値を制限する第2値は、負荷電圧Voutを巻数比Nで割った値に補正係数K2(K2≧1)を乗算した値で設定する。これにより直流電圧Vdcを大幅に下回るような電圧脈動を抑制して、交流1周期に渡ってAC/DCコンバータ10による昇圧制御を補償できる。
 また、第1値および第2値は、制御回路30の演算能力、応答速度に応じて決定してもよい。これにより、用いられる制御回路30の性能に応じた安定した制御が可能となる。
The first value that limits the upper limit of the voltage pulsation is set from the withstand voltage of the semiconductor element. As a result, it is possible to prevent the DC voltage vdc from pulsating beyond the withstand voltage of the semiconductor element, suppress the increase in size of the device due to the increase in withstand voltage, and reduce the switching loss.
The second value that limits the lower limit of the voltage pulsation is set by multiplying the load voltage Vout by the turns ratio N by the correction coefficient K2 (K2 ≧ 1). As a result, voltage pulsation that is significantly lower than the DC voltage Vdc can be suppressed, and boost control by the AC / DC converter 10 can be compensated for over one AC cycle.
Further, the first value and the second value may be determined according to the computing power and the response speed of the control circuit 30. This enables stable control according to the performance of the control circuit 30 used.
 なお、このように重畳される電圧脈動の最大値を第1値以下となるようにリプル電圧指令値Vdc_rippleを調整する制御を最大値制限制御と称し、重畳される電圧脈動の最小値を第2値以上となるようにリプル電圧指令値Vdc_rippleを調整する制御を最小値制限制御と称す。
 また、この最大値調整制御および最小値調整制御を、両方同時に行うものに限定するものではなく、最大値調整制御および最小値調整制御の少なくとも一方を行うものでよい。
 例えば、Ripple指令値における電圧脈動の振幅が、第2値から第1値までの電圧範囲内に納まるのであれば、最大値調整制御と最小値調整制御による制限は不要となる。
The control for adjusting the ripple voltage command value Vdc_ripple so that the maximum value of the superimposed voltage pulsation is equal to or less than the first value is called the maximum value limit control, and the minimum value of the superimposed voltage pulsation is the second value. The control for adjusting the ripple voltage command value Vdc_ripple so as to exceed the value is called the minimum value limit control.
Further, the maximum value adjustment control and the minimum value adjustment control are not limited to those that perform both at the same time, and at least one of the maximum value adjustment control and the minimum value adjustment control may be performed.
For example, if the amplitude of the voltage pulsation in the Ripple command value is within the voltage range from the second value to the first value, the limitation by the maximum value adjustment control and the minimum value adjustment control becomes unnecessary.
 次に、上記リプル電圧指令値Vdc_rippleを用いた、力率指令演算器60によるデューティ比信号Duty_PFCの生成について図4を用いて説明する。
 図4は、実施の形態1による力率指令演算器60の制御ブロック図である。
Next, the generation of the duty ratio signal Duty_PFC by the power factor command calculator 60 using the ripple voltage command value Vdc_ripple will be described with reference to FIG.
FIG. 4 is a control block diagram of the power factor command calculator 60 according to the first embodiment.
 先ず、力率指令演算器60は、PLL演算器61により、第1電流指令値としての交流電流iacの実効値指令Iac*に対して、交流電圧vacと同周期の正弦波sin(ωt)を掛け合わさせて交流電圧vac1に同期した正弦波信号62を生成する。その後、センサで検出した交流電流iacと正弦波信号62とのそれぞれの絶対値の偏差を示す信号64を生成する。その信号64を指令値に追従するようにPI制御して電圧指令65を生成する。 First, the power factor command calculator 60 uses the PLL calculator 61 to generate a sine wave sin (ωt) having the same period as the AC voltage vac with respect to the effective value command Iac * of the AC current iac as the first current command value. It is multiplied to generate a sine wave signal 62 synchronized with the AC voltage vac1. After that, a signal 64 indicating the deviation between the absolute values of the alternating current iac detected by the sensor and the sine wave signal 62 is generated. The voltage command 65 is generated by controlling the signal 64 by PI so as to follow the command value.
 生成された電圧指令65を、リプル電圧指令値Vdc_rippleにより除算することで規格化する。その後、FF(Feed Foard)制御演算器66の信号を加えることで、FB(Feed Buck)値の急峻な変動に対応できるデューティ比信号Duty_PFCを生成する。 Normalize by dividing the generated voltage command 65 by the ripple voltage command value Vdc_ripple. After that, by adding the signal of the FF (Feed Field) control calculator 66, a duty ratio signal Duty_PFC capable of responding to a steep fluctuation of the FB (Feed Back) value is generated.
 なお、FF制御演算器66の演算を以下式(2)に示す。
 Duty_FF=1-|Vac|/(Vdc_ripple+Vdc*)・・・(2)
The calculation of the FF control calculator 66 is shown in the following equation (2).
Duty_FF = 1- | Vac | / (Vdc_ripple + Vdc *) ... (2)
 次に、リプル電圧指令値Vdc_rippleを用いた、中間電圧指令演算器80によるデューティ比信号Duty_Vdcの演算について図5を用いて説明する。
 図5は、実施の形態1による中間電圧指令演算器80の制御ブロック図である。
 中間電圧指令演算器80は、中間コンデンサ電圧Vdcが指令値に追従するようなデューティ比信号Duty_Vdcを演算する。
Next, the calculation of the duty ratio signal Duty_Vdc by the intermediate voltage command calculator 80 using the ripple voltage command value Vdc_ripple will be described with reference to FIG.
FIG. 5 is a control block diagram of the intermediate voltage command calculator 80 according to the first embodiment.
The intermediate voltage command calculator 80 calculates the duty ratio signal Duty_Vdc such that the intermediate capacitor voltage Vdc follows the command value.
 先ず、中間電圧指令演算器80は、センサで検出した直流電圧Vdcと、リプル電圧指令値Vdc_rippleとの偏差81をP制御して制御値82を生成する。その制御値82とセンサで検出した負荷電流ioutとの偏差83をPI制御することで、電流制御用のリアクトル24に流れる電流を制御する制御値84を生成する。
 次に、制御値84に対して負荷電圧Voutを加えた電圧指令信号85を、直流コンデンサ電圧指令値Vdc_rippleに巻線比Nを乗算した値で割ることで規格化してデューティ比信号Duty_Vdcを生成する。
First, the intermediate voltage command calculator 80 generates a control value 82 by P-controlling the deviation 81 between the DC voltage Vdc detected by the sensor and the ripple voltage command value Vdc_ripple. By PI-controlling the deviation 83 between the control value 82 and the load current iout detected by the sensor, a control value 84 that controls the current flowing through the reactor 24 for current control is generated.
Next, the voltage command signal 85 obtained by adding the load voltage Vout to the control value 84 is standardized by dividing the DC capacitor voltage command value Vdc_ripple by the winding ratio N to generate the duty ratio signal Duty_Vdc. ..
 ゲート信号生成器31では、デューティ比信号Duty_PFCとキャリア波をPWM制御することで、半導体スイッチング素子10c、10dへのゲート信号G10(G10c、G10d)を生成する。
 ゲート信号生成器32では、デューティ比信号Duty_Vdcとキャリア波をPWM制御することにより、半導体スイッチング素子21a、21b、21c、21dへのゲート信号G21(G21a、G21b、G21c、G21d)を生成する。
The gate signal generator 31 generates gate signals G10 (G10c, G10d) to the semiconductor switching elements 10c and 10d by PWM-controlling the duty ratio signal Duty_PFC and the carrier wave.
The gate signal generator 32 generates gate signals G21 (G21a, G21b, G21c, G21d) to the semiconductor switching elements 21a, 21b, 21c, 21d by PWM-controlling the duty ratio signal Duty_Vdc and the carrier wave.
 このように生成されたデューティ比信号Duty_PFCに基づいて駆動されるAC/DCコンバータ10により、交流電流iacは高力率に、任意の値に制御される。
 また、このように生成されたデューティ比信号Duty_Vdcに基づいて駆動されるDC/DCコンバータ20により、直流コンデンサ3の直流電圧Vdcが所望の電圧脈動が重畳された直流電圧に制御される。
The AC / DC converter 10 driven based on the duty ratio signal Duty_PFC thus generated controls the alternating current iac to a high power factor and an arbitrary value.
Further, the DC / DC converter 20 driven based on the duty ratio signal Duty_Vdc generated in this way controls the DC voltage Vdc of the DC capacitor 3 to a DC voltage on which a desired voltage pulsation is superimposed.
 以下、本実施の形態の電力変換装置100の直流コンデンサが担保するエネルギーについて、比較例の電力変換装置と比較して説明する。
 図6は、比較例の電力変換装置における直流コンデンサが担保するエネルギーを示す図である。
 図7は、本実施の形態の電力変換装置100における直流コンデンサ3が担保するエネルギーを示す図である。
 両図において、直流コンデンサに入力される入力電力Pin、出力電力Pout、交流電流iac、交流電圧vac、のそれぞれの波形を示し、直流コンデンサが担保するエネルギーは斜線部分で示す。
Hereinafter, the energy secured by the DC capacitor of the power conversion device 100 of the present embodiment will be described in comparison with the power conversion device of the comparative example.
FIG. 6 is a diagram showing the energy secured by the DC capacitor in the power conversion device of the comparative example.
FIG. 7 is a diagram showing energy secured by the DC capacitor 3 in the power conversion device 100 of the present embodiment.
In both figures, the waveforms of the input power Pin, the output power Pout, the AC current iac, and the AC voltage vac, which are input to the DC capacitor, are shown, and the energy secured by the DC capacitor is shown in shaded areas.
 なお、図6に示す比較例の電力変換装置は、交流電源の力率改善制御を伴って電力変換するAC/DCコンバータとDC/DCコンバータとが直流コンデンサを介して接続される回路構成を有し、本実施の形態の制御回路30のような直流コンデンサ3の電圧制御を行っていない場合を想定している。
 また、図6では、直流電力(出力電力Pout)は理想波形とし、交流電圧の2倍周波数成分の脈動は考慮しない。
The power conversion device of the comparative example shown in FIG. 6 has a circuit configuration in which an AC / DC converter and a DC / DC converter that perform power conversion accompanied by power factor improvement control of an AC power supply are connected via a DC capacitor. However, it is assumed that the voltage of the DC capacitor 3 is not controlled as in the control circuit 30 of the present embodiment.
