JP2016140905A - Lubrication treatment method for plastic working workpiece, and plastic working workpiece - Google Patents

Lubrication treatment method for plastic working workpiece, and plastic working workpiece Download PDF

Info

Publication number
JP2016140905A
JP2016140905A JP2015020573A JP2015020573A JP2016140905A JP 2016140905 A JP2016140905 A JP 2016140905A JP 2015020573 A JP2015020573 A JP 2015020573A JP 2015020573 A JP2015020573 A JP 2015020573A JP 2016140905 A JP2016140905 A JP 2016140905A
Authority
JP
Japan
Prior art keywords
workpiece
lubrication
treatment
plastic working
lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015020573A
Other languages
Japanese (ja)
Other versions
JP6000384B2 (en
Inventor
宮坂 四志男
Yoshio Miyasaka
四志男 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Kihan Co Ltd
Original Assignee
Fuji Kihan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Kihan Co Ltd filed Critical Fuji Kihan Co Ltd
Priority to JP2015020573A priority Critical patent/JP6000384B2/en
Publication of JP2016140905A publication Critical patent/JP2016140905A/en
Application granted granted Critical
Publication of JP6000384B2 publication Critical patent/JP6000384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)
  • Lubricants (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lubrication treatment method giving high lubricity on the surface of a workpiece used for plastic working such as forging.SOLUTION: A lubrication treatment method for plastic working workpiece includes forming a lubrication film by spraying in a dry process, the carbide particulate such as silicon carbide SiC(α) on the surface of a plastic working workpiece to deposit the carbon element in the carbide particulate on the surface of the workpiece. Plastic working such as forging is performed using the workpiece as it is on which the lubrication film is formed, or after coating a lubricant such as a forging oil, or after forming on the lubrication film, a chemical conversion film such as a zinc phosphate film and after coating the lubricant such as the forging oil.SELECTED DRAWING: Figure 1

Description

本発明は塑性加工用被加工材の潤滑処理方法,及び塑性加工用被加工材に関し,より詳細には,冷間鍛造等の塑性加工において,被加工材の表面に潤滑性を付与する目的で,被加工材に塑性加工の前処理として行う潤滑処理の方法,及び前記潤滑処理が施された被加工材に関する。   The present invention relates to a method of lubricating a workpiece for plastic working and a workpiece for plastic working, and more particularly, for the purpose of imparting lubricity to the surface of the workpiece in plastic working such as cold forging. Further, the present invention relates to a lubrication method performed as a pre-processing for plastic working on a workpiece, and a workpiece subjected to the lubrication treatment.

自動車,その他の機械部品の製造において,省エネ,低コスト化の要求から,あるいは環境に対する負荷の低減に対する要求から,切削加工による製造に比較して使用する材料が少なく,加工時間の短縮等のメリットが期待できる鍛造等の塑性加工が採用されるようになっており,特に自動車部品の製造においては,製造の効率化を目的として,従来,切削加工により製造されていた複雑な形状の部品についても冷間鍛造への切り替えが試みられるようになっている。   In the manufacture of automobiles and other machine parts, because of the demands for energy saving and cost reduction, or the demands for reducing the environmental load, there are fewer materials used compared to the manufacturing by cutting, and the merits of shortening the processing time, etc. Forging and other plastic processing that can be expected to be used, especially in the manufacture of automobile parts, in order to improve the efficiency of manufacturing, parts with complex shapes that were conventionally manufactured by cutting are also used. Attempts have been made to switch to cold forging.

このような塑性加工の一例として,機械部品等の製造方法として主流となりつつある冷間鍛造を例に挙げて説明すると,この冷間鍛造は,大別して,図4に示すように,「素材取り」,「熱処理」,「潤滑処理」,及び「プレス(鍛造)」の工程によって構成されている。   As an example of such plastic working, cold forging, which is becoming the mainstream manufacturing method for machine parts, will be described as an example. This cold forging is roughly classified as shown in FIG. ”,“ Heat treatment ”,“ lubrication treatment ”, and“ press (forging) ”.

このうちの「素材取り」は,打ち抜き,突切り,せん断,鋸切断等の方法によって板材や棒材等の形で提供された金属素材から製造する製品1個分の材料に切り出す工程であり,このようにして切り出した材料は,「熱処理」において焼なまし,低温焼きなまし,球状焼なまし等の処理を行って変形し易い状態に改質した後,「潤滑処理」に付されて金型との焼き付きを防止して離型性を高めるための潤滑被膜の形成や潤滑剤の塗布等,表面に潤滑性を付与する処理を行い,その後の「プレス(鍛造)」において所定の形状に加工する。   Of these, “material removal” is a process of cutting into a material for one product manufactured from a metal material provided in the form of a plate, bar, etc. by methods such as punching, parting off, shearing, sawing, The material cut out in this way is subjected to annealing, low-temperature annealing, spherical annealing, etc. in the “heat treatment” to modify it so that it is easily deformed, and then subjected to a “lubrication treatment” to form a mold. Applying lubrication to the surface, such as forming a lubricating film to prevent seizure and improving releasability and applying a lubricant, and then processing into a predetermined shape in “press (forging)” To do.

上記工程中の「潤滑処理」は,前述したように被処理材料の表面に潤滑性を付与するための処理であり,冷間鍛造では,このような潤滑処理として,ボンデ・ボンダリューベ法と呼ばれる方法で処理を行うのが一般的となっている。   “Lubrication treatment” in the above process is a treatment for imparting lubricity to the surface of the material to be treated as described above, and in cold forging, such a lubrication treatment is called the bonde-bonderube method. It is common to perform processing by a method.

このボンデ・ボンダリューベ法による潤滑処理は,化成処理によって被加工材の表面にリン酸亜鉛結晶を析出させる工程と,金属セッケン等の潤滑剤を塗布する工程を含み,これにより,被加工材の表面には,図5に示すように,リン酸亜鉛被膜と,その上に形成された金属セッケン等の潤滑剤の塗布層が形成される。   This lubrication treatment by the bonde-bonderube method includes a step of depositing zinc phosphate crystals on the surface of the workpiece by chemical conversion treatment and a step of applying a lubricant such as metal soap. As shown in FIG. 5, a zinc phosphate coating and a coating layer of a lubricant such as a metal soap formed thereon are formed on the surface.

このようにして被加工材の表面に析出されたリン酸亜鉛結晶は,結晶格子間の結合力が弱いへき開面を有しており,鍛造時に摩擦界面でのせん断力に対してへき開を生じることによって摩擦を低減する機能を発揮する。又,被加工材の表面を補修被覆する機能を有しており,これらの機能によってリン酸亜鉛被膜は金型との焼付防止に高い効果を発揮すると共に,その上に潤滑剤として塗布された金属セッケンが摩擦抵抗を減少させる。これと相俟って,過酷な冷間鍛造を可能にする高い潤滑性を被加工材の表面に付与している。   The zinc phosphate crystals deposited on the surface of the workpiece in this way have a cleaved surface with a weak bond between the crystal lattices, and cleave the shearing force at the friction interface during forging. It exerts the function to reduce friction. In addition, it has a function to repair and coat the surface of the work material. With these functions, the zinc phosphate coating is highly effective in preventing seizure with the mold and is applied as a lubricant on it. Metal soap reduces frictional resistance. Combined with this, the surface of the workpiece is given high lubricity that enables severe cold forging.

このようなボンデ・ボンダリューベ法による潤滑処理では,リン酸亜鉛被膜の付着性を向上させるために,被処理材の表面に付着した油脂等の汚れや酸化被膜,錆等の除去と,被加工材の表面に微細な凹凸を形成することを目的として,化成処理を行う前に,ドライブラストやウェットブラスト等のブラスト処理,脱脂や酸洗等の処理が行われる。   In such a lubrication process using the bonde-bonderube method, in order to improve the adhesion of the zinc phosphate coating, dirt such as oil and fat, oxide coating, rust, etc. adhering to the surface of the material to be processed, For the purpose of forming fine irregularities on the surface of the material, blasting such as drive blasting and wet blasting, degreasing and pickling are performed before chemical conversion.

このようなブラスト処理や,脱脂,酸洗を含めた,ボンデ・ボンダリューベ法による潤滑処理の全体の流れは,一例として図4のようになる(特許文献1の図6,[0005]〜[0016]欄参照)。   An example of the overall flow of the lubrication treatment by the bonde-bonderube method including such blast treatment, degreasing, and pickling is as shown in FIG. 4 (FIG. 6, [0005] to [0005] in Patent Document 1). [0016] column).

図4に示す潤滑処理では,「ドライブラスト」によって前工程である熱処理時に生じた酸化被膜を除去すると共に,被加工材の表面に潤滑被膜の付着性を向上させる凹凸を形成した後,「脱脂」で被加工材の表面に付着した油分,汚れ,ドライブラストで生じた切削粉等を除去し,その後の「水洗」で脱脂剤を洗い落とし,「酸洗」で被加工材表面の錆等を除去した後,「水洗」でこの酸を洗い流す。   In the lubrication treatment shown in FIG. 4, the oxide film generated during the heat treatment, which is the previous process, is removed by “drive last”, and irregularities that improve the adhesion of the lubricant film are formed on the surface of the workpiece. ”To remove oil, dirt, and cutting powder generated by drive last on the surface of the workpiece, and then wash away the degreasing agent with“ washing ”and rust on the surface of the workpiece with“ pickling ”. After removal, the acid is washed away with "washing".

