JP5381949B2 - Toner for electrostatic image development - Google Patents

Toner for electrostatic image development Download PDF

Info

Publication number
JP5381949B2
JP5381949B2 JP2010218786A JP2010218786A JP5381949B2 JP 5381949 B2 JP5381949 B2 JP 5381949B2 JP 2010218786 A JP2010218786 A JP 2010218786A JP 2010218786 A JP2010218786 A JP 2010218786A JP 5381949 B2 JP5381949 B2 JP 5381949B2
Authority
JP
Japan
Prior art keywords
fine particles
core
toner
composite fine
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010218786A
Other languages
Japanese (ja)
Other versions
JP2012073468A (en
Inventor
尊 千葉
尚 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2010218786A priority Critical patent/JP5381949B2/en
Priority to PCT/JP2011/064554 priority patent/WO2012002278A1/en
Priority to CN201180031840.9A priority patent/CN102959472B/en
Priority to US13/806,473 priority patent/US8846285B2/en
Publication of JP2012073468A publication Critical patent/JP2012073468A/en
Application granted granted Critical
Publication of JP5381949B2 publication Critical patent/JP5381949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電子写真法、静電記録法、静電印刷法等において静電潜像を現像するために用いられる静電荷像現像用トナー(以下、単に「トナー」と称することがある。)に関する。   The present invention is an electrostatic charge image developing toner (hereinafter, sometimes simply referred to as “toner”) used for developing an electrostatic latent image in electrophotography, electrostatic recording, electrostatic printing, and the like. About.

電子写真装置、静電記録装置、静電印刷装置等の画像形成装置には、感光体上に形成される静電潜像を、静電荷像現像用トナーにより現像することで所望の画像を形成する技術が広く用いられている。このような技術は、複写機、プリンター、ファクシミリ及びこれらの複合機等に応用されている。   In an image forming apparatus such as an electrophotographic apparatus, an electrostatic recording apparatus, and an electrostatic printing apparatus, a desired image is formed by developing an electrostatic latent image formed on a photoreceptor with toner for developing an electrostatic image. This technique is widely used. Such a technique is applied to a copying machine, a printer, a facsimile machine, and a multifunction machine of these.

例えば、電子写真法を用いた電子写真装置は、一般には光導電性物質からなる感光体の表面を種々の手段により一様に帯電させた後、当該感光体上に静電潜像を形成する。次いで当該静電潜像を、トナーを用いて現像し、用紙等の記録材にトナー画像を転写した後、加熱等により定着し複写物を得るものである。   For example, an electrophotographic apparatus using an electrophotographic method generally forms the electrostatic latent image on the photoreceptor after the surface of the photoreceptor made of a photoconductive material is uniformly charged by various means. . Next, the electrostatic latent image is developed using toner, the toner image is transferred onto a recording material such as paper, and then fixed by heating or the like to obtain a copy.

現像に用いられるトナーには、負帯電性トナーと正帯電性トナーがある。正帯電性トナーを用いる電子写真装置はオゾンの発生が少なく、良好な帯電性が得られるため、近年好ましく用いられている。
また、現像に用いるトナー粒子の表面には、トナーの帯電安定性、流動性、及び耐久性等を向上させる目的として、一般に着色樹脂粒子(トナー粒子)よりも粒径の小さい無機微粒子や有機微粒子等の外添剤が外添(付着添加)されている。
The toner used for development includes a negatively chargeable toner and a positively chargeable toner. An electrophotographic apparatus using a positively chargeable toner has been used preferably in recent years because it generates less ozone and provides good chargeability.
Further, on the surface of toner particles used for development, in order to improve the charging stability, fluidity, durability and the like of the toner, inorganic fine particles and organic fine particles generally having a smaller particle diameter than colored resin particles (toner particles). External additives such as these are externally added (attached).

従来の外添剤が使用されたトナーにおいては、多枚数の連続印字を行う過程において、現像装置内での機械的ストレス(攪拌等によるトナー粒子同士の接触回数増大)等により、外添剤がトナー粒子の表面から内部に埋没、及び/又はトナー粒子の表面から遊離(脱離)する。このため、外添剤は機能が低下し、経時的に安定した帯電性(帯電安定性)をトナー粒子に付与させることが難しくなる。   In a toner using a conventional external additive, in the process of continuous printing of a large number of sheets, the external additive may be caused by mechanical stress in the developing device (increased number of contact between toner particles due to stirring or the like). The toner particles are buried inside and / or released (desorbed) from the surface of the toner particles. For this reason, the function of the external additive is lowered, and it becomes difficult to impart to the toner particles a stable charging property (charging stability) over time.

また、外添剤が埋没したトナー粒子は、感光体表面にトナー粒子が付着する現象(フィルミング現象)を引き起こし、カブリ等による画質の劣化が起こりやすくなる。トナー粒子の表面から遊離(脱離)した外添剤は、感光体表面の帯電特性を劣化させ、トナーの印字耐久性や画質を悪化させる原因となる。特に高温、高湿条件下では、フィルミングにより画質が顕著に悪化する。   In addition, the toner particles embedded with the external additive cause a phenomenon (filming phenomenon) in which the toner particles adhere to the surface of the photoreceptor, and image quality is likely to be deteriorated due to fogging or the like. The external additive released (desorbed) from the surface of the toner particles deteriorates the charging characteristics of the surface of the photoreceptor, and causes the printing durability and image quality of the toner to deteriorate. Especially under high temperature and high humidity conditions, the image quality is significantly deteriorated by filming.

このため、多枚数の連続印刷を行う場合のように、現像装置内で攪拌等によるトナー粒子同士の接触回数が増大する場合でも、上記外添剤の埋没及び/又は遊離等の不具合を生じず、外添剤を好適に付着させた状態を経時的に維持し、安定した帯電性(帯電安定性)を保つトナーが望まれている。
特許文献1には、外添剤として、有機微粒子の表面に無機微粒子が固着した無機/有機複合微粒子を用いたトナーが開示されている。特許文献2には、外添剤として、表面がシリカの連続層で覆われており、特定の平均粒径を有する樹脂微粒子を含むトナーが開示されている。
Therefore, even when the number of contact between the toner particles by stirring or the like increases in the developing device as in the case of continuous printing of a large number of sheets, problems such as embedding and / or releasing of the external additive do not occur. There is a demand for a toner that maintains a state in which an external additive is suitably attached over time and maintains a stable chargeability (charging stability).
Patent Document 1 discloses a toner using inorganic / organic composite fine particles in which inorganic fine particles are fixed on the surface of organic fine particles as an external additive. Patent Document 2 discloses a toner containing resin fine particles having a specific average particle diameter and having a surface covered with a continuous layer of silica as an external additive.

特開2002−131976号公報Japanese Patent Laid-Open No. 2002-131976 特開2005−173480号公報JP 2005-173480 A

特許文献1には、当該文献の明細書の段落[0064]に、有機微粒子の表面に無機微粒子を固着する手段として、有機微粒子と無機微粒子とを混合し、その後に熱を加える方法、有機微粒子の表面に無機微粒子を機械的に固着するいわゆるメカノケミカル法等が用いられることが記載されている。しかし、このような製造方法では、核となる有機微粒子の全表面を無機微粒子で覆うことは困難である。また、本発明者らが検討したところ、特許文献1に記載されたトナーは、カブリ、特に高温高湿下でのカブリが発生し易いことが分かった。   In Patent Document 1, in paragraph [0064] of the specification of the document, as a means for fixing inorganic fine particles to the surface of organic fine particles, a method of mixing organic fine particles and inorganic fine particles and then applying heat, organic fine particles It is described that a so-called mechanochemical method or the like for mechanically fixing inorganic fine particles to the surface is used. However, with such a manufacturing method, it is difficult to cover the entire surface of the organic fine particles serving as the core with inorganic fine particles. Further, as a result of studies by the present inventors, it has been found that the toner described in Patent Document 1 is likely to cause fogging, particularly fogging under high temperature and high humidity.

特許文献2の請求項6には、外添剤表面におけるケイ素原子の存在比率が0.1〜10.0質量%であることが記載されている。しかし、このような外添剤においては、シリカシェルの厚みが薄すぎるため、外添剤全体に対するシリカシェルの効果の寄与が小さく、したがって、低温低湿環境下における帯電性が発現しにくい。   Claim 6 of Patent Document 2 describes that the abundance ratio of silicon atoms on the surface of the external additive is 0.1 to 10.0% by mass. However, in such an external additive, since the thickness of the silica shell is too thin, the contribution of the effect of the silica shell to the entire external additive is small, and therefore, the chargeability in a low temperature and low humidity environment is hardly exhibited.

本発明の目的は、高温高湿環境下におけるカブリの発生を抑制し、低温低湿環境下における細線再現性に優れた静電荷像現像用トナーを提供することにある。   An object of the present invention is to provide a toner for developing an electrostatic charge image that suppresses generation of fog in a high temperature and high humidity environment and is excellent in fine line reproducibility in a low temperature and low humidity environment.

本発明者らは、上記目的を達成すべく鋭意検討したところ、外添剤として、樹脂微粒子の表面が、アルミナ、チタニア及び/又はジルコニアで被覆されているコアシェル型複合微粒子を使用することにより、トナーの環境安定性が高まること、特に、低温低湿環境下におけるトナー帯電量の上昇が抑制され、同環境下においても細線再現性が損なわれることなく安定した印字が行えること、及び、帯電量の上昇により発生する印字不具合などがなく、良好な画質が得られることを見出し、本発明を完成するに至った。   The present inventors diligently studied to achieve the above object, and as an external additive, by using core-shell composite fine particles in which the surface of the resin fine particles is coated with alumina, titania and / or zirconia, Increase in environmental stability of the toner, in particular, increase in the toner charge amount in a low temperature and low humidity environment can be suppressed, stable printing can be performed without losing fine line reproducibility in the same environment, and The present inventors have found that there is no printing defect caused by the rise and that a good image quality can be obtained, and the present invention has been completed.

すなわち、本発明の静電荷像現像用トナーは、結着樹脂及び着色剤を含有する着色樹脂粒子、並びに外添剤を含有する静電荷像現像用トナーであって、前記外添剤として、樹脂微粒子の表面に、アルミナ、及びチタニアからなる群から選ばれる少なくとも1つの無機成分の連続層が被覆されているコアシェル型複合微粒子を含有することを特徴とする。 That is, the toner for developing an electrostatic charge image of the present invention is a toner for developing an electrostatic charge image containing a colored resin particle containing a binder resin and a colorant, and an external additive, and the resin as the external additive The surface of the fine particles contains core-shell type composite fine particles coated with a continuous layer of at least one inorganic component selected from the group consisting of alumina and titania.

本発明においては、前記コアシェル型複合微粒子の全体積を100体積%としたときの、当該複合微粒子中の前記無機成分の体積比率が25〜75体積%であることが好ましい。   In this invention, it is preferable that the volume ratio of the said inorganic component in the said composite microparticles when the whole volume of the said core-shell type composite microparticles is 100 volume% is 25-75 volume%.

本発明においては、前記コアシェル型複合微粒子の吸着水分量が0.5〜2.5質量%であることが好ましい。   In the present invention, it is preferable that the adsorbed moisture content of the core-shell type composite fine particles is 0.5 to 2.5 mass%.

本発明においては、前記コアシェル型複合微粒子の添加量が、前記着色樹脂粒子100質量部に対し0.1〜2.0質量部であることが好ましい。   In this invention, it is preferable that the addition amount of the said core-shell type composite fine particle is 0.1-2.0 mass parts with respect to 100 mass parts of the said colored resin particles.

本発明においては、前記コアシェル型複合微粒子の個数平均粒径が30〜300nmであることが好ましい。   In the present invention, the number average particle size of the core-shell composite fine particles is preferably 30 to 300 nm.

本発明においては、前記着色樹脂粒子の体積平均粒径が4〜12μmであり、且つ平均円形度が0.96〜1.00であることが好ましい。   In the present invention, the colored resin particles preferably have a volume average particle size of 4 to 12 μm and an average circularity of 0.96 to 1.00.

本発明においては、前記コアシェル型複合微粒子を構成する前記樹脂微粒子が架橋樹脂であることが好ましい。   In the present invention, the resin fine particles constituting the core-shell type composite fine particles are preferably a crosslinked resin.

上記の如き本発明の静電荷像現像用トナーによれば、外添剤として、樹脂微粒子の表面に、アルミナ、チタニア及び/又はジルコニアが被覆されているコアシェル型複合微粒子を使用することにより、低温低湿環境下におけるトナー帯電量の上昇が抑制され、同環境下においても細線再現性が損なわれることなく安定した印字が行え、且つ、帯電量の上昇により発生する印字不具合などがなく、良好な画質が得られる静電荷像現像用トナーが提供される。   According to the toner for developing an electrostatic charge image of the present invention as described above, by using core-shell type composite particles in which the surface of resin fine particles is coated with alumina, titania and / or zirconia as an external additive, An increase in toner charge amount in a low-humidity environment is suppressed, stable printing can be performed without impairing fine line reproducibility even in the same environment, and there are no print defects caused by an increase in charge amount, resulting in good image quality An electrostatic charge image developing toner is obtained.

本発明の静電荷像現像用トナーは、結着樹脂及び着色剤を含有する着色樹脂粒子、並びに外添剤を含有する静電荷像現像用トナーであって、前記外添剤として、樹脂微粒子の表面に、アルミナ、チタニア、及びジルコニアからなる群から選ばれる少なくとも1つの無機成分が被覆されているコアシェル型複合微粒子を含有することを特徴とする。   The toner for developing an electrostatic charge image of the present invention is a toner for developing an electrostatic charge image containing a colored resin particle containing a binder resin and a colorant, and an external additive. It is characterized by containing core-shell type composite particles coated on the surface with at least one inorganic component selected from the group consisting of alumina, titania and zirconia.

以下、本発明の静電荷像現像用トナー(以下、単に「トナー」と称することがある。)について説明する。
本発明のトナーは、結着樹脂及び着色剤を含有する着色樹脂粒子と、外添剤として樹脂微粒子の表面にアルミナ、チタニア及び/又はジルコニアが被覆されているコアシェル型複合微粒子を含有する。
本発明のトナーは、前記着色樹脂粒子の表面に、外添剤として前記コアシェル型複合微粒子を付着添加することにより得られるものであることが好ましい。
以下、本発明に使用される着色樹脂粒子の製造方法、当該製造方法により得られる着色樹脂粒子、本発明に外添剤として使用されるコアシェル型複合微粒子の製造方法、当該製造方法により得られるコアシェル型複合微粒子、当該着色樹脂粒子及び外添剤を用いた本発明のトナーの製造方法及び本発明のトナーについて、順に説明する。
Hereinafter, the toner for developing an electrostatic charge image of the present invention (hereinafter sometimes simply referred to as “toner”) will be described.
The toner of the present invention contains colored resin particles containing a binder resin and a colorant, and core-shell type composite particles in which the surface of the resin fine particles is coated with alumina, titania and / or zirconia as an external additive.
The toner of the present invention is preferably obtained by adhering and adding the core-shell type composite fine particles as an external additive to the surface of the colored resin particles.
Hereinafter, a method for producing colored resin particles used in the present invention, a colored resin particle obtained by the production method, a method for producing core-shell composite fine particles used as an external additive in the invention, and a core shell obtained by the production method The production method of the toner of the present invention using the mold composite fine particles, the colored resin particles and the external additive, and the toner of the present invention will be described in order.

1.着色樹脂粒子の製造方法
一般に、着色樹脂粒子の製造方法は、粉砕法等の乾式法、並びに乳化重合凝集法、懸濁重合法、及び溶解懸濁法等の湿式法に大別され、画像再現性等の印字特性に優れたトナーが得られ易いことから湿式法が好ましい。湿式法の中でも、ミクロンオーダーで比較的小さい粒径分布を持つトナーを得やすいことから、乳化重合凝集法、及び懸濁重合法等の重合法が好ましく、重合法の中でも懸濁重合法がより好ましい。
1. Production method of colored resin particles Generally, the production method of colored resin particles is roughly classified into dry methods such as a pulverization method, and wet methods such as an emulsion polymerization aggregation method, a suspension polymerization method, and a dissolution suspension method. The wet method is preferable because it is easy to obtain a toner excellent in printing characteristics such as the property. Among wet methods, a polymerization method such as an emulsion polymerization aggregation method and a suspension polymerization method is preferable because a toner having a relatively small particle size distribution on the order of microns is preferable. A suspension polymerization method is more preferable among polymerization methods. preferable.

上記乳化重合凝集法は、乳化させた重合性単量体を重合し、樹脂微粒子エマルションを得て、着色剤分散液等と凝集させ、着色樹脂粒子を製造する。また、上記溶解懸濁法は、結着樹脂や着色剤等のトナー成分を有機溶媒に溶解又は分散した溶液を水系媒体中で液滴形成し、当該有機溶媒を除去して着色樹脂粒子を製造する方法であり、それぞれ公知の方法を用いることができる。   In the emulsion polymerization aggregation method, an emulsified polymerizable monomer is polymerized to obtain a resin fine particle emulsion, which is aggregated with a colorant dispersion or the like to produce colored resin particles. The dissolution suspension method produces droplets of a solution in which toner components such as a binder resin and a colorant are dissolved or dispersed in an organic solvent in an aqueous medium, and the organic solvent is removed to produce colored resin particles. Each of which is a known method.

本発明の着色樹脂粒子は、湿式法、または乾式法を採用して製造することが出来る。湿式法の中でも好ましい懸濁重合法を採用し、以下のようなプロセスにより行われる。   The colored resin particles of the present invention can be produced by employing a wet method or a dry method. Among the wet methods, a preferred suspension polymerization method is adopted, and the following process is performed.

