JP2016149248A - Superconducting wire rod manufacturing method and superconducting wire rod - Google Patents

Superconducting wire rod manufacturing method and superconducting wire rod Download PDF

Info

Publication number
JP2016149248A
JP2016149248A JP2015025329A JP2015025329A JP2016149248A JP 2016149248 A JP2016149248 A JP 2016149248A JP 2015025329 A JP2015025329 A JP 2015025329A JP 2015025329 A JP2015025329 A JP 2015025329A JP 2016149248 A JP2016149248 A JP 2016149248A
Authority
JP
Japan
Prior art keywords
superconducting
bonding
superconducting wire
oxide
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015025329A
Other languages
Japanese (ja)
Inventor
康太郎 大木
Kotaro Oki
康太郎 大木
永石 竜起
Tatsuoki Nagaishi
竜起 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015025329A priority Critical patent/JP2016149248A/en
Publication of JP2016149248A publication Critical patent/JP2016149248A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting wire rod manufacturing technology which, even if a joint area is smaller than that of the conventional one, can obtain a critical current value Ic equal to that of a superconducting wire rod before bonding.SOLUTION: A superconducting wire rod manufacturing method which bonds superconducting wire rods having an oxide superconducting film to each other using their ends as joint surfaces to produce a lengthened superconducting wire rod comprises: a precursor forming step of forming a precursor of an oxide superconducting material on the oxide superconducting film of the joint surface; an ultrasonic bonding step of superposing the joint surfaces, formed with the precursor, on each other and bonding them by ultrasonic bonding; and a heat bonding step of heating the precursor on the joint surfaces bonded together to generate a crystal of the oxide superconducting material on the joint surfaces, thereby forming a superconducting layer of the oxide superconducting material as a bonding layer to bond the joint surfaces to each other.SELECTED DRAWING: None

Description

本発明は、超電導線材の製造方法および前記製造方法を用いて製造された超電導線材に関する。   The present invention relates to a method of manufacturing a superconducting wire and a superconducting wire manufactured using the manufacturing method.

液体窒素の温度で超電導性を有する酸化物超電導材料の発見以来、ケーブル、限流器、マグネットなどの電力機器への応用を目指した超電導線材の開発が活発に行われている。   Since the discovery of oxide superconducting materials that have superconductivity at the temperature of liquid nitrogen, the development of superconducting wires aimed at application to power devices such as cables, current limiters and magnets has been actively conducted.

そして、超電導機器用の超電導ケーブルや超電導コイル等の製造には、長尺の超電導線材が必要とされるため、複数の超電導線材を順次接続することにより長尺化が図られている(例えば、特許文献1、2参照)。   And since long superconducting wire is required for manufacture of a superconducting cable, a superconducting coil, etc. for superconducting equipment, lengthening is attained by connecting a plurality of superconducting wires sequentially (for example, (See Patent Documents 1 and 2).

しかし、超電導線材の超電導膜を形成する酸化物超電導材料は、セラミックスであり、融点付近までは安定した相を持つ一方で、融点を超えると分解し易いという特性を有しているため、複数の超電導線材を超電導膜面同士で接合しようとしても、金属の接合に一般的に用いられている加熱拡散接合のような方法を適用することができない。   However, the oxide superconducting material that forms the superconducting film of the superconducting wire is a ceramic and has a characteristic that it has a stable phase up to the vicinity of the melting point and easily decomposes when the melting point is exceeded. Even if the superconducting wire is to be joined between the superconducting film surfaces, a method such as heat diffusion joining generally used for joining metals cannot be applied.

このため、従来は超電導膜の上に成膜された保護層や安定化層同士を、Agによる拡散接合やはんだを用いて接合する方法が一般的に用いられていたが、このような方法では有限の抵抗が発生して、超電導状態で接続されないため、永久電流モードで使用できないという問題があった。   For this reason, conventionally, a method of joining the protective layer and the stabilization layer formed on the superconducting film to each other by using diffusion bonding using Ag or solder has been generally used. There is a problem that a finite resistance is generated and cannot be used in the permanent current mode because it is not connected in a superconducting state.

そこで、本発明者らは、接合面に酸化物超電導材料からなる超電導層を形成し、この接合面を介して超電導線材の超電導膜面同士を接合する接合技術を開発した(特許文献3参照)。これにより、抵抗の発生がない超電導状態で接続することができる。   Therefore, the present inventors have developed a joining technique in which a superconducting layer made of an oxide superconducting material is formed on the joint surface, and the superconducting film surfaces of the superconducting wire are joined through this joint surface (see Patent Document 3). . Thereby, it can connect in the superconducting state which does not generate | occur | produce resistance.

具体的には、特許文献3の接合技術は、塗布熱分解法(MOD法:Metal OrganicDeposition)を応用しており、超電導線材の接合面上に酸化物超電導材料を構成する金属の有機化合物を含む溶液(MOD溶液)を塗布して仮焼熱処理を行うことにより酸化物超電導材料の前駆体としての仮焼膜を形成し、この仮焼膜同士を貼り合わせた状態で本焼熱処理を行うことにより2つの超電導線材の各超電導膜の間に酸化物超電導材料の超電導層を接合層として形成させて超電導膜面同士を接合している。   Specifically, the bonding technique of Patent Document 3 applies a coating pyrolysis method (MOD method: Metal Organic Deposition), and includes a metal organic compound that constitutes an oxide superconducting material on a bonding surface of a superconducting wire. By applying a solution (MOD solution) and performing a calcining heat treatment, a calcined film as a precursor of the oxide superconducting material is formed, and by performing a calcining heat treatment in a state where the calcined films are bonded together A superconducting layer of an oxide superconducting material is formed as a joining layer between the superconducting films of the two superconducting wires, and the superconducting film surfaces are joined to each other.

特許4810268号公報Japanese Patent No. 4810268 特開2011−228065号公報JP 2011-228065 A 特開2013−235699号公報JP 2013-235699 A

しかしながら、上記の接合技術を用いて接合された超電導線材において接合前の超電導線材と同等の臨界電流値Icを得るためには、超電導線材同士の接合面積を広くとる必要があり、さらなる技術改善が求められていた。   However, in order to obtain a critical current value Ic equivalent to that of the superconducting wire before joining in the superconducting wire joined by using the joining technique described above, it is necessary to increase the joining area between the superconducting wires, and further technical improvement can be achieved. It was sought after.

