JP2016152238A - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
JP2016152238A
JP2016152238A JP2015027150A JP2015027150A JP2016152238A JP 2016152238 A JP2016152238 A JP 2016152238A JP 2015027150 A JP2015027150 A JP 2015027150A JP 2015027150 A JP2015027150 A JP 2015027150A JP 2016152238 A JP2016152238 A JP 2016152238A
Authority
JP
Japan
Prior art keywords
power semiconductor
semiconductor element
peripheral
turned
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015027150A
Other languages
Japanese (ja)
Other versions
JP6238922B2 (en
Inventor
松田 哲也
Tetsuya Matsuda
哲也 松田
真一 井浦
Shinichi Iura
真一 井浦
哲男 本宮
Tetsuo Motomiya
哲男 本宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015027150A priority Critical patent/JP6238922B2/en
Publication of JP2016152238A publication Critical patent/JP2016152238A/en
Application granted granted Critical
Publication of JP6238922B2 publication Critical patent/JP6238922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a power semiconductor device in which non-uniformity of heat generation between power semiconductor elements when the power semiconductor elements are turned on can be relaxed.SOLUTION: In a power semiconductor device, a plurality of power semiconductor elements are arranged from a central part to a peripheral part on each of two conductor substrates facing each other, main electrodes of each power semiconductor element being electrically joined to the conductor substrates, respectively, and a current flowing from one conductor substrate to the other conductor substrate is switch-controlled by applying a control signal to a control electrode of each of the plurality of power semiconductor elements. When the plurality of power semiconductor elements are turned on in the power semiconductor device, power semiconductor elements disposed at the peripheral part are turned on after power semiconductor elements disposed at the central part are turned on.SELECTED DRAWING: Figure 1

Description

この発明は、導電体の基板上に配置された多数の電力用半導体素子に並列に大電流を流すよう構成された電力用半導体装置のオン時の渦電流損失低減に関するものである。   The present invention relates to reduction of eddy current loss when a power semiconductor device configured to flow a large current in parallel to a large number of power semiconductor elements arranged on a conductive substrate.

電力用半導体素子は、電流を制御する様々な分野で用いられている。1個の電力用半導体素子で制御できない大電流を制御するためには、電力用半導体素子が並列接続されたモジュールが用いられる。非常に電流が大きい電流を制御するために、銅などの導電体の2枚の基板の間に多数の電力用半導体素子を配置したモジュールを用いて、配置された多数の電力用半導体素子を同時にオンオフすることにより2枚の導電体基板の間に流れる大電流をスイッチング制御することが行われている。   Power semiconductor elements are used in various fields for controlling current. In order to control a large current that cannot be controlled by one power semiconductor element, a module in which power semiconductor elements are connected in parallel is used. In order to control a very large current, a module in which a large number of power semiconductor elements are arranged between two substrates of a conductor such as copper is used. Switching on and off a large current flowing between two conductive substrates by turning on and off is performed.

このような構成においては、多数の電力用半導体素子の電流分担が均一になるようにすることが課題とされ、多数の電力用半導体素子をできるだけ同時にスイッチングする方法が提案されている。例えば特許文献1では、各半導体スイッチへの制御配線の長さを等しくしたり、外周に近い方にターンオン時間の短い半導体スイッチチップを配したりする構成が提案されている。   In such a configuration, it is an object to make the current sharing of a large number of power semiconductor elements uniform, and a method of switching a large number of power semiconductor elements as simultaneously as possible has been proposed. For example, Patent Document 1 proposes a configuration in which the length of the control wiring to each semiconductor switch is made equal, or a semiconductor switch chip with a short turn-on time is arranged closer to the outer periphery.

一方、特許文献2では、一つの電力用半導体素子により電流をスイッチング制御する場合、素子の周辺部に電流が偏って流れる、いわゆる表皮効果の対策が必要であることが記載されている。   On the other hand, Patent Document 2 describes that when current switching control is performed by a single power semiconductor element, it is necessary to take measures against a so-called skin effect in which current flows unevenly in the periphery of the element.

特開2000−082773号公報Japanese Patent Laid-Open No. 2000-082773 特開2003−017512号公報JP 2003-017512 A

特許文献1に記載される、各半導体スイッチへの制御配線の長さを等しくしたり、外周に近い方にターンオン時間の短い半導体スイッチチップを配したりする構成によれば、通常のスイッチング回路の知識では、電流分担が均一になると考えられる。しかし、後述の、本発明者らが見出した要因に基づけば、電流オン時の電流分担はより不均一となり、周辺部に配置された半導体スイッチと中央部に配置された半導体スイッチの電流オン時の発熱がより不均一となる。   According to the configuration described in Patent Document 1, the length of the control wiring to each semiconductor switch is made equal, or the semiconductor switch chip having a short turn-on time is arranged near the outer periphery. According to knowledge, the current sharing is considered to be uniform. However, based on the factors found by the present inventors, which will be described later, the current sharing when the current is turned on becomes more uneven, and when the semiconductor switch arranged in the peripheral part and the semiconductor switch arranged in the central part are turned on The heat generation becomes more uneven.

また、特許文献2に記載されている、一つの電力用半導体素子において発生するとされる表皮効果が、多数の電力用半導体素子を並列に動作させる構成の電力用半導体装置においても発生するのかどうか、対策が必要かどうかは、少なくとも特許文献2からは明らかではない。しかしながら、後述するように、本発明者らの考察により、多数の電力用半導体素子を並列に動作させる構成の電力用半導体装置においても表皮効果が発生し、この原因による電力用半導体素子間の発熱の不均一を緩和する対策が必要となる場合があることが明らかとなった。   Further, whether or not the skin effect described in Patent Document 2 that occurs in one power semiconductor element also occurs in a power semiconductor device configured to operate a number of power semiconductor elements in parallel, Whether or not a countermeasure is necessary is not clear at least from Patent Document 2. However, as will be described later, due to the consideration of the present inventors, a skin effect also occurs in a power semiconductor device configured to operate a large number of power semiconductor elements in parallel, and heat is generated between the power semiconductor elements due to this cause. It has become clear that measures to alleviate the non-uniformity may be required.

この発明は、上記のような問題点を解決するためになされたものであり、特にターンオン時の電力用半導体素子間の発熱の不均一を緩和できる電力用半導体装置を得ることを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a power semiconductor device that can alleviate uneven heat generation between power semiconductor elements at the time of turn-on.

本発明は、対向する2枚の導電体基板にそれぞれ主電極が電気的に接合された電力用半導体素子が導電体基板の中央部から周辺部に亘って複数配置され、一方の導電体基板から他方の導電体基板に流れる電流を、複数の電力用半導体素子の制御電極に制御信号を印加することによりスイッチング制御する電力用半導体装置において、複数の電力用半導体素子がターンオンするとき、周辺部に配置された電力用半導体素子は、中央部に配置された電力用半導体素子よりも遅れてターンオンするようにした。   In the present invention, a plurality of power semiconductor elements each having a main electrode electrically joined to two opposing conductor substrates are arranged from the central portion to the peripheral portion of the conductor substrate. In a power semiconductor device that controls switching of the current flowing through the other conductor substrate by applying a control signal to the control electrodes of the plurality of power semiconductor elements, when the plurality of power semiconductor elements are turned on, The arranged power semiconductor element was turned on later than the arranged power semiconductor element.

この発明によれば、周辺部に配置された電力用半導体素子の発熱が抑制され、各電力用半導体素子の発熱の不均一が緩和された電力用半導体装置を提供できる。   According to the present invention, it is possible to provide a power semiconductor device in which heat generation of the power semiconductor elements arranged in the peripheral portion is suppressed and unevenness of heat generation of each power semiconductor element is reduced.