Further, in FIG. 6, the DC power (output power Pout) is set to an ideal waveform, and the pulsation of the frequency component twice the AC voltage is not considered.
 図6に示す比較例の電力変換装置では、交流電圧vacのゼロクロス位相付近では、入力電力Pinが最小であり、斜線部で示すように、出力電力Poutに対して直流コンデンサ3が担保するエネルギーが大きいことが判る。また、交流電圧vacのピーク位相付近では、入力電力Pinが最大となるため、斜線部で示すように、この場合でも出力電力Poutに対して直流コンデンサ3が担保するエネルギーが大きいことが判る。 In the power conversion device of the comparative example shown in FIG. 6, the input power Pin is the minimum in the vicinity of the zero cross phase of the AC voltage vac, and as shown by the shaded area, the energy secured by the DC capacitor 3 with respect to the output power Pout is It turns out that it is big. Further, since the input power Pin becomes maximum in the vicinity of the peak phase of the AC voltage vac, it can be seen that the energy secured by the DC capacitor 3 with respect to the output power Pout is large even in this case as shown by the shaded area.
 これに対して、本実施の形態の電力変換装置100は、交流電圧vacに同期した直流電圧Vdcの脈動により負荷電流ioutも脈動して、出力電力Poutが交流電圧vacに同期して脈動する。このようにDC/DCコンバータ20が出力する電力が交流電圧vacに同期して脈動するため、交流電源1からの交流電力の大部分を直接負荷5へと出力できる。そのため、図7に示すように、出力電力Poutに対して直流コンデンサ3が担保するエネルギーが少量で済む。なお、直流電圧Vdcに重畳される電圧脈動は、式(1)に示したようにその振幅が調整されているため、出力電力における電力脈動も許容範囲内のものとなる。 On the other hand, in the power conversion device 100 of the present embodiment, the load current iout also pulsates due to the pulsation of the DC voltage Vdc synchronized with the AC voltage vac, and the output power Pout pulsates in synchronization with the AC voltage vac. Since the power output by the DC / DC converter 20 pulsates in synchronization with the AC voltage vac in this way, most of the AC power from the AC power supply 1 can be directly output to the load 5. Therefore, as shown in FIG. 7, the energy secured by the DC capacitor 3 with respect to the output power Pout is small. Since the amplitude of the voltage pulsation superimposed on the DC voltage Vdc is adjusted as shown in the equation (1), the power pulsation in the output power is also within the permissible range.
 以下、本実施の形態の電力変換装置100の効果について、比較例の電力変換装置と比較して説明する。
 図8は、本実施の形態の電力変換装置100を用いた場合のシミュレーション結果において主要な波形を示す図である。
 図9は、比較例の電力変換装置を用いた場合のシミュレーション結果において主要な波形を示す図である。
Hereinafter, the effect of the power conversion device 100 of the present embodiment will be described in comparison with the power conversion device of the comparative example.
FIG. 8 is a diagram showing main waveforms in the simulation results when the power conversion device 100 of the present embodiment is used.
FIG. 9 is a diagram showing main waveforms in the simulation results when the power conversion device of the comparative example is used.
 比較例の電力変換装置では、本実施の形態の電力変換装置100と同程度の力率を得ることができる直流コンデンサの容量を用いている。
 動作条件として、入力電力が数kWで負荷5に定電圧源を接続する場合を想定している。
 両図において、上から順に、交流電圧vacと直流コンデンサ3の直流電圧Vdcと負荷電圧Voutとを示す図、交流電流iacを示す図、負荷電流ioutを示す図、を並べて示す。
In the power conversion device of the comparative example, the capacity of the DC capacitor capable of obtaining the same power factor as the power conversion device 100 of the present embodiment is used.
As an operating condition, it is assumed that the input power is several kW and a constant voltage source is connected to the load 5.
In both figures, in order from the top, a diagram showing the AC voltage vac, the DC voltage Vdc of the DC capacitor 3, and the load voltage Vout, a diagram showing the AC current iac, and a diagram showing the load current iout are shown side by side.
 図8の比較例の電力変換装置において用いられた直流コンデンサの容量は1mFであり、図9の本実施の形態の電力変換装置100において用いられた直流コンデンサ3の容量は10μFである。
 よって、本実施の形態の電力変換装置100を用いることで、直流コンデンサ3の容量を1/100に下げられることが判る。
The capacity of the DC capacitor used in the power conversion device of the comparative example of FIG. 8 is 1 mF, and the capacity of the DC capacitor 3 used in the power conversion device 100 of the present embodiment of FIG. 9 is 10 μF.
Therefore, it can be seen that the capacity of the DC capacitor 3 can be reduced to 1/100 by using the power conversion device 100 of the present embodiment.
 次に、Ripple指令値における電圧脈動の振幅を、上記(1)式で示したように、(√2Vac-(Vout/N))*K1により決定した理由について、図8を用いて説明する。
 (1)式に示されるRipple指令値における電圧脈動の振幅は、検出された交流電圧Vacの最大値と、負荷電圧Voutを巻数比Nで除算した値(Vout/N)との差分(図8においてBと示す)に対して、1以上の補正係数K1を乗算したものである。
 これにより直流電圧Vdcの電圧脈動の振幅がB以上の大きさとなる。即ち、直流電圧Vdcの電圧脈動の最大値が、交流電圧vacの最大値以上となる。
Next, the reason why the amplitude of the voltage pulsation at the Ripple command value is determined by (√2Vac- (Vout / N)) * K1 as shown by the above equation (1) will be described with reference to FIG.
The amplitude of the voltage pulsation in the Ripple command value shown in the equation (1) is the difference between the maximum value of the detected AC voltage Vac and the value obtained by dividing the load voltage Vout by the turns ratio N (Vout / N) (FIG. 8). (Shown as B in the above) is multiplied by one or more correction coefficients K1.
As a result, the amplitude of the voltage pulsation of the DC voltage Vdc becomes B or more. That is, the maximum value of the voltage pulsation of the DC voltage Vdc is equal to or higher than the maximum value of the AC voltage vac.
 このようにRipple指令値における電圧脈動の振幅を調整することで、電圧脈動を直流電圧Vdcに重畳させても、この脈動により直流電圧Vdcが交流電圧vacを下回ることを防止できる。こうして、交流全周期に渡って直流電圧Vdcを交流電圧vac以上に維持できるため、AC/DCコンバータ10における昇圧動作を常に実現できる。
 図8に示す電圧波形において、AC/DCコンバータ10の昇圧動作が常に実現できており、交流電流iacが力率1に近い状態で動作できていることが判る。
By adjusting the amplitude of the voltage pulsation in the Ripple command value in this way, even if the voltage pulsation is superimposed on the DC voltage Vdc, it is possible to prevent the DC voltage Vdc from falling below the AC voltage vac due to this pulsation. In this way, since the DC voltage Vdc can be maintained above the AC voltage vac over the entire AC cycle, the boosting operation in the AC / DC converter 10 can always be realized.
In the voltage waveform shown in FIG. 8, it can be seen that the boosting operation of the AC / DC converter 10 can always be realized, and the AC current iac can be operated in a state close to the power factor 1.
 なお、補正係数Kが1に近いほど、直流電圧Vdcの電圧脈動の振幅を最小にできるが、制御の余裕度が小さくなるため、ノイズ等に対するマージンを含んだ1以上のある値に設定するとよい。 The closer the correction coefficient K is to 1, the smaller the amplitude of the voltage pulsation of the DC voltage Vdc can be minimized, but the margin of control becomes smaller. Therefore, it is preferable to set a value of 1 or more including a margin for noise or the like. ..
 ここで、図9に示す動作状態で、比較例の電力変換装置の直流コンデンサの容量を下げたとする。この場合、直流コンデンサの電圧に生じる交流電源1の2倍周波数成分のリプル電圧の振幅が増加していくこととなり、リプル電圧の下限が交流電圧以下になると降圧動作の状態が発生する。AC/DCコンバータが降圧動作ができない回路方式では、交流電流iacの力率制御が不安定となり、制御破綻が生じる。そのため、比較例の電力変換装置では、直流コンデンサの容量低減に限界があり、大幅な容量低減が困難となる。 Here, it is assumed that the capacity of the DC capacitor of the power converter of the comparative example is reduced in the operating state shown in FIG. In this case, the amplitude of the ripple voltage of the double frequency component of the AC power supply 1 generated in the voltage of the DC capacitor increases, and when the lower limit of the ripple voltage becomes equal to or lower than the AC voltage, a state of step-down operation occurs. In the circuit system in which the AC / DC converter cannot step down, the power factor control of the AC current iac becomes unstable and the control fails. Therefore, in the power conversion device of the comparative example, there is a limit to the capacity reduction of the DC capacitor, and it becomes difficult to significantly reduce the capacity.
 なお、負荷5が定電圧源となるため、本実施の形態の電力変換装置100においても、比較例の電力変換装置においても、直流コンデンサの電圧に重畳する脈動成分が重畳した電流が流れる。図8、図9に示すように、本実施の形態の電力変換装置100の方が直流電圧Vdcにおける電圧脈動の振幅が大きい。そのため、負荷5に流れる電流の脈動も大きくなるが、電圧脈動の振幅を調整することで、電流の脈動は許容範囲内とできる。 Since the load 5 serves as a constant voltage source, a current in which a pulsating component superimposed on the voltage of the DC capacitor flows flows in both the power conversion device 100 of the present embodiment and the power conversion device of the comparative example. As shown in FIGS. 8 and 9, the power conversion device 100 of the present embodiment has a larger amplitude of voltage pulsation at the DC voltage Vdc. Therefore, the pulsation of the current flowing through the load 5 also becomes large, but the pulsation of the current can be within the permissible range by adjusting the amplitude of the voltage pulsation.
