JP2008281429A - Bonding strength evaluating method of double wrap coupling - Google Patents

Bonding strength evaluating method of double wrap coupling Download PDF

Info

Publication number
JP2008281429A
JP2008281429A JP2007125584A JP2007125584A JP2008281429A JP 2008281429 A JP2008281429 A JP 2008281429A JP 2007125584 A JP2007125584 A JP 2007125584A JP 2007125584 A JP2007125584 A JP 2007125584A JP 2008281429 A JP2008281429 A JP 2008281429A
Authority
JP
Japan
Prior art keywords
shear stress
double
joined body
evaluating
double lap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007125584A
Other languages
Japanese (ja)
Inventor
Naoki Yamamoto
尚樹 山本
Maki Inomata
麻紀 猪股
Kenjiro Yamagishi
謙二郎 山岸
Kiyoshi Akinaga
清 秋永
Kazuo Fujita
和夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
IHI Marine United Inc
Original Assignee
IHI Corp
IHI Marine United Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, IHI Marine United Inc filed Critical IHI Corp
Priority to JP2007125584A priority Critical patent/JP2008281429A/en
Priority to PCT/JP2008/054648 priority patent/WO2008139776A1/en
Publication of JP2008281429A publication Critical patent/JP2008281429A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bonding strength evaluating method of a double wrap coupling for evaluating a peel strength in a joint which can not clearly define an adhesive layer. <P>SOLUTION: The bonding strength evaluating method of the double wrap coupling 100 including three laminated plate members including a composite material 10 and bound on side faces, has the process of obtaining an allowable shear stress of the double wrap coupling 100 by a tension test using a plurality of specimens with different binding lengths L, the process of obtaining a shear stress of the double wrap coupling 100 by a finite element analysis method, and the process of comparing and evaluating the allowable shear stress and the shear stress. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、航空宇宙分野から船舶造船分野にかけて広く応用されるダブルラップ接合体の接合強度評価方法に関するものである。   The present invention relates to a method for evaluating the joint strength of a double lap joint widely applied from the aerospace field to the shipbuilding field.

従来、ボルトやリベット等の締結具を用いて複数の部材を締結する締結構造は航空宇宙分野に限らず、一般構造分野(特に船舶造船分野)においても広く用いられている。締結構造として認識される継手は、軸方向における引張り荷重とせん断力を受け持つことによりその締結機能を果たすものである。   Conventionally, a fastening structure for fastening a plurality of members using fasteners such as bolts and rivets is widely used not only in the aerospace field but also in the general structural field (particularly in the shipbuilding field). A joint recognized as a fastening structure fulfills its fastening function by taking charge of the tensile load and shearing force in the axial direction.

近年、上記した分野においては、機体或いは船体などの構造軽量化及びペイロードの低減を図るために繊維強化複合材を適用する例が増加している。また、比強度、比剛性に優れた繊維強化複合材の適用は今や不可欠とされ、繊維強化複合材同士の接合、繊維強化複合材と金属との接合も増加している。
継手構造にはダブルラップ方式/シングルラップ方式があり、例えば図7に示すように、鋼材からなる板状部材82の両側に繊維強化複合材からなる板状部材81が接着層83を介して接合されている。
In recent years, in the fields described above, there are increasing examples of applying fiber reinforced composite materials in order to reduce the weight of structures such as airframes or hulls and reduce payloads. In addition, the application of a fiber reinforced composite material excellent in specific strength and specific rigidity is now indispensable, and the joining of fiber reinforced composite materials and the joining of fiber reinforced composite materials and metals are also increasing.
The joint structure includes a double wrap method / single wrap method. For example, as shown in FIG. 7, plate members 81 made of fiber reinforced composite material are bonded to both sides of a plate member 82 made of steel via an adhesive layer 83. Has been.

しかしながら、接着界面における接着層83の剥離など、構造物破壊の原因として最も多く挙げられる部分が継手であることから、構造物全体の安全性や信頼性の向上のためにも継手の強度評価が極めて重要となっている。
ダブルラップ接着継手/シングルラップ接着継手の接合強度評価法としては、Hart-Smithのチャート(図8参照)を用いる手法(非特許文献1,2参照)が広く支持されている。これらの論文では、継手の接着層に対する塑性の影響を考慮しており、界面破壊を物理的に説明している。すなわち、接着界面にはたらく平均せん断応力と側面拘束長(接着長)との関係は図8に示すように表現できるとしていて、接着長lが0に近いとき及び無限に長くなるときは、下記の式のようにある値に漸近するとしている。
However, since the joint is the most frequently cited cause of structural destruction, such as peeling of the adhesive layer 83 at the adhesive interface, the strength of the joint can be evaluated to improve the safety and reliability of the entire structure. It is extremely important.
As a method for evaluating the bonding strength of a double lap adhesive joint / single wrap adhesive joint, a technique using a Hart-Smith chart (see FIG. 8) (see Non-Patent Documents 1 and 2) is widely supported. These papers take into account the effect of plasticity on the adhesive layer of the joint and physically explain the interface failure. That is, the relationship between the average shear stress acting on the adhesion interface and the side restraint length (adhesion length) can be expressed as shown in FIG. 8. When the adhesion length l is close to 0 and becomes infinitely long, Asymptotically approaching a certain value as in the equation.

Figure 2008281429
Figure 2008281429

図9(a),(b)に示すように、接着長の異なる解析モデルE,F,Gのうち、接着長の最も短い解析モデルEは、接着界面全体が塑性して降伏することによって破壊し、接着長の最も長い解析モデルGは、接着界面にかかるせん断歪エネルギーが限界を超えることによって破壊している。これは、接着長が短いときには接着界面全体の塑性化によって界面破壊が決定され、接着長が長いときには接着界面にはたらくせん断歪エネルギーによって界面破壊が決定されることを示している。
L,J.Hart-Smith; Adhesive-Bonded Double-Lap Joints; NASA CR-112235; 1973 L,J.Hart-Smith; Adhesive-Bonded Single-Lap Joints; NASA CR-112234; 1973
As shown in FIGS. 9A and 9B, among the analysis models E, F, and G having different adhesion lengths, the analysis model E having the shortest adhesion length is broken when the entire bonding interface is plastically yielded. However, the analysis model G having the longest bond length is broken when the shear strain energy applied to the bond interface exceeds the limit. This indicates that when the bond length is short, the interface fracture is determined by plasticizing the entire bonded interface, and when the bond length is long, the interface fracture is determined by the shear strain energy acting on the bonded interface.
L, J.Hart-Smith; Adhesive-Bonded Double-Lap Joints; NASA CR-112235; 1973 L, J.Hart-Smith; Adhesive-Bonded Single-Lap Joints; NASA CR-112234; 1973

