WO2020136976A1 - Method for identifying elastic characteristics of adhesive - Google Patents

Method for identifying elastic characteristics of adhesive Download PDF

Info

Publication number
WO2020136976A1
WO2020136976A1 PCT/JP2019/031120 JP2019031120W WO2020136976A1 WO 2020136976 A1 WO2020136976 A1 WO 2020136976A1 JP 2019031120 W JP2019031120 W JP 2019031120W WO 2020136976 A1 WO2020136976 A1 WO 2020136976A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
elastic
identifying
strain distribution
strain
Prior art date
Application number
PCT/JP2019/031120
Other languages
French (fr)
Japanese (ja)
Inventor
洋輔 植木
澤田 貴彦
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2020136976A1 publication Critical patent/WO2020136976A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the present invention relates to a method for identifying elastic properties of an adhesive.
  • Adhesive joining has attracted particular attention because it does not use additional joining members such as bolts, so it has a great effect on weight reduction. Further, even in the case of joining materials of the same kind, it is a suitable joining technique for materials to which welding cannot be applied.
  • Non-Patent Document 1 describes a single lap joint test (single lap joint test, hereinafter referred to as “SLJ test”) that is widely used as a test for evaluating the adhesive strength of an adhesive joint.
  • SJ test single lap joint test
  • Non-Patent Document 2 describes a GR theoretical model which is one of stress distribution models of a test piece used for the SLJ test (hereinafter also referred to as “SLJ test piece”).
  • Patent Document 1 it is possible to directly compare the strength determination result of the adhesive with respect to the adhesive strength determination of the numerical analysis model of the structure having the adhesive, regarding the adhesive structure in which two adherends are adhered by the adhesive.
  • a method of calculating the adhesive property by a finite element analysis model that models the adhesive as a beam element is disclosed.
  • Patent Document 2 discloses a rubber-like elastic composite in which the degree of deformation of a rubber-like elastic body is measured, and the physical property value in the vicinity of the adhesive interface is calculated from the ratio of the physical property distributions in the vicinity of the adhesive interface and the part away from the adhesive surface. The method for measuring the physical property distribution in the vicinity of the adhesive interface is disclosed.
  • JIS K6850 "Adhesive-Test method for tensile shear adhesive strength of rigid adherends" (1999) Goland and Reissner: "The stresses in cemented joints", Journal of Applied Mechanics, 11(1), ppA18-A27 (1944)
  • an adhesive that is actually in an adhered state with the adherend may exhibit different elastic characteristics from the single body in the adhered state due to the chemical interaction with the adherend and the effect of residual stress. ..
  • Non-Patent Document 1 In the SLJ test described in Non-Patent Document 1, it is possible to use a general-purpose tensile tester because the test piece is relatively easy to manufacture.
  • the main function of the adhesive is to maintain the bond. Therefore, also in the selection and development of the adhesive, the adhesive strength test represented by the SLJ test is usually preferentially performed.
  • the mechanical properties obtained by the SLJ test are only the nominal shear adhesive strength obtained by dividing the fracture load value of the adhesive joint by the adhesive area, and a separate test is required to obtain the elastic properties. There is.
  • Patent Document 1 Since the method described in Patent Document 1 uses the finite element method, the calculation load is large and the calculation time is long. Therefore, it is difficult to adopt from the viewpoint of improving the efficiency and speed of the adhesive development process.
  • Patent Document 2 measures the physical property distribution of the rubber in the vicinity of the adhesive interface of the rubber-like elastic composite, not the physical property distribution of the adhesive body.
  • the present invention aims to estimate the elastic properties of an adhesive in an adhesive state by using data of only a general adhesive strength test.
  • the present invention includes a plurality of means for solving the above problems, but if one example is given, it is a method for identifying elastic properties of an adhesive in a state where adherends are adhered to each other, and an adhesive strength test is performed. It is carried out, the strain distribution of the adhesive in the adhesive strength test is measured, and the elastic characteristic of the adhesive is calculated using the strain distribution.
  • the present invention is a method for identifying elastic properties of an adhesive in a state where adherends are adhered to each other, performing an adhesive strength test, measuring a strain distribution of the adhesive during the adhesive strength test, and a strain distribution thereof. Is used to calculate the elastic characteristics such as the elastic coefficient of the adhesive.
  • the present invention can be applied not only to an adhesive but also to a load test on a member having an adhesive portion to measure strain distribution. That is, the present invention is not limited to the identification of the elastic properties of the adhesive and includes the following inventions.
  • a method of identifying elastic properties of a member having an adhesive portion in which a load test (strength test) such as a tensile test or a compression test is performed on the member, and the strain distribution generated in the member at that time is measured. Then, the strain distribution is used to calculate the elastic characteristic of the member, which is an elastic characteristic identifying method.
  • a load test such as a tensile test or a compression test
  • FIG. 1 is a schematic perspective view showing a test piece of an SLJ test (single lap joint test) which is an example of an adhesive strength test.
  • the SLJ test piece has a structure in which two plate-like adherends 1 are partially overlapped and bonded with an adhesive.
  • the length in the longitudinal direction of the adherend 1 at the bonded portion (bonding portion 2) is the wrap length L.
  • L can be arbitrarily set and tested.
  • W is the length (plate width) in the lateral direction (width direction).
  • both ends of the test piece are gripped by a tensile tester, and a tensile load F is applied to apply a shearing force to the adhesive portion 2.
  • the strain distribution 5 generated in the adhesive portion 2 is experimentally measured.
  • the strain distribution 5 is a distribution of strain in the L direction on the center line 3 (shown by a chain line in the figure) on the front surface of the adhesive portion 2.
  • the measuring means used for measuring the strain distribution 5 is not limited at all, but for example, a digital image correlation method (DIC method) capable of measuring the spatial strain distribution of the measurement region based on the image data. ) Is preferred.
  • the DIC method is a kind of image measurement.
  • strain distribution model is a function that represents the strain distribution 5 of the adhesive portion 2, and is represented by the following equation (1).
  • the strain distribution model is also called a "model formula”.
  • is strain
  • x is the position (coordinate) of the wrap length in the L direction
  • F is the tensile load
  • E adhesive is the elastic modulus of the adhesive
  • E adherent is the elastic modulus of the adherend
  • ⁇ adhesive is the adhesive's elastic modulus.
  • ⁇ adherent is the Poisson's ratio of the adherend.
  • g is a parameter set including a lap length L that defines the geometrical shape of the SLJ test piece, a plate width W, a thickness of an adherend and an adhesive, and the like.
  • the strain distribution may be of two types, shear strain and vertical strain, but the present invention is not limited to either strain distribution.
  • a finite element model can be considered, but when estimating the elastic properties, it is necessary to repeatedly calculate the strain distribution using the model while changing the parameters. (Details below). Therefore, it is difficult to recommend a finite element model that requires numerical calculation from the viewpoint of calculation load.
  • a one-dimensional strain distribution model For example, various stress distribution models of SLJ test pieces have been proposed, including the model described in Non-Patent Document 2 (GR theoretical model).
  • the stress distribution model has a form in which the left side of the above equation (1) is replaced with the stress distribution from the strain distribution. Therefore, the stress distribution model can be converted into a strain distribution model by a stress-strain constitutive law such as Hooke's law.