その後,「化成処理」でリン酸塩溶液に被加工材を浸漬して,被加工材の表面にリン酸亜鉛の結晶を析出させて潤滑被膜を形成し,その後の「水洗」でリン酸塩溶液を洗い流した後,「中和」で化成処理工程後の水洗工程で除去できなかった余分な被膜処理剤を中和剤で中和し,「水洗」でこの中和剤を洗い流し,その後,「潤滑剤塗布」で被処理材を金属セッケン溶液に浸漬し,その後の「乾燥」によってこれを乾燥させて被処理材の表面に定着させる。   After that, the workpiece is immersed in a phosphate solution by “chemical conversion treatment”, crystals of zinc phosphate are deposited on the surface of the workpiece to form a lubricating film, and the phosphate is then washed by “water washing”. After washing off the solution, neutralize the excess coating agent that could not be removed in the water washing step after the chemical conversion treatment step by "neutralization", and then wash away this neutralizing agent by "water washing". The material to be treated is immersed in a metal soap solution by “lubricant application”, and then dried by “drying” to be fixed on the surface of the material to be treated.

このように,冷間鍛造に際し,プレス(鍛造)前に行われる潤滑処理は,極めて多くの工程によって構成されていることから,大掛かりな処理設備が必要であると共に,化成処理を含むために薬品による化学反応を待たなければならず,処理速度が遅く,量産性が悪くコスト高であり,廃液その他の産業廃棄物の処理が必要となることから,プレス(鍛造)前に行う潤滑処理を,より少ない工数で,公害を発生することなく,簡単に行うことができるようにする手段の開発が切望されている。   As described above, in cold forging, the lubrication process performed before pressing (forging) is composed of an extremely large number of processes, so that a large-scale processing facility is required and chemical treatment is included in order to include chemical conversion treatment. Because the chemical reaction due to the process is slow, the processing speed is slow, the mass productivity is poor and the cost is high, and the treatment of waste liquid and other industrial waste is necessary. There is an urgent need for the development of means that can be carried out easily with less man-hours and without causing pollution.

特に,熱処理と潤滑処理は,プレス(鍛造)を行う毎に必要な工程であることから,複雑な形状の機械部品にまで冷間鍛造が適用されるようになり,1回のプレス(鍛造)で被加工材を最終形状まで変形させることができずにこれを複数回に分けて行うようになると,熱処理や潤滑処理もその都度必要となるため,潤滑処理の簡略化に対する要望はより大きなものとなっている。   In particular, since heat treatment and lubrication are necessary steps each time pressing (forging), cold forging is applied to machine parts with complex shapes. If the work piece cannot be deformed to the final shape in this way and this is performed in multiple steps, heat treatment and lubrication treatment are required each time, so there is a greater demand for simplification of the lubrication treatment. It has become.

かような要望に対応するために,反応を必要とするため処理時間が長く,且つ,処理設備に多大な初期投資が必要であると共に,廃液処理等の問題を有する化成処理を無くすことにより,潤滑処理を簡略化することが提案されている。   In order to meet such demands, the reaction time is long because it requires a reaction, and a large initial investment is required for the processing equipment, and by eliminating the chemical conversion treatment having problems such as waste liquid treatment, It has been proposed to simplify the lubrication process.

そこで,潤滑処理から化成処理を無くすことを目的として,化成処理による被膜の形成を行うことなく,被加工材の表面に直接塗布,乾燥させるだけで,必要な潤滑性を得られるようにした「一液型(非反応型)」と呼ばれる冷間鍛造用の潤滑剤も開発されている。   Therefore, in order to eliminate the chemical conversion treatment from the lubrication treatment, the required lubricity can be obtained simply by applying and drying directly on the surface of the workpiece without forming a film by chemical conversion treatment. Lubricants for cold forging called “one-component type (non-reactive type)” have also been developed.

前記一液型(非反応型)潤滑剤の一例として,水溶性無機塩と固体潤滑剤,油成分,界面活性剤とを所定の比率で配合した潤滑剤が提案されている(特許文献2の請求項1)。   As an example of the one-component (non-reactive) lubricant, a lubricant in which a water-soluble inorganic salt and a solid lubricant, an oil component, and a surfactant are blended at a predetermined ratio has been proposed (Patent Document 2). Claim 1).

また,被処理材の表面に対し,潤滑剤として塗布される金属セッケンの付着性を高めることにより化成処理(リン酸亜鉛結晶被膜の形成)を不要とすることを目的として,被加工材に金属セッケンを塗布する処理を行う前に,液体と砥粒との混合物であるスラリを噴射するブラスト処理を行い,被加工材の表面に潤滑剤の付着性を向上させる凹凸を形成することも提案されている(特許文献1の請求項1)。   In addition, a metal conversion process (formation of zinc phosphate crystal coating) is made unnecessary by increasing the adhesion of metal soap applied as a lubricant to the surface of the material to be processed. It has also been proposed to form irregularities on the surface of the workpiece to improve the adhesion of the lubricant by performing a blasting process that injects a slurry, which is a mixture of liquid and abrasive grains, before applying the soap. (Claim 1 of Patent Document 1).

なお,本発明の発明者は,化成処理によらずに金属やセラミック製品の摺動部表面に潤滑性を有する被膜を形成する方法として,亜鉛,二硫化モリブデン,すずなどの固体潤滑剤の粉体を所定の噴射速度又は噴射圧力以上で摺動部の表面に噴射することで,潤滑剤粉体の組成物中の元素を摺動部表面に拡散浸透させて潤滑被膜を形成する方法を提案している(特許文献3)。   The inventor of the present invention uses a solid lubricant powder such as zinc, molybdenum disulfide, or tin as a method of forming a film having lubricity on the sliding surface of a metal or ceramic product without using chemical conversion treatment. Proposes a method of forming a lubricant film by spraying the body onto the surface of the sliding part at a predetermined spraying speed or pressure to diffuse and infiltrate the elements in the composition of the lubricant powder into the surface of the sliding part. (Patent Document 3).

また,潤滑性の付与に関する発明ではないが,本発明の発明者は,金属材料から成る被処理成品の表面に,SiC等の炭化物粉体を噴射すると,前記炭化物粉体中の炭素元素を被処理成品の表面に拡散させて表面硬度の向上等が得られる「浸炭」を行うことができることを見い出し,これを「常温浸炭処理方法」として出願している(特許文献4参照)。   Although not an invention relating to imparting lubricity, the inventor of the present invention covers the carbon element in the carbide powder by injecting carbide powder such as SiC onto the surface of the processed product made of a metal material. It has been found that “carburization” can be performed by diffusing to the surface of the treated product to obtain an improvement in surface hardness, and this has been filed as a “room temperature carburizing method” (see Patent Document 4).

特開2007−38309号公報JP 2007-38309 A 特開平10−8085号公報Japanese Patent Laid-Open No. 10-8085 特許第3357586号公報Japanese Patent No. 3357586 特許第3242060号公報Japanese Patent No. 3420060

特許文献1,特許文献2として紹介した発明は,潤滑処理を簡略化するために,ボンデ・ボンダリューベ法による潤滑処理で必須であった化成処理を工程中より排除することを目的して開発された処理手段である。   The invention introduced as Patent Document 1 and Patent Document 2 was developed for the purpose of eliminating the chemical conversion treatment that was essential in the lubrication treatment by the Bonde-Bondalube method in order to simplify the lubrication treatment. Processing means.

しかし,特許文献1の請求項1に記載されているように,液体と砥粒との混合物であるスラリを噴射して被処理材の表面に凹凸を形成したとしても,その後,化成処理を行うことなしに金属セッケンを塗布乾燥させる処理を行っただけでは,ボンデ・ボンダリューベ法による潤滑処理が行われた,図5に示す被加工材の表面に対し,単にリン酸亜鉛被膜が無くなっただけの構成となることから,ボンデ・ボンダリューベ法による潤滑処理に比較して潤滑性は大きく劣る筈で,過酷な冷間鍛造に耐え得る潤滑性を付与できるとは考え難い。   However, as described in claim 1 of Patent Document 1, even if a slurry, which is a mixture of liquid and abrasive grains, is sprayed to form irregularities on the surface of the material to be treated, chemical conversion treatment is performed thereafter. If the metal soap was applied and dried without any problem, it was lubricated by the bonde-bonderube method, and the zinc phosphate coating was simply removed from the surface of the workpiece shown in FIG. Therefore, the lubricity should be much inferior to the lubrication process by the bonde-bonderube method, and it is unlikely that the lubricity can withstand severe cold forging.

そうすると,特許文献1に記載の構成において,化成処理によるリン酸亜鉛被膜の形成を省略しても冷間鍛造に耐え得る高い潤滑性が得られるとすれば,塗布する潤滑剤として,特許文献2に記載されているような「一液型(非反応型)」の潤滑剤の使用が前提であると考える他なく,特許文献1は,一液型(非反応型)の潤滑剤を使用する場合にも,ボンデ・ボンダリューベ法を行う場合と同様,事前に,ブラスト処理を行うことが効果的であることを示しているに過ぎない。   Then, in the configuration described in Patent Document 1, if high lubricity that can withstand cold forging can be obtained even if the formation of the zinc phosphate coating by the chemical conversion treatment is omitted, Patent Document 2 can be applied as a lubricant to be applied. Patent Document 1 uses a one-pack type (non-reactive type) lubricant, except that it is premised on the use of a “one-pack type (non-reactive type)” lubricant as described in Even in this case, just as in the case of the Bonde-Bondalube method, it is merely shown that it is effective to perform blasting in advance.