上記した接合強度評価法は、半硬化のプリプレグを用いた成型法ではよく利用され、接着剤の物性や厚さ等に基づいて評価を行うものである。
近年においては、コスト性に優れたVaRTM成型法(真空圧樹脂含浸成型法)等が出現している。この成型法は、接着剤を用いずに樹脂の接着効果を期待した複合材一体成型法であって、複合材の繊維を積層したものと鋼材とに樹脂を含浸するため、材料費や設備費が削減されるという点で利点がある。しかしながら、接合強度評価を行う際、接着剤の物性や厚み等から評価する上記Hart-Smithの手法は適用することができない。VaRTM成型法によって形成された継手の応力分布に関するものは、Tsai-Oplingerにより理論解として与えられているが、接着剤の代わりとなる樹脂の塑性効果が考慮できないため、弾性範囲での挙動にしか言及しておらず、強度評価にまでは至っていない。つまり、接着層を明確にできないものは従来の強度評価法を用いることができないため、新たな評価法を構築することが求められている。
The above-described bonding strength evaluation method is often used in a molding method using a semi-cured prepreg, and evaluates based on the physical properties, thickness, etc. of the adhesive.
In recent years, a VaRTM molding method (vacuum pressure resin impregnation molding method) having excellent cost performance has appeared. This molding method is a composite-integrated molding method that expects the adhesive effect of the resin without using an adhesive, and impregnates the resin into a laminate of composite fibers and steel, so material costs and equipment costs Is advantageous in that it is reduced. However, when the bonding strength is evaluated, the Hart-Smith method for evaluating from the physical properties and thickness of the adhesive cannot be applied. The stress distribution of joints formed by the VaRTM molding method is given as a theoretical solution by Tsai-Oplinger. However, since the plastic effect of the resin instead of the adhesive cannot be taken into account, the behavior is only in the elastic range. No mention has been made and strength evaluation has not been reached. That is, since it is not possible to use the conventional strength evaluation method if the adhesive layer cannot be clarified, it is required to construct a new evaluation method.

本発明は、上記従来技術の問題点に鑑み成されたものであって、接着層を明確に定義できないダブルラップ接合体に対する適切な剥離強度評価が可能なダブルラップ接合体の接合強度評価方法を提供することを目的としている。   The present invention has been made in view of the above-mentioned problems of the prior art, and provides a method for evaluating the joint strength of a double lap joint capable of performing an appropriate peel strength evaluation on a double lap joint that cannot clearly define an adhesive layer. It is intended to provide.

本発明に係るダブルラップ接合体の接合強度評価方法では、上記課題を解決するために以下の手段を採用した。
本発明は、繊維強化複合材からなる板状部材を含む三枚の板状部材を重ね合わせて側面拘束したダブルラップ接合体の接合強度評価方法であって、側面拘束長の異なる複数の試験体を用いた引張試験によりダブルラップ接合体の許容せん断応力(τc)を求める工程と、有限要素解析法によりダブルラップ接合体のせん断応力(τ)を求める工程と、許容せん断応力(τc)とせん断応力(τ)とを比較評価する工程と、
を有することを特徴とする。
In the method for evaluating the joint strength of a double lap joined body according to the present invention, the following means are employed in order to solve the above problems.
The present invention relates to a method for evaluating the bonding strength of a double lap joined body in which three plate-like members including a plate-like member made of a fiber reinforced composite material are overlapped and restrained on the side, and a plurality of test pieces having different side restraint lengths The step of obtaining the allowable shear stress (τc) of the double lap joint by a tensile test using, the step of obtaining the shear stress (τ) of the double lap joint by a finite element analysis method, the allowable shear stress (τc) and shear A step of comparing and evaluating the stress (τ);
It is characterized by having.

また、許容せん断応力(τc)は、複数の試験体における塑性化せん断応力(τc1)と限界せん断応力(τc2)から規定されることを特徴とする。   In addition, the allowable shear stress (τc) is defined by the plasticized shear stress (τc1) and the limit shear stress (τc2) in a plurality of specimens.

また、せん断応力(τ)は、ダブルラップ接合体の平均せん断応力(τavg)であることを特徴とする。   The shear stress (τ) is an average shear stress (τavg) of the double lap joined body.

また、平均せん断応力(τavg)は、ダブルラップ接合体の幅方向の端部及び中央部におけるせん断応力から求められることを特徴とする。   The average shear stress (τavg) is obtained from the shear stress at the end and center in the width direction of the double lap joined body.

また、せん断応力(τ)は、弾塑性解析により求められることを特徴とする。   Further, the shear stress (τ) is obtained by elasto-plastic analysis.

また、弾塑性解析においてHillの降伏関数を用いたことを特徴とする。   In addition, a Hill yield function is used in the elastic-plastic analysis.

また、せん断応力(τ)が許容せん断応力(τc)よりも小さいか否かを比較評価することを特徴とする。   Moreover, it is characterized by comparing and evaluating whether or not the shear stress (τ) is smaller than the allowable shear stress (τc).

また、繊維強化複合材は、FRP、CFRP、GFRPのいずれかであることを特徴とする。   The fiber-reinforced composite material is any one of FRP, CFRP, and GFRP.