  • E adhesive and ⁇ adhesive are unknown parameters in the strain distribution model.
  • Other parameters such as tensile load, elastic properties of the adherend, dimensions of the SLJ test piece, etc. can be easily acquired or measured in normal cases.
  • the strain distribution which is the left side of the above formula (1), can be expressed by using the strain distribution of the adhesive in the state where the tensile load acts on the SLJ test piece. This can be experimentally acquired by strain measurement by the above-mentioned DIC method or the like.
  • the unknown parameter becomes a value closer to the true value.
  • the elastic characteristic of the adhesive which is an unknown parameter, can be identified by regressing the strain distribution model on the strain distribution measurement value.
  • strain distribution that occurs in the adhesive when the tensile load F is applied is not uniform.
  • shear strain it is known that the strain becomes large at both ends of the adhesion region as shown in strain distribution 5 in FIG.
  • the strain distribution of the adhesive along the lap length L direction is the shape of the SLJ test piece such as the tensile load value, the elastic characteristics of the adhesive or the adherend, the thickness of the adherend or the adhesive, and the lap length. It is determined by characteristics, physical properties, etc., and is represented by a curve. Therefore, the strain distribution model (model formula) is expressed as a non-linear function. Therefore, it is desirable to use an algorithm classified as a non-linear regression analysis for the regression to the strain distribution measurement value.
  • the model formula is a function representing the relationship between the position in the tensile load application direction in the lap region of the test piece used for the SLJ test and the strain generated in the adhesive.
  • the present invention does not limit the algorithm at all, but it is preferable to use the Levenberg-Markt method (LM method) or the like used as the nonlinear regression analysis.
  • LM method Levenberg-Markt method
  • the strain distribution model is iteratively calculated while giving temporary elastic properties (elastic coefficient, Poisson's ratio, etc.) to the strain distribution model.
  • temporary elastic properties elastic coefficient, Poisson's ratio, etc.
  • the calculation load may increase explosively. Therefore, as described above, by using a model such as GR theory that does not involve numerical integration, it is possible to identify the elastic coefficient within a practically acceptable time range.
  • FIG. 2 is a flow chart showing the above-mentioned elastic property identification method.
  • the strain distribution measurement S120 of the adhesive is performed at that time to obtain the strain distribution measurement value.
  • the test condition of the adhesive strength test S110 is input to the strain distribution model (S130), and the theoretical value of the strain distribution is obtained.
  • the DIC method uses a visible light camera to measure the strain distribution on the surface of an object that has been randomly patterned. Therefore, in the case of the SLJ test piece, the strain distribution of the adhesive in the part exposed on the side surface of the test piece is measured.
  • part of the strain distribution model for the SLJ test including the GR theory does not consider the strain distribution in the width W direction of the SLJ test piece. Therefore, an error may become large between the strain distribution based on the strain distribution model and the strain distribution on the side surface of the test piece based on the DIC method.
  • FIG. 3 is a graph showing the shear strain distribution of the adhesive in the SLJ test calculated based on the finite element method. That is, it is the strain distribution in the L direction of FIG.
  • the horizontal axis is the position in the L direction with the central part of the adhesive portion 2 in FIG. 1 as the zero point, and the vertical axis is the shear strain at each position.
  • the ⁇ mark is the shear strain in the central portion of the adhesive portion 2 in FIG. 1 in the plate width direction (the direction orthogonal to the front surface (side surface portion) of the adhesive portion 2 ).
  • the symbol ⁇ indicates the shear strain at the center line 3 in front of the adhesive portion 2.
  • the broken line is the shear strain calculated based on the GR theory, and corresponds to the same position as the center of the circle in the plate width direction.
  • FIG. 4 also shows the result of calculating the vertical strain acting in the direction of peeling the adhesive (thickness direction) at each position in the L direction in the same manner as in FIG.
  • the circles, triangles, and broken lines are values at the same positions as in FIG. 4 differs from FIG. 3 only in the direction of strain.
  • the shear strain distribution in Fig. 3 is smaller than the vertical strain distribution in Fig. 4 in most areas where the difference in strain in the strip width direction is small. In other words, the area where the ⁇ mark, the ⁇ mark and the broken line are close to each other is wide.
  • the ⁇ mark and the ⁇ mark have an overlapping region in the central portion in the L direction, but the difference between the ⁇ mark and the ⁇ mark is large at both end portions in the L direction. ..
  • the ⁇ mark which is the vertical strain at the same position, with the broken line, it can be seen that there is an overlapping region at both ends in the L direction, but there is a clear difference at the center in the L direction.
  • the value measured by the DIC method is the strain distribution on the side surface of the plate width
  • the triangle mark and the broken line are used. It will be compared. Therefore, it is possible to identify the elastic characteristic with higher accuracy by using the measured value of the shear strain distribution of FIG. 3 instead of the measured value of the vertical strain distribution of FIG.
  • the shear strain distribution based on the finite element method shown in Fig. 3 is the strain distribution in the center of the adhesive in the thickness direction. As shown in the figure, in the GR theory (broken line), the end of the lap region has the maximum value. In the finite element method (marked with ⁇ ), which is closer to the actual condition, the shear strain is extremely small at the ends. In other words, the curve connecting the triangles is convex upward near the ends.
  • elastic characteristics are identified with high accuracy by excluding 1% or more and 8% or less of the lap region total length from both ends with respect to the lap region total length from the data of shear strain distribution (measured value).
  • the exclusion range of the strain measurement value is more preferably 3% or more and 7% or less, and particularly preferably 4% or more and 6% or less.
  • the error with respect to the measured value of the elastic coefficient is 10% or less when the exclusion range of the strain measurement value is set to 1% or more and 8% or less. Further, by setting the exclusion range of the strain measurement value to 5%, the elastic characteristic could be identified with the highest accuracy.
  • FIG. 5 is a graph in which the above conditions are actually applied, and shows an example of the regression result of the strain distribution model with respect to the strain distribution measured value.
  • indicates the measured value of the shear strain of the adhesive in the SLJ test
  • the solid curve is the regression curve based on the GR theory.
  • the excluded area is 5% of the entire lap area from both ends.
  • the regression curve is shaped so as to pass through the central part of the band of variation in measured values at each position. From this, it can be seen that the curve regression based on the GR theory is desirable in the applied region. In this case, the accuracy of estimating the elastic modulus of the adhesive was within 5% due to the error with respect to the measured value of the elastic modulus.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Pathology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is a method for identifying the elastic characteristics of an adhesive in a state where adherends are mutually adhered by the adhesive. In the method, an adhesive strength test is carried out, the strain distribution of the adhesive is measured in the adhesive strength test, and using the strain distribution, the elastic characteristics of the adhesive are calculated. Due to this configuration, the elastic characteristics of an adhesive which is in a state of adhering can be estimated using data from nothing more than a common adhesive strength test.

