JP2016144777A - Foam inhibiting method - Google Patents

Foam inhibiting method Download PDF

Info

Publication number
JP2016144777A
JP2016144777A JP2015022421A JP2015022421A JP2016144777A JP 2016144777 A JP2016144777 A JP 2016144777A JP 2015022421 A JP2015022421 A JP 2015022421A JP 2015022421 A JP2015022421 A JP 2015022421A JP 2016144777 A JP2016144777 A JP 2016144777A
Authority
JP
Japan
Prior art keywords
microwave
sample
foam
bubbles
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015022421A
Other languages
Japanese (ja)
Inventor
智 堀越
Satoshi Horikoshi
智 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sophia School Corp
Original Assignee
Sophia School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sophia School Corp filed Critical Sophia School Corp
Priority to JP2015022421A priority Critical patent/JP2016144777A/en
Publication of JP2016144777A publication Critical patent/JP2016144777A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a foam inhibiting method capable of suppressing occurrence of foam by irradiation of an object for which the foam is to be suppressed with microwaves.SOLUTION: A foam inhibiting method comprises: irradiating an object O with microwaves MW to suppress occurrence of foam on the object O.SELECTED DRAWING: Figure 1

Description

本発明は、泡の発生を抑制する抑泡方法に関する。   The present invention relates to a foam suppression method that suppresses the generation of bubbles.

液体を扱う種々の技術分野にあっては、液体に泡が発生することによる生産効率の低下、歩留まりの減少、品質の低下などの悪影響が懸念される。例えば、調製された塗布液を基材などに塗布する場合には、それに先だって行われる撹拌操作などによって泡が生じた塗布液をそのまま塗布してしまうと、塗膜表面の欠陥や、塗布ムラの原因になってしまう虞がある。
このような悪影響を避けるために、例えば、特許文献1では、周波数帯域の異なる複数の超音波を同時に塗布液に照射して、塗布液の脱泡を行う脱泡方法が提案されている。
In various technical fields that handle liquids, there are concerns about adverse effects such as a decrease in production efficiency, a decrease in yield, and a decrease in quality due to the generation of bubbles in the liquid. For example, when applying the prepared coating solution to a substrate or the like, if a coating solution in which bubbles are generated by a stirring operation or the like performed before that is applied as it is, defects on the coating film surface or uneven coating may occur. There is a risk of causing this.
In order to avoid such an adverse effect, for example, Patent Document 1 proposes a defoaming method in which a plurality of ultrasonic waves having different frequency bands are simultaneously irradiated onto the coating liquid to defoam the coating liquid.

特開昭2005−161164JP-A-2005-161164

しかしながら、特許文献1の脱泡方法は、超音波を照射することによって、液体と液中気泡との界面の振動を促進して、気泡を液中に溶解させるというものであり、液体を泡立ち難くするというものではなかった。すなわち、特許文献1の脱泡方法は、一旦生じた泡を消すためのものであり、泡の発生を抑制するという発想が欠落していた。   However, the defoaming method of Patent Document 1 is to promote vibration of the interface between the liquid and the bubbles in the liquid by irradiating ultrasonic waves to dissolve the bubbles in the liquid, and the liquid is difficult to foam. It was not to do. In other words, the defoaming method of Patent Document 1 is for eliminating the foam once generated, and the idea of suppressing the generation of foam was lacking.

本発明者の研究では、マイクロ波を照射すると液中の溶存酸素が脱気し易くなり、温度上昇によって溶解度が減少する以上に、高い脱気率で溶存酸素を脱気させることができるという知見を得ている。そこで、かかる知見に基づいて鋭意検討を重ねたところ、液体にマイクロ波を照射することで、溶存酸素などの泡が発生する原因となる溶存ガスを効率よく脱気しておくことで、泡の発生を抑止することができることを見出し、本発明を完成するに至った。   In the research conducted by the present inventor, it is found that dissolved oxygen in a liquid is easily degassed when irradiated with microwaves, and the dissolved oxygen can be degassed at a higher degassing rate than the solubility decreases due to temperature rise. Have gained. Therefore, after intensive studies based on such knowledge, by irradiating the liquid with microwaves, the dissolved gas which causes bubbles such as dissolved oxygen is efficiently degassed, The inventors have found that generation can be suppressed, and have completed the present invention.