本発明によれば以下の効果を得ることができる。
本発明では、引張試験にて求めた許容せん断応力と、有限要素解析法によって求めたせん断応力とを比較することによって、ダブルラップ接合体の強度評価を行うことが可能となる。
許容せん断応力は、側面拘束長の異なる複数の試験体の引張試験を実施することで得られる2つの式から簡単に決定することができる。
また、せん断応力は、有限要素解析を実施して、界面に発生するせん断応力を側面拘束長さ方向に平均化することによって算出することができる。
本発明では、界面にはたらくせん断応力を、有限要素解析を用いて数値的に得ることができる。このとき、Hillの降伏関数を用いて界面にはたらくせん断応力が塑性化せん断応力を超えないように設定し、界面における塑性化を考慮する。
これにより、接着層が明確でないせん断応力場の接着継手に対して適切な強度評価を行うことができる。よって、十分な強度を有するダブルラップ接合体が得られ、構造物全体の安全性や信頼性の向上を図ることが可能となる。
According to the present invention, the following effects can be obtained.
In the present invention, it is possible to evaluate the strength of the double lap joined body by comparing the allowable shear stress obtained in the tensile test with the shear stress obtained by the finite element analysis method.
The allowable shear stress can be easily determined from two formulas obtained by performing a tensile test on a plurality of test bodies having different side constraint lengths.
Further, the shear stress can be calculated by performing a finite element analysis and averaging the shear stress generated at the interface in the direction of the lateral constraint length.
In the present invention, the shear stress acting on the interface can be obtained numerically using finite element analysis. At this time, the shear stress acting on the interface is set so as not to exceed the plasticized shear stress using the Hill yield function, and the plasticization at the interface is taken into consideration.
Thereby, appropriate strength evaluation can be performed with respect to the adhesive joint of the shear stress field whose adhesive layer is not clear. Therefore, a double lap joined body having sufficient strength can be obtained, and the safety and reliability of the entire structure can be improved.

以下、本発明の実施形態につき、図面を参照して説明する。なお、以下の説明に用いる各図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。   Embodiments of the present invention will be described below with reference to the drawings. In each drawing used for the following description, the scale of each member is appropriately changed to make each member a recognizable size.

図1は、本発明におけるダブルラップ接合体の接合強度評価方法に係る解析モデルの構成を模式的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing a configuration of an analysis model according to a method for evaluating the joint strength of a double lap joined body according to the present invention.

図1に示すように、ダブルラップ接合体100は、繊維強化複合材からなる一対の板状部材(以下、複合材10)と、鋼材からなる板状部材(以下、鋼材11)とを互いの長手方向に位置を異ならせて重ね合わせ、互いの側面を拘束したダブルラップ構造となっている。各複合材10,10及び鋼材11は、後述するVaRTM成型法によって一体形成されたものである。
繊維強化複合材としては、FRP、CFRP(カーボン繊維)、GFRP(ガラス繊維)等が挙げられ、鋼材としてはSUS(ステンレス鋼)等が挙げられる。
As shown in FIG. 1, the double lap joined body 100 includes a pair of plate members (hereinafter referred to as a composite material 10) made of a fiber reinforced composite material and a plate member (hereinafter referred to as a steel material 11) made of a steel material. It has a double wrap structure in which the positions are different from each other in the longitudinal direction and the sides are constrained. The composite materials 10 and 10 and the steel material 11 are integrally formed by a VaRTM molding method described later.
Examples of the fiber reinforced composite material include FRP, CFRP (carbon fiber), and GFRP (glass fiber). Examples of the steel material include SUS (stainless steel).

次に、本実施形態のダブルラップ接合体の接合強度評価法について述べる。
図2は本実施形態のダブルラップ接合体の接合強度評価法を示すフローチャートである。
図2に示すように、ダブルラップ接合体100の接合強度評価法は、まず、側面拘束長さの異なる複数の解析モデル(試験体)を用いた引張試験により、材料界面12(図1参照)における許容せん断応力τcを求める(ステップS1)。次に、FEM(有限要素解析法)により材料界面12におけるせん断応力τを求める(ステップ2)。そして、ステップS1及びステップ2において求めた許容せん断応力τcとせん断応力τとを比較し、強度評価を行う(ステップS3)。
Next, a method for evaluating the bonding strength of the double lap bonded body according to this embodiment will be described.
FIG. 2 is a flowchart showing a method for evaluating the bonding strength of the double lap bonded body according to this embodiment.
As shown in FIG. 2, the joint strength evaluation method of the double lap joined body 100 is based on a material interface 12 (see FIG. 1) by a tensile test using a plurality of analysis models (test bodies) having different side constraint lengths. The allowable shear stress τc at is determined (step S1). Next, the shear stress τ at the material interface 12 is obtained by FEM (finite element analysis method) (step 2). Then, the allowable shear stress τc obtained in step S1 and step 2 is compared with the shear stress τ to perform strength evaluation (step S3).

以下に、本実施形態のダブルラップ接合体の接合強度評価法について詳述する。説明は、図2のフローチャートに沿って行い、適宜図3〜図6を参照する。   Below, the joint strength evaluation method of the double lap joined body of this embodiment is explained in full detail. The description will be made in accordance with the flowchart of FIG. 2, with reference to FIGS.

[引張試験]
ステップS1において、複数の試験体の引張試験を以下の手順で実施し、材料界面にはたらく許容せん断応力τcを求める。図3は試験体の構成を模式的に示す斜視図である。図4は 引張試験による破壊強度の分布を示す図である。
[Tensile test]
In step S1, a tensile test of a plurality of specimens is performed according to the following procedure, and an allowable shear stress τc acting on the material interface is obtained. FIG. 3 is a perspective view schematically showing the configuration of the test body. FIG. 4 is a diagram showing a distribution of fracture strength by a tensile test.

(1)まず、一対の複合材10によって鋼材11を挟み込んだダブルラップ構造(図3参照)の試験体A,B,Cを用意する。試験体A,B,Cは、複合材10および鋼材11からなる繊維を積層した後に樹脂を含浸させるVaRTM成型法によって成型されたものである。本実施形態においては、側面拘束長さ(以下、拘束長L)が異なる3種類の試験体A,B,Cを種類毎に複数用意する。図3に示すように、各試験体A,B,Cの拘束長Lを、試験体A(拘束長L=25mm)、試験体B(拘束長L=50mm)、試験体C(拘束長L=100mm)に設定し、それぞれの複合材10の厚さt1を4.5mm、鋼材11の厚さt2を6mm、幅Wを30mmに設定する。 (1) First, test bodies A, B, and C having a double wrap structure (see FIG. 3) in which a steel material 11 is sandwiched between a pair of composite materials 10 are prepared. The test bodies A, B, and C are molded by VaRTM molding method in which fibers made of the composite material 10 and the steel material 11 are laminated and then impregnated with a resin. In the present embodiment, a plurality of three types of test bodies A, B, and C having different side constraint lengths (hereinafter, constraint length L) are prepared for each type. As shown in FIG. 3, the restraint length L of each of the test bodies A, B, and C is set as follows: test body A (restraint length L = 25 mm), test body B (restraint length L = 50 mm), test body C (constraint length L). = 100 mm), the thickness t1 of each composite material 10 is set to 4.5 mm, the thickness t2 of the steel material 11 is set to 6 mm, and the width W is set to 30 mm.

