JP2016148888A - Calculation method of adhesive characteristics and calculator - Google Patents

Calculation method of adhesive characteristics and calculator Download PDF

Info

Publication number
JP2016148888A
JP2016148888A JP2015023910A JP2015023910A JP2016148888A JP 2016148888 A JP2016148888 A JP 2016148888A JP 2015023910 A JP2015023910 A JP 2015023910A JP 2015023910 A JP2015023910 A JP 2015023910A JP 2016148888 A JP2016148888 A JP 2016148888A
Authority
JP
Japan
Prior art keywords
adhesive
stress
coherent
analysis
adherend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015023910A
Other languages
Japanese (ja)
Inventor
智広 夜久
Tomohiro Yaku
智広 夜久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2015023910A priority Critical patent/JP2016148888A/en
Publication of JP2016148888A publication Critical patent/JP2016148888A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing an adhesive analysis model capable of reducing a computation time by combining analysis models of adhesive in the strength analysis of an adhesion junction.SOLUTION: A method for calculating adhesive characteristics includes a pre-analysis process for modeling adhesive with at least one element of a beam element and a solid element to identify a stress concentration zone and a model creation process for modeling a stress concentration domain in the periphery of an adhesive section with a cohesive element and an adhesive section of an elastic domain other than that with at least one element of the beam element and the solid element.SELECTED DRAWING: Figure 2

Description

本発明は、接着剤を用いた接着継手構造における有限要素解析モデルの接着剤特性の計算方法および計算装置に関する。   The present invention relates to a method and an apparatus for calculating adhesive properties of a finite element analysis model in an adhesive joint structure using an adhesive.

部材の接合部にはボルトとナットを用いた機械接合や、溶接などが用いられるが、CFRPにはその特性上、繊維破断による強度低下、高温耐熱性などの問題から、一般的には接着接合が用いられる。   Mechanical joints using bolts and nuts, welding, etc. are used for the joints of members, but CFRP is generally adhesively bonded due to its characteristics such as strength reduction due to fiber breakage and high temperature heat resistance. Is used.

有限要素法(Finite Element Method:FEM)を用いた、接着剤や被着材を要素分割した接着剤要素や被着材要素、接着剤要素と被着材要素とが接合した部分である接着接合部の強度解析では、これまでビーム要素を用いた接着剤のモデル作成手法が提案されており、そのモードI(引き剥がし)、モードII(面内せん断)各モードの応力が接着剤の強度に達すると破壊と判定されてきた(例えば、特許文献1参照)。   Adhesive bonding that uses adhesive element or adherend element obtained by dividing an adhesive or adherend into elements, or a portion where the adhesive element and adherend element are joined, using the Finite Element Method (FEM) In the strength analysis of the part, an adhesive model creation method using a beam element has been proposed so far, and the stress of each mode I (peeling) and mode II (in-plane shear) mode depends on the strength of the adhesive. When it reaches, it has been determined to be broken (see, for example, Patent Document 1).

特開2009-99132号公報JP 2009-99132 A

しかし実際の破壊は、主にこれらの混合モードで発生することや、接着剤の破壊現象においては、微細な損傷発生等による軟化を経て破壊に達することが分かっており、ビーム要素による解析ではこれらを考慮することができないという問題があった。厳密な解析ではこれらの破壊形態を考慮した結合力要素(コヒーシブ要素、cohesive要素)でモデル化することが提案されている。   However, it is known that the actual fracture mainly occurs in these mixed modes, and the adhesive fracture phenomenon reaches the fracture after softening due to the occurrence of fine damage, etc. There was a problem that could not be considered. In rigorous analysis, it has been proposed to model with a cohesive element (cohesive element, cohesive element) in consideration of these failure modes.