すなわち、本発明は、抑泡すべき対象物にマイクロ波を照射することにより、泡の発生を抑制することができる抑泡方法の提供を目的とする。   That is, an object of the present invention is to provide a foam suppression method capable of suppressing the generation of bubbles by irradiating the object to be suppressed with microwaves.

本発明に係る抑泡方法は、対象物にマイクロ波を照射して、前記対象物における泡の発生を抑制する方法としてある。   The bubble suppression method according to the present invention is a method for suppressing the generation of bubbles in the object by irradiating the object with microwaves.

本発明によれば、抑泡すべき対象物にマイクロ波を照射することにより、泡の発生を抑制することができる。   According to the present invention, generation of bubbles can be suppressed by irradiating the object to be suppressed with microwaves.

本発明の実施形態に係る抑泡方法を好適に実施できる装置の一例を示す概略図。Schematic which shows an example of the apparatus which can implement suitably the foam suppression method which concerns on embodiment of this invention. 実施例及び比較例において測定する試料液面に発生した泡の高さを示す説明図である。It is explanatory drawing which shows the height of the bubble which generate | occur | produced in the sample liquid level measured in an Example and a comparative example.

以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態に係る抑泡方法を実施する装置の一例を示す概略図であり、抑泡装置1は、処理室2と、載置部3と、マイクロ波発振器4と、給電部5とを備えている。   FIG. 1 is a schematic diagram illustrating an example of an apparatus that performs the foam suppression method according to the present embodiment. The foam suppression apparatus 1 includes a processing chamber 2, a placement unit 3, a microwave oscillator 4, and a power feeding unit. And 5.

処理室2は、閉鎖された空間を形成して、マイクロ波MWの漏洩を防止するために箱状に形成することができる。載置部3は、抑泡すべき対象物Oが投入された容器6が載置される部分である。
なお、図1においては、処理室2の内部底面に載置された直方体状の台座部材を載置部3としているが、処理室2の内部底面そのものを載置部3としてもよい。
The processing chamber 2 can be formed in a box shape so as to form a closed space and prevent leakage of the microwave MW. The placement unit 3 is a part on which the container 6 into which the object O to be suppressed is put is placed.
In FIG. 1, the rectangular parallelepiped pedestal member placed on the inner bottom surface of the processing chamber 2 is used as the mounting portion 3, but the inner bottom surface itself of the processing chamber 2 may be used as the mounting portion 3.

マイクロ波発振器4は、マイクロ波MWを生成して出力する装置であって、マグネトロンや半導体式発振器を用いることができるが、発振周波数や出力の制御が容易な半導体式発振器を用いるのが好ましい。
半導体式発振器は、半導体素子を用いて構成されたマイクロ波発生部を備えている。マイクロ波発生部は、例えば、トランジスタなどの半導体増幅素子と、タンク回路などの共振回路で構成されている。また、マイクロ波発生部には、ハートレー型発振回路、又はコルピッツ型発振回路などを用いることができる。さらに、半導体式発振器は、マイクロ波発生部以外に、例えば、マイクロ波MWの周波数を変化させる機能や、マイクロ波MWの出力を変化させる機能などを備えることができる。
The microwave oscillator 4 is a device that generates and outputs a microwave MW. A magnetron or a semiconductor oscillator can be used, but a semiconductor oscillator that can easily control the oscillation frequency and output is preferably used.
The semiconductor oscillator includes a microwave generation unit configured using a semiconductor element. The microwave generation unit is configured by, for example, a semiconductor amplification element such as a transistor and a resonance circuit such as a tank circuit. For the microwave generator, a Hartley oscillation circuit, a Colpitts oscillation circuit, or the like can be used. In addition to the microwave generator, the semiconductor oscillator can have a function of changing the frequency of the microwave MW, a function of changing the output of the microwave MW, and the like.