本発明の実施の形態1による電力用半導体装置の概略構成を示す上面図である。It is a top view which shows schematic structure of the power semiconductor device by Embodiment 1 of this invention. 本発明を適用する電力用半導体装置の上面図および側面図である。It is a top view and a side view of a power semiconductor device to which the present invention is applied. 本発明の実施の形態1による電力用半導体装置の動作を示す線図である。It is a diagram which shows operation | movement of the semiconductor device for electric power by Embodiment 1 of this invention. 比較例としての従来の電力用半導体装置の動作を説明する線図である。It is a diagram explaining operation of a conventional power semiconductor device as a comparative example. 本発明の実施の形態1による電力用半導体装置の動作を説明する線図である。It is a diagram explaining operation | movement of the power semiconductor device by Embodiment 1 of this invention. 本発明の実施の形態1による電力用半導体装置の別の動作を説明する図である。It is a figure explaining another operation | movement of the power semiconductor device by Embodiment 1 of this invention. 比較例としての従来の電力用半導体装置の状態を説明する線図である。It is a diagram explaining the state of the conventional power semiconductor device as a comparative example. 本発明の実施の形態1による電力用半導体装置の効果を図7と対比して説明する図である。It is a figure explaining the effect of the power semiconductor device by Embodiment 1 of this invention in contrast with FIG. 本発明の実施の形態1による電力用半導体装置の別の概略構成を示す上面図である。It is a top view which shows another schematic structure of the power semiconductor device by Embodiment 1 of this invention. 本発明の実施の形態1による電力用半導体装置のさらに別の概略構成を示す上面図である。It is a top view which shows another schematic structure of the power semiconductor device by Embodiment 1 of this invention. 本発明の実施の形態1による電力用半導体装置のさらに別の概略構成を示す上面図である。It is a top view which shows another schematic structure of the power semiconductor device by Embodiment 1 of this invention. 本発明の実施の形態1による電力用半導体装置のさらに別の概略構成を示す上面図および側面図である。It is the top view and side view which show another schematic structure of the power semiconductor device by Embodiment 1 of this invention. 本発明の実施の形態3による電力用半導体装置の概略構成を示す上面図である。It is a top view which shows schematic structure of the semiconductor device for electric power by Embodiment 3 of this invention. 本発明の実施の形態3による電力用半導体装置の別の概略構成を示す上面図である。It is a top view which shows another schematic structure of the semiconductor device for electric power by Embodiment 3 of this invention. 本発明の実施の形態3による電力用半導体装置のさらに別の概略構成を示す上面図である。It is a top view which shows another schematic structure of the power semiconductor device by Embodiment 3 of this invention.

実施の形態1.
図2は本発明を適用する電力用半導体装置1を示す図である。図2(a)は後述の導電体基板51を取り除いて示す上面図であり、図2(b)は側面図である。図2に示すように、電力用半導体装置1は、対向する導電体基板51、および導電体基板52の2枚の導電体基板の間に複数の電力用半導体素子3が配置されている。電力用半導体素子3の主電流が流れる2つの主電極(例えばIGBTであればエミッタとコレクタ、MOSFETであればドレインとソース)がそれぞれ、導電体基板51および導電体基板52に接合されている。それぞれの電力用半導体素子3は制御電極(例えばIGBTやMOSFETのゲート)を備えており、制御電極にオンオフの制御信号を印加することにより電力用半導体素子3がオンオフする。電力用半導体素子3がオンのときに導電体基板51と導電体基板52の間に電流が流れる。
Embodiment 1 FIG.
FIG. 2 is a diagram showing a power semiconductor device 1 to which the present invention is applied. FIG. 2A is a top view in which a conductor substrate 51 described later is removed, and FIG. 2B is a side view. As shown in FIG. 2, in the power semiconductor device 1, a plurality of power semiconductor elements 3 are disposed between two conductive substrates, that is, a conductive substrate 51 and a conductive substrate 52 that face each other. Two main electrodes (for example, an emitter and a collector in the case of IGBT and a drain and a source in the case of MOSFET) through which the main current of the power semiconductor element 3 flows are joined to the conductor substrate 51 and the conductor substrate 52, respectively. Each power semiconductor element 3 includes a control electrode (for example, gate of IGBT or MOSFET), and the power semiconductor element 3 is turned on / off by applying an on / off control signal to the control electrode. A current flows between the conductive substrate 51 and the conductive substrate 52 when the power semiconductor element 3 is on.

電力用半導体素子がオフからオンとなる、すなわちターンオンするときの電流立ち上がり時間は1μs程度と高速であり、立ち上がり時には電流に高周波成分が多く含まれる。このように、電力用半導体素子のターンオン時には高周波成分が多く含まれるため、電流が導体の表皮に集中して流れる、いわゆる表皮効果が生じる。電流立ち上がり時間1μs程度に相当する銅の表皮厚は0.1mm程度である。電力用半導体素子は銅より高抵抗で、表皮厚は厚くなり、数10mm程度である。一方、図2に示す、本発明を適用する大電流を通電する電力用半導体装置の幅(導電体基板の幅)は数百mmである。高周波の電流が断面積の大きなブスバー等に流れる場合、ブスバーの導体の表面に集中することは良く知られている。同様に、電力用半導体装置は幅広の大きな導電体基板上に多数の素子を並べた構造であり、導電体基板の幅が、上記表皮厚より十分大きい場合、導電体基板の面に対して直交する方向に電流が流れるため、図2(b)の矢印で示す電流6のように導電体基板の周辺部に配置された電力用半導体素子に電流が集中して流れる。   When the power semiconductor element is turned on from off, that is, when the power semiconductor element is turned on, the current rise time is as fast as about 1 μs, and at the time of rise, the current contains many high-frequency components. As described above, since many high-frequency components are included when the power semiconductor element is turned on, a so-called skin effect occurs in which current flows concentratedly on the skin of the conductor. The copper skin thickness corresponding to a current rise time of about 1 μs is about 0.1 mm. Power semiconductor elements have a higher resistance than copper and a skin thickness of about several tens of millimeters. On the other hand, the width (the width of the conductor substrate) of the power semiconductor device to which a large current is applied as shown in FIG. 2 is several hundred mm. It is well known that when a high-frequency current flows through a bus bar or the like having a large cross-sectional area, it concentrates on the surface of the bus bar conductor. Similarly, the power semiconductor device has a structure in which a large number of elements are arranged on a wide and large conductive substrate. When the width of the conductive substrate is sufficiently larger than the skin thickness, the power semiconductor device is orthogonal to the surface of the conductive substrate. Since the current flows in the direction of the current, the current flows in a concentrated manner in the power semiconductor element arranged in the peripheral portion of the conductor substrate as the current 6 indicated by the arrow in FIG.