Description

接着剤の弾性特性の同定方法Method for identifying elastic properties of adhesives
 本発明は、接着剤の弾性特性の同定方法に関する。 The present invention relates to a method for identifying elastic properties of an adhesive.
 近年、機械構造物において、接着剤を用いた接着接合が採用されるケースが増加している。特に、自動車や航空機といった輸送機器においては、燃費向上のための軽量化が急務となっている。 In recent years, the number of cases where adhesive bonding using an adhesive is adopted in mechanical structures is increasing. In particular, in transportation equipment such as automobiles and aircrafts, there is an urgent need to reduce the weight to improve fuel efficiency.
 これらの構造部材には、従来の鉄鋼部材だけではなく、アルミニウムなどの軽金属や、繊維強化樹脂などの多種多様な材料を組み合わせて用いることが効果的である。このため、必然的に異種材料同士を接合するための異材接合技術が必要となっている。 For these structural members, it is effective to use not only conventional steel members, but also various metals such as aluminum and other light metals, and fiber-reinforced resins in combination. Therefore, a dissimilar material joining technique for joining dissimilar materials is inevitably required.
 接着接合は、ボルトなどの追加の接合部材を用いないため、軽量化の効果が大きく、特に注目されている。また、同種材料同士の接合であっても、溶接が適用できない材料では、好適な接合技術となる。  Adhesive joining has attracted particular attention because it does not use additional joining members such as bolts, so it has a great effect on weight reduction. Further, even in the case of joining materials of the same kind, it is a suitable joining technique for materials to which welding cannot be applied.
 このような状況において、機械構造物向けの構造用接着剤の需要が拡大している。 Demand for structural adhesives for mechanical structures is expanding under these circumstances.
 構造用接着剤を用いた接合部には、大きい荷重や応力が作用するため、その弾性特性が接合部あるいは機械構造物全体の変形挙動や剛性に影響を及ぼす場合がある。すなわち、構造用接着剤は、単純な接着強度だけでなく、接着剤自体の弾性特性を十分に考慮して選定する必要がある。 Since a large load and stress act on the joint using the structural adhesive, its elastic properties may affect the deformation behavior and rigidity of the joint or the entire mechanical structure. That is, it is necessary to select the structural adhesive in consideration of not only simple adhesive strength but also elastic characteristics of the adhesive itself.
 また、接着剤の開発プロセスにおいても、接着剤の弾性特性を把握し、それを効率的に開発にフィードバックすることが求められる。 Also, in the adhesive development process, it is necessary to grasp the elastic properties of the adhesive and feed it back to the development efficiently.
 非特許文献1には、接着接合部の接着強度を評価するための試験として広く用いられている単重ね継手試験(シングルラップジョイント試験、以下「SLJ試験」という。)が記載されている。 Non-Patent Document 1 describes a single lap joint test (single lap joint test, hereinafter referred to as “SLJ test”) that is widely used as a test for evaluating the adhesive strength of an adhesive joint.
 非特許文献2には、SLJ試験に用いる試験片(以下「SLJ試験片」ともいう。)の応力分布モデルの一つであるG-R理論モデルが記載されている。 Non-Patent Document 2 describes a GR theoretical model which is one of stress distribution models of a test piece used for the SLJ test (hereinafter also referred to as “SLJ test piece”).
 特許文献1には、2枚の被着材を接着剤で接着した接着構造について、接着剤を有する構造体の数値解析モデルの接着部強度判定について、接着剤の強度試験結果と直接比較できるようにするため、接着剤をビーム要素としてモデル化する有限要素解析モデルによる接着剤特性の計算方法が開示されている。 In Patent Document 1, it is possible to directly compare the strength determination result of the adhesive with respect to the adhesive strength determination of the numerical analysis model of the structure having the adhesive, regarding the adhesive structure in which two adherends are adhered by the adhesive. In order to achieve the above, a method of calculating the adhesive property by a finite element analysis model that models the adhesive as a beam element is disclosed.
 接着剤の物性分布ではないが、接着面を有するゴム状弾性体の物性分布に関しては、次の公知例がある。 There are the following publicly known examples regarding the physical property distribution of the rubber-like elastic body having the adhesive surface, although it is not the physical property distribution of the adhesive.
 特許文献2には、ゴム状弾性体の変形度合いを計測し、接着界面近傍と接着面から離れた部分との物性分布との比から、接着界面近傍の物性値を算出するゴム状弾性複合体の接着界面近傍の物性分布測定方法が開示されている。 Patent Document 2 discloses a rubber-like elastic composite in which the degree of deformation of a rubber-like elastic body is measured, and the physical property value in the vicinity of the adhesive interface is calculated from the ratio of the physical property distributions in the vicinity of the adhesive interface and the part away from the adhesive surface. The method for measuring the physical property distribution in the vicinity of the adhesive interface is disclosed.
特開2009-99132号公報JP, 2009-99132, A 特開2000-304666号公報Japanese Patent Laid-Open No. 2000-304666
 通常、接着剤の弾性特性を把握するためには、接着剤単体の引張試験や圧縮試験などを行う必要がある。 Usually, in order to understand the elastic properties of the adhesive, it is necessary to perform a tensile test or compression test of the adhesive alone.
 接着剤の弾性特性を取得するためには、接着剤単体の試験を行う必要がある。そのためには、接着剤単体からなる試験片を製作する必要があるが、そのためには、接着剤を任意の形状に成形しなければならない。粘着性の強い接着剤では、このような試験片の製作がそもそも難しいという課題がある。  To obtain the elastic properties of the adhesive, it is necessary to test the adhesive alone. For that purpose, it is necessary to manufacture a test piece composed of an adhesive alone, but for that purpose, the adhesive must be molded into an arbitrary shape. There is a problem that it is difficult to manufacture such a test piece in the first place with an adhesive having a strong tackiness.
 また、実際に被着体と接着状態にある接着剤は、被着体との化学的な相互作用や残留応力の影響によって、接着状態では、単体での弾性特性と異なる特性を示す場合もある。 In addition, an adhesive that is actually in an adhered state with the adherend may exhibit different elastic characteristics from the single body in the adhered state due to the chemical interaction with the adherend and the effect of residual stress. ..
 非特許文献1に記載のSLJ試験においては、試験片の製作が比較的簡単であり、かつ、汎用的な引張試験機を用いることができる。 In the SLJ test described in Non-Patent Document 1, it is possible to use a general-purpose tensile tester because the test piece is relatively easy to manufacture.
 接着剤の主機能は、接合を維持することである。したがって、接着剤の選定や開発においても、通常は、SLJ試験に代表される接着強度試験が優先的に行われる。 The main function of the adhesive is to maintain the bond. Therefore, also in the selection and development of the adhesive, the adhesive strength test represented by the SLJ test is usually preferentially performed.
 しかし、SLJ試験で得られる機械的特性は、接着接合部の破壊荷重値を接着面積で除して得られる公称せん断接着強度のみであり、弾性特性を取得するためには、別途試験を行う必要がある。 However, the mechanical properties obtained by the SLJ test are only the nominal shear adhesive strength obtained by dividing the fracture load value of the adhesive joint by the adhesive area, and a separate test is required to obtain the elastic properties. There is.
 特許文献1に記載の方法は、有限要素法を用いるため、計算負荷が大きく、計算時間が長くなる。このため、接着剤の開発プロセスの効率化・迅速化の観点からは、採用しにくいものである。 Since the method described in Patent Document 1 uses the finite element method, the calculation load is large and the calculation time is long. Therefore, it is difficult to adopt from the viewpoint of improving the efficiency and speed of the adhesive development process.
 特許文献2に記載の方法は、ゴム状弾性複合体の接着界面近傍のゴムの物性分布を測定するものであり、接着剤本体の物性分布を測定するものではない。 The method described in Patent Document 2 measures the physical property distribution of the rubber in the vicinity of the adhesive interface of the rubber-like elastic composite, not the physical property distribution of the adhesive body.
 本発明は、一般的な接着強度試験のみのデータを用いて、接着状態にある接着剤の弾性特性を推定することを目的とする。 The present invention aims to estimate the elastic properties of an adhesive in an adhesive state by using data of only a general adhesive strength test.
