JP2016145780A - Measurement device and measurement method thereof - Google Patents

Measurement device and measurement method thereof Download PDF

Info

Publication number
JP2016145780A
JP2016145780A JP2015023565A JP2015023565A JP2016145780A JP 2016145780 A JP2016145780 A JP 2016145780A JP 2015023565 A JP2015023565 A JP 2015023565A JP 2015023565 A JP2015023565 A JP 2015023565A JP 2016145780 A JP2016145780 A JP 2016145780A
Authority
JP
Japan
Prior art keywords
workpiece
mounting table
optical image
convex
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015023565A
Other languages
Japanese (ja)
Other versions
JP6327169B2 (en
Inventor
伊藤 毅
Takeshi Ito
毅 伊藤
輝之 鳥居
Teruyuki Torii
輝之 鳥居
小菅 健彦
Takehiko Kosuge
健彦 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Optex FA Co Ltd
Original Assignee
Toyota Auto Body Co Ltd
Optex FA Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd, Optex FA Co Ltd filed Critical Toyota Auto Body Co Ltd
Priority to JP2015023565A priority Critical patent/JP6327169B2/en
Publication of JP2016145780A publication Critical patent/JP2016145780A/en
Application granted granted Critical
Publication of JP6327169B2 publication Critical patent/JP6327169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measurement device and a measurement method thereof capable of reducing wear of a placing table on which a workpiece having recesses and projections formed on a surface thereof is put and accurately measuring positions of the recesses or the projections on the workpiece.SOLUTION: A measurement device 10 is provided with: a placing table 1 on which a workpiece W having recesses and projections formed on a surface thereof is put; a projector 2 that projects linear light on the surface of the workpiece; a camera 3 that images, at a predetermined timing, an optical image 21 formed on the workpiece by the light projected from the projector; a movement mechanism 4 that moves the placing table on a planer surface such that the optical image is formed in a measurement region WZ of the workpiece; and an arithmetic control device 5 that calculates positional data of recessed parts W2 or projected parts W3 with respect to an end part W1 of the workpiece from image data of the optical image imaged by the camera and an amount of movement of the placing table by the movement mechanism. An upper surface of the placing table includes a recessed groove 11 formed in a range, within the measurement region, corresponding to the end part of the workpiece positioned on the placing table.SELECTED DRAWING: Figure 1

Description

本発明は、ワークの表面に形成された凹凸形状を計測する計測装置及びその計測方法に関し、特に、表面に凹凸形状が形成されたワークにおける凹部又は凸部の位置(平面的な配置関係、ピッチ又は位相ずれ量ともいう)を計測する計測装置及びその計測方法に関する。   The present invention relates to a measuring apparatus and a measuring method for measuring a concavo-convex shape formed on a surface of a workpiece, and in particular, a position of a concave portion or a convex portion (planar arrangement relationship, pitch) in a workpiece having a concavo-convex shape formed on the surface. The present invention also relates to a measuring apparatus and a measuring method thereof.

例えば、表面に少なくとも二つの凹部又は凸部が形成された凹凸部材の該凹部又は該凸部の形状を計測する凹凸形状計測装置及び凹凸形状計測方法が、特許文献1に開示されている。斯かる凹凸形状計測装置100には、図8に示すように、表面に凹部又は凸部を有する凹凸部材101を載置する載置台102と、凹凸部材101の表面に対して45度の角度をもってライン状のレーザ光を照射するレーザ投光器103と、レーザ光の照射された凹凸部材101を撮影するカメラ104と、このカメラにより撮影されるタイミングを制御する撮影タイミング制御装置105と、装置全体をコントロールするとともにカメラ104により撮影された画像と載置台102の位置に基づいて凹凸部材101の凹部の深さや凸部の高さを計算するマイクロコンピュータ106とを備えている。   For example, Patent Document 1 discloses a concavo-convex shape measuring apparatus and a concavo-convex shape measuring method for measuring the shape of the concavo-convex member or the convex portion of the concavo-convex member having at least two concave portions or convex portions formed on the surface. In such a concavo-convex shape measuring apparatus 100, as shown in FIG. 8, a mounting table 102 on which a concavo-convex member 101 having a concave portion or a convex portion on the surface is placed, and an angle of 45 degrees with respect to the surface of the concavo-convex member 101. A laser projector 103 that irradiates a line-shaped laser beam, a camera 104 that shoots the concavo-convex member 101 irradiated with the laser beam, an imaging timing control device 105 that controls the timing of imaging by this camera, and the entire device are controlled. In addition, a microcomputer 106 that calculates the depth of the concave portion and the height of the convex portion of the concavo-convex member 101 based on the image taken by the camera 104 and the position of the mounting table 102 is provided.

また、上記凹凸形状計測装置100を使用して、例えば、凸部の高さを計測する場合、以下の計測方法で行う。すなわち、載置台102に載置された凹凸部材101の隣接する二つの凸部の中心線上として設定された第1所定位置にレーザ投光器103からのライン状のレーザ光が45度の角度をもって照射されるよう載置台102の移動機構102aを調節し、カメラ104により第1照射画像として撮影する。その後、隣接する二つの凸部の間において第1所定位置の延長線上となる第2所定位置にライン状のレーザ光が照射されるよう移動機構102aを調節し、カメラ104により第2照射画像として撮影する。第1照射画像における第1所定位置とレーザ光とのズレ量と第2照射画像における第2所定位置とレーザ光とのズレ量を演算し、第1所定位置から第2所定位置の移動量に演算したズレ量を加算(補正)して凸部の高さとする。
以上のように、上記凹凸形状計測装置100及びその計測方法によれば、ライン状のレーザ光を用いた光切断法に基づいて、複数の凸部が表面に形成された凹凸部材101の凸部の高さを、精度よく計測することができる。
Moreover, when measuring the height of a convex part using the said uneven | corrugated shape measuring apparatus 100, for example, it carries out with the following measuring methods. That is, the linear laser beam from the laser projector 103 is irradiated at an angle of 45 degrees to the first predetermined position set as the center line of the two adjacent convex portions of the concave-convex member 101 mounted on the mounting table 102. The moving mechanism 102 a of the mounting table 102 is adjusted so that the camera 104 captures a first irradiation image. After that, the moving mechanism 102a is adjusted so that the line-shaped laser beam is irradiated to the second predetermined position that is on the extension line of the first predetermined position between two adjacent convex portions, and the camera 104 generates a second irradiation image. Take a picture. A deviation amount between the first predetermined position and the laser beam in the first irradiation image and a deviation amount between the second predetermined position and the laser beam in the second irradiation image are calculated, and the amount of movement from the first predetermined position to the second predetermined position is calculated. The calculated deviation amount is added (corrected) to obtain the height of the convex portion.
As described above, according to the concavo-convex shape measuring apparatus 100 and the measurement method thereof, the concavo-convex part of the concavo-convex member 101 having a plurality of bulges formed on the surface based on an optical cutting method using a line-shaped laser beam. Can be accurately measured.

特開2001−249011号公報JP 2001-249011 A

しかしながら、特許文献1に記載された凹凸形状計測装置及び凹凸形状計測方法には、以下の問題があった。
すなわち、ライン状のレーザ光を用いた光切断法に基づいて、表面に凹凸形状が形成されたワークにおける凹部又は凸部の位置(平面的な配置関係)を計測する場合、計測する凹部又は凸部の位置を、ワークの所定位置(例えば、ワークの端部)を基準にして特定する必要がある。そのため、予め、基準となる、例えば、ワークの端部の位置を計測した上で、ワークの端部(基準位置)との関係で凹部又は凸部の位置を計測することになる。
However, the uneven shape measuring apparatus and the uneven shape measuring method described in Patent Document 1 have the following problems.
That is, when measuring the position (planar arrangement relationship) of the recesses or protrusions on a workpiece having an uneven surface formed on the surface based on an optical cutting method using a line-shaped laser beam, the recesses or protrusions to be measured are measured. The position of the part needs to be specified with reference to a predetermined position of the workpiece (for example, an end portion of the workpiece). Therefore, for example, after measuring the position of the end portion of the workpiece, which is a reference, the position of the concave portion or the convex portion is measured in relation to the end portion (reference position) of the workpiece.

