JP2016142811A - Composite particle, toner external additive and method for producing composite particle - Google Patents

Composite particle, toner external additive and method for producing composite particle Download PDF

Info

Publication number
JP2016142811A
JP2016142811A JP2015016679A JP2015016679A JP2016142811A JP 2016142811 A JP2016142811 A JP 2016142811A JP 2015016679 A JP2015016679 A JP 2015016679A JP 2015016679 A JP2015016679 A JP 2015016679A JP 2016142811 A JP2016142811 A JP 2016142811A
Authority
JP
Japan
Prior art keywords
particles
composite
particle
core
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015016679A
Other languages
Japanese (ja)
Other versions
JP6490436B2 (en
Inventor
宙 宮尾
Chu Miyao
宙 宮尾
勲充 神
Hiromichi Jin
勲充 神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2015016679A priority Critical patent/JP6490436B2/en
Priority to KR1020150123238A priority patent/KR102319313B1/en
Priority to US15/009,964 priority patent/US10007203B2/en
Publication of JP2016142811A publication Critical patent/JP2016142811A/en
Application granted granted Critical
Publication of JP6490436B2 publication Critical patent/JP6490436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a composite particle having high adhesion strength of fine particles to core particles, and capable of securing excellent charge amount and high fluidity.SOLUTION: The composite particles comprises core particles and fine particles. The principal component of the core particle is one of an organic material and an inorganic material. The fine particles are present on the core particles, and the principal component of the fine particle is the other of the organic material and the inorganic material. The average particle size of the core particles is 80-300 nm, and the coefficient of variation of average particle size is 2-10%. The average particle size of fine particle is 5-30 nm, and the average particle size of the fine particle/the average particle size of the core particle is 0.016-0.25. The composite particle has: an average particle size of 90-350 nm. In the composite particle; a ratio β/βof multipliers in a volume resistance (α×10) and a surface resistance (α×10) is 0.7-1.4; and the number variation of the fine particle existing on the core particle is 0.5 to 5% before and after irradiating a dispersion using water as a dispersion medium and including composite particles of 1 wt.% with an ultrasonic wave having an output of 110 W and a frequency of 31 kHz for 30 minutes.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、電子写真用トナーに外添して使用されるトナー外添剤の構成成分として、適用可能な複合粒子及びその製造方法、並びに、該複合粒子を含むトナー用外添剤に関する。   The present invention relates to, for example, applicable composite particles as a component of a toner external additive used externally to an electrophotographic toner, a method for producing the same, and an external additive for toner containing the composite particles. .

複合粒子は、有機材料から形成された部分と、無機材料から形成された部分を備えているため、有機材料に由来する加工性と、無機材料に由来する特性を併せもつことができることから、両材料特性を活かした様々な用途への適用が期待される機能性材料である。
複合粒子の種類としては、コア部分を構成する樹脂粒子の表面にシェル部分を構成する無機材料層を被覆した構造を有する、いわゆるコアシェル型粒子(例えば、特許文献1〜4参照)、有機材料から形成される大粒子径のコア粒子の表面上に無機材料から形成される小粒子径の微粒子を付着させた構造を有する、いわゆるラズベリー型粒子(例えば、特許文献5〜9参照)などが知られており、用途に応じて多様な形状や構成を有するものが開発されている。
Since the composite particle has a portion formed from an organic material and a portion formed from an inorganic material, both the processability derived from the organic material and the characteristics derived from the inorganic material can be combined. It is a functional material that is expected to be applied to various uses that take advantage of material properties.
As types of composite particles, so-called core-shell type particles having a structure in which the surface of resin particles constituting the core portion is coated with an inorganic material layer constituting the shell portion (for example, see Patent Documents 1 to 4), organic materials Known so-called raspberry type particles (for example, refer to Patent Documents 5 to 9) having a structure in which fine particles of small particle size formed from an inorganic material are attached to the surface of the formed core particle of large particle size are known. Those having various shapes and configurations have been developed depending on the application.

ここで、複合粒子を電子写真用トナーに外添されるトナー外添剤の構成成分として使用する場合、複合粒子は、複写機等の画像形成装置内の部材等との接触時にせん断力や摩擦力などの様々なストレスを受ける。複合粒子を電子写真用トナーなどの用途に適用する場合、その複合粒子の帯電量は用途に応じて適切な範囲に制御される必要があり、また、複合粒子を適用した電子写真用トナーなどに対して、その用途に応じた流動性を付与する必要がある。
このように電子写真用トナーなどの用途に適用される複合粒子には、上述のようなストレスに耐えうるに十分な強度と、良好な帯電量を併せもち、また、複合粒子を適用した電子写真用トナーなどに対して、その用途に応じた適切な流動性を付与することが求められる。
Here, when the composite particles are used as a component of an external toner additive that is externally added to the toner for electrophotography, the composite particles are subjected to shearing force and friction during contact with members in an image forming apparatus such as a copying machine. Receive various stresses such as strength. When applying composite particles to applications such as electrophotographic toner, the charge amount of the composite particles needs to be controlled within an appropriate range according to the application, and for electrophotographic toners to which composite particles are applied. On the other hand, it is necessary to provide fluidity according to the application.
As described above, the composite particles applied to uses such as an electrophotographic toner have sufficient strength to withstand the stress as described above and a good charge amount, and an electrophotographic image using the composite particles is applied. Appropriate fluidity according to the application is required for the toner for use.

特開2012-189881号公報JP 2012-189881 特開2005-173480号公報JP 2005-173480 A 特開2012-13776号公報JP 2012-13776 特開2012-073468号公報JP 2012-073468 特表2007-504307号公報Special Table 2007-504307 特開2002-131976号公報JP 2002-131976 特開2005-202131号公報JP 2005-202131 A 特開2005-202133号公報JP 2005-202133 A 特開2014-065014号公報JP 2014-065014 A

しかし、従来の複合粒子は、上述の要求に対応することが困難な問題点を有している。
特許文献1〜4に開示されたコアシェル型の複合粒子では、コアを構成する球状の有機粒子の柔軟性が高いため、上述のようなストレスを受けると、コア部分の形状が容易に変化し、球状を維持できなくなる可能性がある。複合粒子が球状を維持できない場合、複合粒子の流動性が低下するため、電子写真用トナーに対して適切なレベルの流動性を付与することが困難となる。
特許文献5〜8に開示された従来のラズベリー型の複合粒子では、コア粒子上に微粒子を付着させただけの構造であるため、微粒子のコア粒子上への付着強度が低い。微粒子のコア粒子上への付着強度が低い場合、上述のようなストレスを受けると、コア粒子から微粒子が脱離し易いため、初期の特性を維持することが困難となる。
これに対し、特許文献9に開示された従来のラズベリー型の複合粒子は、無機材料から形成される微粒子と有機材料から形成される微粒子を有機疎水化剤で結合した構造を有しているので、上述の特許文献5〜8に開示された従来のラズベリー型の複合粒子よりも粒子間の付着強度が高いと考えられる。しかし、特許文献9に開示された従来のラズベリー型の複合粒子では、その表面に有機疎水化剤由来の有機成分が多く露出している。有機成分は無機成分より帯電量が高いため、複合粒子の表面に有機成分が多く存在していると、その複合粒子の帯電量を制御することが困難となる。
However, conventional composite particles have a problem that it is difficult to meet the above requirements.
In the core-shell type composite particles disclosed in Patent Documents 1 to 4, since the flexibility of the spherical organic particles constituting the core is high, the shape of the core part easily changes when subjected to stress as described above. There is a possibility that the spherical shape cannot be maintained. When the composite particles cannot maintain a spherical shape, the fluidity of the composite particles decreases, and it becomes difficult to impart an appropriate level of fluidity to the electrophotographic toner.
Since the conventional raspberry type composite particles disclosed in Patent Documents 5 to 8 have a structure in which fine particles are simply attached on the core particles, the adhesion strength of the fine particles on the core particles is low. When the adhesion strength of the fine particles on the core particles is low, the initial characteristics are difficult to maintain because the fine particles are easily detached from the core particles when subjected to the stress as described above.
In contrast, the conventional raspberry type composite particles disclosed in Patent Document 9 have a structure in which fine particles formed from an inorganic material and fine particles formed from an organic material are combined with an organic hydrophobizing agent. It is considered that the adhesion strength between the particles is higher than the conventional raspberry type composite particles disclosed in Patent Documents 5 to 8 described above. However, in the conventional raspberry type composite particles disclosed in Patent Document 9, many organic components derived from the organic hydrophobizing agent are exposed on the surface. Since the organic component has a higher charge amount than the inorganic component, if a large amount of the organic component is present on the surface of the composite particle, it becomes difficult to control the charge amount of the composite particle.

その一方で、例えば、有機ポリマーから形成されるコア粒子表面にナノサイズの無機粒子を付着させた構造を有するラズベリー型の複合粒子は、その表面上に存在する無機粒子によって形成された微細な凹凸形状に基づく、いわゆる蓮の葉効果により撥水性を発揮することから、撥水性材料として活用されている。また、そのようなラズベリー型の複合粒子は、その表面の比表面積が表面に凹凸をもたない球状粒子と比較して大きいことから、触媒の担体としても活用されている。このようにラズベリー型の複合粒子には、その構造や表面形状に由来する特性から新たな用途への適用拡大の余地がある点でも注目を集めている。
従って、さらに、ラズベリー型の複合粒子が活用され、その適用範囲が拡大されるためには、上述した問題点を解決する必要がある。
On the other hand, for example, raspberry-type composite particles having a structure in which nano-sized inorganic particles are attached to the surface of core particles formed from an organic polymer are fine irregularities formed by inorganic particles present on the surface. It is utilized as a water-repellent material because it exhibits water repellency by the so-called lotus leaf effect based on its shape. Further, such raspberry type composite particles are utilized as a catalyst carrier because of their large specific surface area compared to spherical particles having no irregularities on the surface. As described above, the raspberry-type composite particles are also attracting attention because there is room for expanding the application to new applications due to the characteristics derived from the structure and surface shape.
Therefore, in order to further utilize the raspberry type composite particles and expand the application range thereof, it is necessary to solve the above-mentioned problems.

本発明は、上述のような課題を解決するためになされたもので、微粒子のコア粒子上への付着強度が高く、良好な帯電量、高い流動性を確保できる複合粒子及びその製造方法、並びに、該複合粒子を含むトナー用外添剤を提供することを目的とする。   The present invention has been made to solve the above-described problems, and has high adhesion strength of fine particles onto the core particle, and can provide a composite particle capable of securing a good charge amount and high fluidity, a method for producing the same, and Another object of the present invention is to provide an external additive for toner containing the composite particles.

上述した課題を解決するため、本発明は以下の構成を有する。   In order to solve the above-described problems, the present invention has the following configuration.

(構成1)
コア粒子と微粒子とを備える複合粒子において、
前記コア粒子の主成分が有機材料および無機材料のいずれか一方であり、
前記微粒子が前記コア粒子上に存在し、前記コア粒子の主成分が有機材料である場合にあっては、前記微粒子の主成分が無機材料であり、前記コア粒子の主成分が無機材料である場合にあっては、前記微粒子の主成分が有機材料であり、
前記コア粒子の平均粒子径が80nm以上300nm以下であり、前記コア粒子の平均粒子径の変動係数が2%以上10%以下であり、
前記微粒子の平均粒子径が5nm以上30nm以下であり、且つ前記コア粒子の前記平均粒子径に対する前記微粒子の平均粒子径の比が0.016以上0.25以下であり、
前記複合粒子の平均粒子径が90nm以上350nm以下であり、
前記複合粒子の体積抵抗ρv=α1×10β1(Ω・cm)および表面抵抗ρs=α2×10β2(Ω/cm)における乗数の比率β1/β2が0.7以上1.4以下であり、
前記複合粒子が1重量%になるように水に分散させた複合粒子分散液に、出力110W、周波数31kHzの条件で、超音波を30分間照射する前後における、前記コア粒子上に存在する記微粒子の個数変化が0.5%以上5%以下である複合粒子。
(Configuration 1)
In composite particles comprising core particles and fine particles,
The main component of the core particle is one of an organic material and an inorganic material,
When the fine particles are present on the core particles and the main component of the core particles is an organic material, the main component of the fine particles is an inorganic material, and the main component of the core particles is an inorganic material. In some cases, the main component of the fine particles is an organic material,
The average particle diameter of the core particles is 80 nm or more and 300 nm or less, and the coefficient of variation of the average particle diameter of the core particles is 2% or more and 10% or less,
The average particle size of the fine particles is 5 nm or more and 30 nm or less, and the ratio of the average particle size of the fine particles to the average particle size of the core particles is 0.016 or more and 0.25 or less,
The composite particles have an average particle size of 90 nm or more and 350 nm or less,
A multiplier ratio β 1 / β 2 in the volume resistance ρv = α 1 × 10 β1 (Ω · cm) and surface resistance ρs = α 2 × 10 β2 (Ω / cm 2 ) of the composite particles is 0.7 or more. 4 or less,
The fine particles present on the core particles before and after irradiating the composite particle dispersion in which the composite particles are dispersed in water so as to be 1% by weight under the conditions of an output of 110 W and a frequency of 31 kHz for 30 minutes. Composite particles having a number change of 0.5% or more and 5% or less.

(構成2)
前記複合粒子の比誘電率が2以上300以下である構成1に記載の複合粒子。
(Configuration 2)
The composite particle according to Configuration 1, wherein the composite particle has a relative dielectric constant of 2 or more and 300 or less.

(構成3)
前記コア粒子の表面における前記微粒子の被覆率が5%以上68%未満である構成1または2に記載の複合粒子。
(Configuration 3)
The composite particle according to Configuration 1 or 2, wherein a coverage of the fine particles on the surface of the core particle is 5% or more and less than 68%.

(構成4)
前記コア粒子は有機材料から形成され、前記微粒子は無機材料から形成される構成1から3のいずれか1項に記載の複合粒子。
(Configuration 4)
The composite particle according to any one of configurations 1 to 3, wherein the core particle is formed of an organic material, and the fine particle is formed of an inorganic material.

(構成5)
さらに、有機材料から形成される微粒子を備える構成4に記載の複合粒子。
(Configuration 5)
Furthermore, the composite particle according to Configuration 4, comprising fine particles formed from an organic material.

(構成6)
前記無機材料は、シリカ、チタニア、酸化セリウムおよびチタン酸ストロンチウムからなる群から選択される構成4または5に記載の複合粒子。
(Configuration 6)
The composite particle according to Configuration 4 or 5, wherein the inorganic material is selected from the group consisting of silica, titania, cerium oxide, and strontium titanate.

(構成7)
前記コア粒子は無機材料から形成され、前記微粒子は有機材料から形成される構成1から3のいずれか1項に記載の複合粒子。
(Configuration 7)
The composite particle according to any one of configurations 1 to 3, wherein the core particle is formed of an inorganic material, and the fine particle is formed of an organic material.

(構成8)
さらに、無機材料から形成される微粒子を備える構成7に記載の複合粒子。
(Configuration 8)
Furthermore, the composite particle of the structure 7 provided with the microparticles | fine-particles formed from an inorganic material.

(構成9)
前記無機材料は、シリカ、チタニア、酸化セリウムおよびチタン酸ストロンチウムからなる群から選択される構成7または8に記載の複合粒子。
(Configuration 9)
The composite particle according to Configuration 7 or 8, wherein the inorganic material is selected from the group consisting of silica, titania, cerium oxide, and strontium titanate.

(構成10)
前記複合粒子は前記コア粒子の表面および前記微粒子を被覆する無機材料層を備えることを特徴とする構成1から9のいずれか1項に記載の複合粒子。
(Configuration 10)
10. The composite particle according to any one of configurations 1 to 9, wherein the composite particle includes an inorganic material layer that covers the surface of the core particle and the fine particle.

(構成11)
構成1から10のいずれか1項に記載の複合粒子を含むトナー用外添剤。
(Configuration 11)
11. An external toner additive comprising the composite particles according to any one of configurations 1 to 10.

(構成12)
コア粒子と微粒子とを備える複合粒子の製造方法において、
有機材料および無機材料のいずれか一方を主成分とする前記コア粒子と有機材料および無機材料のいずれか他方を主成分とする前記微粒子とを含む分散液から前記コア粒子の表面に前記微粒子が付着した粒子付着体を形成する粒子付着体形成工程と、
前記粒子付着体が形成された前記分散液に、前記コア粒子および前記微粒子のいずれか一方と結合し且ついずれか他方と相互作用するシランカップリング剤および塩基性物質を添加して、前記コア粒子の表面に前記微粒子を固定化させた前記複合粒子を形成する複合粒子形成工程と
を備える複合粒子の製造方法。
(Configuration 12)
In a method for producing composite particles comprising core particles and fine particles,
The fine particles adhere to the surface of the core particles from a dispersion liquid containing the core particles mainly composed of one of an organic material and an inorganic material and the fine particles mainly composed of either the organic material or the inorganic material. A particle adhering body forming step for forming the particle adhering body,
A silane coupling agent and a basic substance that binds to and interacts with one of the core particles and the fine particles are added to the dispersion in which the particle adhering body is formed, and the core particles are added. And a composite particle forming step of forming the composite particle having the fine particles immobilized on the surface thereof.

本発明に係る複合粒子によれば、コア粒子と微粒子とを備える複合粒子において、コア粒子の主成分は、有機材料および無機材料のいずれか一方であり、微粒子は、コア粒子上に存在し、微粒子の主成分は有機材料および無機材料のいずれか他方であり、すなわち、コア粒子の主成分が有機材料である場合にあっては、微粒子の主成分が無機材料であり、コア粒子の主成分が無機材料である場合にあっては、微粒子の主成分が有機材料であり、コア粒子の平均粒子径が80nm以上300nm以下であり、コア粒子の平均粒子径の変動係数が2%以上10%以下であり、微粒子の平均粒子径が5nm以上30nm以下であり、かつコア粒子の平均粒子径に対する微粒子の平均粒子径の比が0.016以上0.25以下であり、複合粒子の平均粒子径が90nm以上350nm以下であり、複合粒子のρv=α1×10β1(Ω・cm)および表面抵抗ρs=α2×10β2(Ω/cm)における乗数の比率β1/β2が0.7以上1.4以下であり、複合粒子が1重量%になるように水に分散させた複合粒子分散液に、出力110W、周波数31kHzの条件で、超音波を30分間照射する前後における、コア粒子上に存在する微粒子の個数変化が0.5%以上5%以下である。
上述した各物性を併せもつ複合粒子は、以下のような効果を有する。
(i)複合粒子は、コア粒子の表面に微粒子状に存在し、且つ、所定条件の超音波照射の前後における、コア粒子の表面に存在する微粒子の個数変化が極めて小さいので、微粒子がコア粒子上に単に付着された従来の複合粒子と比較して、微粒子のコア粒子上への付着強度が高い。微粒子のコア粒子上への付着強度が高いので、せん断力などの様々なストレスを受けても、コア粒子から微粒子が脱離しにくい。
(ii)複合粒子は、体積抵抗ρvおよび表面抵抗ρsが所定の数値範囲にあり、比誘電率が所定の範囲にあるため、初期特性として、帯電の立ち上がりが早く、帯電レベルを維持する、すなわち良好な帯電量を確保できる。この良好な帯電量は、微粒子のコア粒子上への付着強度が高く、コア粒子から微粒子が脱離しにくいので、長期間にわたって維持できる。
(iii)コア粒子および微粒子が所定の数値範囲にある平均粒子径、平均粒子径の比を持ち、且つ所定の数値範囲にある被覆率を持つため、例えばトナー用外添剤などの構成成分として用いた場合、トナーと複合粒子は、常にトナーと複合粒子上に存在する微粒子が接触することとなるため、転がり性が低下することなく、初期特性として、高い流動性を確保できる。高い流動性をもつ複合粒子は、トナー用外添剤などの構成成分として良好に適用されることができる。高い流動性は、微粒子のコア粒子上への付着強度が高く、コア粒子から微粒子が脱離しにくいので、長期間にわたって維持できる。
従って、本発明に係る複合粒子は、微粒子のコア粒子上への付着強度が高く、良好な帯電量、高い流動性を確保できる。
According to the composite particle according to the present invention, in the composite particle comprising the core particle and the fine particle, the main component of the core particle is one of an organic material and an inorganic material, and the fine particle exists on the core particle, The main component of the fine particle is either the organic material or the inorganic material, that is, when the main component of the core particle is an organic material, the main component of the fine particle is the inorganic material, and the main component of the core particle Is an inorganic material, the main component of the fine particles is an organic material, the average particle diameter of the core particles is 80 nm or more and 300 nm or less, and the variation coefficient of the average particle diameter of the core particles is 2% or more and 10%. The average particle diameter of the fine particles is 5 nm or more and 30 nm or less, and the ratio of the average particle diameter of the fine particles to the average particle diameter of the core particles is 0.016 or more and 0.25 or less. Child diameter is not less 90nm or 350nm or less, the composite particles ρv = α 1 × 10 β1 ( Ω · cm) and the surface resistivity ρs = α 2 × 10 β2 ( Ω / cm 2) Ratio of the multiplier in the beta 1 / beta 2 Before and after irradiating the composite particle dispersion liquid in which the composite particles are dispersed in water so that the composite particles are 1% by weight under the conditions of an output of 110 W and a frequency of 31 kHz for 30 minutes. The change in the number of fine particles present on the core particles is 0.5% or more and 5% or less.
The composite particles having the above physical properties have the following effects.
(I) The composite particles are present in the form of fine particles on the surface of the core particles, and the change in the number of fine particles existing on the surface of the core particles before and after ultrasonic irradiation under a predetermined condition is extremely small. The adhesion strength of the fine particles on the core particles is high compared to the conventional composite particles simply deposited on the top. Since the adhesion strength of the fine particles onto the core particles is high, the fine particles are not easily detached from the core particles even when subjected to various stresses such as shearing force.
(Ii) The composite particles have a volume resistance ρv and a surface resistance ρs in a predetermined numerical range, and a relative dielectric constant is in a predetermined range. Good charge amount can be secured. This good charge amount can be maintained for a long period of time because the adhesion strength of the fine particles onto the core particles is high and the fine particles are not easily detached from the core particles.
(Iii) Since the core particles and the fine particles have an average particle diameter in a predetermined numerical range, a ratio of the average particle diameter, and a covering ratio in a predetermined numerical range, for example, as a component such as an external additive for toner When used, the toner and the composite particles are always in contact with the toner and fine particles present on the composite particles, so that high fluidity can be secured as an initial characteristic without lowering the rolling property. The composite particles having high fluidity can be favorably applied as a component such as an external additive for toner. High fluidity can be maintained for a long period of time because the adhesion strength of the fine particles onto the core particles is high and the fine particles are not easily detached from the core particles.
Therefore, the composite particles according to the present invention have high adhesion strength of fine particles onto the core particles, and can secure a good charge amount and high fluidity.

本発明に係る複合粒子の製造方法によれば、コア粒子と微粒子とを備える複合粒子の製造方法において、有機材料および無機材料のいずれか一方を主成分とするコア粒子と有機材料および無機材料のいずれか他方を主成分とする微粒子とを含む分散液からコア粒子の表面に微粒子が付着した粒子付着体を形成する粒子付着体形成工程と、粒子付着体が形成された分散液に、コア粒子および微粒子のいずれか一方と結合し且ついずれか他方と相互作用するシランカップリング剤および塩基性物質を添加して、コア粒子の表面に微粒子を固定化させた複合粒子を形成する複合粒子形成工程と、を備える。
粒子付着体形成工程では、ヘテロ凝集により、コア粒子上に微粒子を存在させ、コア粒子の表面に微粒子を静電的に付着させた粒子付着体を形成し、複合粒子形成工程では、シランカップリング剤の作用によって、コア粒子の表面に微粒子を固定化させた複合粒子を形成する。この複合粒子は、上述した各物性を併せもつことができる。
従って、本発明に係る複合粒子の製造方法によれば、微粒子のコア粒子上への付着強度が高く、良好な帯電量、高い流動性を確保できる複合粒子を製造することができる。
According to the method for producing composite particles according to the present invention, in the method for producing composite particles comprising core particles and fine particles, the core particles, organic materials, and inorganic materials mainly composed of one of an organic material and an inorganic material are used. A particle adhering body forming step of forming a particle adhering body in which fine particles adhere to the surface of the core particle from a dispersion liquid containing fine particles containing either one of the main components as a main component; And forming a composite particle in which fine particles are immobilized on the surface of the core particle by adding a silane coupling agent and a basic substance that binds to and interacts with either one of the fine particles And comprising.
In the particle adhesion formation process, fine particles are present on the core particles by hetero-aggregation to form a particle adhesion body in which the particles are electrostatically adhered to the surface of the core particles. In the composite particle formation process, silane coupling is performed. By the action of the agent, composite particles in which fine particles are immobilized on the surface of the core particles are formed. This composite particle can have each of the physical properties described above.
Therefore, according to the method for producing composite particles according to the present invention, it is possible to produce composite particles that have high adhesion strength of fine particles onto the core particles, and can ensure a good charge amount and high fluidity.

本発明に係るトナー用外添剤によれば、上述した複合粒子を含む。従って、このトナー用外添剤は、微粒子のコア粒子上への付着強度が高く、良好な帯電量、高い流動性を確保できるので、従来よりも高い劣化耐性をもち、長期間にわたってトナー用外添剤とトナー粒子との付着性を維持でき、転写効率を高い状態で維持できると共に、トナー用外添剤がトナー粒子から遊離しにくいので、部材汚染に起因する画像欠陥を抑制し、安定した画像品質を提供することができる。   The toner external additive according to the present invention includes the composite particles described above. Therefore, this external additive for toner has a high adhesion strength of fine particles onto the core particle, and can secure a good charge amount and high fluidity, so it has a higher deterioration resistance than conventional ones and has been used for a long time. The adhesion between the additive and the toner particles can be maintained, the transfer efficiency can be maintained at a high level, and the external additive for toner is not easily released from the toner particles, so that image defects caused by member contamination are suppressed and stable. Image quality can be provided.

走査型電子顕微鏡による画像(SEM画像)に基づいて複合粒子の外観を示す模式図である。It is a schematic diagram which shows the external appearance of a composite particle based on the image (SEM image) by a scanning electron microscope. 図1に示した複合粒子の表面構造の一部を模式的に示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view schematically showing a part of the surface structure of the composite particle shown in FIG. 1. 図1に示した複合粒子の平均粒子径の求め方を説明するための模式図である。It is a schematic diagram for demonstrating how to obtain | require the average particle diameter of the composite particle shown in FIG. 図1に示した複合粒子の一部を構成することとなる粒子の平均粒子径の求め方を説明するための模式図である。It is a schematic diagram for demonstrating how to obtain | require the average particle diameter of the particle | grains which comprise some composite particles shown in FIG. 複合粒子の体積抵抗を測定するための回路図である。It is a circuit diagram for measuring the volume resistance of a composite particle. 複合粒子の表面抵抗を測定するための回路図である。It is a circuit diagram for measuring the surface resistance of composite particles.

以下、本発明の実施の形態について、具体的に説明する。尚、以下の実施の形態は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。   Hereinafter, embodiments of the present invention will be specifically described. In addition, the following embodiment is one form at the time of actualizing this invention, Comprising: This invention is not limited to the range.

実施の形態1.
A.複合粒子
この実施の形態1による複合粒子は、コア粒子と微粒子とを備える。コア粒子の主成分は有機材料であり(以下、このコア粒子を有機コア粒子という場合がある)、微粒子はコア粒子上に存在し、微粒子の主成分は無機材料である(以下、この微粒子を無機微粒子という場合がある)。また、複合粒子は、次の物性(1)〜(6)を併せもつ。
物性(1):有機コア粒子の平均粒子径が80nm以上300nm以下である。
物性(2):有機コア粒子の平均粒子径の変動係数が2%以上10%以下である。
物性(3):無機微粒子の平均粒子径が5nm以上30nm以下であり、且つ有機コア粒子の平均粒子径に対する無機微粒子の平均粒子径の比(以下、無機微粒子の平均粒子径/有機コア粒子の平均粒子径という)が0.016以上0.25以下である。
物性(4):複合粒子の平均粒子径が90nm以上350nm以下である。
物性(5):複合粒子の体積抵抗ρv=α1×10β1(Ω・cm)および表面抵抗ρs=α2×10β2(Ω/cm)における乗数の比率β1/β2が0.7以上1.4以下である。
物性(6):複合粒子が1重量%になるように水に分散させた複合粒子分散液に、出力110W、周波数31kHzの条件で、超音波を30分間照射する前後における、有機コア粒子上に存在する無機微粒子の個数変化が0.5%以上5%以下である。
尚、本明細書においては、平均粒子径等の寸法を物性に含めるものとする。
Embodiment 1 FIG.
A. Composite Particle The composite particle according to the first embodiment includes core particles and fine particles. The main component of the core particle is an organic material (hereinafter, the core particle may be referred to as an organic core particle), the fine particle is present on the core particle, and the main component of the fine particle is an inorganic material (hereinafter, the fine particle is Sometimes called inorganic fine particles). The composite particles also have the following physical properties (1) to (6).
Physical property (1): The average particle diameter of the organic core particles is 80 nm or more and 300 nm or less.
Physical property (2): The variation coefficient of the average particle diameter of the organic core particles is 2% or more and 10% or less.
Physical property (3): The average particle diameter of the inorganic fine particles is 5 nm or more and 30 nm or less, and the ratio of the average particle diameter of the inorganic fine particles to the average particle diameter of the organic core particles (hereinafter, the average particle diameter of the inorganic fine particles / the ratio of the organic core particles) The average particle diameter is 0.016 or more and 0.25 or less.
Physical property (4): The average particle diameter of the composite particles is 90 nm or more and 350 nm or less.
Physical property (5): The ratio β 1 / β 2 of the multiplier in the volume resistance ρv = α 1 × 10 β1 (Ω · cm) and the surface resistance ρs = α 2 × 10 β2 (Ω / cm 2 ) of the composite particles is 0. 7 or more and 1.4 or less.
Physical property (6): On the organic core particle before and after irradiating the composite particle dispersion liquid in which the composite particle is 1% by weight with ultrasonic waves for 30 minutes under the conditions of an output of 110 W and a frequency of 31 kHz. The number change of the inorganic fine particles present is 0.5% or more and 5% or less.
In the present specification, dimensions such as the average particle diameter are included in the physical properties.

有機コア粒子を形成する有機材料としては、複合粒子の粒子中心を構成する有機コア粒子に求められる機械強度を有する材料であることが望ましく、(メタ)アクリル樹脂、ポリスチレン、ポリエチレン等のポリオレフィン、ポリ塩化ビニル、ポリエチレンテレフタレート等のポリエステルおよびこれらの共重合体や、エポキシ樹脂、ウレタン樹脂などが挙げられるが、これらに限定されるものではない。   The organic material forming the organic core particles is preferably a material having the mechanical strength required for the organic core particles constituting the particle center of the composite particles. Polyolefin such as (meth) acrylic resin, polystyrene, polyethylene, Examples thereof include polyesters such as vinyl chloride and polyethylene terephthalate, and copolymers thereof, epoxy resins, and urethane resins, but are not limited thereto.

無機微粒子を形成する無機材料としては、複合粒子の用途や有機コア粒子を形成する有機材料の種類などを考慮して、酸化ケイ素(シリカ)、酸化チタン(チタニア)、酸化ジルコニウム(ジルコニア)、酸化アルミニウム(アルミナ)、酸化セリウム、酸化タングステン、酸化アンチモン、酸化銅、酸化テルル、酸化マンガン、酸化スズ、酸化インジウム、酸化ベリリウム、酸化鉛、酸化ビスマス、チタン酸バリウム、チタン酸ストロンチウム、チタン酸マグネシウム、窒化ケイ素、窒化炭素などの無機材料から適宜、選択することができる。特に、無機微粒子を形成する無機材料としては、シリカ、チタニア、酸化セリウムおよびチタン酸ストロンチウムからなる群から選択されることが望ましいが、これらに限定されるものではない。   Inorganic materials that form inorganic fine particles include silicon oxide (silica), titanium oxide (titania), zirconium oxide (zirconia), and oxidation in consideration of the use of composite particles and the type of organic material that forms organic core particles. Aluminum (alumina), cerium oxide, tungsten oxide, antimony oxide, copper oxide, tellurium oxide, manganese oxide, tin oxide, indium oxide, beryllium oxide, lead oxide, bismuth oxide, barium titanate, strontium titanate, magnesium titanate, It can be appropriately selected from inorganic materials such as silicon nitride and carbon nitride. In particular, the inorganic material forming the inorganic fine particles is preferably selected from the group consisting of silica, titania, cerium oxide, and strontium titanate, but is not limited thereto.

ここで、複合粒子、有機コア粒子および無機微粒子の形状、並びに、有機コア粒子と無機微粒子の関係を説明する。
図1はSEM画像に基づいて複合粒子の外観を示す模式図であり、図2は図1に示した複合粒子の表面構造の一部を模式的に示す拡大断面図である。
複合粒子は、例えば、図1に示すように、全体として球形状を有する、いわゆるラズベリー型粒子であり、その粒子中心を構成する、大粒子径を有する1個の有機コア粒子Aと、その有機コア粒子Aの表面に固定化して合一した、有機コア粒子Aよりも小粒子径を有する複数個の無機微粒子Bとから概略構成されている。
Here, the shapes of the composite particles, the organic core particles, and the inorganic fine particles, and the relationship between the organic core particles and the inorganic fine particles will be described.
FIG. 1 is a schematic view showing the appearance of the composite particles based on the SEM image, and FIG. 2 is an enlarged cross-sectional view schematically showing a part of the surface structure of the composite particles shown in FIG.
For example, as shown in FIG. 1, the composite particles are so-called raspberry type particles having a spherical shape as a whole, and one organic core particle A having a large particle diameter constituting the particle center and the organic It is roughly composed of a plurality of inorganic fine particles B having a smaller particle diameter than the organic core particles A, which are fixed and united on the surface of the core particles A.

有機コア粒子Aおよび無機微粒子Bは、いずれも、後述する製造方法により製造されるものであるので、球形状を有している。
有機コア粒子Aの表面には、図1に示すように、複数個の無機微粒子Bが有機コア粒子Aの表面の少なくとも一部を構成するような態様で固定化されている。この態様では、有機コア粒子Aの表面の少なくとも一部を構成する複数個の無機微粒子Bは、有機コア粒子Aの表面全体において偏ることなく、均等に固定化されることが望ましい。有機コア粒子Aの表面の一部に偏って不均等に固定化した無機微粒子Bの存在によって、複合粒子の特性に偏りをもたらすことなる点で、また、複合粒子が球形状を維持できないために、複合粒子に求められる流動性を低下させる可能性がある点で好ましくないからである。また、有機コア粒子Aの表面の一部に偏らない限り、有機コア粒子Aの表面の一部は、無機微粒子Bが露出した状態であってもよい。
Since both the organic core particle A and the inorganic fine particle B are manufactured by the manufacturing method described later, they have a spherical shape.
As shown in FIG. 1, a plurality of inorganic fine particles B are immobilized on the surface of the organic core particle A in such a manner as to constitute at least a part of the surface of the organic core particle A. In this embodiment, it is desirable that the plurality of inorganic fine particles B constituting at least a part of the surface of the organic core particle A be fixed uniformly without being biased over the entire surface of the organic core particle A. The presence of the inorganic fine particles B that are unevenly immobilized on a part of the surface of the organic core particle A causes the characteristics of the composite particles to be biased, and because the composite particles cannot maintain a spherical shape. This is because the fluidity required for the composite particles may be lowered, which is not preferable. Further, as long as it is not biased to a part of the surface of the organic core particle A, a part of the surface of the organic core particle A may be in a state where the inorganic fine particles B are exposed.

有機コア粒子Aは、その表面に微粒子を固定化させる前段階において、上述の物性(1)等の条件を満たすのであれば、図1においてC1、C2、C3・・・Cn(nは1以上の整数)で示すように、異なる種類の有機材料を主成分とする有機粒子が合一し全体として一つの有機コア粒子を構成するものであってもよい。また、一つの有機コア粒子を構成するために合一する各粒子が異なる粒子径を有するものであってもよい。   The organic core particle A is C1, C2, C3,... Cn (n is 1 or more) in FIG. As shown by (integer integer), organic particles mainly composed of different kinds of organic materials may be combined to constitute one organic core particle as a whole. Moreover, each particle | grains united in order to comprise one organic core particle may have a different particle diameter.