この電流の立ち上がり時に生じる、周辺部への電流の集中による複数の電力用半導体素子の発熱の不均一を緩和させるために本発明が考案された。図1は、本発明の実施の形態1による電力用半導体装置1の動作を説明する図である。図1(a)は、入力された制御信号がオンとなった直後の、ステップ1の動作状態を示す図である。図において、白抜きの素子10はオフ状態の素子で、ここでは周辺部電力用半導体素子10と呼ぶ。斜線で示した素子12はオン状態の素子を表し、ここでは中央部電力用半導体素子12と呼ぶ。図1(b)は、制御信号がオンとなった時刻から少し時間が経過したステップ2の動作状態を示す図である。図2(b)に示す様にステップ2においてはすべての電力用半導体素子3がONしている。以上のように、電力用半導体素子3のうち周辺部に配置されている一部の電力用半導体素子3を周辺部電力用半導体素子10として、それ以外の電力用半導体素子3である中央部電力用半導体素子12よりも遅れてオン状態とする。周辺部電力用半導体素子10の数は限定しないが、電力用半導体素子3のうち、少なくとも周辺に配置されている一部の電力用半導体素子3を周辺部電力用半導体素子10として、それ以外の電力用半導体素子である中央部電力用半導体素子12よりも遅れてターンオンするように構成すればよい。また、中央部電力用半導体素子12が中央部の極一部、極端な場合一つの素子であり、それ以外を周辺部電力用半導体素子10として、中央部電力用半導体素子12よりも遅れてターンオンするように構成してもよい。   The present invention has been devised in order to alleviate non-uniformity of heat generation of a plurality of power semiconductor elements due to current concentration at the peripheral portion, which occurs at the time of rising of this current. FIG. 1 is a diagram for explaining the operation of the power semiconductor device 1 according to the first embodiment of the present invention. FIG. 1A is a diagram illustrating the operation state of step 1 immediately after the input control signal is turned on. In the figure, a white element 10 is an off-state element, and is referred to as a peripheral power semiconductor element 10 herein. An element 12 indicated by hatching represents an on-state element, and is referred to herein as a central power semiconductor element 12. FIG. 1B is a diagram illustrating the operation state of step 2 after a lapse of time from the time when the control signal is turned on. As shown in FIG. 2B, in step 2, all the power semiconductor elements 3 are turned on. As described above, a part of the power semiconductor elements 3 arranged in the peripheral portion of the power semiconductor element 3 is used as the peripheral power semiconductor element 10, and the central power that is the other power semiconductor element 3 is used. The semiconductor element 12 is turned on later than the semiconductor element 12. The number of the peripheral power semiconductor elements 10 is not limited. Among the power semiconductor elements 3, at least a part of the power semiconductor elements 3 arranged in the periphery are used as the peripheral power semiconductor elements 10. What is necessary is just to comprise so that it may turn on later than the center part power semiconductor element 12 which is a power semiconductor element. Further, the central power semiconductor element 12 is a part of the central part, in the extreme case, one element, and the other part is the peripheral power semiconductor element 10 and is turned on later than the central power semiconductor element 12. You may comprise.

図3は電力用半導体素子がオンするタイミングを示す図である。図3(a)は中央部電力用半導体素子12の動作を示す図である。図3(b)は、周辺部電力用半導体素子10の動作を示す図である。本発明による電力用半導体装置では、電力用半導体素子がターンオンするとき、中央部電力用半導体素子12が周辺部電力用半導体素子10よりも先にターンオンし、中央部電力用半導体素子12のターンオンから時間差Δt後に周辺部電力用半導体素子10がターンオンするように構成されている。このような状態を実現する具体的な構成は、実施の形態2以降で説明する。この時間差で電力用半導体素子がターンオンする効果を説明する前に、全素子が同時にオンとなる従来の場合の問題点について考察する。   FIG. 3 is a diagram showing the timing when the power semiconductor element is turned on. FIG. 3A shows the operation of the central power semiconductor element 12. FIG. 3B is a diagram illustrating the operation of the peripheral power semiconductor element 10. In the power semiconductor device according to the present invention, when the power semiconductor element is turned on, the central power semiconductor element 12 is turned on before the peripheral power semiconductor element 10, and the central power semiconductor element 12 is turned on. The peripheral power semiconductor element 10 is configured to turn on after the time difference Δt. A specific configuration for realizing such a state will be described in the second and subsequent embodiments. Before explaining the effect of turning on the power semiconductor element with this time difference, the problem in the conventional case where all the elements are turned on simultaneously will be considered.

図4は、全素子が同時にオンとなる従来の場合の発熱の時間依存性を説明する図である。図4(a)は電力用半導体装置の通電パターンで、ある電流値のオンとオフが繰り返される。図4(b)は図4(a)の楕円で囲った部分、即ち通電パターンの立ち上がり部を時間を拡大して示す図である。図4(b)に示すように、電力用半導体装置、即ち導電体基板に急激に立ち上がる電流が流れるため高周波成分を多く含む電流が流れ、電流はその後一定になり低周波成分が増える。図4(c)は、図4(b)の電流を与えた場合の電力用半導体装置1内の周辺部と中央部の電力用半導体素子の発熱の時間依存性を示す図である。曲線20が周辺部に配置された電力用半導体素子の発熱の時間依存性を、曲線22が中央部に配置された電力用半導体素子の発熱の時間依存性を示す。   FIG. 4 is a diagram for explaining the time dependency of heat generation in the conventional case where all elements are turned on simultaneously. FIG. 4A shows an energization pattern of the power semiconductor device, in which a certain current value is repeatedly turned on and off. FIG. 4B is an enlarged view of the portion surrounded by the ellipse in FIG. 4A, that is, the rising portion of the energization pattern. As shown in FIG. 4B, a current that rapidly rises in the power semiconductor device, that is, the conductive substrate flows, so that a current containing a large amount of high-frequency components flows, the current becomes constant thereafter, and the low-frequency components increase. FIG. 4C is a diagram showing time dependency of heat generation in the peripheral and central power semiconductor elements in the power semiconductor device 1 when the current of FIG. 4B is applied. Curve 20 shows the time dependency of the heat generation of the power semiconductor element arranged in the peripheral portion, and curve 22 shows the time dependency of the heat generation of the power semiconductor element arranged in the central portion.

高周波成分を多く含む急激に立ち上がる電流を与えた場合、上述のように、まず周辺部の電力用半導体素子に集中して電流が流れ、中央部にはほとんど電流が流れない。この場合、周辺部の電力用半導体素子は定常時の電流よりも多くの電流が流れる。特に、発熱はRI2に比例するので、発熱はより大きくなる。更に、周辺部は電流が早く立ち上がり、di/dtが大きくなりため、磁束密度Bも大きく変化し、渦電流も流れる。これにより、周辺部の電力用半導体素子の発熱は図4(c)の曲線20で示すように、より増大する。その後電流が一定になると、中央部の電力用半導体素子にも電流が流れ始めるため、電流は全体の電力用半導体素子に分散され周辺部の電力用半導体素子の発熱は低減する。また、渦電流も低減するため、発熱は低減し、最終的には抵抗と電流値のみで決まる発熱になる。 When a sudden rising current containing a lot of high frequency components is applied, as described above, first, the current flows concentrated on the peripheral power semiconductor element, and hardly flows in the center. In this case, a larger amount of current flows in the peripheral power semiconductor element than in a steady state. In particular, since the heat generation is proportional to RI 2 , the heat generation becomes larger. Furthermore, since the current rises quickly in the peripheral portion and di / dt increases, the magnetic flux density B also changes greatly, and eddy current flows. Thereby, the heat generation of the power semiconductor element in the peripheral portion is further increased as shown by the curve 20 in FIG. Thereafter, when the current becomes constant, the current begins to flow through the power semiconductor element in the central portion, so that the current is distributed to the entire power semiconductor element and heat generation in the peripheral power semiconductor element is reduced. Moreover, since eddy current is also reduced, heat generation is reduced, and finally heat generation is determined only by resistance and current value.

電流が一定になると、高周波成分は減少し低周波成分が主になる。表皮厚は周波数に逆比例であるので、低周波になれば、表皮厚は増大する。中央部は周辺からの距離が遠いため、表皮厚が厚いことに相当する。即ち、中央部には低周波の電流しか流れず、立ち上がりが遅い電流が流れる。このため、中央部の電力用半導体素子では、徐々に電流が増加し、発熱も図4(c)の曲線22に示すように徐々に増大し、ある時間になると発熱は一定値になる。中央部の電力用半導体素子の発熱は十分時間経過後の発熱を超えることはない。   When the current becomes constant, the high frequency component decreases and the low frequency component becomes mainly. Since the skin thickness is inversely proportional to the frequency, the skin thickness increases at low frequencies. Since the central part is far from the periphery, this corresponds to a thick skin. That is, only a low-frequency current flows in the central portion, and a slow current flows. For this reason, in the power semiconductor element in the central portion, the current gradually increases and the heat generation gradually increases as shown by the curve 22 in FIG. 4C, and the heat generation becomes a constant value at a certain time. The heat generation of the power semiconductor element in the center does not exceed the heat generation after a sufficient time has elapsed.