ところが、表面に凹凸形状が形成されたワークを計測装置の載置台に繰り返しセットすると、ワークの端部が当接する載置台の当接面が、端部のエッジによって傷付いて線状に摩耗していく。特に、ワークの端部がプレス切断された場合には、端部のエッジがシャープとなり、載置台の当接面が摩耗しやすくなる。そして、摩耗した載置台の当接面にレーザ光が当たると、光の乱反射が発生するので、ワークの端部を正確に計測することができず、ワークの端部の位置を誤判定する恐れがあった。
そのため、ワークの端部の位置を基準にして、凹部又は凸部の位置を正確に計測することができないという問題があった。これを回避するため、載置台の摩耗が進行する前に交換する方法もあるが、コスト増となって好ましくない。
However, when a workpiece with an uneven surface is repeatedly set on the mounting table of the measuring device, the contact surface of the mounting table that contacts the end of the workpiece is damaged by the edge of the end and wears linearly. To go. In particular, when the end portion of the workpiece is press-cut, the edge of the end portion becomes sharp and the contact surface of the mounting table is easily worn. If the laser beam hits the contact surface of the worn mounting table, irregular reflection of the light occurs, so that the end of the workpiece cannot be accurately measured, and the position of the end of the workpiece may be erroneously determined. was there.
Therefore, there has been a problem that the position of the concave portion or the convex portion cannot be accurately measured with reference to the position of the end portion of the workpiece. In order to avoid this, there is a method of replacing the mounting table before the wear progresses, but this is not preferable because of an increase in cost.

本発明は、上記問題点を解決するためになされたものであり、表面に凹凸形状が形成されたワークを載置する載置台の摩耗を低減して、ワークにおける凹部又は凸部の位置(平面的な配置関係)を正確に計測できる計測装置及びその計測方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and reduces the wear of a mounting table on which a workpiece having a concavo-convex shape formed on the surface is reduced. It is an object of the present invention to provide a measuring apparatus and a measuring method thereof capable of accurately measuring a general arrangement relationship).

上記課題を解決するために、本発明に係る計測装置及びその計測方法は、次のような構成を有している。
(1)表面に凹凸形状が形成されたワークを上面に載置する載置台と、前記ワークの表面にライン状の光を投光する投光器と、前記投光器から投光された光によって前記ワーク上に形成された光画像を所定のタイミングで撮影するカメラと、前記光画像を前記ワークの計測領域に形成すべく前記載置台を上面と平行に移動させる移動機構と、前記カメラが撮影する光画像の画像データと前記移動機構による前記載置台の移動量とから前記ワークの端部に対する凹部又は凸部の位置データを演算する演算制御装置とを備えた計測装置であって、
前記載置台の上面には、前記計測領域の内、前記載置台に位置決めされた前記ワークの端部に対応する範囲に凹溝を形成したことを特徴とする。
In order to solve the above problems, a measuring apparatus and a measuring method thereof according to the present invention have the following configuration.
(1) A mounting table for placing a workpiece having a concavo-convex shape on the surface on the upper surface, a projector for projecting a line-shaped light onto the surface of the workpiece, and a light projected from the projector on the workpiece. A camera that captures the optical image formed at a predetermined timing, a moving mechanism that moves the mounting table parallel to the upper surface to form the optical image in the measurement area of the workpiece, and an optical image that the camera captures A calculation device including an arithmetic control device that calculates the position data of the concave portion or the convex portion with respect to the end portion of the workpiece from the image data and the amount of movement of the mounting table by the moving mechanism,
A concave groove is formed in the upper surface of the mounting table in a range corresponding to the end portion of the workpiece positioned on the mounting table in the measurement area.

本発明においては、載置台の上面には、計測領域の内、ワークの端部に対応する範囲に凹溝を形成したので、表面に凹凸形状が形成されたワークを本計測装置の載置台に繰り返しセットしても、ワークの計測領域内において、ワークの端部に対応する範囲で載置台の上面が摩耗していくことはない。そのため、投光器からワークの端部に投光されるライン状の光が載置台の上面によって乱反射する恐れが無く、カメラがワークWの端部に形成された光画像を明確に撮影することができる。そして、演算制御装置は、その光画像の画像データに基づき、ワークの端部の位置データを測定基準として正確に演算(決定)することができる。その結果、本計測装置は、ワークの端部を基準に、ワークにおける凹部又は凸部の位置(平面的な配置関係)を正確に計測できる。
よって、本発明によれば、表面に凹凸形状が形成されたワークを載置する載置台の摩耗を低減して、ワークにおける凹部又は凸部の位置(平面的な配置関係)を正確に計測できる計測装置を提供することができる。
In the present invention, since a concave groove is formed on the upper surface of the mounting table in a range corresponding to the end of the workpiece in the measurement area, a workpiece having a concavo-convex shape formed on the surface is used as the mounting table of the measuring device. Even if it is set repeatedly, the upper surface of the mounting table does not wear out in the range corresponding to the end of the work within the work measurement area. Therefore, there is no fear that the line-shaped light projected from the projector to the end of the work is irregularly reflected by the upper surface of the mounting table, and the camera can clearly take a light image formed on the end of the work W. . Then, the arithmetic control device can accurately calculate (determine) the position data of the end portion of the workpiece based on the image data of the optical image as a measurement reference. As a result, the measurement apparatus can accurately measure the position (planar arrangement relationship) of the concave portion or the convex portion in the workpiece with reference to the end portion of the workpiece.
Therefore, according to the present invention, it is possible to reduce the wear of a mounting table on which a workpiece having a concavo-convex shape is formed on the surface, and to accurately measure the position (planar arrangement relationship) of the concave portion or the convex portion on the workpiece. A measuring device can be provided.

(2)(1)に記載された計測装置において、
前記載置台の上面に載置された前記ワークを押圧するワーク押え板を備え、前記ワーク押え板には、前記計測領域の外周縁を包囲した貫通孔を形成したことを特徴とする。
(2) In the measuring device described in (1),
A workpiece pressing plate that presses the workpiece placed on the upper surface of the mounting table is provided, and the workpiece pressing plate is formed with a through hole that surrounds the outer peripheral edge of the measurement region.

本発明においては、載置台の上面に載置されたワークを押圧するワーク押え板を備えたので、ワークのそりを矯正して計測することができる。また、ワーク押え板には、計測領域の外周縁を包囲した貫通孔を形成したので、投光器は、ワーク押え板に遮られることなく、矯正されたワークの計測領域に光画像を正確に形成することができる。
その結果、ワークにおける凹部又は凸部の位置(平面的な配置関係)をより一層正確に計測できる。
In the present invention, since the work pressing plate that presses the work placed on the upper surface of the placing table is provided, the warpage of the work can be corrected and measured. Further, since the work holding plate is formed with a through hole surrounding the outer peripheral edge of the measurement area, the projector accurately forms an optical image in the corrected measurement area of the work without being blocked by the work holding plate. be able to.
As a result, the position (planar arrangement relationship) of the concave portion or the convex portion on the workpiece can be measured more accurately.

(3)(2)に記載された計測装置において、
前記載置台の上面には、黒塗り加工を施し、前記ワーク押え板は、透明な板材によって形成したことを特徴とする。
(3) In the measuring device described in (2),
The upper surface of the mounting table is black-coated, and the work pressing plate is formed of a transparent plate material.