(A)懸濁重合法
(A−1)重合性単量体組成物の調製工程
まず、重合性単量体、着色剤、さらに必要に応じて添加される帯電制御剤及び離型剤等のその他の添加物を混合し、重合性単量体組成物の調製を行う。重合性単量体組成物を調製する際の混合には、例えば、メディア式分散機を用いて行う。
(A) Suspension polymerization method (A-1) Preparation step of polymerizable monomer composition First, a polymerizable monomer, a colorant, and a charge control agent and a release agent added as necessary. Other additives are mixed to prepare a polymerizable monomer composition. The mixing at the time of preparing the polymerizable monomer composition is performed using, for example, a media type dispersing machine.

本発明で重合性単量体は、重合可能な官能基を有するモノマーのことをいい、重合性単量体が重合して結着樹脂となる。重合性単量体の主成分として、モノビニル単量体を使用することが好ましい。モノビニル単量体としては、例えば、スチレン;ビニルトルエン、及びα−メチルスチレン等のスチレン誘導体;アクリル酸、及びメタクリル酸;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、及びアクリル酸ジメチルアミノエチル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、及びメタクリル酸ジメチルアミノエチル等のメタクリル酸エステル;アクリロニトリル、及びメタクリロニトリル等の二トリル化合物;アクリルアミド、及びメタクリルアミド等のアミド化合物;エチレン、プロピレン、及びブチレン等のオレフィン;が挙げられる。これらのモノビニル単量体は、それぞれ単独で、あるいは2種以上組み合わせて用いることができる。これらのうち、モノビニル単量体として、スチレン、スチレン誘導体、及びアクリル酸若しくはメタクリル酸の誘導体が、好適に用いられる。   In the present invention, the polymerizable monomer means a monomer having a polymerizable functional group, and the polymerizable monomer is polymerized to become a binder resin. It is preferable to use a monovinyl monomer as the main component of the polymerizable monomer. Examples of the monovinyl monomer include styrene; styrene derivatives such as vinyl toluene and α-methylstyrene; acrylic acid and methacrylic acid; methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, acrylic acid 2 Acrylic esters such as ethylhexyl and dimethylaminoethyl acrylate; methacrylic esters such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate and dimethylaminoethyl methacrylate; acrylonitrile And nitrile compounds such as methacrylonitrile; amide compounds such as acrylamide and methacrylamide; olefins such as ethylene, propylene, and butylene. These monovinyl monomers can be used alone or in combination of two or more. Of these, styrene, styrene derivatives, and acrylic acid or methacrylic acid derivatives are preferably used as the monovinyl monomer.

ホットオフセット改善及び保存性改善のために、モノビニル単量体とともに、任意の架橋性の重合性単量体を用いることが好ましい。架橋性の重合性単量体とは、2つ以上の重合可能な官能基を持つモノマーのことをいう。架橋性の重合性単量体としては、例えば、ジビニルベンゼン、ジビニルナフタレン、及びこれらの誘導体等の芳香族ジビニル化合物;エチレングリコールジメタクリレート、及びジエチレングリコールジメタクリレート等の2個以上の水酸基を持つアルコールにカルボン酸が2つ以上エステル結合したエステル化合物;N,N−ジビニルアニリン、及びジビニルエーテル等の、その他のジビニル化合物;3個以上のビニル基を有する化合物;等を挙げることができる。これらの架橋性の重合性単量体は、それぞれ単独で、あるいは2種以上組み合わせて用いることができる。
本発明では、架橋性の重合性単量体を、モノビニル単量体100質量部に対して、通常、0.1〜5質量部、好ましくは0.3〜2質量部の割合で用いることが望ましい。
In order to improve hot offset and storage stability, it is preferable to use any crosslinkable polymerizable monomer together with the monovinyl monomer. A crosslinkable polymerizable monomer means a monomer having two or more polymerizable functional groups. Examples of the crosslinkable polymerizable monomer include aromatic divinyl compounds such as divinylbenzene, divinylnaphthalene, and derivatives thereof; alcohols having two or more hydroxyl groups such as ethylene glycol dimethacrylate and diethylene glycol dimethacrylate; Examples include ester compounds in which two or more carboxylic acids are ester-bonded; other divinyl compounds such as N, N-divinylaniline and divinyl ether; compounds having three or more vinyl groups. These crosslinkable polymerizable monomers can be used alone or in combination of two or more.
In the present invention, the crosslinkable polymerizable monomer is usually used at a ratio of 0.1 to 5 parts by mass, preferably 0.3 to 2 parts by mass with respect to 100 parts by mass of the monovinyl monomer. desirable.

また、さらに、重合性単量体の一部として、マクロモノマーを用いると、得られるトナーの保存性と低温での定着性とのバランスが良好になるので好ましい。マクロモノマーは、分子鎖の末端に重合可能な炭素−炭素不飽和二重結合を有するもので、数平均分子量が、通常、1,000〜30,000の反応性の、オリゴマー又はポリマーである。マクロモノマーは、モノビニル単量体を重合して得られる重合体のガラス転移温度(以下、「Tg」と称することがある。)よりも、高いTgを有する重合体を与えるものが好ましい。マクロモノマーは、モノビニル単量体100質量部に対して、好ましくは0.03〜5質量部、さらに好ましくは0.05〜1質量部用いる。   Furthermore, it is preferable to use a macromonomer as a part of the polymerizable monomer because the balance between the storage stability of the obtained toner and the fixing property at low temperature is improved. The macromonomer has a polymerizable carbon-carbon unsaturated double bond at the end of the molecular chain, and is a reactive oligomer or polymer having a number average molecular weight of usually 1,000 to 30,000. The macromonomer is preferably one that gives a polymer having a higher Tg than the glass transition temperature of the polymer obtained by polymerizing the monovinyl monomer (hereinafter sometimes referred to as “Tg”). The macromonomer is preferably used in an amount of 0.03 to 5 parts by mass, more preferably 0.05 to 1 part by mass, with respect to 100 parts by mass of the monovinyl monomer.

本発明では、着色剤を用いるが、カラートナーを作製する場合、ブラック、シアン、イエロー、マゼンタの着色剤を用いることができる。
ブラック着色剤としては、カーボンブラック、チタンブラック、並びに酸化鉄亜鉛、及び酸化鉄ニッケル等の磁性粉等を用いることができる。
In the present invention, a colorant is used. However, when producing a color toner, black, cyan, yellow, and magenta colorants can be used.
As the black colorant, carbon black, titanium black, magnetic powder such as iron zinc oxide and nickel iron oxide can be used.

シアン着色剤としては、例えば、銅フタロシアニン化合物、その誘導体、及びアントラキノン化合物等が利用できる。具体的には、C.I.ピグメントブルー2、3、6、15、15:1、15:2、15:3、15:4、16、17:1、及び60等が挙げられる。   As the cyan colorant, for example, a copper phthalocyanine compound, a derivative thereof, and an anthraquinone compound can be used. Specifically, C.I. I. Pigment blue 2, 3, 6, 15, 15: 1, 15: 2, 15: 3, 15: 4, 16, 17: 1, 60, and the like.

イエロー着色剤としては、例えば、モノアゾ顔料、及びジスアゾ顔料等のアゾ系顔料、縮合多環系顔料等の化合物が用いられ、C.I.ピグメントイエロー3、12、13、14、15、17、62、65、73、74、83、93、97、120、138、155、180、181、185、及び186等が挙げられる。   Examples of the yellow colorant include monoazo pigments, azo pigments such as disazo pigments, and compounds such as condensed polycyclic pigments. I. Pigment yellow 3, 12, 13, 14, 15, 17, 62, 65, 73, 74, 83, 93, 97, 120, 138, 155, 180, 181, 185, and 186.

マゼンタ着色剤としては、モノアゾ顔料、及びジスアゾ顔料等のアゾ系顔料、縮合多環系顔料等の化合物が用いられ、C.I.ピグメントレッド31、48、57:1、58、60、63、64、68、81、83、87、88、89、90、112、114、122、123、144、146、149、150、163、170、184、185、187、202、206、207、209、237、251、269及びC.I.ピグメントバイオレット19等が挙げられる。   As the magenta colorant, monoazo pigments, azo pigments such as disazo pigments, and compounds such as condensed polycyclic pigments are used. I. Pigment Red 31, 48, 57: 1, 58, 60, 63, 64, 68, 81, 83, 87, 88, 89, 90, 112, 114, 122, 123, 144, 146, 149, 150, 163, 170, 184, 185, 187, 202, 206, 207, 209, 237, 251, 269 and C.I. I. Pigment violet 19 and the like.

本発明では、各着色剤は、それぞれ単独で、あるいは2種以上組み合わせて用いることができる。着色剤の量は、モノビニル単量体100質量部に対して、好ましくは1〜10質量部である。   In the present invention, each colorant can be used alone or in combination of two or more. The amount of the colorant is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the monovinyl monomer.

その他の添加物として、トナーの帯電性を向上させるために、正帯電性又は負帯電性の帯電制御剤を用いることができる。
帯電制御剤としては、一般にトナー用の帯電制御剤として用いられているものであれば、特に限定されないが、帯電制御剤の中でも、重合性単量体との相溶性が高く、安定した帯電性(帯電安定性)をトナー粒子に付与させることができることから、正帯電性又は負帯電性の帯電制御樹脂が好ましく、さらに、正帯電性トナーを得る観点からは、正帯電性の帯電制御樹脂がより好ましく用いられる。
正帯電性の帯電制御剤としては、ニグロシン染料、4級アンモニウム塩、トリアミノトリフェニルメタン化合物及びイミダゾール化合物、並びに、好ましく用いられる帯電制御樹脂としてのポリアミン樹脂、並びに4級アンモニウム基含有共重合体、及び4級アンモニウム塩基含有共重合体等が挙げられる。
負帯電性の帯電制御剤としては、Cr、Co、Al、及びFe等の金属を含有するアゾ染料、サリチル酸金属化合物及びアルキルサリチル酸金属化合物、並びに、好ましく用いられる帯電制御樹脂としてのスルホン酸基含有共重合体、スルホン酸塩基含有共重合体、カルボン酸基含有共重合体及びカルボン酸塩基含有共重合体等が挙げられる。
本発明では、帯電制御剤を、モノビニル単量体100質量部に対して、通常、0.01〜10質量部、好ましくは0.03〜8質量部の割合で用いることが望ましい。帯電制御剤の添加量が、0.01質量部未満の場合にはカブリが発生することがある。一方、帯電制御剤の添加量が10質量部を超える場合には印字汚れが発生することがある。
As other additives, a positively or negatively chargeable charge control agent can be used to improve the chargeability of the toner.
The charge control agent is not particularly limited as long as it is generally used as a charge control agent for toner, but among charge control agents, the compatibility with the polymerizable monomer is high, and stable chargeability. (Charge stability) can be imparted to the toner particles, and therefore a positively or negatively chargeable charge control resin is preferred. Further, from the viewpoint of obtaining a positively chargeable toner, a positively chargeable charge control resin is preferred. More preferably used.
Examples of positively chargeable charge control agents include nigrosine dyes, quaternary ammonium salts, triaminotriphenylmethane compounds and imidazole compounds, polyamine resins as charge control resins that are preferably used, and quaternary ammonium group-containing copolymers. , And quaternary ammonium base-containing copolymers.
Negatively chargeable charge control agents include azo dyes containing metals such as Cr, Co, Al, and Fe, salicylic acid metal compounds and alkylsalicylic acid metal compounds, and sulfonic acid group containing charge control resins that are preferably used Examples thereof include a copolymer, a sulfonate group-containing copolymer, a carboxylic acid group-containing copolymer, and a carboxylic acid group-containing copolymer.
In the present invention, the charge control agent is usually used in a proportion of 0.01 to 10 parts by mass, preferably 0.03 to 8 parts by mass, with respect to 100 parts by mass of the monovinyl monomer. If the addition amount of the charge control agent is less than 0.01 parts by mass, fog may occur. On the other hand, when the addition amount of the charge control agent exceeds 10 parts by mass, printing stains may occur.

また、その他の添加物として、重合して結着樹脂となる重合性単量体を重合する際に、分子量調整剤を用いることが好ましい。
分子量調整剤としては、一般にトナー用の分子量調整剤として用いられているものであれば、特に限定されず、例えば、t−ドデシルメルカプタン、n−ドデシルメルカプタン、n−オクチルメルカプタン、及び2,2,4,6,6−ペンタメチルヘプタン−4−チオール等のメルカプタン類;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、N,N’−ジメチル−N,N’−ジフェニルチウラムジスルフィド、N,N’−ジオクタデシル−N,N’−ジイソプロピルチウラムジスルフィド等のチウラムジスルフィド類;等が挙げられる。これらの分子量調整剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いてもよい。
本発明では、分子量調整剤を、モノビニル単量体100質量部に対して、通常0.01〜10質量部、好ましくは0.1〜5質量部の割合で用いることが望ましい。
As other additives, it is preferable to use a molecular weight modifier when polymerizing a polymerizable monomer that is polymerized to become a binder resin.
The molecular weight modifier is not particularly limited as long as it is generally used as a molecular weight modifier for toner. For example, t-dodecyl mercaptan, n-dodecyl mercaptan, n-octyl mercaptan, and 2,2, Mercaptans such as 4,6,6-pentamethylheptane-4-thiol; tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, N, N′-dimethyl-N, N′-diphenylthiuram disulfide, N, And thiuram disulfides such as N′-dioctadecyl-N, N′-diisopropylthiuram disulfide; These molecular weight modifiers may be used alone or in combination of two or more.
In this invention, it is desirable to use a molecular weight modifier in the ratio of 0.01-10 mass parts normally with respect to 100 mass parts of monovinyl monomers, Preferably it is 0.1-5 mass parts.

更にその他の添加物として、離型剤を添加することが好ましい。離型剤を添加することにより、定着時におけるトナーの定着ロールからの離型性を改善できる。離型剤としては、一般にトナーの離型剤として用いられるものであれば、特に制限無く用いることができる。例えば、低分子量ポリオレフィンワックスや、その変性ワックス;ホホバ等の植物系天然ワックス;パラフィン等の石油ワックス;オゾケライト等の鉱物系ワックス;フィッシャートロプシュワックス等の合成ワックス;ポリグリセリンエステル、ジペンタエリスリトールエステル等の多価アルコールエステル;等が挙げられる。トナーの保存性と低温定着性のバランスが取れることから、多価アルコールエステルが好ましい。これらは1種又は2種以上を組み合わせて用いてもよい。
上記離型剤は、モノビニル単量体100質量部に対して、好ましくは0.1〜30質量部用いられ、更に好ましくは1〜20質量部用いられる。
Furthermore, it is preferable to add a release agent as another additive. By adding a release agent, the releasability of the toner from the fixing roll during fixing can be improved. Any releasing agent can be used without particular limitation as long as it is generally used as a releasing agent for toner. For example, low molecular weight polyolefin wax and its modified wax; plant-based natural wax such as jojoba; petroleum wax such as paraffin; mineral wax such as ozokerite; synthetic wax such as Fischer-Tropsch wax; polyglycerin ester, dipentaerythritol ester, etc. And the like. A polyhydric alcohol ester is preferable because the storage stability of the toner and the low-temperature fixability can be balanced. These may be used alone or in combination of two or more.
The release agent is preferably used in an amount of 0.1 to 30 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the monovinyl monomer.

(A−2)懸濁液を得る懸濁工程(液滴形成工程)
本発明では、重合性単量体と着色剤を含む重合性単量体組成物を、分散安定剤を含む水系媒体中に分散させ、重合開始剤を添加した後、重合性単量体組成物の液滴形成を行う。液滴形成の方法は特に限定されないが、例えば、(インライン型)乳化分散機(株式会社荏原製作所製、商品名「マイルダー」)、高速乳化分散機(特殊機化工業製、商品名「T.K.ホモミクサー MARK II型」)等の強攪拌が可能な装置を用いて行う。
(A-2) Suspension step for obtaining a suspension (droplet formation step)
In the present invention, a polymerizable monomer composition containing a polymerizable monomer and a colorant is dispersed in an aqueous medium containing a dispersion stabilizer, a polymerization initiator is added, and then the polymerizable monomer composition is added. Droplet formation is performed. The method for forming droplets is not particularly limited. For example, an (in-line type) emulsifying disperser (trade name “Milder” manufactured by Ebara Manufacturing Co., Ltd.), a high-speed emulsifying disperser (trade name “T. K. Homomixer MARK Type II ") or the like capable of strong stirring.

重合開始剤としては、過硫酸カリウム、及び過硫酸アンモニウム等の過硫酸塩:4,4’−アゾビス(4−シアノバレリック酸)、2,2’−アゾビス(2−メチル−N−(2−ヒドリキシエチル)プロピオンアミド)、2,2’−アゾビス(2−アミジノプロパン)ジヒドロクロライド、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、及び2,2’−アゾビスイソブチロニトリル等のアゾ化合物;ジ−t−ブチルパーオキシド、ベンゾイルパーオキシド、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシ−2−エチルブタノエート、ジイソプロピルパーオキシジカーボネート、ジ−t−ブチルパーオキシオキシイソフタレート、及びt−ブチルパーオキシイソブチレート等の有機過酸化物が挙げられる。これらは、それぞれ単独で、あるいは2種以上組み合わせて用いることができる。これらの中で、残留重合性単量体を少なくすることができ、印字耐久性も優れることから、有機過酸化物を用いるのが好ましい。   As a polymerization initiator, persulfates such as potassium persulfate and ammonium persulfate: 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis (2-methyl-N- (2- Hydroxyethyl) propionamide), 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis (2,4-dimethylvaleronitrile), and 2,2′-azobisisobutyro Azo compounds such as nitrile; di-t-butyl peroxide, benzoyl peroxide, t-butylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylbutanoate, diisopropyl peroxydicarbonate, And organic peroxides such as di-t-butylperoxyisophthalate and t-butylperoxyisobutyrate. That. These can be used alone or in combination of two or more. Among these, it is preferable to use an organic peroxide because residual polymerizable monomers can be reduced and printing durability is excellent.