 なお、図8では、交流電圧vacに同期した、全波整流前の正弦波における振幅の中心(Vout/N、基準電圧と称す)が、交流電圧vacの最大値よりも下に位置する場合を示した。そしてこの場合に、電圧脈動の振幅を調整することで、直流電圧Vdcが交流電圧vacより下回ることを防止する制御を示した。しかしながら、この電圧脈動の振幅の調整は、例えば以下に説明する場合では不要とできる。 In FIG. 8, the case where the center of amplitude (Vout / N, referred to as a reference voltage) in the sine wave before full-wave rectification synchronized with the AC voltage vac is located below the maximum value of the AC voltage vac. Indicated. Then, in this case, the control for preventing the DC voltage Vdc from falling below the AC voltage vac by adjusting the amplitude of the voltage pulsation is shown. However, the adjustment of the amplitude of the voltage pulsation may be unnecessary in the case described below, for example.
 例えば、交流電圧vacに同期した、全波整流前の正弦波における振幅の中心(基準電圧Vout/N)が、交流電圧vacの最大値よりも上に位置する場合では(図示せず)、重畳される電圧脈動を交流電圧vacに同期するように調整すれば、電圧脈動を直流電圧Vdcに重畳させても、直流電圧Vdcが交流電圧vacを下回ることはない。よって、全波整流前の正弦波における振幅の中心(基準電圧Vout/N)の値に応じて、電圧脈動の振幅の調整の要否を判断してもよい。 For example, when the center of amplitude (reference voltage Vout / N) in the sinusoidal wave before full-wave rectification synchronized with the AC voltage vac is located above the maximum value of the AC voltage vac (not shown), it is superimposed. If the voltage pulsation is adjusted to be synchronized with the AC voltage vac, the DC voltage Vdc does not fall below the AC voltage vac even if the voltage pulsation is superimposed on the DC voltage Vdc. Therefore, it may be determined whether or not the amplitude of the voltage pulsation needs to be adjusted according to the value of the center of amplitude (reference voltage Vout / N) in the sine wave before full-wave rectification.
 また、AC/DCコンバータ10は、力率改善PFC(Power Factor Correction)機能をもつ変換回路であればよく、1石型のPFC回路、トーテムポール方式、インターリーブ方式で構成してもよい。DC/DCコンバータ20は、トランスを持つ変換器であればよく、フライバックコンバータ、ハーフブリッジ方式、センタタップ方式で構成してもよい。 Further, the AC / DC converter 10 may be a conversion circuit having a power factor improving PFC (Power Factor Rectification) function, and may be configured by a one-stone PFC circuit, a totem pole system, or an interleave system. The DC / DC converter 20 may be a converter having a transformer, and may be configured by a flyback converter, a half-bridge system, or a center tap system.
 以下、図1に示した電力変換装置100と異なる構成の電力変換装置100aについて説明する。
 図10は、実施の形態1による電力変換装置100aの概略構成を示すブロック図である。
 図10に示すように、限流用リアクトル2を交流電源1に接続される正側母線と負側母線に分割して配置する構成をとってもよい。正負の母線に分割して配置することで、正と負の電流経路に偏りがなくなるため、回路内のコモンモードノイズの発生を抑制できる。
Hereinafter, the power conversion device 100a having a configuration different from that of the power conversion device 100 shown in FIG. 1 will be described.
FIG. 10 is a block diagram showing a schematic configuration of the power conversion device 100a according to the first embodiment.
As shown in FIG. 10, the reactor 2 for limiting current may be divided into a positive generatrix and a negative generatrix connected to the AC power supply 1 and arranged. By arranging the positive and negative generatrix separately, the positive and negative current paths are not biased, so that the generation of common mode noise in the circuit can be suppressed.
 上記のように構成された本実施の形態の電力変換装置は、
交流回路からの交流電力を直流電力に変換し、前記交流電力の力率改善制御を行うAC/DCコンバータと、該AC/DCコンバータの直流側に接続され、直流電力の電圧変換を行うDC/DCコンバータと、前記AC/DCコンバータと前記DC/DCコンバータとの間の正負の直流母線間に接続される直流コンデンサと、前記AC/DCコンバータおよび前記DC/DCコンバータを制御する制御部と、を備え、
前記制御部は、前記直流コンデンサの直流電圧を、前記交流回路からの交流電圧のゼロクロス位相で最小値、ピーク位相で最大値となる波形を有する電圧脈動が重畳された直流電圧に制御するリプル電圧指令値を生成し、前記リプル電圧指令値を用いて、前記AC/DCコンバータ、前記DC/DCコンバータの少なくとも一方を制御する、
ものである。
The power conversion device of the present embodiment configured as described above is
An AC / DC converter that converts AC power from an AC circuit into DC power and controls the power factor improvement of the AC power, and a DC / DC that is connected to the DC side of the AC / DC converter and performs voltage conversion of DC power. A DC converter, a DC capacitor connected between the positive and negative DC bus lines between the AC / DC converter and the DC / DC converter, a control unit that controls the AC / DC converter and the DC / DC converter, and the like. With
The control unit controls the DC voltage of the DC capacitor to a DC voltage on which a voltage pulsation having a waveform having a waveform that becomes a minimum value at the zero cross phase and a maximum value at the peak phase of the AC voltage from the AC circuit is superimposed. A command value is generated, and at least one of the AC / DC converter and the DC / DC converter is controlled by using the ripple voltage command value.
It is a thing.
 このように、制御回路は、直流コンデンサの直流電圧を、交流電圧のゼロクロス位相で最小値、ピーク位相で最大値となる波形を有する電圧脈動が重畳された直流電圧に制御する。このように交流電圧の波形に合わせた直流コンデンサの電圧脈動により負荷電流を脈動させて、出力電力を交流電圧に合わせて脈動させる。これにより、直流コンデンサが担保するエネルギーを大幅に低減できるため、直流コンデンサを低容量化させ、小型の電力変換装置を実現できる。
 なお、本実施の形態の電力変換装置は、交流電源が単相の場合に高い効果を得るが、複数相の交流電源においても同様の効果を得られる。
As described above, the control circuit controls the DC voltage of the DC capacitor to the DC voltage on which the voltage pulsation having the waveform having the minimum value at the zero cross phase of the AC voltage and the maximum value at the peak phase is superimposed. In this way, the load current is pulsated by the voltage pulsation of the DC capacitor that matches the waveform of the AC voltage, and the output power is pulsated according to the AC voltage. As a result, the energy secured by the DC capacitor can be significantly reduced, so that the capacity of the DC capacitor can be reduced and a small power conversion device can be realized.
The power conversion device of the present embodiment obtains a high effect when the AC power supply has a single phase, but the same effect can be obtained with a multi-phase AC power supply.
 また、上記のように構成された本実施の形態の電力変換装置は、
前記制御部は、前記電圧脈動の最大値が設定された第1値以下となるように前記リプル電圧指令値を調整する最大値制限制御と、前記電圧脈動の最小値が設定された第2値以上となるように前記リプル電圧指令値を調整する最小値制限制御と、の少なくとも一方を行う、
ものである。
Further, the power conversion device of the present embodiment configured as described above is
The control unit adjusts the ripple voltage command value so that the maximum value of the voltage pulsation is equal to or less than the set first value, and the second value in which the minimum value of the voltage pulsation is set. At least one of the minimum value limit control for adjusting the ripple voltage command value so as to be as described above is performed.
It is a thing.
 このように、直流コンデンサの直流電圧に重畳する電圧脈動の最大値と最小値とを制限することで、直流電圧が半導体素子の耐圧を超えて脈動することを防げる。こうして電力変換装置を構成する各素子に印加される電圧値を制限して、耐圧増加に伴う装置の大型化を抑止できると共に、回路の低損失化も同時に可能となる。こうして、更に小型で、且つ高効率の電力変換装置を実現できる。 In this way, by limiting the maximum and minimum values of the voltage pulsation superimposed on the DC voltage of the DC capacitor, it is possible to prevent the DC voltage from pulsating beyond the withstand voltage of the semiconductor element. In this way, the voltage value applied to each element constituting the power conversion device can be limited to suppress the increase in size of the device due to the increase in withstand voltage, and at the same time, the loss of the circuit can be reduced. In this way, a smaller and more efficient power conversion device can be realized.
 また、上記のように構成された本実施の形態の電力変換装置は、
前記AC/DCコンバータは、入力された前記交流電圧を整流して昇圧する昇圧型AC/DCコンバータであり、
前記制御部は、前記電圧脈動の最大値が、前記交流電圧の最大値以上となるように、前記リプル電圧指令値を調整する、
ものである。
Further, the power conversion device of the present embodiment configured as described above is
The AC / DC converter is a step-up AC / DC converter that rectifies and boosts the input AC voltage.
The control unit adjusts the ripple voltage command value so that the maximum value of the voltage pulsation is equal to or higher than the maximum value of the AC voltage.
It is a thing.
 このように直流コンデンサの電圧脈動の最大値が、交流電圧の最大値以上となるように、重畳される電圧脈動が調整されるため、昇圧型のAC/DCコンバータを用いる場合において、交流周期の全周期に渡って昇圧動作を補償できる。こうして、力率制御を安定化させて、更に高効率で、信頼性の高い電力変換装置を実現できる。 In this way, the superimposed voltage pulsation is adjusted so that the maximum value of the voltage pulsation of the DC capacitor is equal to or greater than the maximum value of the AC voltage. Therefore, when a step-up AC / DC converter is used, the AC cycle The boosting operation can be compensated for the entire cycle. In this way, the power factor control can be stabilized, and a more efficient and highly reliable power conversion device can be realized.
 また、上記のように構成された本実施の形態の電力変換装置は、
前記電圧脈動は、前記交流電圧に同期した正弦波を全波整流した波形を有する、
ものである。
Further, the power conversion device of the present embodiment configured as described above is
The voltage pulsation has a waveform obtained by full-wave rectifying a sine wave synchronized with the AC voltage.
It is a thing.