そこで、本発明は、従来に比べて小さな接合面積であっても接合前の超電導線材と同等の臨界電流値Icを得ることができる超電導線材の製造技術を提供することを課題とする。   Then, this invention makes it a subject to provide the manufacturing technique of the superconducting wire which can obtain the critical current value Ic equivalent to the superconducting wire before joining, even if it is a joining area small compared with the past.

本発明の一態様に係る超電導線材の製造方法は、
酸化物超電導膜を有する超電導線材の端部同士を接合面として接合して長尺化された超電導線材を製造する超電導線材の製造方法であって、
前記接合面の前記酸化物超電導膜上に、酸化物超電導材料の前駆体を形成する前駆体形成工程と、
前記前駆体が形成された前記接合面同士を重ね合わせて超音波接合により貼り合わせる超音波接合工程と、
貼り合わされた前記接合面の前記前駆体を加熱して、前記接合面に酸化物超電導材料の結晶を生成することにより前記酸化物超電導材料の超電導層を接合層として形成して、前記接合面同士を接合する加熱接合工程とを備えている超電導線材の製造方法である。
A method for producing a superconducting wire according to an aspect of the present invention includes:
A superconducting wire manufacturing method for manufacturing an elongated superconducting wire by joining ends of superconducting wires having an oxide superconducting film as a joining surface,
A precursor forming step of forming a precursor of an oxide superconducting material on the oxide superconducting film on the bonding surface;
An ultrasonic bonding step in which the bonding surfaces on which the precursors are formed are overlapped and bonded by ultrasonic bonding;
By heating the precursor of the bonded surface bonded together to form a crystal of an oxide superconductive material on the bonded surface, a superconductive layer of the oxide superconductive material is formed as a bonded layer, and the bonded surfaces are It is a manufacturing method of the superconducting wire provided with the heating joining process which joins.

本発明によれば、従来に比べて小さな接合面積であっても接合前の超電導線材と同等の臨界電流値Icを得ることができる超電導線材の製造技術を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a joining area small compared with the past, the manufacturing technology of the superconducting wire which can obtain the critical current value Ic equivalent to the superconducting wire before joining can be provided.

本発明の一実施形態に係る製造方法を用いて製造された長尺の超電導線材を模式的に示す断面図である。It is sectional drawing which shows typically the elongate superconducting wire manufactured using the manufacturing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る製造方法の超音波接合工程を模式的に示す断面図である。It is sectional drawing which shows typically the ultrasonic bonding process of the manufacturing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る製造方法を用いて製造された長尺の超電導線材の接合部を模式的に示す断面図である。It is sectional drawing which shows typically the junction part of the elongate superconducting wire manufactured using the manufacturing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る製造方法を用いて製造された長尺の超電導線材のIV線図である。It is IV diagram of the elongate superconducting wire manufactured using the manufacturing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る製造方法において接合する前の超電導線材のIV線図である。It is IV diagram of the superconducting wire before joining in the manufacturing method concerning one embodiment of the present invention. 従来の製造方法を用いて製造された長尺の超電導線材のIV線図である。It is IV diagram of the elongate superconducting wire manufactured using the conventional manufacturing method.

[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.

(1)本発明の一態様に係る超電導線材の製造方法は、
酸化物超電導膜を有する超電導線材の端部同士を接合面として接合して長尺化された超電導線材を製造する超電導線材の製造方法であって、
前記接合面の前記酸化物超電導膜上に、酸化物超電導材料の前駆体を形成する前駆体形成工程と、
前記前駆体が形成された前記接合面同士を重ね合わせて超音波接合により貼り合わせる超音波接合工程と、
貼り合わされた前記接合面の前記前駆体を加熱して、前記接合面に酸化物超電導材料の結晶を生成することにより前記酸化物超電導材料の超電導層を接合層として形成して、前記接合面同士を接合する加熱接合工程とを備えている超電導線材の製造方法である。
(1) A method for producing a superconducting wire according to an aspect of the present invention includes:
A superconducting wire manufacturing method for manufacturing an elongated superconducting wire by joining ends of superconducting wires having an oxide superconducting film as a joining surface,
A precursor forming step of forming a precursor of an oxide superconducting material on the oxide superconducting film on the bonding surface;
An ultrasonic bonding step in which the bonding surfaces on which the precursors are formed are overlapped and bonded by ultrasonic bonding;
By heating the precursor of the bonded surface bonded together to form a crystal of an oxide superconductive material on the bonded surface, a superconductive layer of the oxide superconductive material is formed as a bonded layer, and the bonded surfaces are It is a manufacturing method of the superconducting wire provided with the heating joining process which joins.

本発明者は、上記した従来の接合技術において、酸化物超電導材料の超電導層を接合層として超電導膜面同士を接合するときに、従来よりも小さな接合面積で、接合前の超電導線材のIcと同等の接合Icを得ることができる具体的手法について鋭意検討を行った。   In the above-described conventional bonding technique, the present inventor uses the superconducting layer of the oxide superconducting material as a bonding layer to bond the superconducting film surfaces to each other with a smaller bonding area than that of the conventional superconducting wire Ic and We intensively studied a specific method for obtaining an equivalent junction Ic.

この結果、MOD法を応用した従来技術では接合面に酸化物超電導材料の前駆体としての仮焼膜を形成させた後、仮焼膜同士を重ね合わせて貼り合わせていたが、この仮焼膜は硬いセラミックスであり、表面に凹凸が形成されているため、接合面同士を重ね合わせて貼り付けても仮焼膜同士が点接触する。そして、この点接触の状態のまま、本焼熱処理されるため仮焼膜から超電導層を形成した後においても、超電導層が局所的に接合してしまい、十分な接触面積を確保することができない。このため、従来技術において接合前の超電導線材のIcと同等の接合Icを得るためには、仮焼膜同士の接合面積を大きく確保する必要があることが分かった。   As a result, in the prior art applying the MOD method, a calcined film as a precursor of an oxide superconducting material was formed on the joint surface, and then the calcined films were stacked and bonded together. Is a hard ceramic and has irregularities formed on the surface, so that the calcined films are in point contact with each other even if the bonding surfaces are laminated and pasted. And since it is subjected to the main annealing heat treatment in this point contact state, even after the superconducting layer is formed from the calcined film, the superconducting layer is locally bonded, and a sufficient contact area cannot be secured. . For this reason, in order to obtain joining Ic equivalent to Ic of the superconducting wire before joining in prior art, it turned out that it is necessary to ensure the joining area of calcined films largely.