有機過酸化物の中では、開始剤効率がよく、残留する重合性単量体も少なくすることができることから、パーオキシエステルが好ましく、非芳香族パーオキシエステルすなわち芳香環を有しないパーオキシエステルがより好ましい。   Among organic peroxides, peroxyesters are preferred because of the high initiator efficiency and the remaining polymerizable monomer can be reduced. Non-aromatic peroxyesters, that is, peroxyesters having no aromatic ring Is more preferable.

重合開始剤は、前記のように、重合性単量体組成物が水系媒体中へ分散された後、液滴形成前に添加されても良いが、水系媒体中へ分散される前の重合性単量体組成物へ添加されても良い。   As described above, the polymerization initiator may be added before the droplet formation after the polymerizable monomer composition is dispersed in the aqueous medium. However, the polymerization initiator is not dispersed in the aqueous medium. It may be added to the monomer composition.

重合性単量体組成物の重合に用いられる、重合開始剤の添加量は、モノビニル単量体100質量部に対して、好ましくは0.1〜20質量部であり、さらに好ましくは0.3〜15質量部であり、特に好ましくは1〜10質量部である。   The addition amount of the polymerization initiator used for the polymerization of the polymerizable monomer composition is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 100 parts by mass of the monovinyl monomer. It is -15 mass parts, Most preferably, it is 1-10 mass parts.

本発明において、水系媒体は、水を主成分とする媒体のことを言う。   In the present invention, the aqueous medium refers to a medium containing water as a main component.

本発明において、水系媒体には、分散安定化剤を含有させることが好ましい。分散安定化剤としては、例えば、硫酸バリウム、及び硫酸カルシウム等の硫酸塩;炭酸バリウム、炭酸カルシウム、及び炭酸マグネシウム等の炭酸塩;リン酸カルシウム等のリン酸塩;酸化アルミニウム、及び酸化チタン等の金属酸化物;水酸化アルミニウム、水酸化マグネシウム、及び水酸化第二鉄等の金属水酸化物;等の無機化合物や、ポリビニルアルコール、メチルセルロース、及びゼラチン等の水溶性高分子;アニオン性界面活性剤;ノニオン性界面活性剤;両性界面活性剤;等の有機化合物が挙げられる。上記分散安定化剤は1種又は2種以上を組み合わせて用いることができる。   In the present invention, the aqueous medium preferably contains a dispersion stabilizer. Examples of the dispersion stabilizer include sulfates such as barium sulfate and calcium sulfate; carbonates such as barium carbonate, calcium carbonate and magnesium carbonate; phosphates such as calcium phosphate; metals such as aluminum oxide and titanium oxide. Oxides; metal hydroxides such as aluminum hydroxide, magnesium hydroxide, and ferric hydroxide; inorganic compounds such as; water-soluble polymers such as polyvinyl alcohol, methylcellulose, and gelatin; anionic surfactants; Organic compounds such as nonionic surfactants; amphoteric surfactants; The said dispersion stabilizer can be used 1 type or in combination of 2 or more types.

上記分散安定化剤の中でも、無機化合物、特に難水溶性の金属水酸化物のコロイドが好ましい。無機化合物、特に難水溶性の金属水酸化物のコロイドを用いることにより、着色樹脂粒子の粒径分布を狭くすることができ、また、洗浄後の分散安定化剤残存量を少なくできるため、得られる重合トナーが画像を鮮明に再現することができ、更に環境安定性を悪化させない。   Among the above dispersion stabilizers, inorganic compounds, particularly colloids of poorly water-soluble metal hydroxides are preferred. By using a colloid of an inorganic compound, particularly a poorly water-soluble metal hydroxide, the particle size distribution of the colored resin particles can be narrowed, and the residual amount of the dispersion stabilizer after washing can be reduced. The polymerized toner can reproduce an image clearly and does not deteriorate environmental stability.

(A−3)重合工程
上記(A−2)のようにして、液滴形成を行い、得られた水系分散媒体を加熱し、重合を開始し、着色樹脂粒子の水分散液を形成する。
重合性単量体組成物の重合温度は、好ましくは50℃以上であり、更に好ましくは60〜95℃である。また、重合の反応時間は好ましくは1〜20時間であり、更に好ましくは2〜15時間である。
(A-3) Polymerization step As in (A-2) above, droplet formation is performed, the resulting aqueous dispersion medium is heated to initiate polymerization, and an aqueous dispersion of colored resin particles is formed.
The polymerization temperature of the polymerizable monomer composition is preferably 50 ° C. or higher, more preferably 60 to 95 ° C. The polymerization reaction time is preferably 1 to 20 hours, more preferably 2 to 15 hours.

着色樹脂粒子は、そのまま外添剤を添加して重合トナーとして用いてもよいが、この着色樹脂粒子をコア層とし、その外側にコア層と異なるシェル層を作ることで得られる、所謂コアシェル型(又は、「カプセル型」ともいう)の着色樹脂粒子とすることが好ましい。コアシェル型の着色樹脂粒子は、低軟化点を有する物質よりなるコア層を、それより高い軟化点を有する物質で被覆することにより、定着温度の低温化と保存時の凝集防止とのバランスを取ることができる。   The colored resin particles may be used as a polymerized toner by adding an external additive as it is, but the so-called core-shell type obtained by using the colored resin particles as a core layer and forming a shell layer different from the core layer on the outside thereof. It is preferable to use colored resin particles (also referred to as “capsule type”). The core-shell type colored resin particles balance the reduction of the fixing temperature and the prevention of aggregation during storage by coating the core layer made of a material having a low softening point with a material having a higher softening point. be able to.

上述した、上記着色樹脂粒子を用いて、コアシェル型の着色樹脂粒子を製造する方法としては特に制限はなく、従来公知の方法によって製造することができる。in situ重合法や相分離法が、製造効率の点から好ましい。   There is no restriction | limiting in particular as a method of manufacturing a core shell type colored resin particle using the said colored resin particle mentioned above, It can manufacture by a conventionally well-known method. An in situ polymerization method and a phase separation method are preferable from the viewpoint of production efficiency.

in situ重合法によるコアシェル型の着色樹脂粒子の製造法を以下に説明する。
着色樹脂粒子が分散している水系媒体中に、シェル層を形成するための重合性単量体(シェル用重合性単量体)と重合開始剤を添加し、重合することでコアシェル型の着色樹脂粒子を得ることができる。
A method for producing core-shell type colored resin particles by in situ polymerization will be described below.
Addition of a polymerizable monomer (polymerizable monomer for shell) and a polymerization initiator to form a shell layer into an aqueous medium in which colored resin particles are dispersed, and then polymerize to form a core-shell type color. Resin particles can be obtained.

シェル用重合性単量体としては、前述の重合性単量体と同様なものが使用できる。その中でも、スチレン、アクリロニトリル、及びメチルメタクリレート等の、Tgが80℃を超える重合体が得られる単量体を、単独であるいは2種以上組み合わせて使用することが好ましい。   As the polymerizable monomer for the shell, the same monomers as the aforementioned polymerizable monomers can be used. Among them, it is preferable to use monomers such as styrene, acrylonitrile, and methyl methacrylate, which can obtain a polymer having a Tg exceeding 80 ° C., alone or in combination of two or more.

シェル用重合性単量体の重合に用いる重合開始剤としては、過硫酸カリウム、及び過硫酸アンモニウム等の、過硫酸金属塩;2,2’−アゾビス(2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド)、及び2,2’−アゾビス−(2−メチル−N−(1,1−ビス(ヒドロキシメチル)2−ヒドロキシエチル)プロピオンアミド)等の、アゾ系開始剤;等の水溶性重合開始剤を挙げることができる。これらは、それぞれ単独で、あるいは2種以上組み合わせて用いることができる。重合開始剤の量は、シェル用重合性単量体100質量部に対して、好ましくは、0.1〜30質量部、より好ましくは1〜20質量部である。   As a polymerization initiator used for polymerization of the polymerizable monomer for shell, persulfate metal salts such as potassium persulfate and ammonium persulfate; 2,2′-azobis (2-methyl-N- (2-hydroxyethyl) Water-soluble such as azo initiators such as) propionamide) and 2,2′-azobis- (2-methyl-N- (1,1-bis (hydroxymethyl) 2-hydroxyethyl) propionamide); A polymerization initiator can be mentioned. These can be used alone or in combination of two or more. The amount of the polymerization initiator is preferably 0.1 to 30 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the polymerizable monomer for shell.

シェル層の重合温度は、好ましくは50℃以上であり、更に好ましくは60〜95℃である。また、重合の反応時間は好ましくは1〜20時間であり、更に好ましくは2〜15時間である。   The polymerization temperature of the shell layer is preferably 50 ° C. or higher, more preferably 60 to 95 ° C. The polymerization reaction time is preferably 1 to 20 hours, more preferably 2 to 15 hours.

(A−4)洗浄、ろ過、脱水、及び乾燥工程
重合により得られた着色樹脂粒子の水分散液は、重合終了後に、常法に従い、ろ過、分散安定化剤の除去を行う洗浄、脱水、及び乾燥の操作が、必要に応じて数回繰り返されることが好ましい。
(A-4) Washing, filtration, dehydration, and drying steps The aqueous dispersion of colored resin particles obtained by polymerization is washed, dehydrated, and filtered to remove the dispersion stabilizer according to a conventional method after completion of the polymerization. The drying operation is preferably repeated several times as necessary.

上記の洗浄の方法としては、分散安定化剤として無機化合物を使用した場合、着色樹脂粒子の水分散液への酸、又はアルカリの添加により、分散安定化剤を水に溶解し除去することが好ましい。分散安定化剤として、難水溶性の無機水酸化物のコロイドを使用した場合、酸を添加して、着色樹脂粒子水分散液のpHを6.5以下に調整することが好ましい。添加する酸としては、硫酸、塩酸、及び硝酸等の無機酸、並びに蟻酸、及び酢酸等の有機酸を用いることができるが、除去効率の大きいことや製造設備への負担が小さいことから、特に硫酸が好適である。   As the above washing method, when an inorganic compound is used as the dispersion stabilizer, the dispersion stabilizer can be dissolved in water and removed by adding an acid or alkali to the aqueous dispersion of colored resin particles. preferable. When a colloid of a poorly water-soluble inorganic hydroxide is used as the dispersion stabilizer, it is preferable to adjust the pH of the colored resin particle aqueous dispersion to 6.5 or less by adding an acid. As the acid to be added, inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid, and organic acids such as formic acid and acetic acid can be used. Particularly, since the removal efficiency is large and the burden on the manufacturing equipment is small, Sulfuric acid is preferred.

脱水、ろ過の方法は、種々の公知の方法等を用いることができ、特に限定されない。例えば、遠心ろ過法、真空ろ過法、加圧ろ過法等を挙げることができる。また、乾燥の方法も、特に限定されず、種々の方法が使用できる。   Various known methods and the like can be used as the method of dehydration and filtration, and there is no particular limitation. Examples thereof include a centrifugal filtration method, a vacuum filtration method, and a pressure filtration method. Also, the drying method is not particularly limited, and various methods can be used.

(B)粉砕法
粉砕法を採用して着色樹脂粒子を製造する場合、以下のようなプロセスにより行われる。
まず、結着樹脂、着色剤、さらに必要に応じて添加される帯電制御剤及び離型剤等のその他の添加物を混合機、例えば、ボールミル、V型混合機、ヘンシェルミキサー(:商品名)、高速ディゾルバ、インターナルミキサー、フォールバーグ等を用いて混合する。次に、上記により得られた混合物を、加圧ニーダー、二軸押出混練機、ローラ等を用いて加熱しながら混練する。得られた混練物を、ハンマーミル、カッターミル、ローラミル等の粉砕機を用いて、粗粉砕する。更に、ジェットミル、高速回転式粉砕機等の粉砕機を用いて微粉砕した後、風力分級機、気流式分級機等の分級機により、所望の粒径に分級して粉砕法による着色樹脂粒子を得る。
(B) Pulverization method When the pulverization method is used to produce colored resin particles, the following process is performed.
First, a binder resin, a colorant, and other additives such as a charge control agent and a release agent added as necessary are mixed in a mixer, such as a ball mill, a V-type mixer, a Henschel mixer (trade name). Mix using a high-speed dissolver, internal mixer, Fallberg, etc. Next, the mixture obtained as described above is kneaded while being heated using a pressure kneader, a twin-screw extrusion kneader, a roller or the like. The obtained kneaded material is coarsely pulverized using a pulverizer such as a hammer mill, a cutter mill, or a roller mill. Furthermore, after finely pulverizing using a pulverizer such as a jet mill or a high-speed rotary pulverizer, it is classified into a desired particle size by a classifier such as an air classifier or an airflow classifier, and colored resin particles obtained by a pulverization method. Get.

なお、粉砕法で用いる結着樹脂、着色剤、さらに必要に応じて添加される帯電制御剤及び離型剤等のその他の添加物は、前述の(A)懸濁重合法で挙げたものを用いることができる。また、粉砕法により得られる着色樹脂粒子は、前述の(A)懸濁重合法により得られる着色樹脂粒子と同じく、in situ重合法等の方法によりコアシェル型の着色樹脂粒子とすることもできる。   In addition, the binder resin used in the pulverization method, the colorant, and other additives such as a charge control agent and a release agent that are added as necessary are those mentioned in the above (A) suspension polymerization method. Can be used. Further, the colored resin particles obtained by the pulverization method can be made into core-shell type colored resin particles by a method such as an in situ polymerization method in the same manner as the colored resin particles obtained by the suspension polymerization method (A) described above.

結着樹脂としては、他にも、従来からトナーに広く用いられている樹脂を使用することができる。粉砕法で用いられる結着樹脂としては、具体的には、ポリスチレン、スチレン−アクリル酸ブチル共重合体、ポリエステル樹脂、及びエポキシ樹脂等を例示することができる。   As the binder resin, other resins that have been widely used for toners can be used. Specific examples of the binder resin used in the pulverization method include polystyrene, styrene-butyl acrylate copolymer, polyester resin, and epoxy resin.

2.着色樹脂粒子
上述の(A)懸濁重合法、又は(B)粉砕法等の製造方法により、着色樹脂粒子が得られる。
以下、トナーを構成する着色樹脂粒子について述べる。なお、以下で述べる着色樹脂粒子は、コアシェル型のものとそうでないもの両方を含む。
2. Colored resin particles Colored resin particles are obtained by a production method such as the above-described (A) suspension polymerization method or (B) pulverization method.
Hereinafter, the colored resin particles constituting the toner will be described. The colored resin particles described below include both core-shell type and non-core type.

着色樹脂粒子の体積平均粒径(Dv)は、好ましくは4〜12μmであり、更に好ましくは5〜10μmである。Dvが4μm未満である場合には、重合トナーの流動性が低下し、転写性が悪化したり、画像濃度が低下したりする場合がある。Dvが12μmを超える場合には、画像の解像度が低下する場合がある。   The volume average particle diameter (Dv) of the colored resin particles is preferably 4 to 12 μm, and more preferably 5 to 10 μm. When Dv is less than 4 μm, the fluidity of the polymerized toner is lowered, and transferability may be deteriorated or the image density may be lowered. When Dv exceeds 12 μm, the resolution of the image may decrease.

また、着色樹脂粒子は、その体積平均粒径(Dv)と個数平均粒径(Dn)との比(Dv/Dn)が、好ましくは1.0〜1.3であり、更に好ましくは1.0〜1.2である。Dv/Dnが1.3を超える場合には、転写性、画像濃度及び解像度の低下が起こる場合がある。着色樹脂粒子の体積平均粒径、及び個数平均粒径は、例えば、粒度分析計(ベックマン・コールター製、商品名「マルチサイザー」)等を用いて測定することができる。   The colored resin particles have a ratio (Dv / Dn) of the volume average particle diameter (Dv) to the number average particle diameter (Dn) of preferably 1.0 to 1.3, more preferably 1. 0-1.2. If Dv / Dn exceeds 1.3, transferability, image density, and resolution may decrease. The volume average particle diameter and the number average particle diameter of the colored resin particles can be measured using, for example, a particle size analyzer (trade name “Multisizer” manufactured by Beckman Coulter).

本発明の着色樹脂粒子の平均円形度は、画像再現性の観点から、0.96〜1.00であることが好ましく、0.97〜1.00であることがより好ましく、0.98〜1.00であることがさらに好ましい。
上記着色樹脂粒子の平均円形度が0.96未満の場合、印字の細線再現性が悪くなるおそれがある。
From the viewpoint of image reproducibility, the average circularity of the colored resin particles of the present invention is preferably 0.96 to 1.00, more preferably 0.97 to 1.00, and 0.98 to More preferably, it is 1.00.
When the average circularity of the colored resin particles is less than 0.96, the fine line reproducibility of printing may be deteriorated.

本発明において、円形度は、粒子像と同じ投影面積を有する円の周囲長を、粒子の投影像の周囲長で除した値として定義される。また、本発明における平均円形度は、粒子の形状を定量的に表現する簡便な方法として用いたものであり、着色樹脂粒子の凹凸の度合いを示す指標であり、平均円形度は着色樹脂粒子が完全な球形の場合に1を示し、着色樹脂粒子の表面形状が複雑になるほど小さな値となる。   In the present invention, the circularity is defined as a value obtained by dividing the circumference of a circle having the same projected area as the particle image by the circumference of the projected image of the particle. The average circularity in the present invention is used as a simple method for quantitatively expressing the shape of the particles, and is an index indicating the degree of unevenness of the colored resin particles. The average circularity is determined by the colored resin particles. 1 is shown in the case of a perfect sphere, and the value becomes smaller as the surface shape of the colored resin particles becomes more complicated.