樹脂としては、樹脂含浸形成法にて用いられる公知の材料(例えばエポキシ等)が挙げられる。また、鋼材11両側の複合材10,10には同一の材料を用いる。複合材10,10を異なる材料で形成した場合、材料界面に曲げの影響が生じてしまうことになり、この場合、せん断応力τだけでなく曲げ応力σについても考慮しなければならなくなるため、本実施形態では同一の材料からなる複合材10,10を用いたダブルラップ構造とする。   Examples of the resin include known materials (for example, epoxy) used in the resin impregnation forming method. Moreover, the same material is used for the composite materials 10 and 10 on both sides of the steel material 11. When the composite materials 10 and 10 are formed of different materials, an influence of bending occurs on the material interface. In this case, not only the shear stress τ but also the bending stress σ must be considered. In the embodiment, a double wrap structure using composite materials 10 and 10 made of the same material is used.

(2)実際に各試験体A,B,Cに一軸方向の荷重を作用させて、複合材10と鋼材11との材料界面における損傷状況を静的引張試験により検証した。一軸方向の荷重とは、複合材10と鋼材11との間で相反する方向に作用する引張荷重Fである。この引張荷重Fを時間とともに線形に増加させた。 (2) A uniaxial load was actually applied to each specimen A, B, C, and the damage state at the material interface between the composite material 10 and the steel material 11 was verified by a static tensile test. The uniaxial load is a tensile load F acting in the opposite direction between the composite material 10 and the steel material 11. The tensile load F was increased linearly with time.

図4に、引張試験による破壊強度を試験体A,B,Cごとにプロットしたものを示す。この図において、x軸を拘束長Lとし、y軸を破壊強度Pcrとする。
試験体A(拘束長L=25mm)は、材料界面全体が降伏して塑性が生じ、他の試験体B,Cに比べて早期に破壊した。このときの破壊点(ΔPcr1,ΔL1)と原点(0,0)とを結ぶ直線の傾きΔPcr/Δlによって、材料界面全体が塑性化するときの塑性化せん断応力τc1が求められる。つまり、塑性化せん断応力τc1は、下記の式(2)によって示される。
FIG. 4 shows a plot of the breaking strength by the tensile test for each of the specimens A, B, and C. In this figure, the x-axis is the constraint length L and the y-axis is the fracture strength Pcr.
The specimen A (constraint length L = 25 mm) yielded plasticity due to the yield of the entire material interface, and was destroyed earlier than the other specimens B and C. The plasticized shear stress τc1 when the entire material interface is plasticized is determined by the slope ΔPcr / Δl of the straight line connecting the fracture point (ΔPcr1, ΔL1) and the origin (0, 0). That is, the plasticizing shear stress τc1 is expressed by the following equation (2).

Figure 2008281429
τc1:塑性化せん断応力
Pcr:破壊強度
L:拘束長
Figure 2008281429
τc1: Plasticized shear stress Pcr: Fracture strength L: Constraint length

試験体B(拘束長L=50mm)及び試験体C(拘束長L=100mm)の場合は、材料界面におけるせん断ひずみエネルギーが限界を超えることによって破壊した。試験体Bと試験体Cとの破壊強度Pcr、及び塑性化せん断応力τc1によって、少なくとも破壊を防止し得る破壊防止力Puが決定する。拘束面積をAとすると、界面ひずみエネルギーが限界となるときの限界せん断応力τc2は下記の式(2)によって示される。   In the case of the test body B (restraint length L = 50 mm) and the test body C (restraint length L = 100 mm), the specimen was destroyed when the shear strain energy at the material interface exceeded the limit. At least the fracture prevention force Pu that can prevent fracture is determined by the fracture strength Pcr of the specimen B and the specimen C and the plasticized shear stress τc1. When the restraint area is A, the limit shear stress τc2 when the interface strain energy becomes the limit is expressed by the following equation (2).

Figure 2008281429
τc2:限界せん断応力
Pu:破壊防止力
A:拘束面積
Figure 2008281429
τc2: Limit shear stress Pu: Fracture prevention force A: Restraint area

このように、閾値となる許容せん断応力τcを、上記した式(1),(2)により決定する。このような引張試験により、上述したHart-Smithと同様の理論展開を用いて、
当該理論よりも簡易的に閾値となる許容せん断応力τcを求めることができる。
As described above, the allowable shear stress τc serving as the threshold is determined by the above formulas (1) and (2). With such a tensile test, using the same theoretical development as the Hart-Smith described above,
The allowable shear stress τc, which is a threshold value, can be obtained more simply than the theory.

このように、鋼材11を一対の複合材10,10によって挟持するダブルラップ接合体100において、拘束長Lの異なる試験体A,B,Cの各材料界面における許容せん断応力τcの影響について調べた。界面破壊の要因は拘束長Lによって異なり、材料界面の塑性化、あるいは材料界面におけるせん断ひずみエネルギーとの2つに大別される。   Thus, in the double lap joined body 100 which clamps the steel material 11 with a pair of composite materials 10 and 10, the influence of the allowable shear stress τc at each material interface of the test bodies A, B, and C having different restraint lengths L was examined. . The factor of the interface fracture varies depending on the constraint length L, and is roughly divided into plasticization at the material interface or shear strain energy at the material interface.