本発明においては、載置台の上面には、黒塗り加工を施し、ワーク押え板は、透明な板材によって形成したので、載置台に対する各種光の反射を低減するとともに、載置台とワーク押え板との間に挟まれてセットされたワークが、載置台における正規の位置にセットされているか否かを、目視によって簡単に確認することができる。
その結果、ワークのセットずれを防止して、ワークにおける凹部又は凸部の位置(平面的な配置関係)を更に一層正確に計測できる。
In the present invention, the upper surface of the mounting table is blackened, and the work pressing plate is formed of a transparent plate material, so that the reflection of various lights with respect to the mounting table is reduced, and the mounting table, the work pressing plate, It can be easily confirmed visually whether or not the work set between the two is set at a proper position on the mounting table.
As a result, the set deviation of the workpiece can be prevented, and the position (planar arrangement relationship) of the concave portion or the convex portion on the workpiece can be measured even more accurately.

(4)(1)乃至(3)のいずれか1つに記載された計測装置を使用して、表面に凹凸形状が形成されたワークにおける凹部又は凸部の位置を計測する計測方法であって、
前記載置台の上面に載置された前記ワークの端部上に形成された前記光画像を前記カメラが撮影し、前記演算制御装置は、当該光画像の画像データに基づいて、前記ワークの端部の位置データを測定基準として演算することを特徴とする。
(4) A measurement method for measuring a position of a concave portion or a convex portion in a workpiece having a concavo-convex shape formed on a surface using the measuring device described in any one of (1) to (3). ,
The camera captures the optical image formed on the end portion of the workpiece placed on the upper surface of the mounting table, and the arithmetic and control unit is configured to end the workpiece based on image data of the optical image. The position data of the part is calculated as a measurement reference.

本発明においては、載置台の上面に載置されたワークの端部上に形成された光画像をカメラが撮影するが、載置台の上面にはワークの端部に対応する範囲に凹溝が形成されているので、投光器からワークの端部に投光されるライン状の光が載置台の上面によって乱反射する恐れが無く、カメラがワークの端部に形成された光画像を明確に撮影することができる。また、演算制御装置は、当該光画像の画像データに基づいて、ワークの端部の位置データを測定基準として演算するので、明確な光画像の画像データに基づいて、ワークの端部の位置データを誤認することなく正確に演算(決定)することができる。その結果、本計測装方法によれば、ワークの端部の位置を基準にして、ワークにおける凹部又は凸部の位置を正確に計測することができる。
よって、本発明によれば、表面に凹凸形状が形成されたワークを載置する載置台の摩耗を低減して、ワークにおける凹部又は凸部の位置(平面的な配置関係)を正確に計測できる計測方法を提供することができる。
In the present invention, the camera captures an optical image formed on the end of the workpiece placed on the upper surface of the mounting table, but the upper surface of the mounting table has a groove in a range corresponding to the end of the workpiece. Since it is formed, there is no risk that the line-shaped light projected from the projector to the end of the work will be irregularly reflected by the upper surface of the mounting table, and the camera clearly captures the light image formed at the end of the work. be able to. Further, since the calculation control device calculates the position data of the end portion of the workpiece based on the image data of the optical image as a measurement reference, the position data of the end portion of the workpiece is calculated based on the clear image data of the optical image. Can be accurately calculated (determined) without misunderstanding. As a result, according to this measurement device method, the position of the concave portion or the convex portion of the workpiece can be accurately measured with reference to the position of the end portion of the workpiece.
Therefore, according to the present invention, it is possible to reduce the wear of a mounting table on which a workpiece having a concavo-convex shape is formed on the surface, and to accurately measure the position (planar arrangement relationship) of the concave portion or the convex portion on the workpiece. A measurement method can be provided.

(5)(4)に記載された計測方法において、
前記カメラは、前記ワークにおける同一の凹部又は凸部に形成された複数の光画像を撮影し、前記演算制御装置は、当該光画像における複数の画像データから凹部又は凸部の平面形状を決定して当該平面形状の重心位置を演算することを特徴とする。
(5) In the measurement method described in (4),
The camera captures a plurality of optical images formed in the same concave portion or convex portion of the workpiece, and the arithmetic control device determines a planar shape of the concave portion or convex portion from the plurality of image data in the optical image. Then, the center of gravity position of the planar shape is calculated.

本発明においては、カメラは、ワークにおける同一の凹部又は凸部に形成された複数の光画像を撮影し、前記演算制御装置は、当該光画像における複数の画像データから凹部又は凸部の平面形状を特定して当該平面形状の重心位置を演算するので、ワークにおける凹部又は凸部の位置の誤判定を防止することができる。
その結果、本計測方法によれば、誤判定を防止しつつ、ワークにおける凹部又は凸部の位置(平面的な配置関係)を正確に計測できる。
In the present invention, the camera captures a plurality of optical images formed in the same concave portion or convex portion of the workpiece, and the arithmetic and control unit calculates the planar shape of the concave portion or convex portion from the plurality of image data in the optical image. Since the center of gravity of the planar shape is calculated and the position of the concave portion or the convex portion in the work is erroneously determined.
As a result, according to this measurement method, it is possible to accurately measure the position (planar arrangement relationship) of the concave portion or the convex portion in the workpiece while preventing erroneous determination.

本発明によれば、表面に凹凸形状が形成されたワークを載置する載置台の摩耗を低減して、ワークにおける凹部又は凸部の位置(平面的な配置関係)を正確に計測できる計測装置及びその計測方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the measuring device which reduces the abrasion of the mounting base which mounts the workpiece | work with which uneven | corrugated shape was formed in the surface, and can measure correctly the position (planar arrangement relationship) of the recessed part or convex part in a workpiece | work. And a measuring method thereof.

本発明の実施形態に係る計測装置の模式的斜視図である。It is a typical perspective view of the measuring device concerning the embodiment of the present invention. 図1に示す載置台にワークをセットした状態における平面図である。It is a top view in the state which set the work to the mounting base shown in FIG. 図2に示すA−A断面図である。It is AA sectional drawing shown in FIG. 図2に示すA−A断面からワーク押え板を除いた状態の断面図である。It is sectional drawing of the state which remove | excluded the work holding plate from the AA cross section shown in FIG. 図2に示すワークの計測領域における凸部の位置を計測する場合の説明図である。It is explanatory drawing in the case of measuring the position of the convex part in the measurement area | region of the workpiece | work shown in FIG. 図5に示す凸部の重心位置を決定する説明図である。It is explanatory drawing which determines the gravity center position of the convex part shown in FIG. 本発明の他の実施形態に係る計測方法のフローチャート図である。It is a flowchart figure of the measuring method which concerns on other embodiment of this invention. 特許文献1に記載された凹凸形状計測装置の概略構成図である。It is a schematic block diagram of the uneven | corrugated shape measuring apparatus described in patent document 1. FIG.

次に、本発明に係る実施形態である計測装置及びその計測方法について、図面を参照して詳細に説明する。はじめに、本実施形態に係る計測装置の全体構造を説明し、その後、本計測装置を使用して、表面に凹凸形状が形成されたワークの凹部又は凸部の位置を計測する計測方法について、詳細に説明する。   Next, a measuring device and a measuring method thereof according to an embodiment of the present invention will be described in detail with reference to the drawings. First, the overall structure of the measurement apparatus according to the present embodiment will be described, and then the measurement method for measuring the position of the concave portion or convex portion of the workpiece having a concavo-convex shape formed on the surface using the measurement device will be described in detail. Explained.