 このように、重畳する電圧脈動を、交流電圧に同期した制限波を全波整流した波形とすることで、交流電圧の波形に合わせた電圧脈動成分を確実に生成できる。 In this way, by making the superimposed voltage pulsation a waveform obtained by full-wave rectifying the limiting wave synchronized with the AC voltage, it is possible to reliably generate a voltage pulsation component that matches the waveform of the AC voltage.
 また、上記のように構成された本実施の形態の電力変換装置は、
前記正弦波の振幅の中心となる基準電圧が、前記交流電圧の最大値以下となる構成において、
前記制御部は、
前記電圧脈動の振幅が、前記交流電圧の最大値と前記基準電圧との差以上となるように、前記リプル電圧指令値を調整する、
ものである。
Further, the power conversion device of the present embodiment configured as described above is
In a configuration in which the reference voltage at the center of the amplitude of the sine wave is equal to or less than the maximum value of the AC voltage.
The control unit
The ripple voltage command value is adjusted so that the amplitude of the voltage pulsation is equal to or greater than the difference between the maximum value of the AC voltage and the reference voltage.
It is a thing.
 このように、全波整流前の、交流電圧に同期した正弦波の振幅の中心である基準電圧が、交流電圧の最大値以下となる場合においても、重畳される電圧脈動の振幅を、交流電圧の最大値と基準電圧との差以上なるように制御する。これにより、交流周期の全周期に渡って、確実に直流電圧を交流電圧の最大値以上として、昇圧動作を補償できる。
 こうして、力率制御を安定化させて、更に高効率で、信頼性の高い電力変換装置を実現できる。
In this way, even when the reference voltage, which is the center of the amplitude of the sine wave synchronized with the AC voltage before full-wave rectification, is equal to or less than the maximum value of the AC voltage, the amplitude of the superimposed voltage pulsation is changed to the AC voltage. Control so that it is greater than or equal to the difference between the maximum value of and the reference voltage. As a result, the boosting operation can be compensated by surely setting the DC voltage to the maximum value or more of the AC voltage over the entire AC cycle.
In this way, the power factor control can be stabilized, and a more efficient and highly reliable power conversion device can be realized.
 また、上記のように構成された本実施の形態の電力変換装置は、
前記第1値および前記第2値は、前記制御部の演算能力、前記制御部の応答速度、前記電力変換装置を構成する半導体素子の耐圧、の少なくとも一つに基づいて決定される、
ものである。
Further, the power conversion device of the present embodiment configured as described above is
The first value and the second value are determined based on at least one of the computing power of the control unit, the response speed of the control unit, and the withstand voltage of the semiconductor element constituting the power conversion device.
It is a thing.
 これにより、直流電圧が半導体素子の耐圧を超えて脈動することを確実に防げる。また、用いられる制御回路30の性能に応じた安定した制御が可能となる。こうして、更に信頼性の高い電力変換装置が実現できる。 This can reliably prevent the DC voltage from pulsating beyond the withstand voltage of the semiconductor element. In addition, stable control according to the performance of the control circuit 30 used becomes possible. In this way, a more reliable power conversion device can be realized.
 また、上記のように構成された本実施の形態の電力変換装置は、
前記DC/DCコンバータの出力電圧が一定であり、前記交流回路からの交流電流を設定された第1電流指令値に追従させる構成において、
前記制御部は、
前記第1電流指令値に基づいた前記AC/DCコンバータの制御により前記交流電流を制御し、
前記リプル電圧指令値に基づいた前記DC/DCコンバータの制御により、前記直流コンデンサの直流電圧を前記電圧脈動が重畳された直流電圧に制御する、
ものである。
Further, the power conversion device of the present embodiment configured as described above is
In a configuration in which the output voltage of the DC / DC converter is constant and the AC current from the AC circuit follows the set first current command value.
The control unit
The alternating current is controlled by controlling the AC / DC converter based on the first current command value.
By controlling the DC / DC converter based on the ripple voltage command value, the DC voltage of the DC capacitor is controlled to the DC voltage on which the voltage pulsation is superimposed.
It is a thing.
 このように、制御回路は、交流回路からの入力電流を指令値に追従させる場合においても適用可能となる。 In this way, the control circuit can be applied even when the input current from the AC circuit is made to follow the command value.
 また、上記のように構成された本実施の形態の電力変換装置は、
前記DC/DCコンバータは、
一次側コイルと二次側コイルとを有する絶縁トランスを備えた絶縁型DC/DCコンバータであり、
前記制御部は、前記電圧脈動の最小値を前記絶縁トランスの巻数比に基づいて演算する、
ものである。
Further, the power conversion device of the present embodiment configured as described above is
The DC / DC converter
An isolated DC / DC converter equipped with an isolation transformer having a primary coil and a secondary coil.
The control unit calculates the minimum value of the voltage pulsation based on the turns ratio of the isolation transformer.
It is a thing.
 このように、電圧脈動の下限値を制限する第2値は、DC/DCコンバータにおける回路定数に基づいて導出可能であり、例えば、負荷電圧を巻数比Nで割った値に補正係数K2を乗算した値で設定することも可能である。これにより負荷電圧に基づいた電圧脈動の下限値を設定できるため、力率制御を安定化させて、更に高効率で、信頼性の高い電力変換装置を実現できる。 In this way, the second value that limits the lower limit of the voltage pulsation can be derived based on the circuit constants in the DC / DC converter. For example, the load voltage is divided by the turns ratio N and the correction coefficient K2 is multiplied. It is also possible to set with the specified value. As a result, the lower limit of the voltage pulsation based on the load voltage can be set, so that the power factor control can be stabilized, and a more efficient and highly reliable power conversion device can be realized.
実施の形態2.
 以下、本願の実施の形態2を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
 本実施の形態2による電力変換装置の主回路構成は実施の形態1と同様であり、制御回路230の構成が異なる。
 図11は、実施の形態2による電力変換装置の制御回路230の制御ブロック図である。
Embodiment 2.
Hereinafter, the second embodiment of the present application will be described with reference to the parts different from the first embodiment. The same parts as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
The main circuit configuration of the power conversion device according to the second embodiment is the same as that of the first embodiment, and the configuration of the control circuit 230 is different.
FIG. 11 is a control block diagram of the control circuit 230 of the power conversion device according to the second embodiment.
 制御回路230は、電圧リプル指令生成器40と、力率指令演算器260と、中間電圧指令演算器280と、出力電流指令演算器290と、ゲート信号生成器31、32と、を備える。
 電圧リプル指令生成器40およびゲート信号生成器31、32は、実施の形態1と同様構成であり、動作も同じため説明は割愛する。
 電圧リプル指令生成器40により生成されたリプル電圧指令値Vdc_rippleは、力率指令演算器260と、中間電圧指令演算器280と、出力電流指令演算器290に入力される。
The control circuit 230 includes a voltage ripple command generator 40, a power factor command calculator 260, an intermediate voltage command calculator 280, an output current command calculator 290, and gate signal generators 31 and 32.
Since the voltage ripple command generator 40 and the gate signal generators 31 and 32 have the same configuration as that of the first embodiment and have the same operation, the description thereof will be omitted.
The ripple voltage command value Vdc_ripple generated by the voltage ripple command generator 40 is input to the power factor command calculator 260, the intermediate voltage command calculator 280, and the output current command calculator 290.
 中間電圧指令演算器280は、入力されるリプル電圧指令値Vdc_rippleと、センサにより検出された直流電圧Vdcとを用いて、直流コンデンサ3の電圧指令値Vdc_refを生成する。生成された電圧指令Vdc_refは、力率指令演算器260に入力される。 The intermediate voltage command calculator 280 generates the voltage command value Vdc_ref of the DC capacitor 3 by using the input ripple voltage command value Vdc_ripple and the DC voltage Vdc detected by the sensor. The generated voltage command Vdc_ref is input to the power factor command calculator 260.
 力率指令演算器260は、入力されたリプル電圧指令値Vdc_rippleと、電圧指令Vdc_refと、センサにより検出された交流電流iac、交流電圧vac、直流電圧Vdc、負荷電圧Voutと、を用いて、交流電流iacの力率を高力率に制御しながら、直流電圧Vdcを指令値に追従させるデューティ比信号Duty_PFCを生成する。 The power factor command calculator 260 uses the input ripple voltage command value Vdc_ripple, the voltage command Vdc_ref, and the AC current iac, AC voltage vac, DC voltage Vdc, and load voltage Vout detected by the sensor. While controlling the power factor of the current iac to a high power factor, a duty ratio signal Duty_PFC that causes the DC voltage Vdc to follow the command value is generated.
 出力電流指令演算器290は、入力されたリプル電圧指令値Vdc_rippleと、センサにより検出された交流電圧vac、負荷電圧Vout、負荷電流ioutと、を用いて、負荷電流ioutを制御するデューティ比信号Duty_ioutを生成する。 The output current command calculator 290 uses the input ripple voltage command value Vdc_ripple, the AC voltage vac, the load voltage Vout, and the load current iout detected by the sensor, and the duty ratio signal Duty_iout that controls the load current iout. To generate.
 なお、本実施の形態2では、負荷5にバッテリのような定電圧源が接続された場合を想定しており、図11に示した制御回路230は、出力電圧(負荷電圧Vout)が固定で、負荷電流ioutを任意の値に制御する場合の構成である。 In the second embodiment, it is assumed that a constant voltage source such as a battery is connected to the load 5, and the control circuit 230 shown in FIG. 11 has a fixed output voltage (load voltage Vout). , This is a configuration in which the load current iout is controlled to an arbitrary value.
 以下、上記のように構成される制御回路230が行う制御動作の詳細について説明する。この制御動作の詳細の説明において、制御回路230を構成する力率指令演算器260、中間電圧指令演算器280、出力電流指令演算器290の詳細構成についても説明する。 Hereinafter, the details of the control operation performed by the control circuit 230 configured as described above will be described. In the detailed description of this control operation, the detailed configurations of the power factor command calculator 260, the intermediate voltage command calculator 280, and the output current command calculator 290 that constitute the control circuit 230 will also be described.