着色樹脂粒子は正帯電性を示すことが好ましい。負帯電性の着色樹脂粒子を使用すると、トナーの帯電量が低下し、かつカブリが発生しやすくなるおそれがある。   The colored resin particles preferably exhibit positive chargeability. If negatively charged colored resin particles are used, the charge amount of the toner may be reduced and fogging may occur easily.

3.コアシェル型複合微粒子の製造方法
本発明に外添剤として使用されるコアシェル型複合微粒子(以下、単に「複合微粒子」と称することがある。)は、コア粒子に樹脂微粒子を用いることで容易に粒径を制御でき、更には後述する好適な方法であるゾルゲル法によって無機酸化物を被覆することにより、焼成なしに調整できることから真比重を低く制御できる。また、コア粒子が樹脂微粒子であることから比較的柔らかく、感光体を傷つけることも軽減される。
3. Production method of core-shell type composite fine particles Core-shell type composite fine particles (hereinafter sometimes simply referred to as “composite fine particles”) used as an external additive in the present invention are easily obtained by using resin fine particles as core particles. The diameter can be controlled, and further, the true specific gravity can be controlled low because it can be adjusted without firing by coating with an inorganic oxide by a sol-gel method which is a preferred method described later. Further, since the core particles are resin fine particles, the core particles are relatively soft and damage to the photoreceptor is reduced.

本発明に使用される、樹脂微粒子の表面にアルミナ、チタニア、及びジルコニアからなる群から選ばれる少なくとも一つの無機成分(以下、無機成分と称する場合がある)が被覆されているコアシェル型複合微粒子は、i)市販のものを用いても、ii)市販されている樹脂微粒子に上記無機成分を被覆させたものを用いても、iii)樹脂微粒子を重合により製造して、それに上記無機成分を被覆させたものを用いても良い。尚、無機成分は、アルミナ、チタニア、及びジルコニアからなる群から選ばれる1つの成分であることが好ましい。
上記ii)の合成方法は、上記iii)の方法において樹脂微粒子を重合反応により合成すること以外は、上記iii)の方法と同様である。したがって、以下、iii)の方法について具体的に説明する。
The core-shell type composite fine particles in which the surface of the resin fine particles used in the present invention is coated with at least one inorganic component selected from the group consisting of alumina, titania and zirconia (hereinafter sometimes referred to as inorganic components) Ii) Whether a commercially available product is used, or ii) a commercially available resin fine particle coated with the above inorganic component, iii) a resin fine particle is produced by polymerization and coated with the above inorganic component You may use what was made to do. The inorganic component is preferably one component selected from the group consisting of alumina, titania, and zirconia.
The synthesis method of ii) is the same as the method of iii) except that the resin fine particles are synthesized by a polymerization reaction in the method of iii). Therefore, the method iii) will be specifically described below.

樹脂微粒子は、重合性単量体をバルク重合により合成したものを粉砕して得ることができるし、重合性単量体を溶液重合により合成し、得られた溶液を重合によって得られた重合体の貧溶媒に添加して得ることもできるし、重合性単量体を乳化重合により重合して得ることもできる。しかしながら、後述する様にコアシェル型複合微粒子の個数平均粒径は30〜300nmが好ましい範囲であり、当該範囲の複合微粒子が得やすいことから、乳化重合で樹脂微粒子を得ることが好ましい。
乳化重合は、従来から公知の乳化重合法が採用できる。乳化重合に際しては、乳化剤、重合開始剤、分子量調整剤等の通常の重合に用いられる重合副資材を使用することができる。
The resin fine particles can be obtained by pulverizing a polymerized monomer synthesized by bulk polymerization, or a polymer obtained by polymerizing a polymerizable monomer by solution polymerization and polymerizing the resulting solution. It can also be obtained by adding to a poor solvent, or it can be obtained by polymerizing a polymerizable monomer by emulsion polymerization. However, as will be described later, the number average particle size of the core-shell type composite fine particles is preferably in the range of 30 to 300 nm. Since composite fine particles in the range are easily obtained, it is preferable to obtain resin fine particles by emulsion polymerization.
For emulsion polymerization, conventionally known emulsion polymerization methods can be employed. In the emulsion polymerization, polymerization auxiliary materials such as emulsifiers, polymerization initiators, molecular weight modifiers and the like used in normal polymerization can be used.

本発明でアルミナ等の無機成分を被覆させる樹脂微粒子に用いられる樹脂としては、下記に例示する重合性単量体を、単独重合、又は共重合した重合体が挙げられる。重合性単量体としては、モノビニル単量体及び架橋性の重合性単量体が挙げられる。モノビニル単量体としては、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、p−フェニルスチレン、p−クロルスチレン等のスチレン及びその誘導体;エチレン、プロピレン、ブチレン、イソブチレン等のエチレン不飽和モノオレフィン類;塩化ビニル、塩化ビリニデン、臭化ビニル、ヨウ化ビニル等のハロゲン化ビニル類;酢酸ビニル、プロピオン酸ビニル、ベンゾエ酸ビニル等のビニルエスエル類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸−n−オクチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル等の(メタ)アクリル酸エステル類;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;アクリロニトリル、メタクリロニトリル、アクリルアミド等のアクリル酸誘導体等を挙げることができる。   Examples of the resin used in the resin fine particles for coating the inorganic component such as alumina in the present invention include polymers obtained by homopolymerizing or copolymerizing the polymerizable monomers exemplified below. Examples of the polymerizable monomer include a monovinyl monomer and a crosslinkable polymerizable monomer. Monovinyl monomers include styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, p-methoxy styrene, p-phenyl styrene, p-chloro styrene, and derivatives thereof; ethylene, propylene, butylene Ethylenically unsaturated monoolefins such as vinyl and isobutylene; vinyl halides such as vinyl chloride, vinylidene chloride, vinyl bromide and vinyl iodide; vinyl esters such as vinyl acetate, vinyl propionate and vinyl benzoate; Methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (meth) acrylic acid-n-octyl, (meth) acrylic acid-2-ethylhexyl, (meth) acrylic acid dimethylaminoethyl, (meth) (Meth) acrylic acid such as diethylaminoethyl acrylate Ester ethers, vinyl methyl ether, vinyl ethyl ether, vinyl ethers such as vinyl isobutyl ether; acrylonitrile, methacrylonitrile, can be mentioned acrylic acid derivatives such as acrylamide.

架橋性の重合性単量体として、例えば、ジビニルベンゼン、ジビニルナフタレン、及びこれらの誘導体等の芳香族ジビニル化合物;エチレングリコールジメタクリレート、及びジエチレングリコールジメタクリレート等の2個以上の水酸基を持つアルコールにカルボン酸が2つ以上エステル結合したエステル化合物;N,N−ジビニルアニリン、及びジビニルエーテル等の、その他のジビニル化合物;等を挙げることができる。   Examples of the crosslinkable polymerizable monomer include aromatic divinyl compounds such as divinylbenzene, divinylnaphthalene, and derivatives thereof; carboxylic acids having two or more hydroxyl groups such as ethylene glycol dimethacrylate and diethylene glycol dimethacrylate. An ester compound in which two or more acids are ester-bonded; Other divinyl compounds such as N, N-divinylaniline and divinyl ether;

これらの単量体は単独で使用することもできるし、2種以上を組み合わせて使用することもできる。中でも、モノビニル単量体と架橋性の重合性単量体を組み合わせて用いることが好ましく、これらを組み合わせることで架橋樹脂微粒子が得られる。モノビニル単量体の中では、スチレン及びその誘導体、(メタ)アクリル酸エステル類がより好ましく、スチレン及びその誘導体が更に好ましく、スチレンが特に好ましい。架橋性の重合性単量体としては、芳香族ジビニル化合物及び2個以上の水酸基を持つアルコールに(メタ)アクリル酸が2つ以上エステル結合したエステル化合物がより好ましく、芳香族ジビニル化合物が更に好ましく、ジビニルベンゼンが特に好ましい。
好ましく用いられるモノビニル単量体と架橋性単量体の割合は、全単量体の内、架橋性単量体の割合が0.1〜20質量%であることが好ましく、0.3〜10質量%であることがより好ましく、0.5〜5質量%であることが更に好ましい。
These monomers can be used alone or in combination of two or more. Among these, it is preferable to use a combination of a monovinyl monomer and a crosslinkable polymerizable monomer. By combining these, crosslinked resin fine particles can be obtained. Among the monovinyl monomers, styrene and its derivatives and (meth) acrylic acid esters are more preferable, styrene and its derivatives are more preferable, and styrene is particularly preferable. As the crosslinkable polymerizable monomer, an aromatic divinyl compound and an ester compound in which two or more (meth) acrylic acids are ester-bonded to an alcohol having two or more hydroxyl groups are more preferable, and an aromatic divinyl compound is more preferable. Divinylbenzene is particularly preferred.
The ratio of the monovinyl monomer and the crosslinkable monomer that is preferably used is such that the ratio of the crosslinkable monomer is 0.1 to 20% by mass of the total monomers, and 0.3 to 10%. It is more preferable that it is mass%, and it is still more preferable that it is 0.5-5 mass%.

ラテックスの乳化重合で使用する乳化剤は特定の乳化剤に限定されない。当該乳化剤の具体例は、アルキルベンゼンスルホン酸塩、脂肪族スルホン酸塩、高級アルコールの硫酸エステル塩等のアニオン系乳化剤;ポリエチレングリコールアルキルエーテル型、ポリエチレングリコールアルキルエステル型、ポリエチレングリコールアルキルフェニルエーテル型等のノニオン系乳化剤;アニオン部分として、カルボン酸塩、硫酸エステル塩、スルホン酸塩、リン酸塩、リン酸エステル塩等を、カチオン部分として、アミン塩、第4級アンモニウム塩等を持つ両性界面活性剤;等である。
乳化剤の使用量は、乳化重合に使用する単量体全量100質量部に対して、通常、0.05〜5質量部、好ましくは0.05〜2質量部である。
The emulsifier used in the emulsion polymerization of latex is not limited to a specific emulsifier. Specific examples of the emulsifier include anionic emulsifiers such as alkyl benzene sulfonates, aliphatic sulfonates, sulfate esters of higher alcohols; polyethylene glycol alkyl ether type, polyethylene glycol alkyl ester type, polyethylene glycol alkyl phenyl ether type, etc. Nonionic emulsifier; amphoteric surfactant having carboxylate, sulfate ester, sulfonate, phosphate, phosphate ester salt, etc. as anion moiety, and amine salt, quaternary ammonium salt, etc. as cation moiety And so on.
The usage-amount of an emulsifier is 0.05-5 mass parts normally with respect to 100 mass parts of monomer whole quantity used for emulsion polymerization, Preferably it is 0.05-2 mass parts.

ラテックスの乳化重合で使用する重合開始剤は特定の重合開始剤に限定されない。当該重合開始剤の具体例は、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;t−ブチルパーオキサイド、クメンハイドロパーオキサイド、p−メンタンハイドロパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、ベンゾイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、t−ブチルパーオキシイソブチレート等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス−2,4−ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル等のアゾ化合物である。好ましい重合開始剤は無機過酸化物である。これらの重合開始剤は、それぞれ単独で、あるいは2種類以上を組み合わせて使用できる。これらの重合開始剤と亜硫酸ナトリウム等の還元剤を組み合わせたレドックス系重合開始剤も使用できる。   The polymerization initiator used in latex emulsion polymerization is not limited to a specific polymerization initiator. Specific examples of the polymerization initiator include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p-menthane hydro Peroxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t- Organic peroxides such as butyl peroxyisobutyrate; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, methyl azobisisobutyrate. A preferred polymerization initiator is an inorganic peroxide. These polymerization initiators can be used alone or in combination of two or more. Redox polymerization initiators in which these polymerization initiators are combined with a reducing agent such as sodium sulfite can also be used.

重合開始剤の使用量は、乳化重合に使用する単量体全量100質量部に対して、通常、0.1〜5質量部であり、好ましくは0.5〜3質量部である。乳化重合を複数段で行う場合、使用する重合開始剤の全量を第1段で添加しても、使用する重合開始剤の一部を第1段で添加し、残部を第2段以降で添加してもよい。各段における重合開始剤の添加方法は、一括添加、連続添加、分割添加のいずれでもよい。   The usage-amount of a polymerization initiator is 0.1-5 mass parts normally with respect to 100 mass parts of monomer whole quantity used for emulsion polymerization, Preferably it is 0.5-3 mass parts. When emulsion polymerization is performed in multiple stages, even if the total amount of polymerization initiator to be used is added in the first stage, a part of the polymerization initiator to be used is added in the first stage, and the remainder is added in the second and subsequent stages. May be. The addition method of the polymerization initiator in each stage may be batch addition, continuous addition, or divided addition.

ラテックスの乳化重合時においては、乳化重合で通常使用される分子量調整剤、分散剤、キレート剤等の副資材を添加し得る。当該副資材の種類、使用量は限定されない。乳化重合を複数段で行う場合、必要に応じて使用する副資材の添加時期及び添加方法も限定されない。
分子量調整剤の具体例は、α−メチルスチレンダイマー;t−ドデシルメルカプタン、n−ドデシルメルカプタン、オクチルメルカプタン等のメルカプタン類;四塩化炭素、塩化メチレン、臭化メチレン等のハロゲン化炭化水素;テトラエチルチウラムダイサルファイド、ジペンタメチレンチウラムダイサルファイド、ジイソプロピルキサントゲンダイサルファイド等の含硫黄化合物である。これらの分子量調整剤を単独で、あるいは2種類以上組み合わせて使用できる。
At the time of emulsion polymerization of latex, auxiliary materials such as a molecular weight regulator, a dispersant, a chelating agent and the like that are usually used in emulsion polymerization can be added. The type and amount of the secondary material are not limited. When the emulsion polymerization is performed in a plurality of stages, the addition timing and addition method of the auxiliary material to be used are not limited as necessary.
Specific examples of the molecular weight modifier include: α-methylstyrene dimer; mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, methylene chloride, methylene bromide; tetraethylthiuram Sulfur-containing compounds such as disulfide, dipentamethylene thiuram disulfide and diisopropylxanthogen disulfide. These molecular weight modifiers can be used alone or in combination of two or more.

ラテックスの乳化重合時の重合温度は特定の範囲に限定されない。当該重合温度は通常5〜95℃であり、好ましくは50〜95℃である。乳化重合を複数段で行う場合、各段の重合温度が異なっていてもよく、各段の乳化重合の最中の重合温度が変化してもよい。   The polymerization temperature during latex emulsion polymerization is not limited to a specific range. The said polymerization temperature is 5-95 degreeC normally, Preferably it is 50-95 degreeC. When emulsion polymerization is performed in a plurality of stages, the polymerization temperature at each stage may be different, or the polymerization temperature during the emulsion polymerization at each stage may be changed.

樹脂微粒子の個数平均粒径は、10〜300nmが好ましく、20〜200nmがより好ましい。これは、後述する複合微粒子の個数平均粒径が、30〜300nmであることが好ましいことによる。   The number average particle diameter of the resin fine particles is preferably 10 to 300 nm, and more preferably 20 to 200 nm. This is because the number average particle diameter of the composite fine particles described later is preferably 30 to 300 nm.

本発明における樹脂微粒子をアルミナ等の無機成分の連続層で覆う好適な方法としては、ゾルゲル法を用いた被覆技術を用いることが挙げられる。以下、ゾルゲル法によるチタニア被覆を例にとり、具体的に説明する。
チタンアルコキサイドを溶解させた水及び/又は水性媒体中に、母体となる樹脂微粒子を分散させた後、この分散溶液を、アルカリを加えてある水及び/又は水性媒体中に滴下するか、若しくは上記分散溶液中に、アルカリを加えてある水及び/又は水性媒体を滴下する。この方法によると、樹脂微粒子が含有されている分散溶液中に溶解していたチタンアルコキサイドが、アルカリの存在下で加水分解及び重縮合を起こし、徐々に不溶化していき、更に、疎水性相互作用から樹脂微粒子の表面に堆積することになる。この結果、樹脂微粒子の表面に、チタニアを含む粒状塊同士が固着されることによって形成される被膜層が形成される。この手法において、チタニアの粒状塊を樹脂微粒子表面に選択的に被膜させるために、チタンアルコキサイドを溶解させた水及び/又は水性媒体中に、母体となる樹脂微粒子を分散させた後、攪拌、必要ならば熱をかけることによって、チタンアルコキサイドが溶解した媒体中に樹脂微粒子を分散させることが好ましい。
As a suitable method for covering the resin fine particles in the present invention with a continuous layer of an inorganic component such as alumina, a coating technique using a sol-gel method may be used. Hereinafter, the titania coating by the sol-gel method will be described as an example.
After dispersing fine resin particles as a base in water and / or an aqueous medium in which titanium alkoxide is dissolved, the dispersion is dropped into water and / or an aqueous medium to which alkali is added, or Or the water and / or aqueous medium which added the alkali are dripped in the said dispersion solution. According to this method, the titanium alkoxide dissolved in the dispersion containing the resin fine particles undergoes hydrolysis and polycondensation in the presence of alkali and gradually insolubilizes. It is deposited on the surface of the resin fine particles due to the interaction. As a result, a coating layer is formed on the surface of the resin fine particles by adhering the granular mass containing titania to each other. In this method, in order to selectively coat the titania granular mass on the surface of the resin fine particles, the resin fine particles as a base material are dispersed in water and / or an aqueous medium in which titanium alkoxide is dissolved, and then stirred. If necessary, it is preferable to disperse resin fine particles in a medium in which titanium alkoxide is dissolved by applying heat.