<計測装置の全体構造>
まず、本実施形態に係る計測装置の全体構造を、図1〜図4を用いて説明する。図1に、本発明の実施形態に係る計測装置の模式的斜視図を示す。図2に、図1に示す載置台にワークをセットした状態における平面図を示す。図3に、図2に示すA−A断面図を示す。図4に、図2に示すA−A断面からワーク押え板を除いた状態の断面図を示す。
<Overall structure of measuring device>
First, the overall structure of the measuring apparatus according to the present embodiment will be described with reference to FIGS. In FIG. 1, the typical perspective view of the measuring device which concerns on embodiment of this invention is shown. FIG. 2 shows a plan view of a work set on the mounting table shown in FIG. FIG. 3 is a cross-sectional view taken along the line AA shown in FIG. FIG. 4 is a cross-sectional view showing a state in which the work pressing plate is removed from the AA cross section shown in FIG.

図1〜図4に示すように、本実施形態に係る計測装置10は、表面に凹凸形状が形成されたワークWを載置する載置台1と、ワークWの表面にライン状の光を投光する投光器2と、投光器2から投光された光によってワーク上に形成された光画像21を所定のタイミングで撮影するカメラ3と、光画像21をワークWの計測領域WZに形成すべく載置台1を平面上で移動させる移動機構4と、カメラ3が撮影する光画像21の形状データと移動機構4による載置台1の移動量とからワークWの端部W1に対する凹部W2又は凸部W3の位置データを演算する演算制御装置5と、載置台1の上面に載置されたワークWを押圧するワーク押え板6とを備えている。ここで、ワークWには、例えば、表面に微細な凹凸形状が規則的に形成されている矩形状金属シートが含まれる。このワークWの端部W1は、プレス切断によって形成されている。   As shown in FIGS. 1 to 4, the measuring apparatus 10 according to the present embodiment projects a line-shaped light onto the mounting table 1 on which the work W having a concavo-convex shape formed on the surface is placed, and the surface of the work W. Mounted to form a light projector 2, a camera 3 that captures a light image 21 formed on the workpiece by light projected from the projector 2 at a predetermined timing, and a light image 21 in the measurement area WZ of the workpiece W. The moving mechanism 4 for moving the mounting table 1 on a plane, the shape data of the optical image 21 taken by the camera 3 and the amount of movement of the mounting table 1 by the moving mechanism 4, the concave portion W2 or the convex portion W3 with respect to the end W1 of the workpiece W. Are provided with a calculation control device 5 for calculating the position data and a workpiece pressing plate 6 for pressing the workpiece W mounted on the upper surface of the mounting table 1. Here, the workpiece W includes, for example, a rectangular metal sheet in which fine irregularities are regularly formed on the surface. The end W1 of the workpiece W is formed by press cutting.

載置台1は、平面視で略矩形状に形成され、上面にワークWを位置決め可能に載置するテーブル台である。載置台1の左右中央部には、カメラ3が撮影する矩形状の計測領域WZが、送り方向(矢印Fの方向)に沿って載置台1の前端近傍から後端近傍まで帯状に形成されている。帯状に形成された計測領域WZの内、前端側に位置するワークWの端部W1に対応する範囲には、平面視で略矩形状の凹溝11が形成されている。凹溝11は、載置台1の上面に対して一定の深さ(約1〜2mm程度)で形成され、ワークWの端部W1の位置より前方から、ワークWの端部W1の位置より後方まで形成されている。なお、凹溝11の大きさ及び深さは、薄いシート状のワークWが載置台1に載置するときに多少撓んでも、ワークWの端部W1が凹溝11の底面に当接しない程度に形成されている。   The mounting table 1 is a table table that is formed in a substantially rectangular shape in plan view and on which the workpiece W is mounted so as to be positioned. A rectangular measurement area WZ photographed by the camera 3 is formed in a band shape from the vicinity of the front end of the mounting table 1 to the vicinity of the rear end along the feeding direction (the direction of arrow F) at the left and right central portions of the mounting table 1. Yes. A substantially rectangular concave groove 11 is formed in a plan view in a range corresponding to the end W1 of the workpiece W located on the front end side in the measurement area WZ formed in a band shape. The concave groove 11 is formed with a certain depth (about 1 to 2 mm) with respect to the upper surface of the mounting table 1, from the front of the end W1 of the workpiece W to the rear of the end W1 of the workpiece W. Is formed. The size and depth of the groove 11 is such that the end W1 of the work W does not contact the bottom surface of the groove 11 even if the thin sheet-like work W is bent slightly when the work is placed on the mounting table 1. It is formed to the extent.

また、載置台1の上面には、直交する二辺の端縁に沿って、ワークWの端部W1と当接する位置決めブロック12、12、13が突設されている。載置台1の送り方向の前端には、測定基準となるワークWの端部W1が当接する位置決めブロック12、12が、左右対称に配置されている。左右の位置決めブロック12、12に挟まれた中間突出部16は、ワークWを載置する面と同一面上に形成されている。   In addition, positioning blocks 12, 12, and 13 are provided on the upper surface of the mounting table 1 so as to be in contact with the end portion W <b> 1 of the workpiece W along two orthogonal edges. At the front end of the mounting table 1 in the feed direction, positioning blocks 12, 12 with which the end W1 of the workpiece W serving as a measurement reference abuts are arranged symmetrically. The intermediate protrusion 16 sandwiched between the left and right positioning blocks 12 and 12 is formed on the same surface as the surface on which the workpiece W is placed.

また、載置台1の下面には、移動機構4に取り付けるための基準孔14と締付ネジ15が適宜形成されている。また、載置台1の上面(凹溝11を含む)には、耐摩耗性能に優れた黒塗り加工が施されている。さらに、載置台1の作業者側(左側端)には、ワークWをセットし、ワーク押え板6を操作するための円弧状の切欠17が形成されている。   Further, a reference hole 14 and a fastening screw 15 for attaching to the moving mechanism 4 are appropriately formed on the lower surface of the mounting table 1. Further, the upper surface (including the concave groove 11) of the mounting table 1 is subjected to a black coating process having excellent wear resistance. Further, an arcuate notch 17 for setting the workpiece W and operating the workpiece pressing plate 6 is formed on the operator side (left end) of the mounting table 1.

投光器2は、載置台1に向けてスリット状のレーザ光を下方へ略垂直に投光するレーザ投光器であって、計測装置10の本体部(図示しない)に固定されている。投光器2は、レーザ光をワーク上に投光したときに形成される光画像21が、前端側に位置するワークWの端部W1と平行に形成されるように、固定されている。投光器2から投光するレーザ光のスリット長さは、ワークWに形成された複数の凹部W2又は凸部W3に同時にレーザ光を投光できる程度の長さに形成されている。また、同レーザ光のスリット幅は、一つの凹部W2又は凸部W3に複数のレーザ光を離間して投光できる程度の幅に設定されている。   The projector 2 is a laser projector that projects a slit-shaped laser beam downward substantially vertically toward the mounting table 1, and is fixed to a main body (not shown) of the measuring device 10. The projector 2 is fixed so that the optical image 21 formed when the laser beam is projected onto the workpiece is formed in parallel with the end W1 of the workpiece W located on the front end side. The slit length of the laser light projected from the projector 2 is formed to such a length that the laser light can be projected simultaneously onto the plurality of concave portions W2 or convex portions W3 formed on the workpiece W. Further, the slit width of the laser beam is set to a width that allows a plurality of laser beams to be separated and projected to one concave portion W2 or convex portion W3.

カメラ3は、複数の画素センサを二次元的に配置し、撮影した光画像21の形状データを出力することができる機能を有するCCDカメラである。また、カメラ3は、投光器2の前方に位置し、投光器2からのレーザ光によってワーク上に形成された光画像21を、投光器2の投光方向に対して所定の傾斜角を持って撮影できるように、計測装置10の本体部に固定されている。カメラ3の撮影範囲31は、略矩形状の形成され、光画像21を送り方向中央部に配置するように設定されている。   The camera 3 is a CCD camera having a function of two-dimensionally arranging a plurality of pixel sensors and outputting shape data of the photographed optical image 21. In addition, the camera 3 is located in front of the projector 2, and can photograph the optical image 21 formed on the workpiece by the laser light from the projector 2 with a predetermined inclination angle with respect to the projection direction of the projector 2. As described above, the measurement device 10 is fixed to the main body. The shooting range 31 of the camera 3 is formed in a substantially rectangular shape, and is set so that the optical image 21 is arranged at the center in the feed direction.