上記実施形態においては、拘束長Lの異なる3つの試験体A,B,Cを用いて引張試験を行ったが、これに限ったものではなく、各試験体の材料界面における降伏応力及び破壊防止力が異なるものであれば、拘束長Lを異ならせた2つの試験体であっても解析を行うことができる。つまり、弾塑性の分岐点を明確にすることで、2種の閾値(塑性化せん断応力τc1及び限界せん断応力τc2)が上記式(1),(2)により求められることになる。   In the above embodiment, the tensile test was performed using three test specimens A, B, and C having different constraint lengths L. However, the tensile test was not limited to this, and yield stress and fracture prevention at the material interface of each test specimen were performed. If the forces are different, the analysis can be performed even with two specimens having different constraint lengths L. That is, by clarifying the elastoplastic branch point, two types of threshold values (plasticized shear stress τc1 and limit shear stress τc2) are obtained by the above formulas (1) and (2).

[FEM解析]
ステップS2において、上記試験体A,B,Cの各材料界面におけるせん断応力τを求める。本実施形態では、材料界面におけるせん断応力τをFEM(有限要素法)を用いて行う。ここで、解析モデルA’,B’,C’を試験体A,B,CのFEM解析モデルとする。解析モデルA’,B’,C’の各材料界面におけるせん断応力τは、材料界面の長手方向における平均せん断応力τavgである。この平均せん断応力τavgをFEM解析によって求める。解析コードには、例えばABAQUS(登録商標)やANSYS(登録商標)を使用する。
[FEM analysis]
In step S2, the shear stress τ at each material interface of the specimens A, B, and C is obtained. In this embodiment, the shear stress τ at the material interface is performed using FEM (finite element method). Here, the analysis models A ′, B ′, and C ′ are used as the FEM analysis models of the specimens A, B, and C. The shear stress τ at each material interface of the analysis models A ′, B ′, and C ′ is an average shear stress τavg in the longitudinal direction of the material interface. This average shear stress τavg is obtained by FEM analysis. For example, ABAQUS (registered trademark) or ANSYS (registered trademark) is used as the analysis code.

(弾性解析)
まず、FEMを用いて弾性解析を行い、FEMを用いた解析手法が妥当かどうかを確認する。
図5に、解析モデルA’,B’,C’の各材料界面にはたらくせん断応力τの分布を示す。
縦軸がせん断応力(τ/τavg)を示し、横軸が無次元化された軸方向位置(x/L)を示している。
(Elastic analysis)
First, an elastic analysis is performed using FEM, and it is confirmed whether the analysis method using FEM is appropriate.
FIG. 5 shows the distribution of the shear stress τ acting on each material interface of the analysis models A ′, B ′, and C ′.
The vertical axis represents shear stress (τ / τavg), and the horizontal axis represents the dimensionless axial position (x / L).

図5によれば、各解析モデルA’,B’,C’とも、特に拘束部35の幅方向中央側(無次元化した拘束長さx/L=0.5の位置)でせん断応力のピーク(最大せん断応力τmax)が生じることが分かる。同図に、接着層を考慮しない理論解(Tsai-Oplinger)による材料界面のせん断応力分布も同時に示す。同図によれば、FEMによる弾性解析の結果が、理論解であるTsai-Oplingerの結果と概ね合っていることが確認できる。これにより、FEMを用いた手法が妥当であることが証明された。   According to FIG. 5, in each of the analysis models A ′, B ′, and C ′, the shear stress of the restraint portion 35 is particularly measured at the center in the width direction (position of the dimensionless restraint length x / L = 0.5). It can be seen that a peak (maximum shear stress τmax) occurs. The figure also shows the shear stress distribution at the material interface using a theoretical solution (Tsai-Oplinger) that does not consider the adhesive layer. According to the figure, it can be confirmed that the result of the elastic analysis by FEM generally matches the result of Tsai-Oplinger which is a theoretical solution. This proved that the technique using FEM is appropriate.

(弾塑性解析)
図6に、本実施形態の弾塑性解析による、解析モデルの材料界面にはたらくせん断応力τの分布を示す。縦軸が無次元化せん断応力(τ/(F/2A))を示し、横軸が無次元化された軸方向位置(x/L)を示している。図6は、上記した弾性解析によるせん断応力の分布を同時に記載し、弾性解析と弾塑性解析との比較を示す。なお、図6には、解析モデルC’のせん断応力分布のみを一例として示し、他の解析モデルA,Bのせん断応力分布については省略してある。
(Elasto-plastic analysis)
FIG. 6 shows the distribution of shear stress τ acting on the material interface of the analysis model by the elasto-plastic analysis of this embodiment. The vertical axis represents dimensionless shear stress (τ / (F / 2A)), and the horizontal axis represents dimensionless axial position (x / L). FIG. 6 simultaneously describes the distribution of shear stress by the elastic analysis described above, and shows a comparison between the elastic analysis and the elastic-plastic analysis. In FIG. 6, only the shear stress distribution of the analysis model C ′ is shown as an example, and the shear stress distributions of the other analysis models A and B are omitted.

本実施形態においては、FEMを用いて弾塑性解析を行い(以下、弾塑性FEM解析)、解析モデルA’,B’,C’の各材料界面にはたらくせん断応力τを求める。但し、弾塑性FEM解析を実施する際に、異方性降伏関数であるHillの降伏関数を利用し、材料界面に隣接する要素のせん断応力値が、上記した塑性化せん断応力τc1以上にならないような弾塑性解析を行う。   In this embodiment, elasto-plastic analysis is performed using FEM (hereinafter referred to as elasto-plastic FEM analysis), and a shear stress τ acting on each material interface of the analysis models A ′, B ′, and C ′ is obtained. However, when the elastic-plastic FEM analysis is performed, the Hill yield function, which is an anisotropic yield function, is used so that the shear stress value of the element adjacent to the material interface does not exceed the plasticized shear stress τc1 described above. Perform elasto-plastic analysis.

解析手法としては、各解析モデルA’,B’,C’を所定の分割数でメッシュ分割し、材料界面における局所的なせん断応力τ(複合材10側の節点応力)を長手方向に平均化することによって平均せん断応力τavgを算出する。ここでは、材料界面の幅方向における端線及び中央線の双方における平均せん断応力τavgについて考慮する。   As an analysis method, each analysis model A ′, B ′, C ′ is mesh-divided by a predetermined number of divisions, and the local shear stress τ (node stress on the composite material 10 side) at the material interface is averaged in the longitudinal direction. To calculate the average shear stress τavg. Here, the average shear stress τavg at both the end line and the center line in the width direction of the material interface is considered.