所謂「一液型(被反応型)」の潤滑剤(特許文献2)は,水溶性無機塩中に,粉末状の固体潤滑剤を分散させた構成を備えており,これを被加工材の表面に塗布し乾燥させると,水溶性無機塩をバインダとして粉末状の固体潤滑剤が被加工材の表面に付着することで,潤滑性を付与できるものとなっている。   A so-called “one-component (reacted)” lubricant (Patent Document 2) has a structure in which a powdered solid lubricant is dispersed in a water-soluble inorganic salt, and this is used as a work material. When applied to the surface and dried, a powdered solid lubricant adheres to the surface of the work material using a water-soluble inorganic salt as a binder, thereby imparting lubricity.

従って,水溶性無機塩中に分散させる固体潤滑剤として,雲母,二硫化モリブデン,黒鉛等(同文献[0010]欄),へき開性を有する固体潤滑剤を使用すれば,ボンデ・ボンダリューベ法において化成処理で形成していたリン酸亜鉛被膜と同様の機能を備えた被膜を形成することができるものと考えられる。   Therefore, if the solid lubricant dispersed in the water-soluble inorganic salt is mica, molybdenum disulfide, graphite, etc. (column [0010] in the same document), or a solid lubricant having a cleavage property, the bonde-bonderube method is used. It is considered that a film having the same function as the zinc phosphate film formed by the chemical conversion treatment can be formed.

しかし,この手段では,水溶性無機塩をバインダとして固体潤滑剤を被加工材の表面に付着させていることから,付着性を向上させるために水溶性無機塩を増量すれば潤滑性が低下してかじりや焼き付きが発生し,潤滑性を向上させるために固体潤滑剤を増量(水溶性無機塩を減量)すれば,付着強度が低下して膜切れを起こす(同文献[0016]欄)。そのため,添加できる固体潤滑剤の量に制約があり,バインダを介在させることなくリン酸亜鉛の結晶を析出させて被膜を形成する場合に比較して,付着させることができる固体潤滑剤の量は少なく,潤滑性能が劣るものと考えられる。   However, this method uses a water-soluble inorganic salt as a binder to attach a solid lubricant to the surface of the workpiece. Therefore, if the amount of the water-soluble inorganic salt is increased in order to improve adhesion, the lubricity decreases. If the amount of solid lubricant is increased (the amount of water-soluble inorganic salt is decreased) to improve lubricity, adhesion strength decreases and film breakage occurs (column [0016] in the same document). Therefore, the amount of solid lubricant that can be added is limited, and the amount of solid lubricant that can be deposited is less than that in the case of forming a film by depositing zinc phosphate crystals without interposing a binder. The lubrication performance is considered to be poor.

これに対し,特許文献3の潤滑被膜の形成方法では,被加工材の表面に,亜鉛,二硫化モリブデン,すずなどの固体潤滑剤の粉体を,所定の噴射速度あるいは所定の噴射圧力で噴射することで,バインダ等を介在させることなく固体潤滑剤の成分を被加工材の表面に拡散,浸透させて潤滑被膜を形成することができることから,噴射する固体潤滑剤として,リン酸亜鉛と同様,へき開性を有する例えば二硫化モリブデンを使用することで,化成処理を行うことなく,且つ,バインダを使用することなしに,被加工材の表面に直接,へき開による摩擦抵抗の低減や,焼き付き防止,離型性の向上等の効果を発揮し得る潤滑被膜を形成することができる。   On the other hand, in the method for forming a lubricating coating of Patent Document 3, a solid lubricant powder such as zinc, molybdenum disulfide, or tin is injected onto the surface of a workpiece at a predetermined injection speed or a predetermined injection pressure. As a result, it is possible to form a lubricant film by diffusing and infiltrating the components of the solid lubricant into the surface of the workpiece without interposing a binder. By using, for example, molybdenum disulfide, which has cleavage properties, it is possible to reduce frictional resistance and prevent seizure by cleaving directly on the surface of the workpiece without using chemical conversion treatment and without using a binder. , It is possible to form a lubricating film capable of exhibiting effects such as improvement of releasability.

しかし,前述した二硫化モリブデンは比較的高価な物質であるため,これを噴射粉体として潤滑被膜を形成すると,処理費用が嵩み,この処理費用を製品に転嫁すれば市場における価格競争力が低下する。   However, since the above-mentioned molybdenum disulfide is a relatively expensive substance, if it is used as a spray powder to form a lubricating coating, the processing cost increases, and if this processing cost is transferred to a product, the price competitiveness in the market will increase. descend.

本発明は,発明者による多年にわたる潤滑技術の蓄積と,実験の結果得られた知見に基づき成されたものであり,比較的簡単な方法により,比較的安価に,しかも,粉塵火災や粉塵爆発等の危険性が少ない安全な方法で,塑性加工用の被加工材に対し,従来の方法に比較して高い潤滑性を付与することができる潤滑処理方法,及び前記潤滑処理方法で処理された被加工材を提供することにより,塑性加工時における不良率の減少,金型寿命の延長等を可能とすることを目的とする。   The present invention is based on the accumulation of many years of lubrication technology by the inventor and the knowledge obtained as a result of experiments. It is relatively simple and relatively inexpensive, and can be used for dust fires and explosions. A lubrication method capable of imparting a higher lubricity to a workpiece for plastic working than a conventional method by a safe method with less risk such as By providing workpieces, it is intended to reduce the defect rate during plastic working and extend the life of molds.

すなわち,本発明の発明者は,粉体の噴射という比較的簡単な方法を使用して(特許文献3),リン酸亜鉛や二硫化モリブデンと同様に優れた潤滑性を発揮する固体潤滑の被膜を,より安価に形成するため,このような潤滑被膜を,二硫化モリブデンに比較して安価である,炭素(C)によって形成する手段についての研究を行った。   In other words, the inventor of the present invention uses a relatively simple method of powder injection (Patent Document 3) to provide a solid lubricant film that exhibits excellent lubricity similarly to zinc phosphate and molybdenum disulfide. In order to form the film at a lower cost, research was conducted on a means for forming such a lubricating film from carbon (C), which is cheaper than molybdenum disulfide.

しかし,固体潤滑剤の粉体を噴射することによって固体潤滑剤被膜を形成しようとした場合,炭素の被膜を形成するためには,黒鉛等の炭素粒子を噴射することになるが,黒鉛等の炭素粒子は極めて発火性の高い物質であり,ブラスト加工装置を使用して噴射すれば,粉塵火災や粉塵爆発が発生する危険があり,安易に取り扱うことはできない。   However, when a solid lubricant film is formed by spraying a solid lubricant powder, carbon particles such as graphite are sprayed to form a carbon film. Carbon particles are extremely ignitable substances, and if they are sprayed using a blasting machine, there is a risk of dust fires and dust explosions, and they cannot be handled easily.

また,本発明の発明者は,金属材料から成る被処理成品の表面に炭化物粉体を噴射すると,この炭化物粉体中の炭素元素を被処理成品の表面に拡散浸透させて,被処理成品の表面硬度を向上させる『浸炭』を行うことができることを見出し,この方法について「常温浸炭処理方法」として既に特許を受けている(特許文献4)。   In addition, when the inventor of the present invention injects carbide powder onto the surface of the processed product made of a metal material, the carbon element in the carbide powder is diffused and penetrated into the surface of the processed product. It has been found that “carburization” for improving the surface hardness can be performed, and this method has already been patented as “room temperature carburizing treatment method” (Patent Document 4).

しかし,同文献に記載の発明は,被処理成品の表面硬度を向上させる「浸炭」についての提案であり,塑性変形によって成形する冷間鍛造の前処理として特許文献4に記載の方法で被加工材に対し「浸炭」を行えば,表面硬化によって被加工材の塑性変形性が低下して不良率が増加することが予測される。   However, the invention described in this document is a proposal for “carburizing” to improve the surface hardness of the processed product, and is processed by the method described in Patent Document 4 as a pretreatment for cold forging formed by plastic deformation. If carburizing is performed on the material, it is predicted that the plastic deformation of the workpiece will decrease due to surface hardening and the defect rate will increase.

また,同文献に記載の発明において,噴射粉体である炭化物中の炭素元素は,被処理成品の表面に拡散,浸透するもの,すなわち,内部に入って「浸炭」を生成する知見に基づくものであり,このように表面の内部に拡散,浸透した炭素が,被処理成品の表面に潤滑性を与えることの予測は無理がある。   Further, in the invention described in the same document, the carbon element in the carbide as the injection powder diffuses and permeates the surface of the processed product, that is, based on the knowledge that it enters the inside and generates “carburization”. Thus, it is impossible to predict that carbon diffused and penetrated into the surface in this way will give lubricity to the surface of the processed product.