また、スポット溶接など、接合部の面積が比較的狭く、接着面内において応力分布がないとみなしうる場合は、ビーム要素の発生応力を接合強度と比較して破壊判定することが可能であるが、接着接合のように接合面積が大きい場合は、接着端部と内部の応力分布を無視することができず、破壊開始となる場合の多い接着端部の応力を正確に計算することはビーム要素では困難であった。   In addition, when the area of the joint is relatively small, such as spot welding, and it can be considered that there is no stress distribution in the bonding surface, it is possible to determine the fracture by comparing the generated stress of the beam element with the joint strength. When the bonding area is large as in the case of adhesive bonding, the stress distribution at the bonded end and inside cannot be ignored, and accurate calculation of the stress at the bonded end that often starts fracture is a beam element. It was difficult.

しかし、すべての接着接合部を結合力要素(コヒーシブ要素、cohesive要素)でモデル作成した場合、モデル作成・計算にかかる時間が膨大となることや、接着厚みを一定にする必要があるなどの問題もあり、接着接合部の厳密なモデル化が困難であった。   However, when all the bonded joints are modeled with bonding force elements (cohesive elements, cohesive elements), the time required for model creation and calculation becomes enormous, and the adhesive thickness needs to be constant. For this reason, it has been difficult to accurately model an adhesive joint.

本発明は、接着接合部における破壊強度解析モデルの接着剤特性を計算するにあたり、モデル作成・計算コストを低減させることができ、特に、接着接合部で接着厚みが異なる場合でもより厳密にモデル化する接着剤特性の計算方法および計算装置を提供することを目的とする。   The present invention can reduce the cost of model creation / calculation when calculating the adhesive properties of the fracture strength analysis model at the adhesive joint, especially modeling even when the adhesive thickness differs at the adhesive joint It is an object of the present invention to provide a method and an apparatus for calculating adhesive properties.