そこで、本発明者は、酸化物超電導材料の結晶が生成されてc軸配向する前に、仮焼膜同士の接触面積が確保されていれば、本焼熱処理において、従来よりも小さな接合面積で十分な接触面積を確保して、超電導層を接合層として形成することができると考えた。   In view of this, the present inventor has determined that the contact area between the calcined films is secured before the crystal of the oxide superconducting material is generated and is c-axis oriented, with a smaller bonding area than in the conventional heat treatment. It was considered that a superconducting layer could be formed as a bonding layer while ensuring a sufficient contact area.

そして、前駆体としての仮焼膜同士の接触面積を大きくする手法として、超音波接合を用いて仮焼膜表面の凹凸を破壊しながら接着させることに思い至った。   Then, as a technique for increasing the contact area between the calcined films as precursors, the inventors came up with the idea of bonding them while destroying the irregularities on the surface of the calcined film using ultrasonic bonding.

即ち、超音波接合は、小さな振幅で振動する超音波により仮焼膜表面の凹凸部分を加熱、破壊して仮焼膜の接合界面を適切に貼り合わせることができる方法であり、また、下地となる酸化物超電導膜に比べて遥かに薄い膜である前駆体同士の点接触している凹凸部分のみを破壊することができるため、酸化物超電導膜を破壊することなく仮焼膜の表面を適切に平坦化させることができる。   In other words, ultrasonic bonding is a method that can heat and break the concavo-convex portion of the surface of the calcined film with ultrasonic waves that vibrate with a small amplitude to appropriately bond the bonding interface of the calcined film. As compared with the oxide superconducting film, it is possible to destroy only the uneven parts where the precursors are point-contacting, which is a much thinner film, so that the surface of the calcined film can be properly used without destroying the oxide superconducting film. Can be flattened.

そして、さらに検討を行った結果、この超音波接合を用いる方法は、上記したような仮焼膜を前駆体とする場合だけでなく、この仮焼膜に対してさらにBaCOなどを分解する処理を行って得られたランダム配向した微結晶状態の超電導材料を前駆体とする場合でも同様に適用でき、さらに、MOD法以外の方法で形成された前駆体においても同様に適用できることが分かり、本発明を完成するに至った。 As a result of further examination, the method using this ultrasonic bonding is not limited to the case where the calcined film is used as a precursor as described above, but also a process of further decomposing BaCO 3 and the like on the calcined film. It is understood that the present invention can be similarly applied to the case where a randomly oriented superconducting material in a microcrystalline state obtained by performing the above is used as a precursor, and further applicable to a precursor formed by a method other than the MOD method. The invention has been completed.

(2)前記接合層を構成する酸化物超電導材料は、前記超電導線材の前記酸化物超電導膜を構成する酸化物超電導材料と同じ温度、もしくは、より低い温度で結晶が成長する酸化物超電導材料であることが好ましい。 (2) The oxide superconducting material constituting the bonding layer is an oxide superconducting material in which crystals grow at the same temperature as the oxide superconducting material constituting the oxide superconducting film of the superconducting wire or at a lower temperature. Preferably there is.

このように接合層を、酸化物超電導膜と同じ温度、もしくは、より低い温度で結晶が成長する酸化物超電導材料で形成することにより、酸化物超電導膜の構造を破壊することなく接合層と酸化物超電導膜との密着性を向上させることができ、超電導線材をより適切に接合させることができる。   Thus, by forming the bonding layer with an oxide superconducting material in which crystals grow at the same temperature as or lower than that of the oxide superconducting film, the bonding layer and the oxide can be oxidized without destroying the structure of the oxide superconducting film. Adhesiveness with a physical superconducting film can be improved, and a superconducting wire can be joined more appropriately.

(3)また、前記接合層の形成方法は、酸化物超電導材料を構成する金属の有機化合物を含む溶液を用いた塗布熱分解法であることが好ましい。 (3) Moreover, it is preferable that the formation method of the said joining layer is the application | coating pyrolysis method using the solution containing the organic compound of the metal which comprises an oxide superconducting material.

接合層の形成方法として、有機溶媒に溶解した有機金属錯体の溶液を塗布して加熱処理する塗布熱分解法を用いることにより、接合前の超電導線材の酸化物超電導膜よりも表面を平滑化させることができ、さらに十分な接触面積を確保することができる。   As a method for forming the bonding layer, the surface of the superconducting wire before bonding is smoothed by using a coating pyrolysis method in which a solution of an organometallic complex dissolved in an organic solvent is applied and heat-treated. And a sufficient contact area can be secured.

(4)前記金属の有機化合物として、フッ素を含まない有機金属化合物を用いることが好ましい。 (4) It is preferable to use an organometallic compound containing no fluorine as the organic compound of the metal.

フッ素を含む有機金属化合物を有機溶媒に溶解した溶液を用いた場合、このフッ素が接合面の超電導層を溶かしてしまい、溶液の膜から良好な結晶性を得ることができないため、接合抵抗を十分に抑制することができない。フッ素を含まない有機金属化合物を有機溶媒に溶解した溶液を用いた場合には、これらの問題が発生しないため好ましい。   When a solution in which an organometallic compound containing fluorine is dissolved in an organic solvent is used, the fluorine dissolves the superconducting layer on the bonding surface, and good crystallinity cannot be obtained from the film of the solution. Can not be suppressed. When a solution in which an organometallic compound not containing fluorine is dissolved in an organic solvent is used, these problems do not occur, which is preferable.

[本発明の実施形態の詳細]
以下、本発明を実施形態に基づき、図面を参照して説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
Hereinafter, the present invention will be described based on embodiments with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.