解析モデルA’,B’,C’はせん断応力τの上限のみを制限する。つまり、異方性の塑性の影響を考慮して、拘束部35の拘束長さ方向(軸方向長さ)における応力と、拘束部35の幅方向長さにおける応力については制限しない。本実施形態では、せん断応力τの上限として、上記引張試験において求めた塑性化せん断応力τc1を基準値として設定する。すなわち、材料界面が降伏するときの応力よりも小さくなるように弾塑性解析を行うようにする。   The analytical models A ′, B ′, and C ′ limit only the upper limit of the shear stress τ. That is, in consideration of the influence of anisotropic plasticity, the stress in the restraining length direction (axial length) of the restraining portion 35 and the stress in the width direction length of the restraining portion 35 are not limited. In the present embodiment, the plasticized shear stress τc1 obtained in the tensile test is set as a reference value as the upper limit of the shear stress τ. That is, the elasto-plastic analysis is performed so as to be smaller than the stress when the material interface yields.

このように、VaRTM成型法によって形成されたダブルラップ接合体100において、その材料界面にかかるせん断応力τ(発生せん断応力τと呼ぶこともある)の分布を、FEMを用いた数値解析的な手法によって求めることができた。   In this way, in the double lap joined body 100 formed by the VaRTM molding method, the distribution of the shear stress τ (sometimes referred to as generated shear stress τ) applied to the material interface is numerically analyzed using FEM. Was able to ask for.

[界面強度評価]
ステップS3において、下記の式(3)を用いて単軸応力場(せん断応力場)における剥離強度評価を行う。そして、材料界面にはたらく発生せん断応力τが許容せん断応力τcの範囲内となるように形状寸法を設定する。
[Interfacial strength evaluation]
In step S3, peel strength evaluation in a uniaxial stress field (shear stress field) is performed using the following formula (3). Then, the shape dimension is set so that the generated shear stress τ acting on the material interface is within the range of the allowable shear stress τc.

Figure 2008281429
Figure 2008281429

このようにして、許容せん断応力τc及びせん断応力τの比較評価を行い、材料界面にかかるせん断応力τが許容せん断応力τc以内の範囲内となるようにする。これにより、複合材10及び鋼材11の接合を確実に維持する構造とすることができ、十分な強度を有するダブルラップ接合体100を得ることができる。   In this way, the comparative evaluation between the allowable shear stress τc and the shear stress τ is performed so that the shear stress τ applied to the material interface is within a range within the allowable shear stress τc. Thereby, it can be set as the structure which maintains the joining of the composite material 10 and the steel material 11 reliably, and the double lap joining body 100 which has sufficient intensity | strength can be obtained.

本実施形態では、拘束長比を変動させた複数の試験体A、B、Cについて引張試験を行い、各材料界面に対する塑性やせん断ひずみエネルギーの影響について調べ、許容せん断応力τcを求めた。さらに、拘束長比を変動させた複数の解析モデルA’,B’,C’について、弾塑性FEM解析を用いた数値解析的な応力解析を行い、材料界面におけるせん断応力τの影響を調べた。   In the present embodiment, a tensile test was performed on a plurality of specimens A, B, and C in which the constraint length ratio was varied, and the influence of plasticity and shear strain energy on each material interface was examined to obtain an allowable shear stress τc. Furthermore, numerical analysis using elasto-plastic FEM analysis was performed on multiple analytical models A ′, B ′, and C ′ with varying constraint length ratios, and the influence of shear stress τ at the material interface was investigated. .

材料界面における許容せん断応力τcは、引張試験の結果から得た上記式(1),(2)により簡単に算出することができる。また、FEMを用いた弾塑性解析は、Hillの降伏関数を利用して材料界面におけるせん断応力の上限を定めて行っており、ダブルラップ接合体100を構成する樹脂の塑性効果を考慮した解析となっている。このような弾塑性解析を行うことにより、材料界面における実際のせん断応力分布を適切に表現することができる。また、FEMを用いた数値的な解析が可能であるため、実験を行うことなく材料界面におけるせん断応力を容易に求めることができる。   The allowable shear stress τc at the material interface can be easily calculated by the above formulas (1) and (2) obtained from the results of the tensile test. In addition, the elasto-plastic analysis using FEM is performed by determining the upper limit of the shear stress at the material interface using the Hill yield function, and considering the plastic effect of the resin constituting the double lap joint 100. It has become. By performing such an elasto-plastic analysis, the actual shear stress distribution at the material interface can be appropriately expressed. In addition, since numerical analysis using FEM is possible, the shear stress at the material interface can be easily obtained without performing an experiment.

また、引張試験は少なくとも2つ以上の拘束長比について行えばよく、その検出項目も破壊したときの破壊強度を調べるだけでよいため、実験が容易であるとともに実験コストを削減することができる。   In addition, the tensile test only needs to be performed for at least two constraint length ratios, and since it is only necessary to examine the breaking strength when the detection item is also broken, the experiment is easy and the experiment cost can be reduced.

このような本実施形態のダブルラップ接合体100の強度評価法によれば、VaRTM成型法によって形成された接合界面が明確でないダブルラップ構造であっても、上記のようにして求めた許容せん断応力τcとせん断応力τとを比較することによって適切な強度評価を行うことができる。したがって、接着剤を用いずに一体形成されたダブルラップ接合体100を用いた構造物全体の安全性や信頼性を向上させることができる。   According to the strength evaluation method of the double lap joined body 100 of this embodiment, the allowable shear stress obtained as described above is obtained even in the double wrap structure in which the joining interface formed by the VaRTM molding method is not clear. By comparing τc with the shear stress τ, an appropriate strength evaluation can be performed. Therefore, the safety and reliability of the entire structure using the double wrap joined body 100 integrally formed without using an adhesive can be improved.

以上、図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は上記実施形態に限定されないことは言うまでもない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   As mentioned above, although preferred embodiment which concerns on this invention was described referring drawings, it cannot be overemphasized that this invention is not limited to the said embodiment. Various shapes, combinations, and the like of the constituent members shown in the above-described embodiments are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.