 本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、被着体同士を接着した状態の接着剤の弾性特性を同定する方法であって、接着強度試験を実施し、接着強度試験における接着剤のひずみ分布の計測をし、ひずみ分布を用いて、接着剤の弾性特性の算出をするものである。 The present invention includes a plurality of means for solving the above problems, but if one example is given, it is a method for identifying elastic properties of an adhesive in a state where adherends are adhered to each other, and an adhesive strength test is performed. It is carried out, the strain distribution of the adhesive in the adhesive strength test is measured, and the elastic characteristic of the adhesive is calculated using the strain distribution.
 本発明によれば、一般的な接着強度試験のみのデータを用いて、接着状態にある接着剤の弾性特性を推定することができる。 According to the present invention, it is possible to estimate the elastic property of the adhesive in the adhesive state by using the data of only the general adhesive strength test.
接着強度試験の一例である単重ね継手試験の試験片を示す模式斜視図である。It is a schematic perspective view which shows the test piece of the single lap joint test which is an example of an adhesive strength test. 実施例の弾性特性の同定方法を示すフロー図である。It is a flowchart which shows the identification method of the elastic characteristic of an Example. 有限要素解析によって得られた単重ね継手試験における接着剤のせん断ひずみ分布を示すグラフである。It is a graph which shows the shear strain distribution of the adhesive agent in the single lap joint test obtained by the finite element analysis. 有限要素解析によって得られた単重ね継手試験における接着剤の垂直ひずみ分布を示すグラフである。It is a graph which shows the vertical strain distribution of the adhesive agent in the single lap joint test obtained by the finite element analysis. 実施例におけるひずみ分布計測値に対するひずみ分布モデルの回帰結果の一例を示すグラフである。It is a graph which shows an example of the regression result of the strain distribution model with respect to the strain distribution measured value in an Example.
 本発明は、被着体同士を接着した状態の接着剤の弾性特性を同定する方法であって、接着強度試験を実施し、接着強度試験中の接着剤のひずみ分布を計測し、そのひずみ分布を用いて接着剤の弾性係数等の弾性特性を算出するものである。 The present invention is a method for identifying elastic properties of an adhesive in a state where adherends are adhered to each other, performing an adhesive strength test, measuring a strain distribution of the adhesive during the adhesive strength test, and a strain distribution thereof. Is used to calculate the elastic characteristics such as the elastic coefficient of the adhesive.
 なお、本発明は、接着剤だけでなく、接着部を有する部材について荷重試験を実施し、ひずみ分布の計測をする場合にも適用できる。すなわち、本発明は、接着剤の弾性特性の同定に限定されるものではなく、次のような発明も包含するものである。 Note that the present invention can be applied not only to an adhesive but also to a load test on a member having an adhesive portion to measure strain distribution. That is, the present invention is not limited to the identification of the elastic properties of the adhesive and includes the following inventions.
 接着部を有する部材の弾性特性を同定する方法であって、当該部材に対して引張試験、圧縮試験等の荷重試験(強度試験)を実施し、その際に当該部材に生じるひずみ分布の計測をし、そのひずみ分布を用いて、当該部材の弾性特性の算出をする、弾性特性の同定方法である。 A method of identifying elastic properties of a member having an adhesive portion, in which a load test (strength test) such as a tensile test or a compression test is performed on the member, and the strain distribution generated in the member at that time is measured. Then, the strain distribution is used to calculate the elastic characteristic of the member, which is an elastic characteristic identifying method.
 以下、本発明の実施例について、図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、接着強度試験の例であるSLJ試験(単重ね継手試験)の試験片を示す模式斜視図である。 FIG. 1 is a schematic perspective view showing a test piece of an SLJ test (single lap joint test) which is an example of an adhesive strength test.
 本図に示すように、SLJ試験の試験片は、板状の2枚の被着体1を部分的に重ね、接着剤によって接着した構造を有する。この場合に、接着した部分(接着部2)における被着体1の長手方向の長さをラップ長Lとする。Lは、任意に設定して試験を行うことができる。Wは、短手方向(幅方向)の長さ(板幅)である。 As shown in this figure, the SLJ test piece has a structure in which two plate-like adherends 1 are partially overlapped and bonded with an adhesive. In this case, the length in the longitudinal direction of the adherend 1 at the bonded portion (bonding portion 2) is the wrap length L. L can be arbitrarily set and tested. W is the length (plate width) in the lateral direction (width direction).
 SLJ試験においては、試験片の両端部を引張試験機で把持し、引張荷重Fを加えることにより、接着部2にせん断力を加える。 In the SLJ test, both ends of the test piece are gripped by a tensile tester, and a tensile load F is applied to apply a shearing force to the adhesive portion 2.
 通常は、破壊が生じた場合にその際の荷重値を接着部2の面積(L×W)で除することによって、公称せん断応力を取得することを目的として行う試験である。 Normally, when a fracture occurs, the load value at that time is divided by the area (L×W) of the adhesive portion 2 to obtain the nominal shear stress, and this is a test that is performed.
 本発明においては、接着強度試験であるSLJ試験を行う際に、接着部2に生じるひずみ分布5を実験的に計測する。ひずみ分布5は、接着部2の正面の中心線3(図中、一点鎖線で示す。)におけるひずみのL方向の分布である。 In the present invention, when the SLJ test, which is an adhesive strength test, is performed, the strain distribution 5 generated in the adhesive portion 2 is experimentally measured. The strain distribution 5 is a distribution of strain in the L direction on the center line 3 (shown by a chain line in the figure) on the front surface of the adhesive portion 2.
 この場合において、ひずみ分布5の計測に用いる計測手段は、なんら限定されるものではないが、例えば、画像データを基にして計測領域の空間的なひずみ分布を計測できるデジタル画像相関法(DIC法)が好適である。DIC法は、画像計測の一種である。 In this case, the measuring means used for measuring the strain distribution 5 is not limited at all, but for example, a digital image correlation method (DIC method) capable of measuring the spatial strain distribution of the measurement region based on the image data. ) Is preferred. The DIC method is a kind of image measurement.
 次に、SLJ試験において引張荷重Fを加えている状態にある試験片に生じるひずみ分布5を理論的に表現するひずみ分布モデルを考える。 Next, consider a strain distribution model that theoretically expresses the strain distribution 5 that occurs in the test piece in the state where the tensile load F is applied in the SLJ test.
 ここで、ひずみ分布モデルとは、接着部2のひずみ分布5を表す関数をいい、下記式(1)で表される。なお、ひずみ分布モデルは、「モデル式」ともいう。 Here, the strain distribution model is a function that represents the strain distribution 5 of the adhesive portion 2, and is represented by the following equation (1). The strain distribution model is also called a "model formula".
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式中、εはひずみ、xはラップ長さL方向の位置(座標)、Fは引張荷重、Eadhesiveは接着剤の弾性係数、Eadherentは被着体の弾性係数、νadhesiveは接着剤のポアソン比、νadherentは被着体のポアソン比である。また、gは、SLJ試験片の幾何的形状を定義するラップ長L、板幅W、被着体および接着剤の厚さなどからなるパラメータセットである。 Where ε is strain, x is the position (coordinate) of the wrap length in the L direction, F is the tensile load, E adhesive is the elastic modulus of the adhesive, E adherent is the elastic modulus of the adherend, and ν adhesive is the adhesive's elastic modulus. Poisson's ratio, ν adherent is the Poisson's ratio of the adherend. Further, g is a parameter set including a lap length L that defines the geometrical shape of the SLJ test piece, a plate width W, a thickness of an adherend and an adhesive, and the like.
 なお、ひずみ分布は、せん断ひずみ及び垂直ひずみの2種類が考えられるが、本発明は、いずれかのひずみ分布に限定されるものではない。 The strain distribution may be of two types, shear strain and vertical strain, but the present invention is not limited to either strain distribution.
 このようなひずみ分布モデルとしては、例えば有限要素モデルなどが考えられるが、弾性特性を推定する際には、モデルを用いたひずみ分布の計算を、パラメータを変更しながら反復して行う必要がある(詳細後述)。したがって、数値計算を必要とする有限要素モデルは、計算負荷の観点から推奨しがたい。 As such a strain distribution model, for example, a finite element model can be considered, but when estimating the elastic properties, it is necessary to repeatedly calculate the strain distribution using the model while changing the parameters. (Details below). Therefore, it is difficult to recommend a finite element model that requires numerical calculation from the viewpoint of calculation load.