1.本実施形態に係る超電導線材
はじめに、本実施形態に係る超電導線材について説明する。図1は本実施形態に係る製造方法を用いて製造された長尺の超電導線材を模式的に示す断面図である。そして、図2は本実施形態に係る製造方法の超音波接合工程を模式的に示す断面図であり、(a)、(b)はそれぞれ、超音波接合の開始前、終了後における状態を示している。また、図3は本実施形態に係る製造方法を用いて製造された長尺の超電導線材の接合部を模式的に示す断面図である。
1. Superconducting wire according to this embodiment First, the superconducting wire according to this embodiment will be described. FIG. 1 is a cross-sectional view schematically showing a long superconducting wire manufactured using the manufacturing method according to the present embodiment. FIG. 2 is a cross-sectional view schematically showing the ultrasonic bonding process of the manufacturing method according to the present embodiment, and (a) and (b) show the states before and after the start of ultrasonic bonding, respectively. ing. Moreover, FIG. 3 is sectional drawing which shows typically the junction part of the elongate superconducting wire manufactured using the manufacturing method which concerns on this embodiment.

図1に示すように、本実施形態においては、2本の超電導線材11、21の酸化物超電導膜14、24が接合層31を介して接合されて、長尺化された超電導線材1が製造される。具体的には、超電導線材11の酸化物超電導膜14と、超電導線材21の酸化物超電導膜24とを対向させて重ね合わせた接合面に酸化物超電導材料の超電導層が接合層31として形成されている。なお、図1中の12、22は金属基板であり、13、23は中間層である。そして、このような長尺化された超電導線材1は以下の方法を用いて2本の超電導線材11、21を接合することにより製造される。   As shown in FIG. 1, in this embodiment, the oxide superconducting films 14 and 24 of the two superconducting wires 11 and 21 are joined via the joining layer 31, and the elongate superconducting wire 1 is manufactured. Is done. Specifically, a superconducting layer of an oxide superconducting material is formed as a joining layer 31 on a joining surface where the oxide superconducting film 14 of the superconducting wire 11 and the oxide superconducting film 24 of the superconducting wire 21 are opposed to each other. ing. In FIG. 1, 12 and 22 are metal substrates, and 13 and 23 are intermediate layers. And such an elongate superconducting wire 1 is manufactured by joining the two superconducting wires 11 and 21 using the following method.

2.本実施形態に係る超電導線材の製造方法
本実施形態においては、前駆体形成工程、超音波接合工程、加熱接合工程を経て、図1に示す接合層31として酸化物超電導材料の超電導層を形成することにより、接合層31を介して2本の超電導線材11、21の酸化物超電導膜14、24同士を接合している。以下、接合層31の形成にMOD法を用いた場合を例に挙げて工程順に説明する。
2. Method for Producing Superconducting Wire According to this Embodiment In this embodiment, a superconducting layer of an oxide superconducting material is formed as the bonding layer 31 shown in FIG. 1 through a precursor forming step, an ultrasonic bonding step, and a heating bonding step. Thus, the oxide superconducting films 14 and 24 of the two superconducting wires 11 and 21 are joined to each other via the joining layer 31. Hereinafter, the case where the MOD method is used for forming the bonding layer 31 will be described as an example in the order of steps.

(1)前駆体形成工程
最初に、接合面となる2本の超電導線材11、21の長尺方向の両端部の酸化物超電導膜14、24上に、酸化物超電導材料の前駆体15、25(図2参照)の膜を形成する。
(1) Precursor formation step First, the oxide superconducting material precursors 15 and 25 are formed on the oxide superconducting films 14 and 24 at both ends in the longitudinal direction of the two superconducting wires 11 and 21 to be bonded surfaces. (See FIG. 2).

具体的には、超電導線材11、21の両端部の酸化物超電導膜14、24上に、酸化物超電導材料を構成する金属の有機化合物を含む溶液(MOD溶液)を塗布した後、乾燥させて塗膜を形成し、乾燥した塗膜を熱処理することにより熱分解して、酸化物超電導材料の前駆体を形成する。   Specifically, a solution (MOD solution) containing a metal organic compound constituting the oxide superconducting material is applied on the oxide superconducting films 14 and 24 at both ends of the superconducting wires 11 and 21, and then dried. A coating film is formed, and the dried coating film is thermally decomposed by heat treatment to form a precursor of the oxide superconducting material.

MOD溶液としては、REBCO(RE:希土類元素)系の酸化物超電導材料を構成する金属、即ち、YやGdなどのRE、Ba、Cuの有機化合物(有機金属化合物)を有機溶媒に溶解した溶液が用いられる。   The MOD solution is a solution in which an REBCO (RE: rare earth element) -based oxide superconducting material, that is, an organic compound (organic metal compound) of RE, Ba, and Cu such as Y and Gd, is dissolved in an organic solvent. Is used.

そして、上記の有機金属化合物としては、これら金属のアセチルアセトナートなどのフッ素を含まない有機金属化合物などが好ましく、これらの有機金属化合物をアルコールなどの有機溶媒に溶解させることによりMOD溶液を調製することができる。   The organometallic compound is preferably a fluorine-free organometallic compound such as acetylacetonate of these metals, and the MOD solution is prepared by dissolving these organometallic compounds in an organic solvent such as alcohol. be able to.

酸化物超電導膜へ溶液を塗布する方法としては、例えば、ダイコート方式やインクジェット方式などを挙げることができるが、それ以外の塗布方法を採用してもよい。また、塗布は接合面となる酸化物超電導膜14、24上の全面に行うが、塗布厚みは適宜設定する。   Examples of the method for applying the solution to the oxide superconducting film include a die coating method and an ink jet method, but other application methods may be employed. The application is performed on the entire surface of the oxide superconducting films 14 and 24 to be the bonding surfaces, and the application thickness is appropriately set.

そして、熱処理としては、乾燥した塗膜に対して、有機金属化合物の分解温度以上、かつ酸化物超電導材料の生成温度より低い温度で熱処理(仮焼熱処理)を行う。これにより、塗膜の有機金属化合物が熱分解して、酸化物超電導材料の前駆体として、Baの炭酸化合物であるBaCO、およびYなどの希土類元素酸化物、CuOから構成される膜が仮焼膜として形成される。 As the heat treatment, a heat treatment (calcination heat treatment) is performed on the dried coating film at a temperature higher than the decomposition temperature of the organometallic compound and lower than the generation temperature of the oxide superconducting material. As a result, the organometallic compound of the coating film is thermally decomposed, and is composed of BaCO 3 which is a carbonic acid compound of Ba and rare earth element oxides such as Y 2 O 3 and CuO as a precursor of the oxide superconducting material. The film is formed as a calcined film.