移動機構4は、載置台1を位置決め固定して送り方向へ所定の速度で移動させる駆動機構である。移動機構4には、例えば、スライドテーブルをボールねじで直線的に駆動させる電動ねじ機構等を備えている。また、移動機構4には、位置センサを備え、原位置及び原位置からの移動量を出力することができる。   The moving mechanism 4 is a drive mechanism that positions and fixes the mounting table 1 and moves it in the feeding direction at a predetermined speed. The moving mechanism 4 includes, for example, an electric screw mechanism that linearly drives the slide table with a ball screw. The moving mechanism 4 includes a position sensor, and can output the original position and the movement amount from the original position.

演算制御装置5は、投光器2とカメラ3と移動機構4とを操作する操作制御部51と、カメラ3が撮影する光画像21の形状データと移動機構4が載置台1を移動させる移動量データとを記憶する記憶部52と、光画像21の形状データと載置台1の移動量データとに基づいてワークWの端部W1の位置データを測定基準として演算し、ワークWの凹部W2又は凸部W3の平面形状を特定して当該平面形状の重心位置W30を演算する演算部53とを備え、投光器2とカメラ3と移動機構4とに電気的に接続されている。   The arithmetic and control unit 5 includes an operation control unit 51 for operating the projector 2, the camera 3, and the moving mechanism 4, shape data of the optical image 21 photographed by the camera 3, and movement amount data for the moving mechanism 4 to move the mounting table 1. Is calculated using the position data of the end W1 of the workpiece W as a measurement reference based on the shape data of the optical image 21 and the movement amount data of the mounting table 1, and the concave portion W2 or the convex of the workpiece W is calculated. A calculation unit 53 that specifies the planar shape of the part W3 and calculates the gravity center position W30 of the planar shape is provided, and is electrically connected to the projector 2, the camera 3, and the moving mechanism 4.

ワーク押え板6は、平面視で略矩形状に形成され、載置台1の大きさと略同程度に形成された透明な板状体である。ワーク押え板6には、前述した計測領域WZの外周縁を包囲した矩形状の貫通孔61が、送り方向(矢印Fの方向)に沿って帯状に形成されている。ワーク押え板6の前端側には、貫通孔前端を繋ぐ連結部62が形成されている。ワーク押え板6は、作業者が保持して載置台1にセットする。その際、ワーク押え板6の前端と右側端とを、載置台1に突設された位置決めブロック12、12、13に当接して、ワーク押え板6と載置台1との相対位置を決定する。   The work pressing plate 6 is a transparent plate-like body that is formed in a substantially rectangular shape in plan view and is formed to be approximately the same size as the mounting table 1. The work pressing plate 6 is formed with a rectangular through hole 61 surrounding the outer peripheral edge of the measurement region WZ described above in a strip shape along the feeding direction (direction of arrow F). A connecting portion 62 that connects the front end of the through hole is formed on the front end side of the work pressing plate 6. The work holding plate 6 is held by an operator and set on the mounting table 1. At that time, the front end and the right end of the work pressing plate 6 are brought into contact with the positioning blocks 12, 12, 13 protruding from the mounting table 1, and the relative position between the work pressing plate 6 and the mounting table 1 is determined. .

<ワークの凹部又は凸部の位置を計測する計測方法>
次に、本計測装置10を使用して、表面に凹凸形状が形成されたワークWの凹部W2又は凸部W3の位置を計測する計測方法について、図5〜図7を用いて説明する。ここでは、ワークWの凸部W3の位置を、端部W1の位置を基準に計測する場合について説明する。図5に、図2に示すワークの計測領域における凸部の位置を計測する場合の説明図を示す。図6に、図5に示す凸部の重心位置を決定する説明図を示す。図7に、本発明の他の実施形態に係る計測方法のフローチャート図を示す。
<Measurement method for measuring the position of the concave or convex part of the workpiece>
Next, a measurement method for measuring the position of the concave portion W2 or the convex portion W3 of the workpiece W having a concavo-convex shape formed on the surface using the measurement apparatus 10 will be described with reference to FIGS. Here, the case where the position of the convex part W3 of the workpiece | work W is measured on the basis of the position of the edge part W1 is demonstrated. FIG. 5 is an explanatory diagram for measuring the position of the convex portion in the workpiece measurement region shown in FIG. FIG. 6 is an explanatory diagram for determining the position of the center of gravity of the convex portion shown in FIG. FIG. 7 shows a flowchart of a measurement method according to another embodiment of the present invention.

図5、図6に示すように、ワークWの表面には、複数の凸部W3が行列を形成するように配置されている。各凸部W3の行列n1、n2、n3は、ワークWの端部W1と平行に形成され、各行列の間隔(凸部の縦ピッチ)L1、L2は略一定である。ワークWの端部W1と第1列目n1との間隔L0は、プレス切断の都合上、各行列の間隔(凸部の縦ピッチ)L1、L2より大きく形成されている。一の行列に形成された複数の凸部W3は、送り方向(矢印Fの方向)に対して直交する方向に所定の間隔(凸部の横ピッチ)R0で配置されている。また、送り方向で隣接する凸部W3の行列は、凸部W3の位相m1、m2、m3が送り方向に対して直交する方向に互いにずれて形成され、その位相のずれ量R1、R2は略一定である。   As shown in FIGS. 5 and 6, a plurality of convex portions W <b> 3 are arranged on the surface of the workpiece W so as to form a matrix. The matrices n1, n2, and n3 of each convex portion W3 are formed in parallel with the end portion W1 of the workpiece W, and the intervals (vertical pitches of the convex portions) L1 and L2 of each matrix are substantially constant. The interval L0 between the end W1 of the workpiece W and the first row n1 is formed larger than the intervals (vertical pitches of the convex portions) L1 and L2 of each matrix for the convenience of press cutting. The plurality of convex portions W3 formed in one matrix are arranged at a predetermined interval (lateral pitch of the convex portions) R0 in a direction orthogonal to the feed direction (the direction of the arrow F). Further, the matrix of the convex portions W3 adjacent in the feed direction is formed such that the phases m1, m2, and m3 of the convex portion W3 are shifted from each other in the direction orthogonal to the feed direction, and the phase shift amounts R1 and R2 are substantially equal. It is constant.

また、各凸部W3は、ワーク表面から略三角錐台状に上方へ突出して形成されている。各凸部W3の上端部W3Aには、略三角形状の平坦面が形成されている。各凸部W3の上端部W3Aと基端部W3Bとの間には、傾斜部W3Cが形成されている。ただし、ワークWの端部W1に対向して形成された傾斜部には、ワークWの表裏を連通する連通孔W3Dが形成されている。
なお、送り方向(矢印Fの方向)に対して直交する方向に隣接する凸部W3の間には、凸部W3と反対方向へ突出する凹部W2が形成されているが、図5、図6では、煩雑となるので、凹部W2が省略されている。
Each convex portion W3 is formed so as to protrude upward in a substantially triangular frustum shape from the workpiece surface. A substantially triangular flat surface is formed on the upper end W3A of each convex portion W3. An inclined portion W3C is formed between the upper end portion W3A and the base end portion W3B of each convex portion W3. However, a communication hole W3D that communicates the front and back of the workpiece W is formed in the inclined portion formed to face the end portion W1 of the workpiece W.
In addition, although the recessed part W2 which protrudes in the opposite direction to the convex part W3 is formed between the convex parts W3 adjacent to the direction orthogonal to a feed direction (direction of arrow F), FIG. 5, FIG. Then, since it becomes complicated, the recessed part W2 is abbreviate | omitted.