 そこで、本発明を実際に適用する場合には、1次元のひずみ分布モデルを用いることが好適である。例えば、非特許文献2に記載のモデル(G-R理論モデル)をはじめとして、SLJ試験片のさまざまな応力分布モデルが提唱されている。ここで、応力分布モデルは、上記式(1)の左辺がひずみ分布から応力分布に置き換わった形となる。したがって、応力分布モデルは、フックの法則などの応力-ひずみ構成則によってひずみ分布モデルに変換できる。 Therefore, when the present invention is actually applied, it is preferable to use a one-dimensional strain distribution model. For example, various stress distribution models of SLJ test pieces have been proposed, including the model described in Non-Patent Document 2 (GR theoretical model). Here, the stress distribution model has a form in which the left side of the above equation (1) is replaced with the stress distribution from the strain distribution. Therefore, the stress distribution model can be converted into a strain distribution model by a stress-strain constitutive law such as Hooke's law.
 本発明においては、接着剤の弾性特性を推定することを目的とするため、ひずみ分布モデルにおいて、Eadhesiveおよびνadhesiveは、未知のパラメータとなる。それ以外のパラメータである引張荷重、被着体の弾性特性、SLJ試験片の寸法等については、通常の場合であれば容易に取得または計測が可能である。 Since the purpose of the present invention is to estimate the elastic properties of the adhesive , E adhesive and ν adhesive are unknown parameters in the strain distribution model. Other parameters such as tensile load, elastic properties of the adherend, dimensions of the SLJ test piece, etc. can be easily acquired or measured in normal cases.
 一方、上記式(1)の左辺であるひずみ分布は、SLJ試験片に引張荷重が作用している状態における接着剤のひずみ分布を用いて表すことができる。これは、前述のDIC法などによるひずみ計測によって実験的に取得できる。 On the other hand, the strain distribution, which is the left side of the above formula (1), can be expressed by using the strain distribution of the adhesive in the state where the tensile load acts on the SLJ test piece. This can be experimentally acquired by strain measurement by the above-mentioned DIC method or the like.
 したがって、上述の未知パラメータを変化させ、ひずみ分布モデルによって表されるひずみ分布と実験的に取得されたひずみ分布との差異が小さくなったとき、未知パラメータが真の値により近い値となっていると言える。すなわち、ひずみ分布モデルをひずみ分布計測値に回帰させることによって、未知パラメータである接着剤の弾性特性が同定できるのである。 Therefore, when the above-mentioned unknown parameter is changed and the difference between the strain distribution represented by the strain distribution model and the strain distribution obtained experimentally becomes small, the unknown parameter becomes a value closer to the true value. Can be said. That is, the elastic characteristic of the adhesive, which is an unknown parameter, can be identified by regressing the strain distribution model on the strain distribution measurement value.
 引張荷重Fが加えられた状態において接着剤に発生しているひずみ分布は、一様ではない。せん断ひずみの場合には、図1のひずみ分布5のように、接着領域の両端部でひずみが大きくなることが知られている。 The strain distribution that occurs in the adhesive when the tensile load F is applied is not uniform. In the case of shear strain, it is known that the strain becomes large at both ends of the adhesion region as shown in strain distribution 5 in FIG.
 このようなラップ長さL方向に沿った接着剤のひずみ分布は、引張荷重値、接着剤や被着体の弾性特性、被着体や接着剤の厚さ、ラップ長といったSLJ試験片の形状特性、物性値等によって決定され、曲線で表現される。したがって、ひずみ分布モデル(モデル式)は、非線形関数として表現される。このため、ひずみ分布計測値への回帰には、非線形回帰分析に分類されるアルゴリズムを用いることが望ましい。モデル式は、SLJ試験に用いる試験片のラップ領域における引張荷重負荷方向の位置と、接着剤に生じるひずみとの関係を表す関数である。 The strain distribution of the adhesive along the lap length L direction is the shape of the SLJ test piece such as the tensile load value, the elastic characteristics of the adhesive or the adherend, the thickness of the adherend or the adhesive, and the lap length. It is determined by characteristics, physical properties, etc., and is represented by a curve. Therefore, the strain distribution model (model formula) is expressed as a non-linear function. Therefore, it is desirable to use an algorithm classified as a non-linear regression analysis for the regression to the strain distribution measurement value. The model formula is a function representing the relationship between the position in the tensile load application direction in the lap region of the test piece used for the SLJ test and the strain generated in the adhesive.
 本発明は、そのアルゴリズムをなんら限定するものではないが、非線形回帰分析として用いられるレーベンバーグ-マーカート法(L-M法)などを用いることが望ましい。 The present invention does not limit the algorithm at all, but it is preferable to use the Levenberg-Markt method (LM method) or the like used as the nonlinear regression analysis.
 このような非線形回帰分析を用いる場合には、ひずみ分布モデルに仮の弾性特性(弾性係数、ポアソン比等)を与えながら、反復的にひずみ分布モデルの計算を行う。このとき、ひずみ分布モデルとして自由度の大きい有限要素モデルなどを用いると、計算負荷が爆発的に増大する可能性がある。そのため、上述のとおり、G-R理論などの数値積分を伴わないモデルを用いることで、実用に耐えうる時間の範囲内で弾性係数の同定が可能となるのである。 When using such a non-linear regression analysis, the strain distribution model is iteratively calculated while giving temporary elastic properties (elastic coefficient, Poisson's ratio, etc.) to the strain distribution model. At this time, if a finite element model having a large degree of freedom is used as the strain distribution model, the calculation load may increase explosively. Therefore, as described above, by using a model such as GR theory that does not involve numerical integration, it is possible to identify the elastic coefficient within a practically acceptable time range.
 図2は、上述の弾性特性の同定方法を示すフロー図である。 FIG. 2 is a flow chart showing the above-mentioned elastic property identification method.
 本図においては、接着強度試験S110の実施を前提とし、その際に接着剤のひずみ分布計測S120を行い、ひずみ分布の計測値を得る。一方で、接着強度試験S110の試験条件をひずみ分布モデルに入力し(S130)、ひずみ分布の理論値を得る。 In the figure, assuming that the adhesive strength test S110 is performed, the strain distribution measurement S120 of the adhesive is performed at that time to obtain the strain distribution measurement value. On the other hand, the test condition of the adhesive strength test S110 is input to the strain distribution model (S130), and the theoretical value of the strain distribution is obtained.
 この理論値が計測値と近似するように回帰分析S140を行うことによって、最終的に弾性係数やポアソン比といった接着剤の弾性特性を得る。 By performing regression analysis S140 so that this theoretical value approximates the measured value, the elastic characteristics of the adhesive such as the elastic coefficient and Poisson's ratio are finally obtained.
 以下、上述の方法において、ひずみ分布計測S120の方法としてDIC法を用い、ひずみ分布モデルとしてG-R理論を用いる場合について更に詳細に説明する。 Hereinafter, in the above method, the case where the DIC method is used as the method of the strain distribution measurement S120 and the GR theory is used as the strain distribution model will be described in more detail.
 通常、DIC法は、可視光カメラを用いてランダムなパターニングが施された物体の表面のひずみ分布を計測する。したがって、SLJ試験片の場合は、試験片の側面に露出している部分の接着剤のひずみ分布を計測することとなる。 Normally, the DIC method uses a visible light camera to measure the strain distribution on the surface of an object that has been randomly patterned. Therefore, in the case of the SLJ test piece, the strain distribution of the adhesive in the part exposed on the side surface of the test piece is measured.
 一方で、G-R理論を含むSLJ試験に対するひずみ分布モデルの一部は、SLJ試験片の板幅W方向のひずみ分布を考慮しない。したがって、ひずみ分布モデルに基づくひずみ分布と、DIC法に基づく試験片側面のひずみ分布との間においては、誤差が大きくなる場合がある。 On the other hand, part of the strain distribution model for the SLJ test including the GR theory does not consider the strain distribution in the width W direction of the SLJ test piece. Therefore, an error may become large between the strain distribution based on the strain distribution model and the strain distribution on the side surface of the test piece based on the DIC method.