 先ず、中間電圧指令演算器280の構成を、図11を用いて説明する。
 図12は、実施の形態2による中間電圧指令演算器280の制御ブロック図である。
 中間電圧指令演算器280は、センサで検出した直流電圧Vdcと、リプル電圧指令値Vdc_rippleとの偏差281を演算する。そして、中間電圧指令演算器280は、この偏差281をPI制御して電圧指令値Vdc_refを演算する。
First, the configuration of the intermediate voltage command calculator 280 will be described with reference to FIG.
FIG. 12 is a control block diagram of the intermediate voltage command calculator 280 according to the second embodiment.
The intermediate voltage command calculator 280 calculates the deviation 281 between the DC voltage Vdc detected by the sensor and the ripple voltage command value Vdc_ripple. Then, the intermediate voltage command calculator 280 PI-controls this deviation 281 to calculate the voltage command value Vdc_ref.
 次に、力率指令演算器260によるデューティ比信号Duty_PFCの生成について図13を用いて説明する。
 図13は、実施の形態2による力率指令演算器260の制御ブロック図である。
 力率指令演算器260は、直流コンデンサ3の直流電圧Vdcを指令値に追従させながら交流電流iacの力率が1になるようにPI制御を行う。
 この交流電流iacの力率制御において、力率指令演算器260は、以下(3)式により表される、力率を1とした、出力電力Poutの瞬時電力Pout(t)を導出する。
Next, the generation of the duty ratio signal Duty_PFC by the power factor command calculator 260 will be described with reference to FIG.
FIG. 13 is a control block diagram of the power factor command calculator 260 according to the second embodiment.
The power factor command calculator 260 performs PI control so that the power factor of the alternating current iac becomes 1 while making the DC voltage Vdc of the DC capacitor 3 follow the command value.
In the power factor control of the alternating current iac, the power factor command calculator 260 derives the instantaneous power Pout (t) of the output power Pout with the power factor set to 1, which is represented by the following equation (3).
 瞬時電力Pout(t)=瞬時電圧vout(t)*瞬時電流iout(t)
            =√2Vsin(ωt)*√2Isin(ωt)
            =2VIsin^2(ωt)
            =VI(1-cos(2ωt))
            =VI(1-sin(2ωt+π/2))・・・(3)
Instantaneous power Pout (t) = Instantaneous voltage vout (t) * Instantaneous current iout (t)
= √2Vsin (ωt) * √2Isin (ωt)
= 2VIsin ^ 2 (ωt)
= VI (1-cos (2ωt))
= VI (1-sin (2ωt + π / 2)) ... (3)
 図13に示すように、力率指令演算器260は、第2電流指令値としての負荷電流指令値iout*と、センサで検出した負荷電圧Voutとを掛け合わせて信号261を生成する。その後、中間電圧指令演算器280で生成された電圧指令値Vdc_refを加えることで、所望の電圧脈動が重畳された電力指令262を演算する。
 次に、その電力指令262に対して、PLL演算器263にて生成した交流電圧vacの2倍周期に90度遅れを含めた波形信号264を乗算して、瞬時電力指令値265を演算する。そして、センサで検出した交流電圧vacと交流電流iacとに基づく瞬時電力266を演算し、瞬時電力指令値265とセンシングした瞬時電力値266との偏差267をPI制御して電圧指令値268を生成する。
 上記では、負荷電流指令値iout*と、センサで検出した負荷電圧Voutとを掛け合わせて信号261を生成したが、負荷電流指令値iout*の代わりにセンサで検出した負荷電流ioutを用いてもよい。なお、負荷電流指令値iout*を用いた制御を行う場合では、ノイズなどの成分の影響を受けない指令値が生成できるため、より高力率な制御が可能となる。
As shown in FIG. 13, the power factor command calculator 260 generates a signal 261 by multiplying the load current command value iout * as the second current command value and the load voltage Vout detected by the sensor. After that, by adding the voltage command value Vdc_ref generated by the intermediate voltage command calculator 280, the power command 262 on which the desired voltage pulsation is superimposed is calculated.
Next, the instantaneous power command value 265 is calculated by multiplying the power command 262 by a waveform signal 264 including a delay of 90 degrees in a double cycle of the AC voltage vac generated by the PLL calculator 263. Then, the instantaneous power 266 based on the AC voltage vac detected by the sensor and the AC current iac is calculated, and the deviation 267 between the instantaneous power command value 265 and the sensed instantaneous power value 266 is controlled by PI to generate the voltage command value 268. To do.
In the above, the signal 261 is generated by multiplying the load current command value iout * and the load voltage Vout detected by the sensor, but the load current iout detected by the sensor may be used instead of the load current command value iout *. Good. When the control is performed using the load current command value iout *, a command value that is not affected by components such as noise can be generated, so that control with a higher power factor becomes possible.
 そして、この電圧指令値268を、リプル電圧指令値Vdc_rippleにより除算することで規格化を行い、FF制御演算器269の信号を加えることでセンサ値の急峻な変動に対応できるデューティ比信号Duty_PFCを生成する。
 なお、FF制御演算器269の演算は、実施の形態1に示した式(2)と同様となる。
Then, this voltage command value 268 is standardized by dividing it by the ripple voltage command value Vdc_ripple, and by adding the signal of the FF control calculator 269, a duty ratio signal Duty_PFC capable of responding to a steep fluctuation of the sensor value is generated. To do.
The calculation of the FF control calculator 269 is the same as that of the equation (2) shown in the first embodiment.
 次に、出力電流指令演算器290を、図14を用いて説明する。
 図14は、実施の形態2による出力電流指令演算器290の制御ブロック図である。
 前述のように、出力電流指令演算器290は、負荷電流ioutが指令値に追従するようなデューティ比信号Duty_ioutを演算する。
 図14に示すように、出力電流指令演算器290は、第2電流指令値としての負荷電流指令値iout*に、PLL演算器291にて生成した交流電圧vacの2倍周期に90度遅れを含めた波形信号292を掛け合わせた信号293を生成する。そうすることで、直流コンデンサ3の直流電圧Vdcに発生する交流電圧vacの2倍周期であって、交流電圧vacに同期させた電流脈動を負荷5に出力する。
Next, the output current command calculator 290 will be described with reference to FIG.
FIG. 14 is a control block diagram of the output current command calculator 290 according to the second embodiment.
As described above, the output current command calculator 290 calculates the duty ratio signal Duty_iout such that the load current iout follows the command value.
As shown in FIG. 14, the output current command calculator 290 delays the load current command value iout * as the second current command value by 90 degrees with respect to the double cycle of the AC voltage vac generated by the PLL calculator 291. A signal 293 is generated by multiplying the included waveform signal 292. By doing so, the current pulsation synchronized with the AC voltage vac, which is twice the cycle of the AC voltage vac generated in the DC voltage Vdc of the DC capacitor 3, is output to the load 5.
 その後、信号293と、波形センサで検出した負荷電流ioutとの差分294をPI制御し、電流制御用のリアクトル24に流れる電流を制御する信号295を生成する。その後、信号295に負荷電圧Voutを加えた信号296を、リプル電圧指令値Vdc_rippleに巻線比Nを乗算した信号297で除算することで規格化して、デューティ比信号Duty_ioutを生成する。 After that, the difference 294 between the signal 293 and the load current iout detected by the waveform sensor is PI-controlled to generate a signal 295 that controls the current flowing through the reactor 24 for current control. After that, the signal 296 obtained by adding the load voltage Vout to the signal 295 is standardized by dividing by the signal 297 obtained by multiplying the ripple voltage command value Vdc_ripple by the winding ratio N to generate the duty ratio signal Duty_iout.
 図11に示したゲート信号生成器31では、このように生成されたデューティ比信号Duty_PFCとキャリア波をPWM制御することで、半導体スイッチング素子10c、10dへのゲート信号G10c、G10dを生成し、AC/DCコンバータ10にて交流電流iacを高力率に制御する。
 ゲート信号生成器32では、このように生成されたデューティ比信号Duty_Vdcとキャリア波をPWM制御することにより、半導体スイッチング素子21a、21b、21c、21dへのゲート信号G21a、G21b、G21c、G21dを生成し、DC/DCコンバータ20にて直流電圧Vdcを所望の電圧脈動が重畳された直流電圧に制御する。
In the gate signal generator 31 shown in FIG. 11, the duty ratio signal Duty_PFC and the carrier wave generated in this way are PWM-controlled to generate gate signals G10c and G10d to the semiconductor switching elements 10c and 10d, and AC. The AC current iac is controlled to a high power factor by the / DC converter 10.
The gate signal generator 32 generates gate signals G21a, G21b, G21c, and G21d to the semiconductor switching elements 21a, 21b, 21c, and 21d by PWM-controlling the duty ratio signal Duty_Vdc and the carrier wave generated in this way. Then, the DC / DC converter 20 controls the DC voltage Vdc to a DC voltage on which a desired voltage pulsation is superimposed.
 以下、本実施の形態の電力変換装置の効果について、比較例の電力変換装置と比較して説明する。
 図15は、本実施の形態の電力変換装置100を用いたシミュレーション波形を示す図である。
 図16は、比較例1の電力変換装置を用いたシミュレーション波形を示す図である。
 図17は、比較例2の電力変換装置を用いたシミュレーション波形を示す図である。
Hereinafter, the effect of the power conversion device of the present embodiment will be described in comparison with the power conversion device of the comparative example.
FIG. 15 is a diagram showing a simulation waveform using the power conversion device 100 of the present embodiment.
FIG. 16 is a diagram showing a simulation waveform using the power conversion device of Comparative Example 1.
FIG. 17 is a diagram showing a simulation waveform using the power conversion device of Comparative Example 2.
 なお、比較例1、2の電力変換装置は、共に、交流電源の力率改善制御を伴って電力変換するAC/DCコンバータとDC/DCコンバータとが直流コンデンサを介して接続される回路構成を有する。
 また、比較例1の電力変換装置は、本実施の形態の制御回路30のような直流コンデンサ3の電圧制御を行っていない場合を想定している。
 また、比較例2の電力変換装置は、交流電圧のゼロクロス位相で最小値、ピーク位相で最大値となる交流電流指令を直流電流指令に重畳する制御を行う場合を想定している。
Both the power conversion devices of Comparative Examples 1 and 2 have a circuit configuration in which an AC / DC converter and a DC / DC converter that perform power conversion with an AC power supply power factor improvement control are connected via a DC capacitor. Have.