上述の物性(1)〜(4)は、複合粒子、有機コア粒子A、無機微粒子Bの各平均粒子径に関わるものであり、これらの平均粒子径は、いずれも、SEM画像観察により求められる。   The above physical properties (1) to (4) are related to the average particle diameters of the composite particles, the organic core particles A, and the inorganic fine particles B, and these average particle diameters are all determined by SEM image observation. .

以下、SEM画像観察による複合粒子の平均粒子径の求め方を説明する。
図3は図1に示した複合粒子の平均粒子径の求め方を説明するための模式図であり、図4は図1に示した複合粒子の一部を構成することとなる粒子の平均粒子径の求め方を説明するための模式図である。
SEM画像観察では、SEM画像の視野を変えながら、合計100個分の複合粒子についてのSEM画像をそれぞれ二値化処理し、得られた複合粒子の二値化処理画像を得る。このような二値化処理画像を基にして、図3に示すように、複合粒子断面の円形の輪郭を有機コア粒子Aの表面に相当するものと仮定した場合、有機コア粒子Aの表面は、その円形の輪郭の直径DA(有機コア粒子Aの平均粒子径)を有する想定最大内接円(図3において内側の破線で示す)で示すことができる。この想定最大内接円からはみ出した略円形部分は、有機コア粒子Aの表面上に存在する無機微粒子Bに相当することになる。従って、想定最大内接円からはみ出した略円形部分のうち想定最大内接円から最も離れた部分を複合粒子の外表面に相当するものとする仮定することができるので、複合粒子の表面は、想定最大内接円から最も離された部分の直径D(複合粒子の平均粒子径)を有する想定最大外接円(図3において外側の破線で示す)で示すことができる。
また、有機コア粒子Aおよび無機微粒子Bの複合化前の平均粒子径の求め方を説明する。
この場合も、上述と同様に、SEM画像観察を利用し、そのSEM画像の視野を変えながら、合計100個分の有機コア粒子Aまたは無機微粒子BについてのSEM画像をそれぞれ二値化処理し、得られた有機コア粒子Aまたは無機微粒子Bの二値化処理画像を得る。このような二値化処理画像から、有機コア粒子Aの直径DAまたは無機微粒子Bの直径DBを求めることができる。すなわち、二値化処理画像を基にした図4に示すように、粒子表面に相当する略円形部分内に少なくとも2本の弦X、Yを任意に引く。これら2本の弦X、Yに対する直交線(垂線)の交点と、略円形部分のうち交点から最も離された位置との距離は、図4に示すように、有機コア粒子Aの半径DA/2または無機微粒子Bの半径DB/2に相当するものとすることができるので、これらの半径から有機コア粒子Aの直径DA(有機コア粒子Aの平均粒子径)または無機微粒子Bの直径DB(無機微粒子Bの平均粒子径)を求めることができる。
Hereinafter, a method for obtaining the average particle size of the composite particles by SEM image observation will be described.
FIG. 3 is a schematic diagram for explaining how to obtain the average particle diameter of the composite particles shown in FIG. 1, and FIG. 4 is an average particle of the particles that constitute a part of the composite particles shown in FIG. It is a schematic diagram for demonstrating how to obtain | require a diameter.
In SEM image observation, the SEM images of a total of 100 composite particles are binarized while changing the field of view of the SEM image, and binarized images of the obtained composite particles are obtained. Based on such a binarized image, as shown in FIG. 3, when it is assumed that the circular contour of the composite particle cross section corresponds to the surface of the organic core particle A, the surface of the organic core particle A is The assumed maximum inscribed circle (shown by an inner broken line in FIG. 3) having a diameter DA (average particle diameter of the organic core particle A) of the circular contour. The substantially circular portion protruding from the assumed maximum inscribed circle corresponds to the inorganic fine particles B existing on the surface of the organic core particle A. Therefore, it can be assumed that the portion of the substantially circular portion that protrudes from the assumed maximum inscribed circle is the portion farthest from the assumed maximum inscribed circle corresponding to the outer surface of the composite particle. It can be represented by an assumed maximum circumscribed circle (indicated by an outer broken line in FIG. 3) having a diameter D (average particle diameter of the composite particles) of a portion farthest from the assumed maximum inscribed circle.
Further, how to obtain the average particle diameter before the organic core particle A and the inorganic fine particle B are combined will be described.
In this case as well, the SEM image observation is used, and the SEM images for the total 100 organic core particles A or inorganic fine particles B are binarized while changing the field of view of the SEM images. A binarized image of the obtained organic core particle A or inorganic fine particle B is obtained. From such a binarized image, the diameter DA of the organic core particles A or the diameter DB of the inorganic fine particles B can be obtained. That is, as shown in FIG. 4 based on the binarized image, at least two strings X and Y are arbitrarily drawn in a substantially circular portion corresponding to the particle surface. As shown in FIG. 4, the distance between the intersection of the orthogonal lines (perpendicular lines) to these two strings X and Y and the position farthest from the intersection in the substantially circular portion is the radius DA / of the organic core particle A. 2 or the radius DB / 2 of the inorganic fine particle B, the diameter DA of the organic core particle A (the average particle diameter of the organic core particle A) or the diameter DB ( The average particle diameter of the inorganic fine particles B can be determined.

以下、物性(1)〜(4)を個別に説明する。
物性(1)の有機コア粒子Aの平均粒子径の数値範囲は、例えば、複合粒子をトナー用外添剤などの構成成分として使用する場合に実用上適切な、無機微粒子Bの有機コア粒子A上への固定化前における有機コア粒子Aの粒度範囲を示している。
有機コア粒子Aの平均粒子径は、上述のように、80nm以上300nm以下であり、好ましくは、80nm以上200nm以下である。
ここで、有機コア粒子Aの平均粒子径が80nmを下回ると、粒子径が小さなものも混在することになるため、小さな粒子径の有機コア粒子を含む複合粒子が、例えば、大粒子径のトナー用外添剤として求められるスペーサ効果を十分に発揮できない点で好ましくない。有機コア粒子Aの平均粒子径が300nmを上回ると、粒子径の極めて大きなものも混在することになるため、無機微粒子Bの平均粒子径を含めた複合粒子の平均粒子径が、例えば、トナー用外添剤の構成成分として大きくなりすぎることから、トナー用外添剤のトナー粒子への付着力が小さくなる点で好ましくない。
Hereinafter, the physical properties (1) to (4) will be described individually.
The numerical range of the average particle diameter of the organic core particle A having the physical properties (1) is, for example, practically appropriate when the composite particle is used as a constituent component such as an external additive for toner. The particle size range of the organic core particle A before immobilization on the top is shown.
As described above, the average particle diameter of the organic core particle A is 80 nm or more and 300 nm or less, and preferably 80 nm or more and 200 nm or less.
Here, when the average particle diameter of the organic core particles A is less than 80 nm, particles having a small particle diameter are also mixed. Therefore, composite particles including organic core particles having a small particle diameter are, for example, a toner having a large particle diameter. This is not preferable in that the spacer effect required as an external additive cannot be sufficiently exhibited. When the average particle size of the organic core particle A exceeds 300 nm, particles having a very large particle size are also mixed. Therefore, the average particle size of the composite particles including the average particle size of the inorganic fine particles B is, for example, for toner Since it becomes too large as a constituent component of the external additive, it is not preferable in that the adhesion force of the toner external additive to the toner particles is reduced.

物性(2)の有機コア粒子Aの平均粒子径の変動係数の数値範囲は、例えば、複合粒子をトナー用外添剤などの構成成分として使用する場合に実用上適切な、無機微粒子Bの有機コア粒子A上へ固定化前における有機コア粒子Aの平均粒子径のばらつきの範囲を示している。この変動係数は有機コア粒子Aの粒子径の測定値分布の標準偏差÷平均粒子径×100より算出される。
ここで、有機コア粒子Aの平均粒子径の変動係数が10%を上回ると、有機コア粒子Aの粒子径のばらつきが大きすぎるため、例えば、複合粒子をトナー用外添剤などの構成成分として使用する場合に、複合粒子のトナーへの付着性が安定せず、トナーの特性が安定しないという不都合が生じる点で好ましくない。
The numerical range of the coefficient of variation of the average particle diameter of the organic core particle A having the physical properties (2) is, for example, organic in the inorganic fine particles B, which is practically appropriate when the composite particle is used as a component such as an external additive for toner. The range of the dispersion | variation in the average particle diameter of the organic core particle A before fixing on the core particle A is shown. This coefficient of variation is calculated from standard deviation of measured value distribution of particle diameter of organic core particle A ÷ average particle diameter × 100.
Here, when the variation coefficient of the average particle diameter of the organic core particle A exceeds 10%, the dispersion of the particle diameter of the organic core particle A is too large. For example, the composite particle is used as a component such as an external additive for toner. When used, it is not preferable in that the adhesion of the composite particles to the toner is not stable and the toner characteristics are not stable.

物性(3)の無機微粒子Bの平均粒子径/有機コア粒子Aの平均粒子径の数値範囲は、例えば、複合粒子をトナー用外添剤などの構成成分として使用する場合に実用上適切な、無機微粒子Bの有機コア粒子A上への固定化前における無機微粒子Bの平均粒子径と有機コア粒子Aの平均粒子径とのバランスを示している。
物性(3)の無機微粒子の粒子径は5nm以上30nm以下であり、且つ無機微粒子Bの平均粒子径/有機コア粒子Aの平均粒子径は、上述のように、0.016以上0.25以下であり、好ましくは、0.018以上0.2以下である。
ここで、無機微粒子の粒子径が5nmを下回ると1次粒子の状態で存在することが困難になり、コア粒子状に均一に存在させることができない。また、30nmを上回ると、微粒子がストレスを受けた際に離脱しやすくなり、トナー用外添剤などとして流動性を確保できなくなる点で好ましくない。また、無機微粒子Bの平均粒子径/有機コア粒子Aの平均粒子径が0.016を下回ると、有機コア粒子Aの平均粒子径に対して無機微粒子Bの平均粒子径が極めて小さいため、両粒子の大きさのバランスが悪く、有機コア粒子Aの平均粒子径が80nm近傍の値をとる場合の複合粒子が、例えば、スペーサ効果を発揮できる程度の大粒子径となりにくい点で好ましくない。無機微粒子Bの平均粒子径/有機コア粒子Aの平均粒子径が0.25を上回ると、有機コア粒子Aの平均粒子径に対して無機微粒子Bの平均粒子径が極めて大きいため、両粒子の大きさのバランスが悪く、コア粒子と微粒子がストレスを受けた際に離脱しやすくなり、トナー用外添剤などとして流動性を確保できなくなる点で好ましくない。
The numerical range of the average particle diameter of the inorganic fine particle B of the physical property (3) / the average particle diameter of the organic core particle A is practically appropriate when, for example, the composite particle is used as a component such as an external additive for toner. The balance between the average particle diameter of the inorganic fine particles B and the average particle diameter of the organic core particles A before immobilization of the inorganic fine particles B on the organic core particles A is shown.
The particle size of the inorganic fine particles having physical properties (3) is 5 nm or more and 30 nm or less, and the average particle size of the inorganic fine particles B / the average particle size of the organic core particles A is 0.016 or more and 0.25 or less as described above. Preferably, it is 0.018 or more and 0.2 or less.
Here, if the particle diameter of the inorganic fine particles is less than 5 nm, it becomes difficult to exist in the form of primary particles, and it cannot be uniformly present in the form of core particles. On the other hand, when the thickness exceeds 30 nm, the fine particles are easily detached when subjected to stress, and it is not preferable in that fluidity cannot be secured as an external additive for toner. Further, when the average particle diameter of the inorganic fine particles B / the average particle diameter of the organic core particles A is less than 0.016, the average particle diameter of the inorganic fine particles B is extremely small with respect to the average particle diameter of the organic core particles A. The particle size is poorly balanced, and the composite particles in the case where the average particle diameter of the organic core particles A takes a value in the vicinity of 80 nm are not preferable because, for example, it is difficult to obtain a large particle diameter capable of exhibiting the spacer effect. When the average particle diameter of the inorganic fine particles B / the average particle diameter of the organic core particles A exceeds 0.25, the average particle diameter of the inorganic fine particles B is extremely large with respect to the average particle diameter of the organic core particles A. This is not preferable because the size balance is poor, the core particles and the fine particles are easily detached when subjected to stress, and fluidity cannot be secured as an external additive for toner.

物性(4)の複合粒子の平均粒子径の数値範囲は、例えば、複合粒子をトナー用外添剤などの構成成分として使用する場合に実用上適切な複合粒子の粒度範囲を示している。
物性(4)の複合粒子の平均粒子径は、上述のように、90nm以上350nm以下であり、好ましくは、90nm以上250nm以下である。
ここで、複合粒子の平均粒子径の数値範囲が90nmを下回ると、複合粒子が小さすぎるため、例えば、その複合粒子がスペーサ効果を発揮しにくい点で好ましくない。複合粒子の平均粒子径の数値範囲が350nmを上回ると、例えば、その複合粒子がトナー用外添剤などの構成成分として大きすぎる点で好ましくない。
The numerical range of the average particle diameter of the composite particles having the physical properties (4) indicates a particle size range of the composite particles that is practically appropriate when the composite particles are used as a component such as an external additive for toner.
As described above, the average particle size of the composite particles having physical properties (4) is 90 nm or more and 350 nm or less, and preferably 90 nm or more and 250 nm or less.
Here, if the numerical range of the average particle diameter of the composite particles is less than 90 nm, the composite particles are too small. For example, the composite particles are not preferable in that they do not easily exert the spacer effect. If the numerical range of the average particle diameter of the composite particles exceeds 350 nm, it is not preferable because, for example, the composite particles are too large as a component such as an external additive for toner.

尚、物性(1)〜(4)に関わる複合粒子、有機コア粒子A、無機微粒子Bの各平均粒子径は、上述したSEM画像観察以外の方法(例えば、動的光散乱法)によっても求めることができる。本発明の複合粒子以外の特定の複合粒子について、上述したSEM画像観察以外の方法によって求められた平均粒子径が物性(1)〜(4)の数値範囲と異なる場合であっても、当該特定の複合粒子について、上述したSEM画像観察によって求められた平均粒子径が物性(1)〜(4)の数値範囲に含まれるときは、当該特定の複合粒子は物性(1)〜(4)をもつものとして認識することができる。   In addition, each average particle diameter of the composite particle, the organic core particle A, and the inorganic fine particle B related to the physical properties (1) to (4) is also obtained by a method (for example, dynamic light scattering method) other than the above-described SEM image observation. be able to. For specific composite particles other than the composite particles of the present invention, even if the average particle diameter obtained by a method other than the SEM image observation described above is different from the numerical range of the physical properties (1) to (4), When the average particle diameter obtained by the above-mentioned SEM image observation is included in the numerical range of physical properties (1) to (4), the specific composite particles have physical properties (1) to (4). It can be recognized as having.

物性(1)〜(4)を併せもつ複合粒子は、上述のように、さらに、複合粒子の体積抵抗ρv=α1×10β1(Ω・cm)および表面抵抗ρs=α2×10β2(Ω/cm)における乗数の比率β1/β2が0.7以上1.4以下であるという物性(5)を有する。ここで、乗数の比率β1/β2は、抵抗比ρrという場合がある。α、αは1以上10未満の実数であり、β、βは0以上20以下の整数であり、α、α、β、βはそれぞれ同じ数値でもあってもよく、また、異なる数値であってもよい。
物性(5)の複合粒子の抵抗比ρrの数値範囲は、例えば、複合粒子をトナー用外添剤などの構成成分として使用する場合に実用上適切な、複合粒子の体積抵抗ρvと、複合粒子の表面抵抗ρsとのバランスを示している。複合粒子の体積抵抗ρvは、有機コア粒子Aを形成する有機材料および、微粒子Bを形成する無機材料の電気抵抗に依存するものであり、複合粒子の表面抵抗ρsは、複合粒子の表面を形成する材料に特有の電気抵抗に依存するものである。従って、抵抗比ρrは、両抵抗値のバランスによって決まる。複合粒子の体積抵抗ρvと複合粒子の表面抵抗ρsとのバランスが適切であり、抵抗比ρrが上述の数値範囲にあれば、複合粒子に帯電した電荷が複合粒子の表面全体から他の粒子等へ均一に移行するので、その複合粒子は、帯電速度、帯電量(μC/g)、その安定性などの良好な帯電特性をもつことになる。
As described above, the composite particles having the physical properties (1) to (4) further have a volume resistance ρv = α 1 × 10 β1 (Ω · cm) and a surface resistance ρs = α 2 × 10 β2 ( The physical property (5) is such that the multiplier ratio β 1 / β 2 in Ω / cm 2 ) is 0.7 or more and 1.4 or less. Here, the multiplier ratio β 1 / β 2 may be referred to as a resistance ratio ρr. α 1 and α 2 are real numbers of 1 or more and less than 10, β 2 and β 2 are integers of 0 or more and 20 or less, and α 1 , α 2 , β 2 , and β 2 may each be the same numerical value. Also, different numerical values may be used.
The numerical range of the resistance ratio ρr of the composite particle having physical properties (5) is, for example, the volume resistance ρv of the composite particle, which is practically appropriate when the composite particle is used as a constituent component such as an external additive for toner, and the composite particle. This shows the balance with the surface resistance ρs. The volume resistance ρv of the composite particle depends on the electrical resistance of the organic material forming the organic core particle A and the inorganic material forming the fine particle B. The surface resistance ρs of the composite particle forms the surface of the composite particle. It depends on the electrical resistance specific to the material. Therefore, the resistance ratio ρr is determined by the balance of both resistance values. If the balance between the volume resistance ρv of the composite particles and the surface resistance ρs of the composite particles is appropriate and the resistance ratio ρr is in the above numerical range, the charge charged on the composite particles is transferred from the entire surface of the composite particles to other particles, etc. Therefore, the composite particles have good charging characteristics such as charging speed, charge amount (μC / g), and stability.

物性(5)の複合粒子の体積抵抗ρvおよび表面抵抗ρsは、上述のように、β1/β2が0.7以上1.4以下である。このような複合粒子では、その体積抵抗ρvは、有機コア粒子Aを形成する有機材料および、無機微粒子Bを形成する無機材料の各電気抵抗に依存し、その表面抵抗ρsは、複合粒子の表面を形成する材料に特有の電気抵抗に依存する。無機微粒子Bを形成する無機材料の電気抵抗は、有機コア粒子Aを形成する有機材料よりも低いので、上述した構成を有する複合粒子では、体積抵抗ρvが高く、表面抵抗ρsが低くなる。一般に、粒子表面で帯電した電荷は、粒子内部に入り、もしくは粒子表面を伝わって、その粒子の別の表面(例えば、複合粒子が外添されたトナー粒子との接触面)から、他の粒子へ移行すると考えられる。有機コア粒子Aと無機微粒子Bを備える複合粒子では、その表面で帯電した電荷は、複合粒子内部(有機コア粒子Aの部分)に入らず、複合粒子の表面(主に、無機微粒子Bの表面部分)から外部へとリークされるため、複合粒子の表面電荷が少なく、複合粒子の内部電荷が多くなり、複合粒子が保持する電荷の均一性が損なわれると推測される。このため、体積抵抗ρvと表面抵抗ρsとの関係が物性(5)の適切な数値範囲にあることが重要となる。
ここで、抵抗比ρrが0.7を下回ると、複合粒子の表面抵抗ρsが体積抵抗ρvに対して極めて小さいため、複合粒子の表面電荷が外部へとリークされやすく、複合粒子の帯電量を適切な範囲に維持できない点で好ましくない。抵抗比ρrが1.4を上回ると、逆に、複合粒子の表面抵抗ρsが体積抵抗ρvより極めて大きいため、例えば、複合粒子をトナー用外添剤の構成成分として使用する場合に、複合粒子の表面において過剰帯電(チャージアップ)を生じやすく、画像劣化を招く可能性がある点と、表面電荷の外部へのリークなどにより複合粒子が保持する電荷の均一性が損なわれ、複合粒子の帯電量を適切な範囲に維持できない点で好ましくない。
As described above, β 1 / β 2 is 0.7 or more and 1.4 or less in the volume resistance ρv and the surface resistance ρs of the composite particles having the physical properties (5). In such composite particles, the volume resistance ρv depends on the electrical resistances of the organic material forming the organic core particle A and the inorganic material forming the inorganic fine particle B, and the surface resistance ρs is the surface of the composite particle. Depends on the electrical resistance specific to the material forming. Since the electrical resistance of the inorganic material forming the inorganic fine particles B is lower than that of the organic material forming the organic core particles A, the composite particles having the above-described configuration have a high volume resistance ρv and a low surface resistance ρs. In general, the electric charge charged on the particle surface enters the inside of the particle or travels through the particle surface, and from the other surface of the particle (for example, the contact surface with the toner particle to which the composite particle is externally added) to other particles. It is thought that it will shift to. In the composite particle including the organic core particle A and the inorganic fine particle B, the electric charge charged on the surface does not enter the inside of the composite particle (part of the organic core particle A), but the surface of the composite particle (mainly the surface of the inorganic fine particle B). It is estimated that the surface charge of the composite particle is small, the internal charge of the composite particle is increased, and the uniformity of the charge held by the composite particle is impaired. For this reason, it is important that the relationship between the volume resistance ρv and the surface resistance ρs is in an appropriate numerical range of the physical property (5).
Here, when the resistance ratio ρr is less than 0.7, the surface resistance ρs of the composite particles is extremely small with respect to the volume resistance ρv, so that the surface charge of the composite particles is likely to leak to the outside, and the charge amount of the composite particles is reduced. This is not preferable because it cannot be maintained within an appropriate range. When the resistance ratio ρr exceeds 1.4, on the contrary, the surface resistance ρs of the composite particle is extremely larger than the volume resistance ρv. For example, when the composite particle is used as a component of the external additive for toner, the composite particle Overcharge (charge-up) is likely to occur on the surface of the surface, which may lead to image degradation, and the uniformity of the charge held by the composite particles is impaired due to leakage of surface charges to the outside, etc. This is not preferable because the amount cannot be maintained within an appropriate range.

ここで、複合粒子の抵抗比ρrを求めるために必要となる複合粒子の体積抵抗ρv(Ω・cm)および表面抵抗ρs(Ω/cm)の測定方法を説明する。
図5は、複合粒子の体積抵抗を測定するための回路図であり、図6は複合粒子の表面抵抗を測定するための回路図である。
<体積抵抗の測定>
先ず、メタノール中に複合粒子および熱硬化型エポキシ樹脂を加え、熱硬化型エポキシ樹脂中に複合粒子を分散し混練して混練物を得る。その後、混練物を、乳棒および乳鉢により所定時間、解砕してゲル状物質を得る。得られたゲル状物質を型に流し、加圧して成型し、その成型物を乾燥させ、複合粒子およびエポキシ樹脂の複合物からなるペレットを得る。
ペレットの一面に主電極を、その反対面に対電極をそれぞれ銀ペーストにより取り付け、主電極を取り付けた一面に主電極を囲む位置にガード電極を銀ペーストにより取り付け、図5に示す体積抵抗測定用回路を構成し、ペレットの体積抵抗を求める。複合粒子およびエポキシ樹脂のペレット中への配合比率を変えて同様の測定を行い、エポキシ樹脂の比率に対する体積抵抗の変化に基づく検量線を引き、この検量線が交わる座標軸の切片の値(エポキシ樹脂の比率が0%のときの体積抵抗)を複合粒子の体積抵抗(Ω・cm)として算出する。
<表面抵抗の測定>
表面抵抗についても、上述と同様のペレットを用いる。ペレットの一面に主電極および対電極を、その反対面にガード電極をそれぞれ銀ペーストにより取り付け、図6に示す表面抵抗測定用回路を構成し、ペレットの表面抵抗を求める。
この場合においても、複合粒子およびエポキシ樹脂のペレット中への配合比率を変えて同様の測定を行い、エポキシ樹脂の比率に対する表面抵抗の変化に基づく検量線を引き、この検量線が交わる座標軸の切片の値(エポキシ樹脂の比率が0%のときの表面抵抗)を複合粒子の表面抵抗(Ω/cm)として算出する。
Here, a method for measuring the volume resistance ρv (Ω · cm) and the surface resistance ρs (Ω / cm 2 ) of the composite particles necessary for obtaining the resistance ratio ρr of the composite particles will be described.
FIG. 5 is a circuit diagram for measuring the volume resistance of the composite particles, and FIG. 6 is a circuit diagram for measuring the surface resistance of the composite particles.
<Measurement of volume resistance>
First, composite particles and a thermosetting epoxy resin are added to methanol, and the composite particles are dispersed and kneaded in a thermosetting epoxy resin to obtain a kneaded product. Thereafter, the kneaded product is crushed with a pestle and a mortar for a predetermined time to obtain a gel-like substance. The obtained gel-like substance is poured into a mold, pressed and molded, and the molded product is dried to obtain pellets composed of composite particles and a composite of epoxy resin.
A main electrode is attached to one surface of the pellet, a counter electrode is attached to the opposite surface with silver paste, and a guard electrode is attached to the surface surrounding the main electrode with silver paste on one surface where the main electrode is attached, for volume resistance measurement shown in FIG. A circuit is constructed and the volume resistance of the pellet is determined. Perform the same measurement by changing the compounding ratio of composite particles and epoxy resin in the pellet, draw a calibration curve based on the change in volume resistance with respect to the epoxy resin ratio, and the value of the intercept of the coordinate axis where this calibration curve intersects (epoxy resin Is calculated as the volume resistance (Ω · cm) of the composite particles.
<Measurement of surface resistance>
For the surface resistance, the same pellets as described above are used. A main electrode and a counter electrode are attached to one surface of the pellet, and a guard electrode is attached to the opposite surface with silver paste to form a surface resistance measuring circuit shown in FIG. 6, and the surface resistance of the pellet is obtained.
In this case as well, the same measurement is performed by changing the compounding ratio of the composite particles and the epoxy resin into the pellet, and a calibration curve is drawn based on the change in surface resistance with respect to the ratio of the epoxy resin, and the intercept of the coordinate axis where the calibration curve intersects (Surface resistance when the ratio of epoxy resin is 0%) is calculated as the surface resistance (Ω / cm 2 ) of the composite particles.

尚、物性(5)の複合粒子の抵抗比ρrは、図5および図6に示した測定回路を用いて測定する方法以外の方法によっても求めることができる。本発明の複合粒子以外の特定の複合粒子について、図5および図6に示した測定回路を用いて測定する方法以外の方法によって求められた抵抗比ρrが物性(5)の数値範囲と異なる場合であっても、当該特定の複合粒子について、図5および図6に示した測定回路を用いて測定する方法によって求められ抵抗比ρrが物性(5)の数値範囲に含まれるときは、当該特定の複合粒子は物性(5)をもつものとして認識することができる。   The resistance ratio ρr of the composite particles having the physical property (5) can be obtained by a method other than the method of measuring using the measurement circuit shown in FIGS. For specific composite particles other than the composite particles of the present invention, when the resistance ratio ρr determined by a method other than the method of measuring using the measurement circuit shown in FIGS. 5 and 6 is different from the numerical range of the physical property (5) Even when the specific composite particles are obtained by the method of measuring using the measurement circuit shown in FIG. 5 and FIG. 6 and the resistance ratio ρr is included in the numerical range of the physical properties (5), These composite particles can be recognized as having physical properties (5).

また、物性(5)の複合粒子の抵抗比ρrが上述した数値範囲にあれば、その複合粒子は、帯電速度、帯電量(μC/g)、その安定性などの良好な帯電特性をもつ。
複合粒子の良好な帯電量は、−300以上−100以下であり、好ましくは、−250以上−150以下である。
複合粒子の帯電量は、以下のような方法によって測定することができる。
先ず、フタ付きのガプラスチック容器に、スチレン/メチルメタクリレート樹脂で被覆されたフェライト粒子を秤量し、その後、フェライト粒子上に載置した状態で複合粒子を秤量する。その後、常温常湿(23℃/50%RH)下で放置して24時間シーズニングした後、ターブラーミキサーで3分間撹拌振盪することにより、複合粒子に対してフェライト粒子との衝突による摩擦帯電を生じさせる負荷を与える。この粒子の帯電量(μC/g)を飛翔式帯電量測定装置(電界飛翔式帯電量測定装置II−DC電界(商品名)、ディーアイティー株式会社製)で測定する。
In addition, if the resistance ratio ρr of the composite particle having the physical property (5) is in the above-described numerical range, the composite particle has good charging characteristics such as charging speed, charge amount (μC / g), and stability thereof.
A good charge amount of the composite particles is from −300 to −100, preferably from −250 to −150.
The charge amount of the composite particles can be measured by the following method.
First, ferrite particles coated with styrene / methyl methacrylate resin are weighed in a plastic plastic container with a lid, and then the composite particles are weighed in a state of being placed on the ferrite particles. After that, it was allowed to stand under normal temperature and normal humidity (23 ° C./50% RH) and seasoned for 24 hours, and then stirred and shaken with a turbuler mixer for 3 minutes. Give the load to be generated. The charge amount (μC / g) of the particles is measured with a flying charge measuring device (electric field flying charge measuring device II-DC electric field (trade name), manufactured by DIT Corporation).

物性(1)〜(5)を併せもつ複合粒子は、上述のように、さらに、複合粒子が1重量%になるように水に分散させた複合粒子分散液に、出力110W、周波数31kHzの条件で、超音波を30分間照射する前後における、有機コア粒子Aの表面存在する無機微粒子Bの個数変化が0.5%以上5%以下であるという物性(6)を有する。
物性(6)の超音波照射前後における、有機コア粒子Aの表面に固定化無機微粒子Bの個数変化の数値範囲は、例えば、複合粒子をトナー用外添剤などの構成成分として使用する場合に実用上適切な、無機微粒子Bの有機コア粒子A上への付着強度を示している。
物性(6)の個数変化は、上述のように、0.5%以上5%以下である。
ここで、個数変化が5%を上回ると、無機微粒子Bの有機コア粒子A上への付着強度が低く、無機微粒子Bが脱離しやすくなり、例えば、複合粒子をトナー用外添剤などの構成成分として使用する場合にトナー劣化を招き、画像劣化を招く可能性がある点で好ましくない。
As described above, the composite particles having the physical properties (1) to (5) are further subjected to the conditions of 110 W output and 31 kHz frequency in the composite particle dispersion in which the composite particles are dispersed in water so that the composite particles are 1% by weight. Thus, the physical property (6) is that the number change of the inorganic fine particles B existing on the surface of the organic core particles A before and after the irradiation with ultrasonic waves for 30 minutes is 0.5% or more and 5% or less.
The numerical range of the number change of the inorganic fine particles B immobilized on the surface of the organic core particle A before and after the ultrasonic irradiation of the physical property (6) is, for example, when the composite particles are used as a constituent component such as an external additive for toner. The adhesion strength of the inorganic fine particles B onto the organic core particles A, which is practically appropriate, is shown.
The change in the number of physical properties (6) is 0.5% or more and 5% or less as described above.
Here, when the number change exceeds 5%, the adhesion strength of the inorganic fine particles B onto the organic core particles A is low, and the inorganic fine particles B are likely to be detached. When used as a component, it is not preferable because it causes toner deterioration and image deterioration.

ここで、物性(6)の個数変化の求め方を説明する。
先ず、乾燥させた状態の複合粒子100個について、上述したSEM画像観察により有機コア粒子Aの表面に存在する無機微粒子Bの個数を計測する(超音波照射前における個数)。
一方、同じ複合粒子を用い、その複合粒子が1重量%になる配合割合で、水に分散させて複合粒子分散液を調製する。その後、複合粒子分散液に、出力110W、周波数31kHzの条件で、超音波を30分間照射する。その後、複合粒子分散液を遠心沈降により固液分離し、その沈降物を分取し、その沈降物を乾燥させる。この乾燥させた固形物中の100個の複合粒子について、上述したSEM画像観察により有機コア粒子Aの表面に存在する無機微粒子Bの個数を計測する(超音波照射後における個数)。
このようにして得られた超音波照射前における個数と超音波照射後における個数とを比較して超音波照射前後における個数変化(%)を求める。
物性(6)の個数変化の測定条件は、上述のように、出力110W、周波数31kHzの超音波の照射対象となる複合粒子分散液は、複合粒子1重量%水分散液であり、超音波の照射時間は30分間である。超音波の出力、周波数、照射時間は、例えば、複合粒子をトナー用外添剤などの構成成分として使用する場合に受ける可能性のあるせん断力などのストレスに相当する負荷を複合粒子に与えることができるように決められる。また、複合粒子1重量%水分散液中の複合粒子の存在量は、分散液中の複合粒子が過密になりすぎない程度に、且つ、分散液中の複合粒子が希薄になりすぎない程度に、複合粒子を分散液中に分散させ、超音波の照射効率を妨げない点を考慮して設定される。従って、上述の測定条件によって個数変化を求めることは、例えば、複合粒子をトナー用外添剤などの構成成分として使用する場合において、実質的な耐久試験に相当するものであり、無機微粒子Bの有機コア粒子A上への付着強度の程度を比較的正確に、且つ、短時間に知ることが可能となる。
Here, how to obtain the change in the number of physical properties (6) will be described.
First, for 100 composite particles in a dried state, the number of inorganic fine particles B present on the surface of the organic core particle A is measured by the above-described SEM image observation (number before ultrasonic irradiation).
On the other hand, using the same composite particles, a composite particle dispersion is prepared by dispersing in water at a blending ratio of 1% by weight of the composite particles. Thereafter, the composite particle dispersion is irradiated with ultrasonic waves for 30 minutes under conditions of an output of 110 W and a frequency of 31 kHz. Thereafter, the composite particle dispersion is subjected to solid-liquid separation by centrifugal sedimentation, the sediment is collected, and the sediment is dried. With respect to 100 composite particles in the dried solid, the number of inorganic fine particles B present on the surface of the organic core particle A is measured by the above-described SEM image observation (number after ultrasonic irradiation).
The number change (%) before and after the ultrasonic irradiation is obtained by comparing the number before the ultrasonic irradiation and the number after the ultrasonic irradiation thus obtained.
As described above, the measurement condition for the change in the number of physical properties (6) is that the composite particle dispersion to be irradiated with ultrasonic waves with an output of 110 W and a frequency of 31 kHz is a 1% by weight aqueous dispersion of composite particles. The irradiation time is 30 minutes. The output, frequency, and irradiation time of the ultrasonic wave, for example, give the composite particles a load corresponding to stress such as shear force that may be applied when the composite particles are used as a component such as an external additive for toner. To be able to In addition, the amount of the composite particles in the 1% by weight aqueous dispersion of the composite particles is such that the composite particles in the dispersion are not excessively dense and the composite particles in the dispersion are not excessively diluted. The composite particles are set in consideration of the point that the composite particles are dispersed in the dispersion liquid and the irradiation efficiency of the ultrasonic waves is not hindered. Therefore, obtaining the change in the number according to the measurement conditions described above corresponds to a substantial durability test when, for example, the composite particles are used as a constituent component such as an external additive for toner. It becomes possible to know the degree of adhesion strength on the organic core particle A relatively accurately and in a short time.