 図3は、有限要素法に基づいて算出したSLJ試験における接着剤のせん断ひずみ分布を示すグラフである。すなわち、図1のL方向のひずみ分布である。 FIG. 3 is a graph showing the shear strain distribution of the adhesive in the SLJ test calculated based on the finite element method. That is, it is the strain distribution in the L direction of FIG.
 横軸は、図1の接着部2の中央部を零点としてL方向における位置であり、縦軸は、各位置におけるせん断ひずみをとっている。〇印は、図1の接着部2の板幅方向(接着部2の正面(側面部)に直交する方向)の中央部におけるせん断ひずみである。△印は、接着部2の正面の中心線3におけるせん断ひずみである。破線は、G-R理論に基づいて算出したせん断ひずみであり、〇印の板幅方向の中央部と同じ位置に対応するものである。 The horizontal axis is the position in the L direction with the central part of the adhesive portion 2 in FIG. 1 as the zero point, and the vertical axis is the shear strain at each position. The ◯ mark is the shear strain in the central portion of the adhesive portion 2 in FIG. 1 in the plate width direction (the direction orthogonal to the front surface (side surface portion) of the adhesive portion 2 ). The symbol Δ indicates the shear strain at the center line 3 in front of the adhesive portion 2. The broken line is the shear strain calculated based on the GR theory, and corresponds to the same position as the center of the circle in the plate width direction.
 図4は、L方向の各位置において接着剤を引き剥がす方向(板厚方向)に作用する垂直ひずみを、図3と同様にして算出した結果も示したものである。〇印、△印及び破線も、図3と同じ位置における値である。図4において図3と異なるのは、ひずみの向きのみである。 FIG. 4 also shows the result of calculating the vertical strain acting in the direction of peeling the adhesive (thickness direction) at each position in the L direction in the same manner as in FIG. The circles, triangles, and broken lines are values at the same positions as in FIG. 4 differs from FIG. 3 only in the direction of strain.
 以下、図3と図4とを対比して説明する。 Below, explanation will be given by comparing FIG. 3 and FIG.
 図3のせん断ひずみ分布は、図4の垂直ひずみ分布に比べ、板幅方向におけるひずみの差が大部分の領域において小さい。言い換えると、〇印、△印及び破線が近接している領域が広い。 The shear strain distribution in Fig. 3 is smaller than the vertical strain distribution in Fig. 4 in most areas where the difference in strain in the strip width direction is small. In other words, the area where the ◯ mark, the Δ mark and the broken line are close to each other is wide.
 図4の垂直ひずみ分布においては、〇印と△印とは、L方向の中央部においては重なる領域があるが、L方向の両端部においては〇印と△印との差が大きくなっている。また、同じ位置における垂直ひずみである〇印と破線とを比較すると、L方向の両端部においては重なる領域があるが、L方向の中央部においては明瞭な差があることがわかる。 In the vertical strain distribution of FIG. 4, the ◯ mark and the Δ mark have an overlapping region in the central portion in the L direction, but the difference between the ◯ mark and the Δ mark is large at both end portions in the L direction. .. In addition, comparing the ◯ mark, which is the vertical strain at the same position, with the broken line, it can be seen that there is an overlapping region at both ends in the L direction, but there is a clear difference at the center in the L direction.
 DIC法によって計測される値は、板幅側面のひずみ分布であるため、DIC法とG-R理論のように板幅を考慮しないひずみ分布モデルとを組み合わせる場合には、△印と破線とを比較することになる。よって、図4の垂直ひずみ分布の計測値ではなく、図3のせん断ひずみ分布の計測値を用いるほうが、より高精度に弾性特性を同定することが可能となる。 Since the value measured by the DIC method is the strain distribution on the side surface of the plate width, when combining the DIC method and the strain distribution model that does not consider the plate width like GR theory, the triangle mark and the broken line are used. It will be compared. Therefore, it is possible to identify the elastic characteristic with higher accuracy by using the measured value of the shear strain distribution of FIG. 3 instead of the measured value of the vertical strain distribution of FIG.
 また、図3に示す有限要素法に基づくせん断ひずみ分布は、接着剤の厚さ方向中央部のひずみ分布である。本図に示すように、G-R理論(破線)では、ラップ領域の端部が最大値となっている。より実態に近い有限要素法(△印)では、端部ではせん断ひずみが非常に小さくなっている。言い換えると、△印を結んだ曲線は、端部近傍で上に凸となっている。 Also, the shear strain distribution based on the finite element method shown in Fig. 3 is the strain distribution in the center of the adhesive in the thickness direction. As shown in the figure, in the GR theory (broken line), the end of the lap region has the maximum value. In the finite element method (marked with Δ), which is closer to the actual condition, the shear strain is extremely small at the ends. In other words, the curve connecting the triangles is convex upward near the ends.
 この差異は、G-R理論ではラップ領域端部の形状効果による応力の板厚方向の分布を考慮していないことに起因する。したがって、ラップ領域の端部のひずみ計測値は、意図的に除外して、弾性特性の同定を行うことが望ましい。すなわち、ひずみ計測値の除外範囲を設けることにより、弾性特性の同定誤差を小さくすることができる。 This difference is due to the fact that the GR theory does not consider the distribution of stress in the plate thickness direction due to the shape effect at the end of the lap region. Therefore, it is desirable to intentionally exclude the strain measurement value at the end of the lap region to identify the elastic characteristic. That is, by setting the exclusion range of the strain measurement value, the identification error of the elastic characteristic can be reduced.
 本発明者の検討では、ラップ領域全長に対して、両端からそれぞれラップ領域全長の1%以上8%以下をせん断ひずみ分布(計測値)のデータから除外することで、高精度に弾性特性が同定できることが分かっている。すなわち、ひずみ計測値の除外範囲を1%以上8%以下とすることが望ましい。ひずみ計測値の除外範囲は、3%以上7%以下とすることが更に望ましく、4%以上6%以下が特に望ましい。 According to the study by the present inventor, elastic characteristics are identified with high accuracy by excluding 1% or more and 8% or less of the lap region total length from both ends with respect to the lap region total length from the data of shear strain distribution (measured value). I know I can. That is, it is desirable that the exclusion range of the strain measurement value be 1% or more and 8% or less. The exclusion range of the strain measurement value is more preferably 3% or more and 7% or less, and particularly preferably 4% or more and 6% or less.
 本実施例においては、弾性係数の実測値に対する誤差は、ひずみ計測値の除外範囲を1%以上8%以下とした場合、10%以下となる。また、ひずみ計測値の除外範囲を5%とすることにより、最も高精度に弾性特性を同定することができた。 In this example, the error with respect to the measured value of the elastic coefficient is 10% or less when the exclusion range of the strain measurement value is set to 1% or more and 8% or less. Further, by setting the exclusion range of the strain measurement value to 5%, the elastic characteristic could be identified with the highest accuracy.
 図5は、以上の条件を実際に適用したものであって、ひずみ分布計測値に対するひずみ分布モデルの回帰結果の一例を示したものである。図中、●印は、SLJ試験における接着剤のせん断ひずみの計測値であり、実線の曲線は、G-R理論による回帰曲線である。
除外した領域(ひずみ計測値の除外範囲)は、両端からそれぞれラップ領域全長の5%である。
FIG. 5 is a graph in which the above conditions are actually applied, and shows an example of the regression result of the strain distribution model with respect to the strain distribution measured value. In the figure, ● indicates the measured value of the shear strain of the adhesive in the SLJ test, and the solid curve is the regression curve based on the GR theory.
The excluded area (excluded range of the strain measurement value) is 5% of the entire lap area from both ends.
 本図に示すように、適用した領域においては、回帰曲線が各位置における計測値のばらつきの帯の中央部を通るような形状となっている。このことから、適用した領域においては、G-R理論による曲線回帰が望ましいものであることがわかる。この場合において、接着剤の弾性係数の推定精度は、弾性係数の実測値に対する誤差で5%以内であった。 As shown in this figure, in the applied area, the regression curve is shaped so as to pass through the central part of the band of variation in measured values at each position. From this, it can be seen that the curve regression based on the GR theory is desirable in the applied region. In this case, the accuracy of estimating the elastic modulus of the adhesive was within 5% due to the error with respect to the measured value of the elastic modulus.
 1:被着体、2:接着部、3:中心線、5:ひずみ分布。 1: Adherend, 2: Adhesive part, 3: Center line, 5: Strain distribution.