上記で使用するチタンアルコキサイドとしては、以下のようなものが挙げられる。2官能以上のチタンアルコキサイドとしては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラn−プロポロキシチタン、テトラi−プロポキシチタン、テトラn−ブトキシチタン、テトラi−ブトキシチタン、テトラs−ブトキシチタン、テトラt−ブトキシチタン、テトラn−ペントキシチタン、テトラn−ヘキシロキシチタン等が挙げられる。   Examples of the titanium alkoxide used above include the following. Examples of the bifunctional or higher functional titanium alkoxide include tetramethoxy titanium, tetraethoxy titanium, tetra n-propoxy titanium, tetra i-propoxy titanium, tetra n-butoxy titanium, tetra i-butoxy titanium, tetra s-butoxy. Titanium, tetra-t-butoxy titanium, tetra-n-pentoxy titanium, tetra-n-hexyloxy titanium and the like can be mentioned.

本発明においては、ゾルゲル法によるアルミナ被覆により、好適に樹脂微粒子をアルミナの連続層で覆うこともできる。ゾルゲル法において使用できるアルミニウムアルコキサイドとしては、以下のようなものが挙げられる。2官能以上のアルミニウムアルコキサイドとしては、例えば、トリメトキシアルミニウム、トリエトキシアルミニウム、トリn−プロポキシアルミニウム、トリi−プロポキシアルミニウム、トリn−ブトキシアルミニウム、トリi−ブトキシアルミニウム、トリs−ブトキシアルミニウム、トリt−ブトキシアルミニウム、トリn−ペントキシアルミニウム、トリn−ヘキシロキシアルミニウム等が挙げられる。   In the present invention, resin fine particles can be suitably covered with a continuous layer of alumina by alumina coating by a sol-gel method. Examples of the aluminum alkoxide that can be used in the sol-gel method include the following. Examples of the bifunctional or higher functional aluminum alkoxide include, for example, trimethoxyaluminum, triethoxyaluminum, tri-n-propoxyaluminum, tri-i-propoxyaluminum, tri-n-butoxyaluminum, tri-i-butoxyaluminum, tris-butoxyaluminum. , Tri-t-butoxyaluminum, tri-n-pentoxyaluminum, tri-n-hexyloxyaluminum and the like.

本発明においては、ゾルゲル法によるジルコニア被覆により、好適に樹脂微粒子をジルコニアの連続層で覆うこともできる。ゾルゲル法において使用できるジルコニウムアルコキサイドとしては、以下のようなものが挙げられる。2官能以上のジルコニウムアルコキサイドとしては、例えば、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラn−プロポロキシジルコニウム、テトラn−ブトキシジルコニウム等が挙げられる。   In the present invention, the resin fine particles can be suitably covered with a continuous layer of zirconia by zirconia coating by a sol-gel method. Examples of zirconium alkoxide that can be used in the sol-gel method include the following. Examples of the bifunctional or higher functional zirconium alkoxide include tetramethoxy zirconium, tetraethoxy zirconium, tetra n-propoxy zirconium, tetra n-butoxy zirconium, and the like.

アルミナ、チタニア、及びジルコニアは、それぞれ単独で樹脂微粒子を被覆してもよいし、これらのうち2以上の無機成分の混合物が樹脂微粒子を被覆してもよい。   Alumina, titania, and zirconia may each be coated with resin fine particles, or a mixture of two or more inorganic components may be coated with resin fine particles.

ゾルゲル反応で使用する水性媒体としては、例えば、メタノール、エタノール、イソプロパノールの如きアルコール類が用いられるが、これらの溶媒の有機性が高くなると無機成分のアルコキサイドの重縮合物の溶解性が高まり、樹脂微粒子表面に当該重縮合物が堆積し難くなる。従って、上記の水性媒体としては、メタノールまたはエタノールを用いることが好ましい。   As the aqueous medium used in the sol-gel reaction, for example, alcohols such as methanol, ethanol, and isopropanol are used. When the organic nature of these solvents increases, the solubility of the polycondensate of the alkoxide that is an inorganic component increases, and the resin The polycondensate becomes difficult to deposit on the surface of the fine particles. Therefore, it is preferable to use methanol or ethanol as the aqueous medium.

また、上記の方法で作製したコアシェル型複合微粒子を高温高湿下においても安定した効果をもたせるために、コアシェル型複合微粒子表面の疎水化処理を行うことが好ましい。疎水化処理剤は、正帯電性の処理剤・負帯電性の処理剤のいずれも使用することができる。疎水化処理剤としては、例えば、シランカップリング剤、及びシリコーンオイル等を使用することができる。
上記シランカップリング剤としては、例えば、ヘキサメチルジシラザン等のジシラザン;環状シラザン;トリメチルシラン;トリメチルクロルシラン;ジメチルジクロルシラン、メチルトリクロルシランアリルジメチルクロルシラン、ベンジルジメチルクロルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n−オクタデシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、及びビニルトリアセトキシシラン等のアルキルシラン化合物、並びにγ−アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)3−アミノプロピルトリメトキシシラン、及びN−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン等のアミノシラン化合物;等が挙げられる。これらは、それぞれ単独で、あるいは2種以上組み合わせて用いることができる。
上記シリコーンオイルとしては、例えば、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルポリシロキサン、及びアミノ変性シリコーンオイル等が挙げられる。これらは、それぞれ単独で、あるいは2種以上組み合わせて用いることができる。
疎水化処理剤は、上記のうち、1種あるいは2種以上含有してもよく、シランカップリング剤、またはシリコーンオイルを用いると、得られるトナーは、高画質が得られるものとなるのでより好ましい。
In addition, it is preferable that the surface of the core-shell type composite fine particles is subjected to a hydrophobization treatment so that the core-shell type composite fine particles prepared by the above method have a stable effect even under high temperature and high humidity. As the hydrophobic treatment agent, either a positively chargeable treatment agent or a negatively chargeable treatment agent can be used. As the hydrophobizing agent, for example, a silane coupling agent, silicone oil, or the like can be used.
Examples of the silane coupling agent include disilazane such as hexamethyldisilazane; cyclic silazane; trimethylsilane; trimethylchlorosilane; dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, benzyldimethylchlorosilane, and methyltrimethoxysilane. , Methyltriethoxysilane, isobutyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-octadecyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxy Alkylsilane compounds such as silane, γ-methacryloxypropyltrimethoxysilane, and vinyltriacetoxysilane, and γ- Aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N- (2 -Aminoethyl) 3-aminopropyltrimethoxysilane, and aminosilane compounds such as N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane; These can be used alone or in combination of two or more.
Examples of the silicone oil include dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, and amino-modified silicone oil. These can be used alone or in combination of two or more.
Among the above, the hydrophobizing agent may be contained alone or in combination of two or more, and when a silane coupling agent or silicone oil is used, the resulting toner is more preferable because it provides high image quality. .

本発明において外添剤として用いるコアシェル型複合微粒子を疎水化処理する方法としては、一般的な方法を用いることができ、湿式法、乾式法が挙げられる。
具体的には、外添剤として用いるコアシェル型複合微粒子を高速で攪拌しながら、上記疎水化処理剤を滴下または噴霧する方法に代表される乾式法、及び上記疎水化処理剤を有機溶媒に溶解し、疎水化処理剤を含有する有機溶媒を攪拌しながらコアシェル型複合微粒子を添加する方法に代表される湿式法等が挙げられる。コアシェル型複合微粒子を均一に疎水化処理できることから湿式法が好ましい。
As a method of hydrophobizing the core-shell type composite fine particles used as an external additive in the present invention, a general method can be used, and examples thereof include a wet method and a dry method.
Specifically, the dry method represented by the method of dripping or spraying the hydrophobic treatment agent while stirring the core-shell composite fine particles used as an external additive at high speed, and dissolving the hydrophobic treatment agent in an organic solvent In addition, a wet method represented by a method of adding core-shell type composite fine particles while stirring an organic solvent containing a hydrophobizing agent may be used. The wet method is preferable because the core-shell composite fine particles can be uniformly hydrophobized.

湿式法を用いた場合には、ゾルゲル反応により得られたコアシェル型複合微粒子の反応液を撹拌しながら、疎水化処理剤を含有する有機溶媒を添加することによって得られる反応液をそのまま用いて疎水化処理することもできるし、またその逆に、疎水化処理剤を含有する有機溶媒を攪拌しながら、ゾルゲル反応により得られたコアシェル型複合微粒子の反応液を添加することによって疎水化処理することもできる。
しかし、湿式法においては、ゾルゲル反応により得られたコアシェル型複合微粒子を、洗浄、濾別、乾燥した後に、そのコアシェル型複合微粒子を有機溶媒中に分散させて、疎水化処理剤を接触させる方法が好ましい。この好ましい方法により得られた、有機溶媒中に分散した疎水化されたコアシェル型複合微粒子は、減圧蒸留により有機溶媒を除去した後、乾燥し、必要に応じて解砕して用いる。
When the wet method is used, the reaction liquid obtained by adding an organic solvent containing a hydrophobizing agent is used as it is while stirring the reaction liquid of the core-shell composite fine particles obtained by the sol-gel reaction. Hydrophobic treatment can be performed by adding a reaction solution of core-shell type composite fine particles obtained by sol-gel reaction while stirring an organic solvent containing a hydrophobization treatment agent. You can also.
However, in the wet method, the core-shell type composite fine particles obtained by the sol-gel reaction are washed, filtered, and dried, and then the core-shell type composite fine particles are dispersed in an organic solvent and the hydrophobization treatment agent is contacted. Is preferred. Hydrophobized core-shell composite fine particles dispersed in an organic solvent, obtained by this preferred method, are used after removing the organic solvent by distillation under reduced pressure, drying and crushing as necessary.

4.コアシェル型複合微粒子
上述の製造方法により、コアシェル型複合微粒子が得られる。以下、本発明の外添剤として用いられるコアシェル型複合微粒子について述べる。
4). Core-shell type composite fine particles Core-shell type composite fine particles are obtained by the above-described production method. Hereinafter, the core-shell type composite fine particles used as the external additive of the present invention will be described.

本発明において外添剤として使用されるコアシェル型複合微粒子は、樹脂微粒子の表面が無機成分で被覆されているコアシェル型複合微粒子である。
本発明においては、コアシェル型複合微粒子の全体積を100体積%としたときの、当該複合微粒子の無機成分の体積比率が25〜75体積%であることが好ましい。
当該体積比率が25体積%未満である場合には、金属酸化物量が少なくなるため、低温低湿(L/L)環境下における帯電上昇の抑制効果が発現しないおそれがある。一方、当該体積比率が75体積%を超える場合には、金属酸化物量が多いため、高温高湿(H/H)環境下で帯電が低下しやすくなり、かぶりが悪化してしまうおそれがある。
コアシェル型複合微粒子の全体積を100体積%としたときの、当該複合微粒子の無機成分の体積比率は30〜70体積%であることがより好ましく、50〜70体積%であることが更に好ましい。
The core-shell type composite fine particles used as an external additive in the present invention are core-shell type composite fine particles in which the surface of the resin fine particles is coated with an inorganic component.
In this invention, it is preferable that the volume ratio of the inorganic component of the said composite fine particle is 25-75 volume% when the total volume of a core-shell type composite fine particle is 100 volume%.
When the volume ratio is less than 25% by volume, the amount of metal oxide decreases, and thus there is a possibility that the effect of suppressing the increase in charge in a low-temperature, low-humidity (L / L) environment may not be exhibited. On the other hand, when the volume ratio exceeds 75% by volume, since the amount of metal oxide is large, charging tends to be reduced in a high-temperature and high-humidity (H / H) environment, and fog may be deteriorated.
When the total volume of the core-shell composite fine particles is 100% by volume, the volume ratio of the inorganic component of the composite fine particles is more preferably 30 to 70% by volume, and still more preferably 50 to 70% by volume.

本発明において、コアシェル型複合微粒子の無機成分の体積比率とは、被覆されたアルミナ、チタニア及び/又はジルコニアの体積がコアシェル型複合微粒子全体の体積に占める割合である。当該割合は、すなわち、コアシェル型複合微粒子の全体積に対する、原料である樹脂微粒子の体積からコアシェル型複合微粒子の体積への増加量の割合であり、樹脂微粒子の個数平均粒径及びコアシェル型複合微粒子の個数平均粒径から算出することができる。   In the present invention, the volume ratio of the inorganic component of the core-shell composite fine particles is the ratio of the volume of the coated alumina, titania and / or zirconia to the total volume of the core-shell composite fine particles. The ratio is the ratio of the increase in the volume of the resin fine particles as the raw material to the volume of the core-shell composite fine particles with respect to the total volume of the core-shell composite fine particles, and the number average particle diameter of the resin fine particles and the core-shell composite fine particles It can be calculated from the number average particle diameter of

微粒子がコアシェル型複合微粒子か否か不明の場合に、当該微粒子の無機成分の体積比率を算出する場合には、例えば、以下の方法を採用することができる。
まず、原子吸光分析法等を利用して、当該微粒子がアルミナ、チタニア及び/又はジルコニアを含有しているか否かを確認する。
当該微粒子がアルミナ、チタニア及び/又はジルコニアを含有していることが判明した場合、当該微粒子の個数平均粒径を上記の方法と同様に測定する。続いて、当該微粒子を、フッ化水素酸に投入して、アルミナ、チタニア及び/又はジルコニアを溶解させ、水で洗浄した後に乾燥して、上記と同様にコアである樹脂微粒子の個数平均粒径を測定する。このように測定した無機成分溶解前後の2つの個数平均粒径の値から、当該微粒子の無機成分の体積比率を計算することができる。
When it is unknown whether the fine particles are core-shell type composite fine particles, when calculating the volume ratio of the inorganic component of the fine particles, for example, the following method can be employed.
First, using atomic absorption spectrometry or the like, it is confirmed whether or not the fine particles contain alumina, titania and / or zirconia.
When the fine particles are found to contain alumina, titania and / or zirconia, the number average particle diameter of the fine particles is measured in the same manner as described above. Subsequently, the fine particles are put into hydrofluoric acid to dissolve alumina, titania and / or zirconia, washed with water and then dried, and the number average particle diameter of the resin fine particles as the core is the same as above. Measure. From the two values of the number average particle diameter before and after dissolution of the inorganic component measured in this manner, the volume ratio of the inorganic component of the fine particles can be calculated.

コアシェル型複合微粒子の吸着水分量は、0.5〜2.5質量%であることが好ましい。当該吸着水分量が0.5質量%未満である場合や、当該吸着水分量が2.5質量%を超える場合には、後述するトナーの環境安定性が悪化し、且つ、トナーの高温高湿環境下におけるカブリが悪化するおそれがある。
コアシェル型複合微粒子の吸着水分量は、0.5〜2.0質量%であることがより好ましく、0.8〜1.5質量%であることが更に好ましい。
本発明では、吸着水分量は、水分吸・脱着測定装置(IGAsorp、日本シイベルヘグナー社製)を用いて、サンプルを乾燥窒素気流化に1時間放置し、その後、32℃、湿度80%の空気中で1時間水分を吸着させて、水分を吸着した試料の質量を測定した。測定結果から、(増加した質量/サンプル質量)×100を吸着水分量(質量%)とした。
The amount of adsorbed moisture of the core-shell type composite fine particles is preferably 0.5 to 2.5% by mass. When the amount of adsorbed moisture is less than 0.5% by mass or when the amount of adsorbed moisture exceeds 2.5% by mass, the environmental stability of the toner described later deteriorates and the high-temperature and high-humidity of the toner deteriorates. There is a risk of fogging in the environment.
The adsorbed moisture content of the core-shell composite fine particles is more preferably 0.5 to 2.0% by mass, and still more preferably 0.8 to 1.5% by mass.
In the present invention, the amount of adsorbed moisture is determined by allowing the sample to stand in a dry nitrogen stream for 1 hour using a moisture absorption / desorption measuring device (IGAsorb, manufactured by Nippon Siebel Hegner), and then in air at 32 ° C. and 80% humidity. Then, moisture was adsorbed for 1 hour, and the mass of the sample adsorbed with moisture was measured. From the measurement results, (increased mass / sample mass) × 100 was defined as the amount of adsorbed moisture (mass%).

コアシェル型複合微粒子は正帯電性を示すことが好ましい。負帯電性のコアシェル型複合微粒子を使用すると、トナーの帯電量が低下し、かつカブリが発生しやすくなるおそれがある。
コアシェル型複合微粒子のブローオフ帯電量の絶対値は、200〜2000μC/gであることが好ましい。当該値が200μC/g未満である場合には、トナーの帯電量が低下し、かつカブリが発生しやすくなるおそれがある。一方、当該値が2000μC/gを超える値である場合には、コアシェル型複合微粒子の調製が困難である。
コアシェル型複合微粒子のブローオフ帯電量の絶対値は、300〜1500μC/gであることがより好ましく、400〜1200μC/gであることが更に好ましい。
It is preferable that the core-shell type composite fine particles exhibit positive chargeability. When the negatively chargeable core-shell type composite fine particles are used, there is a possibility that the charge amount of the toner is lowered and fogging is likely to occur.
The absolute value of the blow-off charge amount of the core-shell type composite fine particles is preferably 200 to 2000 μC / g. When the value is less than 200 μC / g, the charge amount of the toner may be reduced and fog may be easily generated. On the other hand, when the value exceeds 2000 μC / g, it is difficult to prepare the core-shell composite fine particles.
The absolute value of the blow-off charge amount of the core-shell type composite fine particles is more preferably 300 to 1500 μC / g, and still more preferably 400 to 1200 μC / g.