例えば、上記実施形態においては、鋼材11を一対の複合材10,10で挟持するダブルラップ構造としたが、材料を入れ替えて、一対の鋼材で複合材を挟持するようにしてもよい。また、全てを複合材によって構成するようにしてもよい。ダブルラップ接合体の構成材料を変えた場合には、接合体を構成する材料の組み合わせに応じて、引張試験により許容せん断応力を求めるようにする。なお、引張試験は構成材料を変えた場合のみ行えばよい。   For example, in the said embodiment, although the steel material 11 was set as the double wrap structure clamped with a pair of composite materials 10 and 10, you may make it replace a material and clamp a composite material with a pair of steel materials. Moreover, you may make it comprise all by a composite material. When the constituent material of the double lap joined body is changed, the allowable shear stress is obtained by a tensile test according to the combination of materials constituting the joined body. The tensile test may be performed only when the constituent materials are changed.

本発明の一実施形態におけるダブルラップ接合体の接合強度評価方法に係る解析モデルの構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the analysis model which concerns on the joining strength evaluation method of the double lap joining body in one Embodiment of this invention. 本発明の一実施形態におけるダブルラップ接合体の接合強度評価法を示すフローチャートである。It is a flowchart which shows the joining strength evaluation method of the double lap conjugate | zygote in one Embodiment of this invention. 解析モデルの構成を模式的に示す斜視図である。It is a perspective view which shows the structure of an analysis model typically. 引張試験による破壊強度の分布を示す図である。It is a figure which shows distribution of the fracture strength by a tension test. FEMを用いた弾性解析によるせん断応力の分布を示す図である。It is a figure which shows distribution of the shear stress by the elastic analysis using FEM. FEMを用いた弾塑性解析によるせん断応力の分布を示す図である。It is a figure which shows distribution of the shear stress by the elastoplastic analysis using FEM. 従来のダブルラップ接合体の概略構成を模式的に示す図である。It is a figure which shows typically schematic structure of the conventional double lap joined body. Hart-Smithのチャートを示す図である。It is a figure which shows the chart of Hart-Smith. (a),(b)は従来の接合体の剥離メカニズムを示す図である。(A), (b) is a figure which shows the peeling mechanism of the conventional joined_body | zygote.

符号の説明Explanation of symbols

100…ダブルラップ接合体、10…複合材(板状部材)、11…鋼材(板状部材)、A,B,C…解析モデル(試験体)   DESCRIPTION OF SYMBOLS 100 ... Double lap joined body, 10 ... Composite material (plate-shaped member), 11 ... Steel material (plate-shaped member), A, B, C ... Analytical model (test body)

Claims (8)

繊維強化複合材からなる板状部材を含む三枚の板状部材を重ね合わせて側面拘束したダブルラップ接合体の接合強度評価方法であって、
側面拘束長の異なる複数の試験体を用いた引張試験により前記ダブルラップ接合体の許容せん断応力を求める工程と、
有限要素解析法により前記ダブルラップ接合体のせん断応力を求める工程と、
前記許容せん断応力と前記せん断応力とを比較評価する工程と、
を有することを特徴とするダブルラップ接合体の接合強度評価方法。
A method for evaluating the bonding strength of a double lap joined body in which three plate-like members including a plate-like member made of a fiber-reinforced composite material are overlapped and side-bounded,
Obtaining an allowable shear stress of the double lap joined body by a tensile test using a plurality of test bodies having different side constraint lengths;
Determining the shear stress of the double lap joint by a finite element analysis method;
A step of comparing and evaluating the allowable shear stress and the shear stress;
A method for evaluating the joint strength of a double-lap joined body, comprising:
前記許容せん断応力は、前記複数の試験体における塑性化せん断応力と限界せん断応力から規定されることを特徴とする請求項1に記載のダブルラップ接合体の接合強度評価方法。   2. The method for evaluating the joint strength of a double lap joint according to claim 1, wherein the allowable shear stress is defined by a plasticized shear stress and a limit shear stress in the plurality of test bodies. 前記せん断応力は、前記ダブルラップ接合体の平均せん断応力であることを特徴とする請求項1又は請求項2に記載のダブルラップ接合体の接合強度評価方法。   The said shear stress is an average shear stress of the said double lap joined body, The joint strength evaluation method of the double wrap joined body of Claim 1 or Claim 2 characterized by the above-mentioned. 前記平均せん断応力は、前記ダブルラップ接合体の幅方向の端部及び中央部におけるせん断応力から求められることを特徴とする請求項1から請求項3のうちいずれか一項に記載のダブルラップ接合体の接合強度評価方法。   The double lap joint according to any one of claims 1 to 3, wherein the average shear stress is obtained from a shear stress at an end portion and a center portion in a width direction of the double lap joined body. Body strength evaluation method. 前記せん断応力は、弾塑性解析により求められることを特徴とする請求項1から請求項4のうちいずれか一項に記載のダブルラップ接合体の接合強度評価方法。   The said shear stress is calculated | required by the elastoplastic analysis, The joining strength evaluation method of the double lap joining body as described in any one of Claims 1-4 characterized by the above-mentioned. 前記弾塑性解析においてHillの降伏関数を用いたことを特徴とする請求項5に記載のダブルラップ接合体の接合強度評価方法。   6. The method for evaluating the joint strength of a double lap joint according to claim 5, wherein a Hill yield function is used in the elastic-plastic analysis. 前記せん断応力が前記許容せん断応力よりも小さいか否かを比較評価することを特徴とする請求項1から請求項6のうちいずれか一項に記載のダブルラップ接合体の接合強度評価方法。   The joint strength evaluation method for a double lap joined body according to any one of claims 1 to 6, wherein a comparative evaluation is made as to whether or not the shear stress is smaller than the allowable shear stress. 前記繊維強化複合材は、FRP、CFRP、GFRPのいずれかであることを特徴とする請求項1から請求項7のうちいずれか一項に記載のダブルラップ接合体の接合強度評価方法。   The said fiber reinforced composite material is any one of FRP, CFRP, and GFRP, The joining strength evaluation method of the double wrap joined body as described in any one of Claims 1-7 characterized by the above-mentioned.
JP2007125584A 2007-05-10 2007-05-10 Bonding strength evaluating method of double wrap coupling Pending JP2008281429A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007125584A JP2008281429A (en) 2007-05-10 2007-05-10 Bonding strength evaluating method of double wrap coupling
PCT/JP2008/054648 WO2008139776A1 (en) 2007-05-10 2008-03-13 Method of evaluating joining strength of double-lap joint body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007125584A JP2008281429A (en) 2007-05-10 2007-05-10 Bonding strength evaluating method of double wrap coupling