給電部5は、処理室2の内部の壁部、天面部、底面部において一箇所又は二箇所以上に設けられており、マイクロ波発振器4から出力されたマイクロ波MWを処理室2内に放射する。この給電部5には、例えば、アレーアンテナ、平面アレーアンテナ、フェーズドアレーアンテナ(位相走査アンテナ)などを用いることができる。アレーアンテナの放射素子には、例えば、マイクロストリップアンテナ(パッチアンテナ)、スロットアンテナ、ダイポールアンテナなどを用いることができる。   The power feeding unit 5 is provided at one place or two or more places in the wall portion, top surface portion, and bottom surface portion inside the processing chamber 2, and radiates the microwave MW output from the microwave oscillator 4 into the processing chamber 2. To do. For example, an array antenna, a planar array antenna, a phased array antenna (phase scanning antenna), or the like can be used for the power supply unit 5. As the radiating element of the array antenna, for example, a microstrip antenna (patch antenna), a slot antenna, a dipole antenna, or the like can be used.

本実施形態にあっては、このような抑泡装置1を用いて、例えば、水、又は水を溶媒とする各種水溶液などを対象物Oとして容器6に投入し、マイクロ波MWを照射する。
マイクロ波MWは、一般には、波長1m〜100μm、周波数300MHz〜3THzの電磁波をいうが、本実施形態において、対象物Oに照射するマイクロ波MWは、法的に使用が認められた周波数のマイクロ波を利用することができる。
In the present embodiment, using such a foam suppression device 1, for example, water or various aqueous solutions using water as a solvent is put into the container 6 as the object O and irradiated with the microwave MW.
The microwave MW generally refers to an electromagnetic wave having a wavelength of 1 m to 100 μm and a frequency of 300 MHz to 3 THz. In the present embodiment, the microwave MW irradiated to the object O is a microwave having a frequency that is legally used. Waves can be used.

このような本実施形態に係る抑泡方法によれば、対象物Oにマイクロ波MWを照射することにより、対象物Oに泡が発生してしまうのを抑制することができる。   According to such a foam suppression method according to the present embodiment, it is possible to suppress generation of bubbles in the object O by irradiating the object O with the microwave MW.

以下、具体的な実施例を挙げて、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to specific examples.

[実施例1〜8]
1Lのイオン交換水に、市販の家庭用液体洗剤を10滴加えて試料を調製し、用意した九つのガラス製容器のそれぞれに、抑泡すべき対象物として当該試料を40mLずつ注ぎ入れて静置した。これらのうち一つを未処理の対比例とし、残りを実施例1〜8として次の条件でマイクロ波を照射した。
[Examples 1 to 8]
Samples are prepared by adding 10 drops of commercially available household liquid detergent to 1 L of ion-exchanged water, and 40 mL of the sample is poured into each of the nine prepared glass containers as an object to be defoamed. I put it. One of these was set as an untreated relative proportion, and the remainder was set as Examples 1 to 8 and irradiated with microwaves under the following conditions.

<実施例1〜4>
・実施例1:試料の温度が60℃になるまでマイクロ波(周波数2.45GHz)を照射した(照射時間60秒)
・実施例2:試料の温度が80℃になるまでマイクロ波(周波数2.45GHz)を照射した(照射時間105秒)
・実施例3:試料の温度が90℃になるまでマイクロ波(周波数2.45GHz)を照射した(照射時間140秒)
・実施例4:試料の温度が90℃になるまでマイクロ波(周波数2.45GHz)を照射し、その後、90℃の温度を維持するように出力を下げてマイクロ波照射を180秒継続した
<Examples 1-4>
Example 1: Microwave (frequency 2.45 GHz) was irradiated until the temperature of the sample reached 60 ° C. (irradiation time 60 seconds)
Example 2: Microwave (frequency: 2.45 GHz) was irradiated until the temperature of the sample reached 80 ° C. (irradiation time: 105 seconds)
Example 3: Irradiation with microwaves (frequency 2.45 GHz) until the sample temperature reached 90 ° C. (irradiation time 140 seconds)
Example 4: Microwave (frequency: 2.45 GHz) was irradiated until the temperature of the sample reached 90 ° C., and then the output was lowered to maintain the temperature of 90 ° C. and microwave irradiation was continued for 180 seconds.