Claims (12)

  1.  被着体同士を接着した状態の接着剤の弾性特性を同定する方法であって、
     接着強度試験を実施し、
     前記接着強度試験における前記接着剤のひずみ分布の計測をし、
     前記ひずみ分布を用いて、前記接着剤の前記弾性特性の算出をする、接着剤の弾性特性の同定方法。
    A method for identifying elastic properties of an adhesive in a state where adherends are adhered to each other,
    Conduct an adhesive strength test,
    Measuring the strain distribution of the adhesive in the adhesive strength test,
    A method for identifying an elastic property of an adhesive, wherein the elastic property of the adhesive is calculated using the strain distribution.
  2.  前記弾性特性の前記算出には、前記接着剤に荷重が作用した状態における前記ひずみ分布を表すモデル式を用い、
     前記弾性特性の前記算出は、前記計測によって得られたひずみ分布計測値に対する前記モデル式の回帰により行う、請求項1記載の接着剤の弾性特性の同定方法。
    In the calculation of the elastic characteristics, using a model formula representing the strain distribution in a state in which a load is applied to the adhesive,
    The method for identifying elastic properties of an adhesive according to claim 1, wherein the calculation of the elastic properties is performed by regression of the model formula with respect to a strain distribution measurement value obtained by the measurement.
  3.  前記接着強度試験は、単重ね継手試験である、請求項2記載の接着剤の弾性特性の同定方法。 The method for identifying elastic properties of an adhesive according to claim 2, wherein the adhesive strength test is a single lap joint test.
  4.  前記モデル式は、前記単重ね継手試験に用いる試験片のラップ領域における引張荷重負荷方向の位置と、前記接着剤に生じるひずみとの関係を表す関数である、請求項3記載の接着剤の弾性特性の同定方法。 The elasticity of the adhesive according to claim 3, wherein the model formula is a function representing the relationship between the position in the tensile load loading direction in the lap region of the test piece used for the single-lap joint test and the strain generated in the adhesive. How to identify characteristics.
  5.  前記ひずみは、せん断ひずみである、請求項4記載の、接着剤の弾性特性の同定方法。 The method for identifying elastic properties of an adhesive according to claim 4, wherein the strain is shear strain.
  6.  前記計測は、画像計測である、請求項1~5のいずれか一項に記載の接着剤の弾性特性の同定方法。 The method for identifying the elastic property of the adhesive according to any one of claims 1 to 5, wherein the measurement is image measurement.
  7.  前記ひずみ分布計測値は、その一部のみを前記弾性特性の前記算出に用いる、請求項2記載の接着剤の弾性特性の同定方法。 The method for identifying elastic properties of an adhesive according to claim 2, wherein only a part of the strain distribution measurement values is used for the calculation of the elastic properties.
  8.  前記回帰は、非線形回帰分析である、請求項2記載の接着剤の弾性特性の同定方法。 The method for identifying elastic properties of an adhesive according to claim 2, wherein the regression is a non-linear regression analysis.
  9.  前記ひずみ分布計測値は、前記計測の領域の両端からそれぞれ所定の長さの範囲を除外して、前記弾性特性の前記算出に用いる、請求項7記載の接着剤の弾性特性の同定方法。 The method for identifying an elastic property of an adhesive according to claim 7, wherein the strain distribution measurement value is used for the calculation of the elastic property by excluding a range of a predetermined length from both ends of the measurement region.
  10.  前記範囲は、前記領域の全長の1%以上8%以下である、請求項9記載の接着剤の弾性特性の同定方法。 The method for identifying elastic properties of an adhesive according to claim 9, wherein the range is 1% or more and 8% or less of the total length of the region.
  11.  前記弾性特性は、弾性係数又はポアソン比である、請求項10記載の接着剤の弾性特性の同定方法。 The method for identifying an elastic property of an adhesive according to claim 10, wherein the elastic property is an elastic coefficient or a Poisson's ratio.
  12.  前記弾性係数の実測値に対する誤差は、10%以下である、請求項11記載の接着剤の弾性特性の同定方法。 The method for identifying elastic characteristics of an adhesive according to claim 11, wherein an error of the elastic coefficient with respect to an actually measured value is 10% or less.
PCT/JP2019/031120 2018-12-27 2019-08-07 Method for identifying elastic characteristics of adhesive WO2020136976A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018244979A JP2020106378A (en) 2018-12-27 2018-12-27 Method of identifying elastic properties of adhesives
JP2018-244979 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020136976A1 true WO2020136976A1 (en) 2020-07-02