従来は、電力用半導体素子の数が少なく導電体基板が小さく、また素子自体の抵抗が大きかったため、表皮厚が大きいことから、表皮厚対導電体基板(モジュール)の大きさの比は表皮厚の方が大きいかほぼ同じで、以上で説明したような表皮効果による発熱の不均一はほとんど生じず、問題にならなかなった。   Conventionally, since the number of power semiconductor elements is small, the conductor substrate is small, and the resistance of the element itself is large, the skin thickness is large, so the ratio of the skin thickness to the size of the conductor substrate (module) is the skin thickness. Was larger or almost the same, and the non-uniformity of heat generation due to the skin effect as explained above hardly occurred and became a problem.

近年、電力用半導体素子の数が非常に多い大規模構成のパワーモジュールも開発されつつある。また、SiCなど低抵抗素子も実用化段階にある。低抵抗になると、表皮厚は抵抗率の平方根に比例するため、抵抗率が下がると表皮厚は小さくなる。これらより、今後ますます導電体基板の上の素子の、表皮厚効果による発熱の不均一が問題となる。発明者らは、この新しい課題に気づき、本願により発熱の不均一を緩和する方法を提案するものである。   In recent years, large-scale power modules having a very large number of power semiconductor elements are being developed. Moreover, low resistance elements such as SiC are also in the practical use stage. When the resistance is low, the skin thickness is proportional to the square root of the resistivity, so that the skin thickness decreases as the resistivity decreases. As a result, non-uniform heat generation due to the skin thickness effect of the elements on the conductor substrate will become a problem in the future. The inventors are aware of this new problem and propose a method for mitigating non-uniform heat generation according to the present application.

図5は、本発明による電力用半導体装置の動作および効果を説明する図である。図5(a)は、従来の状態を示す図4(b)と同じく、導電体基板に流れるトータルの電流の時間依存性を示す図である。図において、直線30で示す部分は電流が立ち上がりはじめ一定になるまでの遷移状態の導電体基板電流であり、直線32で示す部分は一定になった後の導電体基板電流である。図5(b)と図5(c)は、図3(a)と図3(b)と同じ図であり、それぞれ中央部電力用半導体素子12と周辺部電力用半導体素子10のオンオフ状態を示す図である。図5(d)は本発明の電力用半導体素子の発熱を示す図であり、曲線24が周辺部電力用半導体素子10の発熱、曲線26が中央部電力用半導体素子12の発熱を示している。   FIG. 5 is a diagram for explaining the operation and effect of the power semiconductor device according to the present invention. FIG. 5A is a diagram showing the time dependence of the total current flowing through the conductor substrate, as in FIG. 4B showing the conventional state. In the figure, a portion indicated by a straight line 30 is a conductor substrate current in a transition state until the current starts rising and becomes constant, and a portion indicated by a straight line 32 is a conductor substrate current after becoming constant. FIGS. 5B and 5C are the same as FIGS. 3A and 3B, and show the on / off states of the central power semiconductor element 12 and the peripheral power semiconductor element 10, respectively. FIG. FIG. 5D is a diagram showing the heat generation of the power semiconductor element of the present invention, where the curve 24 shows the heat generation of the peripheral power semiconductor element 10 and the curve 26 shows the heat generation of the central power semiconductor element 12. .

本発明では、まず、中央部電力用半導体素子12が先にターンオンし、中央部電力用半導体素子12には電流が流れ始める。この場合、周辺部電力用半導体素子10はオフ状態のため電流は流れていない。表皮厚は周波数の平方根に反比例する。即ち、表皮厚の値が小さいほど周波数が高く、表皮厚の値が大きいほど周波数は低い。中央部は周辺からの距離が遠いため、中央部電力用半導体素子12には、表皮厚の値が大きい低周波の電流しか流れない。従って、中央部電力用半導体素子12には表皮効果でゆっくりと電流が増大する。ただし、周辺部電力用半導体素子10はオフ状態であるので、中央部電力用半導体素子12においては、全素子が同時にターンオンした場合の中央部電力用半導体素子に比べ電流は速く立ち上がる。   In the present invention, first, the central power semiconductor element 12 is turned on first, and a current starts to flow through the central power semiconductor element 12. In this case, no current flows because the peripheral power semiconductor element 10 is off. The skin thickness is inversely proportional to the square root of the frequency. That is, the smaller the skin thickness value, the higher the frequency, and the larger the skin thickness value, the lower the frequency. Since the central portion is far from the periphery, only a low-frequency current having a large skin thickness flows through the central power semiconductor element 12. Accordingly, the current gradually increases in the central power semiconductor element 12 due to the skin effect. However, since the peripheral power semiconductor element 10 is in the off state, the current in the central power semiconductor element 12 rises faster than in the central power semiconductor element when all the elements are turned on simultaneously.

遅れて周辺部電力用半導体素子10がターンオンする。周辺部電力用半導体素子10の位置では、表皮厚の値が小さい高周波成分が流れやすい。即ち、周辺部電力用半導体素子10に急激に電流が流れる。但し、中央部電力用半導体素子12には既に電流が流れているため、全素子を同時にオンする場合に比べ、周辺部電力用半導体素子10の電流増加は小さい。少なくとも、全素子を同時にオンする場合に比べ、電流ピークは小さく発熱は小さくなり、di/dtも小さく渦電流も小さくなる。したがって、図5(d)の曲線24で示すように、周辺部電力用半導体素子10のピークの発熱は、従来の周辺部の電力用半導体素子の発熱を示す図4(c)の曲線20のピーク発熱に比べ小さくなる。   The peripheral power semiconductor element 10 is turned on with a delay. At the position of the peripheral power semiconductor element 10, a high frequency component having a small skin thickness value tends to flow. That is, a current flows rapidly through the peripheral power semiconductor element 10. However, since the current has already flowed through the central power semiconductor element 12, the increase in current in the peripheral power semiconductor element 10 is small compared to when all the elements are turned on simultaneously. At least, the current peak is small and heat generation is small, di / dt is small, and the eddy current is small as compared with the case where all the elements are turned on simultaneously. Therefore, as shown by the curve 24 in FIG. 5D, the peak heat generation in the peripheral power semiconductor element 10 is the curve 20 in FIG. 4C showing the heat generation in the conventional peripheral power semiconductor element. Smaller than peak exotherm.

なお、周辺部電力用半導体素子10をオンせずオフ状態のままの場合、オンしている素子が少ない分、電流が定常状態に達しても1個当たりの素子の発熱が高くなる。この様に、周辺部電力用半導体素子10がターンオンするタイミングは導電体基板に流れるトータルの電流値が立ち上がり始める時点と、立ち上がり一定になった時点の間の時点が良い。即ち、周辺部電力用半導体素子10は、図5(a)に示す、導電体基板の電流が一定になるまでの遷移状態30の間でターンオンするのが良い。周辺部電力用半導体素子10がオフ状態のまま電流が一定になると中央部電力用半導体素子12のみで全電流を分担することになるため、中央部電力用半導体素子12の電流が増加してしまう。以上を考慮すると、周辺部電力用半導体素子10として、最初にオフしておく素子の数と、ターンオンのタイミングを調整することでピークの発熱を最小化可能である。   Note that when the peripheral power semiconductor element 10 is not turned on and remains in an off state, the number of elements that are turned on increases the heat generation of each element even when the current reaches a steady state. Thus, the timing for turning on the peripheral power semiconductor element 10 is preferably between the time when the total current value flowing through the conductor substrate starts to rise and the time when the rise becomes constant. That is, the peripheral power semiconductor element 10 is preferably turned on during the transition state 30 shown in FIG. 5A until the current of the conductor substrate becomes constant. If the current is constant while the peripheral power semiconductor element 10 is in the OFF state, the entire current is shared only by the central power semiconductor element 12, and thus the current of the central power semiconductor element 12 increases. . In consideration of the above, peak heat generation can be minimized by adjusting the number of elements that are initially turned off and the turn-on timing of the peripheral power semiconductor element 10.