(1)2枚の被着材を接着剤で接着した接着構造を複数の要素に分割し、前記被着材の被着材要素をシェル要素とするとともに、前記接着剤の接着剤要素として、コヒーシブ要素に加え、ビーム要素、ソリッド要素の少なくとも1つの要素を組み合わせた有限要素解析モデルによる接着剤特性の計算方法であって、接着剤が軟化して破壊が発生すると考えられる接着剤要素をコヒーシブ要素として設定し、それ以外の接着剤要素をビーム要素またはソリッド要素のいずれかに設定し、前記コヒーシブ要素の破壊により、前記被着材要素と前記接着剤要素とが接合する接着接合部の強度を判定する、接着剤特性の計算方法。
(2)前記コヒーシブ要素を設定するに際し、予め接着剤要素をビーム要素、ソリッド要素のいずれかに設定し、荷重変形時に前記接着剤要素の垂直応力、せん断応力が、前記接着剤要素におけるそれぞれの変形モードの損傷開始応力の80%以上となる接着剤要素を特定する事前解析を行い、前記事前解析の結果に基づいて、接着剤の引き剥がし、せん断方向の応力状態が、材料降伏後の状態である前記接着剤要素をコヒーシブ要素に設定する、(1)に記載の接着剤特性の計算方法。
(3)前記事前解析において、接着剤要素の材料物性を、材料降伏後、応力が低下するように設定する、(2)に記載の接着剤特性の計算方法。
(4)2枚の被着材を接着剤で接着した接着構造を複数の要素に分割する分割手段、前記被着材の被着材要素をシェル要素とするとともに、前記接着剤の接着剤要素として、コヒーシブ要素に加え、ビーム要素、ソリッド要素の少なくとも1つの要素を組み合わせた有限要素解析モデルを形成する有限要素モデル形成手段を少なくとも含む接着剤特性の計算装置であって、接着剤が軟化して破壊が発生すると考えられる接着剤要素をコヒーシブ要素とし、それ以外の接着接合部のモデルをビーム要素、ソリッド要素のいずれかに設定し、前記コヒーシブ要素の破壊により、前記被着材要素と前記接着剤要素とが接合する接着接合部の強度を判定する判定手段を有する、接着剤特性の計算装置。
(5)前記コヒーシブ要素を設定するに際し、予め接着剤要素をビーム要素、ソリッド要素のいずれかに設定し、荷重変形時に前記接着剤要素の垂直応力、せん断応力が、前記接着剤要素におけるそれぞれの変形モードの損傷開始応力の80%以上となる接着剤要素を特定する事前解析を行い、前記事前解析の結果に基づいて、接着剤の引き剥がし、せん断方向の応力状態が、材料降伏後の状態である前記接着剤要素をコヒーシブ要素に設定する、(4)に記載の接着剤特性の計算装置。
(6)前記事前解析において、接着剤要素の材料物性を、材料降伏後、応力が低下するように設定する、(5)に記載の接着剤特性の計算装置。
(1) An adhesive structure in which two adherends are bonded with an adhesive is divided into a plurality of elements, and the adherend element of the adherend is used as a shell element, and as an adhesive element of the adhesive, This is a method for calculating adhesive properties using a finite element analysis model that combines at least one of beam elements and solid elements in addition to coherent elements, and cohesive adhesive elements that are thought to break due to softening of the adhesive. Set as an element, other adhesive elements are set as either beam elements or solid elements, and the strength of the adhesive joint where the adherend element and the adhesive element are joined by the destruction of the coherent element A method for calculating adhesive properties.
(2) When setting the coherent element, the adhesive element is set in advance as either a beam element or a solid element, and the normal stress and shear stress of the adhesive element at the time of load deformation are set in the respective adhesive elements. Pre-analysis is performed to identify an adhesive element that is 80% or more of the damage initiation stress in the deformation mode. Based on the result of the pre-analysis, the adhesive is peeled off, and the stress state in the shear direction is determined after the material yield. The method for calculating adhesive properties according to (1), wherein the adhesive element in a state is set as a coherent element.
(3) The method for calculating adhesive properties according to (2), wherein, in the preliminary analysis, the material physical properties of the adhesive element are set so that the stress decreases after the material yield.
(4) Splitting means for splitting an adhesive structure in which two adherends are bonded with an adhesive into a plurality of elements, the adherend element of the adherend as a shell element, and an adhesive element of the adhesive As an apparatus for calculating adhesive properties, including at least a finite element model forming means for forming a finite element analysis model combining at least one of a beam element and a solid element in addition to a coherent element, the adhesive softens The adhesive element that is considered to cause fracture is a coherent element, and the model of the other adhesive joint is set to either a beam element or a solid element, and by the destruction of the coherent element, the adherend element and the adhesive element An apparatus for calculating adhesive properties, comprising: a determination unit that determines the strength of an adhesive bonding portion to which an adhesive element is bonded.
(5) When setting the coherent element, the adhesive element is set in advance as either a beam element or a solid element, and the normal stress and shear stress of the adhesive element at the time of load deformation are set in the respective adhesive elements. Pre-analysis is performed to identify an adhesive element that is 80% or more of the damage initiation stress in the deformation mode. Based on the result of the pre-analysis, the adhesive is peeled off, and the stress state in the shear direction is determined after the material yield. The apparatus for calculating adhesive properties according to (4), wherein the adhesive element in a state is set as a coherent element.
(6) The adhesive property calculation apparatus according to (5), wherein in the preliminary analysis, the material physical property of the adhesive element is set so that the stress decreases after the material yield.

以下に用語を定義する。   The terms are defined below.

本発明において、「被着材」とは、接着剤により接合される母材を示しており、接着面において形状が平らである必要は無く、曲面を形成していても良い。また接着部で対向する2枚の被着材は肉厚が一様厚さである必要は無い。   In the present invention, the “adhesive” refers to a base material bonded by an adhesive, and the shape does not need to be flat on the bonding surface, and a curved surface may be formed. Further, the two adherends facing each other at the bonding portion need not have a uniform thickness.

本発明において、「接着剤」とは、接合部をともに形成する被着材とは別の材料で構成される物質であり、リベット接合や溶接接合とは異なり、被着材との接合の時には、被着材よりも低いヤング率をもった非定形の物体として被着材表面に沿って密着し、ついで加熱や乾燥でもって硬化することにより被着材同士を接合するための材料などをいう。典型的には硬化前においては液体やジェル状の物体である。接着剤は結合力を向上させる観点から、被着材に前処理を行っても良いし、複数の成分から構成しても良い。また、液体だけではなく、固体や粉体でも良い。   In the present invention, an “adhesive” is a substance composed of a material different from the adherend that forms the joint together, and unlike rivet joining or welded joining, , A material for bonding adherends together by adhering along the surface of the adherend as an amorphous object having a Young's modulus lower than that of the adherend, and then curing by heating or drying . Typically, it is a liquid or gel-like object before curing. From the viewpoint of improving the bonding strength, the adhesive may be pretreated on the adherend or may be composed of a plurality of components. Moreover, not only liquid but solid and powder may be sufficient.