以上のように、ワークWの表面に規則的に形成された凸部W3の位置(平面的な配置関係)を、図7に示すフローチャート図に基づいて計測する。
図7に示すように、ステップS1にて、演算制御装置5の操作制御部51を操作させ、載置台1を原位置へ移動させる。そして、ワークWを載置台1の上面にセットする。このとき、ワーク押え板6をワークWの上方から当接させて、ワークWのそり等を矯正する。
As described above, the position (planar arrangement relationship) of the convex portions W3 regularly formed on the surface of the workpiece W is measured based on the flowchart shown in FIG.
As shown in FIG. 7, in step S1, the operation control unit 51 of the arithmetic and control unit 5 is operated to move the mounting table 1 to the original position. Then, the work W is set on the upper surface of the mounting table 1. At this time, the workpiece pressing plate 6 is brought into contact with the workpiece W from above to correct warpage of the workpiece W or the like.

次に、ステップS2にて、載置台1の原位置において、載置台1を送り方向へ移動させながら投光器2のレーザ光をワークWの端部W1に照射させる。ワークWの端部W1に最初に形成されたレーザ光の光画像21aをカメラ3が撮影し、その光画像21aの形状データと移動機構4の移動量とに基づいて、演算制御装置の演算部53が端部W1の位置データを測定基準として判定し、記憶部52に記憶させる。
次に、ステップS3にて、載置台1を送り方向へ連続的に移動させながら、カメラ3が所定の時間で間欠的に撮影する。カメラ3の撮影タイミングは、演算制御装置5の操作制御部51から指令される。
Next, in step S <b> 2, the end W <b> 1 of the workpiece W is irradiated with the laser light of the projector 2 while moving the mounting table 1 in the feeding direction at the original position of the mounting table 1. The camera 3 captures the optical image 21a of the laser beam first formed on the end W1 of the workpiece W, and based on the shape data of the optical image 21a and the moving amount of the moving mechanism 4, the arithmetic unit of the arithmetic control device. 53 determines the position data of the end W <b> 1 as a measurement reference and stores it in the storage unit 52.
Next, in step S3, the camera 3 intermittently captures images for a predetermined time while continuously moving the mounting table 1 in the feeding direction. The shooting timing of the camera 3 is commanded from the operation control unit 51 of the arithmetic and control unit 5.

次に、ステップS4にて、カメラ3が撮影したワークWの同一の凸部W3に形成した複数(2つ)の光画像21b、21cの形状データに基づいて、演算制御装置5の演算部53が、その凸部W3の重心位置W30を演算する。具体的には、図6に示すように、一の凸部W3の上端部W3Aには、三角形状の底辺付近と底辺に対向する頂点付近に2つの光画像21b、21cを平行に形成する。演算制御装置5の演算部53は、2つの光画像21b、21cが凸部W3の上端部W3Aと傾斜部W3Cとの交差部で屈曲するため、その屈曲点を通過する三角形を形成し、その三角形の頂点W31、W32、W33から構成される重心位置W30を演算する。演算された重心位置W30は、ワークWの端部W1の位置データに移動機構4の移動量を加算して、ワークWにおける凸部W3の送り方向の位置データとし、同じ行列に含まれる隣接する凸部W3同士の間隔を送り方向と直交する方向の位置データとして、それぞれ記憶部52に記憶する。なお、演算制御装置5の演算部53は、図5に示すように、各行列n1、n2、n3毎に凸部W3の重心位置W30を演算する。この場合、各行列n1、n2、n3毎に複数の凸部W3の重心位置W30を演算し、その平均値をとって重心位置W30の計測誤差を吸収することが好ましい。   Next, in step S4, based on the shape data of a plurality (two) of optical images 21b and 21c formed on the same convex portion W3 of the workpiece W photographed by the camera 3, the calculation unit 53 of the calculation control device 5 is used. However, the gravity center position W30 of the convex part W3 is calculated. Specifically, as shown in FIG. 6, two optical images 21b and 21c are formed in parallel on the upper end portion W3A of one convex portion W3, near the triangular base and near the apex opposite to the base. Since the two optical images 21b and 21c bend at the intersection between the upper end W3A of the convex portion W3 and the inclined portion W3C, the calculation unit 53 of the calculation control device 5 forms a triangle that passes through the bending point. A gravity center position W30 composed of vertices W31, W32 and W33 of the triangle is calculated. The calculated center-of-gravity position W30 is obtained by adding the amount of movement of the moving mechanism 4 to the position data of the end W1 of the workpiece W to obtain position data in the feed direction of the convex portion W3 of the workpiece W, and is included in the same matrix. The interval between the convex portions W3 is stored in the storage unit 52 as position data in a direction orthogonal to the feed direction. As shown in FIG. 5, the calculation unit 53 of the calculation control device 5 calculates the gravity center position W30 of the convex portion W3 for each of the matrices n1, n2, and n3. In this case, it is preferable to calculate the gravity center position W30 of the plurality of convex portions W3 for each of the matrices n1, n2, and n3 and take the average value to absorb the measurement error of the gravity center position W30.

次に、ステップS5にて、演算制御装置5の演算部53は、凸部W3の重心位置W30の位置データに基づいて、隣接する凸部W3のピッチ(縦ピッチL1、L2と、横ピッチR0)及び各行列n1、n2、n3間の位相のずれ量R1、R2を演算し、それぞれ記憶部52に記憶する。
次に、ステップS6にて、演算制御装置5の演算部53は、演算した隣接する凸部W3のピッチ(縦ピッチL1、L2と、横ピッチR0)及び各行列n1、n2、n3間の位相のずれ量R1、R2と設計値とを比較して、所定の範囲内か否かを判定する。その判定結果は、本計測装置10のモニター画面等を通じて表示する。なお、ここでは、ワークWの凸部W3の位置を、端部W1の位置を基準に計測する場合について説明したが、ワークWの凹部W2の位置も、上記と同様の方法で計測することができる。
Next, in step S5, the calculation unit 53 of the calculation control device 5 determines the pitches (vertical pitches L1 and L2 and horizontal pitch R0) of the adjacent projections W3 based on the position data of the center of gravity position W30 of the projections W3. ) And the phase shift amounts R1 and R2 between the matrices n1, n2, and n3 are calculated and stored in the storage unit 52, respectively.
Next, in step S6, the calculation unit 53 of the calculation control device 5 calculates the calculated pitches of the adjacent convex portions W3 (vertical pitches L1, L2 and horizontal pitch R0) and the phases between the matrices n1, n2, n3. The shift amounts R1 and R2 of the difference and the design value are compared, and it is determined whether or not they are within a predetermined range. The determination result is displayed through the monitor screen of the measurement apparatus 10 or the like. In addition, although the case where the position of the convex part W3 of the workpiece | work W was measured on the basis of the position of the edge part W1 was demonstrated here, the position of the recessed part W2 of the workpiece | work W can also be measured by the method similar to the above. it can.