尚、物性(6)の個数変化は、上述した超音波照射による耐久試験以外の耐久試験(例えば、後述するターブラーミキサーを用いた撹拌振盪による耐久試験)と、上述したSEM画像観察による求め方以外の求め方(例えば、TEM画像を用いた顕微鏡観察による求め方)を組み合わせることによって求めることができる。本発明の複合粒子以外の特定の複合粒子について、上述した超音波照射による耐久試験以外の耐久試験と上述したSEM画像観察による求め方以外の求め方を組み合わせた方法によって求められた個数変化が物性(6)の数値範囲と異なる場合であっても、当該特定の複合粒子について、上述した超音波照射による耐久試験と、上述したSEM画像観察による求め方を組み合わせることによって求められた個数変化が物性(6)の数値範囲に含まれるときは、当該特定の複合粒子は物性(6)をもつものとして認識することができる。   In addition, the number change of the physical property (6) is obtained by a durability test other than the durability test by the ultrasonic irradiation described above (for example, a durability test by stirring and shaking using a tumbler mixer described later) and the SEM image observation described above. Can be obtained by combining other methods of obtaining (for example, obtaining by microscopic observation using a TEM image). For specific composite particles other than the composite particles of the present invention, the number change obtained by a method combining a durability test other than the durability test by ultrasonic irradiation described above and a method other than the method of determining by SEM image observation described above is a physical property. Even if it is different from the numerical range of (6), the change in the number of the specific composite particles obtained by combining the durability test by the above-described ultrasonic irradiation and the above-described method of obtaining by SEM image observation is a physical property. When included in the numerical range of (6), the specific composite particles can be recognized as having physical properties (6).

上述した物性(1)〜(6)を併せもつ複合粒子は、さらに、比誘電率が2以上300以下であるという物性(以下、物性(7)という)を有することが望ましい。
物性(7)の比の数値範囲は、例えば、複合粒子をトナー用外添剤などの構成成分として使用する場合に実用上適切な複合粒子の比誘電率を示している。複合粒子の比誘電率は、真空の誘電率に対する複合粒子の誘電率の比である。つまり、真空の誘電率をεとし、複合粒子の誘電率をεとした場合、複合粒子の比誘電率εrは、ε/ε=εrの関係式を満たす。また、複合粒子の比誘電率は、上述した複合粒子の体積抵抗ρvおよび表面抵抗ρsの変化に応じて変化する。
物性(7)の比誘電率は、上述のように、2以上300以下であり、好ましくは、2以上200以下である。
ここで、比誘電率が2を下回ると、複合粒子が高い絶縁性を示すため、複合粒子の帯電量が少なくなる点で好ましくない。比誘電率が300を上回ると、複合粒子が比較的高い導電性を示すため、電荷がリークしてしまう点で好ましくない。
複合粒子の比誘電率εrを求めるために必要な複合粒子の誘電率εは、上述した体積抵抗、表面抵抗の測定に用いられるペレットを用い、例えば、誘電率測定装置(E4991A RFインピーダンス/マテリアル・アナライザ(商品名)、キーサイトテクノロジー合同会社製)を用いて以下のような方法で求めることができる。
上述のペレット中の複合粒子およびエポキシ樹脂の配合比率を変えて上述の誘電率測定装置で誘電率を測定し、エポキシ樹脂の比率に対する誘電率の変化に基づく検量線を引き、この検量線が交わる座標軸の切片の値(エポキシ樹脂の比率が0%のときの誘電率)を複合粒子の誘電率ε(F/m)として求める。その後、真空の誘電率ε(約8.854×10−12F/m)に対する複合粒子の誘電率εの比(複合粒子の比誘電率:εr=ε/ε)を算出する。
The composite particles having the above physical properties (1) to (6) preferably further have a physical property (hereinafter referred to as physical property (7)) having a relative dielectric constant of 2 or more and 300 or less.
The numerical range of the ratio of the physical property (7) indicates the relative dielectric constant of the composite particle that is practically appropriate when the composite particle is used as a constituent component such as an external additive for toner. The relative dielectric constant of the composite particle is the ratio of the dielectric constant of the composite particle to the dielectric constant of vacuum. That is, when the dielectric constant of vacuum is ε 0 and the dielectric constant of the composite particle is ε, the relative dielectric constant εr of the composite particle satisfies the relational expression of ε / ε 0 = εr. In addition, the relative dielectric constant of the composite particles changes according to changes in the volume resistance ρv and the surface resistance ρs of the composite particles described above.
As described above, the relative dielectric constant of the physical property (7) is 2 or more and 300 or less, preferably 2 or more and 200 or less.
Here, if the relative dielectric constant is less than 2, the composite particles exhibit high insulation, which is not preferable in that the charge amount of the composite particles is reduced. When the relative dielectric constant exceeds 300, the composite particles exhibit a relatively high conductivity, which is not preferable in terms of charge leakage.
The dielectric constant ε of the composite particles necessary for obtaining the relative dielectric constant εr of the composite particles is obtained by using the above-described pellets used for measuring the volume resistance and surface resistance. For example, the dielectric constant measuring device (E4991A RF impedance / material It can be obtained by the following method using an analyzer (trade name), manufactured by Keysight Technology LLC.
Measure the dielectric constant with the above-mentioned dielectric constant measuring device by changing the compounding ratio of the composite particles and epoxy resin in the above pellets, draw a calibration curve based on the change in dielectric constant with respect to the epoxy resin ratio, and this calibration curve intersects The value of the intercept of the coordinate axis (dielectric constant when the epoxy resin ratio is 0%) is obtained as the dielectric constant ε (F / m) of the composite particles. Thereafter, the ratio of the dielectric constant ε of the composite particles to the dielectric constant ε 0 of vacuum (about 8.854 × 10 −12 F / m) (relative dielectric constant of the composite particles: εr = ε / ε 0 ) is calculated.

物性(7)の比誘電率は、上述した体積抵抗、表面抵抗の測定に用いられるペレット以外のペレットと上述した誘電率測定装置以外の装置を組み合わせることによって求めることができる。本発明の複合粒子以外の特定の複合粒子について、上述したペレット以外のペレットと上述した装置以外の装置を組み合わせた方法によって求められた比誘電率が物性(7)の数値範囲と異なる場合であっても、当該特定の複合粒子について、上述したペレットと上述した装置を組み合わせることによって求められた比誘電率が物性(7)の数値範囲に含まれるときは、当該特定の複合粒子は物性(7)をもつものとして認識することができる。   The relative dielectric constant of the physical property (7) can be obtained by combining pellets other than the pellets used for measuring the volume resistance and surface resistance described above and devices other than the dielectric constant measuring apparatus described above. For specific composite particles other than the composite particles of the present invention, the specific dielectric constant determined by a method of combining pellets other than the above-described pellets and devices other than the above-described devices is different from the numerical range of the physical properties (7). However, for the specific composite particles, when the relative dielectric constant obtained by combining the above-described pellets and the above-described apparatus is included in the numerical range of the physical properties (7), the specific composite particles have the physical properties (7 ).

上述した物性(1)〜(6)を併せもつ複合粒子、または、上述した物性(1)〜(7)を併せもつ複合粒子は、さらに、有機コア粒子Aの表面における無機微粒子Bの被覆率が5%以上68%未満であるという物性(以下、物性(8)という)を有することが望ましい。
物性(8)の被覆率は、上述のように、5%以上68%未満であり、好ましくは、5%以上50%以下である。
ここで、被覆率が5%を下回ると、複合粒子の表面、つまり、有機コア粒子Aの表面上の無機微粒子Bによって形成される凹凸形状が十分ではないために、例えば、複合粒子をトナー用外添剤などの流動性向上剤として使用する場合、複合粒子が転がることによって、他の複合粒子を構成する有機コア粒子Aとトナー表面に接触する回数が増えることから、複合粒子の流動性が十分得られない点で好ましくない。また、被覆率が68%を上回る場合、有機コア粒子Aの表面上において無機微粒子B同士が重なり合うことになるため、有機コア粒子Aの表面に接触せずに、無機微粒子B上に重なった無機微粒子Bの付着強度が低下することになり、脱離しやすく、微粉の原因となる点で好ましくない。
The composite particles having the physical properties (1) to (6) described above or the composite particles having the physical properties (1) to (7) described above are further coated with the inorganic fine particles B on the surface of the organic core particles A. It is desirable to have a physical property of 5% or more and less than 68% (hereinafter referred to as physical property (8)).
As described above, the coverage of the physical property (8) is 5% or more and less than 68%, preferably 5% or more and 50% or less.
Here, if the coverage is less than 5%, the surface of the composite particle, that is, the uneven shape formed by the inorganic fine particles B on the surface of the organic core particle A is not sufficient. When used as a fluidity improver such as an external additive, the number of times that the composite particles roll to contact the organic core particles A constituting the other composite particles and the surface of the toner increases. It is not preferable in that it cannot be obtained sufficiently. Further, when the coverage exceeds 68%, the inorganic fine particles B overlap each other on the surface of the organic core particle A. Therefore, the inorganic fine particles B are not in contact with the surface of the organic core particle A and overlap the inorganic fine particles B. The adhesion strength of the fine particles B is lowered, and it is not preferable in that it easily detaches and causes fine powder.

物性(8)の被覆率は、上述したSEM画像観察から求めることができる。
先ず、上述した平均粒子径を求める場合と同様にして、SEM画像の視野を変えながら、合計100個の複合粒子についてのSEM画像を得る。その後、得られたSEM画像の複合粒子の投影画像に対して四角形領域を設定し、その領域内で、有機コア粒子Aの表面において無機微粒子Bが被覆する面積を求め、その領域の面積に対する無機微粒子Bの被覆率(%)を求める。
The coverage of the physical property (8) can be obtained from the SEM image observation described above.
First, as in the case of obtaining the average particle diameter described above, SEM images for a total of 100 composite particles are obtained while changing the field of view of the SEM image. Thereafter, a rectangular region is set for the projected image of the composite particle of the obtained SEM image, and the area covered with the inorganic fine particles B on the surface of the organic core particle A is obtained within the region, and the inorganic with respect to the area of the region is determined. The coverage (%) of the fine particles B is determined.

物性(8)の被覆率は、上述したSEM画像観察以外の方法によっても求めることができる。本発明の複合粒子以外の特定の複合粒子について、上述したSEM画像観察以外の方法によって求められた被覆率が物性(8)の数値範囲と異なる場合であっても、当該特定の複合粒子について、上述したSEM画像観察によって求められた被覆率が物性(8)の数値範囲に含まれるときは、当該特定の複合粒子は物性(8)をもつものとして認識することができる。   The coverage of the physical property (8) can be obtained by a method other than the SEM image observation described above. For specific composite particles other than the composite particles of the present invention, even if the coverage obtained by a method other than the SEM image observation described above is different from the numerical range of the physical properties (8), When the coverage obtained by the SEM image observation described above is included in the numerical range of the physical property (8), the specific composite particles can be recognized as having the physical property (8).

上述の物性(1)〜(6)を併せもつ複合粒子、または、上述の物性(1)〜(6)に物性(7)あるいは物性(8)を併せもつ複合粒子は、例えば、図2に示すように、有機コア粒子Aの表面および無機微粒子Bの表面を被覆する無機材料層Nをさらに備えることが望ましい。
無機材料層Nは、有機コア粒子Aと相互作用し、且つ、塩基性条件下で、無機微粒子Bの表面に存在する水酸基(OH基)と結合(縮合)することにより形成される。このような物質としてはシランカップリング剤が好適に用いられ、塩基性条件下では、無機微粒子Bの表面上の水酸基(OH基)およびシランカップリング剤自身がネットワーク構造を構成し、内部にケイ素(Si)をもった、シリカの非晶質構造に類似する構造を有する無機材料層Nが形成される。
このように、無機材料層Nは、有機コア粒子Aの表面および無機微粒子Bの表面を被覆するネットワーク構造を有するので、無機微粒子Bの有機コア粒子A上への付着強度を高める役割と、ケイ素(Si)を含むことでシリカの非晶質構造に類似する構造を有するので、シリカのような無機材料から形成される被膜と同程度の電気抵抗を示すことから、複合粒子の体積抵抗ρvおよび表面抵抗ρsのバランスを調整する役割と、を担う。
無機材料層Nの形成に用いられるシランカップリング剤としては、式R−Si(OR(但し、Rは、酸素および窒素のいずれか片方もしくは両方を含む炭素原子数1〜6の炭化水素基または酸素および窒素を含まない炭素原子数1〜18の炭化水素基であり、Rは、炭素原子数1〜6の1価炭化水素基である)で示されるシランカップリング剤のうち、上述のケイ素を含有するネットワーク構造を形成できる化合物が挙げられる。具体的には、無機材料層Nの形成に用いられるシランカップリング剤としては、メタクリル酸3−(トリメトキシシリル)プロピル(以下、MAPTMSという)、アクリル酸3−(トリメトキシシリル)プロピル、トリエトキシ(3−グリシジルオキシプロピル)シラン、オクタデシルトリエトキシシラン、アリルトリエトキシシラン、3−イソシアネートプロピルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3−ウレイドプロピルトリエトキシシラン、アミノプロピルトリエトキシシシランなどが挙げられるが、これらに限定されるものではない。
このようなシランカップリング剤は、有機コア粒子Aを形成する有機材料の種類に応じて適宜選択される。例えば、有機コア粒子Aを形成する有機材料がアクリル樹脂またはメタクリル樹脂であれば、アクリル樹脂またはメタクリル樹脂の官能基と相互作用する反応性結合基(例えば、メトキシ基などのアルコキシ基)を有するシランカップリング剤が選択される。当該有機材料がポリエステル樹脂であれば、ポリエステル樹脂の官能基と相互作用する反応性結合基(イソシアネート基)を有するシランカップリング剤が選択される。当該有機材料がエポキシ樹脂であれば、エポキシ樹脂の官能基と相互作用する反応性結合基(エポキシ基)を有するシランカップリング剤が選択される。当該有機材料がウレタン樹脂であれば、ウレタン樹脂の官能基と相互作用する反応性結合基(ウレタン基)を有するシランカップリング剤が選択される。ここで、相互作用とは、有機材料の種類に応じて異なるが、有機材料の官能基とシランカップリング剤の反応性結合基との間の親和性に基づき、ネットワーク構造を形成し、且つ、維持するのに十分な分子間力をいう。
塩基性条件は、pH8以上pH13以下であり、好ましくは、pH8以上pH12以下である。
塩基性条件を得るために用いられる塩基性物質としては、アンモニア、水酸化ナトリウム、水酸化カリウムなどが挙げられるが、これらに限定されるものではない。
The composite particles having the above physical properties (1) to (6) or the composite particles having the physical properties (1) to (6) and the physical properties (7) or (8) are shown in FIG. As shown, it is desirable to further include an inorganic material layer N that covers the surface of the organic core particle A and the surface of the inorganic fine particle B.
The inorganic material layer N is formed by interacting with the organic core particle A and bonding (condensing) with a hydroxyl group (OH group) present on the surface of the inorganic fine particle B under basic conditions. As such a substance, a silane coupling agent is preferably used. Under basic conditions, the hydroxyl group (OH group) on the surface of the inorganic fine particle B and the silane coupling agent itself constitute a network structure, and silicon is contained inside. An inorganic material layer N having a structure similar to the amorphous structure of silica having (Si) is formed.
Thus, since the inorganic material layer N has a network structure that covers the surface of the organic core particle A and the surface of the inorganic fine particle B, the role of increasing the adhesion strength of the inorganic fine particle B on the organic core particle A and silicon Since it has a structure similar to the amorphous structure of silica by containing (Si), it exhibits an electrical resistance comparable to that of a film formed from an inorganic material such as silica. It plays a role of adjusting the balance of the surface resistance ρs.
As the silane coupling agent used for forming the inorganic material layer N, the formula R 1 —Si (OR 2 ) 3 (wherein R 1 has 1 to 6 carbon atoms containing one or both of oxygen and nitrogen). Or a hydrocarbon group having 1 to 18 carbon atoms which does not contain oxygen and nitrogen, and R 2 is a monovalent hydrocarbon group having 1 to 6 carbon atoms). Among them, compounds that can form the above-described silicon-containing network structure are exemplified. Specifically, as the silane coupling agent used for forming the inorganic material layer N, 3- (trimethoxysilyl) propyl methacrylate (hereinafter referred to as MAPTMS), 3- (trimethoxysilyl) propyl acrylate, triethoxy (3-glycidyloxypropyl) silane, octadecyltriethoxysilane, allyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxy Examples thereof include, but are not limited to, silane, 3-ureidopropyltriethoxysilane, aminopropyltriethoxysilane.
Such a silane coupling agent is appropriately selected according to the type of organic material forming the organic core particle A. For example, if the organic material forming the organic core particle A is an acrylic resin or a methacrylic resin, a silane having a reactive bonding group (for example, an alkoxy group such as a methoxy group) that interacts with a functional group of the acrylic resin or the methacrylic resin A coupling agent is selected. If the organic material is a polyester resin, a silane coupling agent having a reactive bonding group (isocyanate group) that interacts with a functional group of the polyester resin is selected. If the organic material is an epoxy resin, a silane coupling agent having a reactive bonding group (epoxy group) that interacts with a functional group of the epoxy resin is selected. If the organic material is a urethane resin, a silane coupling agent having a reactive bonding group (urethane group) that interacts with a functional group of the urethane resin is selected. Here, the interaction differs depending on the type of the organic material, but forms a network structure based on the affinity between the functional group of the organic material and the reactive binding group of the silane coupling agent, and Sufficient intermolecular force to maintain.
The basic condition is pH 8 or more and pH 13 or less, preferably pH 8 or more and pH 12 or less.
Examples of basic substances used to obtain basic conditions include, but are not limited to, ammonia, sodium hydroxide, potassium hydroxide, and the like.

上述の物性を併せもつ実施の形態1による複合粒子は、ヘテロ凝集により、負電荷に帯電した有機コア粒子A上に正電荷に帯電した無機微粒子Bを存在させ、両粒子を静電的に付着させることで、有機コア粒子Aの表面に無機微粒子Bを合一して複合化して得た粒子付着体の表面に、上述のシランカップリング剤の作用により形成される無機材料層Nによって、有機コア粒子Aの表面および無機微粒子Bの表面を被覆して有機コア粒子Aの表面に無機微粒子Bを固定化させてなるものである。このような複合粒子に対応する実施例は、後述する実施例1−1〜1−17である。
また、このように複合化時に、全体として正電荷に帯電している有機コア粒子Aの表面に、ヘテロ凝集により、負電荷に帯電した有機微粒子を存在させ、静電的に付着させることができる。そして、有機コア粒子Aの表面に無機微粒子Bおよび有機微粒子を合一して複合化して得た粒子付着体の表面に、上述のシランカップリング剤の作用により形成される無機材料層Nによって、有機コア粒子A、無機微粒子Bおよび有機微粒子の各表面を被覆して有機コア粒子Aの表面に無機微粒子Bおよび有機微粒子に存在させた複合粒子を形成することができる。つまり、この複合粒子は、有機コア粒子Aと、この有機コア粒子Aの表面上に存在する無機微粒子Bおよび有機微粒子(図示せず)を合一してなるものである。このような複合粒子に対応する実施例は、後述する実施例3−1〜3−6である。
The composite particles according to the first embodiment having the above-mentioned physical properties have the positively charged inorganic fine particles B present on the negatively charged organic core particles A due to heteroaggregation, and both particles are electrostatically attached. By using the inorganic material layer N formed by the action of the silane coupling agent on the surface of the particle adhering body obtained by combining the inorganic fine particles B with the surface of the organic core particles A, The surface of the core particle A and the surface of the inorganic fine particle B are coated and the inorganic fine particle B is immobilized on the surface of the organic core particle A. Examples corresponding to such composite particles are Examples 1-1 to 1-17 described later.
Further, at the time of compositing as described above, the organic fine particles charged negatively by the hetero-aggregation can be present on the surface of the organic core particles A that are positively charged as a whole, and can be electrostatically attached. . And, by the inorganic material layer N formed by the action of the above-mentioned silane coupling agent on the surface of the particle adhesion body obtained by combining and combining the inorganic fine particles B and the organic fine particles on the surface of the organic core particles A, The surfaces of the organic core particles A, the inorganic fine particles B, and the organic fine particles can be coated to form composite particles that are present in the inorganic fine particles B and the organic fine particles on the surface of the organic core particles A. That is, the composite particles are formed by combining the organic core particles A, the inorganic fine particles B and the organic fine particles (not shown) existing on the surface of the organic core particles A. Examples corresponding to such composite particles are Examples 3-1 to 3-6 described later.

B.複合粒子の製造方法
この複合粒子の製造方法は、有機コア粒子Aと、無機微粒子Bとを備える複合粒子の製造方法において、粒子付着体形成工程と、複合粒子形成工程を含む。
尚、この製造方法は、上述のAで説明した物性をもつ複合粒子を製造することができる製造方法の一例である。
以下、工程ごとに説明する。
B. Manufacturing method of composite particle This manufacturing method of a composite particle is a manufacturing method of a composite particle provided with the organic core particle A and the inorganic fine particle B, and includes a particle adhering body formation process and a composite particle formation process.
This manufacturing method is an example of a manufacturing method capable of manufacturing the composite particles having the physical properties described in A above.
Hereinafter, it demonstrates for every process.

1.粒子付着体形成工程
この粒子付着体形成工程は、有機コア粒子Aと無機微粒子Bとを含む分散液(以下、有機無機粒子分散液という場合がある)から有機コア粒子Aの表面に無機微粒子Bが付着した粒子付着体を形成する工程である。この粒子付着体は、次の複合粒子形成工程によって得られる複合粒子を製造する前に形成される中間生成物である。
先ず、粒子付着体形成工程に先立ち、その事前準備として、以下のようにして、有機無機粒子分散液を調製する。
1. Particle Adherent Forming Step In this particle adhering body forming step, the inorganic fine particles B are formed on the surface of the organic core particles A from a dispersion containing the organic core particles A and the inorganic fine particles B (hereinafter sometimes referred to as organic inorganic particle dispersion). This is a step of forming a particle adhering body to which is attached. This particle adhesion body is an intermediate product formed before producing composite particles obtained by the subsequent composite particle forming step.
First, prior to the particle adhering body forming step, as a preliminary preparation, an organic-inorganic particle dispersion is prepared as follows.

有機無機粒子分散液を調製するために、その事前準備として、有機コア粒子Aおよび無機微粒子Bを個別に形成する。   In order to prepare the organic / inorganic particle dispersion, the organic core particles A and the inorganic fine particles B are individually formed as a preliminary preparation.

(イ)有機コア粒子Aの形成
有機コア粒子Aは、以下に説明するように、(i)有機コア粒子Aの原材料の準備、(ii)有機コア粒子Aの合成、(iii)反応残渣の除去の各ステップを経て、形成される。
(A) Formation of Organic Core Particle A As described below, the organic core particle A comprises (i) preparation of raw materials for the organic core particle A, (ii) synthesis of the organic core particle A, and (iii) reaction residue. It is formed through each step of removal.

(i)有機コア粒子Aの原材料の準備
原材料として、有機コア粒子Aを形成する有機材料の出発物質、複合化助剤、反応開始剤、粒子径制御剤を準備する。
有機材料の出発物質としては、上述のAで説明した有機材料のモノマー、オリゴマーなどが挙げられる。有機材料がアクリル樹脂材料であれば、出発物質としては、メタクリル酸メチル(MMA)、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ブチル(メタ)アクリレートなどのアルコシキ基を有するモノマー、オリゴマーなどが挙げられるが、これらに限定されるものではない。
出発物質中のアルコキシ基としては、メチル基、エチル基、プロピル基などが挙げられるが、これらに限定されるものではない。
有機材料がアクリル樹脂材料であれば、複合化助剤としては、メタクリル酸3−(トリメトキシシリル)プロピル(以下、MAPTMSという)、アクリル酸3−(トリメトキシシリル)プロピル、アクリル酸3−(トリエトキシシリル)プロピル、アリルトリメトキシシラン、アリルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのアルコシキ基を有するモノマー、オリゴマーなどが挙げられるが、これらに限定されるものではない。
複合化助剤中のアルコキシ基としては、メチル基、エチル基、プロピル基などが挙げられるが、これらに限定されるものではない。
有機材料がアクリル樹脂材料であれば、反応開始剤としては、過硫酸カリウム(以下、KPSという)、過硫酸ナトリウム、アゾビスイソブチロニトリルなどが挙げられるが、これらに限定されるものではない。
粒子径制御剤としては、p−スチレンスルホン酸ナトリウム(以下、NaSSという)、p−スチレンスルホン酸アンモニウムなどが挙げられるが、これらに限定されるものではない。
(I) Preparation of raw material of organic core particle A As raw materials, a starting material, a composite assistant, a reaction initiator, and a particle size control agent of the organic material forming the organic core particle A are prepared.
Examples of the starting material for the organic material include monomers and oligomers of the organic material described in A above. If the organic material is an acrylic resin material, the starting material may be an alkoxy group such as methyl methacrylate (MMA), isobornyl (meth) acrylate, benzyl (meth) acrylate, hydroxyethyl (meth) acrylate, butyl (meth) acrylate, etc. Monomers, oligomers, and the like having, are not limited to these.
Examples of the alkoxy group in the starting material include, but are not limited to, a methyl group, an ethyl group, and a propyl group.
If the organic material is an acrylic resin material, the composite aids include 3- (trimethoxysilyl) propyl methacrylate (hereinafter referred to as MAPTMS), 3- (trimethoxysilyl) propyl acrylate, 3- (acrylic acid 3- ( Triethoxysilyl) propyl, allyltrimethoxysilane, allyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane and other monomers having an alkoxy group, oligomers, and the like can be mentioned, but the invention is not limited thereto.
Examples of the alkoxy group in the composite aid include, but are not limited to, a methyl group, an ethyl group, and a propyl group.
If the organic material is an acrylic resin material, examples of the reaction initiator include potassium persulfate (hereinafter referred to as KPS), sodium persulfate, and azobisisobutyronitrile, but are not limited thereto. .
Examples of the particle size control agent include, but are not limited to, sodium p-styrenesulfonate (hereinafter referred to as NaSS) and ammonium p-styrenesulfonate.

(ii)有機コア粒子Aの合成
準備した出発物質等を用いて、有機コア粒子Aを合成する。
例えば、冷却機、温度計、窒素導入管を備えた反応容器に、所定量の水を加えた後、反応容器内の雰囲気を窒素ガス雰囲気に置換して酸素を除去する。その後、MMA、NaSSおよびMAPTMSを加えて撹拌した後、混合液に所定量のKPSを加え、その混合液中で、MMAとMAPTMSを重合反応させ、MMAをMAPTMSによって架橋し、粒子径が制御されたポリメタクリル酸メチル(以下、PMMAという)粒子を合成し、そのPMMA粒子を分散した分散液を得る。
反応系への水、MMA、MAPTMS、KPSの各配合量は、有機コア粒子Aに求められる機械強度などを考慮して決められ、NaSSの配合量は、有機コア粒子Aに求められる粒子径を考慮して決められる。
重合反応温度は、0℃以上150℃以下であり、好ましくは、25℃以上80℃以下である。また、重合反応時間は、15分以上24時間以下であり、好ましくは、1時間以上16時間以下である。
(Ii) Synthesis of Organic Core Particle A Organic core particle A is synthesized using the prepared starting material and the like.
For example, after adding a predetermined amount of water to a reaction vessel equipped with a cooler, a thermometer, and a nitrogen introduction tube, the atmosphere in the reaction vessel is replaced with a nitrogen gas atmosphere to remove oxygen. Then, after adding MMA, NaSS and MAPTMS and stirring, a predetermined amount of KPS is added to the mixed solution, MMA and MAPTMS are polymerized in the mixed solution, MMA is crosslinked by MAPTMS, and the particle size is controlled. Polymethyl methacrylate (hereinafter referred to as PMMA) particles are synthesized, and a dispersion in which the PMMA particles are dispersed is obtained.
The blending amounts of water, MMA, MAPTMS, and KPS into the reaction system are determined in consideration of the mechanical strength required for the organic core particles A, and the blending amount of NaSS is the particle size required for the organic core particles A. It is decided in consideration.
The polymerization reaction temperature is 0 ° C. or higher and 150 ° C. or lower, preferably 25 ° C. or higher and 80 ° C. or lower. The polymerization reaction time is 15 minutes to 24 hours, preferably 1 hour to 16 hours.

(iii)分散液中の反応残渣の除去
分散液中のPMMA粒子を、例えば、遠心沈降による固液分離、上澄み液のデカンテーション、所定量の蒸留水の添加の一連の操作を繰り返して反応残渣を除去し、最後に、所定量の水を加えて、PMMA粒子(有機コア粒子A)水分散液を得る。
(Iii) Removal of reaction residue in dispersion The PMMA particles in the dispersion are subjected to a series of operations such as solid-liquid separation by centrifugal sedimentation, decantation of the supernatant, and addition of a predetermined amount of distilled water, for example. Finally, a predetermined amount of water is added to obtain an aqueous dispersion of PMMA particles (organic core particles A).

(ロ)無機微粒子Bの形成
無機微粒子Bは、(i)無機微粒子Bの原材料の準備、(ii)含有成分の調製、(iii)無機微粒子Bの合成および反応残渣の除去の各ステップを経て、形成される。
(B) Formation of inorganic fine particles B The inorganic fine particles B are subjected to the steps of (i) preparation of raw materials for the inorganic fine particles B, (ii) preparation of components, (iii) synthesis of the inorganic fine particles B and removal of reaction residues. ,It is formed.

(i)無機微粒子Bの原材料の準備
原材料として、無機微粒子Bを形成する無機材料の出発物質、有機溶媒、触媒を準備する。
無機材料の出発物質としては、上述のAで説明した無機材料中の無機物(例えば、ケイ素、チタン、ジルコニウム、アルミニウム)を含む化合物などが挙げられる。無機材料がシリカであれば、出発物質としては、例えば、式:RSi(OR、式:RSi(OR、式:Si(OR(但し、各式における各Rは炭素原子数1〜6の1価炭化水素基であり、RおよびRはいずれも炭素原子数1〜20の炭化水素基である)で示されるシラン化合物およびその加水分解縮合物などが挙げられる。
上述のシラン化合物としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、テトラエトキシシラン、ジメチルジエトキシシラン、エチルトリメトキシシラン、イソブチルトリメトキシシラン、プロピルメチルジエトキシシラン、プロピルトリメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどのシラン化合物(モノマー成分)が挙げられるが、これらに限定されるものではない。上述のシラン化合物の加水分解縮合物としては、上述のシラン化合物中の加水分解性基(メトキシ基、エトキシ基など)を縮合して得られる加水分解縮合物(ダイマーやオリゴマーなど)が挙げられるが、これらに限定されるものではない。
(I) Preparation of raw materials for inorganic fine particles B As raw materials, a starting material of inorganic material for forming inorganic fine particles B, an organic solvent, and a catalyst are prepared.
As a starting material of the inorganic material, a compound containing an inorganic substance (for example, silicon, titanium, zirconium, aluminum) in the inorganic material described in A above can be given. If the inorganic material is silica, examples of the starting material include a formula: R 2 R 3 Si (OR 1 ) 2 , a formula: R 2 Si (OR 1 ) 3 , a formula: Si (OR 1 ) 4 (wherein Each R 1 in each formula is a monovalent hydrocarbon group having 1 to 6 carbon atoms, and R 2 and R 3 are both hydrocarbon groups having 1 to 20 carbon atoms) and its silane compound Examples include hydrolysis condensates.
Examples of the silane compound include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, tetraethoxysilane, dimethyldiethoxysilane, ethyltrimethoxysilane, isobutyltrimethoxysilane, and propylmethyl. Examples include, but are not limited to, silane compounds (monomer components) such as diethoxysilane, propyltrimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane. Examples of the hydrolysis condensate of the above silane compound include hydrolysis condensates (such as dimers and oligomers) obtained by condensing hydrolyzable groups (methoxy group, ethoxy group, etc.) in the above silane compound. However, it is not limited to these.

有機溶媒としては、プロトン性溶媒、非プロトン性溶媒などが挙げられるが、これに限定されるものではない。プロトン性溶媒としては、エタノール、1−プロパノール、2−プロパノールなどが挙げられる。非プロトン性溶媒としては、アセトニトリル、アセトン、メチルイソブチルケトン、メチルエチルケトン、トルエンなどが挙げられる。   Examples of the organic solvent include, but are not limited to, protic solvents and aprotic solvents. Examples of protic solvents include ethanol, 1-propanol, and 2-propanol. Examples of the aprotic solvent include acetonitrile, acetone, methyl isobutyl ketone, methyl ethyl ketone, and toluene.

触媒としては、アンモニア、ジメチルアミン、ジエチルアミン、トリメチルアミン、水酸化ナトリウム、水酸化カリウムなどの塩基性化合物が挙げられるが、これらに限定されるものではない。   Examples of the catalyst include, but are not limited to, basic compounds such as ammonia, dimethylamine, diethylamine, trimethylamine, sodium hydroxide, and potassium hydroxide.

(ii)含有成分の調製
出発物質としてのシラン化合物または加水分解縮合物(以下、有機ケイ素化合物という)を含む成分(以下、ケイ素含有成分という)と、触媒を含む成分(以下、触媒含有成分という)を個別に調製する。
先ず、所定量の有機ケイ素化合物、有機溶媒を混合してケイ素含有成分を調製する。
一方、所定量の塩基性化合物、溶媒を混合して触媒含有成分を調製する。
ケイ素含有成分中への有機ケイ素化合物、有機溶媒の各配合量は、無機微粒子Bに求められる機械強度などを考慮して決められ、触媒含有成分中への塩基性化合物、溶媒の各配合量は、ケイ素含有成分の配合量などを考慮して決められる。
(Ii) Preparation of Containing Component A component containing a silane compound or hydrolysis condensate (hereinafter referred to as an organosilicon compound) as a starting material (hereinafter referred to as a silicon-containing component) and a component containing a catalyst (hereinafter referred to as a catalyst-containing component). ) Individually.
First, a predetermined amount of an organosilicon compound and an organic solvent are mixed to prepare a silicon-containing component.
On the other hand, a catalyst-containing component is prepared by mixing a predetermined amount of a basic compound and a solvent.
Each compounding amount of the organosilicon compound and the organic solvent in the silicon-containing component is determined in consideration of mechanical strength required for the inorganic fine particles B, and each compounding amount of the basic compound and the solvent in the catalyst-containing component is The amount is determined in consideration of the compounding amount of the silicon-containing component.

(iii)無機微粒子Bの合成および反応残渣の除去
先ず、調製したケイ素含有成分の液温を制御し、且つ、撹拌しておく。
一方で、調製した触媒含有成分の液温を、ケイ素含有成分の液温となるように制御し、その液温となった後に、触媒含有成分をケイ素含有成分中に一気に添加し、混合する。
その後、両成分を含む混合液を撹拌し、液量が半分になるまで加熱濃縮する。その後、例えば、遠心沈降による固液分離、上澄み液のデカンテーション、所定量の蒸留水の添加の一連の操作を繰り返し、最後に、所定量の水を加え、反応残渣を除去した、シリカ微粒子(無機微粒子B)を分散した分散液を得る。
反応系へのケイ素含有成分、触媒含有成分の各配合量は、無機微粒子Bに求められる機械強度などを考慮して決められる。
反応温度は、0℃以上100℃以下であり、好ましくは、15℃以上80℃以下である。また、反応時間は、1時間以上24時間以下であり、好ましくは、2時間以上12時間以下である。
(Iii) Synthesis of inorganic fine particles B and removal of reaction residue First, the liquid temperature of the prepared silicon-containing component is controlled and stirred.
On the other hand, the liquid temperature of the prepared catalyst-containing component is controlled to be the liquid temperature of the silicon-containing component, and after the liquid temperature is reached, the catalyst-containing component is added to the silicon-containing component all at once and mixed.
Then, the liquid mixture containing both components is stirred and concentrated by heating until the liquid volume becomes half. Thereafter, for example, a series of operations of solid-liquid separation by centrifugal sedimentation, decantation of the supernatant, and addition of a predetermined amount of distilled water are repeated, and finally, a predetermined amount of water is added to remove the reaction residue. A dispersion in which the inorganic fine particles B) are dispersed is obtained.
Each compounding amount of the silicon-containing component and the catalyst-containing component in the reaction system is determined in consideration of the mechanical strength required for the inorganic fine particles B.
The reaction temperature is 0 ° C. or higher and 100 ° C. or lower, preferably 15 ° C. or higher and 80 ° C. or lower. The reaction time is 1 hour or more and 24 hours or less, preferably 2 hours or more and 12 hours or less.