本発明において、「接着剤特性」とは、接着部において解析を実施し、評価する項目をいう。具体的には破壊強度や応力、ひずみ、温度などが挙げられる。   In the present invention, the “adhesive property” refers to an item to be analyzed and evaluated at the bonded portion. Specific examples include fracture strength, stress, strain, temperature, and the like.

本発明によれば、接着接合部における破壊強度解析モデルの接着剤特性を計算するにあたり、モデル作成・計算コストを低減させることができ、特に、接着接合部で接着厚みが異なる場合でもより厳密にモデル化することが可能となる。   According to the present invention, in calculating the adhesive property of the fracture strength analysis model in the adhesive joint, it is possible to reduce the model creation and calculation costs, and more strictly even when the adhesive thickness is different in the adhesive joint. It becomes possible to model.

本実施形態における接着構造の模式図である。It is a schematic diagram of the adhesion structure in this embodiment. 本発明における接着剤特性の計算方法に関するフローを示した図である。It is the figure which showed the flow regarding the calculation method of the adhesive agent property in this invention. コヒーシブ要素の応力−変位線図の一例を示した図である。It is the figure which showed an example of the stress-displacement diagram of a coherent element. 事前解析における図1に記載の接着部をソリッド要素でモデル化した場合の一例を示す模式図である。It is a schematic diagram which shows an example at the time of modeling the adhesion part of FIG. 1 in a prior analysis by a solid element. 事前解析後に応力集中部の接着剤要素をコヒーシブ要素に変換してモデル化した場合の一例を示す模式図である。It is a schematic diagram which shows an example at the time of converting into a cohesive element the adhesive agent element of a stress concentration part after a prior analysis, and modeling.

以下、本発明の好ましい実施の形態について図を用いて説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

なお本発明では、接着部を有する構造体に関して、接着部の破壊判定を行うことを目的とした構造解析に関して記述する。   In the present invention, a structural analysis for the purpose of determining whether or not the bonded portion is broken will be described with respect to the structure having the bonded portion.

図1は、本実施形態における接着部を有する接着構造100の模式図を示す。具体的には、被着材1と被着材2とが、これらの間にある接着剤3により接着された構成からなるものである。   FIG. 1 shows a schematic diagram of an adhesive structure 100 having an adhesive portion in the present embodiment. Specifically, the adherend 1 and the adherend 2 have a configuration in which they are adhered by an adhesive 3 between them.

図2は、本発明における接着部の要素の種類の判定方法に関するフローを示した図である。   FIG. 2 is a diagram showing a flow relating to a method for determining the type of element of the bonded portion in the present invention.