上記では、単純化のために全電力用半導体素子3を2段階でターンオンする例について説明した。2段階でターンオンするのに限らず、中央部から周辺部に向けてオンする電力用半導体素子を順次増加させるように順次ターンオンしてもよい。特に、SiC等の低抵抗の電力用半導体素子を採用した場合や、基板が大きくなると、周辺部への電流集中効果が顕著になり、オンする電力用半導体素子を中央部から周辺部に向けて順次増加させることが有効になる。この例を図6に示す。図6(a)はステップ1で中央部の電力用半導体素子4個のみオン、図6(b)はステップ2で中央部の電力用半導体素子12個のみオン、図6(c)はステップ3で中央部の電力用半導体素子24個オン、図6(d)はステップ4で全電力用半導体素子36個オンと、オンする電力用半導体素子を中央から周辺に向けて順次増加させる。なお、図6では4段階でオンする電力用半導体素子を増加させたが、4段階に限らず、n段階(nは2以上の整数)で中央部から周辺部に向けて順次ターンオンするようにすればよい。   In the above description, for the sake of simplicity, the example in which the full power semiconductor element 3 is turned on in two stages has been described. The turn-on is not limited to two stages, but the power semiconductor elements that are turned on from the center to the periphery may be sequentially turned on. In particular, when a low-resistance power semiconductor element such as SiC is employed, or when the substrate becomes large, the current concentration effect on the peripheral part becomes remarkable, and the power semiconductor element that is turned on is directed from the central part to the peripheral part. It becomes effective to increase it sequentially. An example of this is shown in FIG. 6A shows that only four central power semiconductor elements are turned on in step 1, FIG. 6B shows only two central power semiconductor elements turned on in step 2, and FIG. In FIG. 6 (d), the power semiconductor elements in the central portion are turned on, and in FIG. 6D, 36 power semiconductor elements are turned on in step 4, and the power semiconductor elements to be turned on are sequentially increased from the center toward the periphery. In FIG. 6, the number of power semiconductor elements that are turned on in four stages is increased. However, the number of power semiconductor elements is not limited to four, but is turned on sequentially from the center to the periphery in n stages (n is an integer of 2 or more). do it.

図7と図8に、三次元有限要素法にて電力用半導体素子と導電体基板をモデル化し、図5(a)に示す様な立ち上がりが速くその後一定となるパルス電流を与えて渦電流計算した場合の、電力用半導体素子の発熱の時間依存性を示す。   7 and 8 model a power semiconductor element and a conductive substrate by a three-dimensional finite element method, and give a pulse current that rises quickly and becomes constant as shown in FIG. In this case, the time dependency of the heat generation of the power semiconductor element is shown.

図では多数ある電力用半導体素子の内の、中央部真ん中と周辺の電力用半導体素子の発熱のみを示した。図7と図8において、28、29はそれぞれピークの発熱の位置を示す。図7は全電力用半導体素子を同時にオンした従来の場合の発熱を示す図である。初期では周辺の電力用半導体素子に発熱が集中しピークの発熱28をつけた後、徐々に一定値に発熱が低減する様子が示されている。一方、曲線22で示す中央部の電力用半導体素子の発熱は徐々に増加し、一定値に近づき両者は同じ発熱に近づいていく様子が示されている。図8は、本発明による、周辺部電力用半導体素子が中央部電力用半導体素子よりも遅れてターンオンした場合の発熱を示す図である。曲線26が中央部の電力用半導体素子の発熱、曲線24が周辺部の電力用半導体素子の発熱を示している。周辺部電力用半導体素子が中央部電力用半導体素子よりも遅れて、図5(a)の電流が一定になる時点の前にターンオンした場合で、周辺部電力用半導体素子がターンオンする時間をある程度最適化した計算結果を示している。図8に示す本発明による周辺部の電力用半導体素子のピーク発熱29は、図7の従来の周辺部の電力用半導体素子のピーク発熱28に比べ約1/2まで低減し、ピーク発熱が緩和されていることが解る。   In the figure, only the heat generation in the middle and the peripheral power semiconductor elements among the many power semiconductor elements is shown. 7 and 8, reference numerals 28 and 29 denote peak heat generation positions, respectively. FIG. 7 is a diagram showing heat generation in the conventional case where all power semiconductor elements are turned on simultaneously. Initially, after the heat generation is concentrated on the peripheral power semiconductor elements and the peak heat generation 28 is applied, the heat generation gradually decreases to a constant value. On the other hand, it is shown that the heat generation of the power semiconductor element in the center portion indicated by the curve 22 gradually increases, approaches a constant value, and both approach the same heat generation. FIG. 8 is a diagram showing heat generation when the peripheral power semiconductor device is turned on later than the central power semiconductor device according to the present invention. A curve 26 indicates the heat generation of the power semiconductor element in the central portion, and a curve 24 indicates the heat generation of the power semiconductor element in the peripheral portion. When the peripheral power semiconductor element is turned on later than the central power semiconductor element and before the time when the current in FIG. 5 (a) becomes constant, the peripheral power semiconductor element is turned on to some extent. The optimized calculation results are shown. The peak heat generation 29 of the peripheral power semiconductor element according to the present invention shown in FIG. 8 is reduced to about ½ compared to the peak heat generation 28 of the conventional peripheral power semiconductor element of FIG. I understand that it is.

上記では、導電体基板が正方形の場合について述べた。電力用半導体装置1として、導電体基板が正方形以外、即ち電力用半導体素子の配置が細長、丸、長方形など種々の形状が考えられる。以下では正方形以外の種々の形状の導電体基板の電力用半導体装置1について説明する。いずれのパターンにおいても、正方形の素子のパターン同様、中央部に配置された電力用半導体素子が先にターンオンし、遅れて周辺部に配置された電力用半導体素子がターンオンする、2ステップでオンする素子を変化させる場合について述べるが、n段階でオンする電力用半導体素子を増加させても良いのは言うまでもない。以下の図ではステップ1においてオンする電力用半導体素子、すなわち中央部電力用半導体素子12を斜線で示し、オンしない電力用半導体素子、すなわち周辺部電力用半導体素子10を白抜きで示す。   In the above description, the conductive substrate is square. The power semiconductor device 1 may have various shapes such as a conductive substrate having a shape other than a square, that is, a power semiconductor element arranged in an elongated shape, a circle, or a rectangle. Hereinafter, the power semiconductor device 1 of a conductor substrate having various shapes other than the square will be described. In any pattern, as in the case of the square element pattern, the power semiconductor element disposed in the central portion is turned on first, and the power semiconductor element disposed in the peripheral portion is turned on later, and is turned on in two steps. Although the case of changing the element will be described, it goes without saying that the number of power semiconductor elements that are turned on in n stages may be increased. In the following drawings, the power semiconductor element that is turned on in Step 1, that is, the central power semiconductor element 12 is indicated by hatching, and the power semiconductor element that is not turned on, that is, the peripheral power semiconductor element 10 is indicated by white.