<粒子付着体の形成>
粒子付着体は、上述のように合成した有機コア粒子Aと、上述のように合成した無機微粒子Bとを用いて行う、(i)有機無機粒子分散液の調製ステップ、(ii)有機無機粒子分散液の調製後の撹拌ステップ、(iii)有機無機粒子分散液のpH調整ステップ、(iv)付着ステップを経て、形成される。
<Formation of particle adhesion>
The particle adhering is performed using the organic core particles A synthesized as described above and the inorganic fine particles B synthesized as described above, (i) a step of preparing an organic-inorganic particle dispersion, (ii) organic-inorganic particles It is formed through a stirring step after preparation of the dispersion, (iii) a pH adjustment step of the organic-inorganic particle dispersion, and (iv) an adhesion step.

(i)有機無機粒子分散液の調製ステップ
先ず、反応容器に、有機コア粒子A(例えば、PMMAコア粒子)を含む分散液と、無機微粒子B(例えば、シリカ微粒子)を含む分散液を撹拌しながら混合して、有機無機粒子分散液を得る。
有機無機粒子分散液中の有機コア粒子Aおよび無機微粒子Bの各配合率、両粒子の配合比は、有機コア粒子Aおよび無機微粒子Bの各平均粒子径の大小関係に基づき、有機コア粒子Aの表面に付着させる無機微粒子Bの想定個数などを考慮して決められる。
有機無機粒子分散液の調製時の液温は、0℃以上100℃以下であり、好ましくは、15℃以上80℃以下である。
(I) Preparation Step of Organic Inorganic Particle Dispersion First, a dispersion containing organic core particles A (eg, PMMA core particles) and a dispersion containing inorganic fine particles B (eg, silica fine particles) are stirred in a reaction vessel. While mixing, an organic-inorganic particle dispersion is obtained.
The blending ratio of the organic core particles A and the inorganic fine particles B in the organic inorganic particle dispersion liquid and the blending ratio of the two particles are based on the size relationship between the average particle diameters of the organic core particles A and the inorganic fine particles B. It is determined in consideration of the assumed number of inorganic fine particles B to be adhered to the surface of the material.
The liquid temperature during the preparation of the organic / inorganic particle dispersion is from 0 ° C. to 100 ° C., and preferably from 15 ° C. to 80 ° C.

(ii)有機無機粒子分散液の調製後の撹拌ステップ
その後、必要に応じて、有機無機粒子分散液を所定の液温、所定の時間、撹拌する。
この撹拌ステップでは、中性領域にある有機無機粒子分散液中において有機コア粒子Aと無機微粒子Bを十分に分散させ、両粒子の接触機会を与え、有機コア粒子Aの表面上に多くの無機微粒子Bを存在させる。この段階では、有機コア粒子Aおよび無機微粒子Bの表面は、いずれも負電荷に帯電しているため、両粒子は、静電的に結合しないと考えられる。
撹拌ステップにおける分散液の液温は、0℃以上100℃以下であり、好ましくは、15℃以上80℃以下であり、撹拌時間は、0時間以上24時間以下であり、好ましくは、15分以上15時間以下である。
(Ii) Stirring step after preparation of organic-inorganic particle dispersion The organic-inorganic particle dispersion is then stirred for a predetermined time at a predetermined liquid temperature, if necessary.
In this stirring step, the organic core particles A and the inorganic fine particles B are sufficiently dispersed in the organic-inorganic particle dispersion in the neutral region, giving the opportunity for contact between the two particles, and a large amount of inorganic on the surface of the organic core particles A. Presence of fine particles B. At this stage, the surfaces of the organic core particles A and the inorganic fine particles B are both negatively charged, so it is considered that both particles are not electrostatically coupled.
The liquid temperature of the dispersion in the stirring step is 0 ° C. or higher and 100 ° C. or lower, preferably 15 ° C. or higher and 80 ° C. or lower, and the stirring time is 0 hour or longer and 24 hours or shorter, preferably 15 minutes or longer. 15 hours or less.

(iii)有機無機粒子分散液のpH調整ステップ
その後、液温および撹拌速度を維持した有機無機粒子分散液に、そのpHを測定しながら、分散液中の無機微粒子Bを形成する無機材料の等電点(シリカの場合、pH2.0)になるまで時間かけて酸性溶液を滴下し続け、等電点(シリカの場合、pH2.0)になったところで酸性溶液の滴下を停止する。
このpH調整ステップでは、分散液を中性領域から等電点(シリカの場合、pH2.0)まで低下させることで、分散液中の無機微粒子Bの表面は、中性領域からpH2近傍の酸性領域では負電荷に帯電しているが、等電点以下では正電荷に変わる。一方、分散液中の有機コア粒子Aの表面は中性領域から無機材料の等電点以下まで、負電荷に帯電し続けている。従って、分散液のpHが等電点にあれば、有機コア粒子Aと無機微粒子Bは逆電荷に帯電するので、互いに凝集しやすくなり、両粒子は静電的に付着することが可能となる。
酸性溶液としては、塩酸、硫酸、硝酸、酢酸などが挙げられるが、これに限定されるものではない。
(Iii) pH adjustment step of the organic / inorganic particle dispersion liquid Subsequently, the inorganic material that forms the inorganic fine particles B in the dispersion liquid while measuring the pH of the organic / inorganic particle dispersion liquid whose liquid temperature and stirring speed are maintained. The acidic solution is continuously added dropwise over time until the electric point (silica, pH 2.0) is reached, and when the isoelectric point (silica, pH 2.0) is reached, the dropping of the acidic solution is stopped.
In this pH adjustment step, the surface of the inorganic fine particles B in the dispersion is acidified in the vicinity of pH 2 from the neutral region by lowering the dispersion from the neutral region to the isoelectric point (pH 2.0 in the case of silica). The region is negatively charged, but changes to a positive charge below the isoelectric point. On the other hand, the surface of the organic core particles A in the dispersion continues to be negatively charged from the neutral region to below the isoelectric point of the inorganic material. Therefore, if the pH of the dispersion is at the isoelectric point, the organic core particles A and the inorganic fine particles B are charged with opposite charges, so that they tend to aggregate with each other, and both particles can be attached electrostatically. .
Examples of the acidic solution include hydrochloric acid, sulfuric acid, nitric acid, acetic acid and the like, but are not limited thereto.

(iv)付着ステップ
その後、有機無機粒子分散液を所定の液温まで昇温してから、所定の液温で所定時間、撹拌し、有機コア粒子A(例えば、PMMAコア粒子)の表面に無機微粒子B(例えば、シリカ微粒子)を付着させた粒子付着体を形成する。
この付着ステップでは、ヘテロ凝集により、有機コア粒子A上に無機微粒子Bを存在させ、負電荷に帯電した有機コア粒子Aの表面に、上述のpH調整ステップにて正電荷に帯電した無機微粒子Bを静電的に付着させることにより、粒子付着体を形成する。
液温は、0℃以上100℃以下であり、好ましくは、15℃以上80℃以下である。
撹拌時間は、0時間以上24時間以下であり、好ましくは、5分以上12時間以下である。
(Iv) Adhesion step Thereafter, the organic inorganic particle dispersion liquid is heated to a predetermined liquid temperature, and then stirred at a predetermined liquid temperature for a predetermined time, so that the surface of the organic core particle A (for example, PMMA core particle) is inorganic. A particle adhering body to which fine particles B (for example, silica fine particles) are adhered is formed.
In this adhesion step, the inorganic fine particles B are present on the organic core particles A by heteroaggregation, and the inorganic fine particles B charged to the positive charge in the pH adjustment step described above on the surface of the organic core particles A charged to the negative charge. Is attached electrostatically to form a particle adhering body.
The liquid temperature is 0 ° C. or higher and 100 ° C. or lower, preferably 15 ° C. or higher and 80 ° C. or lower.
The stirring time is from 0 hour to 24 hours, preferably from 5 minutes to 12 hours.

2.複合粒子形成工程
この複合粒子形成工程は、上述の粒子付着体が形成された分散液に、有機コア粒子Aの表面に存在する反応性結合基と相互作用し、且つ、塩基性条件下で、無機微粒子Bの表面に存在する水酸基(OH基)と結合するシランカップリング剤および塩基性物質を添加して、シランカップリング剤を作用させて得られる無機材料層Nにより有機コア粒子Aの表面および無機微粒子Bの表面を被覆して有機コア粒子Aの表面に無機微粒子Bを固定化させた複合粒子を形成する工程である。ここでいう反応性結合基としては、例えば水酸基、カルボキシル基、ウレタン基、メトキシ基などのアルコキシ基を挙げることができるが、これらに限定されるものではない。
このような複合粒子形成工程では、粒子付着体形成工程においてヘテロ凝集により有機コア粒子A上に存在させた無機微粒子Bの有機コア粒子A上への静電的な付着を、シランカップリング剤の作用によって形成された無機材料層Nにより無機微粒子Bの有機コア粒子A上に固定化し、無機微粒子Bの有機コア粒子A上への付着強度を向上させる。
2. Composite particle forming step This composite particle forming step interacts with the reactive binding group present on the surface of the organic core particle A in the dispersion in which the particle adhering body is formed, and under basic conditions. The surface of the organic core particle A is formed by the inorganic material layer N obtained by adding a silane coupling agent and a basic substance that are bonded to the hydroxyl group (OH group) present on the surface of the inorganic fine particle B and causing the silane coupling agent to act. And a step of forming composite particles in which the surface of the inorganic fine particles B is coated and the inorganic fine particles B are immobilized on the surface of the organic core particles A. Examples of the reactive bonding group herein include, but are not limited to, alkoxy groups such as a hydroxyl group, a carboxyl group, a urethane group, and a methoxy group.
In such a composite particle forming step, electrostatic adhesion of the inorganic fine particles B present on the organic core particles A by heteroaggregation in the particle adhering member forming step to the organic core particles A is performed by using a silane coupling agent. The inorganic material layer N formed by the action immobilizes the inorganic fine particles B on the organic core particles A, and improves the adhesion strength of the inorganic fine particles B on the organic core particles A.

無機材料層Nの形成に用いられるシランカップリング剤としては、式R−Si(OR(但し、Rは、酸素および窒素のいずれか片方もしくは両方を含む炭素原子数1〜6の炭化水素基または酸素および窒素を含まない炭素原子数1〜18の炭化水素基であり、Rは、炭素原子数1〜6の1価炭化水素基である)で示されるシランカップリング剤のうち、ケイ素を含有するネットワーク構造を形成できる化合物が挙げられる。具体的には、無機材料層Nの形成に用いられるシランカップリング剤としては、メタクリル酸3−(トリメトキシシリル)プロピル(MAPTMS)、アクリル酸3−(トリメトキシシリル)プロピル、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、オクタデシルトリエトキシシラン、3−ウレイドプロピルトリエトキシシラン、アミノプロピルトリエトキシシシラン、トリエトキシ(3−グリシジルオキシプロピル)シラン、3−イソシアネートプロピルトリエトキシシランなどが挙げられるが、これらに限定されるものではない。
このようなシランカップリング剤は、有機コア粒子Aを形成する有機材料の種類に応じて適宜選択される。例えば、有機コア粒子Aを形成する有機材料がアクリル樹脂またはメタクリル樹脂であれば、アクリル樹脂またはメタクリル樹脂の官能基と相互作用する反応性結合基(例えば、メトキシ基などのアルコキシ基)を有するシランカップリング剤が選択される。当該有機材料がポリエステル樹脂であれば、ポリエステル樹脂の官能基と相互作用する反応性結合基(イソシアネート基)を有するシランカップリング剤が選択される。当該有機材料がエポキシ樹脂であれば、エポキシ樹脂の官能基と相互作用する反応性結合基(エポキシ基)を有するシランカップリング剤が選択される。当該有機材料がウレタン樹脂であれば、ウレタン樹脂の官能基と相互作用する反応性結合基(イソシアネート基)を有するシランカップリング剤などが選択される。
塩基性条件は、pH8以上pH13以下であり、好ましくは、pH8以上pH10以下である。
塩基性条件を得るために用いられる塩基性物質としては、アンモニア、水酸化ナトリウム、水酸化カリウムなどが挙げられるが、これらに限定されるものではない。
As the silane coupling agent used for forming the inorganic material layer N, the formula R 1 —Si (OR 2 ) 3 (wherein R 1 has 1 to 6 carbon atoms containing one or both of oxygen and nitrogen). Or a hydrocarbon group having 1 to 18 carbon atoms which does not contain oxygen and nitrogen, and R 2 is a monovalent hydrocarbon group having 1 to 6 carbon atoms). Among them, compounds that can form a silicon-containing network structure are included. Specifically, as the silane coupling agent used for forming the inorganic material layer N, 3- (trimethoxysilyl) propyl methacrylate (MAPTMS), 3- (trimethoxysilyl) propyl acrylate, vinyltriethoxysilane , Vinyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, octadecyltriethoxysilane, 3-ureidopropyltriethoxysilane, aminopropyltriethoxysilane, triethoxy (3-glycidyloxypropyl) silane , 3-isocyanatopropyltriethoxysilane and the like, but are not limited thereto.
Such a silane coupling agent is appropriately selected according to the type of organic material forming the organic core particle A. For example, if the organic material forming the organic core particle A is an acrylic resin or a methacrylic resin, a silane having a reactive bonding group (for example, an alkoxy group such as a methoxy group) that interacts with a functional group of the acrylic resin or the methacrylic resin A coupling agent is selected. If the organic material is a polyester resin, a silane coupling agent having a reactive bonding group (isocyanate group) that interacts with a functional group of the polyester resin is selected. If the organic material is an epoxy resin, a silane coupling agent having a reactive bonding group (epoxy group) that interacts with a functional group of the epoxy resin is selected. If the organic material is a urethane resin, a silane coupling agent having a reactive bonding group (isocyanate group) that interacts with a functional group of the urethane resin is selected.
The basic condition is pH 8 or more and pH 13 or less, preferably pH 8 or more and pH 10 or less.
Examples of basic substances used to obtain basic conditions include, but are not limited to, ammonia, sodium hydroxide, potassium hydroxide, and the like.

尚、複合粒子が、有機コア粒子と、この有機コア粒子の表面に存在する無機微粒子および有機微粒子を合一してなるものである場合における上述の粒子付着体形成工程では、先ず、有機コア粒子と無機微粒子を含む分散液のpHを無機微粒子の形成材料の等電点(例えば、pH2.0)に調整することで、ヘテロ凝集により、有機コア粒子上に無機微粒子を存在させ、有機コア粒子表面に無機微粒子を静電的に付着させ、その後、当該分散液に、有機微粒子を含む分散液を添加することで、表面に無機微粒子を静電的に付着させた有機コア粒子の表面に有機微粒子をさらに静電的に付着させた粒子付着体を形成する。その後の複合粒子形成工程は、上述の複合粒子形成工程と同様に行うことによって、有機コア粒子の表面に無機微粒子および有機微粒子を固定化した複合粒子を得ることができる。   In the above-mentioned particle adhering body formation step in the case where the composite particles are formed by combining organic core particles, inorganic fine particles and organic fine particles present on the surface of the organic core particles, first, the organic core particles By adjusting the pH of the dispersion containing inorganic fine particles to the isoelectric point (for example, pH 2.0) of the inorganic fine particle forming material, the inorganic fine particles are present on the organic core particles by heteroaggregation, and the organic core particles The inorganic fine particles are electrostatically attached to the surface, and then a dispersion containing organic fine particles is added to the dispersion. A particle adhering body in which the fine particles are further electrostatically adhered is formed. By performing the subsequent composite particle forming step in the same manner as the above-described composite particle forming step, composite particles in which inorganic fine particles and organic fine particles are immobilized on the surface of the organic core particles can be obtained.

3.粒子回収工程
この粒子回収工程は、上述の複合粒子形成工程で得られた複合粒子の分散液から複合粒子を回収する工程として行うことができる。
この工程では、複合粒子の分散液から複合粒子のみを分離して回収する。回収方法としては、分散液中の複合粒子の表面に変形を与えず、且つ、複合粒子に損傷を与えない方法であれば特に限定されるものではなく、例えば、エバポレータを用いた加熱濃縮、遠心沈降機による固液分離、凍結乾燥を挙げることができる。
粒子回収工程によって回収された複合粒子は、上述のAで説明した物性を併せもつことができるので、無機微粒子Bの有機コア粒子Aへの付着強度が高く、良好な帯電量、高い流動性を確保できる。
3. Particle Recovery Step This particle recovery step can be performed as a step of recovering the composite particles from the composite particle dispersion obtained in the above-described composite particle formation step.
In this step, only the composite particles are separated and recovered from the composite particle dispersion. The recovery method is not particularly limited as long as it does not deform the surface of the composite particles in the dispersion and does not damage the composite particles. For example, heating concentration using an evaporator, centrifugation Examples thereof include solid-liquid separation using a settling machine and freeze-drying.
Since the composite particles recovered by the particle recovery process can have the physical properties described in A above, the adhesion strength of the inorganic fine particles B to the organic core particles A is high, and the good charge amount and high fluidity are obtained. It can be secured.

4.粒子疎水化工程
この粒子疎水化工程は、複合粒子表面の一部に残る水酸基(OH基)と疎水化剤を反応させて、複合粒子表面に疎水基を導入することにより、複合粒子の表面を疎水化する工程である。尚、この粒子疎水化工程は、複合粒子をトナー用外添剤などの構成成分として使用する場合など、高い疎水性を求められる用途などに応じて任意に行われる。
この粒子疎水化工程で疎水化される複合粒子としては、上述の粒子回収工程で回収された複合粒子、又は、上述の複合粒子形成工程で形成された複合粒子の分散液中に分散するゾル状態の複合粒子のいずれでもよい。前者の場合は、複合粒子形成工程、粒子回収工程、粒子疎水化工程の順で、複合粒子を製造する。後者の場合は、複合粒子形成工程、粒子疎水化工程、粒子回収工程の順で、複合粒子を製造する。
4). Particle Hydrophobization Process This particle hydrophobization process is a process of reacting a hydroxyl group (OH group) remaining on a part of the composite particle surface with a hydrophobizing agent to introduce a hydrophobic group into the composite particle surface, thereby This is a process of hydrophobizing. This particle hydrophobizing step is optionally performed according to the use for which high hydrophobicity is required, such as when composite particles are used as a constituent component such as an external additive for toner.
As the composite particles to be hydrophobized in this particle hydrophobization step, the composite particles recovered in the above-described particle recovery step or the sol state dispersed in the dispersion liquid of the composite particles formed in the above-described composite particle formation step Any of these composite particles may be used. In the former case, composite particles are produced in the order of the composite particle formation step, the particle recovery step, and the particle hydrophobization step. In the latter case, composite particles are produced in the order of the composite particle formation step, the particle hydrophobization step, and the particle recovery step.

疎水化剤として、ヘキサメチルジシラザン(HMDS)、1,3−ジフェニルテトラメチルジシラザン、1,3−ビス(3,3,3−トリフルオロプロピル)−1,1,3,3−テトラメチルジシラザン、1,3−ジビニル−1,1,3,3−テトラメチルジシラザンなどのシラザン化合物、メチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、イソブチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、トリメチルメトキシシラン、トリエチルメトキシシランなどのシラン化合物を挙げることができるが、これらに限定されるものではない。
このような疎水化剤として機能する、シラザン化合物又はシラン化合物の溶媒としては、水、エタノール、メタノールなどのなどのプロトン性溶媒、もしくはアセトン、メチルエチルケトン、メチルイソブチルケトンなどの非プロトン性溶媒を挙げることができる。
As hydrophobizing agents, hexamethyldisilazane (HMDS), 1,3-diphenyltetramethyldisilazane, 1,3-bis (3,3,3-trifluoropropyl) -1,1,3,3-tetramethyl Silazane compounds such as disilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, methyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, isobutyltrimethoxysilane, octyltriethoxysilane, Silane compounds such as decyltriethoxysilane, trimethylmethoxysilane, and triethylmethoxysilane can be exemplified, but are not limited thereto.
Examples of the solvent for the silazane compound or silane compound that function as a hydrophobizing agent include protic solvents such as water, ethanol, and methanol, or aprotic solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone. Can do.

上述の粒子疎水化工程によって表面が疎水化された複合粒子は、上述のAで説明した物性および疎水性を併せもつので、無機微粒子Bの有機コア粒子Aへの付着強度が高く、良好な帯電量、高い流動性を確保できるとともに、高い疎水化度を保持できる。   Since the composite particles whose surface has been hydrophobized by the above-described particle hydrophobization process have both the physical properties and the hydrophobicity described in A above, the adhesion strength of the inorganic fine particles B to the organic core particles A is high, and good charging is achieved. The amount and high fluidity can be secured, and a high degree of hydrophobicity can be maintained.

C.トナー用外添剤
このトナー用外添剤は、上述のAで説明した複合粒子を含む。
トナー用外添剤としての複合粒子は、無機微粒子Bの有機コア粒子Aへの付着強度が高く、無機微粒子Bが有機コア粒子Aから脱離しにくいので、その複合粒子を含むトナー用外添剤は、使用時にせん断力などの様々なストレスを受けても、長期間にわたってトナー粒子に強固に付着する。また、トナー用外添剤としての複合粒子は、良好な帯電量、および高い流動性を確保できる。トナー用外添剤としての複合粒子を外添したトナーは、高い劣化耐性をもち、長期間にわたって高い転写効率を維持したまま使用できるので、感光体上へのトナー融着現象等の部材汚染に起因する画像劣化を抑制し、安定した画像品質を提供できるものとなる。
また、トナー用外添剤としての複合粒子が上述の物性(4)の平均粒子径の数値範囲のうち、比較的小さな平均粒子径を有する場合、トナー粒子に高い流動性を付与することができる。
さらに、トナー用外添剤としての複合粒子が上述の物性(4)の平均粒子径の数値範囲のうち、比較的大きな平均粒子径を有する場合、スペーサ効果を十分に発揮することができる。
C. Toner External Additive The toner external additive includes the composite particles described in A above.
The composite particles as the toner external additive have high adhesion strength of the inorganic fine particles B to the organic core particles A, and the inorganic fine particles B are difficult to be detached from the organic core particles A. Therefore, the toner external additives containing the composite particles Even when subjected to various stresses such as shearing force during use, it adheres firmly to the toner particles over a long period of time. Further, the composite particles as the toner external additive can ensure a good charge amount and high fluidity. Toner with external addition of composite particles as an external additive for toner has high deterioration resistance and can be used while maintaining high transfer efficiency over a long period of time. The resulting image degradation can be suppressed and stable image quality can be provided.
Further, when the composite particles as the external additive for the toner have a relatively small average particle size in the numerical range of the average particle size of the above physical property (4), high fluidity can be imparted to the toner particles. .
Furthermore, when the composite particles as the external additive for the toner have a relatively large average particle diameter in the numerical range of the average particle diameter of the above physical property (4), the spacer effect can be sufficiently exhibited.

実施の形態1の複合粒子によれば、有機コア粒子Aと無機微粒子Bとを備える複合粒子において、有機コア粒子Aの主成分は、有機材料であり、無機微粒子Bは、有機コア粒子A上に存在し、無機微粒子Bの主成分は無機材料であり、有機コア粒子Aの平均粒子径が80nm以上300nm以下であり、有機コア粒子Aの平均粒子径の変動係数が2%以上10%以下であり、無機微粒子の平均粒子径が5nm以上30nm以下であり、且つ有機コア粒子Aの平均粒子径に対する無機微粒子Bの平均粒子径の比が0.016以上0.25以下であり、複合粒子の平均粒子径が90nm以上350nm以下であり、複合粒子の体積抵抗ρvおよび表面抵抗ρsの比ρrが0.7以上1.4以下であり、複合粒子が1重量%になるように水に分散させた複合粒子分散液に、出力110W、周波数31kHzの条件で、超音波を30分間照射する前後における、有機コア粒子A上に存在する無機微粒子Bの個数変化が0.5%以上5%以下である。
上述した各物性を併せもつ複合粒子は、以下のような効果を有する。
(i)複合粒子は、有機コア粒子Aに無機微粒子Bが存在し、且つ、所定条件の超音波照射の前後における、有機コア粒子Aに存在する無機微粒子Bの個数変化が極めて小さいので、無機微粒子Bが有機コア粒子Aに単に付着された従来の複合粒子と比較して、無機微粒子Bの有機コア粒子A上への付着強度が高い。無機微粒子Bの有機コア粒子A上への付着強度が高いので、せん断力などの様々なストレスを受けても、有コア粒子Aから無機微粒子Bが脱離しにくい。
(ii)複合粒子は、体積抵抗ρvおよび表面抵抗ρsが所定の数値範囲にあるので、初期特性として、良好な帯電量を確保できる。この良好な帯電量は、無機微粒子Bの有機コア粒子A上への付着強度が高く、有機コア粒子Aから無機微粒子Bが脱離しにくいので、長期間にわたって維持できる。
(iii)有機コア粒子Aおよび無機微粒子Bが所定の数値範囲にある平均粒子径、平均粒子径の比をもち、且つ所定の数値範囲にある被覆率を持つため、例えばトナー用外添剤などの構成成分として用いた場合、トナーと複合粒子は、常にトナーと複合粒子上に存在する微粒子が接触することとなるため、転がり性が低下することなく、初期特性として、高い流動性を確保できる。高い流動性をもつ複合粒子は、トナー用外添剤などの構成成分として良好に適用されることができる。高い流動性は、無機微粒子Bの有機コア粒子A上への付着強度が高く、有機コア粒子Aから無機微粒子Bが脱離しにくいので、長期間にわたって維持できる。
従って、実施の形態1の複合粒子は、無機微粒子Bの有機コア粒子A上への付着強度が高く、良好な帯電量、高い流動性を確保できる。
According to the composite particle of Embodiment 1, in the composite particle including the organic core particle A and the inorganic fine particle B, the main component of the organic core particle A is an organic material, and the inorganic fine particle B is on the organic core particle A. And the main component of the inorganic fine particles B is an inorganic material, the average particle diameter of the organic core particles A is 80 nm or more and 300 nm or less, and the variation coefficient of the average particle diameter of the organic core particles A is 2% or more and 10% or less. The average particle diameter of the inorganic fine particles is 5 nm or more and 30 nm or less, and the ratio of the average particle diameter of the inorganic fine particles B to the average particle diameter of the organic core particles A is 0.016 or more and 0.25 or less; The average particle diameter of the composite particles is 90 nm or more and 350 nm or less, the ratio ρr of the volume resistance ρv and the surface resistance ρs of the composite particles is 0.7 or more and 1.4 or less, and is dispersed in water so that the composite particles are 1 wt%. Let The number change of the inorganic fine particles B present on the organic core particles A before and after the composite particle dispersion is irradiated with ultrasonic waves for 30 minutes under the conditions of an output of 110 W and a frequency of 31 kHz is 0.5% or more and 5% or less. .
The composite particles having the above physical properties have the following effects.
(I) In the composite particles, inorganic fine particles B exist in the organic core particles A, and the change in the number of inorganic fine particles B present in the organic core particles A before and after ultrasonic irradiation under a predetermined condition is extremely small. Compared to conventional composite particles in which the fine particles B are simply attached to the organic core particles A, the adhesion strength of the inorganic fine particles B on the organic core particles A is high. Since the adhesion strength of the inorganic fine particles B onto the organic core particles A is high, the inorganic fine particles B are not easily detached from the cored particles A even when subjected to various stresses such as shearing force.
(Ii) Since the composite particles have a volume resistance ρv and a surface resistance ρs in a predetermined numerical range, a favorable charge amount can be secured as an initial characteristic. This good charge amount can be maintained for a long period of time because the adhesion strength of the inorganic fine particles B onto the organic core particles A is high and the inorganic fine particles B are not easily detached from the organic core particles A.
(Iii) Since the organic core particles A and the inorganic fine particles B have a ratio of the average particle diameter and the average particle diameter in a predetermined numerical range and have a coverage in a predetermined numerical range, for example, an external additive for toner When the toner is used as a component of the toner, the toner and the composite particles always come into contact with the toner and the fine particles present on the composite particles, so that high fluidity can be secured as an initial characteristic without lowering rolling properties. . The composite particles having high fluidity can be favorably applied as a component such as an external additive for toner. The high fluidity can be maintained over a long period of time because the adhesion strength of the inorganic fine particles B onto the organic core particles A is high and the inorganic fine particles B are not easily detached from the organic core particles A.
Therefore, the composite particles of Embodiment 1 have high adhesion strength of the inorganic fine particles B onto the organic core particles A, and can ensure a good charge amount and high fluidity.

実施の形態1の複合粒子の製造方法によれば、有機コア粒子Aと無機微粒子Bとを備える複合粒子の製造方法において、有機材料を主成分とする有機コア粒子Aと無機材料を主成分とする無機微粒子Bとを含む分散液から有機コア粒子Aの表面に無機微粒子Bが付着した粒子付着体を形成する粒子付着体形成工程と、粒子付着体が形成された分散液に、有機コア粒子Aの表面に存在する反応性結合基と相互作用し、且つ、塩基性条件下で、無機微粒子Bの表面に存在する水酸基(OH基)と結合(縮合)するシランカップリング剤および塩基性物質を添加して、有機コア粒子Aの表面に無機微粒子Bを固定化させた複合粒子を形成する複合粒子形成工程と、を備える。
粒子付着体形成工程では、ヘテロ凝集により、有機コア粒子A上に無機微粒子Bを存在させ、有機コア粒子Aの表面に無機微粒子Bを静電的に付着させた粒子付着体を形成し、複合粒子形成工程では、シランカップリング剤の作用によって形成された無機材料層Nにより、有機コア粒子Aの表面に無機微粒子Bを固定化させた複合粒子を形成することができる。この複合粒子は、上述した各物性を併せもつことができる。
従って、実施の形態1の複合粒子の製造方法によれば、無機微粒子Bの有機コア粒子A上への付着強度が高く、良好な帯電量、高い流動性を確保できる複合粒子を製造することができる。
According to the method for producing composite particles of the first embodiment, in the method for producing composite particles comprising organic core particles A and inorganic fine particles B, the organic core particles A mainly composed of an organic material and the inorganic material as a major component. A particle adhering body forming step of forming a particle adhering body in which the inorganic fine particle B adheres to the surface of the organic core particle A from the dispersion liquid containing the inorganic fine particle B, and an organic core particle in the dispersion liquid in which the particle adhering body is formed. Silane coupling agent and basic substance that interacts with the reactive binding group present on the surface of A and binds (condenses) with the hydroxyl group (OH group) present on the surface of the inorganic fine particle B under basic conditions And a composite particle forming step of forming composite particles in which the inorganic fine particles B are immobilized on the surface of the organic core particles A.
In the particle adhering body forming step, the inorganic fine particle B is present on the organic core particle A by hetero-aggregation, and the particle adhering body in which the inorganic fine particle B is electrostatically adhered to the surface of the organic core particle A is formed, and the composite In the particle forming step, composite particles in which the inorganic fine particles B are immobilized on the surface of the organic core particles A can be formed by the inorganic material layer N formed by the action of the silane coupling agent. This composite particle can have each of the physical properties described above.
Therefore, according to the method for producing composite particles of Embodiment 1, it is possible to produce composite particles that have high adhesion strength of the inorganic fine particles B onto the organic core particles A, and that can ensure a good charge amount and high fluidity. it can.

実施の形態1のトナー用外添剤によれば、上述した複合粒子を含む。従って、このトナー用外添剤は、無機微粒子Bの有機コア粒子A上への付着強度が高く、良好な帯電量、高い流動性を確保できるので、従来よりも高い劣化耐性をもち、長期間にわたってトナー用外添剤とトナー粒子との付着性を維持でき、転写効率を高い状態で維持できると共に、トナー用外添剤がトナー粒子から遊離しにくいので、部材汚染に起因する画像欠陥を抑制し、安定した画像品質を提供することができる。   According to the external additive for toner of Embodiment 1, the composite particles described above are included. Therefore, the external additive for toner has high adhesion strength of the inorganic fine particles B onto the organic core particles A, and can secure a good charge amount and high fluidity. In addition, the adhesion between the toner external additive and the toner particles can be maintained, the transfer efficiency can be maintained at a high level, and the toner external additive is not easily separated from the toner particles, thereby suppressing image defects caused by contamination of the member. In addition, stable image quality can be provided.

実施の形態2.
A.複合粒子
この複合粒子は、実施の形態1による複合粒子とは異なり、無機材料を主成分とするコア粒子(以下、このコア粒子を無機コア粒子という場合がある)と、この無機コア粒子上に存在し、有機材料を主成分とする微粒子(以下、この微粒子を有機微粒子という場合がある)を備える。また、複合粒子は、実施の形態1と同様に、次の物性(1)〜(6)を併せもつ。
物性(1):無機コア粒子の平均粒子径が80nm以上300nm以下である。
物性(2):無機コア粒子の平均粒子径の変動係数が2%以上10%以下である。
物性(3):有機微粒子の平均粒子径が5nm以上30nm以下であり、且つ無機コア粒子の平均粒子径に対する有機微粒子の平均粒子径の比(以下、有機微粒子の平均粒子径/無機コア粒子の平均粒子径という)が0.016以上0.25以下である。
物性(4):複合粒子の平均粒子径が90nm以上350nm以下である。
物性(5):複合粒子の体積抵抗ρvおよび表面抵抗ρsの比ρrが0.7以上1.4以下である。
物性(6):複合粒子が1重量%になるように水に分散させた複合粒子分散液に、出力110W、周波数31kHzの条件で、超音波を30分間照射する前後における、無機コア粒子に存在する有機微粒子の個数変化が0.5%以上5%以下である。
Embodiment 2. FIG.
A. Composite particles Unlike the composite particles according to the first embodiment, the composite particles include core particles mainly composed of an inorganic material (hereinafter, the core particles may be referred to as inorganic core particles), and the inorganic particles on the inorganic core particles. And fine particles mainly containing an organic material (hereinafter, the fine particles may be referred to as organic fine particles). The composite particles also have the following physical properties (1) to (6) as in the first embodiment.
Physical property (1): The average particle diameter of the inorganic core particles is 80 nm or more and 300 nm or less.
Physical property (2): The variation coefficient of the average particle diameter of the inorganic core particles is 2% or more and 10% or less.
Physical property (3): The average particle diameter of the organic fine particles is 5 nm or more and 30 nm or less, and the ratio of the average particle diameter of the organic fine particles to the average particle diameter of the inorganic core particles (hereinafter, the average particle diameter of the organic fine particles / inorganic core particles The average particle diameter is 0.016 or more and 0.25 or less.
Physical property (4): The average particle diameter of the composite particles is 90 nm or more and 350 nm or less.
Physical property (5): Ratio ρr of volume resistance ρv and surface resistance ρs of the composite particles is 0.7 or more and 1.4 or less.
Physical property (6): Present in inorganic core particles before and after irradiating ultrasonic waves for 30 minutes under conditions of an output of 110 W and a frequency of 31 kHz on a composite particle dispersion in which the composite particles are dispersed in water so that the composite particles are 1% by weight. The change in the number of organic fine particles is 0.5% or more and 5% or less.

この複合粒子を構成するコア粒子および微粒子は、実施の形態1による複合粒子を構成するコア粒子および微粒子とは、以下のような共通点と相違点を有する。
<無機コア粒子>
無機コア粒子は、実施の形態1のAで説明した無機材料と同様の無機材料を主成分とする点で、実施の形態1における無機微粒子Bと共通する。
但し、無機コア粒子は、コア粒子であるので、物性(1)〜(3)を満たす平均粒子径を有する点で、物性(3)のみを満たす平均粒子径を有する実施の形態1における無機微粒子Bとは異なる。
<有機微粒子>
有機微粒子は、実施の形態1のAで説明した有機材料と同様の有機材料を主成分とする点で、実施の形態1における有機コア粒子Aと共通する。
但し、有機微粒子は、微粒子であるので、物性(3)のみを満たす平均粒子径を有する点で、物性(1)〜(3)を満たす平均粒子径を有する実施の形態1における有機コア粒子Aとは異なる。
The core particles and fine particles constituting the composite particles have the following common points and differences from the core particles and fine particles constituting the composite particles according to Embodiment 1.
<Inorganic core particles>
The inorganic core particles are the same as the inorganic fine particles B in the first embodiment in that the main component is the same inorganic material as that described in A of the first embodiment.
However, since the inorganic core particle is a core particle, the inorganic fine particle according to the first embodiment has an average particle diameter satisfying only the physical property (3) in that it has an average particle diameter satisfying the physical properties (1) to (3). Different from B.
<Organic fine particles>
The organic fine particles are common to the organic core particles A in the first embodiment in that the organic material similar to the organic material described in A of the first embodiment is the main component.
However, since the organic fine particles are fine particles, the organic core particles A in the first embodiment having an average particle size satisfying the physical properties (1) to (3) in that they have an average particle size satisfying only the physical property (3). Is different.