かように,塑性加工に際し前処理として行う「潤滑処理」に,塑性変形性の低下をもたらすことを予測させる「浸炭」を組み合わせることは,当業者であれば適用を回避する手段であると言えるが,本発明の発明者は,ボンデ・ボンダリューベ法による潤滑処理における化成処理に代えて,特許文献4に記載の「常温浸炭処理方法」について実験と検討を試みた。   Thus, combining the “lubricating process” performed as a pre-treatment in plastic working with “carburizing” for predicting that the plastic deformability is lowered is a means for those skilled in the art to avoid the application. However, the inventor of the present invention tried to experiment and examine the “room temperature carburizing treatment method” described in Patent Document 4 instead of the chemical conversion treatment in the lubrication treatment by the bonde-bonderube method.

その結果,前述した予測に反し,この処理を行った被加工材では塑性加工時における成形不良の減少,焼き付きの減少や離型性の向上に伴う金型寿命の向上が得られる等,被加工材の表面潤滑性が向上していることを裏付ける実験結果が得られた。   As a result, contrary to the above-mentioned prediction, the workpiece that has been processed in this way has reduced molding defects during plastic processing, reduced seizure, and improved mold life due to improved mold release. Experimental results confirming that the surface lubricity of the material has been improved.

また,図4を参照して説明した従来の潤滑処理において行っていたドライブラストに代え,特許文献4に記載の「常温浸炭処理方法」を実施すると共に,その後,酸洗処理等を省略して化成処理以降の処理を実施する潤滑処理を行った被加工材を使用して塑性加工実験を行ったところ,この場合にも,図4に示した工程に従って潤滑処理を行った被加工材を使用して塑性加工を行った場合に比較して,不良率の減少や金型寿命の延長等,潤滑性の向上を裏付ける結果が確認された。   Further, in place of the drive last performed in the conventional lubrication treatment described with reference to FIG. 4, the “room temperature carburizing treatment method” described in Patent Document 4 is performed, and thereafter the pickling treatment and the like are omitted. A plastic working experiment was performed using a lubricated workpiece that performs the treatment after the chemical conversion treatment. In this case as well, a workpiece that was lubricated according to the process shown in FIG. 4 was used. Compared to the case of plastic working, the results confirming the improvement in lubricity, such as a reduction in the defect rate and an extension of the die life, were confirmed.

上記実験と研究の結果得られた,本発明の塑性加工用被加工材の潤滑処理方法は,
塑性変形させる前の被加工材に対し前処理として行われる,前記被加工材の表面に潤滑性を付与するための潤滑処理において,
前記被加工材の表面に,炭化物粉体を乾式で噴射することにより,前記炭化物粉体中の炭素元素を前記被加工材の表面に付着させて成る潤滑被膜を形成する処理を含むことを特徴とする(請求項1)。
As a result of the above experiments and research, the lubrication method for the plastic working material of the present invention is as follows.
In the lubrication treatment for imparting lubricity to the surface of the workpiece, which is performed as a pretreatment for the workpiece before plastic deformation,
Including a process of forming a lubricating film formed by adhering carbon elements in the carbide powder to the surface of the workpiece by spraying the carbide powder onto the surface of the workpiece in a dry manner. (Claim 1).

上記の潤滑処理方法において,前記炭化物粉体は,SiC(α)等の六方結晶構造を有する炭化物の粉体を使用することが好ましい(請求項2)。   In the above lubricating treatment method, the carbide powder is preferably a carbide powder having a hexagonal crystal structure such as SiC (α).

更に,前記潤滑処理方法において,前記潤滑被膜が形成された前記被加工材の表面を,算術平均粗さ(Ra)で0.2μm以上の凹凸に形成することが好ましい(請求項3)。   Furthermore, in the lubricating treatment method, it is preferable that the surface of the workpiece on which the lubricating coating is formed is formed with irregularities of 0.2 μm or more in arithmetic mean roughness (Ra).

なお,上記炭化物粉体の噴射は,粒径が♯220〜♯1000の前記炭化物粉体を,噴射速度80〜250m/sec,又は噴射圧力を0.2〜0.6MPaで噴射して行うことができる(請求項4)。   The carbide powder is injected by spraying the carbide powder having a particle size of # 220 to # 1000 at an injection speed of 80 to 250 m / sec or an injection pressure of 0.2 to 0.6 MPa. (Claim 4).

なお,本発明の潤滑処理方法は,前記潤滑被膜が形成された前記被加工材の表面に,更に潤滑剤を塗布する工程を含むものとすることができる(請求項5)。   The lubricating treatment method of the present invention may further include a step of applying a lubricant to the surface of the workpiece on which the lubricating coating is formed (Claim 5).

また,本発明の潤滑処理方法は,前記潤滑被膜が形成された前記被加工材の表面に,更に化成処理により潤滑性を有する化成被膜を形成する工程と,前記化成被膜上に更に潤滑剤を塗布する工程を含むものとすることができる(請求項6)。   Further, the lubrication treatment method of the present invention comprises a step of forming a chemical conversion film having lubricity by a chemical conversion treatment on the surface of the workpiece on which the lubricating film is formed, and a lubricant on the chemical conversion film. A step of applying may be included (claim 6).

更に,本発明の塑性加工用被加工材は,前述したいずれかの方法により潤滑処理がされた被加工材である(請求項7)。   Furthermore, the work material for plastic working of the present invention is a work material that has been lubricated by any of the methods described above.

以上で説明した本発明の構成により,本発明の方法で潤滑処理が行われた被加工材を使用して塑性加工を行うことで,以下の顕著な効果を得ることができた。
被加工材の表面に,炭化物粉体の噴射によって潤滑被膜を形成したことで,被加工材の表面に潤滑性を付与することができた。
According to the configuration of the present invention described above, the following remarkable effects can be obtained by performing plastic working using a workpiece that has been lubricated by the method of the present invention.
By forming a lubricant film on the surface of the workpiece by spraying carbide powder, it was possible to impart lubricity to the surface of the workpiece.

このような潤滑被膜は,炭化物粉体を乾式で噴射するという,比較的簡単な方法で形成することができ,しかも,SiC等の等炭化物粉体を使用することで,黒鉛等の炭素粉体を噴射する場合のように粉塵火災や粉塵爆発の危険性がなく,安全に形成することができた。   Such a lubricating coating can be formed by a relatively simple method of spraying carbide powder in a dry manner, and by using an equivalent carbide powder such as SiC, a carbon powder such as graphite. There was no risk of dust fire or dust explosion as in the case of spraying, and it was possible to form safely.

しかも,炭化物粉体を噴射することで,熱処理工程によって表面に生じた酸化被膜の除去や,錆等の汚れの除去も同時に行えることから,別途,これらを除去するために酸洗等の処理を行う必要がなく,工程の省略が可能である。   Moreover, by spraying carbide powder, it is possible to remove the oxide film formed on the surface by the heat treatment process and remove dirt such as rust at the same time. There is no need to perform the process, and the process can be omitted.

前述のようにして形成された潤滑被膜は,従来技術として説明したボンデ・ボンダリューベ法によるリン酸亜鉛被膜に代わる層として,又は,リン酸亜鉛被膜と共にその下地層のいずれとしても使用することができ,いずれの用途で使用した場合共に,ボンデ・ボンダリューベ法による従来の潤滑処理を行った場合に比較して,潤滑性の向上に伴う不良率の減少や,金型寿命の延長を得ることができた。   The lubricating coating formed as described above can be used as a layer in place of the zinc phosphate coating by the Bonde-Bonderube method described as the prior art or as an underlayer together with the zinc phosphate coating. It can be used for any purpose, and the defect rate can be reduced and the die life can be extended with improved lubricity compared to the conventional lubrication process using the bonde-bonderube method. I was able to.

また,従来のリン酸亜鉛被膜の代わりに前述の潤滑被膜を使用する場合には,図4を参照して説明した潤滑処理の工程中,化成処理やこの化成処理に付随する水洗や中和等の処理,酸洗やこれに付随する水洗が不要となる結果,潤滑処理における工程数を大幅に減少させることができる。   In addition, when the above-described lubricating coating is used in place of the conventional zinc phosphate coating, during the lubricating treatment described with reference to FIG. As a result, the number of steps in the lubrication process can be greatly reduced.

また,前述した潤滑被膜をリン酸亜鉛被膜等の化成被膜の下地層として使用する場合であっても,前述したように,本願ではブラスト加工後の酸洗処理を行わない結果,図4を参照して説明した従来の潤滑処理に比較して,大幅に処理工程を減少することが可能である。   Further, even when the above-described lubricating coating is used as a base layer of a chemical conversion coating such as a zinc phosphate coating, as described above, the pickling treatment after blasting is not performed in the present application. Compared to the conventional lubrication process described above, the processing steps can be greatly reduced.

更に,前記炭化物粉体の噴射によって,被加工材の表面に凹凸が形成されて所定の表面粗さに形成されることで,形成された潤滑被膜上に更に水溶性,あるいは油性の潤滑剤,金属セッケン,その他,既知の潤滑剤の塗布を行う場合,塗布された潤滑剤が被加工材の表面に付着し易く,また,一旦付着した潤滑剤は表面の凹凸に毛細管現象等によって保持されて膜切れが生じ難くなることで,潤滑性の一層の向上が得られると共に,潤滑被膜上に更にリン酸亜鉛等の化成被膜を形成する処理を行う場合であっても,この化成被膜の付着性を向上させることができた。   Furthermore, by the injection of the carbide powder, irregularities are formed on the surface of the work material to have a predetermined surface roughness, so that a water-soluble or oil-based lubricant is further formed on the formed lubricating coating. When applying a metal soap or other known lubricant, the applied lubricant is likely to adhere to the surface of the workpiece, and once adhered, the lubricant is held on the surface irregularities by capillarity or the like. Since the film breakage is less likely to occur, the lubricity can be further improved and the adhesion of the chemical conversion film can be improved even when a chemical conversion film such as zinc phosphate is further formed on the lubricating film. Was able to improve.