<作用効果>
以上、詳細に説明したように、本実施形態に係る計測装置10によれば、載置台1の上面には、計測領域WZの内、載置台1に位置決めされたワークWの端部W1に対応する範囲に凹溝11を形成したので、表面に凹凸形状が形成されたワークWを本計測装置10の載置台1に繰り返しセットしても、ワークWの計測領域WZ内において、ワークWの端部W1に対応する範囲で載置台1の上面が摩耗していくことはない。そのため、投光器2からワークWの端部W1に投光されるライン状のレーザ光が載置台1の上面によって乱反射する恐れが無く、カメラ3がワークWの端部W1に形成された光画像21を明確に撮影することができる。そして、演算制御装置5は、その光画像21の形状データに基づき、ワークWの端部W1の位置データを測定基準として正確に演算(決定)することができる。その結果、本計測装置10は、ワークWの端部W1を基準に、ワークWにおける凹部W2又は凸部W3の位置(平面的な配置関係)を正確に計測できる。
<Effect>
As described above in detail, according to the measuring apparatus 10 according to the present embodiment, the upper surface of the mounting table 1 corresponds to the end W1 of the workpiece W positioned on the mounting table 1 in the measurement area WZ. Since the concave groove 11 is formed in the range to be formed, even if the workpiece W having a concavo-convex shape formed on the surface thereof is repeatedly set on the mounting table 1 of the measuring device 10, the end of the workpiece W is measured in the measurement area WZ of the workpiece W. The upper surface of the mounting table 1 does not wear out in a range corresponding to the portion W1. Therefore, there is no fear that the line-shaped laser light projected from the projector 2 to the end W1 of the work W is irregularly reflected by the upper surface of the mounting table 1, and the optical image 21 formed by the camera 3 on the end W1 of the work W is provided. Can be taken clearly. Then, the calculation control device 5 can accurately calculate (determine) the position data of the end W1 of the workpiece W based on the shape data of the optical image 21 as the measurement reference. As a result, the measurement apparatus 10 can accurately measure the position (planar arrangement relationship) of the concave portion W2 or the convex portion W3 on the workpiece W with reference to the end portion W1 of the workpiece W.

また、本実施形態によれば、載置台1の上面に載置されたワークWを押圧するワーク押え板6を備えたので、ワークWのそり等を矯正して計測することができる。また、ワーク押え板6には、計測領域WRの外周縁を包囲した貫通孔61を形成したので、投光器2は、ワーク押え板6に遮られることなく、矯正されたワークWの計測領域WRに光画像21を正確に形成することができる。
その結果、ワークWにおける凹部W2又は凸部W3の位置(平面的な配置関係)をより一層正確に計測できる。
Moreover, according to this embodiment, since the workpiece pressing plate 6 that presses the workpiece W placed on the upper surface of the mounting table 1 is provided, the warp of the workpiece W can be corrected and measured. In addition, since the work holding plate 6 is formed with a through hole 61 that surrounds the outer periphery of the measurement region WR, the projector 2 is not obstructed by the work holding plate 6, and the corrected work W is measured in the measurement region WR. The optical image 21 can be accurately formed.
As a result, the position (planar arrangement relationship) of the concave portion W2 or the convex portion W3 in the workpiece W can be measured more accurately.

また、本実施形態によれば、載置台1の上面には、黒塗り加工を施し、ワーク押え板6は、透明な板材によって形成したので、載置台1に対する各種光の反射を低減するとともに、載置台1とワーク押え板6との間に挟まれてセットされたワークWが、載置台1における正規の位置にセットされているか否かを、目視によって簡単に確認することができる。
その結果、ワークWのセットずれを防止して、ワークWにおける凹部W2又は凸部W3の位置(平面的な配置関係)を更に一層正確に計測できる。
In addition, according to the present embodiment, the upper surface of the mounting table 1 is blackened, and the work pressing plate 6 is formed of a transparent plate material, so that the reflection of various lights with respect to the mounting table 1 is reduced. Whether or not the workpiece W set between the mounting table 1 and the work pressing plate 6 is set at a proper position on the mounting table 1 can be easily confirmed visually.
As a result, the set displacement of the workpiece W can be prevented, and the position (planar arrangement relationship) of the concave portion W2 or the convex portion W3 in the workpiece W can be measured even more accurately.

また、他の実施形態に係るワークにおける凹部又は凸部の位置を計測する計測方法によれば、載置台1の上面に載置されたワークWの端部W1上に形成された光画像をカメラ3が撮影するが、載置台1の上面にはワークWの端部W1に対応する範囲に凹溝11が形成されているので、投光器2からワークWの端部W1に投光されるライン状の光が載置台1の上面によって乱反射する恐れが無く、カメラ3がワークWの端部W1に形成された光画像21を明確に撮影することができる。また、演算制御装置5は、当該光画像21の形状データに基づいて、ワークWの端部W1の位置データを測定基準として演算するので、明確な光画像21の形状データに基づいて、ワークWの端部W1の位置データを誤認することなく正確に演算(決定)することができる。その結果、本計測装方法によれば、ワークWの端部W1の位置を基準にして、ワークWにおける凹部W2又は凸部W3の位置を正確に計測することができる。   In addition, according to the measurement method for measuring the position of the concave portion or the convex portion in the workpiece according to another embodiment, the optical image formed on the end portion W1 of the workpiece W placed on the upper surface of the placement table 1 is a camera. 3, since the concave groove 11 is formed in the upper surface of the mounting table 1 in a range corresponding to the end W1 of the workpiece W, a line shape projected from the projector 2 to the end W1 of the workpiece W is formed. Therefore, the camera 3 can clearly shoot the optical image 21 formed on the end W1 of the workpiece W. In addition, since the calculation control device 5 calculates the position data of the end W1 of the workpiece W based on the shape data of the optical image 21, the workpiece W is calculated based on the clear shape data of the optical image 21. It is possible to calculate (determine) accurately without misidentifying the position data of the end W1. As a result, according to this measurement device method, the position of the concave portion W2 or the convex portion W3 in the workpiece W can be accurately measured with reference to the position of the end portion W1 of the workpiece W.

また、他の実施形態によれば、カメラ3は、ワークWにおける同一の凹部W2又は凸部W3に形成された複数(2つ)の光画像21(21b、21c、21d、21e、21f、21g・・・)を撮影し、演算制御装置5は、当該光画像21における複数の形状データから凹部W2又は凸部W3の平面形状(三角形状)を特定して当該平面形状(三角形状)の重心位置W30を演算するので、ワークWにおける凹部W2又は凸部W3の位置の誤判定を防止することができる。
その結果、本計測方法によれば、誤判定を防止しつつ、ワークWにおける凹部W2又は凸部W3の位置(平面的な配置関係)を正確に計測できる。
Further, according to another embodiment, the camera 3 has a plurality of (two) optical images 21 (21b, 21c, 21d, 21e, 21f, 21g) formed in the same concave portion W2 or convex portion W3 of the workpiece W. ..)), The arithmetic and control unit 5 specifies the planar shape (triangular shape) of the concave portion W2 or the convex portion W3 from the plurality of shape data in the optical image 21, and the center of gravity of the planar shape (triangular shape). Since the position W30 is calculated, erroneous determination of the position of the concave portion W2 or the convex portion W3 in the workpiece W can be prevented.
As a result, according to this measurement method, it is possible to accurately measure the position (planar arrangement relationship) of the concave portion W2 or the convex portion W3 in the workpiece W while preventing erroneous determination.

なお、本実施形態は、本発明の要旨を変更しない範囲で変更することが可能なことは言うまでもない。
例えば、本実施形態では、載置台1を移動機構4によって移動させ、投光器2とカメラ3とを計測装置10の本体部に固定したが、投光器とカメラとを移動機構によって移動させ、載置台を本体部に固定してもよい。
また、本実施形態では、カメラ3としてCCDカメラを使用したが、それ以外のカメラ(例えば、PSDカメラなど)を使用してもよい。
In addition, it cannot be overemphasized that this embodiment can be changed in the range which does not change the summary of this invention.
For example, in the present embodiment, the mounting table 1 is moved by the moving mechanism 4, and the projector 2 and the camera 3 are fixed to the main body of the measuring device 10. However, the projector and the camera are moved by the moving mechanism, and the mounting table is moved. You may fix to a main-body part.
In this embodiment, a CCD camera is used as the camera 3, but other cameras (for example, a PSD camera) may be used.