また、複合粒子では、その体積抵抗ρvは無機コア粒子を形成する無機材料および微粒子Bを形成する有機材料の抵抗に依存し、その表面抵抗ρsは複合粒子の表面に特有の電気抵抗に依存する。無機コア粒子を形成する無機材料の電気抵抗は、有機微粒子を形成する有機材料よりも低いので、上述した構成を有する複合粒子では、体積抵抗ρvが低く、表面抵抗ρsが高くなる。一般に、粒子表面で帯電した電荷は、粒子内部に入り、もしくは粒子表面を伝わって、その粒子の別の表面(例えば、複合粒子が外添されたトナー粒子との接触面)から、他の粒子へ移行すると考えられる。しかし、無機コア粒子と有機微粒子を備える複合粒子では、その表面で帯電した電荷は、他の粒子(例えば、トナー粒子)への移行が限定的となり、特に湿度が低い状態では電荷が複合粒子内部に徐々に蓄積されていくと推測される。このため、体積抵抗ρvと表面抵抗ρsとの関係が物性(5)の適切な数値範囲にあることが重要となる。   In the composite particles, the volume resistance ρv depends on the resistance of the inorganic material forming the inorganic core particles and the organic material forming the fine particles B, and the surface resistance ρs depends on the electrical resistance specific to the surface of the composite particles. . Since the electrical resistance of the inorganic material forming the inorganic core particles is lower than that of the organic material forming the organic fine particles, the composite particles having the above-described configuration have a low volume resistance ρv and a high surface resistance ρs. In general, the electric charge charged on the particle surface enters the inside of the particle or travels through the particle surface, and from the other surface of the particle (for example, the contact surface with the toner particle to which the composite particle is externally added) to other particles. It is thought that it will shift to. However, in composite particles comprising inorganic core particles and organic fine particles, the charge charged on the surface is limited to transfer to other particles (for example, toner particles). It is estimated that it will gradually accumulate. For this reason, it is important that the relationship between the volume resistance ρv and the surface resistance ρs is in an appropriate numerical range of the physical property (5).

上述の物性(1)〜(6)を併せもつ複合粒子は、実施の形態1による複合粒子と同様に、さらに、比誘電率が2以上300以下であるという物性(7)を有することが望ましい。
上述の物性(1)〜(6)を併せもつ複合粒子、または、上述の物性(1)〜(6)に物性(7)を併せもつ複合粒子は、実施の形態1による複合粒子と同様に、さらに、無機コア粒子の表面における有機微粒子の被覆率が5%以上68%未満であるという物性(8)を有することが望ましい。
The composite particles having the above physical properties (1) to (6) preferably have the physical property (7) that the relative dielectric constant is 2 or more and 300 or less, similarly to the composite particles according to the first embodiment. .
The composite particles having the above physical properties (1) to (6) or the composite particles having the physical properties (1) to (6) and the physical property (7) are the same as the composite particles according to the first embodiment. Furthermore, it is desirable to have the physical property (8) that the coverage of the organic fine particles on the surface of the inorganic core particles is 5% or more and less than 68%.

上述の物性(1)〜(6)を併せもつ複合粒子、または、上述の物性(1)〜(6)に物性(7)あるいは物性(8)を併せもつ複合粒子は、実施の形態1による複合粒子と同様に、無機コア粒子の表面および有機微粒子の表面を被覆する無機材料層Nをさらに備えることが望ましい。
無機材料層Nは、有機微粒子と相互作用し、且つ、塩基性条件下で、無機コア粒子の表面に存在する水酸基(OH基)と結合(縮合)するシランカップリング剤の作用により形成される。このシランカップリング剤の作用により、塩基性条件下では、無機コア粒子の表面上の水酸基(OH基)およびシランカップリング剤自身がネットワーク構造を構成し、内部にケイ素(Si)をもった、シリカの非晶質構造に類似する構造を有する無機材料層Nが形成される。
このように、無機材料層Nは、無機コア粒子の表面および有機微粒子の表面を被覆するネットワーク構造を有するので、有機微粒子の無機コア粒子上への付着強度を高める役割と、ケイ素(Si)を含むことでシリカの非晶質構造に類似する構造を有するので、シリカのような無機材料から形成される被膜と同程度の電気抵抗を示すことから、複合粒子の体積抵抗ρvおよび表面抵抗ρsのバランスを調整する役割と、を担う。
The composite particles having the above physical properties (1) to (6), or the composite particles having both the physical properties (1) to (6) and the physical properties (7) or (8) are according to the first embodiment. As with the composite particles, it is desirable to further include an inorganic material layer N that covers the surfaces of the inorganic core particles and the organic fine particles.
The inorganic material layer N is formed by the action of a silane coupling agent that interacts with organic fine particles and bonds (condenses) with a hydroxyl group (OH group) present on the surface of the inorganic core particle under basic conditions. . Due to the action of this silane coupling agent, under basic conditions, the hydroxyl group (OH group) on the surface of the inorganic core particles and the silane coupling agent itself constitute a network structure, with silicon (Si) inside, An inorganic material layer N having a structure similar to the amorphous structure of silica is formed.
Thus, since the inorganic material layer N has a network structure that covers the surface of the inorganic core particles and the surface of the organic fine particles, the role of increasing the adhesion strength of the organic fine particles on the inorganic core particles and silicon (Si) Since it has a structure similar to the amorphous structure of silica by including it, it exhibits the same electrical resistance as a film formed from an inorganic material such as silica, so that the volume resistance ρv and surface resistance ρs of the composite particles And the role of adjusting the balance.

上述の物性を併せもつ実施の形態2による複合粒子は、ヘテロ凝集により、正電荷に帯電した無機コア粒子上に負電荷に帯電した有機微粒子を存在させ、両粒子を静電的に付着させることで、無機コア粒子の表面に有機微粒子を合一して複合化して得た粒子付着体の表面に、上述のシランカップリング剤の作用により形成される無機材料層Nによって、無機コア粒子の表面および有機微粒子の表面を被覆して無機コア粒子の表面に有機微粒子を固定化させてなるものである。このような複合粒子に対応する実施例は、後述する実施例2−1〜2−8である。
また、このように複合化時に、全体として負電荷に帯電している複合粒子の表面に、ヘテロ凝集により、正電荷に帯電した無機微粒子を存在させ、静電的に付着させることができる。そして、無機コア粒子の表面に有機微粒子および無機微粒子を合一して複合化して得た粒子付着体の表面に、上述のシランカップリング剤の作用により形成される無機材料層Nによって、無機コア粒子、有機微粒子および無機微粒子の各表面を被覆して無機コア粒子の表面に有機微粒子および無機微粒子を固定化させた複合粒子を形成することができる。つまり、この複合粒子は、無機コア粒子と、この無機コア粒子の表面に固定化した有機微粒子および無機微粒子を合一してなるものである。このような複合粒子に対応する実施例は、後述する実施例4−1〜4−6である。
In the composite particles according to the second embodiment having the above-mentioned physical properties, organic particles finely charged negatively exist on the inorganic core particles charged positively by heteroaggregation, and both particles are electrostatically attached. Then, the surface of the inorganic core particle is formed by the inorganic material layer N formed by the action of the above-mentioned silane coupling agent on the surface of the particle adhering body obtained by combining the organic fine particles with the surface of the inorganic core particle. In addition, the surface of the organic fine particles is coated and the organic fine particles are immobilized on the surface of the inorganic core particles. Examples corresponding to such composite particles are Examples 2-1 to 2-8 described later.
Further, at the time of compositing, inorganic fine particles charged positively by heteroaggregation can be present on the surface of the composite particles charged negatively as a whole, and can be electrostatically attached. Then, the inorganic core is formed on the surface of the particle adhering body obtained by combining organic fine particles and inorganic fine particles on the surface of the inorganic core particles to form the inorganic core by the inorganic material layer N formed by the action of the silane coupling agent. It is possible to form composite particles in which the surfaces of the particles, organic fine particles, and inorganic fine particles are coated to fix the organic fine particles and the inorganic fine particles on the surfaces of the inorganic core particles. That is, this composite particle is formed by combining inorganic core particles, organic fine particles and inorganic fine particles immobilized on the surface of the inorganic core particles. Examples corresponding to such composite particles are Examples 4-1 to 4-6 described later.

B.複合粒子の製造方法
この複合粒子の製造方法は、無機コア粒子と有機微粒子とを備える複合粒子の製造方法において、無機材料を主成分とする無機コア粒子と有機材料を主成分とする有機微粒子とを含む分散液から無機コア粒子の表面に有機微粒子が付着した粒子付着体を形成する粒子付着体形成工程と、粒子付着体が形成された分散液に、有機微粒子の表面に存在する反応性結合基と相互作用し、且つ、塩基性条件下で、無機コア粒子の表面に存在する水酸基(OH基)と結合(縮合)するシランカップリング剤および塩基性物質を添加して、無機コア粒子の表面に有機微粒子を固定化させた複合粒子を形成する複合粒子形成工程と、を備える。
粒子付着体形成工程では、ヘテロ凝集により、無機コア粒子上に有機微粒子を存在させ、無機コア粒子の表面に有機微粒子を静電的に付着させた粒子付着体を形成し、複合粒子形成工程では、シランカップリング剤の作用によって形成された無機材料層Nにより、無機コア粒子の表面に有機微粒子を固定化させた複合粒子を形成する。
尚、この製造方法は、上述のAで説明した物性をもつ複合粒子を製造することができる製造方法の一例である。
これら粒子付着体形成工程、その事前準備、および、複合粒子形成工程は、有機コア粒子Aを無機コア粒子に代え、無機微粒子Bを有機微粒子に代える以外は、実施の形態1による複合粒子の製造方法における粒子付着体形成工程、その事前準備、および、複合粒子形成工程と同様に行うことができる。
B. Method for producing composite particle This method for producing a composite particle is a method for producing a composite particle comprising inorganic core particles and organic fine particles. In the method for producing composite particles, inorganic core particles mainly composed of an inorganic material and organic fine particles mainly composed of an organic material are used. Forming a particle adhering body in which organic fine particles adhere to the surface of the inorganic core particles from a dispersion liquid containing a reactive bond existing on the surface of the organic fine particles in the dispersion liquid in which the particle adhering bodies are formed A silane coupling agent that interacts with a group and binds (condenses) with a hydroxyl group (OH group) present on the surface of the inorganic core particle under a basic condition and a basic substance are added. And a composite particle forming step of forming composite particles in which organic fine particles are fixed on the surface.
In the particle adhering body forming step, organic fine particles are present on the inorganic core particles by hetero-aggregation, and a particle adhering body in which the organic fine particles are electrostatically attached to the surface of the inorganic core particles is formed. The composite material in which organic fine particles are immobilized on the surface of the inorganic core particles is formed by the inorganic material layer N formed by the action of the silane coupling agent.
This manufacturing method is an example of a manufacturing method capable of manufacturing the composite particles having the physical properties described in A above.
The particle adhering body formation step, the preparation in advance, and the composite particle formation step are the production of composite particles according to Embodiment 1 except that the organic core particles A are replaced with inorganic core particles and the inorganic fine particles B are replaced with organic fine particles. It can be performed in the same manner as the particle adhering body forming step, its preparatory preparation, and the composite particle forming step in the method.

また、複合粒子が、無機コア粒子と、この無機コア粒子の表面に存在する有機微粒子および無機微粒子を合一してなるものである場合における粒子付着体形成工程では、先ず、無機コア粒子と有機微粒子を含む分散液のpHを無機コア粒子の形成材料の等電点(例えば、pH2.0)に調整することで、ヘテロ凝集により、無機コア粒子上に有機微粒子を存在させ、無機コア粒子表面に有機微粒子を静電的に付着させ、その後、当該分散液に、無機微粒子を含む分散液を添加することで、表面に有機微粒子を静電的に付着させた無機コア粒子の表面に無機微粒子をさらに静電的に付着させた粒子付着体を形成する。その後の複合粒子形成工程は、有機コア粒子Aを無機コア粒子に代え、無機微粒子Bを有機微粒子に代える以外は、実施の形態1による複合粒子の製造方法における複合粒子形成工程と同様に行うことによって、無機コア粒子の表面に有機微粒子および無機微粒子を固定化した複合粒子を得ることができる。   Further, in the particle adhering body forming step in the case where the composite particle is formed by combining the inorganic core particle, the organic fine particle and the inorganic fine particle existing on the surface of the inorganic core particle, first, the inorganic core particle and the organic By adjusting the pH of the dispersion containing fine particles to the isoelectric point of the inorganic core particle forming material (for example, pH 2.0), the organic fine particles are present on the inorganic core particles by heteroaggregation, and the surface of the inorganic core particles The organic fine particles are electrostatically attached to the surface, and then the dispersion containing inorganic fine particles is added to the dispersion, whereby the inorganic fine particles are adhered to the surface of the inorganic core particles electrostatically attached to the surface. To form a particle adhering body on which the particles are further electrostatically attached. The subsequent composite particle forming step is performed in the same manner as the composite particle forming step in the composite particle manufacturing method according to Embodiment 1 except that the organic core particles A are replaced with inorganic core particles and the inorganic fine particles B are replaced with organic fine particles. Thus, composite particles in which organic fine particles and inorganic fine particles are immobilized on the surface of the inorganic core particles can be obtained.

C.トナー用外添剤
このトナー用外添剤は、上述のAで説明した複合粒子を含む。
トナー用外添剤としての複合粒子は、有機微粒子の無機コア粒子への付着強度が高く、有機微粒子が無機コア粒子から脱離しにくいので、その複合粒子を含むトナー用外添剤は、使用時にせん断力などの様々なストレスを受けても、長期間にわたってトナー粒子に強固に付着する。また、トナー用外添剤としての複合粒子は、良好な帯電量および高い流動性を確保できる。トナー用外添剤としての複合粒子を外添したトナーは、高い劣化耐性をもち、長期間にわたって高い転写効率を維持したまま使用できるので、感光体上へのトナー融着現象等の部材汚染に起因する画像劣化を抑制し、安定した画像品質を提供できるものとなる。
また、トナー用外添剤としての複合粒子が上述の物性(4)の平均粒子径の数値範囲のうち、比較的小さな平均粒子径を有する場合、トナー粒子に高い流動性を付与することができる。
さらに、トナー用外添剤としての複合粒子が上述の物性(4)の平均粒子径の数値範囲のうち、比較的大きな平均粒子径を有する場合、スペーサ効果を十分に発揮することができる。
C. Toner External Additive The toner external additive includes the composite particles described in A above.
Composite particles as external additives for toner have high adhesion strength of organic fine particles to inorganic core particles, and organic fine particles are difficult to be detached from inorganic core particles. Even when subjected to various stresses such as shearing force, it adheres firmly to the toner particles over a long period of time. Further, the composite particles as the toner external additive can ensure a good charge amount and high fluidity. Toner with external addition of composite particles as an external additive for toner has high deterioration resistance and can be used while maintaining high transfer efficiency over a long period of time. The resulting image degradation can be suppressed and stable image quality can be provided.
Further, when the composite particles as the external additive for the toner have a relatively small average particle size in the numerical range of the average particle size of the above physical property (4), high fluidity can be imparted to the toner particles. .
Furthermore, when the composite particles as the external additive for the toner have a relatively large average particle diameter in the numerical range of the average particle diameter of the above physical property (4), the spacer effect can be sufficiently exhibited.

実施の形態2の複合粒子によれば、無機コア粒子と有機微粒子とを備える複合粒子において、無機コア粒子の主成分は、無機材料であり、有機微粒子は、無機コア粒子上に存在し、有機微粒子の主成分は有機材料であり、無機コア粒子の平均粒子径が80nm以上300nm以下であり、無機コア粒子の平均粒子径の変動係数が2%以上10%以下であり、有機微粒子の平均粒子径が5nm以上30nm以下であり、且つ無機コア粒子の平均粒子径に対する有機微粒子の平均粒子径の比が0.016以上0.25以下であり、複合粒子の平均粒子径が90nm以上350nm以下であり、複合粒子の体積抵抗ρvおよび表面抵抗ρsの比ρrが0.7以上1.4以下であり、複合粒子が1重量%になるように水に分散させた複合粒子分散液に、出力110W、周波数31kHzの条件で、超音波を30分間照射する前後における、無機コア粒子に存在する有機微粒子の個数変化が0.5%以上5%以下である。
上述した各物性を併せもつ複合粒子は、以下のような効果を有する。
(i)複合粒子は、無機コア粒子に有機微粒子が固定化され、且つ、所定条件の超音波照射の前後における、無機コア粒子上に存在する有機微粒子の個数変化が極めて小さいので、有機微粒子が無機コア粒子上に単に付着された従来の複合粒子と比較して、有機微粒子の無機コア粒子上への付着強度が高い。有機微粒子の無機コア粒子上への付着強度が高いので、せん断力などの様々なストレスを受けても、無機コア粒子から有機微粒子が脱離しにくい。
(ii)複合粒子は、体積抵抗ρvおよび表面抵抗ρsが所定の数値範囲にあるので、初期特性として、良好な帯電量を確保できる。この良好な帯電量は、有機微粒子の無機コア粒子上への付着強度が高く、無機コア粒子から有機微粒子が脱離しにくいので、長期間にわたって維持できる。
(iii)無機コア粒子および有機微粒子が所定の数値範囲にある平均粒子径、平均粒子径の比を持ち、且つ所定の数値範囲にある被覆率を持つため、例えばトナー用外添剤などの構成成分として用いた場合、トナーと複合粒子は、常にトナーと複合粒子上に存在する微粒子が接触することとなるため、転がり性が低下することなく、初期特性として、高い流動性を確保できる。高い流動性をもつ複合粒子は、トナー用外添剤などの構成成分として良好に適用されることができる。高い流動性は、有機微粒子の無機コア粒子上への付着強度が高く、無機コア粒子から有機微粒子が脱離しにくいので、長期間にわたって維持できる。
従って、実施の形態2の複合粒子は、有機微粒子の無機コア粒子上への付着強度が高く、良好な帯電量、高い流動性を確保できる。
According to the composite particle of the second embodiment, in the composite particle including the inorganic core particle and the organic fine particle, the main component of the inorganic core particle is an inorganic material, and the organic fine particle exists on the inorganic core particle, and is organic The main component of the fine particles is an organic material, the average particle diameter of the inorganic core particles is from 80 nm to 300 nm, the variation coefficient of the average particle diameter of the inorganic core particles is from 2% to 10%, and the average particle of the organic fine particles The diameter is 5 nm or more and 30 nm or less, the ratio of the average particle diameter of the organic fine particles to the average particle diameter of the inorganic core particles is 0.016 or more and 0.25 or less, and the average particle diameter of the composite particles is 90 nm or more and 350 nm or less. A composite particle dispersion in which the volume ratio ρv of the composite particles and the ratio ρr of the surface resistance ρs is 0.7 or more and 1.4 or less, and is dispersed in water so that the composite particles are 1% by weight, Power 110W, at a frequency of 31 kHz, before and after applying ultrasonic waves for 30 minutes, the number changes of the organic fine particles present in the inorganic core particle is 5% or less than 0.5%.
The composite particles having the above physical properties have the following effects.
(I) In the composite particles, the organic fine particles are immobilized on the inorganic core particles, and the change in the number of organic fine particles present on the inorganic core particles before and after ultrasonic irradiation under a predetermined condition is extremely small. Compared to conventional composite particles simply attached on the inorganic core particles, the adhesion strength of the organic fine particles on the inorganic core particles is high. Since the adhesion strength of the organic fine particles on the inorganic core particles is high, the organic fine particles are not easily detached from the inorganic core particles even when subjected to various stresses such as shearing force.
(Ii) Since the composite particles have a volume resistance ρv and a surface resistance ρs in a predetermined numerical range, a favorable charge amount can be secured as an initial characteristic. This good charge amount can be maintained for a long period of time because the adhesion strength of the organic fine particles onto the inorganic core particles is high and the organic fine particles are not easily detached from the inorganic core particles.
(Iii) Since the inorganic core particles and the organic fine particles have an average particle diameter in a predetermined numerical range, a ratio of the average particle diameter, and a coverage in a predetermined numerical range, for example, a configuration of an external additive for toner, etc. When used as a component, the toner and the composite particles always come into contact with the toner and the fine particles present on the composite particles, so that high fluidity can be secured as an initial characteristic without lowering rolling properties. The composite particles having high fluidity can be favorably applied as a component such as an external additive for toner. High fluidity can be maintained for a long period of time because the adhesion strength of the organic fine particles onto the inorganic core particles is high and the organic fine particles are not easily detached from the inorganic core particles.
Therefore, the composite particles of Embodiment 2 have high adhesion strength of the organic fine particles onto the inorganic core particles, and can secure a good charge amount and high fluidity.

実施の形態2の複合粒子の製造方法によれば、無機コア粒子と有機微粒子とを備える複合粒子の製造方法において、無機材料を主成分とする無機コア粒子と有機材料を主成分とする有機微粒子とを含む分散液から無機コア粒子の表面に有機微粒子が付着した粒子付着体を形成する粒子付着体形成工程と、粒子付着体が形成された分散液に、有機微粒子の表面に存在する反応性結合基と相互作用し、且つ、塩基性条件下で、無機コア粒子の表面に存在する水酸基(OH基)と結合(縮合)するシランカップリング剤および塩基性物質を添加して、無機コア粒子の表面に有機微粒子を固定化させた複合粒子を形成する複合粒子形成工程と、を備える。
粒子付着体形成工程では、ヘテロ凝集により、無機コア粒子上に有機微粒子を存在させ、無機コア粒子の表面に有機微粒子を静電的に付着させた粒子付着体を形成し、複合粒子形成工程では、シランカップリング剤の作用によって形成された無機材料層Nにより、無機コア粒子の表面に有機微粒子を固定化させた複合粒子を形成することができる。この複合粒子は、上述した各物性を併せもつことができる。
従って、実施の形態2の複合粒子の製造方法によれば、有機微粒子の無機コア粒子上への付着強度が高く、良好な帯電量および高い流動性を確保できる複合粒子を製造することができる。
According to the method for producing composite particles of the second embodiment, in the method for producing composite particles comprising inorganic core particles and organic fine particles, the inorganic core particles mainly composed of inorganic material and the organic fine particles mainly composed of organic material. A particle adhering step for forming a particle adhering body in which organic fine particles adhere to the surface of the inorganic core particles from a dispersion liquid containing a reactive substance present on the surface of the organic fine particles in the dispersion liquid in which the particle adhering body is formed Addition of a silane coupling agent that interacts with the bonding group and binds (condenses) with a hydroxyl group (OH group) present on the surface of the inorganic core particle under basic conditions, and a basic substance A composite particle forming step of forming composite particles in which organic fine particles are fixed on the surface of the composite particles.
In the particle adhering body forming step, organic fine particles are present on the inorganic core particles by hetero-aggregation, and a particle adhering body in which the organic fine particles are electrostatically attached to the surface of the inorganic core particles is formed. By the inorganic material layer N formed by the action of the silane coupling agent, composite particles in which organic fine particles are immobilized on the surface of the inorganic core particles can be formed. This composite particle can have each of the physical properties described above.
Therefore, according to the method for producing composite particles of Embodiment 2, it is possible to produce composite particles that have high adhesion strength of organic fine particles onto inorganic core particles, and that can ensure a good charge amount and high fluidity.

実施の形態2のトナー用外添剤によれば、上述した複合粒子を含む。従って、このトナー用外添剤は、有機微粒子の無機コア粒子上への付着強度が高く、良好な帯電量、高い流動性を確保できるので、従来よりも高い劣化耐性をもち、長期間にわたってトナー用外添剤とトナー粒子との付着性を維持でき、転写効率を高い状態で維持できると共に、トナー用外添剤がトナー粒子から遊離しにくいので、部材汚染に起因する画像欠陥を抑制し、安定した画像品質を提供することができる。   According to the external additive for toner of Embodiment 2, the composite particles described above are included. Therefore, this external additive for toner has high adhesion strength of organic fine particles onto the inorganic core particles, and can secure a good charge amount and high fluidity. The adhesion between the external additive and the toner particles can be maintained, the transfer efficiency can be maintained at a high level, and the external additive for the toner is difficult to be separated from the toner particles, thereby suppressing image defects caused by the contamination of the member, Stable image quality can be provided.

以下、実施例に基づいて、本発明をより具体的に説明するが、各実施例は本発明を限定するものではない。
以下の実施例は、本発明に係る複合粒子をトナー用外添剤として用いる場合について説明する。
実施例および比較例の説明に先立って、実施例および比較例における各種の測定方法、評価テストの内容を説明する。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, each Example does not limit this invention.
The following examples explain the case where the composite particles according to the present invention are used as an external additive for toner.
Prior to the description of Examples and Comparative Examples, the contents of various measurement methods and evaluation tests in Examples and Comparative Examples will be described.

<平均粒子径の求め方>
複合粒子、複合化前のコア粒子および微粒子の各平均粒子径は、以下のようなSEM画像観察により求めた。
1.複合粒子の平均粒子径
SEM画像観察では、SEM画像の視野を変えながら、合計100個分の複合粒子についてのSEM画像をそれぞれ二値化処理し、得られた複合粒子の二値化処理画像を得た。
二値化処理画像を基にして、図3に示す複合粒子断面の円形の輪郭から想定最大内接円(図3において内側の破線で示す)を求めた上で、複合粒子の平均粒子径は、その想定最大内接円から最も離された部分(図3において外側の破線で示す)の直径Dとして求めた。
2.複合化前のコア粒子および微粒子の平均粒子径
この場合も、上述と同様に、SEM画像観察を利用し、そのSEM画像の視野を変えながら、合計100個分のコア粒子または微粒子についてのSEM画像をそれぞれ二値化処理し、得られたコア粒子または微粒子の二値化処理画像を得た。このような二値化処理画像を基にした図4に示すように、コア粒子の直径DAまたは微粒子の直径DBは、任意の2本の弦(図4に示す弦X、Y)に対する直交線(垂線)の交点と、粒子表面に相当する略円形部分のうち交点から最も離された位置との距離の2倍として求めた。
<How to find the average particle size>
The average particle diameters of the composite particles, the core particles before composite formation, and the fine particles were determined by SEM image observation as follows.
1. Average particle diameter of composite particles In SEM image observation, the SEM images of a total of 100 composite particles were binarized while changing the field of view of the SEM images, and the binarized image of the obtained composite particles was obtained. Obtained.
Based on the binarized image, after obtaining the assumed maximum inscribed circle (indicated by the inner dashed line in FIG. 3) from the circular contour of the composite particle cross section shown in FIG. 3, the average particle diameter of the composite particles is The diameter D of the portion (indicated by the outer broken line in FIG. 3) farthest from the assumed maximum inscribed circle was obtained.
2. Average particle size of core particles and fine particles before complexing In this case as well, SEM images of 100 core particles or fine particles in total are used in the same manner as described above, using SEM image observation and changing the field of view of the SEM images. Were binarized, and the obtained binarized image of the core particles or fine particles was obtained. As shown in FIG. 4 based on such a binarized image, the diameter DA of the core particle or the diameter DB of the fine particle is an orthogonal line to any two strings (strings X and Y shown in FIG. 4). It was determined as twice the distance between the intersection of (perpendicular line) and the position farthest from the intersection in the substantially circular portion corresponding to the particle surface.

<複合粒子の体積抵抗、表面抵抗の評価>
体積抵抗、表面抵抗の測定値を以下の方法により求めた。
1.体積抵抗の測定
先ず、メタノール10g中に、複合粒子10gと、熱硬化型エポキシ樹脂(SPECIFIX−20(商品名)、ストルマス社製)3.3gを加え、熱硬化型エポキシ樹脂中に複合粒子を分散し混練して得られた混練物を、乳棒、乳鉢を用いて1時間解砕した。得られたゲル状の物質を型に流し、油圧のプレス機を用いて20MPaの圧力を加えて成型した後、その成型物を80℃で12時間乾燥させ、複合粒子およびエポキシ樹脂の複合物からなるペレットを得た。得られたペレットの両面に銀ペーストを用いて電極を取り付け、図5に示す体積抵抗測定用回路を構成し、体積抵抗を求めた。複合粒子およびエポキシ樹脂のペレット中への配合比率を変えて同様の測定を行い、エポキシ樹脂の比率に対する体積抵抗の変化に基づく検量線を引き、この検量線が交わる座標軸の切片の値(エポキシ樹脂の比率が0%のときの体積抵抗)を複合粒子の体積抵抗(Ω・cm)として算出した。
2.表面抵抗の測定
表面抵抗についても、上述と同様のペレットを用いて、図6に示す表面抵抗測定用回路を構成し、上述と同様の方法で、複合粒子の表面抵抗(Ω/cm)を測定した。
<複合粒子の比誘電率の測定>
複合粒子の比誘電率を以下の方法により求めた。
上述のペレット中の複合粒子およびエポキシ樹脂の配合比率を変えて上述の誘電率測定装置で誘電率を測定し、エポキシ樹脂の比率に対する誘電率の変化に基づく検量線を引き、この検量線が交わる座標軸の切片の値(エポキシ樹脂の比率が0%のときの誘電率)を複合粒子の誘電率ε(F/m)として求めた。その後、真空の誘電率ε(約8.854×10−12F/m)に対する複合粒子の誘電率εの比(複合粒子の比誘電率:εr=ε/ε)を算出した。
<Evaluation of volume resistance and surface resistance of composite particles>
The measured values of volume resistance and surface resistance were determined by the following methods.
1. Measurement of volume resistance First, 10 g of composite particles and 3.3 g of a thermosetting epoxy resin (SPECIFIX-20 (trade name), Stolmouth) are added to 10 g of methanol, and the composite particles are added to the thermosetting epoxy resin. The kneaded material obtained by dispersing and kneading was pulverized for 1 hour using a pestle and mortar. The obtained gel-like substance is poured into a mold, molded by applying a pressure of 20 MPa using a hydraulic press machine, and then the molded product is dried at 80 ° C. for 12 hours. From the composite of composite particles and epoxy resin The resulting pellet was obtained. Electrodes were attached to both sides of the obtained pellets using silver paste to constitute a volume resistance measurement circuit shown in FIG. 5, and the volume resistance was determined. Perform the same measurement by changing the compounding ratio of composite particles and epoxy resin in the pellet, draw a calibration curve based on the change in volume resistance with respect to the epoxy resin ratio, and the value of the intercept of the coordinate axis where this calibration curve intersects (epoxy resin The volume resistivity when the ratio of 0 is 0%) was calculated as the volume resistivity (Ω · cm) of the composite particles.
2. Measurement of surface resistance As for surface resistance, a surface resistance measurement circuit shown in FIG. 6 is constructed using the same pellets as described above, and the surface resistance (Ω / cm 2 ) of the composite particles is determined by the same method as described above. It was measured.
<Measurement of relative dielectric constant of composite particles>
The relative dielectric constant of the composite particles was determined by the following method.
Measure the dielectric constant with the above-mentioned dielectric constant measuring device by changing the compounding ratio of the composite particles and epoxy resin in the above pellets, draw a calibration curve based on the change in dielectric constant with respect to the epoxy resin ratio, and this calibration curve intersects The value of the intercept of the coordinate axis (dielectric constant when the epoxy resin ratio is 0%) was determined as the dielectric constant ε (F / m) of the composite particles. Thereafter, the ratio of the dielectric constant ε of the composite particles to the dielectric constant ε 0 of vacuum (about 8.854 × 10 −12 F / m) (relative dielectric constant of the composite particles: εr = ε / ε 0 ) was calculated.

<複合粒子の帯電量の評価>
フタ付きのガラス瓶に、スチレン/メチルメタクリレート樹脂で被覆されたフェライト粒子(体積平均粒子径:35μm)30質量部を秤量し、その後、フェライト粒子上に載置した状態で複合粒子1質量部を秤量した。その後、常温常湿(25℃/50%RH)下で放置して24時間シーズニングした後、ターブラーミキサーで3分間撹拌振盪することにより、複合粒子に対してフェライト粒子との衝突による摩擦帯電を生じさせる負荷を与えた。この粒子の帯電量(μC/g)を飛翔式帯電量測定装置(電界飛翔式帯電量測定装置II−DC電界(商品名)、ディーアイティー株式会社製)で測定した。尚、フェライト粒子の体積平均粒子径は、粒度分布測定装置(マルチサイザー(登録商標)、ベックマン・コールター社製)を用いて測定した。
<Evaluation of charge amount of composite particles>
30 parts by mass of ferrite particles (volume average particle diameter: 35 μm) coated with styrene / methyl methacrylate resin are weighed in a glass bottle with a lid, and then 1 part by mass of composite particles are weighed on the ferrite particles. did. After that, it was allowed to stand under normal temperature and normal humidity (25 ° C./50% RH) and seasoned for 24 hours, and then stirred and shaken with a turbuler mixer for 3 minutes. The resulting load was applied. The charge amount (μC / g) of the particles was measured with a flying charge amount measuring device (electric field flying charge amount measuring device II-DC electric field (trade name), manufactured by DIT Corporation). The volume average particle size of the ferrite particles was measured using a particle size distribution measuring device (Multisizer (registered trademark), manufactured by Beckman Coulter, Inc.).

<複合粒子における微粒子のコア粒子上への付着強度の評価>
先ず、乾燥させた状態の複合粒子100個について、SEM画像観察により、コア粒子の表面に存在する微粒子の個数を計測した(超音波照射前における個数)。
一方、同じ複合粒子を用い、その複合粒子が1重量%になる配合割合で、水に分散させて複合粒子分散液を調製した。その後、複合粒子分散液に、出力110W、周波数31kHzの条件で、超音波を30分間照射した。その後、複合粒子分散液を遠心沈降により固液分離し、その沈降物を分取し、その沈降物を凍結乾燥により乾燥させた。この乾燥させた固形物中の100個の複合粒子について、SEM画像観察により、コア粒子に存在する微粒子の個数を計測した(超音波照射後における個数)。
このようにして得られた超音波照射前における個数と超音波照射後における個数とを比較して超音波照射前後における個数変化(%)を求めた。
A:個数変化が0.5%以上3%未満であり、微粒子のコア粒子上の付着強度が極めて高く、極めて高い付着強度によってコア粒子に微粒子固定化されていると判断される(好適に使用可)。
B:個数変化が3%以上5未満であり、微粒子のコア粒子上の付着強度が高く、高い付着強度によってコア粒子に微粒子が固定化されていると判断される(十分に使用可)。
C:個数変化が5%以上10%未満であり、微粒子のコア粒子上の付着強度が低く、低い付着強度によってコア粒子上に微粒子が付着していると判断される(用途によっては使用の判断が分かれるレベル)。
D:個数変化が10%以上であり、微粒子のコア粒子上の付着強度が極めて低く、極めて低い付着強度によってコア粒子上に微粒子が付着していると判断される(用途を問わず、使用に適さないレベル)。
<Evaluation of adhesion strength of fine particles on core particles in composite particles>
First, for 100 composite particles in a dried state, the number of fine particles present on the surface of the core particle was measured by SEM image observation (number before ultrasonic irradiation).
On the other hand, using the same composite particles, a composite particle dispersion was prepared by dispersing in water at a blending ratio of 1% by weight of the composite particles. Thereafter, the composite particle dispersion was irradiated with ultrasonic waves for 30 minutes under conditions of an output of 110 W and a frequency of 31 kHz. Thereafter, the composite particle dispersion was subjected to solid-liquid separation by centrifugal sedimentation, the sediment was collected, and the sediment was dried by freeze drying. With respect to 100 composite particles in the dried solid, the number of fine particles present in the core particles was measured by SEM image observation (number after ultrasonic irradiation).
The number change (%) before and after ultrasonic irradiation was determined by comparing the number before and after ultrasonic irradiation obtained in this way.
A: The number change is 0.5% or more and less than 3%, the adhesion strength of the fine particles on the core particles is extremely high, and it is judged that the fine particles are fixed to the core particles by the extremely high adhesion strength (use suitably) Yes).
B: The number change is 3% or more and less than 5, the adhesion strength of the fine particles on the core particles is high, and it is determined that the fine particles are fixed to the core particles due to the high adhesion strength (can be used sufficiently).
C: The change in the number is 5% or more and less than 10%, the adhesion strength of the fine particles on the core particles is low, and it is judged that the fine particles are adhered on the core particles due to the low adhesion strength. Level to separate).
D: The number change is 10% or more, the adhesion strength of the fine particles on the core particles is extremely low, and it is judged that the fine particles are adhered on the core particles due to the extremely low adhesion strength (regardless of the application, Unsuitable level).