図9の例では導電体基板が細長く素子の配置も細長い場合である。この場合、少なくとも両端に配置された周辺部電力用半導体素子10を中央部に配置された中央部電力用半導体素子12よりも遅れてターンオンする。   In the example of FIG. 9, the conductor substrate is long and the arrangement of elements is also long. In this case, at least the peripheral power semiconductor elements 10 arranged at both ends are turned on later than the central power semiconductor element 12 arranged at the center.

図10の例では導電体基板が丸い場合の配置である。この場合、周辺1周の周辺部電力用半導体素子10が、それ以外の素子である中央部電力用半導体素子12よりも遅れてターンオンする。周辺部電力用半導体素子10は、必ずしも周辺1周の電力用半導体素子に限らず、さらに多くの電力用半導体素子を周辺部電力用半導体素子10とし、中央部に配置された電力用半導体素子よりも遅れてターンオンするようにしても良い。   In the example of FIG. 10, the arrangement is when the conductive substrate is round. In this case, the peripheral power semiconductor element 10 around the periphery is turned on later than the central power semiconductor element 12 which is the other element. The peripheral power semiconductor element 10 is not necessarily limited to the peripheral power semiconductor element, and more power semiconductor elements are used as the peripheral power semiconductor elements 10 than the power semiconductor elements arranged in the center. You may make it turn on later.

図11の例では導電体基板が長方形の場合である。この場合、長方形の長辺両端の素子を多く周辺部電力用半導体素子10として、それ以外の中央部電力用半導体素子12よりも遅れてターンオンする。この様な場合には、図に示す様に、周辺部電力用半導体素子10を長手方向(図ではX方向)に多くする必要がある。   In the example of FIG. 11, the conductor substrate is rectangular. In this case, a large number of elements at both ends of the long side of the rectangle are used as the peripheral power semiconductor element 10 and are turned on later than the other central power semiconductor elements 12. In such a case, as shown in the figure, it is necessary to increase the peripheral power semiconductor element 10 in the longitudinal direction (X direction in the figure).

以上の例では電流は紙面に垂直に入る場合を仮定し、オンする電力用半導体素子を対称に配置する場合を示した。オンする素子を非対称にした方が良い場合がある。図12ではこの例を示す。例えば、水平方向であるX方向から導電体基板51へ電流が流入する場合、インダクタンスの大きさがX方向左右の素子で異なり、電流経路のインダクタンスに差が生じ、インダクタンスが小さい方の電流の立ち上がりが速くなり、電力用半導体素子の電流が左右X方向に偏る場合がある。オフしている素子はなるべく少なくしたい。この場合、片側をより多くオフしておく方が良い。即ち、ステップ1でターンオンする素子をX方向で非対称とし偏りを持たせた場合が有効である場合もある。   In the above example, it is assumed that the current enters perpendicular to the paper surface, and the case where the power semiconductor elements to be turned on are arranged symmetrically is shown. In some cases, it is better to make the element to turn on asymmetric. FIG. 12 shows this example. For example, when current flows from the X direction, which is the horizontal direction, into the conductor substrate 51, the magnitude of the inductance differs between the elements on the left and right in the X direction, a difference occurs in the inductance of the current path, and the rise of the current with the smaller inductance And the current of the power semiconductor element may be biased in the left-right X direction. We want to minimize the number of devices that are turned off. In this case, it is better to turn off one side more. In other words, it may be effective if the element turned on in step 1 is asymmetric in the X direction and has a bias.

いずれの場合も、周辺部電力用半導体素子10の数は限定しないが、電力用半導体素子3のうち、少なくとも周辺に配置されている一部の電力用半導体素子3を周辺部電力用半導体素子10として、それ以外の電力用半導体素子である中央部電力用半導体素子12よりも遅れてターンオンするように構成すればよい。この構成により、周辺部電力用半導体素子10のターンオン時の発熱が緩和される。   In any case, the number of the peripheral power semiconductor elements 10 is not limited, but at least a part of the power semiconductor elements 3 arranged in the periphery of the power semiconductor elements 3 is the peripheral power semiconductor element 10. As such, it may be configured to turn on later than the central power semiconductor element 12, which is another power semiconductor element. With this configuration, heat generation when the peripheral power semiconductor element 10 is turned on is alleviated.

実施の形態2.
実施の形態2以降では、周辺部電力用半導体素子よりも中央部電力用半導体素子を先にターンオンさせる具体的な構成について説明する。実際の電力用半導体素子では、制御電極にオンの制御信号を印加してからオンするまで、すなわち主電極間の電流が立ち上がるまでの時間であるターンオン時間が長い素子と短い素子とがあり、ターンオン時間がばらついている。導電体基板に接合する前に、それぞれの電力用半導体素子のターンオン時間を測定し、ターンオン時間が短い素子を中央部に配置し、ターンオン時間が長い素子を周辺部に配置する。すなわち、実施の形態1で説明した周辺部電力用半導体素子10を、中央部電力用半導体素子12のターンオン時間よりも長いターンオン時間の素子とする。このようにターンオン時間が異なる特性の素子を選択して配置することで、全電力用半導体素子に対する制御信号が同時にオンとなるようにしても実施の形態1で説明した動作を実現することができる。この方法では電力用半導体素子がターンオンするタイミングを調整する回路などが不要であり、構成が簡単になる。
Embodiment 2. FIG.
In the second and subsequent embodiments, a specific configuration in which the central power semiconductor element is turned on before the peripheral power semiconductor element will be described. In an actual power semiconductor element, there are an element with a long turn-on time and a element with a short turn-on time, which is the time from when an on-control signal is applied to the control electrode to when it is turned on, that is, until the current between the main electrodes rises. Time varies. Before bonding to the conductor substrate, the turn-on time of each power semiconductor element is measured, the element having a short turn-on time is arranged in the central part, and the element having a long turn-on time is arranged in the peripheral part. That is, the peripheral power semiconductor element 10 described in the first embodiment is an element having a turn-on time longer than the turn-on time of the central power semiconductor element 12. Thus, by selecting and arranging elements having different characteristics of turn-on times, the operation described in the first embodiment can be realized even when the control signals for all power semiconductor elements are simultaneously turned on. . This method does not require a circuit for adjusting the timing at which the power semiconductor element is turned on, and the configuration is simplified.

なお、特許文献1には、ターンオン時間が短い素子を周辺部に配置し、ターンオン時間が長い素子を中央部に配置する構成が開示されている。この構成では、周辺部にターンオン時間が短い素子を配置するため、ターンオン時に周辺部に電流が流れ込み、周辺部の電流が増加してしまい、周辺素子の発熱が増大してしまう。即ち、特許文献1では、発熱がより不均一となる。また、立ち上がりが速い素子はLR回路と考えると、電流立ち上がりの時定数はL/RなのでRが大きいことに相当し、かえって損失は増大する。   Patent Document 1 discloses a configuration in which an element having a short turn-on time is arranged in the peripheral part and an element having a long turn-on time is arranged in the central part. In this configuration, since an element having a short turn-on time is arranged in the peripheral portion, current flows into the peripheral portion at the time of turn-on, so that the current in the peripheral portion increases and heat generation of the peripheral element increases. That is, in Patent Document 1, the heat generation becomes more uneven. Considering an LR circuit as a device having a fast rise, the current rise time constant is L / R, which corresponds to a large R, and the loss increases.

これに対し、本発明の実施の形態2による電力用半導体装置では、ターンオン時間が短い電力用半導体素子を中央部に配置し、ターンオン時間が長い電力用半導体素子を周辺部に配置したので、実施の形態1において説明したように、周辺部の電力用半導体素子のターンオン時の発熱を緩和できる。   On the other hand, in the power semiconductor device according to the second embodiment of the present invention, the power semiconductor element having a short turn-on time is arranged in the central portion, and the power semiconductor element having a long turn-on time is arranged in the peripheral portion. As described in the first embodiment, heat generation at the turn-on time of the power semiconductor element in the peripheral portion can be alleviated.