本発明は、ワークの表面に形成された凹凸形状を計測する計測装置及びその計測方法として、特に、表面に凹凸形状が形成されたワークにおける凹部又は凸部の位置(平面的な配置関係)を計測する計測装置及びその計測方法として利用できる。   The present invention is a measuring device and a measuring method for measuring the uneven shape formed on the surface of the workpiece, and in particular, the position of the concave portion or the convex portion (planar arrangement relationship) in the workpiece having the uneven shape formed on the surface. It can be used as a measuring device and a measuring method for measuring.

1 載置台
2 投光器
3 カメラ
4 移動機構
5 演算制御装置
6 ワーク押え板
10 計測装置
11 凹溝
21、21a 光画像
61 貫通孔
W ワーク
W1 端部
W2 凹部
W3 凸部
W30 重心位置
WZ 計測領域
DESCRIPTION OF SYMBOLS 1 Mounting stand 2 Projector 3 Camera 4 Movement mechanism 5 Arithmetic control device 6 Work holding plate 10 Measuring device 11 Groove 21, 21a Optical image 61 Through-hole W Work W1 End W2 Concavity W3 Convex portion W30 Center of gravity position WZ Measurement area

Claims (5)

表面に凹凸形状が形成されたワークを上面に載置する載置台と、前記ワークの表面にライン状の光を投光する投光器と、前記投光器から投光された光によって前記ワーク上に形成された光画像を所定のタイミングで撮影するカメラと、前記光画像を前記ワークの計測領域に形成すべく前記載置台を上面と平行に移動させる移動機構と、前記カメラが撮影する光画像の画像データと前記移動機構による前記載置台の移動量とから前記ワークの端部に対する凹部又は凸部の位置データを演算する演算制御装置とを備えた計測装置であって、
前記載置台の上面には、前記計測領域の内、前記載置台に位置決めされた前記ワークの端部に対応する範囲に凹溝を形成したことを特徴とする計測装置。
Formed on the workpiece by a mounting table for placing a workpiece having a concavo-convex shape on the upper surface, a projector for projecting line-shaped light on the surface of the workpiece, and light projected from the projector. A camera that captures the optical image at a predetermined timing, a moving mechanism that moves the mounting table parallel to the upper surface to form the optical image in the measurement area of the workpiece, and image data of the optical image captured by the camera And an arithmetic and control unit that calculates position data of a concave portion or a convex portion with respect to an end portion of the workpiece from the amount of movement of the mounting table described above by the moving mechanism,
A measuring device, wherein a concave groove is formed on a top surface of the mounting table in a range corresponding to an end portion of the workpiece positioned on the mounting table in the measurement area.
請求項1に記載された計測装置において、
前記載置台の上面に載置された前記ワークを押圧するワーク押え板を備え、前記ワーク押え板には、前記計測領域の外周縁を包囲した貫通孔を形成したことを特徴とする計測装置。
In the measuring device according to claim 1,
A measuring apparatus comprising a work pressing plate that presses the work placed on the upper surface of the mounting table, wherein the work pressing plate is formed with a through hole surrounding an outer peripheral edge of the measurement region.
請求項2に記載された計測装置において、
前記載置台の上面には、黒塗り加工を施し、前記ワーク押え板は、透明な板材によって形成したことを特徴とする計測装置。
In the measuring device according to claim 2,
The measuring apparatus according to claim 1, wherein the upper surface of the mounting table is black-coated, and the work pressing plate is formed of a transparent plate material.
請求項1乃至請求項3のいずれか1項に記載された計測装置を使用して、表面に凹凸形状が形成されたワークにおける凹部又は凸部の位置を計測する計測方法であって、
前記載置台の上面に載置された前記ワークの端部上に形成された前記光画像を前記カメラが撮影し、前記演算制御装置は、当該光画像の画像データに基づいて、前記ワークの端部の位置データを測定基準として演算することを特徴とする計測方法。
A measurement method for measuring a position of a concave portion or a convex portion in a workpiece having a concavo-convex shape formed on a surface using the measuring device according to any one of claims 1 to 3,
The camera captures the optical image formed on the end portion of the workpiece placed on the upper surface of the mounting table, and the arithmetic and control unit is configured to end the workpiece based on image data of the optical image. A measurement method characterized in that the position data of a part is calculated as a measurement reference.
請求項4に記載された計測方法において、
前記カメラは、前記ワークにおける同一の凹部又は凸部に形成された複数の光画像を撮影し、前記演算制御装置は、当該光画像における複数の画像データから凹部又は凸部の平面形状を決定して当該平面形状の重心位置を演算することを特徴とする計測方法。
In the measurement method described in Claim 4,
The camera captures a plurality of optical images formed in the same concave portion or convex portion of the workpiece, and the arithmetic control device determines a planar shape of the concave portion or convex portion from the plurality of image data in the optical image. And calculating the position of the center of gravity of the planar shape.
JP2015023565A 2015-02-09 2015-02-09 Measuring device and measuring method thereof Active JP6327169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015023565A JP6327169B2 (en) 2015-02-09 2015-02-09 Measuring device and measuring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023565A JP6327169B2 (en) 2015-02-09 2015-02-09 Measuring device and measuring method thereof

Publications (2)

Publication Number Publication Date
JP2016145780A true JP2016145780A (en) 2016-08-12
JP6327169B2 JP6327169B2 (en) 2018-05-23

Family

ID=56686239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023565A Active JP6327169B2 (en) 2015-02-09 2015-02-09 Measuring device and measuring method thereof

Country Status (1)

Country Link
JP (1) JP6327169B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022413A (en) * 2000-07-10 2002-01-23 Toyota Motor Corp Apparatus and method of measuring rugged form
JP2007168050A (en) * 2005-12-26 2007-07-05 Shinko Electric Ind Co Ltd Substrate cutting device
US20070271064A1 (en) * 2006-05-16 2007-11-22 The Boeing Company System and method for identifying a feature of a workpiece

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022413A (en) * 2000-07-10 2002-01-23 Toyota Motor Corp Apparatus and method of measuring rugged form
JP2007168050A (en) * 2005-12-26 2007-07-05 Shinko Electric Ind Co Ltd Substrate cutting device
US20070271064A1 (en) * 2006-05-16 2007-11-22 The Boeing Company System and method for identifying a feature of a workpiece

Also Published As

Publication number Publication date
JP6327169B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
US7548324B2 (en) Three-dimensional shape measurement apparatus and method for eliminating 2π ambiguity of moire principle and omitting phase shifting means
US10295335B2 (en) Shape measurement apparatus and shape measurement method
JP5515432B2 (en) 3D shape measuring device
JP6845606B2 (en) Drilling device
KR20110086222A (en) Three dimensional shape measurment apparatus
KR20150140704A (en) System and method for optical inspection of electronic circuits
CN110918388A (en) Dispensing device and dispensing method
ES2733651T3 (en) Measurement of the angular position of a lenticular lens sheet
JP6327169B2 (en) Measuring device and measuring method thereof
US20120056999A1 (en) Image measuring device and image measuring method
JP2017198470A (en) Measurement device, measurement method, system, and goods manufacturing method
JP6781969B1 (en) Measuring device and measuring method
TWI638237B (en) Drawing device and drawing method
US20060059502A1 (en) Machine suitable for placing a component on a substrate, as well as a method therefor
JP2016174110A (en) Mounting position correction method and mounting position correction device
JP5532698B2 (en) Exposure apparatus and exposure method
JP2006267191A (en) Exposure device
JP2019109236A (en) Inspection device and inspection method
JP2012093238A (en) Shape measuring device
JP2022107020A (en) Measuring device and component mounting machine
JP2016020888A (en) Measurement system, work picking system, measurement method and program
TWM561212U (en) Calibration equipment
JP2009036631A (en) Device of measuring three-dimensional shape and method of manufacturing same
JP5908745B2 (en) Exposure drawing apparatus, program, and exposure drawing method
CN113767263A (en) Three-dimensional measuring device and three-dimensional measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170426

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6327169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250