Further, it is assumed that the power conversion device of Comparative Example 1 does not control the voltage of the DC capacitor 3 as in the control circuit 30 of the present embodiment.
Further, it is assumed that the power conversion device of Comparative Example 2 controls to superimpose an AC current command having a minimum value in the zero cross phase of the AC voltage and a maximum value in the peak phase on the DC current command.
 また、比較例1の電力変換装置では、本実施の形態の電力変換装置100と同程度の力率を得ることができる直流コンデンサの容量を用いている。
 動作条件として、入力電力が数kWで負荷に定電圧源を接続する場合を想定する。
 各図において、上から順に、交流電圧vacと直流コンデンサ3の直流電圧Vdcと負荷電圧Voutとを示す図、交流電流iacを示す図、負荷電流ioutを示す図、を並べて示す。
Further, in the power conversion device of Comparative Example 1, the capacity of a DC capacitor capable of obtaining a power factor similar to that of the power conversion device 100 of the present embodiment is used.
As an operating condition, it is assumed that the input power is several kW and a constant voltage source is connected to the load.
In each figure, in order from the top, a diagram showing the AC voltage vac, the DC voltage Vdc of the DC capacitor 3, and the load voltage Vout, a diagram showing the AC current iac, and a diagram showing the load current iout are shown side by side.
 図15の本実施の形態の電力変換装置に用いられる直流コンデンサ3の容量は10μFであり、図16の比較例1の電力変換装置に用いられる直流コンデンサ3の容量は1mFとなる。また、図17の比較例2の電力変換装置に用いられる直流コンデンサ3の容量は、本実施の形態の電力変換装置と同容量の10μFとなる。 The capacity of the DC capacitor 3 used in the power conversion device of the present embodiment of FIG. 15 is 10 μF, and the capacity of the DC capacitor 3 used in the power conversion device of Comparative Example 1 of FIG. 16 is 1 mF. Further, the capacity of the DC capacitor 3 used in the power conversion device of Comparative Example 2 of FIG. 17 is 10 μF, which is the same capacity as that of the power conversion device of the present embodiment.
 図15、図16から、本実施の形態の電力変換装置を用いることで容量を1/100に下げたとしても常に昇圧動作が実現できており、交流電流iacが力率1に近い状態で動作できることが判る。
 ここで、図16に示す動作状態で、比較例1の電力変換装置の直流コンデンサの容量を下げたとする。この場合、直流コンデンサの電圧に生じる交流電源1の2倍周波数成分のリプル電圧の振幅が増加していくこととなり、リプル電圧の下限が交流電圧以下になると降圧動作の状態が発生する。AC/DCコンバータが降圧動作ができない回路方式では、交流電流iacの力率制御が不安定となり、制御破綻が生じる。
From FIGS. 15 and 16, even if the capacity is reduced to 1/100 by using the power conversion device of the present embodiment, the boosting operation can always be realized, and the AC current iac operates in a state close to the power factor 1. I know I can do it.
Here, it is assumed that the capacity of the DC capacitor of the power conversion device of Comparative Example 1 is reduced in the operating state shown in FIG. In this case, the amplitude of the ripple voltage of the double frequency component of the AC power supply 1 generated in the voltage of the DC capacitor increases, and when the lower limit of the ripple voltage becomes equal to or lower than the AC voltage, a state of step-down operation occurs. In the circuit system in which the AC / DC converter cannot step down, the power factor control of the AC current iac becomes unstable and the control fails.
 また、図17に示す波形から、比較例2の電力変換装置のコンデンサ容量を必要以上に下げてしまうと、AC/DCコンバータで昇圧動作を保つために、力率が悪化していることが判る。 Further, from the waveform shown in FIG. 17, it can be seen that if the capacitor capacity of the power converter of Comparative Example 2 is lowered more than necessary, the power factor deteriorates in order to maintain the boosting operation in the AC / DC converter. ..
 また、負荷5が定電圧源となるため、本実施の形態の電力変換装置においても、比較例1、2の電力変換装置においても、直流コンデンサ3の電圧に重畳する交流電源1の2倍周波数成分が重畳した電流が流れる。本実施の形態の電力変換装置と比較例2の電力変換装置とは、負荷5に流れる電流の脈動が正弦波になるように制御しているため、電流制御を行わない比較例1と比較すると電流の脈動は大きくなる。
 しかしながら、前述のように、本実施の形態の電力変換装置において重畳される電圧リプルの振幅は、所望の範囲内となるように調整することで、許容範囲内とできる。
Further, since the load 5 serves as a constant voltage source, both the power conversion device of the present embodiment and the power conversion devices of Comparative Examples 1 and 2 have twice the frequency of the AC power supply 1 superimposed on the voltage of the DC capacitor 3. A current with superimposed components flows. Since the power conversion device of the present embodiment and the power conversion device of Comparative Example 2 are controlled so that the pulsation of the current flowing through the load 5 is a sine wave, it is compared with Comparative Example 1 in which the current control is not performed. The pulsation of the electric current becomes large.
However, as described above, the amplitude of the voltage ripple superimposed in the power conversion device of the present embodiment can be within an allowable range by adjusting the amplitude so as to be within a desired range.
 なお、力率指令演算器260、出力電流指令演算器290において示された、交流電圧vacの2倍周期に90度の遅れを含めた波形信号は、90度に対して、±第3値度のマージンを含ませてもよい。
 この第3値は、電圧脈動が重畳された直流コンデンサ3の直流電圧Vdcが、交流電源1からの交流電圧Vac以上となる値が確保される位相範囲内で設定すると良い。
The waveform signal shown in the power factor command calculator 260 and the output current command calculator 290, which includes a delay of 90 degrees in the double cycle of the AC voltage vac, is ± 3rd value degree with respect to 90 degrees. Margin may be included.
This third value may be set within a phase range in which the DC voltage Vdc of the DC capacitor 3 on which the voltage pulsation is superimposed is secured to be equal to or higher than the AC voltage Vac from the AC power supply 1.
 上記のように構成された本実施の形態の電力変換装置は、
前記DC/DCコンバータの出力電圧が一定であり、前記DC/DCコンバータの出力電流を設定された第2電流指令値に追従させる制御において、
前記制御部は、
前記第2電流指令値に基づいた前記DC/DCコンバータの制御により前記出力電流を制御し、
前記リプル電圧指令値に基づいた前記AC/DCコンバータの制御により、前記直流コンデンサの直流電圧を前記電圧脈動が重畳された直流電圧に制御する、
ものである。
The power conversion device of the present embodiment configured as described above is
In the control in which the output voltage of the DC / DC converter is constant and the output current of the DC / DC converter follows the set second current command value.
The control unit
The output current is controlled by controlling the DC / DC converter based on the second current command value.
By controlling the AC / DC converter based on the ripple voltage command value, the DC voltage of the DC capacitor is controlled to the DC voltage on which the voltage pulsation is superimposed.
It is a thing.
 これにより、実施の形態1と同様の効果を奏し、直流コンデンサが担保するエネルギーを大幅に低減できるため、直流コンデンサを低容量化させ、小型の電力変換装置を実現できると共に、制御回路は、DC/DCコンバータからの出力電流を指令値に追従させる場合においても適用可能となる。 As a result, the same effect as that of the first embodiment can be obtained, and the energy secured by the DC capacitor can be significantly reduced. Therefore, the capacity of the DC capacitor can be reduced, a small power conversion device can be realized, and the control circuit can be DC. It can also be applied when the output current from the / DC converter is made to follow the command value.
 また、上記のように構成された本実施の形態の電力変換装置は、
前記制御部は、
前記第2電流指令値あるいは検出された前記DC/DCコンバータの出力電流と、検出された前記DC/DCコンバータの出力電圧と、を用いて、前記DC/DCコンバータの出力電力の瞬時電力値を導出し、
前記瞬時電力値に基づいて、前記AC/DCコンバータの前記力率改善制御を行う、
ものである。
Further, the power conversion device of the present embodiment configured as described above is
The control unit
Using the second current command value or the detected output current of the DC / DC converter and the detected output voltage of the DC / DC converter, the instantaneous power value of the output power of the DC / DC converter is determined. Derived and
Based on the instantaneous power value, the power factor improvement control of the AC / DC converter is performed.
It is a thing.
 このように、DC/DCコンバータの出力電力の瞬時電力値に基づいた力率改善制御を行うことにより、直流コンデンサに重畳された電圧脈動の影響を受けることのない更に高力率な力率制御が可能となる。 In this way, by performing the power factor improvement control based on the instantaneous power value of the output power of the DC / DC converter, the power factor control with a higher power factor that is not affected by the voltage pulsation superimposed on the DC capacitor. Is possible.
 また、上記のように構成された本実施の形態の電力変換装置は、
前記制御部は、
前記第2電流指令値に対して、前記交流電圧の2倍の周期で、且つ、前記交流電圧の位相から90±第3値度、位相のずれた波形を重畳し、
前記第3値は、前記電圧脈動が重畳された前記直流コンデンサの直流電圧が、前記交流回路からの前記交流電圧以上となる値に設定される、
ものである。
Further, the power conversion device of the present embodiment configured as described above is
The control unit
A waveform that is 90 ± third value degree out of phase with the phase of the AC voltage is superimposed on the second current command value at a period twice that of the AC voltage.
The third value is set to a value at which the DC voltage of the DC capacitor on which the voltage pulsation is superimposed is equal to or higher than the AC voltage from the AC circuit.
It is a thing.
 このように、DC/DCコンバータの出力電流に、交流電圧の2倍周期であって、交流電圧に同期させた脈動を重畳させる。このような脈動を出力電流に重畳させる制御と、リプル電圧指令値を用いた力率指令演算器による直流コンデンサの直流電圧の制御と、を行うことで、更に高力率な力率制御と、直流コンデンサが担保するエネルギーの更なる低減を実現できる。 In this way, the output current of the DC / DC converter is superposed with the pulsation synchronized with the AC voltage, which has a period twice the AC voltage. By controlling the pulsation to be superimposed on the output current and controlling the DC voltage of the DC capacitor by the power factor command calculator using the ripple voltage command value, the power factor control with a higher power factor can be achieved. Further reduction of the energy secured by the DC capacitor can be realized.