コアシェル型複合微粒子の個数平均粒径は、30〜300nmであることが好ましい。当該個数平均粒径が30nm未満である場合には、トナーの帯電量が低下し、かつカブリが発生しやすくなるおそれがある。一方、当該個数平均粒径が300nmを超える場合には、後述するトナーの環境安定性が悪化し、且つ、トナーの高温高湿環境下におけるカブリが悪化するおそれがある。
コアシェル型複合微粒子の個数平均粒径は、40〜250nmであることがより好ましく、50〜200nmであることがさらに好ましい。
The number average particle diameter of the core-shell type composite fine particles is preferably 30 to 300 nm. When the number average particle diameter is less than 30 nm, the charge amount of the toner may be reduced and fog may be easily generated. On the other hand, when the number average particle diameter exceeds 300 nm, the environmental stability of the toner described later may be deteriorated, and the fogging of the toner in a high temperature and high humidity environment may be deteriorated.
The number average particle size of the core-shell type composite fine particles is more preferably 40 to 250 nm, and further preferably 50 to 200 nm.

5.本発明のトナーの製造方法
本発明のトナーは、上記着色樹脂粒子を、上記コアシェル型複合微粒子と共に混合攪拌し、当該コアシェル型複合微粒子を着色樹脂粒子の表面に好適に付着添加(外添)させることにより得られる。
5. Production method of toner of the present invention The toner of the present invention is prepared by mixing and stirring the colored resin particles together with the core-shell composite fine particles, and suitably attaching and externally adding the core-shell composite fine particles to the surface of the colored resin particles. Can be obtained.

コアシェル型複合微粒子の添加量は、着色樹脂粒子100質量部に対して0.1〜2.0質量部であることが好ましい。コアシェル型複合微粒子の添加量が、着色樹脂粒子100質量部に対して0.1質量部未満である場合には、本発明の効果が十分に発揮されない。一方、コアシェル型複合微粒子の添加量が、着色樹脂粒子100質量部に対して2.0質量部を超える場合には、トナーの帯電量が低下するおそれがある。
コアシェル型複合微粒子の添加量は、着色樹脂粒子100質量部に対して0.15〜1.0質量部が好ましく、0.2〜0.8質量部がより好ましい。
The addition amount of the core-shell type composite fine particles is preferably 0.1 to 2.0 parts by mass with respect to 100 parts by mass of the colored resin particles. When the addition amount of the core-shell type composite fine particles is less than 0.1 parts by mass with respect to 100 parts by mass of the colored resin particles, the effect of the present invention is not sufficiently exhibited. On the other hand, when the addition amount of the core-shell type composite fine particles exceeds 2.0 parts by mass with respect to 100 parts by mass of the colored resin particles, the charge amount of the toner may be lowered.
The addition amount of the core-shell type composite fine particles is preferably 0.15 to 1.0 part by mass, more preferably 0.2 to 0.8 part by mass with respect to 100 parts by mass of the colored resin particles.

コアシェル型複合微粒子を、着色樹脂粒子の表面に付着添加(外添)する方法は特に限定されないが、例えば高速攪拌機として、FMミキサー(:商品名、三井鉱山社製)、スーパーミキサー(:商品名、川田製作所社製)、Qミキサー(:商品名、三井鉱山社製)、メカノフージョンシステム(:商品名、ホソカワミクロン社製)、及びメカノミル(:商品名、岡田精工社製)等の、混合攪拌が可能な装置を用いて行うことができる。   The method for adhering and adding (external addition) the core-shell type composite fine particles to the surface of the colored resin particles is not particularly limited. , Kawada Seisakusho Co., Ltd.), Q mixer (: trade name, manufactured by Mitsui Mining Co., Ltd.), Mechano Fusion System (: trade name, manufactured by Hosokawa Micron Corporation), and Mechano Mill (: trade name, manufactured by Okada Seiko Co., Ltd.) Can be performed using an apparatus capable of.

コアシェル型複合微粒子と共に、他の外添剤を混合して用いてもよい。
当該他の外添剤としては、シリカ、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、炭酸カルシウム、燐酸カルシウム、及び/又は酸化セリウム等からなる無機微粒子;ポリメタクリル酸メチル樹脂、シリコーン樹脂、及び/又はメラミン樹脂等からなる有機微粒子;等が挙げられる。これらの中でも、無機微粒子が好ましく、無機微粒子の中でも、シリカ、及び/又は酸化チタンが好ましく、特にシリカからなる微粒子が好適である。
なお、コアシェル型複合微粒子と併用する当該他の外添剤は、1種類のみでもよいし、2種類以上でもよい。
他の外添剤の添加量は、0.1〜6質量部が好ましく、0.3〜5重量部がより好ましく、0.5〜4重量部が更に好ましい。
Other external additives may be mixed with the core-shell type composite fine particles.
Examples of the other external additives include inorganic fine particles made of silica, titanium oxide, aluminum oxide, zinc oxide, tin oxide, calcium carbonate, calcium phosphate, and / or cerium oxide; polymethyl methacrylate resin, silicone resin, and And / or organic fine particles comprising melamine resin and the like. Among these, inorganic fine particles are preferable, and among inorganic fine particles, silica and / or titanium oxide are preferable, and fine particles made of silica are particularly preferable.
In addition, the said other external additive used together with a core-shell type composite microparticle may be only one type, and may be two or more types.
0.1-6 mass parts is preferable, as for the addition amount of another external additive, 0.3-5 weight part is more preferable, 0.5-4 weight part is still more preferable.

コアシェル型複合微粒子と他の外添剤を併用する場合には、当該他の外添剤の個数平均粒径は、7〜300nmであるのが好ましい。当該他の外添剤の個数平均粒径が、7nm未満である場合には、着色樹脂粒子の表面から内部に、当該他の外添剤が埋没し易くなり、流動性をトナー粒子に十分に付与させることができず、印字性能に悪影響を及ぼす場合がある。一方、当該他の外添剤の個数平均粒径が、300nmを超える場合には、トナー粒子の表面に対して、当該他の外添剤が占める割合(被覆率)が低下するため、流動性をトナー粒子に十分に付与させることができず、印字性能に悪影響を及ぼす場合がある。
なお、当該他の外添剤の個数平均粒径は、15〜80nmであるのがより好ましい。
When the core-shell type composite fine particles are used in combination with another external additive, the number average particle diameter of the other external additive is preferably 7 to 300 nm. When the number average particle diameter of the other external additive is less than 7 nm, the other external additive is easily embedded from the surface of the colored resin particles to the inside, and the fluidity is sufficiently sufficient for the toner particles. In some cases, it cannot be applied, and the printing performance may be adversely affected. On the other hand, when the number average particle diameter of the other external additive exceeds 300 nm, the ratio (coverage) of the other external additive to the surface of the toner particles decreases, so that the fluidity May not be sufficiently imparted to the toner particles, which may adversely affect printing performance.
The number average particle diameter of the other external additive is more preferably 15 to 80 nm.

6.本発明のトナー
上記工程を経て得られる本発明のトナーは、外添剤として樹脂微粒子の表面に、アルミナ、チタニア及び/又はジルコニアが被覆されているコアシェル型複合微粒子を使用することにより、低温低湿環境下におけるトナー帯電量の上昇が抑制され、同環境下においても細線再現性が損なわれることなく安定した印字が行え、且つ、帯電量の上昇により発生する印字不具合などがなく、良好な画質が得られる静電荷像現像用トナーである。
6). Toner of the present invention The toner of the present invention obtained through the above-described steps is obtained by using core-shell type composite particles in which the surface of resin particles is coated with alumina, titania and / or zirconia as an external additive. The increase in toner charge amount under the environment is suppressed, stable printing can be performed without impairing fine line reproducibility under the same environment, and there are no printing defects caused by the increase in charge amount, resulting in good image quality. This is a toner for developing an electrostatic image.

以下に、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。なお、部及び%は、特に断りのない限り質量基準である。
本実施例及び比較例において行った試験方法は以下のとおりである。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited only to these examples. Parts and% are based on mass unless otherwise specified.
The test methods performed in the examples and comparative examples are as follows.

1.コアシェル型複合微粒子の製造
[製造例1]
窒素置換した攪拌機付きの容器に、ソフト型ドデシルベンゼンスルホン酸3部をイオン交換水150部に溶解させ、次いでスチレン95部を乳化させて重合性単量体エマルションを作製した。エマルションの温度を80℃に昇温した後、10部のイオン交換水に溶解した過硫酸カリウム0.6部を加え2時間重合させた。続いて反応機の温度を40℃まで低下させたのちジビニルベンゼンを5部加えて2時間攪拌を行った後、温度を85℃に昇温して水2部に溶解した過硫酸カリウム0.1部を加えて4時間重合反応を実施し、反応停止剤としてハイドロキノン水溶液を添加して重合を終了した。この時の重合転化率は99%であった。限外ろ過によって水溶性物質を除去した。エマルションのpH及び濃度を調整して、固形分濃度が50%、pHが8.5の樹脂微粒子エマルションを得た。このエマルションの一部を乾燥させて、後述する樹脂微粒子の個数平均粒径の測定に供した。樹脂微粒子の個数平均粒径は80nmであった。
1. Production of core-shell composite fine particles [Production Example 1]
In a container equipped with a stirrer substituted with nitrogen, 3 parts of soft dodecylbenzenesulfonic acid was dissolved in 150 parts of ion-exchanged water, and then 95 parts of styrene was emulsified to prepare a polymerizable monomer emulsion. After raising the temperature of the emulsion to 80 ° C., 0.6 part of potassium persulfate dissolved in 10 parts of ion exchange water was added and polymerized for 2 hours. Subsequently, after the reactor temperature was lowered to 40 ° C., 5 parts of divinylbenzene was added and stirred for 2 hours, and then the temperature was raised to 85 ° C. and potassium persulfate dissolved in 2 parts of water 0.1 The polymerization reaction was carried out for 4 hours by adding a portion, and an aqueous hydroquinone solution was added as a reaction terminator to complete the polymerization. The polymerization conversion rate at this time was 99%. Water soluble material was removed by ultrafiltration. By adjusting the pH and concentration of the emulsion, a resin fine particle emulsion having a solid content concentration of 50% and a pH of 8.5 was obtained. A part of this emulsion was dried and subjected to measurement of the number average particle diameter of resin fine particles described later. The number average particle diameter of the resin fine particles was 80 nm.

得られたエマルション200部(固形分換算100部)をメタノール10,000部に添加した後、チタン化合物として、テトラエトキシチタン750部を溶解した。この状態で50℃に加熱し、1時間攪拌させ樹脂微粒子をチタンアルコキサイドが溶解している媒体中に分散させた。次いで、この溶液に、28質量%のNHOH水溶液20部を滴下しながら加え、室温にて48時間攪拌することによって、ゾルゲル反応を行って、樹脂微粒子の表面をチタニアによって被覆した。 After adding 200 parts (100 parts of solid content conversion) of the obtained emulsion to 10,000 parts of methanol, 750 parts of tetraethoxytitanium was dissolved as a titanium compound. In this state, the mixture was heated to 50 ° C. and stirred for 1 hour to disperse the resin fine particles in a medium in which titanium alkoxide was dissolved. Next, 20 parts of a 28% by mass NH 4 OH aqueous solution was added dropwise to this solution, and the mixture was stirred at room temperature for 48 hours to carry out a sol-gel reaction, thereby coating the surface of the resin fine particles with titania.

反応終了後に、得られた微粒子をイオン交換水で洗浄し、次いでメタノールで洗浄し、微粒子を濾別した後、45℃で24時間、40kPaの減圧下で乾燥することにより、樹脂微粒子の表面がチタニアにより被覆されたコアシェル型複合微粒子1が得られた。コアシェル型複合微粒子1の一部を、後述するコアシェル型複合微粒子の個数平均粒径の測定に供した。   After completion of the reaction, the obtained fine particles were washed with ion-exchanged water, then washed with methanol, the fine particles were filtered off, and then dried at 45 ° C. for 24 hours under a reduced pressure of 40 kPa. Core-shell composite fine particles 1 coated with titania were obtained. A part of the core-shell type composite fine particles 1 was subjected to measurement of the number average particle size of the core-shell type composite fine particles described later.

このコアシェル型複合微粒子1 100gをトルエン600gに分散し、当該微粒子1の100部に対し、3−アミノプロピルトリエトキシシラン(アミノ基を含有するケイ素化合物)を1部添加した後、15分間分散混合して微粒子と接触させた。次いで、該微粒子に対し、ヘキサメチルジシラザン(アミノ基を含有しないケイ素化合物)を1部添加した後、15分間分散混合して微粒子と接触させた。その分散液を減圧蒸留、乾燥した後、微粒子を解砕して、正帯電性に疎水化されたコアシェル型複合微粒子Aを得た。疎水化処理による粒径の変化はなかった。   100 g of the core-shell type composite fine particles 1 are dispersed in 600 g of toluene, and 1 part of 3-aminopropyltriethoxysilane (a silicon compound containing an amino group) is added to 100 parts of the fine particles 1, and then dispersed and mixed for 15 minutes. And contacted with the fine particles. Next, 1 part of hexamethyldisilazane (a silicon compound containing no amino group) was added to the fine particles, and then dispersed and mixed for 15 minutes to contact the fine particles. The dispersion was distilled under reduced pressure and dried, and then the fine particles were crushed to obtain core-shell type composite fine particles A that were hydrophobized to be positively charged. There was no change in particle size due to the hydrophobization treatment.

[製造例2]
上記製造例1において、ソフト型ドデシルベンゼンスルホン酸の添加量を3部から8部に変更して重合した結果、個数平均粒径が50nmの樹脂粒子エマルションを得たこと、及びコアシェル型複合微粒子を製造するときに、テトラエトシキチタンの添加量を750部から900部に変更したこと以外は、上記製造例1と同様にしてコアシェル型複合微粒子Bを製造した。
[Production Example 2]
In the production example 1, the amount of soft dodecylbenzenesulfonic acid added was changed from 3 parts to 8 parts, and as a result of polymerization, a resin particle emulsion having a number average particle diameter of 50 nm was obtained, and the core-shell type composite fine particles were Core-shell composite fine particles B were produced in the same manner as in Production Example 1 except that the amount of tetraethoxy titanium added was changed from 750 parts to 900 parts at the time of production.

[製造例3]
上記製造例1において、ゾルゲル反応の時間を48時間から72時間に変更した以外は上記製造例1と同様にしてコアシェル型複合微粒子Cを製造した。
[Production Example 3]
Core-shell composite fine particles C were produced in the same manner as in Production Example 1 except that the sol-gel reaction time was changed from 48 hours to 72 hours in Production Example 1.

[製造例4]
上記製造例1において、最初の重合で用いる重合性単量体を、スチレン95部及びジビニルベンゼン5部から、スチレン100部に変更し、後に添加するジビニルベンゼン5部を用いなかったこと以外は、上記製造例1と同様にしてコアシェル型複合微粒子Dを製造した。
[Production Example 4]
In the above Production Example 1, the polymerizable monomer used in the first polymerization was changed from 95 parts of styrene and 5 parts of divinylbenzene to 100 parts of styrene, except that 5 parts of divinylbenzene added later was not used. Core-shell composite fine particles D were produced in the same manner as in Production Example 1 above.

[製造例5]
上記製造例1において、コアシェル型複合微粒子を製造するときに、テトラエトキシチタン750部をトリエトキシアルミニウム750部に変更した以外は、上記製造例1と同様にしてコアシェル型複合微粒子Eを製造した。
[Production Example 5]
In production example 1, core-shell composite fine particles E were produced in the same manner as in production example 1 except that 750 parts of tetraethoxytitanium were changed to 750 parts of triethoxyaluminum when producing the core-shell composite fine particles.

[製造例6]
上記製造例1において、ソフト型ドデシルベンゼンスルホン酸の添加量を3部から0.8部に変更して重合した結果、個数平均粒径が150nmの樹脂粒子エマルションを得たこと、及びコアシェル型複合微粒子を製造するときに、テトラエトキシチタン750部をトリエトキシアルミニウム620部に変更したこと以外は、上記製造例1と同様にしてコアシェル型複合微粒子Fを製造した。
[Production Example 6]
In the production example 1, as a result of polymerization by changing the addition amount of soft-type dodecylbenzenesulfonic acid from 3 parts to 0.8 parts, a resin particle emulsion having a number average particle size of 150 nm was obtained, and the core-shell type composite Core-shell composite fine particles F were produced in the same manner as in Production Example 1 except that 750 parts of tetraethoxytitanium were changed to 620 parts of triethoxyaluminum when producing the fine particles.

2.複合微粒子等の物性評価
上記製造例1〜6から得られたコアシェル型複合微粒子A〜Fについて、個数平均粒径及び吸着水分量の測定を行った。なお、当該コアシェル型複合微粒子A〜Fの原料である樹脂微粒子の個数平均粒径も測定し、コアシェル型複合微粒子の無機成分の比率を算出した。
2. Evaluation of physical properties of composite fine particles The core-shell composite fine particles A to F obtained from the above Production Examples 1 to 6 were measured for number average particle diameter and adsorbed water content. In addition, the number average particle diameter of the resin fine particles as the raw material of the core-shell type composite fine particles A to F was also measured, and the ratio of the inorganic components of the core-shell type fine composite particles was calculated.