まず、事前解析工程(手順1)では、図1に示す接着構造100において、破壊起点となりえる応力集中部を計算により判定するため、予め接着剤要素をビーム要素またはソリッド要素のいずれかに設定する。この際、接着剤全体としては、ビーム要素もしくはソリッド要素のみで構成されていてもよいし、またはビーム要素とソリッド要素の両方を組み合わせた構成であってもよい。荷重変形時に、それぞれの接着剤要素の垂直応力、せん断応力が、それぞれの接着剤要素におけるそれぞれの変形モードの損傷開始応力の80%以上となる接着剤要素を特定するための事前解析を行う。ここで、図4に、図1に示す接着構造100のX部における接着剤3をすべてソリッド要素でモデル化した場合の有限要素モデルの一部を拡大して示した概略斜視図を示す。ソリッド要素11〜20は接着剤3の有限要素を示している。ソリッド要素11〜20の上側節点は被着材1に、下側節点は被着材2と節点共有している。なお、前記接着剤要素の材料特性としては、線形弾性体を用いるのが好ましい。   First, in the pre-analysis step (procedure 1), in order to determine by calculation the stress concentration portion that can be a fracture starting point in the bonding structure 100 shown in FIG. 1, the adhesive element is set in advance as either a beam element or a solid element. . At this time, the entire adhesive may be composed of only the beam element or the solid element, or may be composed of a combination of both the beam element and the solid element. A pre-analysis is performed to identify an adhesive element in which the normal stress and shear stress of each adhesive element are 80% or more of the damage initiation stress of each deformation mode in each adhesive element during load deformation. Here, FIG. 4 shows an enlarged schematic perspective view of a part of the finite element model when the adhesive 3 in the part X of the adhesive structure 100 shown in FIG. 1 is modeled as a solid element. Solid elements 11 to 20 represent finite elements of the adhesive 3. The upper nodes of the solid elements 11 to 20 are shared with the adherend 1 and the lower nodes are shared with the adherend 2. As a material characteristic of the adhesive element, it is preferable to use a linear elastic body.

続いて接着剤の応力判定工程(手順2)では、事前解析における接着剤要素に発生するモードI、II方向の引張り・圧縮応力、せん断応力が、それぞれの接着剤要素における損傷開始応力の80%以上となる接着剤要素も応力集中部とみなすことができる。なお、すべての接着剤要素において、モードI、II方向の引張り・圧縮応力、せん断応力が、コヒーシブ要素における損傷開始応力の80%未満である場合は、接着剤の破壊は起きないと判定し、解析を終了する。   Subsequently, in the adhesive stress determination step (procedure 2), the tensile / compressive stress and shear stress in the mode I and II directions generated in the adhesive element in the pre-analysis are 80% of the damage initiation stress in each adhesive element. The above adhesive element can also be regarded as a stress concentration part. In all adhesive elements, if the tensile / compressive stress in mode I, II direction and the shear stress are less than 80% of the damage initiation stress in the coherent element, it is determined that the adhesive does not break, End the analysis.

接着剤の応力集中部要素変換工程(手順3)では、上記手順2により応力集中部とみなされた前記接着剤要素をコヒーシブ要素に変換する。なお、コヒーシブ要素は接着厚み一定である必要があるため、要素の種類を変換する際に、接着厚みが異なる箇所はモデル形状を修正する場合がある。ここで、図5に、図4から要素変換した有限要素モデルの一例を示した概略斜視図を示す。要素11’、16’〜20’は前記接着剤要素の応力が損傷開始応力以上となり要素変換されたコヒーシブ要素を、要素12’、15’は前記接着剤要素の応力が損傷開始応力の80%以上100%未満となり、応力集中部とみなされ要素変換されたコヒーシブ要素を示す。   In the stress concentration part element conversion step (procedure 3) of the adhesive, the adhesive element regarded as the stress concentration part by the above procedure 2 is converted into a coherent element. In addition, since it is necessary for the coherent element to have a constant adhesion thickness, when the type of the element is converted, the model shape may be modified at a location where the adhesion thickness is different. Here, FIG. 5 shows a schematic perspective view showing an example of a finite element model obtained by element conversion from FIG. Elements 11 ′ and 16 ′ to 20 ′ are cohesive elements in which the stress of the adhesive element is equal to or greater than the damage initiation stress, and elements 12 ′ and 15 ′ are 80% of the damage initiation stress. It is less than 100% and indicates a coherent element that is regarded as a stress concentration part and has been subjected to element conversion.

コヒーシブ要素は、図3でコヒーシブ要素の応力−変位線図を示すように、変形初期段階では弾性挙動を示すが、変形が大きくなり、応力が降伏開始点に達すると軟化が始まり(粘弾性挙動)、最終的に応力が0に達した時点で破壊となる。なお、本発明ではコヒーシブ要素の軟化挙動を線形型のみ示しているが、それ以外の挙動を示すコヒーシブ要素でも適用可能である。   As shown in the stress-displacement diagram of the coherent element in FIG. 3, the coherent element shows elastic behavior at the initial stage of deformation, but the deformation becomes large, and softening starts when the stress reaches the yield start point (viscoelastic behavior). ) When the stress finally reaches zero, the fracture occurs. In the present invention, only the linear type softening behavior of the coherent element is shown, but the present invention can also be applied to a coherent element that exhibits other behavior.