以上のように,本発明の方法で潤滑処理を行うことで,被加工材の潤滑性を従来の方法に比較して改善することができることから,従来,冷間鍛造では不可能であった物の製造を冷間鍛造での成型可能性,あるいは,熱間鍛造でしか成形できなかった物の温間鍛造での成型可能性を得ることができた。   As described above, the lubrication treatment by the method of the present invention can improve the lubricity of the workpiece as compared with the conventional method. It was possible to obtain the possibility of forming by cold forging, or the possibility of forming by warm forging of products that could only be formed by hot forging.

なお,前述したように,被加工材の表面には,炭化物粉体中の炭素元素が付着することで,塑性加工後に被加工材に焼き入れ等の熱処理を行う場合,表面に付着した炭素が焼入れ性を向上させる効果を発揮する。   As described above, the carbon element in the carbide powder adheres to the surface of the workpiece, so that when the workpiece is subjected to a heat treatment such as quenching after plastic working, the carbon adhering to the surface is not. Demonstrates the effect of improving hardenability.

本発明の方法によりSiC(α)♯400を噴射して潤滑被膜を形成した後の被加工材の表面顕微鏡写真であり,(A)は50倍,(B)は100倍,(C)は1000倍,(D)は500倍。It is a surface micrograph of a workpiece after spraying SiC (α) # 400 by the method of the present invention to form a lubricant film, (A) is 50 times, (B) is 100 times, (C) is 1000 times, (D) is 500 times. 炭化物粉体を噴射した後の被加工材(実施例1)のラマン分光分析結果を示すグラフ。The graph which shows the Raman spectroscopic analysis result of the workpiece (Example 1) after injecting carbide powder. 炭化部粉体を噴射した後の被加工材(実施例1)の電子線マイクロアナライザ(EPMA)の元素マッピングであり,(A)は炭素,(B)はケイ素の元素マッピング。It is an element mapping of the electron beam microanalyzer (EPMA) of the workpiece (Example 1) after spraying the carbonized part powder, (A) is the element mapping of carbon, and (B) is the element mapping of silicon. 冷間鍛造の工程を示した説明図(従来)。Explanatory drawing which showed the process of cold forging (conventional). ボンデ・ボンダリューベ法による潤滑処理を施した後の被加工材の表面部分の断面模式図(従来)。Sectional schematic diagram of the surface portion of the workpiece after lubrication by the bonde-bonderube method (conventional).

次に,本発明の実施形態につき添付図面を参照しながら以下説明する。   Next, embodiments of the present invention will be described below with reference to the accompanying drawings.

なお,以下の説明では,塑性加工の一例として鍛造,特に,冷間鍛造を例に挙げて説明するが,金型等の表面と接触する被加工材の表面に対し潤滑性を付与することが重要であることは,鍛造に限らず,圧延や引き抜きなどのその他の塑性加工においても共通する課題であり,本発明の適用範囲は冷間鍛造や,冷間鍛造に代表される鍛造に限定されず,その他の塑性加工用の被加工材に対しても適用可能である。   In the following description, forging, particularly cold forging, will be described as an example of plastic working. However, lubricity may be imparted to the surface of a workpiece that comes into contact with the surface of a mold or the like. What is important is not only forging but also a common problem in other plastic working such as rolling and drawing, and the scope of the present invention is limited to cold forging and forging typified by cold forging. It can also be applied to other workpieces for plastic working.

塑性加工が一例として冷間鍛造である場合,図4に示したように大別して「素材取り」,「熱処理」,「潤滑処理」,及び「プレス(鍛造)」の各工程によって構成されている点は既に説明した通りであり,このような冷間鍛造用の被加工材に対し本発明を適用する場合,本発明が,このうちの「潤滑処理」に関するものである点は,図4を参照して説明した,ボンデ・ボンダリューベ法による潤滑処理と同様である。   When plastic working is cold forging as an example, as shown in FIG. 4, it is roughly divided into “material removal”, “heat treatment”, “lubrication”, and “press (forging)” processes. The point is as described above, and when the present invention is applied to such a material for cold forging, the present invention relates to the “lubricating treatment” of FIG. This is the same as the lubrication treatment by the Bonde-Bondalube method described above.

但し,本発明の潤滑処理方法では,従来技術として説明したボンデ・ボンダリューベ法における化成被膜の形成に代え,あるいは,この化成被膜を形成する下地処理として炭化物粉体を乾式で噴射することによる潤滑被膜の形成を行うものである点において,従来の潤滑処理とは異なる。   However, in the lubrication treatment method of the present invention, instead of forming the chemical conversion film in the Bonde-Bondalube method described as the prior art, or by applying a dry powder of carbide powder as a base treatment for forming this chemical conversion film, It differs from conventional lubrication treatment in that it forms a coating.

前述したように,対象とする塑性加工が一例として冷間鍛造である場合,本発明の処理対象となる被加工材とは,素材取りによって製造される製品1個分の大きさに切り出され,且つ,塑性変形性を向上等させるための所定の熱処理が施された後の被加工材である。   As described above, when the target plastic working is cold forging as an example, the workpiece to be processed according to the present invention is cut into a size of one product manufactured by material removal, In addition, the workpiece is subjected to a predetermined heat treatment for improving plastic deformability.

なお,本発明の潤滑処理では,前工程である熱処理によって被加工材の表面に形成されている酸化被膜や,被加工材の表面に生じている錆等の汚れは,後述する炭化物粉体の噴射・衝突によって除去されることから,熱処理後の被加工材に対し,炭化物粉体の噴射を行う前に酸洗等の処理を行う必要は無い(但し,行っても差しつかえない。)。   In the lubrication treatment of the present invention, the oxide film formed on the surface of the work material by the heat treatment that is the previous step, and dirt such as rust generated on the surface of the work material are caused by the carbide powder described later. Since it is removed by jetting / collision, it is not necessary to subject the workpiece after heat treatment to pickling before the carbide powder is jetted (although it can be done).

対象とする被加工材の材質としては,塑性加工,本実施形態では冷間鍛造の対象となる金属材料であれば特に限定されず,各種の金属材料を加工対象とすることができ,鋼等の鉄系金属に限定されず,アルミニウム合金等の非鉄系金属についても対象とすることができる。   The material of the material to be processed is not particularly limited as long as it is a metal material that is the object of plastic working, in this embodiment, cold forging, and various metal materials can be processed, such as steel. However, the present invention is not limited to ferrous metals, and nonferrous metals such as aluminum alloys can also be targeted.

本発明の表面処理方法における炭化物粉体の噴射は,これを乾式で行うものであれば,既知のサンドブラスト処理乃至はショットピーニング処理等に適用される各種のブラスト加工装置を使用することができる。   In the surface treatment method of the present invention, the carbide powder can be sprayed by various types of blasting apparatus applied to a known sandblasting process or shot peening process as long as this is performed in a dry manner.

このようなブラスト加工装置としては,遠心力によって粉体を投射する遠心式等を使用することも可能であるが,噴射速度,噴射圧力等の制御が比較的容易である,エア式のブラスト加工装置を好適に使用することができる。   As such a blasting device, it is possible to use a centrifugal type that projects powder by centrifugal force, but it is relatively easy to control the injection speed, injection pressure, etc. The apparatus can be preferably used.

このようなエア式のブラスト加工装置としては,重力式(サクション式),直圧式等の各種方式のブラスト加工装置が提供されているが,本発明の処理方法では圧縮気体と共に噴射粉体を所定の噴射速度,あるいは噴射圧力で噴射することができるものであれば,いずれの型式のブラスト加工装置を使用しても良く,その噴射形式等は特に限定されない。   As such an air type blasting apparatus, various types of blasting apparatuses such as a gravity type (suction type), a direct pressure type, etc. are provided. Any type of blasting apparatus may be used as long as it can be injected at an injection speed or an injection pressure, and the injection type is not particularly limited.

前述の被加工材の表面に対する潤滑被膜の形成は,炭化物粉体を噴射して,この炭化物粉体中の炭素元素を被加工材の表面に付着させることにより行われる。   The formation of the lubricating film on the surface of the workpiece is performed by spraying carbide powder and attaching the carbon element in the carbide powder to the surface of the workpiece.

噴射する炭化物粉体としては,既知の各種の炭化物の粉体を使用可能であるが,好ましくは,その結晶構造が,六方結晶構造を有する炭化物の粉体を使用する。   As the carbide powder to be sprayed, various known carbide powders can be used. Preferably, a carbide powder whose crystal structure has a hexagonal crystal structure is used.

このような六方結晶構造を有する炭化物としては,炭化ケイ素〔SiC(α)〕,炭化タングステン(WC),炭化モリブデン(MoC)を挙げることができる。 Examples of the carbide having such a hexagonal crystal structure include silicon carbide [SiC (α)], tungsten carbide (WC), and molybdenum carbide (Mo 2 C).