2−1.コアシェル型複合微粒子、及び原料である樹脂微粒子の個数平均粒径の測定
コアシェル型複合微粒子、及び原料である樹脂微粒子の個数平均粒径は、以下のような方法で測定した。すなわち、これらの各微粒子について、電界放出形走査型電子顕微鏡(日立製作所製、S−4500形)を用いて観察を行った。累積300個以上になるように粒子径を測定し、個数平均粒径を算出した。
2-1. Measurement of the number average particle size of the core-shell type composite fine particles and the resin fine particles as the raw material The number average particle size of the core shell type composite fine particles and the fine resin particles as the raw material were measured by the following method. That is, these fine particles were observed using a field emission scanning electron microscope (manufactured by Hitachi, Ltd., model S-4500). The particle diameter was measured so that the cumulative number was 300 or more, and the number average particle diameter was calculated.

2−2.コアシェル型複合微粒子の無機成分の比率の算出
コアシェル型複合微粒子A〜Fについて、被覆された無機成分の体積がコアシェル型複合微粒子全体の体積に占める割合を、下記式に基づき算出した。
[無機成分の比率]=[{(4/3)π(r/2)−(4/3)π(r/2)}/{(4/3)π(r/2)}]×100={(r −r )/(r )}×100
(上記式中、rはコアとなる樹脂微粒子の個数平均粒径、rはコアシェル型複合微粒子の個数平均粒径である。)
2-2. Calculation of ratio of inorganic component of core-shell type composite fine particles For core-shell type composite fine particles A to F, the ratio of the volume of the coated inorganic component to the total volume of the core-shell type composite fine particles was calculated based on the following formula.
[Ratio of the inorganic component] = [{(4/3) π (r 2/2) 3 - (4/3) π (r 1/2) 3} / {(4/3) π (r 2/2 ) 3 }] × 100 = {(r 2 3 −r 1 3 ) / (r 2 3 )} × 100
(In the above formula, r 1 is the number average particle diameter of the resin fine particles as the core, and r 2 is the number average particle diameter of the core-shell composite fine particles.)

2−3.コアシェル型複合微粒子の吸着水分量の測定
吸着水分量の測定には、水分吸・脱着測定装置(IGAsorp、日本シイベルヘグナー社製)を用いた。装置内にサンプルを乾燥窒素気流化に1時間放置し、その後、32℃、湿度80%の空気中で1時間水分を吸着させて、水分を吸着した試料の質量を測定した。測定結果から、(増加した質量/サンプル質量)×100を吸着水分量(質量%)とした。
2-3. Measurement of Adsorbed Moisture Content of Core-Shell Type Composite Fine Particles A moisture absorption / desorption measuring device (IGAsorp, manufactured by Sybel Hegner, Japan) was used for measuring the adsorbed water content. The sample was left in the apparatus in a dry nitrogen stream for 1 hour, and then moisture was adsorbed in air at 32 ° C. and 80% humidity for 1 hour, and the mass of the sample adsorbed with moisture was measured. From the measurement results, (increased mass / sample mass) × 100 was defined as the amount of adsorbed moisture (mass%).

コアシェル型複合微粒子A〜Fについて、吸着水分量の測定結果を、各粒子の構造データと併せて表1に示す。   For the core-shell type composite fine particles A to F, the measurement result of the adsorbed water content is shown in Table 1 together with the structure data of each particle.

Figure 0005381949
Figure 0005381949

3.着色樹脂粒子の製造及び物性評価
3−1.コア用重合性単量体組成物の調製
モノビニル単量体としてスチレン83部及びn−ブチルアクリレート17部(得られる共重合体の計算Tg=60℃)、ブラック着色剤としてカーボンブラック(三菱化学社製、商品名:#25B)7部、帯電制御剤として正帯電性の帯電制御樹脂(藤倉化成社製、商品名:FCA−207P、スチレン/アクリル樹脂)1部、架橋性の重合性単量体としてジビニルベンゼン0.6部、分子量調整剤としてt−ドデシルメルカプタン1.9部、及びマクロモノマーとしてポリメタクリル酸エステルマクロモノマー(東亜合成社製、商品名:AA6、得られる重合体のTg=94℃)0.25部を、攪拌装置で攪拌、混合した後、さらにメディア式分散機を用いて均一に分散させた。ここに、離型剤としてジペンタエリスリトールヘキサミリステート5部を添加、混合、溶解して、重合性単量体組成物を得た。
3. 3. Production of colored resin particles and evaluation of physical properties 3-1. Preparation of polymerizable monomer composition for core 83 parts of styrene and 17 parts of n-butyl acrylate as monovinyl monomer (calculation of the resulting copolymer Tg = 60 ° C.), carbon black as a black colorant (Mitsubishi Chemical Corporation) Manufactured, trade name: # 25B) 7 parts, positive charge control resin (manufactured by Fujikura Kasei Co., Ltd., trade name: FCA-207P, styrene / acrylic resin) as charge control agent, 1 part of crosslinkable polymerizable monomer 0.6 parts of divinylbenzene as a body, 1.9 parts of t-dodecyl mercaptan as a molecular weight regulator, and polymethacrylate macromonomer (manufactured by Toa Gosei Co., Ltd., trade name: AA6, Tg of the resulting polymer) After stirring and mixing with a stirrer, 0.25 part (94 ° C.) was further uniformly dispersed using a media-type disperser. Here, 5 parts of dipentaerythritol hexamyristate was added, mixed and dissolved as a release agent to obtain a polymerizable monomer composition.

3−2.水系分散媒体の調製
他方、室温下で、イオン交換水250部に塩化マグネシウム(水溶性多価金属塩)10.2部を溶解した水溶液に、イオン交換水50部に水酸化ナトリウム(水酸化アルカリ金属)6.2部を溶解した水溶液を、攪拌下で徐々に添加して、水酸化マグネシウムコロイド(難水溶性の金属水酸化物コロイド)分散液を調製した。
3-2. Preparation of Aqueous Dispersion Medium On the other hand, at room temperature, in an aqueous solution in which 10.2 parts of magnesium chloride (water-soluble polyvalent metal salt) is dissolved in 250 parts of ion-exchanged water, sodium hydroxide (alkali hydroxide) is added to 50 parts of ion-exchanged water. An aqueous solution in which 6.2 parts of the metal was dissolved was gradually added under stirring to prepare a magnesium hydroxide colloid (slightly water-soluble metal hydroxide colloid) dispersion.

3−3.造粒工程
上記水酸化マグネシウムコロイド分散液に、室温下で、上記重合性単量体組成物を投入し、攪拌した。そこへ重合開始剤としてt−ブチルパーオキシ−2−エチルヘキサノエート(日本油脂社製、商品名:パーブチルO)6部を添加した後、インライン型乳化分散機(荏原製作所社製、商品名:エバラマイルダー)を用いて、15,000rpmの回転数で10分間高速剪断攪拌して分散を行い、重合性単量体組成物の液滴形成を行った。
3-3. Granulation step The polymerizable monomer composition was charged into the magnesium hydroxide colloid dispersion at room temperature and stirred. After adding 6 parts of t-butyl peroxy-2-ethylhexanoate (Nippon Yushi Co., Ltd., trade name: Perbutyl O) as a polymerization initiator, an in-line type emulsifier / disperser (trade name, manufactured by Ebara Corporation) is added. : Ebara Milder) was dispersed by high-speed shearing and stirring at a rotational speed of 15,000 rpm for 10 minutes to form droplets of the polymerizable monomer composition.

3−4.懸濁重合工程
上記重合性単量体組成物の液滴が分散した懸濁液(重合性単量体組成物分散液)を、攪拌翼を装着した反応器内に投入し、90℃に昇温し、重合反応を開始させた。重合転化率が、ほぼ100%に達したときに、シェル用重合性単量体としてメチルメタクリレート1部、及びイオン交換水10部に溶解したシェル用重合開始剤である2,2’−アゾビス(2−メチル−N−(2−ヒドロキシエチル)−プロピオンアミド)(和光純薬社製、商品名:VA−086、水溶性)0.3部を添加し、90℃で4時間反応を継続した後、水冷して反応を停止し、コアシェル型構造を有する着色樹脂粒子の水分散液を得た。
3-4. Suspension polymerization step A suspension (polymerizable monomer composition dispersion) in which droplets of the above polymerizable monomer composition are dispersed is charged into a reactor equipped with a stirring blade and heated to 90 ° C. Warm to initiate the polymerization reaction. When the polymerization conversion reached almost 100%, 2,2′-azobis (shell polymerization initiator dissolved in 1 part of methyl methacrylate and 10 parts of ion-exchanged water as shell polymerizable monomer) 0.3 part of 2-methyl-N- (2-hydroxyethyl) -propionamide) (manufactured by Wako Pure Chemical Industries, Ltd., trade name: VA-086, water-soluble) was added, and the reaction was continued at 90 ° C. for 4 hours. Thereafter, the reaction was stopped by cooling with water to obtain an aqueous dispersion of colored resin particles having a core-shell structure.

3−5.後処理工程
上記着色樹脂粒子の水分散液を、室温下で、硫酸を攪拌しながら滴下し、pHが6.5以下となるまで酸洗浄を行った。次いで、濾過分離を行い、得られた固形分にイオン交換水500部を加えて再スラリー化させて、水洗浄処理(洗浄・濾過・脱水)を数回繰り返し行った。次いで、濾過分離を行い、得られた固形分を乾燥機の容器内に入れ、45℃で48時間乾燥を行い、乾燥した着色樹脂粒子を得た。
3-5. Post-treatment step The aqueous dispersion of the colored resin particles was added dropwise with stirring sulfuric acid at room temperature, and acid washing was performed until the pH was 6.5 or less. Subsequently, filtration separation was performed, 500 parts of ion-exchanged water was added to the obtained solid content to make a slurry again, and water washing treatment (washing, filtration, dehydration) was repeated several times. Next, filtration separation was performed, and the obtained solid content was put in a container of a dryer and dried at 45 ° C. for 48 hours to obtain dried colored resin particles.

得られた着色樹脂粒子について、体積平均粒径(Dv)の測定及び粒径分布(Dv/Dn)の算出を行った。
測定試料(着色樹脂粒子)を約0.1g秤量し、ビーカーに取り、分散剤としてアルキルベンゼンスルホン酸水溶液(富士フイルム社製、商品名:ドライウエル)0.1mLを加えた。そのビーカーへ、更にアイソトンIIを10〜30mL加え、20Wの超音波分散機で3分間分散させた後、粒径測定機(ベックマン・コールター社製、商品名:マルチサイザー)を用いて、アパーチャー径;100μm、測定粒子個数;100,000個の条件下で、着色樹脂粒子の体積平均粒径(Dv)、及び個数平均粒径(Dn)を測定し、粒径分布(Dv/Dn)を算出した。その結果、得られた着色樹脂粒子の体積平均粒径(Dv)は9.7μm、粒径分布(Dv/Dn)は1.14であった。
The obtained colored resin particles were measured for volume average particle diameter (Dv) and particle diameter distribution (Dv / Dn).
About 0.1 g of a measurement sample (colored resin particles) was weighed and taken in a beaker, and 0.1 mL of an alkylbenzenesulfonic acid aqueous solution (trade name: Drywell, manufactured by Fuji Film Co., Ltd.) was added as a dispersant. Add 10-30 mL of Isoton II to the beaker and disperse with a 20 W ultrasonic disperser for 3 minutes. Then, use a particle size analyzer (trade name: Multisizer, manufactured by Beckman Coulter, Inc.) to determine the aperture diameter. Measuring the volume average particle diameter (Dv) and the number average particle diameter (Dn) of the colored resin particles under the condition of 100 μm, the number of measured particles; 100,000, and calculating the particle diameter distribution (Dv / Dn) did. As a result, the obtained colored resin particles had a volume average particle diameter (Dv) of 9.7 μm and a particle diameter distribution (Dv / Dn) of 1.14.

得られた着色樹脂粒子について、平均円形度の算出を行った。
まず、容器中に、予めイオン交換水10mLを入れ、その中に分散剤としてアルキルベンゼンスルホン酸水溶液(富士フイルム社製、商品名:ドライウエル)0.2mLを加え、更に着色樹脂粒子0.2gを加え、超音波分散機で60W(Watt)、3分間分散処理を行った。測定時の着色樹脂粒子濃度が3,000〜10,000個/μLとなるように調整し、0.4μm以上の円相当径の着色樹脂粒子1,000〜10,000個についてフロー式粒子像分析装置(シメックス社製、商品名:FPIA−2100)を用いて測定した。測定値から平均円形度を求めたところ、得られた着色樹脂粒子の平均円形度は0.987であった。
The average circularity of the obtained colored resin particles was calculated.
First, 10 mL of ion-exchanged water is put in a container in advance, and 0.2 mL of an alkylbenzene sulfonic acid aqueous solution (manufactured by Fujifilm, trade name: Drywell) is added as a dispersant therein, and 0.2 g of colored resin particles are further added. In addition, 60 W (Watt) was applied for 3 minutes with an ultrasonic disperser. The concentration of the colored resin particles at the time of measurement is adjusted to 3,000 to 10,000 particles / μL, and 1,000 to 10,000 colored resin particles having an equivalent circle diameter of 0.4 μm or more are flow-type particle images. Measurement was performed using an analyzer (trade name: FPIA-2100, manufactured by Simex Corporation). When the average circularity was determined from the measured value, the average circularity of the obtained colored resin particles was 0.987.

4.静電荷像現像用トナーの製造
上記「1.コアシェル型複合微粒子の製造」の項で説明したコアシェル型複合微粒子、及び、上記「3.着色樹脂粒子の製造及び物性評価」の項で説明した着色樹脂粒子を使用して、静電荷像現像用トナーを製造した。
4). Manufacture of toner for developing electrostatic image The core-shell type composite fine particles explained in the above section “1. Production of core-shell type composite fine particles” and the coloration explained in the above-mentioned section “3. Production and evaluation of physical properties of colored resin particles” A toner for developing an electrostatic charge image was produced using the resin particles.

[実施例1]
上記着色樹脂粒子100部に、上記製造例1で製造したコアシェル型複合微粒子Aを0.5部、TG−7120(キャボットコーポレーション社製)を0.8部、NA50Y(日本アエロジル製)を1.0部添加し、FMミキサー(日本コークス株式会社製 商品名:FM−10)を用いて混合攪拌を行い、外添処理を行い、実施例1の静電荷像現像用トナーを得た。このときの攪拌羽根の周速は40m/sであり、攪拌時間は5分間とした。
[Example 1]
To 100 parts of the colored resin particles, 0.5 part of the core-shell type composite fine particles A produced in Production Example 1 above, 0.8 part of TG-7120 (manufactured by Cabot Corporation), and NA50Y (manufactured by Nippon Aerosil Co., Ltd.) 0 parts were added, and the mixture was stirred using an FM mixer (trade name: FM-10, manufactured by Nippon Coke Co., Ltd.) and subjected to external addition treatment, whereby the electrostatic charge image developing toner of Example 1 was obtained. The peripheral speed of the stirring blade at this time was 40 m / s, and the stirring time was 5 minutes.

[実施例2]
上記製造例1で製造したコアシェル型複合微粒子Aを、上記製造例2で製造したコアシェル型複合微粒子Bに変更したこと以外は、実施例1と同様にして実施例2の静電荷像現像用トナーを得た。
[Example 2]
The electrostatic charge image developing toner of Example 2 in the same manner as in Example 1 except that the core-shell type composite fine particles A produced in Production Example 1 were changed to the core-shell type composite fine particles B produced in Production Example 2 above. Got.

[実施例3]
上記製造例1で製造したコアシェル型複合微粒子Aを、上記製造例3で製造したコアシェル型複合微粒子Cに変更したこと以外は、実施例1と同様にして実施例3の静電荷像現像用トナーを得た。
[Example 3]
The electrostatic charge image developing toner of Example 3 in the same manner as in Example 1 except that the core-shell type composite fine particles A produced in Production Example 1 were changed to the core-shell type composite fine particles C produced in Production Example 3 above. Got.

[実施例4]
上記製造例1で製造したコアシェル型複合微粒子Aを、上記製造例4で製造したコアシェル型複合微粒子Dに変更したこと以外は、実施例1と同様にして実施例4の静電荷像現像用トナーを得た。
[Example 4]
The electrostatic charge image developing toner of Example 4 in the same manner as in Example 1 except that the core-shell type composite fine particles A produced in Production Example 1 were changed to the core-shell type composite fine particles D produced in Production Example 4 above. Got.

[実施例5]
上記製造例1で製造したコアシェル型複合微粒子Aを、上記製造例5で製造したコアシェル型複合微粒子Eに変更したこと以外は、実施例1と同様にして実施例5の静電荷像現像用トナーを得た。
[Example 5]
The electrostatic charge image developing toner of Example 5 in the same manner as in Example 1 except that the core-shell type composite fine particles A produced in Production Example 1 were changed to the core-shell type composite fine particles E produced in Production Example 5 above. Got.

[実施例6]
上記製造例1で製造したコアシェル型複合微粒子Aを、上記製造例6で製造したコアシェル型複合微粒子Fに変更したこと以外は、実施例1と同様にして実施例6の静電荷像現像用トナーを得た。
[Example 6]
The electrostatic charge image developing toner of Example 6 in the same manner as in Example 1 except that the core-shell type composite fine particles A produced in Production Example 1 were changed to the core-shell type composite fine particles F produced in Production Example 6 above. Got.

[比較例1]
上記製造例1で製造したコアシェル型複合微粒子Aを使用しなかったこと以外は、実施例1と同様にして比較例1の静電荷像現像用トナーを得た。
[Comparative Example 1]
A toner for developing an electrostatic charge image of Comparative Example 1 was obtained in the same manner as in Example 1 except that the core-shell type composite fine particles A produced in Production Example 1 were not used.