 なお、本実施の形態2でも本実施の形態1と同様に、限流用リアクトル2を交流電源1の正側母線と負側母線に分割して配置する構成をとってもよい。これにより、正と負の電流経路に偏りがなくなるため、回路内のコモンモードノイズの発生を抑制することができる。 In the second embodiment as well, as in the first embodiment, the current limiting reactor 2 may be divided into a positive generatrix and a negative generatrix of the AC power supply 1 and arranged. As a result, the positive and negative current paths are not biased, so that the generation of common mode noise in the circuit can be suppressed.
実施の形態3.
 以下、本願の実施の形3を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
 図18は、実施の形態1による電力変換装置300の概略構成を示すブロック図である。
 本実施の形態3の電力変換装置300は、DC/DCコンバータ320の構成が、実施の形態1に示したDC/DCコンバータ20の構成と異なる。
Embodiment 3.
Hereinafter, the third embodiment of the present application will be described with reference to the parts different from the first embodiment. The same parts as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
FIG. 18 is a block diagram showing a schematic configuration of the power conversion device 300 according to the first embodiment.
In the power conversion device 300 of the third embodiment, the configuration of the DC / DC converter 320 is different from the configuration of the DC / DC converter 20 shown in the first embodiment.
 DC/DCコンバータ320は、この場合、降圧チョッパで構成され、半導体スイッチング素子21a、21bと、電流制御用のリアクトル24とを備える。
 本実施の形態3では、本実施の形態1のように負荷5にバッテリのような定電圧源が接続された場合を想定しており、制御回路30の構成は、出力電圧が固定値で、入力交流電流を任意の値に制御する場合のものとする。この場合、本実施の形態の制御回路の構成は、実施の形態1の制御回路と同様となる。
In this case, the DC / DC converter 320 is composed of a step-down chopper, and includes semiconductor switching elements 21a and 21b and a reactor 24 for current control.
In the third embodiment, it is assumed that a constant voltage source such as a battery is connected to the load 5 as in the first embodiment. In the configuration of the control circuit 30, the output voltage is a fixed value. It is assumed that the input AC current is controlled to an arbitrary value. In this case, the configuration of the control circuit of the present embodiment is the same as that of the control circuit of the first embodiment.
 次に、本実施の形態3による電力変換装置300の動作を説明する。
 電力変換装置300の動作は、本実施の形態1による電力変換装置100の動作と同様であるため説明は割愛する。また、AC/DCコンバータ10の動作も、本実施の形態1と同様であるため説明は割愛する。
 DC/DCコンバータ320の動作は、本実施の形態1、2の絶縁型のDC/DCコンバータ20と異なる。DC/DCコンバータ320は、制御回路30からのゲート信号321に基づき、直流コンデンサ3の直流電圧を、半導体スイッチング素子21aと半導体スイッチング素子21bのスイッチング動作により矩形波にし、電流制御用のリアクトル24と平滑コンデンサ4にて直流電圧へと平滑化することで、降圧した電圧を生成する。
Next, the operation of the power conversion device 300 according to the third embodiment will be described.
Since the operation of the power conversion device 300 is the same as the operation of the power conversion device 100 according to the first embodiment, the description thereof will be omitted. Further, since the operation of the AC / DC converter 10 is the same as that of the first embodiment, the description thereof will be omitted.
The operation of the DC / DC converter 320 is different from that of the isolated DC / DC converter 20 of the first and second embodiments. Based on the gate signal 321 from the control circuit 30, the DC / DC converter 320 converts the DC voltage of the DC capacitor 3 into a rectangular wave by the switching operation of the semiconductor switching element 21a and the semiconductor switching element 21b, and together with the reactor 24 for current control. By smoothing to a DC voltage with the smoothing capacitor 4, a stepped-down voltage is generated.
 また、制御回路30は、DC/DCコンバータ320が絶縁トランスを有さない構成であるため、実施の形態1に示した、デューティ比信号Duty_PFC、デューティ比信号Duty_Vdcの生成にて用いた巻数比Nを1として演算する。その他の制御回路30の動作は、実施の形態1と同様となるため、説明は割愛する。 Further, since the control circuit 30 has a configuration in which the DC / DC converter 320 does not have an isolation transformer, the turns ratio N used in the generation of the duty ratio signal Duty_PFC and the duty ratio signal Duty_Vdc shown in the first embodiment. Is calculated as 1. Since the operation of the other control circuits 30 is the same as that of the first embodiment, the description thereof will be omitted.
 このような構成の電力変換装置300においても、実施の形態1と同様の効果を奏し、直流コンデンサが担保するエネルギーを大幅に低減でき、直流コンデンサを低容量化させ、小型の電力変換装置を実現できる。 Even in the power conversion device 300 having such a configuration, the same effect as that of the first embodiment can be obtained, the energy secured by the DC capacitor can be significantly reduced, the capacity of the DC capacitor can be reduced, and a small power conversion device can be realized. it can.
 なお、本実施の形態2のように負荷5にバッテリのような定電圧源が接続された場合を想定し、出力電圧が固定で、出力直流電流を任意の値に制御する場合は、制御回路30の構成を、本実施の形態2の制御回路230に変更して動作させてもよい。この場合、制御回路の動作は、デューティ比信号Duty_ioutの生成において用いる巻線比Nを1とすること以外は、実施の形態2と同様となる。
 また、DC/DCコンバータ20は、非絶縁のDC/DCコンバータであればどのような構成でもよく、昇圧チョッパ、昇降圧チョッパで構成してもよい。
Assuming that a constant voltage source such as a battery is connected to the load 5 as in the second embodiment, when the output voltage is fixed and the output DC current is controlled to an arbitrary value, a control circuit is used. The configuration of 30 may be changed to the control circuit 230 of the second embodiment and operated. In this case, the operation of the control circuit is the same as that of the second embodiment except that the winding ratio N used in the generation of the duty ratio signal Duty_iout is set to 1.
Further, the DC / DC converter 20 may have any configuration as long as it is a non-insulated DC / DC converter, and may be configured by a step-up chopper and a buck-boost chopper.
 また、電圧脈動の下限値は、DC/DCコンバータ320のデューティ比に基づいて導出してもよい。これにより、負荷電圧に基づいた電圧脈動の下限値を設定できるため、力率制御を安定化できる。 Further, the lower limit of the voltage pulsation may be derived based on the duty ratio of the DC / DC converter 320. As a result, the lower limit value of the voltage pulsation based on the load voltage can be set, so that the power factor control can be stabilized.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
1 交流電源(交流回路)、3 直流コンデンサ、10 AC/DCコンバータ、20,320 DC/DCコンバータ、23 高周波絶縁トランス(絶縁トランス)、23a 一次側コイル、23b 二次側コイル、30,230 制御回路(制御部)、100,300 電力変換装置。 1 AC power supply (AC circuit), 3 DC capacitor, 10 AC / DC converter, 20,320 DC / DC converter, 23 high frequency isolation transformer (isolation transformer), 23a primary side coil, 23b secondary side coil, 30,230 control Circuit (control unit), 100, 300 power converter.

Claims (12)

  1. 交流回路からの交流電力を直流電力に変換し、前記交流電力の力率改善制御を行うAC/DCコンバータと、該AC/DCコンバータの直流側に接続され、直流電力の電圧変換を行うDC/DCコンバータと、前記AC/DCコンバータと前記DC/DCコンバータとの間の正負の直流母線間に接続される直流コンデンサと、前記AC/DCコンバータおよび前記DC/DCコンバータを制御する制御部と、を備え、
    前記制御部は、前記直流コンデンサの直流電圧を、前記交流回路からの交流電圧のゼロクロス位相で最小値、ピーク位相で最大値となる波形を有する電圧脈動が重畳された直流電圧に制御するリプル電圧指令値を生成し、前記リプル電圧指令値を用いて、前記AC/DCコンバータ、前記DC/DCコンバータの少なくとも一方を制御する、
    電力変換装置。
    An AC / DC converter that converts AC power from an AC circuit into DC power and controls the power factor improvement of the AC power, and a DC / DC that is connected to the DC side of the AC / DC converter and performs voltage conversion of DC power. A DC converter, a DC capacitor connected between the positive and negative DC bus lines between the AC / DC converter and the DC / DC converter, a control unit that controls the AC / DC converter and the DC / DC converter, and the like. With
    The control unit controls the DC voltage of the DC capacitor to a DC voltage on which a voltage pulsation having a waveform having a waveform that becomes a minimum value at the zero cross phase and a maximum value at the peak phase of the AC voltage from the AC circuit is superimposed. A command value is generated, and at least one of the AC / DC converter and the DC / DC converter is controlled by using the ripple voltage command value.
    Power converter.
  2. 前記制御部は、前記電圧脈動の最大値が設定された第1値以下となるように前記リプル電圧指令値を調整する最大値制限制御と、前記電圧脈動の最小値が設定された第2値以上となるように前記リプル電圧指令値を調整する最小値制限制御と、の少なくとも一方を行う、
    請求項1に記載の電力変換装置。
    The control unit adjusts the ripple voltage command value so that the maximum value of the voltage pulsation is equal to or less than the set first value, and the second value in which the minimum value of the voltage pulsation is set. At least one of the minimum value limit control for adjusting the ripple voltage command value so as to be as described above is performed.
    The power conversion device according to claim 1.
  3. 前記AC/DCコンバータは、入力された前記交流電圧を整流して昇圧する昇圧型AC/DCコンバータであり、
    前記制御部は、前記電圧脈動の最大値が、前記交流電圧の最大値以上となるように、前記リプル電圧指令値を調整する、
    請求項1または請求項2に記載の電力変換装置。
    The AC / DC converter is a step-up AC / DC converter that rectifies and boosts the input AC voltage.