再解析工程(手順4)では、上記手順により変換された接着構造部材のモデルにおいて、再度解析を実行し、コヒーシブ要素の破壊判定により接着剤の破壊判定を行う。すなわち、コヒーシブ要素の解析結果を判定することで、被着材要素と接着剤要素とが接合する接着接合部の強度を判定し、接着構造の強度を計算することが可能となる。   In the re-analysis step (procedure 4), the analysis is performed again on the model of the bonded structural member converted by the above-described procedure, and the destruction of the adhesive is determined by determining the destruction of the coherent element. That is, by determining the analysis result of the coherent element, it is possible to determine the strength of the adhesive joint where the adherend element and the adhesive element are joined, and to calculate the strength of the adhesive structure.

なお、コヒーシブ要素は上述の通り、降伏までは弾性挙動を示すが、降伏後は変形とともに応力が低下し、最終的に応力が0に達すると破壊現象が発生すると判定することが好ましい。   As described above, the coherent element exhibits an elastic behavior until yielding, but it is preferable to determine that a fracture phenomenon occurs when the stress decreases with deformation after the yielding and finally reaches zero.

1:被着材
2:被着材
3:接着剤
11〜20:接着剤3を表すソリッド要素
11’、12’、15’〜20’:事前解析により応力集中部とみなされ、変換されたコヒーシブ要素
1: Adhering material 2: Adhering material 3: Adhesives 11 to 20: Solid elements 11 ′, 12 ′, and 15 ′ to 20 ′ representing the adhesive 3 Cohesive element

Claims (6)