実施の形態3.
実施の形態3では、周辺部電力用半導体素子のオンのタイミングを積極的に遅らせる構成について説明する。説明を簡単にするため、電力用半導体装置1に配置される全電力用半導体素子の数を16として説明するが、電力用半導体素子が中央部から周辺部に亘って複数配置されていれば、全電力用半導体素子の数に制限はない。図13は、本発明の実施の形態3による電力用半導体装置の構成を示す概略図である。制御信号の入力点202から、各電力用半導体素子の制御電極への配線200を介して、各電力用半導体素子の制御電極へ制御信号を印加する構成としている。図13の構成では、オンのタイミングを遅くする周辺部電力用半導体素子10の制御電極への配線が、中央部電力用半導体素子12の制御電極への配線よりも長くなるように構成している。このように構成すると、周辺部電力用半導体素子10の制御電極への配線のインダクタンスが大きくなる効果を有する。配線のインダクタンスが大きいため、周辺部電力用半導体素子10の制御信号の電圧の上昇が遅くなり周辺部電力用半導体素子10のターンオンを、中央部電力用半導体素子12のターンオンよりも遅らせることができる。
Embodiment 3 FIG.
In the third embodiment, a configuration in which the ON timing of the peripheral power semiconductor element is positively delayed will be described. In order to simplify the description, the number of all power semiconductor elements arranged in the power semiconductor device 1 will be described as 16. However, if a plurality of power semiconductor elements are arranged from the central part to the peripheral part, There is no limit to the number of all power semiconductor elements. FIG. 13 is a schematic diagram showing the configuration of the power semiconductor device according to the third embodiment of the present invention. The control signal is applied from the control signal input point 202 to the control electrode of each power semiconductor element via the wiring 200 to the control electrode of each power semiconductor element. In the configuration of FIG. 13, the wiring to the control electrode of the peripheral power semiconductor element 10 that delays the ON timing is configured to be longer than the wiring to the control electrode of the central power semiconductor element 12. . This configuration has the effect of increasing the inductance of the wiring to the control electrode of the peripheral power semiconductor element 10. Since the inductance of the wiring is large, the rise in the voltage of the control signal of the peripheral power semiconductor element 10 is delayed, and the turn-on of the peripheral power semiconductor element 10 can be delayed from the turn-on of the central power semiconductor element 12. .

図14は、本発明の実施の形態3による電力用半導体装置の別の構成を示す概略図である。図14に示す構成では、周辺部電力用半導体素子10の制御電極への配線の途中に、制御信号を遅延させる遅延部材210を挿入している。遅延部材210としては、抵抗やインダクタンスがある。さらには、遅延部材210として抵抗とコンデンサで遅延回路を構成しても良い。このように、挿入する遅延部材210としては、制御信号を遅らせる素子や回路であればどのようなものでも構わない。周辺部電力用半導体素子10の制御電極への配線に遅延部材210を挿入することで、周辺部電力用半導体素子10の制御電極に印加される制御信号が、中央部電力用半導体素子12の制御電極に印加される制御信号よりも遅れるため、周辺部電力用半導体素子10のターンオンを、中央部電力用半導体素子12のターンオンよりも遅らせることができる。   FIG. 14 is a schematic diagram showing another configuration of the power semiconductor device according to the third embodiment of the present invention. In the configuration shown in FIG. 14, a delay member 210 that delays the control signal is inserted in the middle of the wiring to the control electrode of the peripheral power semiconductor element 10. The delay member 210 includes resistance and inductance. Furthermore, a delay circuit may be configured with a resistor and a capacitor as the delay member 210. As described above, the delay member 210 to be inserted may be any element or circuit that delays the control signal. By inserting the delay member 210 into the wiring to the control electrode of the peripheral power semiconductor element 10, the control signal applied to the control electrode of the peripheral power semiconductor element 10 is controlled by the central power semiconductor element 12. Since the control signal applied to the electrode is delayed, the turn-on of the peripheral power semiconductor element 10 can be delayed from the turn-on of the central power semiconductor element 12.

図15は、本発明の実施の形態3による電力用半導体装置のさらに別の構成を示す概略図である。図15に示す構成では、中央部電力用半導体素子12の制御電極には入力点203から中央部電力用半導体素子用の制御信号が入力されて印加されるように構成され、周辺部電力用半導体素子10の制御電極には入力点204から周辺部電力用半導体素子用の制御信号が入力されて印加されるように構成されている。周辺部電力用半導体素子用の制御信号は、中央部電力用半導体素子用の制御信号よりも遅れてオンとなる制御信号とする。このように、中央部電力用半導体素子12の制御電極に印加される制御信号と、周辺部電力用半導体素子10の制御電極に印加される制御信号とを別の制御信号として、中央部電力用半導体素子12が先にターンオンし、遅れて周辺部電力用半導体素子10がターンオンするように構成できる。   FIG. 15 is a schematic diagram showing still another configuration of the power semiconductor device according to the third embodiment of the present invention. In the configuration shown in FIG. 15, a control signal for the central power semiconductor element is inputted from the input point 203 to the control electrode of the central power semiconductor element 12 and applied, and the peripheral power semiconductor A control signal for the peripheral power semiconductor element is inputted to the control electrode of the element 10 from the input point 204 and applied. The control signal for the peripheral power semiconductor element is a control signal that is turned on later than the control signal for the central power semiconductor element. As described above, the control signal applied to the control electrode of the central power semiconductor element 12 and the control signal applied to the control electrode of the peripheral power semiconductor element 10 are used as separate control signals. The semiconductor element 12 can be turned on first, and the peripheral power semiconductor element 10 can be turned on with a delay.

以上のように、実施の形態3では、中央部電力用半導体素子12の制御電極に印加される制御信号のオンのタイミングよりも、周辺部電力用半導体素子10の制御電極に印加される制御信号のオンのタイミングが遅れるように構成したため、実施の形態1で説明したように、周辺部電力用半導体素子10が中央部電力用半導体素子12よりも遅れてターンオンし、周辺部電力用半導体素子10の発熱を緩和することができる。   As described above, in the third embodiment, the control signal applied to the control electrode of the peripheral power semiconductor element 10 rather than the ON timing of the control signal applied to the control electrode of the central power semiconductor element 12. As described in the first embodiment, the peripheral power semiconductor element 10 is turned on later than the central power semiconductor element 12, and the peripheral power semiconductor element 10 is turned on. The exotherm of can be reduced.

なお、ワイドバンドギャップ半導体材料である炭化珪素(SiC)等を用いた電力用半導体素子は低抵抗素子であり、ワイドバンドギャップ半導体により形成された電力用半導体素子を実装する電力用半導体装置では、表皮厚の値がより小さくなるため、本発明を適用すると特に効果がある。ワイドバンドギャップ半導体材料としては、他に、窒化ガリウム系材料、ダイアモンドなどがある。   Note that a power semiconductor element using silicon carbide (SiC) or the like, which is a wide band gap semiconductor material, is a low resistance element. In a power semiconductor device that mounts a power semiconductor element formed of a wide band gap semiconductor, Since the skin thickness value becomes smaller, the present invention is particularly effective. Other wide band gap semiconductor materials include gallium nitride-based materials and diamond.