<実施例5〜8>
・実施例5:試料の温度が60℃になるまでマイクロ波(周波数5.8GHz)を照射した(照射時間45秒)
・実施例6:試料の温度が80℃になるまでマイクロ波(周波数5.8GHz)を照射した(照射時間95秒)
・実施例7:試料の温度が90℃になるまでマイクロ波(周波数5.8GHz)を照射した(照射時間120秒)
・実施例8:試料の温度が90℃になるまでマイクロ波(周波数5.8GHz)を照射し、その後、90℃の温度を維持するように出力を下げてマイクロ波照射を180秒継続した
<Examples 5 to 8>
Example 5: Microwave (frequency 5.8 GHz) was irradiated until the temperature of the sample reached 60 ° C. (irradiation time 45 seconds)
Example 6: Microwave (frequency 5.8 GHz) was irradiated until the temperature of the sample reached 80 ° C. (irradiation time 95 seconds)
Example 7: Microwave (frequency 5.8 GHz) was irradiated until the temperature of the sample reached 90 ° C. (irradiation time 120 seconds)
Example 8: Microwave (frequency 5.8 GHz) was irradiated until the temperature of the sample reached 90 ° C, and then the output was lowered so as to maintain the temperature of 90 ° C, and microwave irradiation was continued for 180 seconds.

実施例1〜8のいずれにおいても、マイクロ波照射により加熱された試料の液面に泡立ちが認められたが、試料の液面から泡が消えるまで静置して、自然放冷した。   In any of Examples 1 to 8, foaming was observed on the liquid surface of the sample heated by microwave irradiation, but the sample was allowed to stand until the bubbles disappeared from the liquid surface of the sample and allowed to cool naturally.

[評価]
対比例、実施例1〜8のそれぞれについて、ガラス製容器に蓋をして、同様の条件で上下に10回振った直後の試料液面の泡立ちを観察したところ、マイクロ波を照射しなかった対比例に比べて実施例1〜8の泡立ちが少なかった。これらの試料液面に発生した泡の高さH(図4参照)を測定した値とともに、対比例に対する泡の高さの減少率を表1に示す。
[Evaluation]
In contrast, for each of Examples 1 to 8, the glass container was capped, and the bubbling of the sample liquid surface immediately after shaking 10 times up and down under the same conditions was observed. No microwave was irradiated. There was little foaming of Examples 1-8 compared with contrast. Table 1 shows the rate of reduction of the height of the foam relative to the proportionality, together with the measured value of the height H (see FIG. 4) of the foam generated on the sample liquid surface.

[比較例1〜4]
実施例と同様のガラス製容器を四つ用意し、それぞれに実施例で調製した試料を40mLずつ注ぎ入れて静置した。これらを比較例1〜4として、それぞれのガラス製容器の外周面に電熱線を巻回して次の条件で通電した。
[Comparative Examples 1-4]
Four glass containers similar to those of the example were prepared, and 40 mL of the sample prepared in the example was poured into each container and allowed to stand. These were designated as Comparative Examples 1 to 4, and a heating wire was wound around the outer peripheral surface of each glass container and energized under the following conditions.

・比較例1:試料の温度が60℃になるまで通電した(通電時間58秒)
・比較例2:試料の温度が80℃になるまで通電した(通電時間100秒)
・比較例3:試料の温度が90℃になるまで通電した(通電時間130秒)
・比較例4:試料の温度が90℃になるまで通電し、その後、90℃の温度を維持するように出力を下げて通電を180秒継続した
Comparative Example 1: Energization was performed until the temperature of the sample reached 60 ° C. (energization time 58 seconds)
Comparative Example 2: Energization was performed until the temperature of the sample reached 80 ° C. (energization time 100 seconds)
Comparative Example 3: Energization was performed until the temperature of the sample reached 90 ° C. (energization time 130 seconds)
Comparative Example 4: Energization was performed until the temperature of the sample reached 90 ° C., and then the output was lowered so as to maintain the temperature of 90 ° C. and the energization was continued for 180 seconds.

比較例1〜4のいずれにおいても、加熱された試料の液面に泡立ちが認められたが、試料の液面から泡が消えるまで静置して、自然放冷した。しかる後に、ガラス製容器に蓋をして、実施例と同様の条件で上下に10回振った直後の試料液面に発生した泡の高さHを測定した。その値とともに、対比例に対する泡の高さの減少率を表1に示す。   In any of Comparative Examples 1 to 4, although bubbling was observed on the liquid surface of the heated sample, the sample was left to stand until the bubbles disappeared from the liquid surface of the sample and allowed to cool naturally. Thereafter, the glass container was covered, and the height H of bubbles generated on the sample liquid surface immediately after shaking up and down 10 times under the same conditions as in the example was measured. Along with the value, the decreasing rate of the bubble height with respect to the proportionality is shown in Table 1.