<複合粒子の流動性評価>
アクリル粒子(MX−1000(商品名)、綜研化学(株)製)100重量部に対し、複合粒子2重量部を加え、サンプルミルにて10,000rpmで30秒間ブレンドし、粒子混合物102重量を得た。得られた粒子混合物102重量部のうち、評価用として複合粒子2.0質量部をフタ付きのガラス瓶に秤量し、常温/常湿(23℃/50%RH)下で放置して24時間シーズニングした後、3段ふるいを備えたパウダーテスタ(商品名、ホソカワミクロン社製)により初期の凝集度を測定した。また、残りの粒子混合物100重量部から分取した粒子1重量部とスチレン/メチルメタクリレート樹脂で被覆されたフェライト粒子(体積平均粒子径:35μm)30質量部とをフタ付きのガラス瓶に秤量し、常温/常湿(23℃/50%RH)の環境下、ターブラーミキサーで1時間撹拌振盪することによって、上述の複合粒子に対する耐久試験を行った。その後、フェライト粒子を磁石により取り除いた後に残った複合粒子について、上述のパウダーテスタにより耐久試験後の凝集度を測定し、初期の凝集度に対する凝集度変化を求めた。この耐久試験は、複合粒子に対して、複合粒子より比重の大きいフェライト粒子との衝突によるストレスを与えるものである。ストレスを受けることで、複合粒子がその球形状を維持できない、もしくはフェライト樹脂に付着した場合、その複合粒子は流動性を失い、凝集度変化が大きくなる。尚、フェライト粒子の体積平均粒子径は、粒度分布測定装置(マルチサイザー(登録商標)、ベックマン・コールター社製)を用いて測定した。
A:凝集度変化が10%未満であり、耐久試験後においても、極めて高い流動性が確保されていると判断される(好適に使用可)。
B:凝集度変化が10%以上20%未満であり、耐久試験後においても、高い流動性が確保されていると判断される(十分に使用可)。
C:凝集度変化が20%以上30%未満であり、耐久試験後において、流動性を失った粒子が少なからず存在していると判断される(用途によっては使用の判断が分かれるレベル)。
D:凝集度変化が30%以上であり、耐久試験後において、流動性を失った粒子が多く存在していると判断される(用途を問わず、使用に適さないレベル)。
<Evaluation of fluidity of composite particles>
To 100 parts by weight of acrylic particles (MX-1000 (trade name), manufactured by Soken Chemical Co., Ltd.), 2 parts by weight of the composite particles are added, blended at 10,000 rpm for 30 seconds in a sample mill, and 102 parts by weight of the particle mixture is added. Obtained. Out of 102 parts by weight of the obtained particle mixture, 2.0 parts by mass of composite particles were weighed in a glass bottle with a lid for evaluation, and allowed to stand under normal temperature / normal humidity (23 ° C./50% RH) for 24 hours. Then, the initial degree of aggregation was measured with a powder tester (trade name, manufactured by Hosokawa Micron Corporation) equipped with a three-stage sieve. Further, 1 part by weight of particles separated from 100 parts by weight of the remaining particle mixture and 30 parts by weight of ferrite particles (volume average particle diameter: 35 μm) coated with styrene / methyl methacrylate resin are weighed in a glass bottle with a lid, The durability test for the above composite particles was performed by stirring and shaking with a tumbler mixer in an environment of normal temperature / normal humidity (23 ° C./50% RH) for 1 hour. Thereafter, the degree of agglomeration after the durability test was measured with the above-described powder tester for the composite particles remaining after the ferrite particles were removed with a magnet, and the change in the degree of agglomeration relative to the initial degree of aggregation was determined. This endurance test gives stress to the composite particles due to collision with ferrite particles having a specific gravity larger than that of the composite particles. When the composite particles cannot maintain the spherical shape due to the stress or adhere to the ferrite resin, the composite particles lose fluidity and the degree of aggregation changes greatly. The volume average particle size of the ferrite particles was measured using a particle size distribution measuring device (Multisizer (registered trademark), manufactured by Beckman Coulter, Inc.).
A: The change in the degree of aggregation is less than 10%, and it is judged that extremely high fluidity is ensured even after the durability test (preferably usable).
B: The change in aggregation degree is 10% or more and less than 20%, and it is judged that high fluidity is ensured even after the durability test (can be used sufficiently).
C: The change in the degree of aggregation is 20% or more and less than 30%, and it is determined that there are not a few particles that have lost fluidity after the durability test (the level at which use is determined depending on the application).
D: It is judged that the change in aggregation degree is 30% or more, and there are many particles that have lost fluidity after the endurance test (a level unsuitable for use regardless of application).

以下に、有機粒子および無機粒子の形成方法を説明する。
有機粒子は、以下の合成例1〜6によって形成され、コア粒子または微粒子のいずれかとして使用して複合粒子の一部を構成する。無機粒子は、以下の合成例7〜12によって形成され、微粒子またはコア粒子のいずれかとして使用して複合粒子の一部を構成する。
Below, the formation method of an organic particle and an inorganic particle is demonstrated.
The organic particles are formed by the following synthesis examples 1 to 6, and are used as either core particles or fine particles to constitute a part of the composite particles. The inorganic particles are formed by the following synthesis examples 7 to 12, and are used as either fine particles or core particles to constitute a part of the composite particles.

合成例1.
<有機粒子の合成>
冷却機、温度計、窒素導入管を備えた3リットルの反応容器に、水2400gを加え、反応容器内に1時間窒素ガスを導入することで反応容器内の酸素を除去した。その後メタクリル酸メチル(MMA)(東京化成製)150gと、粒子径制御剤としてのp−スチレンスルホン酸ナトリウム(NaSS)5gと、メタクリル酸3−(トリメトキシシリル)プロピル(MAPTMS)30gを加えた後、反応開始剤としての過硫酸カリウム(KPS)5gを加え、80℃で6時間反応させ、有機粒子として、MAPTMSによって架橋されたポリメタクリル酸メチル(PMMA)粒子を得た。
その後、遠心沈降によりPMMA粒子を固液分離し、上澄み液をデカンテーションで除去した後、蒸留水500gを加え、1時間撹拌し、分散液を得た。蒸留水500gの添加、遠心沈降による固液分離、上澄み液のデカンテーションの一連の操作を合計3度繰り返し、最後に、水820gを加え、PMMA粒子水分散液を得た。得られたPMMA粒子の、SEM画像観察による平均粒子径は80nm、平均粒子径の変動係数は5%であった。
この合成例1の上述したMMA、NaSS、MAPTMS、KPS、水の各配合量の一覧を以下の表1に示す。
Synthesis Example 1
<Synthesis of organic particles>
2400 g of water was added to a 3 liter reaction vessel equipped with a cooler, a thermometer, and a nitrogen introduction tube, and nitrogen gas was introduced into the reaction vessel for 1 hour to remove oxygen in the reaction vessel. Thereafter, 150 g of methyl methacrylate (MMA) (manufactured by Tokyo Chemical Industry), 5 g of sodium p-styrenesulfonate (NaSS) as a particle size control agent, and 30 g of 3- (trimethoxysilyl) propyl methacrylate (MAPTMS) were added. Thereafter, 5 g of potassium persulfate (KPS) as a reaction initiator was added and reacted at 80 ° C. for 6 hours to obtain polymethyl methacrylate (PMMA) particles crosslinked by MAPTMS as organic particles.
Thereafter, the PMMA particles were separated into solid and liquid by centrifugal sedimentation, and the supernatant was removed by decantation. Then, 500 g of distilled water was added and stirred for 1 hour to obtain a dispersion. A series of operations of adding 500 g of distilled water, solid-liquid separation by centrifugal sedimentation, and decantation of the supernatant was repeated 3 times in total, and finally 820 g of water was added to obtain an aqueous dispersion of PMMA particles. The obtained PMMA particles had an average particle size of 80 nm as observed by SEM image, and the coefficient of variation of the average particle size was 5%.
Table 1 below shows a list of blending amounts of MMA, NaSS, MAPTMS, KPS, and water described in Synthesis Example 1.

合成例2〜5
上述したMMA、NaSS、MAPTMS、KPS、水の各配合量を以下の表1に示す配合量に変更した以外は、合成例1と同様の方法で有機粒子としてのPMMA粒子(SEM画像観察による平均粒子径:8nm〜300nm、コア平均粒子径の変動係数:2%〜10%)を合成した。
Synthesis Examples 2-5
Except for changing the blending amounts of MMA, NaSS, MAPTMS, KPS, and water to the blending amounts shown in Table 1 below, PMMA particles (average by SEM image observation) as organic particles in the same manner as in Synthesis Example 1 (Particle diameter: 8 nm to 300 nm, variation coefficient of core average particle diameter: 2% to 10%) was synthesized.

Figure 2016142811
Figure 2016142811

合成例6.
<シリカ粒子の合成>
冷却機、温度計、窒素導入管を備えた5リットルの反応容器に、エタノール1250gとアセトニトリル1250gとテトラエトキシシラン178gを入れ、50℃に制御し、150rpmで撹拌しているところに、蒸留水600gと10%アンモニア水40gの混合物を50℃まで加温した後、直ちに一気に添加した。その後、50℃で10時間撹拌を行った後、蒸留水1000gを添加し、液量が半分になるまでエバポレータを用いて濃縮し、遠心沈降により固液分離した。上澄み液をデカンテーションで除去した後、蒸留水800gを加え、1時間撹拌し、同様に固液分離を行った。蒸留水800gの添加、遠心沈降による固液分離、上澄み液のデカンテーションの一連の操作を合計3度繰り返した後、最後に、水200gを加え、シリカ粒子(SEM画像観察による平均粒子径:20nm、平均粒子径の変動係数:10%)を分散させた白色分散液を得た。
この合成例6の上述したエタノール、アセトニトリル、テトラエトキシシラン、水、10%アンモニアの各配合量の一覧を以下の表2に示す。
Synthesis Example 6
<Synthesis of silica particles>
In a 5 liter reaction vessel equipped with a cooler, a thermometer, and a nitrogen inlet tube, 1250 g of ethanol, 1250 g of acetonitrile and 178 g of tetraethoxysilane are placed, controlled at 50 ° C. and stirred at 150 rpm, and 600 g of distilled water. And a 10% aqueous ammonia 40 g mixture were heated to 50 ° C. and immediately added all at once. Then, after stirring for 10 hours at 50 ° C., 1000 g of distilled water was added, concentrated using an evaporator until the liquid volume became half, and solid-liquid separation was performed by centrifugal sedimentation. After removing the supernatant by decantation, 800 g of distilled water was added and stirred for 1 hour, and solid-liquid separation was performed in the same manner. A series of operations of adding 800 g of distilled water, solid-liquid separation by centrifugal sedimentation, and decantation of the supernatant was repeated 3 times in total. Finally, 200 g of water was added and silica particles (average particle diameter by SEM image observation: 20 nm) A white dispersion liquid in which a coefficient of variation in average particle diameter: 10%) was dispersed was obtained.
Table 2 below shows a list of blending amounts of ethanol, acetonitrile, tetraethoxysilane, water, and 10% ammonia described in Synthesis Example 6.

合成例6〜11
上述したテトラエトキシシラン、水、10%アンモニアの各配合量を以下の表2に示す配合量に変更した以外は、合成例7と同様の方法で無機粒子としてのシリカ粒子(SEM画像観察による平均粒子径:9〜290nm、コア粒子の平均粒子径の変動係数:2%〜10%)を合成した。
Synthesis Examples 6 to 11
Silica particles (average by SEM image observation) as inorganic particles in the same manner as in Synthesis Example 7 except that the amounts of tetraethoxysilane, water, and 10% ammonia described above were changed to the amounts shown in Table 2 below. (Particle diameter: 9 to 290 nm, coefficient of variation of average particle diameter of core particles: 2% to 10%) was synthesized.

合成例12
<チタン酸ストロンチウムの合成>
グローブボックス内に反応容器を準備し、金属ストロンチウム(ナカライテクス(株)社製)18gを2−メトキシエタノール(和光純薬工業(株)社製)1100g中に溶解させた。金属ストロンチウムが完全に溶解した後チタンテトラエトキシド(東京化成工業(株)社製)48gを加え、蓋をしてグローブボックス内から取り出した。
次に、冷却機、温度計、窒素導入管を上記反応容器に設置し、窒素雰囲気下で二時間還流させることにより、チタン酸ストロンチウムの分散液を得た。その後、蒸留水1000gを添加し、液量が半分になるまでエバポレータを用いて濃縮し、遠心沈降により固液分離した。上澄み液をデカンテーションで除去した後、蒸留水800gを加え、1時間撹拌し、同様に固液分離を行った。蒸留水800gの添加、遠心沈降による固液分離、上澄み液のデカンテーションの一連の操作を合計3度繰り返した後、最後に水200gを加え、粒子径が18nmのチタン酸ストロンチウムを分散させた分散液を得た。
この合成例13の上述したストロンチウム、2−メトキシエタノール、チタンテトラエトキシドの配合量を以下の表2に示す。
Synthesis Example 12
<Synthesis of strontium titanate>
A reaction vessel was prepared in the glove box, and 18 g of metal strontium (manufactured by Nacalai Tex Co., Ltd.) was dissolved in 1100 g of 2-methoxyethanol (manufactured by Wako Pure Chemical Industries, Ltd.). After the metal strontium was completely dissolved, 48 g of titanium tetraethoxide (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the lid was taken out from the glove box.
Next, a strontium titanate dispersion was obtained by installing a cooler, a thermometer, and a nitrogen introduction tube in the reaction vessel and refluxing for 2 hours in a nitrogen atmosphere. Thereafter, 1000 g of distilled water was added, the solution was concentrated using an evaporator until the liquid volume was reduced to half, and solid-liquid separation was performed by centrifugal sedimentation. After removing the supernatant by decantation, 800 g of distilled water was added and stirred for 1 hour, and solid-liquid separation was performed in the same manner. A series of operations of adding 800 g of distilled water, solid-liquid separation by centrifugal sedimentation, and decantation of the supernatant was repeated a total of 3 times, and finally 200 g of water was added to disperse strontium titanate having a particle size of 18 nm. A liquid was obtained.
Table 2 below shows the blending amounts of strontium, 2-methoxyethanol, and titanium tetraethoxide of Synthesis Example 13 described above.

Figure 2016142811
Figure 2016142811

実施例1−1〜1−14
この実施例1−1〜1−14は、1種類の有機コア粒子と、1種類の無機微粒子を備える複合粒子の製造例である。
Examples 1-1 to 1-14
Examples 1-1 to 1-14 are production examples of composite particles including one kind of organic core particles and one kind of inorganic fine particles.

実施例1−1
<複合粒子の製造>
1.粒子付着体形成工程
冷却機、温度計、窒素導入管を備えた反応容器に、液温30℃の、合成例1で合成したPMMA粒子(平均粒子径:80nm)100gを含む有機粒子分散液555gと、液温30℃の、合成例6で合成したシリカ微粒子(平均粒子径:20nm)313gを含む無機微粒子分散液1565gとを混合して分散液を得た。その後、分散液の全量が2500gになるまで蒸留水を加えた。その後、分散液を30℃に保ったまま3時間撹拌した。その後、液温および撹拌を維持した分散液に、そのpHを測定しながら、pH2.0になるまで2時間かけて0.1M塩酸溶液を滴下し続け、pH2.0になったところで塩酸の滴下を停止した。その後、60℃まで昇温してから、60℃で5時間撹拌し、PMMA粒子にシリカ微粒子を付着させた粒子付着体を形成した。
Example 1-1
<Production of composite particles>
1. Particle adhering body forming step 555 g of an organic particle dispersion containing 100 g of PMMA particles (average particle diameter: 80 nm) synthesized in Synthesis Example 1 at a liquid temperature of 30 ° C. in a reaction vessel equipped with a cooler, a thermometer, and a nitrogen introduction tube. And 1565 g of an inorganic fine particle dispersion containing 313 g of silica fine particles (average particle size: 20 nm) synthesized in Synthesis Example 6 at a liquid temperature of 30 ° C. were mixed to obtain a dispersion. Thereafter, distilled water was added until the total amount of the dispersion became 2500 g. Thereafter, the dispersion was stirred for 3 hours while being kept at 30 ° C. Thereafter, while measuring the pH of the dispersion with the liquid temperature and stirring maintained, a 0.1 M hydrochloric acid solution was continuously added dropwise over 2 hours until the pH reached 2.0. When the pH reached 2.0, the hydrochloric acid was added dropwise. Stopped. Then, after heating up to 60 degreeC, it stirred at 60 degreeC for 5 hours, and the particle | grain adhesion body which made the silica fine particle adhere to PMMA particle | grains was formed.

2.複合粒子形成工程
粒子付着体が形成された分散液を室温まで冷却した後、分散液に50.0gのMAPTMSを一気に添加し撹拌しながら、10%アンモニア水をpH8.0になるまで2時間かけて徐々に滴下した。分散液がpH8.0になったことを確認した後、そのpHを維持したまま50℃まで昇温し、50℃で6時間反応させ、PMMA粒子の表面にシリカ微粒子を固定化させた複合粒子を得た。
その後、遠心沈降により固液分離した後、上澄み液をデカンテーションで除去し、蒸留水を500g添加し、1時間撹拌し、再度、分散液を得た。蒸留水500gの添加、遠心沈降による固液分離、上澄み液のデカンテーションの一連の操作を合計3度繰り返した後、最後に再び遠心分離により固液分離を行い、沈殿物を24時間凍結乾燥させることにより、白色粉末を得た。
2. Composite particle formation step After cooling the dispersion with the particle adhering body formed to room temperature, 50.0 g of MAPTMS was added to the dispersion at a stretch and stirred for 10 hours until 10% aqueous ammonia was adjusted to pH 8.0. And gradually dropped. After confirming that the dispersion became pH 8.0, the temperature was raised to 50 ° C. while maintaining the pH, and the reaction was carried out at 50 ° C. for 6 hours to immobilize silica fine particles on the surface of the PMMA particles. Got.
Then, after solid-liquid separation by centrifugal sedimentation, the supernatant was removed by decantation, 500 g of distilled water was added, and the mixture was stirred for 1 hour to obtain a dispersion again. A series of operations of adding 500 g of distilled water, solid-liquid separation by centrifugal sedimentation, and decantation of the supernatant was repeated a total of 3 times, and finally solid-liquid separation was performed again by centrifugation, and the precipitate was freeze-dried for 24 hours. This gave a white powder.

3.粒子疎水化工程
その後、複合粒子形成工程によって得られた白色粉末10gを、水200gとヘキサメチルジシラザン(HMDS)15gの混合物に加え、室温で30分間、撹拌し、さらに、60℃で4時間、撹拌した後、固液分離を行い、得られた沈殿物をメタノールで洗浄し、その後、50℃で48時間乾燥させることにより、表面を疎水化した複合粒子の白色粉末(SEM画像観察による平均粒子径:122nm)を得た。
この実施例1−1における有機粒子、無機粒子、水、MAPTMS、HMDSの各配合量の一覧を以下の表3に示す。
3. Particle hydrophobization step Thereafter, 10 g of the white powder obtained by the composite particle formation step is added to a mixture of 200 g of water and 15 g of hexamethyldisilazane (HMDS), stirred at room temperature for 30 minutes, and further at 60 ° C. for 4 hours. After stirring, solid-liquid separation is performed, and the resulting precipitate is washed with methanol, and then dried at 50 ° C. for 48 hours, whereby white particles of composite particles whose surfaces are hydrophobized (average by SEM image observation) Particle size: 122 nm) was obtained.
Table 3 below shows a list of blending amounts of organic particles, inorganic particles, water, MAPTMS, and HMDS in Example 1-1.

<実施例1−1の複合粒子の物性確認>
実施例1−1の複合粒子の、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の各物性値を表1、表2および以下の表3に示す。また、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が3%未満であった。
これにより、実施例1−1の複合粒子は、上述の物性(1)〜(8)を併せもつことを確認した。
<実施例1−1の複合粒子の評価>
実施例1−1の複合粒子の、コア粒子に対する微粒子の付着強度評価、および、凝集度変化による流動性評価は、いずれも「A」評価であった。また、実施例1−1の複合粒子は、良好な帯電量をもつことを確認した。
<Confirmation of physical properties of composite particles of Example 1-1>
The average particle diameter of the core particles, the coefficient of variation thereof, the fine particle average particle diameter / core particle average particle diameter, the resistance ratio ρr, the average particle diameter of the composite particles, the relative dielectric constant, and the coverage of the composite particles of Example 1-1. Each physical property value is shown in Table 1, Table 2 and Table 3 below. Further, as can be seen from the evaluation of the adhesion strength of the fine particles to the core particles, the number change was less than 3%.
Thereby, it confirmed that the composite particle of Example 1-1 had the above-mentioned physical property (1)-(8).
<Evaluation of Composite Particles of Example 1-1>
The evaluation of the adhesion strength of the fine particles with respect to the core particles and the fluidity evaluation by changing the degree of aggregation of the composite particles of Example 1-1 were both “A” evaluation. Further, it was confirmed that the composite particles of Example 1-1 had a good charge amount.

実施例1−2〜1−11
<実施例1−2〜1−11の複合粒子の製造>
これらの実施例1−2〜1−11の複合粒子として、有機粒子、シリカ粒子、水の各配合量を以下の表3に示す配合量に変更した以外は、実施例1−1と同様の方法で製造した複合粒子を用いた。
Examples 1-2 to 1-11
<Production of Composite Particles of Examples 1-2 to 1-11>
As composite particles of these Examples 1-2 to 1-11, except that the blending amounts of organic particles, silica particles, and water are changed to blending amounts shown in Table 3 below, they are the same as those of Example 1-1. The composite particles produced by the method were used.

実施例1−12
<実施例1−12の複合粒子の製造>
実施例1−12ではシリカ粒子を合成例12で合成したチタン酸ストロンチウムに変更して用いた以外は実施例1−1と同様の方法で製造した複合粒子を用いた。
Example 1-12
<Production of Composite Particles of Example 1-12>
In Example 1-12, composite particles produced by the same method as in Example 1-1 were used except that the silica particles were changed to strontium titanate synthesized in Synthesis Example 12.

実施例1−13
<実施例1−13の複合粒子の製造>
また、実施例1−13ではシリカ粒子を酸化チタンSRD−02W(堺化学工業(株)社製):平均粒子径9nmに変更して用いた以外は、実施例1−1と同様の方法で製造した複合粒子を用いた。
Example 1-13
<Production of Composite Particles of Example 1-13>
Further, in Example 1-13, the silica particles were changed to titanium oxide SRD-02W (manufactured by Sakai Chemical Industry Co., Ltd.): average particle diameter of 9 nm, and the same method as in Example 1-1 was used. The produced composite particles were used.

実施例1−14
<実施例1−14の複合粒子の製造>
また、実施例1−14ではシリカ粒子を酸化セリウムTECNADIS−CE−115(TECNAN社製):平均粒子径5nmに変更して用いた以外は、実施例1−1と同様の方法で製造した複合粒子を用いた。
Example 1-14
<Production of Composite Particles of Example 1-14>
Further, in Example 1-14, the silica particle was cerium oxide TECNADIS-CE-115 (manufactured by TECNAN): a composite produced by the same method as in Example 1-1 except that the average particle diameter was changed to 5 nm. Particles were used.

上記実施例1−2〜1−14における有機粒子、無機粒子、水、MAPTMS、HMDSの各配合量の一覧を以下の表3に示す。   Table 3 below shows a list of blending amounts of organic particles, inorganic particles, water, MAPTMS, and HMDS in Examples 1-2 to 1-14.

<実施例1−2〜1−14の複合粒子の物性確認>
実施例1−2〜1−14の各複合粒子についての、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の物性値を表1、表2および以下の表3に示す。
実施例1−2、1−3、1−5、1−6、1−8、1−9、1−11〜1−14の各複合粒子の、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が3%未満であり、実施例1−4、1−7、1−10の各複合粒子の、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が3%以上5%未満であった。
これにより、実施例1−2〜1−14の各複合粒子は、いずれも、上述の物性(1)〜(8)を併せもつことを確認した。
<実施例1−2〜1−14の複合粒子の評価>
実施例1−2〜1−14の複合粒子のうち、実施例1−4、1−7、1−10の、コア粒子に対する微粒子の付着強度評価が「B」評価であった以外は、いずれも「A」評価であった。
実施例1−2〜1−14の複合粒子のうち、実施例1−4、1−7、1−10、1−13の凝集度変化による流動性評価が「B」評価であった以外は、いずれも「A」評価であった。
実施例1−2〜1−14の複合粒子は、いずれも良好な帯電量をもつことを確認した。
<Confirmation of physical properties of composite particles of Examples 1-2 to 1-14>
For each composite particle of Examples 1-2 to 1-14, the average particle diameter of the core particles, the coefficient of variation thereof, the fine particle average particle diameter / core particle average particle diameter, the resistance ratio ρr, the average particle diameter of the composite particles, the ratio The physical properties of dielectric constant and coverage are shown in Table 1, Table 2 and Table 3 below.
Examples 1-2, 1-3, 1-5, 1-6, 1-8, 1-9, 1-11 to 1-14, as seen from the evaluation of the adhesion strength of the fine particles to the core particles Further, the number change is less than 3%, and as can be seen from the evaluation of the adhesion strength of the fine particles to the core particles of each of the composite particles of Examples 1-4, 1-7, and 1-10, the number change is 3% or more and 5 %.
Thereby, it was confirmed that each of the composite particles of Examples 1-2 to 1-14 has the above physical properties (1) to (8).
<Evaluation of Composite Particles of Examples 1-2 to 1-14>
Of the composite particles of Examples 1-2 to 1-14, except that the adhesion strength evaluation of the fine particles to the core particles of Examples 1-4, 1-7, and 1-10 was “B” evaluation, Was also rated “A”.
Among the composite particles of Examples 1-2 to 1-14, except that the fluidity evaluation by changing the aggregation degree of Examples 1-4, 1-7, 1-10, 1-13 was “B” evaluation. All were "A" evaluation.
It was confirmed that all the composite particles of Examples 1-2 to 1-14 had a good charge amount.

Figure 2016142811
Figure 2016142811

実施例2−1〜2−8
この実施例2−1〜2−8は、1種類の無機コア粒子と、1種類の有機微粒子を備える複合粒子の製造例である。
Examples 2-1 to 2-8
Examples 2-1 to 2-8 are production examples of composite particles including one kind of inorganic core particles and one kind of organic fine particles.

実施例2−1
<実施例2−1の複合粒子の製造>
1.粒子付着体形成工程
冷却機、温度計、窒素導入管を備えた反応容器に、液温30℃の、合成例9で合成したシリカ粒子(平均粒子径:110nm)100gを含む無機粒子分散液500gと、液温30℃の、合成例5で合成したPMMA微粒子(平均粒子径:8nm)160gを含む有機微粒子分散液888gを混合して分散液を得た。その後、分散液の全量が2500gになるまで蒸留水を加えた。その後、分散液を30℃に保ったまま3時間、撹拌した。その後、液温および撹拌を維持した分散液に、そのpHを測定しながら、pH2.0になるまで2時間かけて0.1M塩酸溶液を滴下し続け、pH2.0になったところで塩酸の滴下を停止した。その後、60℃まで昇温してから、60℃で5時間、撹拌することにより、シリカコア粒子表面にPMMA微粒子を付着させた。
Example 2-1
<Production of Composite Particles of Example 2-1>
1. Particle Adherent Forming Step 500 g of inorganic particle dispersion containing 100 g of silica particles (average particle size: 110 nm) synthesized in Synthesis Example 9 at a liquid temperature of 30 ° C. in a reaction vessel equipped with a cooler, a thermometer, and a nitrogen introduction tube. Then, 888 g of an organic fine particle dispersion containing 160 g of PMMA fine particles (average particle size: 8 nm) synthesized in Synthesis Example 5 at a liquid temperature of 30 ° C. were mixed to obtain a dispersion. Thereafter, distilled water was added until the total amount of the dispersion became 2500 g. Thereafter, the dispersion was stirred for 3 hours while being kept at 30 ° C. Thereafter, while measuring the pH of the dispersion with the liquid temperature and stirring maintained, a 0.1 M hydrochloric acid solution was continuously added dropwise over 2 hours until the pH reached 2.0. When the pH reached 2.0, the hydrochloric acid was added dropwise. Stopped. Then, after heating up to 60 degreeC, the PMMA fine particle was made to adhere to the silica core particle surface by stirring at 60 degreeC for 5 hours.

2.複合粒子形成工程
粒子付着体が形成された分散液を室温まで冷却した後、分散液に50.0gのMAPTMSを一気に添加し、撹拌しながら、10%アンモニア水をpH8.0になるまで2時間かけて徐々に滴下した。分散液がpH8.0になったことを確認した後、そのpHを維持したまま室温で6時間反応させることにより、コア粒子の表面にシリカ粒子を固定化させた粒子付着体を得た。
その後、蒸留水を100g添加し、液量が半分になるまでエバポレータを用いて濃縮し、遠心沈降により固液分離した。上澄み液をデカンテーションで除去した後、蒸留水300gを加え、同様に固液分離を行った。蒸留水300gの添加、遠心沈降による固液分離、上澄み液のデカンテーションの一連の操作を合計3度繰り返した後、沈殿物を24時間凍結乾燥させることにより、白色粉末を得た。
2. Composite particle forming step After the dispersion liquid in which the particle adhering body is formed is cooled to room temperature, 50.0 g of MAPTMS is added to the dispersion liquid all at once, and while stirring, 2% until 10% aqueous ammonia becomes pH 8.0. It was dripped gradually over the time. After confirming that the dispersion reached pH 8.0, a particle adhering body in which silica particles were immobilized on the surface of the core particles was obtained by reacting at room temperature for 6 hours while maintaining the pH.
Thereafter, 100 g of distilled water was added, concentrated using an evaporator until the liquid volume was reduced to half, and solid-liquid separation was performed by centrifugal sedimentation. After removing the supernatant by decantation, 300 g of distilled water was added, and solid-liquid separation was performed in the same manner. A series of operations of 300 g of distilled water, solid-liquid separation by centrifugal sedimentation, and decantation of the supernatant was repeated a total of 3 times, and then the precipitate was freeze-dried for 24 hours to obtain a white powder.

3.粒子疎水化工程
その後、複合粒子形成工程によって得られた白色粉末10gを、水200gとヘキサメチルジシラザン(HMDS)15gの混合物に加え、室温で30分間、撹拌し、さらに、60℃で4時間、撹拌した後、固液分離を行い、得られた沈殿物をメタノールで洗浄し、その後、50℃で48時間乾燥させることにより、表面を疎水化した複合粒子の白色粉末(SEM画像観察による平均粒子径:125nm)を得た。
この実施例2−1における有機粒子、無機粒子、水、MAPTMS、HMDSの各配合量の一覧を以下の表4に示す。
3. Particle hydrophobization step Thereafter, 10 g of the white powder obtained by the composite particle formation step is added to a mixture of 200 g of water and 15 g of hexamethyldisilazane (HMDS), stirred at room temperature for 30 minutes, and further at 60 ° C. for 4 hours. After stirring, solid-liquid separation is performed, and the resulting precipitate is washed with methanol, and then dried at 50 ° C. for 48 hours, whereby white particles of composite particles whose surfaces are hydrophobized (average by SEM image observation) Particle size: 125 nm) was obtained.
Table 4 below shows a list of blending amounts of organic particles, inorganic particles, water, MAPTMS, and HMDS in Example 2-1.

<実施例2−1の複合粒子の物性確認>
実施例2−1の複合粒子の、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の各物性値を表1、表2および以下の表4に示す。また、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が3%未満であった。
これにより、実施例2−1の複合粒子は、上述の物性(1)〜(8)を併せもつことを確認した。
<実施例2−1の複合粒子の評価>
実施例2−1の複合粒子の、コア粒子に対する微粒子の付着強度評価は「B」評価であり、凝集度変化による流動性評価は「A」評価であった。また、実施例2−1の複合粒子は、良好な帯電量をもつことを確認した。
<Confirmation of physical properties of composite particles of Example 2-1>
The average particle diameter of the core particles, the coefficient of variation thereof, the fine particle average particle diameter / core particle average particle diameter, the resistance ratio ρr, the average particle diameter of the composite particles, the relative dielectric constant, and the coverage of the composite particles of Example 2-1. Each physical property value is shown in Table 1, Table 2 and Table 4 below. Further, as can be seen from the evaluation of the adhesion strength of the fine particles to the core particles, the number change was less than 3%.
Thereby, it confirmed that the composite particle of Example 2-1 had the said physical property (1)-(8) together.
<Evaluation of Composite Particles of Example 2-1>
The evaluation of the adhesion strength of the fine particles to the core particles of the composite particles of Example 2-1 was “B” evaluation, and the fluidity evaluation by change in the degree of aggregation was “A” evaluation. In addition, it was confirmed that the composite particles of Example 2-1 had a good charge amount.

実施例2−2〜2−8
<実施例2−2〜2−8の複合粒子の製造>
これらの実施例2−2〜2−8の複合粒子として、有機粒子、無機粒子、水の各配合量を以下の表4に示す配合量に変更した以外は、実施例2−1と同様の方法で製造した複合粒子を用いた。
この実施例2−2〜2−8における有機粒子、無機粒子、水、MAPTMS、HMDSの各配合量の一覧を以下の表4に示す。
Examples 2-2 to 2-8
<Production of Composite Particles of Examples 2-2 to 2-8>
As composite particles of these Examples 2-2 to 2-8, except that the blending amounts of organic particles, inorganic particles, and water are changed to blending amounts shown in Table 4 below, the same as in Example 2-1. The composite particles produced by the method were used.
Table 4 below shows a list of blending amounts of organic particles, inorganic particles, water, MAPTMS, and HMDS in Examples 2-2 to 2-8.

<実施例2−2〜2−8の複合粒子の物性確認>
実施例2−2〜2−8の各複合粒子についての、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の物性値を表1、表2および以下の表4に示す。
実施例2−2〜2−8の各複合粒子の、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が3%未満であった。
これにより、実施例2−2〜2−8の各複合粒子は、いずれも、上述の物性(1)〜(8)を併せもつことを確認した。
<実施例2−2〜2−8の複合粒子の評価>
実施例2−2〜2−8の複合粒子の、コア粒子に対する微粒子の付着強度評価は、いずれも「A」評価であった。
実施例2−2〜2−8の複合粒子のうち、実施例2−5の凝集度変化による流動性評価が「B」評価であった以外は、いずれも「A」評価であった。
実施例2−2〜2−8の複合粒子は、いずれも良好な帯電量をもつことを確認した。
<Confirmation of physical properties of composite particles of Examples 2-2 to 2-8>
For each composite particle of Examples 2-2 to 2-8, the average particle diameter of the core particle, its coefficient of variation, fine particle average particle diameter / core particle average particle diameter, resistance ratio ρr, average particle diameter of the composite particle, ratio The physical properties of dielectric constant and coverage are shown in Table 1, Table 2 and Table 4 below.
As can be seen from the evaluation of the adhesion strength of the fine particles to the core particles of each of the composite particles of Examples 2-2 to 2-8, the number change was less than 3%.
Thereby, it was confirmed that each of the composite particles of Examples 2-2 to 2-8 also has the above physical properties (1) to (8).
<Evaluation of Composite Particles of Examples 2-2 to 2-8>
Evaluation of the adhesion strength of the fine particles to the core particles of the composite particles of Examples 2-2 to 2-8 was “A” evaluation.
Among the composite particles of Examples 2-2 to 2-8, all were “A” evaluations except that the fluidity evaluation by the change in aggregation degree of Example 2-5 was “B” evaluation.
It was confirmed that each of the composite particles of Examples 2-2 to 2-8 had a good charge amount.