使用する噴射粉体の粒径と,噴射速度又は噴射圧力は,被加工材の材質や寸法精度等に応じて適宜設定可能であるが,炭化物粉体の好ましい粒径の範囲は,♯220〜♯1000の範囲で,噴射速度は80〜250m/sec,噴射圧力は0.2〜0.6MPaの範囲である。   The particle size, the injection speed, or the injection pressure of the injection powder to be used can be set as appropriate according to the material of the workpiece, the dimensional accuracy, etc., but the preferred particle size range of the carbide powder is from # 220 to In the range of # 1000, the injection speed is in the range of 80 to 250 m / sec, and the injection pressure is in the range of 0.2 to 0.6 MPa.

このようにして炭化物粉体を被加工材の表面に乾式で噴射すると,被加工材の表面に高速で衝突した炭化物粉体は,衝突時の発熱により被加工材の表面で瞬間的に変態温度〔一例としてSiC(α)で2100℃〕以上の温度に迄上昇して,その一部が炭素(C)とその他の成分〔炭化物粉体がSiC(α)の場合には,Si〕に分解され,単独の成分として被処理成品の表面に付着する。   When carbide powder is sprayed dry onto the surface of the workpiece in this way, the carbide powder that collides with the surface of the workpiece at a high speed is instantaneously transformed on the surface of the workpiece due to heat generated during the collision. [As an example, the temperature rises to 2100 ° C for SiC (α)] or higher, and part of it decomposes into carbon (C) and other components [Si when the carbide powder is SiC (α)] And adheres to the surface of the processed product as a single component.

このようにして被加工材の表面に付着する炭素(C)は,その一部は被加工材の内部に迄拡散浸透しているものの,被加工材の表面において最も高濃度に分布しており,しかも,被加工材の表面に偏ることなく均一に分布して,被加工物の表面部分に炭素の層(潤滑被膜)を形成する。   Although carbon (C) adhering to the surface of the workpiece in this way partially diffuses and penetrates to the inside of the workpiece, it is distributed at the highest concentration on the surface of the workpiece. In addition, a carbon layer (lubricating film) is formed on the surface portion of the work piece evenly distributed without being biased toward the surface of the work piece.

また,炭化物粉体との衝突によって被加工物の表面には微少な凹凸が形成されることで,図1に示すように梨地状に変化する。好ましくは,被加工材の表面を,算術平均粗さ(Ra)で0.2μm以上の粗さを有する梨地状となるように炭化物粉体の噴射を行う。   Further, fine bumps are formed on the surface of the workpiece due to the collision with the carbide powder, so that it changes into a satin finish as shown in FIG. Preferably, the carbide powder is sprayed so that the surface of the workpiece has a satin finish having an arithmetic average roughness (Ra) of 0.2 μm or more.

表面を前述した表面粗さとすることで,後述するように,被加工材の表面に更に潤滑剤(潤滑油)の塗布を行う場合,あるいは,化成被膜を形成する場合に,潤滑剤や化成被膜の付着性を向上させて,良好な潤滑性を得ることができる。   By making the surface rough as described above, as will be described later, when a lubricant (lubricating oil) is further applied to the surface of the workpiece or when a chemical conversion film is formed, the lubricant or chemical conversion film is used. It is possible to improve the adhesion of the resin and obtain good lubricity.

以上のようにして,炭化物粉体の噴射による潤滑被膜の形成が行われた被加工材の表面に対しては,必要に応じてエアの吹きつけや水洗による粉塵等の除去,脱脂等を行っても良い。   As described above, the surface of the work material on which a lubricant film has been formed by spraying carbide powder is subjected to air blowing, dust removal, degreasing, etc., as necessary. May be.

但し,本願の潤滑処理では,図4を参照して説明した従来の潤滑処理とは異なり,ブラスト処理後の被加工材に対する酸洗処理は行わない。   However, in the lubrication process of the present application, unlike the conventional lubrication process described with reference to FIG. 4, the pickling process is not performed on the workpiece after the blasting process.

すなわち,本発明の方法では,噴射粉体としてSiC等の硬質材料である炭化物系セラミックスを噴射することから,熱処理時に被加工材の表面に付着している酸化被膜や錆に等の汚れは炭化物粉体の噴射によって除去できるために酸洗を別途行う必要が無い一方,酸洗を行うと,炭化物粉体の衝突によって被加工材の表面に形成された潤滑被膜が除去されるおそれがあり,炭化物粉体の噴射後における酸洗はむしろ好ましくない。   That is, in the method of the present invention, carbide ceramics, which are hard materials such as SiC, are sprayed as the spray powder, so that dirt such as oxide film and rust adhering to the surface of the workpiece during heat treatment is carbide. Since it can be removed by spraying powder, there is no need to perform pickling separately. On the other hand, if pickling is performed, the lubricant film formed on the surface of the workpiece may be removed by collision of carbide powder. Pickling after injection of carbide powder is rather undesirable.

以上のようにして,炭化物粉体の噴射によって形成された潤滑被膜は,従来技術として説明したボンデ・ボンダリューベ法において化成処理で形成していたリン酸亜鉛被膜に代わるものとして使用するものとしても良く,あるいは,この潤滑被膜を下地層とし,その上に,更にリン酸亜鉛被膜などの化成被膜の形成を行っても良い。   As described above, the lubricating coating formed by the injection of carbide powder may be used as an alternative to the zinc phosphate coating formed by chemical conversion treatment in the Bonde-Bondalube method described as the prior art. Alternatively, this lubricating coating may be used as a base layer, and a chemical conversion coating such as a zinc phosphate coating may be further formed thereon.

炭化物粉体の噴射によって形成した潤滑被膜を,従来技術として説明した化成被膜に代えて使用する場合,この潤滑被膜が形成された被加工材をそのままプレス(鍛造)工程に付すものとしても良いが,好ましくは,この潤滑被膜上に,更に,潤滑剤を塗布する。   When a lubricating coating formed by injection of carbide powder is used in place of the chemical conversion coating described as the prior art, the workpiece on which this lubricating coating is formed may be directly subjected to the pressing (forging) process. Preferably, a lubricant is further applied on the lubricating coating.

潤滑被膜上の塗布する潤滑剤としては,金属セッケン等の潤滑剤,一液(被反応)系の潤滑剤,固体潤滑剤の粉体等を水や鉱物油,油脂類,カルボン酸塩等に分散させた,水溶性あるいは油性の潤滑剤等,既知の各種の潤滑材を使用することができ,塗布する潤滑剤の種類によっては,塗布後,乾燥を行っても良く,このようにして被加工材に対する潤滑処理が終了する。   Lubricants to be applied on the lubricant film include metal soaps, one-component (reacted) lubricants, solid lubricant powders, etc. in water, mineral oil, oils and fats, carboxylates, etc. Various known lubricants such as water-soluble or oil-based lubricants dispersed can be used, and depending on the type of lubricant to be applied, it may be dried after application. The lubrication process for the workpiece is completed.

炭化物粉体の噴射によって形成した潤滑被膜を,従来技術として説明した化成被膜の下地層として使用する場合には,この潤滑被膜が形成された被加工材に対し,更に化成処理を行って,リン酸亜鉛被膜に代表される化成被膜を形成すると共に,この潤滑被膜上に,更に,潤滑剤を塗布し,必要に応じて乾燥工程を経て,潤滑処理を終了する。   When the lubricating coating formed by spraying carbide powder is used as the underlayer of the chemical conversion coating described as the prior art, further chemical conversion treatment is performed on the workpiece on which this lubricating coating is formed, A chemical conversion film typified by a zinc acid film is formed, and a lubricant is further applied onto the lubricating film, and if necessary, a lubricating process is completed through a drying process.

以上のように,炭化物粉体の噴射による潤滑被膜の形成を工程中に含む本発明の潤滑処理を行った被加工材を使用して行った塑性加工では,潤滑被膜を従来の化成被膜の代わりに使用した場合,及び,従来の化成被膜の下地層として使用した場合のいずれの例においても,不良率の発生を大幅に低減することができ,また,金型の寿命を延ばすことができた。   As described above, in the plastic working performed using the workpiece subjected to the lubricating treatment of the present invention including the formation of the lubricating coating by the injection of carbide powder in the process, the lubricating coating is used instead of the conventional chemical coating. In both cases, when used as an undercoat and as an underlayer of a conventional chemical conversion coating, the occurrence of defect rates could be greatly reduced and the life of the mold could be extended. .

ここで,製品に生じる不良,例えば,肌あれ,しわ傷,かじり傷,型ずれ等の不良は,金型との接触部分において被加工材が良好な塑性流動性を示さないこと,すなわち,潤滑不良が原因の一つと考えられることから,このような不良の発生が減少して,不良率の低下が得られている本発明の潤滑処理では,従来の処理に比較して,被加工材の表面に対しより高い潤滑性を付与することができていることが判る。   Here, defects that occur in the product, for example, rough skin, wrinkles, galling, misalignment, etc., indicate that the workpiece does not exhibit good plastic fluidity at the contact part with the mold, that is, lubrication. Since the failure is considered to be one of the causes, the occurrence of such defects is reduced, and the lubrication treatment of the present invention in which the failure rate is reduced is compared with the conventional treatment. It can be seen that higher lubricity can be imparted to the surface.