Figure 2016144777
Figure 2016144777

これらの結果から、マイクロ波を照射することによって泡の発生を抑制することができ、マイクロ波の周波数が高いほど、また、試料の加熱温度が高いほど、その抑制効果が高いことが分かるが、泡の発生が抑制される効果は、数値で比較するよりも、試料液面の泡立ち具合を目視にて観察することで、より明瞭に確認できる。
また、電熱線からの輻射熱によって加熱しても泡の発生が抑制される効果が確認できるが、その効果はマイクロ波照射に比べて著しく劣る。これは、加熱による溶存ガスの溶解度の低下により、溶存ガスの一部が試料から脱気されるが、マイクロ波照射によれば、試料の温度上昇に伴う溶存ガスの溶解度の低下以上に、溶存ガスを試料中から脱気させることができたためと考えられる。
From these results, it can be seen that the generation of bubbles can be suppressed by irradiating the microwave, the higher the frequency of the microwave, and the higher the heating temperature of the sample, the higher the suppression effect, The effect of suppressing the generation of bubbles can be confirmed more clearly by visually observing the state of foam formation on the sample liquid surface rather than comparing numerically.
Moreover, although the effect which suppresses generation | occurrence | production of a bubble can be confirmed even if it heats by the radiant heat from a heating wire, the effect is remarkably inferior compared with microwave irradiation. This is because part of the dissolved gas is degassed from the sample due to a decrease in the solubility of the dissolved gas due to heating, but the microwave irradiation dissolves more than the decrease in the solubility of the dissolved gas due to the temperature rise of the sample. This is probably because the gas could be degassed from the sample.

また、実施例1〜8と同様の条件で試料をマイクロ波加熱したものについて、十日間静置して同様に評価したところ、対比例に対する泡の高さの減少率に変化はなく、抑泡効果が持続していることが確認できた。一方、比較例1〜4と同様の条件で試料を加熱したものにあっては、試料を加熱した後の静置時間が長くなるにつれて、対比例に対する泡の高さの減少率は小さくなり、抑泡効果はしだいに失われていった。   Moreover, when the sample was microwave-heated under the same conditions as in Examples 1 to 8, the sample was allowed to stand for 10 days and evaluated in the same manner. It was confirmed that the effect was sustained. On the other hand, in the case where the sample was heated under the same conditions as in Comparative Examples 1 to 4, as the standing time after heating the sample became longer, the rate of decrease in the height of the bubble relative to the proportionality became smaller, The antifoam effect was gradually lost.

以上、本発明について、好ましい実施形態を示して説明したが、本発明は、前述した実施形態に限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。   While the present invention has been described with reference to the preferred embodiment, it is needless to say that the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention.

例えば、前述した実施形態では、対象物Oを容器6に投入してマイクロ波MWを照射したが、対象物Oを所定の配管に連続的に流通させながらマイクロ波MWを照射するようにしてもよい。   For example, in the above-described embodiment, the object O is put into the container 6 and irradiated with the microwave MW, but the microwave MW may be irradiated while continuously circulating the object O through a predetermined pipe. Good.

本発明は、泡の発生を抑止して、泡の発生による弊害が危惧される種々の分野に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in various fields in which the generation of bubbles is suppressed and the harmful effects due to the generation of bubbles are a concern.

O 対象物
MW マイクロ波
O Object MW Microwave

Claims (2)

対象物にマイクロ波を照射して、前記対象物における泡の発生を抑制することを特徴とする抑泡方法。   A method of suppressing bubbles, wherein the object is irradiated with microwaves to suppress generation of bubbles in the object. 半導体式発振器を用いてマイクロ波を生成する請求項1に記載の抑泡方法。   The bubble suppression method of Claim 1 which produces | generates a microwave using a semiconductor type oscillator.
JP2015022421A 2015-02-06 2015-02-06 Foam inhibiting method Pending JP2016144777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015022421A JP2016144777A (en) 2015-02-06 2015-02-06 Foam inhibiting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015022421A JP2016144777A (en) 2015-02-06 2015-02-06 Foam inhibiting method

Publications (1)