Publications (1)

Publication Number Publication Date
JP2008281429A true JP2008281429A (en) 2008-11-20

Family

ID=40001999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007125584A Pending JP2008281429A (en) 2007-05-10 2007-05-10 Bonding strength evaluating method of double wrap coupling

Country Status (2)

Country Link
JP (1) JP2008281429A (en)
WO (1) WO2008139776A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104132856A (en) * 2014-08-13 2014-11-05 中国建材检验认证集团股份有限公司 Device and method for testing bonding shearing strength of structural adhesive interface
JP2016053474A (en) * 2014-09-02 2016-04-14 住友ゴム工業株式会社 Method for evaluating mechanical property of rubber/cord composite
CN108801805A (en) * 2018-04-28 2018-11-13 中石化石油工程技术服务有限公司 A kind of strong wall anti-sloughing agent evaluation method of water-base drilling fluid
CN110823717A (en) * 2019-11-01 2020-02-21 广州大学 Semi-flexible pavement shear strength testing device and testing method
KR102450953B1 (en) * 2022-03-18 2022-10-06 국방과학연구소 The Specimen for Shear Strength Measurement Test for Bonding Glass and Glass-ceramic to Metal
CN116593323A (en) * 2023-07-19 2023-08-15 常州市建筑材料研究所有限公司 Special detection device of building block brickwork shear strength

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011108468A1 (en) * 2010-03-02 2013-06-27 日本電気株式会社 Material constant estimation system and material constant estimation method
CN111766140B (en) * 2020-06-05 2023-06-23 中国飞机强度研究所 Out-of-plane bending deformation limit test device for single lap joint structure
CN112229794B (en) * 2020-10-12 2023-08-04 湘潭大学 Device for measuring bonding strength of laser cladding repair layer
CN114235576B (en) * 2021-12-16 2023-11-10 中南大学 Method for qualitatively analyzing weakest interface of multilayer heterogeneous gradient material by stretching single shear method
CN114371125A (en) * 2022-01-27 2022-04-19 江苏铁锚玻璃股份有限公司 Method for testing TPU bonding strength

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215035A (en) * 1990-12-11 1992-08-05 Sumitomo Metal Ind Ltd Adhesive strength evaluating method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104132856A (en) * 2014-08-13 2014-11-05 中国建材检验认证集团股份有限公司 Device and method for testing bonding shearing strength of structural adhesive interface
JP2016053474A (en) * 2014-09-02 2016-04-14 住友ゴム工業株式会社 Method for evaluating mechanical property of rubber/cord composite
CN108801805A (en) * 2018-04-28 2018-11-13 中石化石油工程技术服务有限公司 A kind of strong wall anti-sloughing agent evaluation method of water-base drilling fluid
CN110823717A (en) * 2019-11-01 2020-02-21 广州大学 Semi-flexible pavement shear strength testing device and testing method
KR102450953B1 (en) * 2022-03-18 2022-10-06 국방과학연구소 The Specimen for Shear Strength Measurement Test for Bonding Glass and Glass-ceramic to Metal
CN116593323A (en) * 2023-07-19 2023-08-15 常州市建筑材料研究所有限公司 Special detection device of building block brickwork shear strength
CN116593323B (en) * 2023-07-19 2023-11-14 常州市建筑材料研究所有限公司 Special detection device of building block brickwork shear strength

Also Published As

Publication number Publication date
WO2008139776A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP2008281429A (en) Bonding strength evaluating method of double wrap coupling
Ribeiro et al. Damage analysis of composite–aluminium adhesively-bonded single-lap joints
Li et al. Experimental study of adhesively bonded CFRP joints subjected to tensile loads
Chen et al. Mechanical behavior and progressive failure analysis of riveted, bonded and hybrid joints with CFRP-aluminum dissimilar materials
Flores-Johnson et al. Experimental study of the indentation of sandwich panels with carbon fibre-reinforced polymer face sheets and polymeric foam core
Mostafa et al. Insight into the shear behaviour of composite sandwich panels with foam core
Park et al. Strength of carbon/epoxy composite single-lap bonded joints in various environmental conditions
Trask et al. Influence of process induced defects on the failure of composite T-joint specimens
Vallée et al. Dimensioning method for bolted, adhesively bonded, and hybrid joints involving Fibre-Reinforced-Polymers
Anyfantis et al. Loading and fracture response of CFRP-to-steel adhesively bonded joints with thick adherents–Part I: experiments
Hasheminia et al. Failure mechanism of bonded joints with similar and dissimilar material
Chen et al. Damage and failure characteristics of CFRP/aluminum single lap joints designed for lightweight applications
Oliveira et al. Sustainable sandwich composite structures made from aluminium sheets and disposed bottle caps
Tong et al. Recent advances in structural joints and repairs for composite materials
Koloor et al. Mechanics of composite delamination under flexural loading
Kim et al. Influence of fabrication and interference-fit techniques on tensile and fatigue properties of pin-loaded glass fiber reinforced plastics composites
Ramantani et al. Stress and failure analysis of repaired sandwich composite beams using a cohesive damage model
Silva et al. Crack growth analysis of adhesively-bonded stepped joints in aluminium structures
Hwang et al. Dynamic and static characteristics of polypropylene pyramidal kagome structures
Gonzalez-Murillo et al. Co-cured in-line joints for natural fibre composites
Carvalho et al. Adhesively-bonded T-joint cohesive zone analysis using dual-adhesives
Ata et al. Failure mode and failure load of adhesively bonded composite joints made by glass fiber-reinforced polymer
JP6083248B2 (en) Manufacturing method of fiber reinforced thermoplastic resin integrated structure
Chen et al. Strength and failure modes of adhesively bonded composite joints with easily fabricated nonflat interfaces
Yahya Effects of carbon fiber reinforced plastic laminate on the strength of adhesive joints