具体的な加熱温度としては500℃程度が好ましく、昇温速度としては10〜20℃/分程度が好ましい。また、処理雰囲気としては、露点が15〜20℃、酸素濃度が20%以上の雰囲気が好ましい。そして、加熱処理時間は20分程度が好ましい。   The specific heating temperature is preferably about 500 ° C., and the heating rate is preferably about 10 to 20 ° C./min. The treatment atmosphere is preferably an atmosphere having a dew point of 15 to 20 ° C. and an oxygen concentration of 20% or more. The heat treatment time is preferably about 20 minutes.

なお、上記した前駆体形成工程において、形成された仮焼膜を、1〜100%の酸素濃度雰囲気下、前記仮焼膜の分解温度以上の温度で、さらに熱処理することにより、仮焼膜のBaCOなどを分解して、ランダム配向した微結晶状態の前駆体を形成してもよい。 In the above precursor formation step, the calcined film formed is further heat-treated at a temperature equal to or higher than the decomposition temperature of the calcined film in an oxygen concentration atmosphere of 1 to 100%. BaCO 3 or the like may be decomposed to form a randomly oriented microcrystalline precursor.

(2)超音波接合工程
次に、前駆体15、25が形成された接合面同士を重ね合わせて超音波接合により貼り合わせる。
(2) Ultrasonic bonding step Next, the bonding surfaces on which the precursors 15 and 25 are formed are overlapped and bonded together by ultrasonic bonding.

図2(a)に示すように、前駆体形成工程において形成された前駆体15、25の表面には、多数の凹凸が形成されている。このため、前駆体15、25が形成された接合面同士を重ね合わせて、治具を用いて固定しても、前駆体15、25同士が凸部において点接触している。   As shown in FIG. 2A, a large number of irregularities are formed on the surfaces of the precursors 15 and 25 formed in the precursor forming step. For this reason, even if the joining surfaces on which the precursors 15 and 25 are formed are overlapped and fixed using a jig, the precursors 15 and 25 are in point contact with each other at the convex portion.

このような点接触状態では、後述する加熱接合工程を経ても、超電導層が十分な接触面積を確保することができないため、本実施形態においては、固定された前駆体15、25の表面に対して超音波振動を与えることにより凸部を破壊させて、前駆体15、25の表面を平坦化させる。これにより、図2(b)に示すように、前駆体15、25同士を面で接触させて適切に貼り合わせることができる。   In such a point contact state, the superconducting layer cannot secure a sufficient contact area even after a heat bonding step described later. In this embodiment, the surface of the fixed precursors 15 and 25 is fixed. By applying ultrasonic vibration, the projections are destroyed and the surfaces of the precursors 15 and 25 are flattened. Thereby, as shown in FIG.2 (b), the precursors 15 and 25 can be contacted by a surface and can be bonded together appropriately.

具体的な超音波の周波数、振幅、印加時間、治具による押圧力などの接合条件は、前駆体の材質や厚みなどに応じて適宜設定される。   Specific bonding conditions such as the frequency, amplitude, application time, and pressing force by the jig are appropriately set according to the material and thickness of the precursor.

(3)加熱接合工程
次に、貼り合わされた接合面の前駆体15、25を加熱して、接合面に酸化物超電導材料の結晶を生成させることにより酸化物超電導材料の超電導層を接合層31として形成させて接合面同士を接合する。
(3) Heat bonding step Next, the bonded superconductors 15 and 25 are heated to generate crystals of the oxide superconducting material on the bonding surface, whereby the superconducting layer of the oxide superconducting material is bonded to the bonding layer 31. The joining surfaces are joined together.

具体的には、前駆体15、25を酸化物超電導材料の結晶が生成される温度以上の温度で熱処理(本焼熱処理)を行う。より具体的には、酸素濃度100ppm程度の低酸素濃度のAr雰囲気下において、100℃/分程度の昇温速度で800℃程度まで昇温し、その後、同程度の降温速度で常温まで降温する。   Specifically, the precursors 15 and 25 are subjected to heat treatment (main heat treatment) at a temperature equal to or higher than the temperature at which the oxide superconducting material crystal is formed. More specifically, in a low oxygen concentration Ar atmosphere with an oxygen concentration of about 100 ppm, the temperature is raised to about 800 ° C. at a temperature raising rate of about 100 ° C./min, and then the temperature is lowered to room temperature at the same temperature lowering rate. .

これにより、接合面の前駆体15、25がc軸配向して互いの接合面を跨ぐ形で粗大化して酸化物超電導材料の結晶として成長していく。この結果、図3に示すように、酸化物超電導材料の超電導層を一体化させて接合層31を形成することができる。そして、この接合層31を介して、酸化物超電導膜14と24とを接合することができるため、超電導状態で接合して長尺化された超電導線材1を製造することが可能となる。   As a result, the precursors 15 and 25 of the joint surfaces are c-axis oriented and coarsened so as to straddle the joint surfaces, and grow as crystals of the oxide superconducting material. As a result, as shown in FIG. 3, the joining layer 31 can be formed by integrating the superconducting layers of the oxide superconducting material. Since the oxide superconducting films 14 and 24 can be joined via the joining layer 31, the superconducting wire 1 that is elongated by joining in the superconducting state can be manufactured.

本実施形態に係る製造方法においては、上記したように、加熱接合工程を行う前に超音波接合工程を行って前駆体15、25同士が点接触している部分を破壊して平坦化させて貼り合わせているため、加熱接合工程により前駆体15、25同士を接合して超電導層を形成する際に、十分な接触面積を確保することができる。この結果、2本の超電導線材の接合面積が従来より小さくても、接合後の超電導線材においてIcの低下が発生することを適切に抑制することができる。   In the manufacturing method according to the present embodiment, as described above, the ultrasonic bonding step is performed before the heat bonding step to destroy and flatten the portion where the precursors 15 and 25 are in point contact. Since they are bonded together, a sufficient contact area can be ensured when the precursors 15 and 25 are bonded to each other by the heat bonding process to form the superconducting layer. As a result, even if the joining area of the two superconducting wires is smaller than the conventional one, it is possible to appropriately suppress the decrease in Ic in the superconducting wire after joining.