2枚の被着材を接着剤で接着した接着構造を複数の要素に分割し、前記被着材の被着材要素をシェル要素とするとともに、前記接着剤の接着剤要素として、コヒーシブ要素に加え、ビーム要素、ソリッド要素の少なくとも1つの要素を組み合わせた有限要素解析モデルによる接着剤特性の計算方法であって、接着剤が軟化して破壊が発生すると考えられる接着剤要素をコヒーシブ要素として設定し、それ以外の接着剤要素をビーム要素またはソリッド要素のいずれかに設定し、前記コヒーシブ要素の破壊により、前記被着材要素と前記接着剤要素とが接合する接着接合部の強度を判定する、接着剤特性の計算方法。   An adhesive structure in which two adherends are bonded with an adhesive is divided into a plurality of elements, and the adherend element of the adherend is used as a shell element, and an adhesive element of the adhesive is used as a coherent element. In addition, it is a calculation method of adhesive properties by a finite element analysis model that combines at least one of beam element and solid element, and the adhesive element that is considered to break due to softening of the adhesive is set as a coherent element The other adhesive element is set to either a beam element or a solid element, and the strength of the adhesive joint where the adherend element and the adhesive element are bonded is determined by the destruction of the coherent element. , Calculation method of adhesive properties. 前記コヒーシブ要素を設定するに際し、予め接着剤要素をビーム要素、ソリッド要素のいずれかに設定し、荷重変形時に前記接着剤要素の垂直応力、せん断応力が、前記接着剤要素におけるそれぞれの変形モードの損傷開始応力の80%以上となる接着剤要素を特定する事前解析を行い、前記事前解析の結果に基づいて、接着剤の引き剥がし、せん断方向の応力状態が、材料降伏後の状態である前記接着剤要素をコヒーシブ要素に設定する、請求項1に記載の接着剤特性の計算方法。   When setting the coherent element, the adhesive element is set in advance as either a beam element or a solid element, and the normal stress and shear stress of the adhesive element at the time of load deformation depend on each deformation mode in the adhesive element. Pre-analysis is performed to identify an adhesive element that is 80% or more of the damage initiation stress. Based on the result of the pre-analysis, the adhesive is peeled off, and the stress state in the shear direction is the state after material yielding. The method of calculating adhesive properties according to claim 1, wherein the adhesive element is set as a coherent element. 前記事前解析において、接着剤要素の材料物性を、材料降伏後、応力が低下するように設定する、請求項2に記載の接着剤特性の計算方法。   The calculation method of the adhesive characteristic of Claim 2 which sets the material physical property of an adhesive element in the said prior analysis so that stress may fall after a material yield. 2枚の被着材を接着剤で接着した接着構造を複数の要素に分割する分割手段、前記被着材の被着材要素をシェル要素とするとともに、前記接着剤の接着剤要素として、コヒーシブ要素に加え、ビーム要素、ソリッド要素の少なくとも1つの要素を組み合わせた有限要素解析モデルを形成する有限要素モデル形成手段を少なくとも含む接着剤特性の計算装置であって、接着剤が軟化して破壊が発生すると考えられる接着剤要素をコヒーシブ要素とし、それ以外の接着接合部のモデルをビーム要素、ソリッド要素のいずれかに設定し、前記コヒーシブ要素の破壊により、前記被着材要素と前記接着剤要素とが接合する接着接合部の強度を判定する判定手段を有する、接着剤特性の計算装置。   Splitting means for splitting an adhesive structure in which two adherends are bonded with an adhesive into a plurality of elements, the adherend element of the adherend as a shell element, and a coherent as an adhesive element of the adhesive In addition to the element, a calculation device for adhesive properties including at least a finite element model forming means for forming a finite element analysis model combining at least one of a beam element and a solid element, the adhesive softens and breaks down The adhesive element that is considered to be generated is a coherent element, and the model of the other adhesive joint is set to either a beam element or a solid element, and the adherend element and the adhesive element are caused by the destruction of the coherent element. An apparatus for calculating adhesive properties, comprising: a determination unit that determines the strength of an adhesive joint portion to which the two are joined. 前記コヒーシブ要素を設定するに際し、予め接着剤要素をビーム要素、ソリッド要素のいずれかに設定し、荷重変形時に前記接着剤要素の垂直応力、せん断応力が、前記接着剤要素におけるそれぞれの変形モードの損傷開始応力の80%以上となる接着剤要素を特定する事前解析を行い、前記事前解析の結果に基づいて、接着剤の引き剥がし、せん断方向の応力状態が、材料降伏後の状態である前記接着剤要素をコヒーシブ要素に設定する、請求項4に記載の接着剤特性の計算装置。   When setting the coherent element, the adhesive element is set in advance as either a beam element or a solid element, and the normal stress and shear stress of the adhesive element at the time of load deformation depend on each deformation mode in the adhesive element. Pre-analysis is performed to identify an adhesive element that is 80% or more of the damage initiation stress. Based on the result of the pre-analysis, the adhesive is peeled off, and the stress state in the shear direction is the state after material yielding. 5. The adhesive property calculation device according to claim 4, wherein the adhesive element is set as a coherent element. 前記事前解析において、接着剤要素の材料物性を、材料降伏後、応力が低下するように設定する、請求項5に記載の接着剤特性の計算装置。
6. The adhesive property calculation apparatus according to claim 5, wherein, in the preliminary analysis, the material property of the adhesive element is set so that the stress decreases after the material yields.
JP2015023910A 2015-02-10 2015-02-10 Calculation method of adhesive characteristics and calculator Pending JP2016148888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015023910A JP2016148888A (en) 2015-02-10 2015-02-10 Calculation method of adhesive characteristics and calculator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023910A JP2016148888A (en) 2015-02-10 2015-02-10 Calculation method of adhesive characteristics and calculator

Publications (1)

Publication Number Publication Date
JP2016148888A true JP2016148888A (en) 2016-08-18

Family

ID=56691235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023910A Pending JP2016148888A (en) 2015-02-10 2015-02-10 Calculation method of adhesive characteristics and calculator

Country Status (1)