    The control unit adjusts the ripple voltage command value so that the maximum value of the voltage pulsation is equal to or higher than the maximum value of the AC voltage.
    The power conversion device according to claim 1 or 2.
  4. 前記電圧脈動は、前記交流電圧に同期した正弦波を全波整流した波形を有する、
    請求項1から請求項3のいずれか1項に記載の電力変換装置。
    The voltage pulsation has a waveform obtained by full-wave rectifying a sine wave synchronized with the AC voltage.
    The power conversion device according to any one of claims 1 to 3.
  5. 前記正弦波の振幅の中心となる基準電圧が、前記交流電圧の最大値以下となる構成において、
    前記制御部は、
    前記電圧脈動の振幅が、前記交流電圧の最大値と前記基準電圧との差以上となるように、前記リプル電圧指令値を調整する、
    請求項4に記載の電力変換装置。
    In a configuration in which the reference voltage at the center of the amplitude of the sine wave is equal to or less than the maximum value of the AC voltage.
    The control unit
    The ripple voltage command value is adjusted so that the amplitude of the voltage pulsation is equal to or greater than the difference between the maximum value of the AC voltage and the reference voltage.
    The power conversion device according to claim 4.
  6. 前記第1値および前記第2値は、前記制御部の演算能力、前記制御部の応答速度、前記電力変換装置を構成する半導体素子の耐圧、の少なくとも一つに基づいて決定される、
    請求項2に記載の電力変換装置。
    The first value and the second value are determined based on at least one of the computing power of the control unit, the response speed of the control unit, and the withstand voltage of the semiconductor element constituting the power conversion device.
    The power conversion device according to claim 2.
  7. 前記DC/DCコンバータの出力電圧が一定であり、前記交流回路からの交流電流を設定された第1電流指令値に追従させる構成において、
    前記制御部は、
    前記第1電流指令値に基づいた前記AC/DCコンバータの制御により前記交流電流を制御し、
    前記リプル電圧指令値に基づいた前記DC/DCコンバータの制御により、前記直流コンデンサの直流電圧を前記電圧脈動が重畳された直流電圧に制御する、
    請求項1から請求項6のいずれか1項に記載の電力変換装置。
    In a configuration in which the output voltage of the DC / DC converter is constant and the AC current from the AC circuit follows the set first current command value.
    The control unit
    The alternating current is controlled by controlling the AC / DC converter based on the first current command value.
    By controlling the DC / DC converter based on the ripple voltage command value, the DC voltage of the DC capacitor is controlled to the DC voltage on which the voltage pulsation is superimposed.
    The power conversion device according to any one of claims 1 to 6.
  8. 前記DC/DCコンバータの出力電圧が一定であり、前記DC/DCコンバータの出力電流を設定された第2電流指令値に追従させる制御において、
    前記制御部は、
    前記第2電流指令値に基づいた前記DC/DCコンバータの制御により前記出力電流を制御し、
    前記リプル電圧指令値に基づいた前記AC/DCコンバータの制御により、前記直流コンデンサの直流電圧を前記電圧脈動が重畳された直流電圧に制御する、
    請求項1から請求項6のいずれか1項に記載の電力変換装置。
    In the control in which the output voltage of the DC / DC converter is constant and the output current of the DC / DC converter follows the set second current command value.
    The control unit
    The output current is controlled by controlling the DC / DC converter based on the second current command value.
    By controlling the AC / DC converter based on the ripple voltage command value, the DC voltage of the DC capacitor is controlled to the DC voltage on which the voltage pulsation is superimposed.
    The power conversion device according to any one of claims 1 to 6.
  9. 前記制御部は、
    前記第2電流指令値あるいは検出された前記DC/DCコンバータの出力電流と、検出された前記DC/DCコンバータの出力電圧と、を用いて、前記DC/DCコンバータの出力電力の瞬時電力値を導出し、
    前記瞬時電力値に基づいて、前記AC/DCコンバータの前記力率改善制御を行う、
    請求項8に記載の電力変換装置。
    The control unit
    Using the second current command value or the detected output current of the DC / DC converter and the detected output voltage of the DC / DC converter, the instantaneous power value of the output power of the DC / DC converter is determined. Derived and
    Based on the instantaneous power value, the power factor improvement control of the AC / DC converter is performed.
    The power conversion device according to claim 8.
  10. 前記制御部は、
    前記第2電流指令値に対して、前記交流電圧の2倍の周期で、且つ、前記交流電圧の位相から90±第3値度、位相のずれた波形を重畳し、
    前記第3値は、前記電圧脈動が重畳された前記直流コンデンサの直流電圧が、前記交流回路からの前記交流電圧以上となる値に設定される、
    請求項8または請求項9に記載の電力変換装置。
    The control unit
    A waveform that is 90 ± third value degree out of phase with the phase of the AC voltage is superimposed on the second current command value at a period twice that of the AC voltage.
    The third value is set to a value at which the DC voltage of the DC capacitor on which the voltage pulsation is superimposed is equal to or higher than the AC voltage from the AC circuit.
    The power conversion device according to claim 8 or 9.
  11. 前記DC/DCコンバータは、
    一次側コイルと二次側コイルとを有する絶縁トランスを備えた絶縁型DC/DCコンバータであり、
    前記制御部は、前記電圧脈動の最小値を前記絶縁トランスの巻数比に基づいて導出する、
    請求項1から請求項10のいずれか1項に記載の電力変換装置。
    The DC / DC converter
    An isolated DC / DC converter equipped with an isolation transformer having a primary coil and a secondary coil.
    The control unit derives the minimum value of the voltage pulsation based on the turns ratio of the isolation transformer.
    The power conversion device according to any one of claims 1 to 10.
  12. 前記制御部は、
    前記電圧脈動の最小値を、前記DC/DCコンバータのデューティ比に基づいて導出する、
    請求項1から請求項10のいずれか1項に記載の電力変換装置。
    The control unit
    The minimum value of the voltage pulsation is derived based on the duty ratio of the DC / DC converter.
    The power conversion device according to any one of claims 1 to 10.
PCT/JP2019/039799 2019-10-09 2019-10-09 Power conversion device WO2021070279A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/039799 WO2021070279A1 (en) 2019-10-09 2019-10-09 Power conversion device
JP2021551000A JP7183445B2 (en) 2019-10-09 2019-10-09 power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039799 WO2021070279A1 (en) 2019-10-09 2019-10-09 Power conversion device

Publications (1)

Publication Number Publication Date
WO2021070279A1 true WO2021070279A1 (en) 2021-04-15

Family

ID=75437346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039799 WO2021070279A1 (en) 2019-10-09 2019-10-09 Power conversion device

Country Status (2)

Country Link
JP (1) JP7183445B2 (en)
WO (1) WO2021070279A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255413A (en) * 2012-05-10 2013-12-19 Nippon Soken Inc Power conversion device
JP2014096976A (en) * 2012-10-10 2014-05-22 Daikin Ind Ltd Direct-type power conversion device and method of controlling direct-type power conversion device
WO2016075996A1 (en) * 2014-11-11 2016-05-19 三菱電機株式会社 Power conversion device
JP2016152665A (en) * 2015-02-17 2016-08-22 株式会社日立製作所 Vehicle driving system
WO2017134824A1 (en) * 2016-02-05 2017-08-10 俊蔵 大島 Power supply device
JP6559907B1 (en) * 2018-04-24 2019-08-14 株式会社東芝 Power conversion device and constant acquisition method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255413A (en) * 2012-05-10 2013-12-19 Nippon Soken Inc Power conversion device
JP2014096976A (en) * 2012-10-10 2014-05-22 Daikin Ind Ltd Direct-type power conversion device and method of controlling direct-type power conversion device
WO2016075996A1 (en) * 2014-11-11 2016-05-19 三菱電機株式会社 Power conversion device
JP2016152665A (en) * 2015-02-17 2016-08-22 株式会社日立製作所 Vehicle driving system
WO2017134824A1 (en) * 2016-02-05 2017-08-10 俊蔵 大島 Power supply device
JP6559907B1 (en) * 2018-04-24 2019-08-14 株式会社東芝 Power conversion device and constant acquisition method

Also Published As

Publication number Publication date
JP7183445B2 (en) 2022-12-05
JPWO2021070279A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
JP6569839B1 (en) Power converter
US9525364B2 (en) Smart grid power converter
US7639520B1 (en) Efficient power supply
Ahmed et al. A family of high-frequency isolated single-phase Z-source AC–AC converters with safe-commutation strategy
US8503205B2 (en) AC/DC converter with a PFC and a DC/DC converter
US20150249394A1 (en) Interleaved resonant converter
US20120300515A1 (en) AC/DC Converter with a PFC and a DC/DC Converter
US20040202012A1 (en) Regulated AC to DC converter for aerospace applications
Nan et al. Dual active bridge converter with PWM control for solid state transformer application
CN108539984B (en) PFWM control system of switching power supply circuit
Lai et al. New integrated control technique for two-stage server power to improve efficiency under the light-load condition
CN111542999A (en) Power conversion device
JP7090745B2 (en) Power converter and DC distribution system
JP2020080625A (en) Power source device
Pool-Mazun et al. A direct switch-mode three-phase AC to DC rectifier with high-frequency isolation for fast EV battery chargers
Kim et al. Power factor improvement of flyback PFC converter operating at the light load
NO323385B1 (en) Control method and device for inverters using a TSSC
JP7183445B2 (en) power converter
US11095206B2 (en) AC-DC converter with boost front end having flat current and active blanking control
JP2019037077A (en) Power conversion circuit and control method thereof
Krishnamoorthy et al. 3-phase AC-DC converter topologies with higher frequency transformer isolation for utility grid interface
Tibola et al. A single-stage three-phase high power factor rectifier with high-frequency isolation and regulated DC-bus based on the DCM SEPIC converter
Rezaei et al. A new active power decoupling method for single phase PWM rectifiers
KR101954636B1 (en) Simple control circuit of switching rectifier with high power factor
Kalpana High performance three-phase PFC rectifiers for telecom power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948747

Country of ref document: EP

Kind code of ref document: A1