なお、上記においては、前駆体を形成する方法としてMOD法を例に挙げて説明したが、前駆体を形成する方法としては、液相法としてのMOD法以外に、気相法などを採用することもできる。具体的な気相法としては、パルスレーザ蒸着(PLD:Pulsed Laser Deposition)法や電子ビーム蒸着法などの物理蒸着(PVD:Physical Vapor Deposition)法、有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法などの化学蒸着(CVD:Chemical Vapor Deposition)法などを好ましく用いることができる。   In the above description, the MOD method has been described as an example of the method for forming the precursor. However, as a method for forming the precursor, a gas phase method or the like is adopted in addition to the MOD method as the liquid phase method. You can also. Specific vapor deposition methods include physical vapor deposition (PVD) methods such as pulsed laser deposition (PLD) and electron beam deposition, metal organic chemical vapor deposition (MOCVD), and metal organic chemical vapor deposition (MOCVD). A chemical vapor deposition (CVD) method such as a deposition method can be preferably used.

そして、このとき接合層として形成される超電導層における酸化物超電導材料は、酸化物超電導膜14、24と、必ずしも同じ酸化物超電導材料である必要はないが、酸化物超電導膜14、24と同じ温度、もしくは、より低い温度で結晶化する酸化物超電導材料であることが好ましい。   At this time, the oxide superconducting material in the superconducting layer formed as the bonding layer does not necessarily have to be the same oxide superconducting material as the oxide superconducting films 14 and 24, but is the same as the oxide superconducting films 14 and 24. An oxide superconducting material that crystallizes at a temperature or lower temperature is preferable.

[実験例]
次に実験例に基づき、本発明をより具体的に説明する。
[Experimental example]
Next, the present invention will be described more specifically based on experimental examples.

(実験例1)
1.超電導線材の作製
厚み150μmのNi/Cu/SUSからなる金属基板12、22の上に厚み600nmの中間層13、23を形成させた後、FF−MOD法を用いて厚み3μmのYBCO系の酸化物超電導膜14、24を形成することにより、幅4mm、長さ100mmの超電導線材11、21を作製した。
(Experimental example 1)
1. Fabrication of superconducting wire After forming 600 nm thick intermediate layers 13 and 23 on metal substrates 12 and 22 made of Ni / Cu / SUS having a thickness of 150 μm, YBCO-based oxidation having a thickness of 3 μm using the FF-MOD method. Superconducting wires 11 and 21 having a width of 4 mm and a length of 100 mm were produced by forming the physical superconducting films 14 and 24.

2.超電導線材の接合
次に、超電導線材11、21を以下の手順に従って接合し、長尺化された超電導線材1を作製した。
2. Superconducting Wire Joining Next, superconducting wires 11 and 21 were joined in accordance with the following procedure to produce elongated superconducting wire 1.

(1)前駆体形成工程
まず、Y:Ba:Cuのモル比が1:2:3であって、Y+Ba+Cuの合計イオン濃度が1mol/Lの、Y、Ba、Cuのアセチルアセトナート錯体を含むアルコール溶液を用意し、超電導線材11、21の両端部の酸化物超電導膜14、24の表面に溶液を約25μmの厚みで塗布し、大気中、150℃の温度で10分乾燥し塗膜を形成させた。
(1) Precursor formation step First, a Y: Ba: Cu molar ratio is 1: 2: 3, and the total ion concentration of Y + Ba + Cu is 1 mol / L, and an acetylacetonate complex of Y, Ba, and Cu is included. Prepare an alcohol solution, apply the solution to the surface of the oxide superconducting films 14 and 24 at both ends of the superconducting wires 11 and 21 to a thickness of about 25 μm, and dry the film at 150 ° C. for 10 minutes in the air. Formed.

その後、露点が15℃〜20℃、酸素濃度が20%の雰囲気下に塗膜を置き、2.5℃/分の昇温速度で500℃まで昇温することにより、酸化物超電導材料の前駆体15、25を膜として形成させた。   Thereafter, the coating film is placed in an atmosphere having a dew point of 15 ° C. to 20 ° C. and an oxygen concentration of 20%, and the temperature is raised to 500 ° C. at a rate of 2.5 ° C./min. The bodies 15 and 25 were formed as films.

(2)超音波接合工程
次に、前駆体15、25が形成された酸化物超電導膜14、24の接合面同士を重ね合わせて超音波接合により貼り合わせた。
(2) Ultrasonic bonding process Next, the bonding surfaces of the oxide superconducting films 14 and 24 on which the precursors 15 and 25 were formed were superposed and bonded together by ultrasonic bonding.

具体的には、前駆体15、25が形成された酸化物超電導膜14、24の接合面同士を、接合面積が10mmになるように重ね合わせ、治具を用いて1MPaの圧力で押圧しながら、周波数20kHz、振幅0.1mmの超音波を印加して、酸化物超電導膜14、24の接合面同士を超音波接合して貼り合わせた。 Specifically, the joining surfaces of the oxide superconducting films 14 and 24 on which the precursors 15 and 25 are formed are overlapped so that the joining area becomes 10 mm 2 and pressed with a pressure of 1 MPa using a jig. However, an ultrasonic wave having a frequency of 20 kHz and an amplitude of 0.1 mm was applied, and the bonding surfaces of the oxide superconducting films 14 and 24 were ultrasonically bonded to each other for bonding.

(3)加熱接合工程
次に、貼り合わされた接合面の前駆体15、25を加熱して、接合面に酸化物超電導材料の結晶を生成させて、酸化物超電導材料の接合層31を形成させることにより、超電導線材11と21とを接合し、長尺化された超電導線材1を作製した。
(3) Heat Bonding Step Next, the bonded joint surface precursors 15 and 25 are heated to generate crystals of the oxide superconducting material on the joint surface, thereby forming the oxide superconducting material bonding layer 31. As a result, the superconducting wires 11 and 21 were joined together to produce the elongated superconducting wire 1.