Country Link
JP (1) JP2016148888A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487579A (en) * 2019-08-28 2019-11-22 湘潭大学 A kind of girder construction damnification recognition method based on inclination angle slope
CN111090906A (en) * 2019-10-10 2020-05-01 惠州市德赛西威汽车电子股份有限公司 Solid modeling method using nonlinear spring to replace glue
WO2020240900A1 (en) 2019-05-28 2020-12-03 横浜ゴム株式会社 Adhesive selection method, adhesion complex, and production method for adhesion complex

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240900A1 (en) 2019-05-28 2020-12-03 横浜ゴム株式会社 Adhesive selection method, adhesion complex, and production method for adhesion complex
CN113939571A (en) * 2019-05-28 2022-01-14 西卡豪马泰特株式会社 Method for selecting adhesive, adhesive composite, and method for producing adhesive composite
CN113939571B (en) * 2019-05-28 2024-01-30 西卡豪马泰特株式会社 Adhesive selecting method, adhesive composite and method for producing adhesive composite
JP7430853B2 (en) 2019-05-28 2024-02-14 シーカ テクノロジー アクチェンゲゼルシャフト Methods for selecting adhesives, adhesive composites, and methods for manufacturing adhesive composites
CN110487579A (en) * 2019-08-28 2019-11-22 湘潭大学 A kind of girder construction damnification recognition method based on inclination angle slope
CN110487579B (en) * 2019-08-28 2021-04-13 湘潭大学 Beam structure damage identification method based on inclination slope
CN111090906A (en) * 2019-10-10 2020-05-01 惠州市德赛西威汽车电子股份有限公司 Solid modeling method using nonlinear spring to replace glue
CN111090906B (en) * 2019-10-10 2023-07-07 惠州市德赛西威汽车电子股份有限公司 Method for replacing glue solid modeling by nonlinear spring

Similar Documents

Publication Publication Date Title
Marannano et al. Numerical experimental analysis of hybrid double lap aluminum-CFRP joints
Ji et al. Fracture mechanics approach for failure of adhesive joints in wind turbine blades
Haghpanah et al. Adhesively bonded lap joints with extreme interface geometry
Jousset et al. Comparison and evaluation of two types of cohesive zone models for the finite element analysis of fracture propagation in industrial bonded structures
De Moura et al. Cohesive zone model for high-cycle fatigue of composite bonded joints under mixed-mode I+ II loading
JP2016148888A (en) Calculation method of adhesive characteristics and calculator
JP2008281429A (en) Bonding strength evaluating method of double wrap coupling
Ichikawa et al. A three-dimensional finite-element stress analysis and strength evaluation of stepped-lap adhesive joints subjected to static tensile loadings
Kanani et al. The effect of joint configuration on the strength and stress distributions of dissimilar adhesively bonded joints
Silva et al. Application a direct/cohesive zone method for the evaluation of scarf adhesive joints
Liu et al. Viscoelastic bilinear cohesive model and parameter identification for failure analysis of adhesive composite joints
Zhang et al. Experimental and theoretical stress analysis for an interface stress model of single-L adhesive joints between CFRP and aluminum components
JP6350270B2 (en) Fracture prediction method for adhesive joints
Zou et al. Failure analysis of composite-to-titanium single lap adhesive joints subjected to tensile loading
WO2020136976A1 (en) Method for identifying elastic characteristics of adhesive
Sen et al. The determination of dynamic strength of single lap joints using the split Hopkinson pressure bar
US9689262B2 (en) Thermographic inspection system for composite wind turbine blade
JP6085590B2 (en) Joint part analysis method, product design method, and joint part analysis system
JP2015018306A (en) Adhesion joint breaking prediction method
Barros et al. Numerical simulations of crack propagation tests in adhesive bonded joints
Hu et al. Characterisation on the influence of curing history on the mechanical performance of adhesively bonded corrugated sandwich structures
Seo et al. Welding versus adhesive bonding strength investigation
Santos et al. Experimental and numerical analysis of the fracture envelope of composite adhesive joints
Anyfantis et al. Characterizing and modeling brittle bi-material interfaces subjected to shear
Moslemi et al. Delamination analysis of woven fabrication laminates using cohesive zone model