Figure 2016142811
Figure 2016142811

実施例3−1〜3−6
この実施例3−1〜3−6は、1種類の有機コア粒子と、1種類の無機微粒子と、1種類の有機微粒子を備える複合粒子の製造例である。
Examples 3-1 to 3-6
Examples 3-1 to 3-6 are examples of producing composite particles including one type of organic core particle, one type of inorganic fine particle, and one type of organic fine particle.

実施例3−1
<実施例3−1の複合粒子の製造>
1.粒子付着体形成工程
冷却機、温度計、窒素導入管を備えた反応容器に、液温30℃の、合成例1で合成したPMMA粒子(平均粒子径:80nm)100gを含む有機粒子分散液555gと、液温30℃の、合成例6で合成したシリカ微粒子(平均粒子径:20nm)80gを含む無機粒子分散液400gと蒸留水1564gを混合して分散液を得た。その後、分散液を30℃に保ったまま3時間、撹拌した。その後、液温および撹拌を維持した分散液に、そのpHを測定しながら、pH2.0になるまで2時間かけて0.1M塩酸溶液を滴下し続け、pH2.0になったところで塩酸の滴下を停止した。その後、60℃まで昇温してから、60℃で5時間、撹拌することにより、PMMAコア粒子表面にシリカ微粒子を付着させた。
その後、予め、60℃に加温しておいた、合成例5で合成したPMMA微粒子(平均粒子径:8nm)35gを含む分散液194gを直ちに加え、60℃で5時間、撹拌することにより、表面にシリカ微粒子を付着させたPMMAコア粒子の表面にPMMA微粒子をさらに付着させた粒子付着体を形成した。この工程では、分散液の全量が2500gになるまで蒸留水を加えており、その蒸留水の合計量を2285gとした。
Example 3-1.
<Production of Composite Particles of Example 3-1>
1. Particle adhering body forming step 555 g of an organic particle dispersion containing 100 g of PMMA particles (average particle diameter: 80 nm) synthesized in Synthesis Example 1 at a liquid temperature of 30 ° C. in a reaction vessel equipped with a cooler, a thermometer, and a nitrogen introduction tube. Then, 400 g of an inorganic particle dispersion containing 80 g of silica fine particles (average particle size: 20 nm) synthesized in Synthesis Example 6 at a liquid temperature of 30 ° C. and 1564 g of distilled water were mixed to obtain a dispersion. Thereafter, the dispersion was stirred for 3 hours while being kept at 30 ° C. Thereafter, while measuring the pH of the dispersion with the liquid temperature and stirring maintained, a 0.1 M hydrochloric acid solution was continuously added dropwise over 2 hours until the pH reached 2.0. When the pH reached 2.0, the hydrochloric acid was added dropwise. Stopped. Then, after heating up to 60 degreeC, the silica fine particle was made to adhere to the PMMA core particle surface by stirring at 60 degreeC for 5 hours.
Thereafter, 194 g of a dispersion liquid containing 35 g of PMMA fine particles (average particle size: 8 nm) synthesized in Synthesis Example 5 that had been heated to 60 ° C. in advance was immediately added and stirred at 60 ° C. for 5 hours. A particle adhering body in which PMMA fine particles were further adhered to the surface of the PMMA core particles having silica fine particles adhered to the surface was formed. In this step, distilled water was added until the total amount of the dispersion reached 2500 g, and the total amount of the distilled water was 2285 g.

2.複合粒子形成工程
粒子付着体が形成された分散液を室温まで冷却した後、分散液に10.0gのMAPTMSを一気に添加し、10%アンモニア水をpH8.0になるまで2時間かけて徐々に滴下した。分散液がpH8.0になったことを確認した後、そのpHを維持したまま室温で6時間反応させ、PMMAコア粒子の表面にシリカ微粒子およびPMMA微粒子固定化させた複合粒子を得た。
その後、蒸留水100gを添加し、液量が半分になるまでエバポレータを用いて濃縮し、遠心沈降により生成物を固液分離した。上澄み液をデカンテーションで除去した後、蒸留水300gを加え、同様に固液分離を行った。蒸留水300gの添加、遠心沈降による固液分離、上澄み液のデカンテーションの一連の操作を合計3度繰り返した後、沈殿物を24時間凍結乾燥させることにより、白色粉末を得た。
2. Composite particle forming step After the dispersion liquid in which the particle adhering material has been formed is cooled to room temperature, 10.0 g of MAPTMS is added to the dispersion liquid at once, and 10% aqueous ammonia is gradually added to pH 8.0 over 2 hours. It was dripped. After confirming that the dispersion reached pH 8.0, the mixture was reacted at room temperature for 6 hours while maintaining the pH to obtain composite particles in which silica fine particles and PMMA fine particles were immobilized on the surface of the PMMA core particles.
Thereafter, 100 g of distilled water was added and concentrated using an evaporator until the liquid volume was reduced to half, and the product was subjected to solid-liquid separation by centrifugal sedimentation. After removing the supernatant by decantation, 300 g of distilled water was added, and solid-liquid separation was performed in the same manner. A series of operations of 300 g of distilled water, solid-liquid separation by centrifugal sedimentation, and decantation of the supernatant was repeated a total of 3 times, and then the precipitate was freeze-dried for 24 hours to obtain a white powder.

3.粒子疎水化工程
その後、複合粒子形成工程によって得られた白色粉末10gを、水200gとヘキサメチルジシラザン(HMDS)15gの混合物に加え、室温で30分間、撹拌し、さらに、60℃で4時間、撹拌した後、固液分離を行い、得られた沈殿物をメタノールで洗浄し、その後、50℃で48時間乾燥させることにより、表面を疎水化した複合粒子の白色粉末(SEM画像観察による平均粒子径:123nm)を得た。
この実施例3−1における有機粒子、無機粒子、水、MAPTMS、HMDSの各配合量の一覧を以下の表5に示す。
3. Particle hydrophobization step Thereafter, 10 g of the white powder obtained by the composite particle formation step is added to a mixture of 200 g of water and 15 g of hexamethyldisilazane (HMDS), stirred at room temperature for 30 minutes, and further at 60 ° C. for 4 hours. After stirring, solid-liquid separation is performed, and the resulting precipitate is washed with methanol, and then dried at 50 ° C. for 48 hours, whereby white particles of composite particles whose surfaces are hydrophobized (average by SEM image observation) Particle size: 123 nm) was obtained.
Table 5 below shows a list of blending amounts of organic particles, inorganic particles, water, MAPTMS, and HMDS in Example 3-1.

<実施例3−1の複合粒子の物性確認>
実施例3−1の複合粒子の、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の各物性値を表1、表2および以下の表5に示す。また、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が3%未満であった。
これにより、実施例3−1の複合粒子は、上述の物性(1)〜(8)を併せもつことを確認した。
<実施例3−1の複合粒子の評価>
実施例3−1の複合粒子の、コア粒子に対する微粒子の付着強度評価、および、凝集度変化による流動性評価は、いずれも「A」評価であった。また、実施例3−1の複合粒子は、良好な帯電量をもつことを確認した。
<Confirmation of physical properties of composite particles of Example 3-1>
The average particle diameter of the core particles, the coefficient of variation thereof, the fine particle average particle diameter / core particle average particle diameter, the resistance ratio ρr, the average particle diameter of the composite particles, the relative dielectric constant, and the coverage of the composite particles of Example 3-1. Each physical property value is shown in Table 1, Table 2 and Table 5 below. Further, as can be seen from the evaluation of the adhesion strength of the fine particles to the core particles, the number change was less than 3%.
Thereby, it was confirmed that the composite particles of Example 3-1 also have the above physical properties (1) to (8).
<Evaluation of Composite Particles of Example 3-1>
The evaluation of the adhesion strength of the fine particles with respect to the core particles and the fluidity evaluation by changing the degree of aggregation of the composite particles of Example 3-1 were both “A” evaluations. Further, it was confirmed that the composite particles of Example 3-1 had a good charge amount.

実施例3−2〜3−6
<実施例3−2〜3−6の複合粒子の製造>
これらの実施例3−2〜3−6の複合粒子として、有機粒子、無機粒子、水の各配合量を以下の表5に示す配合量に変更した以外は、実施例3−1と同様の方法で製造した複合粒子を用いた。
この実施例3−2〜3−6における有機粒子、無機粒子、水、MAPTMS、HMDSの各配合量の一覧を以下の表5に示す。
Examples 3-2 to 3-6
<Production of Composite Particles of Examples 3-2 to 3-6>
As composite particles of these Examples 3-2 to 3-6, except that the blending amounts of organic particles, inorganic particles, and water were changed to blending amounts shown in Table 5 below, the same as in Example 3-1. The composite particles produced by the method were used.
Table 5 below shows a list of blending amounts of organic particles, inorganic particles, water, MAPTMS, and HMDS in Examples 3-2 to 3-6.

<実施例3−2〜3−6の複合粒子の物性確認>
実施例3−2〜3−6の各複合粒子についての、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の物性値を表1、表2および以下の表5に示す。
実施例3−2〜3−6の各複合粒子の、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が3%未満であった。
これにより、実施例3−2〜3−6の各複合粒子は、いずれも、上述の物性(1)〜(8)を併せもつことを確認した。
<実施例3−2〜3−6の複合粒子の評価>
実施例3−2〜3−6の複合粒子の、コア粒子に対する微粒子の付着強度評価は、いずれも「A」評価であった。
実施例3−2〜3−6の複合粒子のうち、実施例3−2、3−5の凝集度変化による流動性評価が「B」評価であった以外は、いずれも「A」評価であった。
実施例3−2〜3−6の複合粒子は、いずれも良好な帯電量をもつことを確認した。
<Confirmation of physical properties of composite particles of Examples 3-2 to 3-6>
For each composite particle of Examples 3-2 to 3-6, the average particle diameter of the core particles, the coefficient of variation thereof, the fine particle average particle diameter / core particle average particle diameter, the resistance ratio ρr, the average particle diameter of the composite particles, The physical properties of dielectric constant and coverage are shown in Table 1, Table 2 and Table 5 below.
As can be seen from the evaluation of the adhesion strength of the fine particles to the core particles of each of the composite particles of Examples 3-2 to 3-6, the number change was less than 3%.
Thereby, it was confirmed that each of the composite particles of Examples 3-2 to 3-6 has the above physical properties (1) to (8).
<Evaluation of Composite Particles of Examples 3-2 to 3-6>
Evaluation of the adhesion strength of the fine particles to the core particles of the composite particles of Examples 3-2 to 3-6 was “A” evaluation.
Among the composite particles of Examples 3-2 to 3-6, except that the fluidity evaluation by the change in aggregation degree of Examples 3-2 and 3-5 was “B” evaluation, all were “A” evaluations. there were.
It was confirmed that all the composite particles of Examples 3-2 to 3-6 had a good charge amount.

Figure 2016142811
Figure 2016142811

実施例4−1〜4−6
この実施例4−1〜4−6は、無機コア粒子と、1種類の有機微粒子と、1種類の無機微粒子を備える複合粒子の製造例である。
Examples 4-1 to 4-6
Examples 4-1 to 4-6 are production examples of composite particles including inorganic core particles, one kind of organic fine particles, and one kind of inorganic fine particles.

実施例4−1
<実施例4−1の複合粒子の製造>
1.粒子付着体形成工程
冷却機、温度計、窒素導入管を備えた反応容器に、液温30℃の、合成例9で合成したシリカ粒子(平均粒子径:110nm)100gを含む無機粒子分散液500gと、液温30℃の、合成例5で合成したPMMA微粒子(平均粒子径:8nm)30gを含む有機微粒子分散液167gと蒸留水1863gを混合して分散液を得た。その後、分散液を30℃に保ったまま3時間、撹拌した。その後、液温および撹拌速度を維持した分散液に、そのpHを測定しながら、pH2.0になるまで2時間かけて0.1M塩酸溶液を滴下し続け、pH2.0になったところで塩酸の滴下を停止した。その後、60℃まで昇温してから、60℃で5時間、撹拌することにより、シリカコア粒子表面にPMMA微粒子を付着させた。
その後、予め、60℃に加温しておいた、合成例6で合成したシリカ微粒子(平均粒子径:20nm)25gを含む分散液125gを直ちに加え、60℃で5時間、撹拌することにより、表面にPMMA微粒子を付着させたシリカコア粒子の表面にシリカ微粒子をさらに付着させた粒子付着体を形成した。この工程では、分散液の全量が2500gになるまで蒸留水を加えており、その蒸留水の合計量を2345gとした。
Example 4-1
<Production of composite particles of Example 4-1>
1. Particle Adherent Forming Step 500 g of inorganic particle dispersion containing 100 g of silica particles (average particle size: 110 nm) synthesized in Synthesis Example 9 at a liquid temperature of 30 ° C. in a reaction vessel equipped with a cooler, a thermometer, and a nitrogen introduction tube. Then, 167 g of an organic fine particle dispersion containing 30 g of PMMA fine particles (average particle size: 8 nm) synthesized in Synthesis Example 5 at a liquid temperature of 30 ° C. and 1863 g of distilled water were mixed to obtain a dispersion. Thereafter, the dispersion was stirred for 3 hours while being kept at 30 ° C. Then, while measuring the pH of the dispersion with the liquid temperature and stirring speed maintained, 0.1M hydrochloric acid solution was continuously added dropwise over 2 hours until the pH reached 2.0. The dripping was stopped. Then, after heating up to 60 degreeC, the PMMA fine particle was made to adhere to the silica core particle surface by stirring at 60 degreeC for 5 hours.
Thereafter, 125 g of a dispersion containing 25 g of silica fine particles (average particle size: 20 nm) synthesized in Synthesis Example 6 that had been heated to 60 ° C. in advance was immediately added, and the mixture was stirred at 60 ° C. for 5 hours. A particle adhering body in which silica fine particles were further adhered to the surface of silica core particles having PMMA fine particles adhered to the surface was formed. In this step, distilled water was added until the total amount of the dispersion reached 2500 g, and the total amount of the distilled water was 2345 g.

2.複合粒子形成工程
粒子付着体が形成された分散液を室温まで冷却した後、分散液に10.0gのMAPTMSを一気に添加し、10%アンモニア水をpH8.0になるまで2時間かけて徐々に滴下した。分散液がpH8.0になったことを確認した後、そのpHを維持したまま室温で6時間反応させ、シリカコア粒子の表面にPMMA微粒子およびシリカ微粒子を固定化させた複合粒子を得た。
その後、蒸留水を100g添加し、液量が半分になるまでエバポレータを用いて濃縮し、遠心沈降により固液分離した。上澄み液をデカンテーションで除去した後、蒸留水300gを加え、同様に固液分離を行った。蒸留水300gの添加、遠心沈降による固液分離、上澄み液のデカンテーションの一連の操作を合計3度繰り返した後、沈殿物を24時間凍結乾燥させることにより、白色粉末を得た。
2. Composite particle forming step After the dispersion liquid in which the particle adhering material has been formed is cooled to room temperature, 10.0 g of MAPTMS is added to the dispersion liquid at once, and 10% aqueous ammonia is gradually added to pH 8.0 over 2 hours. It was dripped. After confirming that the dispersion reached pH 8.0, the reaction was allowed to proceed at room temperature for 6 hours while maintaining the pH to obtain composite particles in which the PMMA fine particles and silica fine particles were immobilized on the surface of the silica core particles.
Thereafter, 100 g of distilled water was added, concentrated using an evaporator until the liquid volume was reduced to half, and solid-liquid separation was performed by centrifugal sedimentation. After removing the supernatant by decantation, 300 g of distilled water was added, and solid-liquid separation was performed in the same manner. A series of operations of 300 g of distilled water, solid-liquid separation by centrifugal sedimentation, and decantation of the supernatant was repeated a total of 3 times, and then the precipitate was freeze-dried for 24 hours to obtain a white powder.

3.粒子疎水化工程
その後、複合粒子形成工程によって得られた白色粉末10gを、水200gとヘキサメチルジシラザン(HMDS)15gの混合物に加え、室温で30分間、撹拌し、さらに、60℃で4時間撹拌した後、固液分離を行い、得られた沈殿物をメタノールで洗浄し、その後、50℃で48時間乾燥させることにより、表面を疎水化した複合粒子の白色粉末(SEM画像観察による平均粒子径:153nm)を得た。
この実施例4−1における有機粒子、無機粒子、水、MAPTMS、HMDSの各配合量の一覧を以下の表6に示す。
3. Particle hydrophobization step Thereafter, 10 g of the white powder obtained by the composite particle formation step is added to a mixture of 200 g of water and 15 g of hexamethyldisilazane (HMDS), stirred at room temperature for 30 minutes, and further at 60 ° C. for 4 hours. After stirring, solid-liquid separation is performed, and the resulting precipitate is washed with methanol, and then dried at 50 ° C. for 48 hours, whereby the white particles of the composite particles whose surfaces are hydrophobized (average particles by SEM image observation) Diameter: 153 nm).
Table 6 below shows a list of blending amounts of organic particles, inorganic particles, water, MAPTMS, and HMDS in Example 4-1.

<実施例4−1の複合粒子の物性確認>
実施例4−1の複合粒子の、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の各物性値を表1、表2および以下の表6に示す。また、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が3%未満であった。
これにより、実施例4−1の複合粒子は、上述の物性(1)〜(8)を併せもつことを確認した。
<実施例4−1の複合粒子の評価>
実施例4−1の複合粒子の、コア粒子に対する微粒子の付着強度評価、および、凝集度変化による流動性評価は、いずれも「A」評価であった。また、実施例4−1の複合粒子は、良好な帯電量をもつことを確認した。
<Confirmation of physical properties of composite particles of Example 4-1>
The average particle diameter of the core particles, the coefficient of variation thereof, the fine particle average particle diameter / core particle average particle diameter, the resistance ratio ρr, the average particle diameter of the composite particles, the relative dielectric constant, and the coverage of the composite particles of Example 4-1. Each physical property value is shown in Table 1, Table 2 and Table 6 below. Further, as can be seen from the evaluation of the adhesion strength of the fine particles to the core particles, the number change was less than 3%.
Thus, it was confirmed that the composite particles of Example 4-1 had the above physical properties (1) to (8).
<Evaluation of Composite Particles of Example 4-1>
The evaluation of the adhesion strength of the fine particles to the core particles and the evaluation of the fluidity by changing the degree of aggregation of the composite particles of Example 4-1 were both “A” evaluations. Further, it was confirmed that the composite particles of Example 4-1 had a good charge amount.

実施例4−2〜4−6
<実施例4−2〜4−6の複合粒子の製造>
これらの実施例4−2〜4−6の複合粒子として、有機粒子、無機粒子、水の各配合量を以下の表6に示す配合量に変更した以外は、実施例4−1と同様の方法で製造した複合粒子を用いた。
この実施例4−2〜4−6における有機粒子、無機粒子、水、MAPTMS、HMDSの各配合量の一覧を以下の表6に示す。
Examples 4-2 to 4-6
<Production of Composite Particles of Examples 4-2 to 4-6>
As composite particles of Examples 4-2 to 4-6, organic particles, inorganic particles, and water were mixed in the same amounts as in Example 4-1 except that the amounts shown in Table 6 below were changed. The composite particles produced by the method were used.
Table 6 below shows a list of blending amounts of organic particles, inorganic particles, water, MAPTMS, and HMDS in Examples 4-2 to 4-6.

<実施例4−2〜4−6の複合粒子の物性確認>
実施例4−2〜4−6の各複合粒子についての、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の物性値を表1、表2および以下の表6に示す。
実施例4−2〜4−6の各複合粒子の、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が3%未満であった。
これにより、実施例4−2〜4−6の各複合粒子は、いずれも、上述の物性(1)〜(8)を併せもつことを確認した。
<実施例4−2〜4−6の複合粒子の評価>
実施例4−2〜4−6の複合粒子の、コア粒子に対する微粒子の付着強度評価は、いずれも「A」評価であった。
実施例4−2〜4−6の複合粒子のうち、実施例4−2の凝集度変化による流動性評価が「B」評価であった以外は、いずれも「A」評価であった。
実施例4−2〜4−6の複合粒子は、いずれも良好な帯電量をもつことを確認した。
<Confirmation of physical properties of composite particles of Examples 4-2 to 4-6>
For each composite particle of Examples 4-2 to 4-6, the average particle diameter of the core particles, the coefficient of variation thereof, the fine particle average particle diameter / core particle average particle diameter, the resistance ratio ρr, the average particle diameter of the composite particles, the ratio The physical properties of dielectric constant and coverage are shown in Table 1, Table 2 and Table 6 below.
As can be seen from the evaluation of the adhesion strength of the fine particles to the core particles of each of the composite particles of Examples 4-2 to 4-6, the number change was less than 3%.
Thereby, it was confirmed that each of the composite particles of Examples 4-2 to 4-6 also has the above physical properties (1) to (8).
<Evaluation of Composite Particles of Examples 4-2 to 4-6>
Evaluation of the adhesion strength of the fine particles to the core particles of the composite particles of Examples 4-2 to 4-6 was “A” evaluation.
Among the composite particles of Examples 4-2 to 4-6, all were “A” evaluations except that the fluidity evaluation based on the change in aggregation degree of Example 4-2 was “B” evaluation.
It was confirmed that all the composite particles of Examples 4-2 to 4-6 had a good charge amount.

Figure 2016142811
Figure 2016142811

比較例1.
<比較例1の複合粒子の製造>
この比較例1の複合粒子として、合成例1で合成したPMMAコア粒子(平均粒子径:80nm)に合成例6で合成したシリカ微粒子(平均粒子径:20nm)を付着させた粒子付着体に対してMAPTMSによる表面処理を行わない以外は、実施例1−1と同様の方法で製造した複合粒子を用いた。
この比較例1における有機粒子、無機粒子、水、HMDSの各配合量の一覧を以下の表7に示す。
Comparative Example 1
<Production of composite particles of Comparative Example 1>
As a composite particle of Comparative Example 1, a particle adhering material in which the silica fine particles (average particle size: 20 nm) synthesized in Synthesis Example 6 were adhered to the PMMA core particles (average particle size: 80 nm) synthesized in Synthesis Example 1 The composite particles produced by the same method as in Example 1-1 were used except that the surface treatment by MAPTMS was not performed.
Table 7 below shows a list of blending amounts of organic particles, inorganic particles, water, and HMDS in Comparative Example 1.

<比較例1の複合粒子の物性確認>
比較例1の複合粒子についての、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の物性値を表1、表2および以下の表7に示す。
比較例1の複合粒子の、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が5%以上10%未満であり、抵抗比ρrが1.5であり、上述の物性(5)の数値範囲を満たしていないことを確認した。
<比較例1の複合粒子の評価>
比較例1の複合粒子の、コア粒子に対する微粒子の付着強度評価および凝集度変化による流動性評価は、いずれも「C」評価であり、帯電量は適切な範囲より低い−320であった。
従って、比較例1の複合粒子は、流動性を失った粒子が少なからず存在し、また、帯電量が少ないことを確認した。この評価結果は、比較例1の複合粒子の抵抗比ρrが物性(5)の数値範囲を満たしていないことに起因していると考えられる。
<Confirmation of physical properties of composite particles of Comparative Example 1>
Core particle average particle diameter, coefficient of variation thereof, fine particle average particle diameter / core particle average particle diameter, resistance ratio ρr, composite particle average particle diameter, relative dielectric constant, and coverage of the composite particles of Comparative Example 1 Values are shown in Table 1, Table 2 and Table 7 below.
As can be seen from the evaluation of the adhesion strength of the fine particles to the core particles of the composite particles of Comparative Example 1, the number change is 5% or more and less than 10%, the resistance ratio ρr is 1.5, and the physical properties (5) It was confirmed that the numerical range was not satisfied.
<Evaluation of Composite Particles of Comparative Example 1>
In the composite particles of Comparative Example 1, the adhesion strength evaluation of the fine particles with respect to the core particles and the fluidity evaluation due to the change in the degree of aggregation were both “C” evaluations, and the charge amount was −320 lower than the appropriate range.
Therefore, it was confirmed that the composite particles of Comparative Example 1 had not a few particles that lost fluidity, and the amount of charge was small. This evaluation result is considered to be caused by the fact that the resistance ratio ρr of the composite particles of Comparative Example 1 does not satisfy the numerical range of the physical property (5).

比較例2.
<比較例2の複合粒子の製造>
この比較例2の複合粒子として、合成例1で合成したPMMAコア粒子(平均粒子径:80nm)に合成例7で合成したシリカ微粒子(平均粒子径:30nm)を付着させた粒子付着体に対してMAPTMSによる表面処理を行わない以外は、実施例1−4と同様の方法で製造した複合粒子を用いた。
この比較例2における有機粒子、無機粒子、水、HMDSの各配合量の一覧を以下の表7に示す。
Comparative Example 2
<Production of composite particles of Comparative Example 2>
As a composite particle of Comparative Example 2, the particle adhering body in which the silica fine particles (average particle size: 30 nm) synthesized in Synthesis Example 7 were adhered to the PMMA core particles (average particle size: 80 nm) synthesized in Synthesis Example 1 The composite particles produced by the same method as in Example 1-4 were used except that the surface treatment by MAPTMS was not performed.
Table 7 below shows a list of blending amounts of organic particles, inorganic particles, water, and HMDS in Comparative Example 2.

<比較例2の複合粒子の物性確認>
比較例2の複合粒子についての、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の物性値を表1、表2および以下の表7に示す。
比較例2の複合粒子の、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が10%以上であり、抵抗比ρrが3であり、上述の物性(5)および(6)の数値範囲を満たしていないことを確認した。
<比較例2の複合粒子の評価>
比較例2の複合粒子の、コア粒子に対する微粒子の付着強度評価および凝集度変化による流動性評価は、いずれも「D」評価であった。
従って、比較例2の複合粒子は、付着強度が低く、流動性を失っていることを確認した。この評価結果は、比較例2の複合粒子の個数変化および抵抗比ρrが物性(5)および(6)の数値範囲を満たしていないことに起因していると考えられる。
<Confirmation of physical properties of composite particles of Comparative Example 2>
Core particle average particle diameter, coefficient of variation thereof, fine particle average particle diameter / core particle average particle diameter, resistance ratio ρr, composite particle average particle diameter, relative dielectric constant, and coverage of the composite particles of Comparative Example 2 Values are shown in Table 1, Table 2 and Table 7 below.
As can be seen from the evaluation of the adhesion strength of the fine particles to the core particles of the composite particles of Comparative Example 2, the number change is 10% or more, the resistance ratio ρr is 3, and the numerical values of the above physical properties (5) and (6) Confirmed that the range was not met.
<Evaluation of Composite Particles of Comparative Example 2>
The evaluation of the adhesion strength of the fine particles with respect to the core particles and the evaluation of the fluidity by changing the degree of aggregation of the composite particles of Comparative Example 2 were both “D” evaluation.
Therefore, it was confirmed that the composite particles of Comparative Example 2 had low adhesion strength and lost fluidity. This evaluation result is considered to result from the fact that the change in the number of composite particles and the resistance ratio ρr of Comparative Example 2 do not satisfy the numerical ranges of the physical properties (5) and (6).

比較例3.
<比較例3の複合粒子の製造>
この比較例3の複合粒子として、合成例1で合成したPMMAコア粒子(平均粒子径:80nm)に合成例8で合成したシリカ微粒子(平均粒子径:9nm)を付着させた粒子付着体に対してMAPTMSによる表面処理を行わない以外は、実施例1−5と同様の方法で製造した複合粒子を用いた。
この比較例3における有機粒子、無機粒子、水、HMDSの各配合量の一覧を以下の表7に示す。
Comparative Example 3
<Production of composite particles of Comparative Example 3>
As a composite particle of Comparative Example 3, a particle adhering material in which the silica fine particles (average particle size: 9 nm) synthesized in Synthesis Example 8 were attached to the PMMA core particles (average particle size: 80 nm) synthesized in Synthesis Example 1 The composite particles produced by the same method as in Example 1-5 were used except that the surface treatment by MAPTMS was not performed.
Table 7 below shows a list of blending amounts of organic particles, inorganic particles, water, and HMDS in Comparative Example 3.

<比較例3の複合粒子の物性確認>
比較例3の複合粒子についての、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の物性値を表1、表2および以下の表7に示す。
比較例3の複合粒子の、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が5%以上10%未満、抵抗比ρrが1.6であり、上述の物性(5)および(6)の数値範囲を満たしていないことを確認した。
<比較例3の複合粒子の評価>
比較例3の複合粒子の、コア粒子に対する微粒子の付着強度評価は「C」評価であり、凝集度変化による流動性評価は「B」評価であり、帯電量は適切な範囲より低い−350であった。
従って、比較例3の複合粒子は、付着強度が極めて低く、流動性を失っていることを確認した。この評価結果は、比較例3の複合粒子の個数変化および抵抗比ρrが物性(5)および(6)の数値範囲を満たしていないことに起因していると考えられる。
<Confirmation of physical properties of composite particles of Comparative Example 3>
Core particle average particle diameter, coefficient of variation thereof, fine particle average particle diameter / core particle average particle diameter, resistance ratio ρr, composite particle average particle diameter, relative dielectric constant, physical properties of the composite particles of Comparative Example 3 Values are shown in Table 1, Table 2 and Table 7 below.
As can be seen from the evaluation of the adhesion strength of the fine particles to the core particles of the composite particles of Comparative Example 3, the number change is 5% or more and less than 10%, the resistance ratio ρr is 1.6, and the above physical properties (5) and (6 ) Was not met.
<Evaluation of Composite Particles of Comparative Example 3>
In the composite particles of Comparative Example 3, the adhesion strength evaluation of the fine particles with respect to the core particles is “C” evaluation, the fluidity evaluation due to the change in aggregation degree is “B” evaluation, and the charge amount is −350 lower than the appropriate range. there were.
Therefore, it was confirmed that the composite particles of Comparative Example 3 had extremely low adhesion strength and lost fluidity. This evaluation result is considered to result from the fact that the change in the number of composite particles of Comparative Example 3 and the resistance ratio ρr do not satisfy the numerical ranges of the physical properties (5) and (6).

比較例4.
<比較例4の複合粒子の製造>
この比較例4の複合粒子として、合成例2で合成したPMMAコア粒子(平均粒子径:205nm)に合成例6で合成したシリカ微粒子(平均粒子径:20nm)を付着させた粒子付着体に対してMAPTMSによる表面処理を行わない以外は、実施例1−6と同様の方法で製造した複合粒子を用いた。
この比較例4における有機粒子、無機粒子、水、HMDSの各配合量の一覧を以下の表7に示す。
Comparative Example 4
<Production of Composite Particles of Comparative Example 4>
As a composite particle of Comparative Example 4, a particle adhering material in which the silica fine particles (average particle size: 20 nm) synthesized in Synthesis Example 6 were adhered to the PMMA core particles (average particle size: 205 nm) synthesized in Synthesis Example 2 was used. The composite particles produced by the same method as in Example 1-6 were used except that the surface treatment by MAPTMS was not performed.
Table 7 below shows a list of blending amounts of organic particles, inorganic particles, water, and HMDS in Comparative Example 4.

<比較例4の複合粒子の物性確認>
比較例4の複合粒子についての、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の物性値を表1、表2および以下の表7に示す。
比較例4の複合粒子の、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が5%以上10%未満であり、抵抗比ρrが1.5であり、上述の物性(5)および(6)の数値範囲を満たしていないことを確認した。
<比較例4の複合粒子の評価>
比較例4の複合粒子の、コア粒子に対する微粒子の付着強度評価および凝集度変化による流動性評価は、いずれも「C」評価であり、帯電量は適切な範囲より低い−400であった。
従って、比較例4の複合粒子は、付着強度が低く、流動性を失っていることを確認した。この評価結果は、比較例4の複合粒子の個数変化および抵抗比ρrが物性(5)および(6)の数値範囲を満たしていないことに起因していると考えられる。
<Confirmation of physical properties of composite particles of Comparative Example 4>
Core particle average particle diameter, coefficient of variation thereof, fine particle average particle diameter / core particle average particle diameter, resistance ratio ρr, composite particle average particle diameter, relative dielectric constant, and physical properties of composite particles of Comparative Example 4 Values are shown in Table 1, Table 2 and Table 7 below.
As can be seen from the evaluation of the adhesion strength of the fine particles to the core particles of the composite particles of Comparative Example 4, the number change is 5% or more and less than 10%, the resistance ratio ρr is 1.5, and the above physical properties (5) and It was confirmed that the numerical range of (6) was not satisfied.
<Evaluation of Composite Particles of Comparative Example 4>
In the composite particles of Comparative Example 4, the evaluation of the adhesion strength of the fine particles to the core particles and the evaluation of the fluidity due to the change in the degree of aggregation were both “C” evaluations, and the charge amount was −400, which was lower than the appropriate range.
Therefore, it was confirmed that the composite particles of Comparative Example 4 had low adhesion strength and lost fluidity. This evaluation result is considered to result from the fact that the change in the number of composite particles and the resistance ratio ρr of Comparative Example 4 do not satisfy the numerical ranges of the physical properties (5) and (6).

比較例5.
<比較例5の複合粒子の製造>
この比較例5の複合粒子として、合成例3で合成したPMMAコア粒子(平均粒子径:300nm)に合成例6で合成したシリカ微粒子(平均粒子径:20nm)を付着させた粒子付着体に対してMAPTMSによる表面処理を行わない以外は、実施例1−9と同様の方法で製造した複合粒子を用いた。
この比較例5における有機粒子、無機粒子、水、HMDSの各配合量の一覧を以下の表7に示す。
Comparative Example 5
<Production of Composite Particles of Comparative Example 5>
As a composite particle of Comparative Example 5, the particle adhering material in which the silica fine particles (average particle size: 20 nm) synthesized in Synthesis Example 6 were adhered to the PMMA core particles (average particle size: 300 nm) synthesized in Synthesis Example 3 The composite particles produced by the same method as in Example 1-9 were used except that the surface treatment by MAPTMS was not performed.
Table 7 below shows a list of blending amounts of organic particles, inorganic particles, water, and HMDS in Comparative Example 5.

<比較例5の複合粒子の物性確認>
比較例5の複合粒子についての、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の物性値を表1、表2および以下の表7に示す。
比較例5の複合粒子の、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が5%以上10%未満であり、抵抗比ρrが1.5であり、上述の物性(5)および(6)の数値範囲を満たしていないことを確認した。
<比較例5の複合粒子の評価>
比較例5の複合粒子の、コア粒子に対する微粒子の付着強度評価および凝集度変化による流動性評価は、いずれも「C」評価であり、帯電量は適切な範囲より低い−330であった。
従って、比較例5の複合粒子は、付着強度が低く、流動性を失っていることを確認した。この評価結果は、比較例5の複合粒子の個数変化および抵抗比ρrが物性(5)および(6)の数値範囲を満たしていないことに起因していると考えられる。
<Confirmation of physical properties of composite particles of Comparative Example 5>
Core particle average particle diameter, coefficient of variation thereof, fine particle average particle diameter / core particle average particle diameter, resistance ratio ρr, composite particle average particle diameter, relative dielectric constant, and coverage of the composite particles of Comparative Example 5 Values are shown in Table 1, Table 2 and Table 7 below.
As can be seen from the evaluation of the adhesion strength of the fine particles to the core particles of the composite particles of Comparative Example 5, the number change is 5% or more and less than 10%, the resistance ratio ρr is 1.5, and the physical properties (5) and It was confirmed that the numerical range of (6) was not satisfied.
<Evaluation of Composite Particle of Comparative Example 5>
The evaluation of the adhesion strength of the fine particles with respect to the core particles and the fluidity evaluation due to the change in the degree of aggregation of the composite particles of Comparative Example 5 were both “C” evaluation, and the charge amount was −330, which was lower than the appropriate range.
Therefore, it was confirmed that the composite particles of Comparative Example 5 had low adhesion strength and lost fluidity. This evaluation result is considered to result from the fact that the change in the number of composite particles and the resistance ratio ρr of Comparative Example 5 do not satisfy the numerical ranges of the physical properties (5) and (6).