具体的には、前駆体15、25を1atm、O濃度100ppmのAr雰囲気中に置き、1000℃/分以下の昇温速度で800℃程度まで昇温して20分間程度保持した。温度保持終了後、500℃程度まで降温させてから酸素100%雰囲気に切り替えて常温まで降温させた。 Specifically, the precursors 15 and 25 were placed in an Ar atmosphere with 1 atm and an O 2 concentration of 100 ppm, and the temperature was raised to about 800 ° C. at a rate of temperature increase of 1000 ° C./min or less and held for about 20 minutes. After the temperature holding was completed, the temperature was lowered to about 500 ° C., then the atmosphere was switched to a 100% oxygen atmosphere and the temperature was lowered to room temperature.

(実験例2)
超音波接合を行わずに加熱して、超電導線材同士を接合したこと以外は実験例1と同じ方法で超電導線材を接合し、長尺化された超電導線材を作製した。
(Experimental example 2)
The superconducting wire was joined by the same method as in Experimental Example 1 except that the superconducting wires were joined together by heating without performing ultrasonic joining, thereby producing a lengthened superconducting wire.

(実験例3)
前駆体同士の接合面積を20mmにしたこと以外は実験例2と同じ方法で超電導線材を接合し、長尺化された超電導線材を作製した。
(Experimental example 3)
The superconducting wire was joined by the same method as in Experimental Example 2 except that the joining area between the precursors was 20 mm 2 , thereby producing a long superconducting wire.

(実験例4)
前駆体同士の接合面積を30mmにしたこと以外は実験例2と同じ方法で超電導線材を接合し、長尺化された超電導線材を作製した。
(Experimental example 4)
The superconducting wire was joined by the same method as in Experimental Example 2 except that the joining area between the precursors was 30 mm 2 , thereby producing a lengthened superconducting wire.

2.評価
(1)IV特性
実験例1で作製された長尺の超電導線材におけるIV特性を測定し(図4)、接合前の超電導線材におけるIV特性(図5)と比較した。
2. Evaluation (1) IV characteristics The IV characteristics of the long superconducting wire produced in Experimental Example 1 were measured (FIG. 4) and compared with the IV characteristics (FIG. 5) of the superconducting wire before joining.

図4、図5に示すように、実験例1では、接合後においても、Icがほぼ同一の値であった。また、実施例4のように超音波接合を行わずに接合を行った場合、表1および図6より、接合後においても好適なIV特性を得るためには、前駆体同士の接合面積を30mm程度確保する必要があることが確認された。 As shown in FIGS. 4 and 5, in Experimental Example 1, Ic was almost the same value after bonding. Further, when bonding is performed without performing ultrasonic bonding as in Example 4, from Table 1 and FIG. 6, in order to obtain suitable IV characteristics even after bonding, the bonding area between the precursors is 30 mm. It was confirmed that about 2 needs to be secured.

(2)接合前後におけるIcの変化
実験例1〜4で作製された長尺の各超電導線材に対して、四端子法を用いて液体窒素温度(77K)におけるIcを測定し、接合前のIcからどの程度変化しているかを求めた。結果を表1に示す。
(2) Change in Ic before and after bonding For each of the long superconducting wires produced in Experimental Examples 1 to 4, Ic was measured at a liquid nitrogen temperature (77 K) using the four-terminal method, and Ic before bonding. The degree of change was calculated. The results are shown in Table 1.

Figure 2016149248
Figure 2016149248

表1より、超音波接合を行った実験例1では、加熱接合工程により超電導層を形成して超電導線材同士を接合した後においても接合前と同様のIcが維持されていることが分かる。   From Table 1, it can be seen that in Experimental Example 1 in which ultrasonic bonding was performed, Ic similar to that before bonding was maintained even after the superconducting layer was formed by the heat bonding process and the superconducting wires were bonded to each other.

一方、超音波接合を行なわない従来の方法では、接合面積を実験例1と同じに設定した実験例2では接合前に比べてIcが低下しており、接合前と同様のIcを得るためには、実験例4のように接合面積を十分に広く設定する必要があることが分かる。   On the other hand, in the conventional method in which ultrasonic bonding is not performed, in Example 2 in which the bonding area is set to be the same as in Example 1, Ic is lower than that before bonding, and in order to obtain Ic similar to that before bonding. It can be seen that, as in Experimental Example 4, it is necessary to set the bonding area sufficiently wide.

以上の結果より、加熱接合工程を行う前に超音波接合を行うことにより、接合面積を小さく設定しても十分な接触面積を確保して、接合前と同様のIcが得られるため、超電導線材同士を超電導状態で適切に接続できることが確認できた。   From the above results, superconducting wire rods can be obtained by performing ultrasonic bonding before performing the heat bonding step, thereby ensuring a sufficient contact area even if the bonding area is set small and obtaining the same Ic as before bonding. It was confirmed that they could be connected properly in a superconducting state.

本発明は、酸化物超電導膜を有する超電導線材の接合において、酸化物超電導材料を用いて酸化物超電導膜同士を接合することにより、永久電流モードで使用される超電導ケーブルなどの製造に用いられる長尺の超電導線材を提供することを可能にするものである。   The present invention relates to a superconducting cable used in the permanent current mode by joining oxide superconducting films using an oxide superconducting material in joining superconducting wires having an oxide superconducting film. It is possible to provide a superconducting wire having a scale.

1 長尺化された超電導線材
11、21 超電導線材
12、22 金属基板
13、23 中間層
14、24 酸化物超電導膜
15、25 前駆体
31 接合層
DESCRIPTION OF SYMBOLS 1 Elongated superconducting wire 11, 21 Superconducting wire 12, 22 Metal substrate 13, 23 Intermediate layer 14, 24 Oxide superconducting film 15, 25 Precursor 31 Bonding layer

Claims (4)