また,金型の寿命の延長より,被加工材表面と金型との摩擦抵抗が減少していること,焼き付きの防止や離型性の向上等が得られていることが予測でき,この点からも,本発明の潤滑処理では,従来の潤滑処理に比較して,より高い潤滑性を被加工材の表面に付与することができていることが判る。   In addition, it can be predicted that the frictional resistance between the workpiece surface and the mold is reduced, the seizure is prevented, and the mold release is improved. Therefore, it can be seen that the lubrication treatment of the present invention can impart higher lubricity to the surface of the workpiece as compared with the conventional lubrication treatment.

このような潤滑性の向上は,被加工材の表面に炭素が付着することにより潤滑被膜が形成されていること,被加工材の表面に形成された微細な凹凸が,塗布された潤滑剤や化成被膜の付着性を向上させて膜切れが防止されたこと,更に,被加工材の表面は,前述した表面粗さの凹凸に形成されて梨地状とされることで,表面の小さなキズが変形の起点となり均一な変形を生じ易く,且つ,力が一点に集中せずに均一に及ぶために割れ等が発生し難くなることで,塑性変形を生じ易い表面に改質されたことの相乗効果によって得られたものと考えられる。   This improvement in lubricity is due to the fact that a lubricating film is formed by carbon adhering to the surface of the workpiece, and that the fine irregularities formed on the surface of the workpiece are not coated with the applied lubricant or The adhesion of the chemical conversion coating was improved to prevent film breakage. Furthermore, the surface of the workpiece was formed with the above-mentioned surface roughness irregularities and formed into a satin finish, so that small scratches on the surface could be obtained. It is the starting point of deformation, and it is easy to cause uniform deformation, and since the force does not concentrate on a single point but spreads uniformly, cracks and the like are less likely to occur. It is thought that it was obtained by the effect.

もっとも,図4を参照して説明したように,従来の潤滑処理においても化成処理に先立ってドライブラストによる表面凹凸の形成が行われていたことを考えれば,上記潤滑性の向上は,主として,炭化物粉体の噴射によって炭化物粉体中の炭素元素が付着することにより形成された,前述の潤滑被膜を設けたことによる潤滑性の向上が大きく貢献しているものと考えられる。   However, as described with reference to FIG. 4, in view of the fact that surface ruggedness was formed by drive last prior to chemical conversion treatment in the conventional lubrication treatment, the improvement in lubricity is mainly as follows. It is considered that the improvement in lubricity due to the provision of the above-described lubricating coating, which is formed by adhering the carbon element in the carbide powder by the injection of the carbide powder, greatly contributes.

〔潤滑被膜の形成〕
直径20mm,長さ40mmの円柱形状を有するSUS304製の被加工材に対し,下記の表1に示す条件で炭化物粉体の噴射を行い,被加工材の表面に,炭化物粉体中の炭素元素の付着と,炭素層(潤滑被膜)が形成されることを確認した。
[Formation of lubricating film]
Carbide powder is injected to the workpiece made of SUS304 having a cylindrical shape with a diameter of 20 mm and a length of 40 mm under the conditions shown in Table 1 below, and the carbon element in the carbide powder is applied to the surface of the workpiece. And carbon layer (lubricant film) was formed.

表1に示す条件で炭化物粉体を噴射した後の被加工材のラマン分光分析結果を図2に示す。   FIG. 2 shows the results of Raman spectroscopic analysis of the workpiece after the carbide powder is injected under the conditions shown in Table 1.

図2の分析結果(図中の矢印部分を参照)より,噴射粉体であるSiC中のケイ素(Si)と炭素(C)がそれぞれ被加工材の表面に単独の成分で付着していること,すなわち,噴射されたSiC粉体が,SiとCに分解されて被加工材の表面に付着していることが判る。   From the analysis result of FIG. 2 (see the arrow in the figure), silicon (Si) and carbon (C) in SiC, which is the spray powder, each adhere to the surface of the workpiece as a single component. That is, it can be seen that the injected SiC powder is decomposed into Si and C and adhered to the surface of the workpiece.

また,上記表面処理を行った後の被加工材のEPMAマッピング図〔図3(A),(B)〕より,分解した成分中,ケイ素(Si)成分については部分的に偏在していることが確認されたが,炭素(C)については,被加工材の表面に均一に分布していることが確認された〔図3(A)参照〕。   In addition, from the EPMA mapping diagram [FIGS. 3A, 3B] of the workpiece after the surface treatment, the silicon (Si) component is partially unevenly distributed among the decomposed components. However, it was confirmed that carbon (C) was uniformly distributed on the surface of the workpiece (see FIG. 3A).

この炭素Cは,その一部は被加工材の内部に迄拡散浸透しているものの,被加工材の表面部分において最も高濃度に分布しており,噴射されたSiC中の炭素C,及び一部がSi又は,SiOの状態で,被加工物の表面に付着して層(潤滑被膜)を形成していることが判る。 Although a part of the carbon C diffuses and penetrates to the inside of the workpiece, the carbon C is distributed at the highest concentration in the surface portion of the workpiece, and the carbon C in the injected SiC It can be seen that the portion (Si or SiO 2 ) adheres to the surface of the workpiece and forms a layer (lubricating film).

〔温間鍛造試験〕
以上のようにして炭化物粉体の噴射を行った後の被加工材をパーツフィーダで1個ずつコーティング装置に搬送して,更に表面に潤滑剤として温間鍛造油(固体潤滑剤としてグラファイトを含有)を塗布して,潤滑処理を終了した。
[Warm forging test]
The workpiece after spraying carbide powder as described above is transported to the coating device one by one with a parts feeder, and the surface is warm forged oil (containing graphite as a solid lubricant) as a lubricant. ) Was applied to finish the lubrication process.

上記潤滑処理を行った後の被加工材を,加熱炉に導入して加熱して温間鍛造を行った。   The workpiece after the above lubrication treatment was introduced into a heating furnace and heated to perform warm forging.

実施例1と同様の加工条件で,アランダム(Al)を用いた処理を行った被加工材では,潤滑不良によって5%前後の不良率が発生していたが,本実施例の潤滑処理を行った被加工材では,不良率が1%以下に減少した。 In a workpiece processed with alundum (Al 2 O 3 ) under the same processing conditions as in Example 1, a failure rate of around 5% occurred due to poor lubrication. For the workpieces that were lubricated, the defect rate decreased to 1% or less.

また,本実施例の潤滑処理を行った被加工材を使用した温間鍛造では,従来技術に比較して,金型の寿命を30%以上延長できることが確認された。   Further, it was confirmed that the warm forging using the work material subjected to the lubrication treatment of this example can extend the life of the mold by 30% or more as compared with the prior art.

更に,温間鍛造で得られた製品の表面粗さが向上し,後加工を簡略化できた。   Furthermore, the surface roughness of the product obtained by warm forging was improved, and post-processing could be simplified.

以上の結果から,炭化物粉体の噴射によって形成された潤滑被膜が,被加工材の表面における潤滑性の向上に大きく寄与していることが確認された。   From the above results, it was confirmed that the lubricating coating formed by the injection of carbide powder greatly contributed to the improvement of the lubricity on the surface of the workpiece.

直径40mm,長さ60mmの円柱形状を有するSCM415製の被加工材(ピーリング仕上げ)に対し,熱処理として球状焼なまし処理を行った後,潤滑処理を行った。   A SCM415 work piece (peeling finish) having a cylindrical shape with a diameter of 40 mm and a length of 60 mm was subjected to a spherical annealing treatment as a heat treatment and then a lubrication treatment.

本実施例における潤滑処理は,下記の表2に示す条件で炭化物粉体を噴射して潤滑被膜を形成し,その後,既知の方法によりリン酸亜鉛の化成被膜を形成すると共に,化成被膜上に更に潤滑剤として冷間鍛造用潤滑油〔固体潤滑剤として二硫化モリブデン(MoS2)を含有〕を塗布した。 In this embodiment, the lubricating treatment is performed by injecting carbide powder under the conditions shown in Table 2 below to form a lubricating coating, and then forming a zinc phosphate conversion coating by a known method, and forming a lubricant coating on the conversion coating. Further, a cold forging lubricating oil (containing molybdenum disulfide (MoS 2 ) as a solid lubricant) was applied as a lubricant.

上記潤滑処理後の被加工材に対し,冷間圧延を行ってピニオンギヤに成形し,従来の潤滑処理(ボンデ・ボンダリューベ法)を行った被加工材に対する冷間鍛造の場合における不良率及び金型寿命と比較した。   The workpiece after the above-mentioned lubrication treatment is cold-rolled and formed into a pinion gear, and the defect rate and gold in the case of cold forging for the workpiece subjected to the conventional lubrication treatment (Bonde Bonderube method) Compared with mold life.

本実施例の潤滑処理を行った被処理材を使用した冷間鍛造では,従来の潤滑処理を行った場合に比較して,実施例1の場合と同様の不良率の低下と,金型寿命の延長が得られることが確認された。   In cold forging using the material to be treated in this embodiment, the defect rate is reduced and the die life is the same as in the case of Embodiment 1 compared to the conventional lubrication. It was confirmed that an extension of

このことから,炭化物粉体の噴射により被加工材の表面に炭素元素を付着させることにより形成した潤滑被膜は,化成被膜の下地層として形成した場合であっても,被加工材の表面における潤滑性の向上に貢献するものであることが確認された。   Therefore, the lubrication film formed by adhering carbon element to the surface of the work material by spraying carbide powder, even if it is formed as an underlayer of the conversion film, is lubricated on the surface of the work material. It was confirmed that it contributes to the improvement of sex.