比較例6.
<比較例6の複合粒子の製造>
この比較例6の複合粒子として、合成例9で合成したシリカコア粒子(平均粒子径:110nm)上に合成例5で合成したPMMA微粒子(平均粒子径:8nm)を付着させた複合粒子に対してMAPTMSによる表面処理を行わない以外は、実施例2−2と同様の方法で製造した複合粒子を用いた。
この比較例6における有機粒子、無機粒子、水、HMDSの各配合量の一覧を以下の表7に示す。
Comparative Example 6
<Production of Composite Particles of Comparative Example 6>
As the composite particles of Comparative Example 6, the PMMA fine particles (average particle size: 8 nm) synthesized in Synthesis Example 5 were attached to the silica core particles (average particle size: 110 nm) synthesized in Synthesis Example 9 The composite particles produced by the same method as in Example 2-2 were used except that the surface treatment by MAPTMS was not performed.
Table 7 below shows a list of blending amounts of organic particles, inorganic particles, water, and HMDS in Comparative Example 6.

<比較例6の複合粒子の物性確認>
比較例6の複合粒子についての、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の物性値を表1、表2および以下の表7に示す。
比較例6の複合粒子の、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が5%以上10%未満であり、抵抗比ρrが1.5であり、上述の物性(5)および(6)の数値範囲を満たしていないことを確認した。
<比較例6の複合粒子の評価>
比較例6の複合粒子の、コア粒子に対する微粒子の付着強度評価および凝集度変化による流動性評価は、いずれも「C」評価であり、帯電量は適切な範囲より低い−420であった。
従って、比較例6の複合粒子は、付着強度が低く、流動性を失っていることを確認した。この評価結果は、比較例6の複合粒子の個数変化および抵抗比ρrが物性(5)および(6)の数値範囲を満たしていないことに起因していると考えられる。
<Confirmation of physical properties of composite particles of Comparative Example 6>
Core particle average particle diameter, coefficient of variation thereof, fine particle average particle diameter / core particle average particle diameter, resistance ratio ρr, composite particle average particle diameter, relative dielectric constant, and coverage of the composite particles of Comparative Example 6 Values are shown in Table 1, Table 2 and Table 7 below.
As can be seen from the evaluation of the adhesion strength of the fine particles to the core particles of the composite particles of Comparative Example 6, the number change is 5% or more and less than 10%, the resistance ratio ρr is 1.5, and the above physical properties (5) and It was confirmed that the numerical range of (6) was not satisfied.
<Evaluation of Composite Particle of Comparative Example 6>
In the composite particles of Comparative Example 6, the evaluation of the adhesion strength of the fine particles to the core particles and the evaluation of the fluidity due to the change in the degree of aggregation were both “C” evaluation, and the charge amount was −420, which was lower than the appropriate range.
Therefore, it was confirmed that the composite particles of Comparative Example 6 had low adhesion strength and lost fluidity. This evaluation result is considered to result from the fact that the change in the number of composite particles of Comparative Example 6 and the resistance ratio ρr do not satisfy the numerical ranges of the physical properties (5) and (6).

比較例7.
<比較例7の複合粒子の製造>
この比較例7の複合粒子として、合成例10で合成したシリカコア粒子(平均粒子径:80nm)上に合成例5で合成したPMMA微粒子(平均粒子径:8nm)を付着させた複合粒子に対してMAPTMSによる表面処理を行わない以外は、実施例2−5と同様の方法で製造した複合粒子を用いた。
この比較例7における有機粒子、無機粒子、水、HMDSの各配合量の一覧を以下の表7に示す。
Comparative Example 7
<Production of Composite Particles of Comparative Example 7>
As the composite particles of Comparative Example 7, the PMMA fine particles (average particle size: 8 nm) synthesized in Synthesis Example 5 were adhered on the silica core particles (average particle size: 80 nm) synthesized in Synthesis Example 10 Composite particles produced by the same method as in Example 2-5 were used except that the surface treatment by MAPTMS was not performed.
Table 7 below shows a list of blending amounts of organic particles, inorganic particles, water, and HMDS in Comparative Example 7.

<比較例7の複合粒子の物性確認>
比較例7の複合粒子についての、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の物性値を表1、表2および以下の表7に示す。
比較例7の複合粒子の、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が10%以上であり、抵抗比ρrが1.5であり、上述の物性(5)および(6)の数値範囲を満たしていないことを確認した。
<比較例7の複合粒子の評価>
比較例7の複合粒子の、コア粒子に対する微粒子の付着強度評価は「D」評価であり、凝集度変化による流動性評価は「C」評価であり、帯電量は適切な範囲より低い−460であった。
従って、比較例7の複合粒子は、付着強度が極めて低く、流動性を失っていることを確認した。この評価結果は、比較例7の複合粒子の個数変化および抵抗比ρrが物性(5)および(6)の数値範囲を満たしていないことに起因していると考えられる。
<Confirmation of physical properties of composite particles of Comparative Example 7>
Core particle average particle diameter, coefficient of variation thereof, fine particle average particle diameter / core particle average particle diameter, resistance ratio ρr, composite particle average particle diameter, relative dielectric constant, and coverage of the composite particles of Comparative Example 7 Values are shown in Table 1, Table 2 and Table 7 below.
As can be seen from the evaluation of the adhesion strength of the fine particles to the core particles of the composite particles of Comparative Example 7, the number change is 10% or more, the resistance ratio ρr is 1.5, and the above physical properties (5) and (6) It was confirmed that the numerical range of was not satisfied.
<Evaluation of Composite Particle of Comparative Example 7>
In the composite particles of Comparative Example 7, the adhesion strength evaluation of the fine particles with respect to the core particles is “D” evaluation, the fluidity evaluation by the change in aggregation degree is “C” evaluation, and the charge amount is −460 lower than the appropriate range. there were.
Therefore, it was confirmed that the composite particles of Comparative Example 7 had extremely low adhesion strength and lost fluidity. This evaluation result is considered to result from the fact that the change in the number of composite particles of Comparative Example 7 and the resistance ratio ρr do not satisfy the numerical ranges of the physical properties (5) and (6).

比較例8.
<比較例8の複合粒子の製造>
この比較例8の複合粒子として、合成例11で合成したシリカコア粒子(平均粒子径:290m)上に合成例5で合成したPMMA微粒子(平均粒子径:8m)を付着させた複合粒子に対してMAPTMSによる表面処理を行わない以外は、実施例2−7と同様の方法で製造した複合粒子を用いた。
この比較例8における有機粒子、無機粒子、水、HMDSの各配合量の一覧を以下の表7に示す。
Comparative Example 8
<Production of Composite Particles of Comparative Example 8>
As the composite particles of Comparative Example 8, the PMMA fine particles (average particle size: 8 m) synthesized in Synthesis Example 5 were attached to the silica core particles (average particle size: 290 m) synthesized in Synthesis Example 11 Composite particles produced by the same method as in Example 2-7 were used except that the surface treatment by MAPTMS was not performed.
Table 7 below shows a list of blending amounts of organic particles, inorganic particles, water, and HMDS in Comparative Example 8.

<比較例8の複合粒子の物性確認>
比較例8の複合粒子についての、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の物性値を表1、表2および以下の表7に示す。
比較例8の複合粒子の、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が5%以上10%未満であり、抵抗比ρrが1.5であり、上述の物性(5)および(6)の数値範囲を満たしていないことを確認した。
<比較例8の複合粒子の評価>
比較例8の複合粒子の、コア粒子に対する微粒子の付着強度評価および凝集度変化による流動性評価は、いずれも「C」評価であり、帯電量は適切な範囲より低い−390であった。
従って、比較例8の複合粒子は、付着強度が低く、流動性を失っていることを確認した。この評価結果は、比較例8の複合粒子の個数変化および抵抗比ρrが物性(5)および(6)の数値範囲を満たしていないことに起因していると考えられる。
<Confirmation of physical properties of composite particles of Comparative Example 8>
Core particle average particle diameter, coefficient of variation thereof, fine particle average particle diameter / core particle average particle diameter, resistance ratio ρr, composite particle average particle diameter, relative dielectric constant, and physical properties of the composite particles of Comparative Example 8 Values are shown in Table 1, Table 2 and Table 7 below.
As can be seen from the evaluation of the adhesion strength of the fine particles to the core particles of the composite particles of Comparative Example 8, the number change is 5% or more and less than 10%, the resistance ratio ρr is 1.5, and the physical properties (5) and It was confirmed that the numerical range of (6) was not satisfied.
<Evaluation of Composite Particles of Comparative Example 8>
In the composite particles of Comparative Example 8, the evaluation of the adhesion strength of the fine particles to the core particles and the fluidity evaluation due to the change in the degree of aggregation were both “C” evaluation, and the charge amount was −390, which was lower than the appropriate range.
Therefore, it was confirmed that the composite particles of Comparative Example 8 had low adhesion strength and lost fluidity. This evaluation result is considered to result from the fact that the change in the number of composite particles and the resistance ratio ρr of Comparative Example 8 do not satisfy the numerical ranges of the physical properties (5) and (6).

比較例9.
<比較例9の粒子の製造>
この比較例9の粒子として、合成例9で合成したシリカ粒子(平均粒子径:110nm)の表面を、実施例2−1の疎水化工程と同様の方法で、ヘキサメチルジシラザン(HMDS)により疎水化したシリカ粒子を用いた。この比較例9の粒子は、複合粒子ではなく、無機粒子であり、その表面はMAPTMSによる表面処理を行っていない。
この比較例9における有機粒子、無機粒子、水、HMDSの各配合量の一覧を以下の表7に示す。
Comparative Example 9
<Production of Particles of Comparative Example 9>
As the particles of Comparative Example 9, the surface of the silica particles (average particle size: 110 nm) synthesized in Synthesis Example 9 was treated with hexamethyldisilazane (HMDS) in the same manner as in the hydrophobizing step of Example 2-1. Hydrophobized silica particles were used. The particles of Comparative Example 9 are not composite particles but inorganic particles, and the surface is not subjected to surface treatment with MAPTMS.
Table 7 below shows a list of blending amounts of organic particles, inorganic particles, water, and HMDS in Comparative Example 9.

<比較例9の粒子の物性確認>
比較例9の粒子についての、コア粒子の平均粒子径、その変動係数、抵抗比ρr、比誘電率の物性値を表1、表2および以下の表7に示す。
比較例9の粒子は、複合粒子ではないので、上述の物性(3)および(6)の数値範囲を満たさない。
<比較例9の粒子の評価>
比較例9の粒子の凝集度変化による流動性評価は「C」評価であった。
従って、比較例9の粒子は、流動性を失っていることを確認した。この評価結果は、ターブラーミキサーによる撹拌振盪時にアクリル樹脂から離脱し、フェライト樹脂に移行したことに起因していると考えられる。
<Confirmation of physical properties of particles of Comparative Example 9>
The average particle diameter of the core particles, the coefficient of variation thereof, the resistance ratio ρr, and the physical properties of the relative dielectric constant of the particles of Comparative Example 9 are shown in Tables 1 and 2 and Table 7 below.
Since the particles of Comparative Example 9 are not composite particles, they do not satisfy the numerical ranges of the above physical properties (3) and (6).
<Evaluation of Particles of Comparative Example 9>
The fluidity evaluation by the change in the degree of aggregation of the particles of Comparative Example 9 was “C” evaluation.
Therefore, it was confirmed that the particles of Comparative Example 9 lost fluidity. This evaluation result is considered to be due to the separation from the acrylic resin during the stirring and shaking by the tumbler mixer and the transition to the ferrite resin.

比較例10.
<比較例10の粒子の製造>
この比較例10の粒子として、合成例1で合成したPMMA粒子(平均粒子径:80nm)をそのまま用いた。この比較例10の粒子は、複合粒子ではなく、有機粒子であり、その表面はMAPTMSによる表面処理を行っていない。
この比較例10における有機粒子、無機粒子、水の各配合量の一覧を以下の表7に示す。
Comparative Example 10
<Production of Particles of Comparative Example 10>
As the particles of Comparative Example 10, the PMMA particles synthesized in Synthesis Example 1 (average particle size: 80 nm) were used as they were. The particles of Comparative Example 10 are not composite particles but organic particles, and the surface is not subjected to surface treatment with MAPTMS.
Table 7 below shows a list of blending amounts of organic particles, inorganic particles, and water in Comparative Example 10.

<比較例10の粒子の物性確認>
比較例10の粒子についての、コア粒子の平均粒子径、その変動係数、抵抗比ρr、比誘電率の物性値を表1、表2および以下の表7に示す。
比較例10の粒子は、複合粒子ではないので、上述の物性(3)および(6)の数値範囲を満たさない。
<比較例10の粒子の評価>
比較例10の粒子の凝集度変化による流動性評価は「D」評価であった。
従って、比較例10の粒子は、流動性を失っていることを確認した。この評価結果は、ターブラーミキサーによる撹拌振盪時にアクリル樹脂から離脱し、フェライト樹脂に移行したことに起因していると考えられる。
また、帯電量は−480であり、適切な範囲に制御できないことが分かった。
<Confirmation of physical properties of particles of Comparative Example 10>
The average particle diameter of the core particles, the coefficient of variation thereof, the resistance ratio ρr, and the physical properties of the relative dielectric constant of the particles of Comparative Example 10 are shown in Tables 1 and 2 and Table 7 below.
Since the particles of Comparative Example 10 are not composite particles, they do not satisfy the numerical ranges of the above physical properties (3) and (6).
<Evaluation of Particles of Comparative Example 10>
The fluidity evaluation by the change in the degree of aggregation of the particles of Comparative Example 10 was “D” evaluation.
Therefore, it was confirmed that the particles of Comparative Example 10 lost fluidity. This evaluation result is considered to be due to the separation from the acrylic resin during the stirring and shaking by the tumbler mixer and the transition to the ferrite resin.
Moreover, it was found that the charge amount was −480 and could not be controlled within an appropriate range.

比較例11.
<比較例11の複合粒子の製造>
この比較例11の複合粒子として、合成例1で合成したPMMAコア粒子(平均粒子径:80nm)と合成例6で合成したシリカ微粒子(平均粒子径:20nm)を付着させた後、MAPTMSによる表面処理を行わずに、ターブラーミキサーを用いて30分間撹拌振盪した後、水200gとヘキサメチルジシラザン(HMDS)15gを加え、室温で30分間、撹拌し、さらに、60℃で4時間撹拌した後、固液分離を行い、得られた沈殿物をメタノールで洗浄し、その後、48時間乾燥させた複合粒子を用いた。
この比較例11における有機粒子、無機粒子、水、HMDSの各配合量の一覧を以下の表7に示す。
Comparative Example 11
<Production of Composite Particles of Comparative Example 11>
As the composite particles of Comparative Example 11, PMMA core particles synthesized in Synthesis Example 1 (average particle size: 80 nm) and silica fine particles synthesized in Synthesis Example 6 (average particle size: 20 nm) were attached, and then the surface by MAPTMS Without treatment, the mixture was stirred and shaken for 30 minutes using a tumbler mixer, 200 g of water and 15 g of hexamethyldisilazane (HMDS) were added, and the mixture was stirred at room temperature for 30 minutes and further stirred at 60 ° C. for 4 hours. Thereafter, solid-liquid separation was performed, and the resulting precipitate was washed with methanol and then dried for 48 hours, and composite particles were used.
Table 7 below shows a list of blending amounts of organic particles, inorganic particles, water, and HMDS in Comparative Example 11.

<比較例11の複合粒子の物性確認>
比較例11の複合粒子についての、コア粒子の平均粒子径、その変動係数、微粒子平均粒子径/コア粒子平均粒子径、抵抗比ρr、複合粒子の平均粒子径、比誘電率、被覆率の物性値を表1、表2および以下の表7に示す。
比較例11の複合粒子は、コア粒子に対する微粒子の付着強度評価より分かるように、個数変化が10%以上であり、抵抗比ρrが1.5であり、上述の物性(5)および(6)の数値範囲を満たしていないことを確認した。
<比較例11の複合粒子の評価>
比較例11の複合粒子の、コア粒子に対する微粒子の付着強度評価および凝集度変化による流動性評価は、いずれも「D」評価であり、帯電量は適切な範囲より低い−350であった。
従って、比較例11の粒子は、付着強度が低く、流動性を失っていることを確認した。この評価結果は、比較例11の粒子のような製造方法では、コア粒子と微粒子の付着強度が十分でないことに起因していると考えられる。
<Confirmation of physical properties of composite particles of Comparative Example 11>
Core particle average particle diameter, coefficient of variation thereof, fine particle average particle diameter / core particle average particle diameter, resistance ratio ρr, composite particle average particle diameter, relative dielectric constant, and physical properties of the composite particles of Comparative Example 11 Values are shown in Table 1, Table 2 and Table 7 below.
As can be seen from the evaluation of the adhesion strength of the fine particles to the core particles, the composite particles of Comparative Example 11 have a number change of 10% or more and a resistance ratio ρr of 1.5, and the above physical properties (5) and (6) It was confirmed that the numerical range of was not satisfied.
<Evaluation of Composite Particle of Comparative Example 11>
In the composite particles of Comparative Example 11, the evaluation of the adhesion strength of the fine particles to the core particles and the fluidity evaluation due to the change in the degree of aggregation were both “D” evaluations, and the charge amount was −350, which was lower than the appropriate range.
Therefore, it was confirmed that the particles of Comparative Example 11 had low adhesion strength and lost fluidity. This evaluation result is considered to be due to the insufficient adhesion strength between the core particles and the fine particles in the production method such as the particles of Comparative Example 11.

Figure 2016142811
Figure 2016142811

上述した実施の形態では、本発明の複合粒子をトナー用外添剤に適用する例を説明し、上述した実施例では、本発明の複合粒子が、トナー用外添剤に求められる、微粒子のコア粒子上への付着強度、良好な帯電量、高い流動性を確保できることを確認したが、本発明の複合粒子を、粉体塗料、撥水剤、ディスプレイ、アンチグレアフィルム(反射防止フィルム)などの他の用途に適用する場合においても、上述した実施例で示した効果と同様の効果を得ることができるので、それらの各用途においても好適に使用可能である。   In the above-described embodiment, an example in which the composite particle of the present invention is applied to an external additive for toner is described. In the above-described embodiment, the composite particle of the present invention is a fine particle required for an external additive for toner. Although it was confirmed that the adhesion strength on core particles, good charge amount, and high fluidity could be secured, the composite particles of the present invention were used for powder coatings, water repellents, displays, anti-glare films (anti-reflection films), etc. Even when applied to other uses, the same effects as those shown in the above-described embodiments can be obtained, so that the present invention can also be suitably used in each of these uses.

上述した実施例では、本発明の複合粒子が1種類の有機材料または無機材料を主成分とする1個のコア粒子を備える例を説明したが、本発明はこれに限定されるものではなく、1個のコア粒子が、例えば、図1にC1,C2,C3・・・Cnで示した複数種類の有機材料または無機材料を主成分とする粒子を合一してなる集合体としてもよい。このように複数種類の粒子を合一してなる集合体であるコア粒子を備える本発明の複合粒子は、上述した実施例で示した効果と同様の効果を得ることができる。
また、上述した実施例では、有機コア粒子または有機微粒子を形成する有機材料としてアクリル樹脂を用いた例を説明したが、本発明はこれに限定されるものではなく、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂などの他の有機材料を用いた場合であっても、上述した実施例で示した効果と同様の効果を得ることができる。
さらに、上述した実施例では、無機コア粒子または無機微粒子を形成する無機材料としてシリカを用いた例を説明したが、本発明はこれに限定されるものではなく、他の無機材料を用いた場合であっても、上述した実施例で示した効果と同様の効果を得ることができる。
In the above-described embodiment, the example in which the composite particle of the present invention includes one core particle mainly composed of one kind of organic material or inorganic material has been described. However, the present invention is not limited to this, One core particle may be, for example, an aggregate formed by combining particles mainly composed of a plurality of types of organic materials or inorganic materials indicated by C1, C2, C3... Cn in FIG. As described above, the composite particles of the present invention including the core particles which are aggregates formed by combining a plurality of types of particles can obtain the same effects as those shown in the above-described examples.
In the above-described embodiments, an example in which an acrylic resin is used as an organic material for forming organic core particles or organic fine particles has been described. However, the present invention is not limited to this, and polyester resin, epoxy resin, urethane is used. Even when other organic materials such as a resin are used, the same effects as those shown in the above-described embodiments can be obtained.
Further, in the above-described embodiment, the example in which silica is used as the inorganic material for forming the inorganic core particles or the inorganic fine particles has been described. However, the present invention is not limited thereto, and other inorganic materials are used. Even so, it is possible to obtain the same effects as those shown in the above-described embodiments.

A,C1,C2,C3・・・Cn コア粒子, B 微粒子,
N 無機材料層, D 複合粒子の平均粒子径,
DA コア粒子の平均粒子径, DB 微粒子の平均粒子径,
X,Y 弦。
A, C1, C2, C3... Cn core particle, B fine particle,
N inorganic material layer, D average particle diameter of composite particles,
DA core particle average particle size, DB fine particle average particle size,
X, Y strings.

Claims (12)

コア粒子と微粒子とを備える複合粒子において、
前記コア粒子の主成分が有機材料および無機材料のいずれか一方であり、
前記微粒子が前記コア粒子上に存在し、前記コア粒子の主成分が有機材料である場合にあっては、前記微粒子の主成分が無機材料であり、前記コア粒子の主成分が無機材料である場合にあっては、前記微粒子の主成分が有機材料であり、
前記コア粒子の平均粒子径が80nm以上300nm以下であり、前記コア粒子の平均粒子径の変動係数が2%以上10%以下であり、
前記微粒子の平均粒子径が5nm以上30nm以下であり、且つ前記コア粒子の前記平均粒子径に対する前記微粒子の平均粒子径の比が0.016以上0.25以下であり、
前記複合粒子の平均粒子径が90nm以上350nm以下であり、
前記複合粒子の体積抵抗ρv=α1×10β1(Ω・cm)および表面抵抗ρs=α2×10β2(Ω/cm)における乗数の比率β1/β2が0.7以上1.4以下であり、
前記複合粒子が1重量%になるように水に分散させた複合粒子分散液に、出力110W、周波数31kHzの条件で、超音波を30分間照射する前後における、前記コア粒子上に存在する前記微粒子の個数変化が0.5%以上5%以下である複合粒子。
In composite particles comprising core particles and fine particles,
The main component of the core particle is one of an organic material and an inorganic material,
When the fine particles are present on the core particles and the main component of the core particles is an organic material, the main component of the fine particles is an inorganic material, and the main component of the core particles is an inorganic material. In some cases, the main component of the fine particles is an organic material,
The average particle diameter of the core particles is 80 nm or more and 300 nm or less, and the coefficient of variation of the average particle diameter of the core particles is 2% or more and 10% or less,
The average particle size of the fine particles is 5 nm or more and 30 nm or less, and the ratio of the average particle size of the fine particles to the average particle size of the core particles is 0.016 or more and 0.25 or less,
The composite particles have an average particle size of 90 nm or more and 350 nm or less,
A multiplier ratio β 1 / β 2 in the volume resistance ρv = α 1 × 10 β1 (Ω · cm) and surface resistance ρs = α 2 × 10 β2 (Ω / cm 2 ) of the composite particles is 0.7 or more. 4 or less,
The fine particles present on the core particles before and after irradiating the composite particle dispersion in which the composite particles are dispersed in water so as to be 1% by weight under the conditions of an output of 110 W and a frequency of 31 kHz for 30 minutes. Composite particles having a number change of 0.5% or more and 5% or less.
前記複合粒子の比誘電率が2以上300以下である請求項1に記載の複合粒子。   The composite particle according to claim 1, wherein a relative dielectric constant of the composite particle is 2 or more and 300 or less. 前記コア粒子の表面における前記微粒子の被覆率が5%以上68%以下である請求項1または2に記載の複合粒子。   The composite particle according to claim 1 or 2, wherein a coverage of the fine particles on the surface of the core particle is 5% or more and 68% or less. 前記コア粒子は有機材料から形成され、前記微粒子は無機材料から形成される請求項1から3のいずれか1項に記載の複合粒子。   The composite particle according to any one of claims 1 to 3, wherein the core particle is formed from an organic material, and the fine particle is formed from an inorganic material. さらに、有機材料から形成される微粒子を備える請求項4に記載の複合粒子。   The composite particle according to claim 4, further comprising fine particles formed from an organic material. 前記無機材料は、シリカ、チタニア、酸化セリウムおよびチタン酸ストロンチウムからなる群から選択される請求項4または5に記載の複合粒子。   The composite particle according to claim 4 or 5, wherein the inorganic material is selected from the group consisting of silica, titania, cerium oxide, and strontium titanate. 前記コア粒子は無機材料から形成され、前記微粒子は有機材料から形成される請求項1から3のいずれか1項に記載の複合粒子。   The composite particle according to any one of claims 1 to 3, wherein the core particle is formed of an inorganic material, and the fine particle is formed of an organic material. さらに、無機材料から形成される微粒子を備える請求項7に記載の複合粒子。   The composite particle according to claim 7, further comprising fine particles formed from an inorganic material. 前記無機材料は、シリカ、チタニア、酸化セリウムおよびチタン酸ストロンチウムからなる群から選択される請求項7または8に記載の複合粒子。   The composite particle according to claim 7 or 8, wherein the inorganic material is selected from the group consisting of silica, titania, cerium oxide, and strontium titanate. 前記複合粒子は前記コア粒子の表面および前記微粒子を被覆する無機材料層を備えることを特徴とする請求項1から9のいずれか1項に記載の複合粒子。   The composite particle according to any one of claims 1 to 9, wherein the composite particle includes an inorganic material layer that covers the surface of the core particle and the fine particle. 請求項1から10のいずれか1項に記載の複合粒子を含むトナー用外添剤。   An external toner additive comprising the composite particles according to claim 1. コア粒子と微粒子とを備える複合粒子の製造方法において、
有機材料および無機材料のいずれか一方を主成分とする前記コア粒子と有機材料および無機材料のいずれか他方を主成分とする前記微粒子とを含む分散液から前記コア粒子の表面に前記微粒子が付着した粒子付着体を形成する粒子付着体形成工程と、
前記粒子付着体が形成された前記分散液に、前記コア粒子および前記微粒子のいずれか一方と結合し且ついずれか他方と相互作用するシランカップリング剤および塩基性物質を添加して、前記コア粒子の表面に前記微粒子を固定化させた前記複合粒子を形成する複合粒子形成工程と
を備える複合粒子の製造方法。
In a method for producing composite particles comprising core particles and fine particles,
The fine particles adhere to the surface of the core particles from a dispersion liquid containing the core particles mainly composed of one of an organic material and an inorganic material and the fine particles mainly composed of either the organic material or the inorganic material. A particle adhering body forming step for forming the particle adhering body,
A silane coupling agent and a basic substance that binds to and interacts with one of the core particles and the fine particles are added to the dispersion in which the particle adhering body is formed, and the core particles are added. And a composite particle forming step of forming the composite particle having the fine particles immobilized on the surface thereof.
JP2015016679A 2015-01-30 2015-01-30 COMPOSITE PARTICLE, EXTERNAL ADDITIVE FOR TONER AND METHOD FOR PRODUCING COMPOSITE PARTICLE Active JP6490436B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015016679A JP6490436B2 (en) 2015-01-30 2015-01-30 COMPOSITE PARTICLE, EXTERNAL ADDITIVE FOR TONER AND METHOD FOR PRODUCING COMPOSITE PARTICLE
KR1020150123238A KR102319313B1 (en) 2015-01-30 2015-08-31 Complex particle, tonor external additive and method of preparing complex particle
US15/009,964 US10007203B2 (en) 2015-01-30 2016-01-29 Complex particle, external additive for toner and method of preparing complex particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015016679A JP6490436B2 (en) 2015-01-30 2015-01-30 COMPOSITE PARTICLE, EXTERNAL ADDITIVE FOR TONER AND METHOD FOR PRODUCING COMPOSITE PARTICLE

Publications (2)

Publication Number Publication Date
JP2016142811A true JP2016142811A (en) 2016-08-08
JP6490436B2 JP6490436B2 (en) 2019-03-27

Family

ID=56570337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016679A Active JP6490436B2 (en) 2015-01-30 2015-01-30 COMPOSITE PARTICLE, EXTERNAL ADDITIVE FOR TONER AND METHOD FOR PRODUCING COMPOSITE PARTICLE

Country Status (2)

Country Link
JP (1) JP6490436B2 (en)
KR (1) KR102319313B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027039A1 (en) * 2017-08-04 2019-02-07 キヤノン株式会社 Toner
JP2019139231A (en) * 2018-02-14 2019-08-22 キヤノン株式会社 Toner external additive, method for manufacturing the same, and toner
JP2019215511A (en) * 2018-06-11 2019-12-19 キヤノン株式会社 toner
WO2020013166A1 (en) * 2018-07-10 2020-01-16 キヤノン株式会社 Toner
US10578990B2 (en) 2017-08-04 2020-03-03 Canon Kabushiki Kaisha Toner
US10782623B2 (en) 2017-08-04 2020-09-22 Canon Kabushiki Kaisha Toner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6491141A (en) * 1987-10-02 1989-04-10 Konishiroku Photo Ind Electrostatic image developing toner
JP2002040707A (en) * 2000-07-21 2002-02-06 Konica Corp Image forming method
JP2006173480A (en) * 2004-12-17 2006-06-29 Sharp Corp Semiconductor memory device
JP2010003926A (en) * 2008-06-20 2010-01-07 Panasonic Electric Works Co Ltd Electronic equipment
JP2013210574A (en) * 2012-03-30 2013-10-10 Mitsubishi Chemicals Corp Toner for electrostatic charge image development
JP2014065014A (en) * 2012-09-27 2014-04-17 Koyama Yushi Kogyo Kk Composite fine particle powder

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131976A (en) 2000-10-30 2002-05-09 Konica Corp Developing method, developing device, image forming method and image forming device
JP2007504307A (en) 2003-09-04 2007-03-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Use of core / shell particles
JP4250517B2 (en) 2003-12-15 2009-04-08 キヤノン株式会社 toner
JP2005202133A (en) 2004-01-15 2005-07-28 Fuji Xerox Co Ltd Electrostatic latent image developing two-component developer and image forming method
JP4321272B2 (en) 2004-01-15 2009-08-26 富士ゼロックス株式会社 Toner for developing electrostatic image, image forming method, and image forming apparatus
JP2007206481A (en) 2006-02-03 2007-08-16 Canon Inc Carrier for electrophotography, two-component developer, and image forming method
JP2007206647A (en) 2006-02-06 2007-08-16 Canon Inc Electrophotographic developing method, developer carrier used in same, and process cartridge and electrophotographic apparatus using same
JP5087330B2 (en) 2007-06-29 2012-12-05 シャープ株式会社 Toner manufacturing method, two-component developer using the toner obtained by the manufacturing method, developing device, and image forming apparatus
JP4493683B2 (en) 2007-07-06 2010-06-30 シャープ株式会社 Toner and two-component developer using the same
JP5153792B2 (en) * 2007-12-27 2013-02-27 キヤノン株式会社 Toner and two-component developer
JP5381914B2 (en) 2010-06-29 2014-01-08 日本ゼオン株式会社 Toner for electrostatic image development
JP5381949B2 (en) 2010-09-29 2014-01-08 日本ゼオン株式会社 Toner for electrostatic image development
JP2012189881A (en) 2011-03-11 2012-10-04 Ricoh Co Ltd Toner for electrostatic charge image development
JP6011776B2 (en) * 2011-04-26 2016-10-19 株式会社リコー Toner, image forming apparatus, and process cartridge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6491141A (en) * 1987-10-02 1989-04-10 Konishiroku Photo Ind Electrostatic image developing toner
JP2002040707A (en) * 2000-07-21 2002-02-06 Konica Corp Image forming method
JP2006173480A (en) * 2004-12-17 2006-06-29 Sharp Corp Semiconductor memory device
JP2010003926A (en) * 2008-06-20 2010-01-07 Panasonic Electric Works Co Ltd Electronic equipment
JP2013210574A (en) * 2012-03-30 2013-10-10 Mitsubishi Chemicals Corp Toner for electrostatic charge image development
JP2014065014A (en) * 2012-09-27 2014-04-17 Koyama Yushi Kogyo Kk Composite fine particle powder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027039A1 (en) * 2017-08-04 2019-02-07 キヤノン株式会社 Toner
US10578990B2 (en) 2017-08-04 2020-03-03 Canon Kabushiki Kaisha Toner
US10782623B2 (en) 2017-08-04 2020-09-22 Canon Kabushiki Kaisha Toner
US11112708B2 (en) 2017-08-04 2021-09-07 Canon Kabushiki Kaisha Toner
JP2019139231A (en) * 2018-02-14 2019-08-22 キヤノン株式会社 Toner external additive, method for manufacturing the same, and toner
JP7199990B2 (en) 2018-02-14 2023-01-06 キヤノン株式会社 External additive for toner, method for producing external additive for toner, and toner
JP2019215511A (en) * 2018-06-11 2019-12-19 キヤノン株式会社 toner
WO2020013166A1 (en) * 2018-07-10 2020-01-16 キヤノン株式会社 Toner
JP2020013119A (en) * 2018-07-10 2020-01-23 キヤノン株式会社 toner

Also Published As

Publication number Publication date
JP6490436B2 (en) 2019-03-27
KR102319313B1 (en) 2021-10-29
KR20160094253A (en) 2016-08-09

Similar Documents

Publication Publication Date Title
JP6490436B2 (en) COMPOSITE PARTICLE, EXTERNAL ADDITIVE FOR TONER AND METHOD FOR PRODUCING COMPOSITE PARTICLE
JP3703487B2 (en) Crosslinked resin-coated silica fine particles and method for producing the same
JP6326199B2 (en) Optical coating film, method for producing optical coating film, and antireflection film
JP2009244551A (en) Display particle for image display apparatus, and image display apparatus
JP2004338969A (en) Spherical silica-titania-based fine particle subjected to silane surface treatment, its manufacturing method, and external toner additive for electrostatic charge image development
Chang et al. Preparation and characterization of polymer/zirconia nanocomposite antistatic coatings on plastic substrates
JP6270444B2 (en) Coating composition and antireflection film
WO2008007649A1 (en) Oxide particle-containing resin composition and method for producing the same
JP6573445B2 (en) Optical coating film, method for producing optical coating film, and antireflection film
US10007203B2 (en) Complex particle, external additive for toner and method of preparing complex particle
JP5692892B2 (en) Coating film and water-based organic / inorganic composite composition
JP6179015B2 (en) Granules, method for producing the same, and property modifying material
JP2015018230A (en) Precursor for forming optical coating, optical coating, and method of producing optical coating
JP5927862B2 (en) SUBMICRON POLYMER PARTICLE AND METHOD FOR PRODUCING INSULATION-CONTAINING CONDUCTIVE PARTICLE HAVING THE SAME
JP6426975B2 (en) Coating composition and method for producing optical coating film
JP6437243B2 (en) Optical coating film, method for producing optical coating film, and antireflection film
JPH10330488A (en) Production of silica-coated resin particle
JP2011148946A (en) Adhesive for connecting circuit and anisotropic electroconductive film
WO2019188444A1 (en) Powder composed of organic-inorganic composite particles
KR20140072439A (en) Toner and method for preparing toner
JP2013203650A (en) Silica particle and thermoplastic resin composition
JP2016219545A (en) Coating film for solar cell
JP2014144891A (en) Nonspherical composite particle, and production method and application of the same
JP2016184023A (en) Coating film for solar cell cover glass and method for producing the same
JP2021533239A (en) Composite particles for toner additives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190227

R150 Certificate of patent or registration of utility model

Ref document number: 6490436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250