1 電力用半導体装置、3 電力用半導体素子、10 周辺部電力用半導体素子、12 中央部電力用半導体素子、51、52 導電体基板、200 制御電極への配線、210 遅延部材 DESCRIPTION OF SYMBOLS 1 Power semiconductor device, 3 Power semiconductor element, 10 Peripheral power semiconductor element, 12 Center power semiconductor element, 51, 52 Conductor substrate, 200 Wiring to control electrode, 210 Delay member

Claims (8)

対向する2枚の導電体基板にそれぞれ主電極が電気的に接合された電力用半導体素子が前記導電体基板の中央部から周辺部に亘って複数配置され、一方の導電体基板から他方の導電体基板に流れる電流を、前記複数の電力用半導体素子の制御電極に制御信号を印加することによりスイッチング制御する電力用半導体装置において、
前記複数の電力用半導体素子がターンオンするとき、前記周辺部に配置された前記電力用半導体素子である周辺部電力用半導体素子は、前記中央部に配置された前記電力用半導体素子である中央部電力用半導体素子よりも遅れてターンオンすることを特徴とする電力用半導体装置。
A plurality of power semiconductor elements each having a main electrode electrically joined to two opposing conductive substrates are disposed from the central portion to the peripheral portion of the conductive substrate, and from one conductive substrate to the other conductive substrate. In a power semiconductor device that controls switching of a current flowing through a body substrate by applying a control signal to control electrodes of the plurality of power semiconductor elements,
When the plurality of power semiconductor elements are turned on, a peripheral power semiconductor element that is the power semiconductor element disposed in the peripheral part is a central part that is the power semiconductor element disposed in the central part. A power semiconductor device which is turned on later than the power semiconductor element.
前記周辺部電力用半導体素子は前記中央部電力用半導体素子よりもターンオン時間が長い電力用半導体素子であることを特徴とする請求項1に記載の電力用半導体装置。   The power semiconductor device according to claim 1, wherein the peripheral power semiconductor element is a power semiconductor element having a longer turn-on time than the central power semiconductor element. 前記周辺部電力用半導体素子の制御電極への配線の長さが、前記中央部電力用半導体素子の制御電極への配線の長さよりも長いことを特徴とする請求項1に記載の電力用半導体装置。   2. The power semiconductor according to claim 1, wherein a length of the wiring to the control electrode of the peripheral power semiconductor element is longer than a length of the wiring to the control electrode of the central power semiconductor element. apparatus. 前記周辺部電力用半導体素子の制御電極への配線の途中に遅延部材を挿入したことを特徴とする請求項1に記載の電力用半導体装置。   The power semiconductor device according to claim 1, wherein a delay member is inserted in the middle of the wiring to the control electrode of the peripheral power semiconductor element. 前記周辺部電力用半導体素子への制御信号と、前記中央部電力用半導体素子への制御信号とは、外部から入力される異なる制御信号であり、前記周辺部電力用半導体素子への制御信号よりも前記中央部電力用半導体素子への制御信号が先にオンとなることを特徴とする請求項1に記載の電力用半導体装置。   The control signal to the peripheral power semiconductor element and the control signal to the central power semiconductor element are different control signals input from the outside, and from the control signal to the peripheral power semiconductor element 2. The power semiconductor device according to claim 1, wherein a control signal to the central power semiconductor element is turned on first. 前記複数の電力用半導体素子が、中央部から周辺部に向けて、順次ターンオンすることを特徴とする請求項1に記載の電力用半導体装置。   The power semiconductor device according to claim 1, wherein the plurality of power semiconductor elements are sequentially turned on from a central portion toward a peripheral portion. 前記電力用半導体素子はワイドバンドギャップ半導体により形成されていることを特徴とする請求項1から6のいずれか1項に記載の電力用半導体装置。   The power semiconductor device according to claim 1, wherein the power semiconductor element is formed of a wide band gap semiconductor. 前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料またはダイアモンドの半導体であることを特徴とする請求項7に記載の電力用半導体装置。   8. The power semiconductor device according to claim 7, wherein the wide band gap semiconductor is a silicon carbide, a gallium nitride-based material, or a diamond semiconductor.
JP2015027150A 2015-02-16 2015-02-16 Power semiconductor device Active JP6238922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015027150A JP6238922B2 (en) 2015-02-16 2015-02-16 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015027150A JP6238922B2 (en) 2015-02-16 2015-02-16 Power semiconductor device

Publications (2)

Publication Number Publication Date
JP2016152238A true JP2016152238A (en) 2016-08-22
JP6238922B2 JP6238922B2 (en) 2017-11-29

Family

ID=56696892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015027150A Active JP6238922B2 (en) 2015-02-16 2015-02-16 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP6238922B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171191A (en) * 2000-12-04 2002-06-14 Anten Corp Portable radio equipment and antenna therefor
JP2002319659A (en) * 2001-04-20 2002-10-31 Shibafu Engineering Corp Pressure-welding type semiconductor device and manufacturing method therefor
JP2006191774A (en) * 2005-01-07 2006-07-20 Toyota Motor Corp Power control circuit and vehicle
JP2008306538A (en) * 2007-06-08 2008-12-18 Hitachi Ltd Single magnetic flux quantum variable delay circuit
JP2014003110A (en) * 2012-06-18 2014-01-09 Renesas Electronics Corp Semiconductor device and system using the same
JP2014099535A (en) * 2012-11-15 2014-05-29 Sanken Electric Co Ltd Semiconductor device
WO2015015899A1 (en) * 2013-08-01 2015-02-05 シャープ株式会社 Compound semiconductor device and method for controlling same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171191A (en) * 2000-12-04 2002-06-14 Anten Corp Portable radio equipment and antenna therefor
JP2002319659A (en) * 2001-04-20 2002-10-31 Shibafu Engineering Corp Pressure-welding type semiconductor device and manufacturing method therefor
JP2006191774A (en) * 2005-01-07 2006-07-20 Toyota Motor Corp Power control circuit and vehicle
JP2008306538A (en) * 2007-06-08 2008-12-18 Hitachi Ltd Single magnetic flux quantum variable delay circuit
JP2014003110A (en) * 2012-06-18 2014-01-09 Renesas Electronics Corp Semiconductor device and system using the same
JP2014099535A (en) * 2012-11-15 2014-05-29 Sanken Electric Co Ltd Semiconductor device
WO2015015899A1 (en) * 2013-08-01 2015-02-05 シャープ株式会社 Compound semiconductor device and method for controlling same

Also Published As

Publication number Publication date
JP6238922B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6656414B2 (en) Method and circuit for driving semiconductor device
JP6492965B2 (en) Power transistor drive
US20120223763A1 (en) Semiconductor device
JP5776843B2 (en) Composite semiconductor switch device
JP6535451B2 (en) Semiconductor module and method of switching reverse conducting transistors on such a module
TW200939627A (en) Robust semiconductor power devices with design to protect transistor cells with slower switching speed
US10771053B2 (en) Semiconductor device having first and second switching regions respectively controlled by first and second control signals output by a controller
CN112970198A (en) High speed switching circuit arrangement
JP7040423B2 (en) Semiconductor device
JP6610758B2 (en) Drive device
WO2016117329A1 (en) Drive device
JP6238922B2 (en) Power semiconductor device
Kicin et al. 1.7 kV high-current SiC power module based on multi-level substrate concept and exploiting MOSFET body diode during operation
JP2009021395A (en) Semiconductor device
US20100007403A1 (en) System and method of measuring temperature in a power controller
JP6561794B2 (en) Switching circuit
JP4364169B2 (en) FET module and induction heating inverter
JP2019068661A (en) Semiconductor device
JP7230303B2 (en) semiconductor equipment
JP6123500B2 (en) Semiconductor module
US20230215938A1 (en) Power semiconductor device capable of controlling slope of current and voltage during dynamic switching
JP2017093239A (en) Electric power conversion system with switch element comprised of wide-gap semiconductor
JP2006270652A (en) Load driving circuit
JP6608252B2 (en) Power semiconductor module and power conversion device
JP2005259940A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171031

R151 Written notification of patent or utility model registration

Ref document number: 6238922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250