また,本実施例で行った潤滑処理では,ブラスト加工後の酸洗処理は行わないため,図4を参照して説明した従来の潤滑処理に比較して,酸洗,及び酸洗に付随して行われる水洗が不要となる分,処理工程を少なくでき,また,処理設備の縮小,酸洗に伴う廃液処理の減少等が可能となる。   In addition, since the pickling process after blasting is not performed in the lubrication process performed in this embodiment, the pickling process and the pickling process are associated with the conventional lubrication process described with reference to FIG. Therefore, the number of processing steps can be reduced, and the processing equipment can be reduced, and waste liquid processing associated with pickling can be reduced.

なお,本実施例の潤滑処理を行った後,冷間鍛造を施して得られた成形品に対し浸炭処理を行ったところ,従来の潤滑処理を行った被加工材を使用して製造した成形品に比較して,浸炭時間を30%短縮することができ,また,浸炭歪みの発生を減少させることができた。   In addition, after performing the lubrication treatment of this example, carburizing treatment was performed on the molded product obtained by performing cold forging, and the molding produced using the work material subjected to the conventional lubrication treatment. Compared to products, carburizing time could be shortened by 30% and carburizing distortion could be reduced.

このことから,潤滑処理において炭化物粉体を噴射することにより被処理材の表面に付着した炭素元素は,塑性変形時における潤滑性の付与に貢献するのみならず,塑性変形後に行う熱処理において,焼き入れ性の向上等にも貢献することが確認された。   From this, carbon elements adhering to the surface of the material to be treated by spraying carbide powder in the lubrication treatment not only contribute to imparting lubricity during plastic deformation, but also in the heat treatment performed after plastic deformation. It was confirmed that it also contributes to improvement of insertability.

更に,本発明の塑性加工用被加工材は,塑性変形前の被加工材の表面に,六方結晶構造を有する炭化物粉体中の炭素元素が付着した潤滑被膜を有すると共に,前記潤滑被膜の表面が,算術平均粗さ(Ra)で0.2μm以上の凹凸であることを特徴とする(請求項7)。
Furthermore, the workpiece for plastic working according to the present invention has a lubricating coating on which carbon elements in carbide powder having a hexagonal crystal structure are attached to the surface of the workpiece before plastic deformation, and the surface of the lubricating coating. Are irregularities with an arithmetic mean roughness (Ra) of 0.2 μm or more (claim 7).

Claims (7)

塑性変形させる前の被加工材に対し前処理として行われる,前記被加工材の表面に潤滑性を付与するための潤滑処理において,
前記被加工材の表面に,炭化物粉体を乾式で噴射することにより,前記炭化物粉体中の炭素元素を前記被加工材の表面に付着させて成る潤滑被膜を形成する処理を含むことを特徴とする,塑性加工用被加工材の潤滑処理方法。
In the lubrication treatment for imparting lubricity to the surface of the workpiece, which is performed as a pretreatment for the workpiece before plastic deformation,
Including a process of forming a lubricating film formed by adhering carbon elements in the carbide powder to the surface of the workpiece by spraying the carbide powder onto the surface of the workpiece in a dry manner. Lubricating method for workpieces for plastic working.
前記炭化物粉体が,六方結晶構造を有する炭化物の粉体であることを特徴とする請求項1記載の塑性加工用被加工材の潤滑処理方法。   2. The method for lubricating a workpiece for plastic working according to claim 1, wherein the carbide powder is a carbide powder having a hexagonal crystal structure. 前記潤滑被膜が形成された前記被加工材の表面を,算術平均粗さ(Ra)で0.2μm以上の凹凸に形成したことを特徴とする請求項1又は2記載の塑性加工用被加工材の潤滑処理方法。   The workpiece for plastic working according to claim 1 or 2, wherein the surface of the workpiece on which the lubricating coating is formed is formed with irregularities of 0.2 µm or more in arithmetic mean roughness (Ra). Lubrication treatment method. 粒径が♯220〜♯1000の前記炭化物粉体を,噴射速度80〜250m/sec,又は噴射圧力を0.2〜0.6MPaで噴射することを特徴とする請求項1又は2記載の塑性加工用被加工材の潤滑処理方法。   3. The plastic according to claim 1, wherein the carbide powder having a particle size of # 220 to # 1000 is injected at an injection speed of 80 to 250 m / sec or an injection pressure of 0.2 to 0.6 MPa. Lubrication method for workpieces for processing. 前記潤滑被膜が形成された前記被加工材の表面に,更に潤滑剤を塗布する工程を含むことを特徴とする請求項1〜4いずれか1項記載の塑性加工用被加工材の潤滑処理方法。   5. The method for lubricating treatment of a workpiece for plastic working according to claim 1, further comprising a step of applying a lubricant to the surface of the workpiece on which the lubricating coating is formed. . 前記潤滑被膜が形成された前記被加工材の表面に,更に化成処理により潤滑性を有する化成被膜を形成する工程と,前記化成被膜上に更に潤滑剤を塗布する工程を含むことを特徴とする請求項1〜4いずれか1項記載の塑性加工用被加工材の潤滑処理方法。   The method further comprises a step of forming a chemical conversion film having lubricity by chemical conversion treatment on the surface of the workpiece on which the lubricating film is formed, and a step of further applying a lubricant on the chemical conversion film. The lubrication processing method of the workpiece for plastic working of any one of Claims 1-4. 請求項1〜6いずれか1項記載の方法により潤滑処理がされた塑性加工用被加工材。   A workpiece for plastic working that has been lubricated by the method according to claim 1.
JP2015020573A 2015-02-04 2015-02-04 Lubricating method for work material for plastic working and work material for plastic working Active JP6000384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015020573A JP6000384B2 (en) 2015-02-04 2015-02-04 Lubricating method for work material for plastic working and work material for plastic working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015020573A JP6000384B2 (en) 2015-02-04 2015-02-04 Lubricating method for work material for plastic working and work material for plastic working

Publications (2)

Publication Number Publication Date
JP2016140905A true JP2016140905A (en) 2016-08-08
JP6000384B2 JP6000384B2 (en) 2016-09-28

Family

ID=56569314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015020573A Active JP6000384B2 (en) 2015-02-04 2015-02-04 Lubricating method for work material for plastic working and work material for plastic working

Country Status (1)

Country Link
JP (1) JP6000384B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465145A (en) * 1977-10-26 1979-05-25 Bbc Brown Boveri & Cie Isothermal casting of material
JPH03162588A (en) * 1989-11-22 1991-07-12 Kawamura Kenkyusho:Kk Formation of coating film of solid lubricant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465145A (en) * 1977-10-26 1979-05-25 Bbc Brown Boveri & Cie Isothermal casting of material
JPH03162588A (en) * 1989-11-22 1991-07-12 Kawamura Kenkyusho:Kk Formation of coating film of solid lubricant

Also Published As

Publication number Publication date
JP6000384B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
KR101659077B1 (en) Surface-oxide abrasion-resistant lubricant coating and method for forming the same
Tomala et al. Tribological performance of some solid lubricants for hot forming through laboratory simulative tests
CN102218647A (en) Texturing and self-lubricating treatment method for metal plastic forming die
CN105316532B (en) Aluminium alloy bimetallic material manufacture method for sandwich construction sliding bearing
Schubert et al. Manufacturing of surface microstructures for improved tribological efficiency of powertrain components and forming tools
JP6649991B2 (en) Surface treatment method for mold molding surface
JP4772082B2 (en) Method for forming surface-enhanced coating and surface-enhanced product
JP6000384B2 (en) Lubricating method for work material for plastic working and work material for plastic working
JP6371333B2 (en) Aluminum adhesion prevention method
KR101523546B1 (en) Method for manufacturing non phosphate coated metal material for cold heading plastic working
KR101547442B1 (en) Method for manufacuring a helical gear using powder metallugy
JPH11200067A (en) Ceramic dispersion plating method
KR100602897B1 (en) Method for forming metal parts by cold deformation
JP5680998B2 (en) Method for forming lubricating film for plastic working
JP6629979B2 (en) Method for producing a steel product having a Zn coating and a tribologically active layer deposited on the coating, and a steel product produced according to the method
JP4104570B2 (en) Manufacturing method of sliding member
JP2010214418A (en) Method for producing press-formed article
Shivpuri et al. Lubricants and their applications in forging
JP4814622B2 (en) Mold surface treatment method and mold
Krykhtin et al. Development of Technological Bases for Manufacturing Blanks of Friction Disks with Molybdenum Gas-Thermal Coating for Working in Oil in Units of Transport Machines
KR20100027676A (en) Metal forming dies and mold having deep nitriding hard layer and excellent lubricant, and a method of preparing the same
JP2016113642A (en) Method for manufacturing sliding member
KR101124260B1 (en) A thread rolling method for titanium alloys
JP2001334358A (en) Method for manufacturing engine block
Ghulam et al. Application of ceramic film as means of lubrication for forming of Ti sheet in a highly localized deformation process

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160830

R150 Certificate of patent or registration of utility model

Ref document number: 6000384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250