Family

ID=71127034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031120 WO2020136976A1 (en) 2018-12-27 2019-08-07 Method for identifying elastic characteristics of adhesive

Country Status (2)

Country Link
JP (1) JP2020106378A (en)
WO (1) WO2020136976A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037962A1 (en) * 2021-09-08 2023-03-16 Jfeスチール株式会社 Method for analyzing behavior of panel component, method for predicting defect in external appearance of automotive panel component, behavior analysis device, and behavior analysis program
KR20240042056A (en) * 2021-09-08 2024-04-01 제이에프이 스틸 가부시키가이샤 Behavior analysis method of panel parts, method for predicting appearance defects of automotive panel parts, behavior analysis device, and behavior analysis program
KR20230040511A (en) 2021-09-16 2023-03-23 주식회사 엘지에너지솔루션 Estimation method of adhesive force between separator and electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304666A (en) * 1999-04-23 2000-11-02 Yokohama Rubber Co Ltd:The Measuring method for distribution of physical property near bonding interface in rubberlike elastic complex
JP2009099132A (en) * 2007-09-28 2009-05-07 Toray Ind Inc Calculating method of adhesive characteristic, calculation device, program and recording medium
WO2011108468A1 (en) * 2010-03-02 2011-09-09 日本電気株式会社 Material constant estimation system and method of estimating material constant
US20140202239A1 (en) * 2013-01-23 2014-07-24 The Boeing Company Bond evaluation using piezochromic fluorescence

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304666A (en) * 1999-04-23 2000-11-02 Yokohama Rubber Co Ltd:The Measuring method for distribution of physical property near bonding interface in rubberlike elastic complex
JP2009099132A (en) * 2007-09-28 2009-05-07 Toray Ind Inc Calculating method of adhesive characteristic, calculation device, program and recording medium
WO2011108468A1 (en) * 2010-03-02 2011-09-09 日本電気株式会社 Material constant estimation system and method of estimating material constant
US20140202239A1 (en) * 2013-01-23 2014-07-24 The Boeing Company Bond evaluation using piezochromic fluorescence

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
24 September 2009 (2009-09-24), pages 43 - 61, Retrieved from the Internet <URL:https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/85394/1/D-Shishido-Nobuyuki.pdf> *

Also Published As

Publication number Publication date
JP2020106378A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
WO2020136976A1 (en) Method for identifying elastic characteristics of adhesive
Sun et al. On fracture characteristics of adhesive joints with dissimilar materials–An experimental study using digital image correlation (DIC) technique
Al-Zubaidy et al. Finite element modelling of CFRP/steel double strap joints subjected to dynamic tensile loadings
Khoshravan et al. Fracture analysis in adhesive composite material/aluminum joints under mode-I loading; experimental and numerical approaches
Alves et al. Experimental and numerical analysis of hybrid adhesively-bonded scarf joints
Katnam et al. Characterisation of moisture-dependent cohesive zone properties for adhesively bonded joints
Demir et al. The fracture load analysis of different support patches in adhesively bonded single-lap joints
Leal et al. Numerical evaluation of the ENF and 4ENF tests for the shear toughness estimation of adhesive joints
Castagnetti et al. Failure analysis of bonded T-peel joints: Efficient modelling by standard finite elements with experimental validation
Alfano et al. On the enhancement of bond toughness for Al/epoxy T-peel joints with laser treated substrates
Bayramoglu et al. Numerical analysis of elasto-plastic adhesively single step lap joints with cohesive zone models and its experimental verification
Russian et al. Effect of surface preparation technique on bond behavior of CFRP-steel double-lap joints: Experimental and numerical studies
De Morais Analysis of the metal adhesively bonded double cantilever beam specimen
JP6350270B2 (en) Fracture prediction method for adhesive joints
Carvalho et al. Adhesively-bonded T-joint cohesive zone analysis using dual-adhesives
Ahmed et al. Experimental and numerical investigation on the bond strength of self-sensing composite joints
Souza et al. Numerical modelling of the mechanical behavior of hybrid joint obtained by spot welding and bonding
Spaggiari et al. Measuring the shear strength of structural adhesives with bonded beams under antisymmetric bending
JP2016148888A (en) Calculation method of adhesive characteristics and calculator
Chikmath et al. Effect of adhesive de-bond and crack in adherent plate on single lap joint with bi-adhesive
Silva et al. Experimental and numerical analysis of scarf aluminum adhesive joints
Kadam Failure criteria for evaluating Strength of Adhesive joints
Harman et al. On the fatigue durability of clad 7075-T6 aluminium alloy bonded joints representative of aircraft repair
Sourisseau Development of a robust methodology for the design assessment of bonded reinforcements on steel structures
Adams et al. Durability of adhesively bonded joints for aircraft structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903662

Country of ref document: EP

Kind code of ref document: A1