酸化物超電導膜を有する超電導線材の端部同士を接合面として接合して長尺化された超電導線材を製造する超電導線材の製造方法であって、
前記接合面の前記酸化物超電導膜上に、酸化物超電導材料の前駆体を形成する前駆体形成工程と、
前記前駆体が形成された前記接合面同士を重ね合わせて超音波接合により貼り合わせる超音波接合工程と、
貼り合わされた前記接合面の前記前駆体を加熱して、前記接合面に酸化物超電導材料の結晶を生成することにより前記酸化物超電導材料の超電導層を接合層として形成して、前記接合面同士を接合する加熱接合工程とを備えている超電導線材の製造方法。
A superconducting wire manufacturing method for manufacturing an elongated superconducting wire by joining ends of superconducting wires having an oxide superconducting film as a joining surface,
A precursor forming step of forming a precursor of an oxide superconducting material on the oxide superconducting film on the bonding surface;
An ultrasonic bonding step in which the bonding surfaces on which the precursors are formed are overlapped and bonded by ultrasonic bonding;
By heating the precursor of the bonded surface bonded together to form a crystal of an oxide superconductive material on the bonded surface, a superconductive layer of the oxide superconductive material is formed as a bonded layer, and the bonded surfaces are The manufacturing method of the superconducting wire provided with the heating joining process which joins.
前記接合層を構成する酸化物超電導材料が、前記超電導線材の前記酸化物超電導膜を構成する酸化物超電導材料と同じ温度、もしくは、より低い温度で結晶が成長する酸化物超電導材料である請求項1に記載の超電導線材の製造方法。   The oxide superconducting material constituting the bonding layer is an oxide superconducting material in which crystals grow at the same temperature as or lower than the oxide superconducting material constituting the oxide superconducting film of the superconducting wire. A method for producing a superconducting wire according to 1. 前記接合層の形成方法が、酸化物超電導材料を構成する金属の有機化合物を含む溶液を用いた塗布熱分解法である請求項1または請求項2に記載の超電導線材の製造方法。   The method for producing a superconducting wire according to claim 1 or 2, wherein the bonding layer is formed by a coating pyrolysis method using a solution containing a metal organic compound constituting the oxide superconducting material. 前記金属の有機化合物として、フッ素を含まない有機金属化合物を用いる請求項1〜請求項3のいずれか1項に記載の超電導線材の製造方法。   The method for producing a superconducting wire according to any one of claims 1 to 3, wherein an organic metal compound containing no fluorine is used as the metal organic compound.
JP2015025329A 2015-02-12 2015-02-12 Superconducting wire rod manufacturing method and superconducting wire rod Pending JP2016149248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015025329A JP2016149248A (en) 2015-02-12 2015-02-12 Superconducting wire rod manufacturing method and superconducting wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015025329A JP2016149248A (en) 2015-02-12 2015-02-12 Superconducting wire rod manufacturing method and superconducting wire rod

Publications (1)

Publication Number Publication Date
JP2016149248A true JP2016149248A (en) 2016-08-18

Family

ID=56691807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015025329A Pending JP2016149248A (en) 2015-02-12 2015-02-12 Superconducting wire rod manufacturing method and superconducting wire rod

Country Status (1)

Country Link
JP (1) JP2016149248A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020020240A1 (en) * 2018-07-27 2020-01-30 中国科学院合肥物质科学研究院 Cylindrical superconducting joint for connecting sub-cables

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167523A (en) * 1997-08-21 1999-03-09 Toshiba Corp Connecting method of oxide superconductive wire rod oxide superconductor coil and superconductive device using the same
JP2013235699A (en) * 2012-05-08 2013-11-21 Sumitomo Electric Ind Ltd Joint method of high temperature superconducting thin film wire and high temperature superconducting thin film wire
JP2013235766A (en) * 2012-05-10 2013-11-21 Sumitomo Electric Ind Ltd Oxide superconducting thin film and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167523A (en) * 1997-08-21 1999-03-09 Toshiba Corp Connecting method of oxide superconductive wire rod oxide superconductor coil and superconductive device using the same
JP2013235699A (en) * 2012-05-08 2013-11-21 Sumitomo Electric Ind Ltd Joint method of high temperature superconducting thin film wire and high temperature superconducting thin film wire
JP2013235766A (en) * 2012-05-10 2013-11-21 Sumitomo Electric Ind Ltd Oxide superconducting thin film and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020020240A1 (en) * 2018-07-27 2020-01-30 中国科学院合肥物质科学研究院 Cylindrical superconducting joint for connecting sub-cables
US10985476B2 (en) 2018-07-27 2021-04-20 Hefei Institutes Of Physical Science, Chinese Acad Cylindrical joint for connecting sub-cables of superconducting busbar

Similar Documents

Publication Publication Date Title
JP5828299B2 (en) High temperature superconducting thin film wire joining method and high temperature superconducting thin film wire
KR102096697B1 (en) Method for manufacturing superconducting wire and member for joining superconducting wire
JP3600486B2 (en) Manufacturing method of thermoelectric conversion element
JP2008066399A (en) Connection structure of superconducting wire rod, superconducting coil, and connecting method of superconducting wire rod
JP2013535083A (en) Multifilament superconductor with reduced AC loss and its formation method
JP5327772B2 (en) Superconducting oxide multilayer thin film on sapphire substrate and method for producing the same
JPWO2017057483A1 (en) Superconducting wire connection structure
JP6060476B2 (en) Electrode formation method
JP6324202B2 (en) Superconducting wire connection structure, connection method, and superconducting wire
JP5736603B2 (en) REBCO oxide superconducting thin film and manufacturing method thereof
JP2007220467A (en) Method of manufacturing superconductive thin-film material, superconducting apparatus, and superconductive thin-film material
JP6993647B2 (en) Superconducting wire material and joining method of superconducting wire material
JP2016149248A (en) Superconducting wire rod manufacturing method and superconducting wire rod
JP6258775B2 (en) Superconducting wire connection structure and connection method
WO2017043555A1 (en) Superconducting wire rod bonding method
JP6356046B2 (en) Superconducting wire connection structure, superconducting wire and connection method
WO2018211702A1 (en) Superconducting wire material and production method therefor, superconducting coil, superconducting magnet, and superconducting device
WO2015166936A1 (en) Superconducting wire rod connection structure and connection method, and superconducting wire rod
JP2015128103A (en) Sheet-like structure and manufacturing method of the same, and electronic component and assembly method of the same
JP5556410B2 (en) Method for manufacturing oxide superconducting thin film
JP6311209B2 (en) Oxide superconducting thin film wire
TWI488994B (en) Method of repairing defect in superconducting film, method of coating superconducting film, and superconducting film formed by the method
JP2012064394A (en) Method for manufacturing oxide superconductive thin film
KR101027761B1 (en) Superconductor wire and method of joining superconductor wires
JP2017195249A (en) Ferroelectric element and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180827