5.静電荷像現像用トナーの評価
実施例1〜6、及び比較例1の静電荷像現像用トナーについて、常温常湿(N/N)環境下又は高温高湿(H/H)環境下におけるカブリ試験、低温低湿(L/L)環境下における細線再現性の評価、及び常温常湿(N/N)環境下における印字耐久性試験を行った。
5. Evaluation of Toner for Developing Electrostatic Image The toner for developing an electrostatic image of Examples 1 to 6 and Comparative Example 1 is fogged in a normal temperature and normal humidity (N / N) environment or a high temperature and high humidity (H / H) environment. Tests, evaluation of fine line reproducibility in a low temperature and low humidity (L / L) environment, and a printing durability test in a normal temperature and normal humidity (N / N) environment were performed.

5−1.常温常湿(N/N)環境下におけるカブリ試験
試験には、市販の非磁性一成分現像方式のプリンター(HL−3040CN)を用いた。現像装置のトナーカートリッジに、トナーを充填した後、常湿常湿(N/N)環境下(温度:23℃、湿度:50%)に24時間放置した。放置後、同環境において、白べた印字を1枚行い、白度計(日本電色社製)を用いて白べた印字物の紙面上の白度を測定し、下記式により、カブリ濃度を算出した。
(印字前の白度)−(白べた印字物の白度)=(カブリ濃度)
5-1. A fog test under a normal temperature and normal humidity (N / N) environment A commercially available non-magnetic one-component developing type printer (HL-3040CN) was used for the test. After the toner cartridge of the developing device was filled with toner, the toner cartridge was left in a normal humidity (N / N) environment (temperature: 23 ° C., humidity: 50%) for 24 hours. After leaving it to stand, in the same environment, perform one white print, measure the whiteness of the white print on the paper surface using a whiteness meter (manufactured by Nippon Denshoku), and calculate the fog density using the following formula. did.
(Whiteness before printing)-(Whiteness of white printed matter) = (Fog density)

5−2.高温高湿(H/H)環境下におけるカブリ試験
現像装置のトナーカートリッジに、トナーを充填した後、高温高湿(H/H)環境下(温度:35℃、湿度:80%)に24時間放置した後、その環境下でカブリを測定した以外は、常温常湿(N/N)環境下におけるカブリ試験と同様にしてカブリ濃度を算出した。
5-2. Fog test under high-temperature and high-humidity (H / H) environment After the toner cartridge of the developing device is filled with toner, it is kept under a high-temperature and high-humidity (H / H) environment (temperature: 35 ° C., humidity: 80%) for 24 hours. The fog density was calculated in the same manner as in the fog test under a normal temperature and normal humidity (N / N) environment, except that the fog was measured under the environment after being allowed to stand.

5−3.細線再現性の評価
トナーを低温低湿(L/L)環境下(温度10℃、湿度20%RH)に1日放置した後、上記カブリ試験で使用したプリンター(HL−3040CN)を用いて、2×2ドットライン(幅約85μm)で連続して線画像を形成し、10,000枚まで印字を行った。
印字500枚毎に、印字評価システム(YA−MA社製、商品名「RT2000」)によって測定し、線画像の濃度分布データを採取した。
常温常湿(N/N)環境下(温度:23℃、湿度:50%)の細線の線画像の線幅を評価の基準とする。評価方法としては、低温低湿(L/L)環境下における濃度の最大値の半値における全幅を線幅として、当該線幅と上記基準となる線幅との差が10μm以下のものは、1枚目の線画像を再現しているとして◎と評価する。当該線幅の差が10μm以上、20μm以下を維持できるものについては○と評価する。20μmを超えるものについては×と評価する。
5-3. Evaluation of fine line reproducibility After leaving the toner in a low-temperature and low-humidity (L / L) environment (temperature 10 ° C., humidity 20% RH) for 1 day, the printer (HL-3040CN) used in the fog test 2 A line image was continuously formed with x2 dot lines (width of about 85 μm), and printing was performed up to 10,000 sheets.
For every 500 prints, the measurement was performed by a print evaluation system (trade name “RT2000” manufactured by YA-MA), and the density distribution data of the line image was collected.
The line width of a thin line image in a normal temperature and normal humidity (N / N) environment (temperature: 23 ° C., humidity: 50%) is used as a criterion for evaluation. As an evaluation method, the full width at half maximum of the maximum concentration in a low temperature and low humidity (L / L) environment is defined as the line width, and the difference between the line width and the reference line width is 10 μm or less is one sheet. Evaluated as ◎ for reproducing the line image of the eye. A case where the difference in the line width can be maintained at 10 μm or more and 20 μm or less is evaluated as ◯. Those exceeding 20 μm are evaluated as x.

5−4.常温常湿(N/N)環境下における印字耐久性試験
印字耐久性試験には、市販の非磁性一成分現像方式のプリンター(HL−3040CN)を用い、現像装置のトナーカートリッジに、トナーを充填した後、印字用紙をセットした。
常温常湿(N/N)環境下(温度:23℃、湿度:50%)で、24時間放置した後、同環境下にて、5%印字濃度で10,000枚まで連続印刷を行った。500枚毎に、黒ベタ印字(印字濃度100%)を行い、反射式画像濃度計(マクベス社製、商品名:RD918)を用いて黒ベタ画像の印字濃度を測定した。さらに、その後、白ベタ印字(印字濃度0%)を行い、白ベタ印字の途中でプリンターを停止させ、現像後の感光体上における非画像部のトナーを、粘着テープ(住友スリーエム社製、商品名:スコッチメンディングテープ810−3−18)に付着させた後、剥ぎ取り、それを印字用紙に貼り付けた。次に、その粘着テープを貼り付けた印字用紙の白色度(B)を、白色度計(日本電色社製、商品名:ND−1)で測定し、同様にして、未使用の粘着テープだけを印字用紙に貼り付け、その白色度(A)を測定し、この白色度の差(B−A)をカブリ値(%)とした。この値が小さいほど、カブリが少なく良好であることを示す。
印字濃度が1.3%以上で、且つカブリ値が3%以下の画質を維持できる連続印刷枚数を調べた。
なお、表1中、「10000<」とあるのは、10,000枚の時点においても、印字濃度が1.3%以上で、且つカブリ値が3%以下の画質を維持できたことを示す。
5-4. Print durability test under normal temperature and normal humidity (N / N) environment For the print durability test, a commercially available non-magnetic one-component development type printer (HL-3040CN) is used, and the toner cartridge of the developing device is filled with toner. After that, the printing paper was set.
After standing for 24 hours in a normal temperature and normal humidity (N / N) environment (temperature: 23 ° C., humidity: 50%), continuous printing was performed up to 10,000 sheets at a 5% print density in the same environment. . Black solid printing (printing density 100%) was performed every 500 sheets, and the printing density of the black solid image was measured using a reflective image densitometer (trade name: RD918, manufactured by Macbeth). After that, white solid printing (printing density 0%) is performed, the printer is stopped in the middle of white solid printing, and the toner in the non-image area on the developed photosensitive member is adhesive tape (manufactured by Sumitomo 3M Ltd., product) Name: Scotch mending tape 810-3-18), and then peeled off and affixed to printing paper. Next, the whiteness (B) of the printing paper on which the adhesive tape is affixed is measured with a whiteness meter (trade name: ND-1 manufactured by Nippon Denshoku Co., Ltd.). The whiteness (A) was measured and the difference in whiteness (B−A) was defined as the fog value (%). Smaller values indicate better fog and better.
The number of continuously printed sheets that can maintain an image quality with a print density of 1.3% or more and a fog value of 3% or less was examined.
In Table 1, “10000 <” indicates that the image quality with the print density of 1.3% or more and the fog value of 3% or less was maintained even at the time of 10,000 sheets. .

実施例1〜6、及び比較例1の静電荷像現像用トナーの測定及び評価結果を、各トナー組成と併せて表2に示す。   Table 2 shows the measurement and evaluation results of the electrostatic charge image developing toners of Examples 1 to 6 and Comparative Example 1 together with the toner compositions.

Figure 0005381949
Figure 0005381949

6.トナー評価のまとめ
まず、比較例1のトナーについて検討する。比較例1のトナーは、常温常湿(N/N)環境下におけるカブリ濃度が0.7、常温常湿(N/N)環境下におけるカブリ発生枚数が10,000枚を超える結果となり、少なくとも常温常湿(N/N)環境下における印字耐久性に問題は見られない。
しかし、比較例1のトナーの高温高湿(H/H)環境下におけるカブリ濃度は3.2であり、この結果は、実施例1〜6及び比較例1のトナー中、最も高いカブリ濃度である。また、低温低湿(L/L)環境下における細線再現性の評価は、比較例1のトナーのみが×であった。
これらの結果から、樹脂微粒子の表面に無機成分が被覆されているコアシェル型複合微粒子を外添剤として含有しない比較例1のトナーは、高温高湿(H/H)環境下における印字耐久性及び低温低湿(L/L)環境下における細線再現性に劣ることが分かる。
6). Summary of Toner Evaluation First, the toner of Comparative Example 1 will be examined. In the toner of Comparative Example 1, the fog density in a normal temperature and normal humidity (N / N) environment is 0.7, and the fog generation number in a normal temperature and normal humidity (N / N) environment exceeds 10,000. There is no problem in printing durability under a normal temperature and normal humidity (N / N) environment.
However, the fog density in the high-temperature and high-humidity (H / H) environment of the toner of Comparative Example 1 is 3.2. This result is the highest fog density among the toners of Examples 1 to 6 and Comparative Example 1. is there. Further, in the evaluation of fine line reproducibility in a low temperature and low humidity (L / L) environment, only the toner of Comparative Example 1 was evaluated as x.
From these results, the toner of Comparative Example 1 that does not contain the core-shell type composite fine particles whose surface is coated with an inorganic component as an external additive has a printing durability and high durability under a high temperature and high humidity (H / H) environment. It turns out that it is inferior to the fine line reproducibility in a low-temperature, low-humidity (L / L) environment.

上記比較例1に対し、実施例1〜6のトナーは、いずれも、常温常湿(N/N)環境下におけるカブリ濃度が0.8以下であり、且つ、高温高湿(H/H)環境下におけるカブリ濃度が2.6以下であり、且つ、常温常湿(N/N)環境下におけるカブリ発生枚数が7,000枚を超える結果であり、且つ、低温低湿(L/L)環境下における細線再現性の評価が○以上である。したがって、樹脂微粒子の表面に無機成分が被覆されているコアシェル型複合微粒子を外添剤として含む実施例1〜6のトナーは、低温低湿環境下においても細線再現性が損なわれることなく、安定した印字が行え、且つ、帯電量の上昇により発生する印字不具合などがなく、良好な画質が得られることが分かる。   Compared to Comparative Example 1, the toners of Examples 1 to 6 each have a fog density of 0.8 or less in a normal temperature and normal humidity (N / N) environment, and high temperature and high humidity (H / H). The fog density in the environment is 2.6 or less, the number of fog occurrences in a room temperature and normal humidity (N / N) environment exceeds 7,000, and the environment is low temperature and low humidity (L / L). The evaluation of fine line reproducibility below is ◯ or more. Therefore, the toners of Examples 1 to 6 including the core-shell type composite fine particles having the inorganic component coated on the surface of the resin fine particles as the external additive are stable without being impaired in the fine line reproducibility even in a low temperature and low humidity environment. It can be seen that printing can be performed and that there is no printing defect caused by an increase in the charge amount, and that a good image quality can be obtained.

Claims (7)

結着樹脂及び着色剤を含有する着色樹脂粒子、並びに外添剤を含有する静電荷像現像用トナーであって、
前記外添剤として、樹脂微粒子の表面に、アルミナ、及びチタニアからなる群から選ばれる少なくとも1つの無機成分の連続層が被覆されているコアシェル型複合微粒子を含有することを特徴とする、静電荷像現像用トナー。
A toner for developing an electrostatic charge image, comprising colored resin particles containing a binder resin and a colorant, and an external additive,
As the external additive, the surface of the resin fine particles includes core-shell type composite fine particles in which a continuous layer of at least one inorganic component selected from the group consisting of alumina and titania is coated. Toner for image development.
前記コアシェル型複合微粒子の全体積を100体積%としたときの、当該複合微粒子中の前記無機成分の体積比率が25〜75体積%であることを特徴とする、請求項1に記載の静電荷像現像用トナー。   2. The electrostatic charge according to claim 1, wherein the volume ratio of the inorganic component in the composite fine particles is 25 to 75 vol% when the total volume of the core-shell composite fine particles is 100% by volume. Toner for image development. 前記コアシェル型複合微粒子の吸着水分量が0.5〜2.5質量%であることを特徴とする、請求項1又は2に記載の静電荷像現像用トナー。   The electrostatic charge image developing toner according to claim 1, wherein the core-shell type composite fine particles have an adsorbed water content of 0.5 to 2.5 mass%. 前記コアシェル型複合微粒子の添加量が、前記着色樹脂粒子100質量部に対し0.1〜2.0質量部であることを特徴とする、請求項1乃至3のいずれか一項に記載の静電荷像現像用トナー。   4. The static electricity according to claim 1, wherein the addition amount of the core-shell type composite fine particles is 0.1 to 2.0 parts by mass with respect to 100 parts by mass of the colored resin particles. 5. Toner for charge image development. 前記コアシェル型複合微粒子の個数平均粒径が30〜300nmであることを特徴とする、請求項1乃至4のいずれか一項に記載の静電荷像現像用トナー。   5. The electrostatic charge image developing toner according to claim 1, wherein the core-shell type composite fine particles have a number average particle size of 30 to 300 nm. 前記着色樹脂粒子の体積平均粒径が4〜12μmであり、且つ平均円形度が0.96〜1.00であることを特徴とする、請求項1乃至5のいずれか一項に記載の静電荷像現像用トナー。   The static resin according to any one of claims 1 to 5, wherein the colored resin particles have a volume average particle diameter of 4 to 12 µm and an average circularity of 0.96 to 1.00. Toner for charge image development. 前記コアシェル型複合微粒子を構成する前記樹脂微粒子が架橋樹脂であることを特徴とする、請求項1乃至6のいずれか一項に記載の静電荷像現像用トナー。   The electrostatic image developing toner according to claim 1, wherein the resin fine particles constituting the core-shell type composite fine particles are a crosslinked resin.
JP2010218786A 2010-06-29 2010-09-29 Toner for electrostatic image development Active JP5381949B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010218786A JP5381949B2 (en) 2010-09-29 2010-09-29 Toner for electrostatic image development
PCT/JP2011/064554 WO2012002278A1 (en) 2010-06-29 2011-06-24 Toner for electrostatic image development
CN201180031840.9A CN102959472B (en) 2010-06-29 2011-06-24 Toner for electrostatic image development
US13/806,473 US8846285B2 (en) 2010-06-29 2011-06-24 Toner for developing electrostatic images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010218786A JP5381949B2 (en) 2010-09-29 2010-09-29 Toner for electrostatic image development

Publications (2)

Publication Number Publication Date
JP2012073468A JP2012073468A (en) 2012-04-12
JP5381949B2 true JP5381949B2 (en) 2014-01-08

Family

ID=46169685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010218786A Active JP5381949B2 (en) 2010-06-29 2010-09-29 Toner for electrostatic image development

Country Status (1)

Country Link
JP (1) JP5381949B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459018B2 (en) * 2014-03-14 2019-01-30 株式会社リコー Toner for electrostatic charge development and toner cartridge
JP6490436B2 (en) 2015-01-30 2019-03-27 サムスン エレクトロニクス カンパニー リミテッド COMPOSITE PARTICLE, EXTERNAL ADDITIVE FOR TONER AND METHOD FOR PRODUCING COMPOSITE PARTICLE
US10007203B2 (en) 2015-01-30 2018-06-26 Samsung Electronics Co., Ltd. Complex particle, external additive for toner and method of preparing complex particle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082765A (en) * 2003-09-10 2005-03-31 Orient Chem Ind Ltd Microparticles comprising organic-inorganic composite material and external additive for toner
JP4189586B2 (en) * 2003-11-06 2008-12-03 コニカミノルタビジネステクノロジーズ株式会社 Toner and toner production method
JP2005148378A (en) * 2003-11-14 2005-06-09 Canon Inc Composite particulate, toner using the same, method for manufacturing the same

Also Published As

Publication number Publication date
JP2012073468A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP5381914B2 (en) Toner for electrostatic image development
US8846285B2 (en) Toner for developing electrostatic images
JP5158089B2 (en) Positively chargeable toner for electrostatic image development
JP5853694B2 (en) Positively chargeable toner for electrostatic image development
JP5998128B2 (en) Electrostatic image developer
JP4985019B2 (en) Positively chargeable toner for electrostatic image development
JP5158081B2 (en) Positively chargeable toner for electrostatic image development
JP6489119B2 (en) Toner set
JP2009237274A (en) Positively charged toner for developing electrostatically charged image
JP5925421B2 (en) Toner for electrostatic image development
JP6477688B2 (en) Toner for electrostatic image development
JP6056470B2 (en) Toner for electrostatic image development
JP5152172B2 (en) Positively chargeable toner for electrostatic image development
JP5521693B2 (en) Positively chargeable toner for electrostatic image development
JP5381949B2 (en) Toner for electrostatic image development
JP5326526B2 (en) Positively chargeable toner for electrostatic image development
JP6565918B2 (en) Toner for electrostatic image development
JP2006235527A (en) Electrophotographic toner and method for manufacturing the same
JP6056550B2 (en) Electrostatic image developer
JP6244800B2 (en) Toner for electrostatic image development
WO2014156521A1 (en) Toner for electrostatic-image development
JP2018025828A (en) Method for manufacturing toner for electrostatic charge image development
JP2007322726A (en) Method for manufacturing toner for electrostatic image development
JP5748016B2 (en) Positively chargeable toner for electrostatic image development
JP2019179256A (en) Toner for electrostatic charge image development

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250