Publication Number Publication Date
JP2016144777A true JP2016144777A (en) 2016-08-12

Family

ID=56685189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015022421A Pending JP2016144777A (en) 2015-02-06 2015-02-06 Foam inhibiting method

Country Status (1)

Country Link
JP (1) JP2016144777A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523612A (en) * 2000-02-25 2003-08-05 パーソナル・ケミストリー・イー・ウプサラ・アクチボラゲット Microwave heating equipment
JP2010252756A (en) * 2009-04-28 2010-11-11 Ito En Ltd Method and apparatus for producing beverage
JP2010258470A (en) * 2003-06-11 2010-11-11 Asml Netherlands Bv Lithography projection apparatus
JP2011062669A (en) * 2009-09-18 2011-03-31 Panasonic Electric Works Co Ltd Drinking water, using method of drinking water, refining method of drinking water and drinking water generating device
JP2011088050A (en) * 2009-10-21 2011-05-06 Panasonic Electric Works Co Ltd Biologically active water, apparatus for producing biologically active water, and biological activation method
JP3175394U (en) * 2012-02-21 2012-05-10 東京エレクトロン株式会社 Degassing device for treatment liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523612A (en) * 2000-02-25 2003-08-05 パーソナル・ケミストリー・イー・ウプサラ・アクチボラゲット Microwave heating equipment
JP2010258470A (en) * 2003-06-11 2010-11-11 Asml Netherlands Bv Lithography projection apparatus
JP2010252756A (en) * 2009-04-28 2010-11-11 Ito En Ltd Method and apparatus for producing beverage
JP2011062669A (en) * 2009-09-18 2011-03-31 Panasonic Electric Works Co Ltd Drinking water, using method of drinking water, refining method of drinking water and drinking water generating device
JP2011088050A (en) * 2009-10-21 2011-05-06 Panasonic Electric Works Co Ltd Biologically active water, apparatus for producing biologically active water, and biological activation method
JP3175394U (en) * 2012-02-21 2012-05-10 東京エレクトロン株式会社 Degassing device for treatment liquid

Similar Documents

Publication Publication Date Title
Meroni et al. Sonoprocessing: from concepts to large-scale reactors
JP5603134B2 (en) Chemical reaction apparatus and chemical reaction method
JP4874411B2 (en) Chemical reaction apparatus and chemical reaction method
JP2008041578A (en) Plasma processing device and plasma processing method
Yasuda et al. Quantitative assessment of reactive oxygen sonochemically generated by cavitation bubbles
JP2009178683A (en) Suspension production apparatus and suspension production method
JP2007059317A (en) Plasma generator and plasma generation method
Ike et al. Polymorph Control of L‐ArgHCl on Antisolvent Crystallization by Ultrasonic Irradiation
JP2016144777A (en) Foam inhibiting method
Lebedev et al. Time resolved study of ignition of microwave discharge in liquid hydrocarbons
JP2010153541A (en) Ultrasonic cleaning device, and ultrasonic cleaning method
JP2012142150A (en) Plasma generating apparatus in liquid, plasma processing apparatus in liquid, plasma generating method in liquid, and plasma processing method in liquid
CN106932844B (en) The preparation method of fused quartz dimple cylindrical lens array
RU2382933C1 (en) Plant for oil and oil products viscosity decrease using microwave and ultrasonic radiation complex treatment
Abedi et al. Horn ultrasonic‐assisted pregelatinized starch with various streamline patterns as a green process: Computational fluid dynamics and microbubble formation of process
JP2000287988A (en) Cavitation suppressant, acoustic coupler and ultrasonic transducer
JP5997816B2 (en) Chemical reaction apparatus and chemical reaction method
EP3192635B1 (en) Ultrasonic burr removal device
JP2018055940A (en) Microwave device and heat treatment system including the same
JP2013239325A (en) Microwave heating device
CN204380663U (en) Dual-frequency ultrasonic wave degradation of pesticide experiment porch
JP2019181369A (en) Ultrasonic chemical reaction device and method
RU2012108913A (en) METHOD FOR HEATING A VISCOUS LIQUID IN A TANK AND A DEVICE FOR ITS IMPLEMENTATION
JPH11179196A (en) Ultrasonic wave reactor
JP7223988B2 (en) ultrasonicator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204