JP2016140262A - Method for predicting risk of metastatic recurrence of hepatocellular carcinoma - Google Patents

Method for predicting risk of metastatic recurrence of hepatocellular carcinoma Download PDF

Info

Publication number
JP2016140262A
JP2016140262A JP2015016586A JP2015016586A JP2016140262A JP 2016140262 A JP2016140262 A JP 2016140262A JP 2015016586 A JP2015016586 A JP 2015016586A JP 2015016586 A JP2015016586 A JP 2015016586A JP 2016140262 A JP2016140262 A JP 2016140262A
Authority
JP
Japan
Prior art keywords
gene
hcc
recurrence
mrna
expression level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015016586A
Other languages
Japanese (ja)
Other versions
JP6551967B2 (en
Inventor
正朗 岡
Masao Oka
正朗 岡
彰一 硲
Shoichi Hazama
彰一 硲
亮一 恒富
Ryoichi Tsunetomi
亮一 恒富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2015016586A priority Critical patent/JP6551967B2/en
Publication of JP2016140262A publication Critical patent/JP2016140262A/en
Application granted granted Critical
Publication of JP6551967B2 publication Critical patent/JP6551967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for predicting the risk of metastatic recurrence of hepatocellular carcinoma and a kit for predicting the risk of metastatic recurrence of hepatocellular carcinoma because hepatocellular carcinoma is a disease that has a high rate of metastatic recurrence, and the metastatic recurrence has a worse prognosis than de novo recurrence, and therefore it is important to early predict the risk of metastatic recurrence.SOLUTION: A risk of metastatic recurrence of hepatocellular carcinoma is predicted by using expression levels of mRNAs of TM4SF19 gene, HILPDA gene, KISS1 gene, PAPPA gene, or RAB27B gene in a biological sample collected from a subject or by using expression levels of proteins encoded by the mRNAs as an indicator.SELECTED DRAWING: Figure 2

Description

本発明は、肝細胞がんの転移性再発リスクを予測する方法や、かかる方法に用いるためのキットに関する。   The present invention relates to a method for predicting the risk of metastatic recurrence of hepatocellular carcinoma and a kit for use in such a method.

我が国では死亡原因の第1位はがんであり、その対策は国民の健康という観点から最重要課題となっている。肝細胞がん(hepatocellular carcinoma;HCC、以下、「HCC」ともいう)の発生率は世界で第6位であり、死亡率もがん関連死の第3位であることが報告されている。HCCは、その殆どがウイルス感染に起因する慢性肝炎や、慢性肝炎から進行した肝硬変を背景として発症することが知られており、HCC患者の中で、C型肝炎ウイルス(HCV)に陽性である人の割合は約70%にのぼる(非特許文献1)。肝炎ウイルスがHCCを引き起こすメカニズムの詳細は明らかにされていないが、ウイルスの持続感染が慢性肝炎や肝硬変等を引き起こす過程で、肝細胞のがん化が起こると考えられている。   In Japan, the number one cause of death is cancer, and countermeasures are the most important from the viewpoint of the health of the people. It has been reported that the incidence of hepatocellular carcinoma (HCC, hereinafter also referred to as “HCC”) is the sixth in the world, and the mortality rate is also the third most common cancer-related death. HCC is known to develop mainly against chronic hepatitis caused by viral infection and cirrhosis that has progressed from chronic hepatitis, and is positive for hepatitis C virus (HCV) among HCC patients. The proportion of people is about 70% (Non-patent Document 1). Although details of the mechanism by which hepatitis virus causes HCC have not been clarified, it is thought that hepatocyte canceration occurs in the process where persistent infection of the virus causes chronic hepatitis, cirrhosis, and the like.

現在のところ、HCC治療法としては外科的な摘除手術が有効であるとされているが、術後5年以内の再発率は40〜80%ときわめて高く、しかも予後不良であることが知られている(非特許文献2)。この再発率の高さは、肝炎ウイルス感染を素地とするde novoによる再発(多中心性再発)に加えて、肝内転移による再発の2つが要因となっている。以上のように、HCCの治療には、高い再発の危険性が伴っており、特に肝内転移による術後早期の再発は予後不良で有り、外科的な摘除手術の治療後の再発を予測するためのバイオマーカーの開発は同時に転移抑制法の開発にもつながり、HCC患者のQOL(quality of life)の観点から非常に重要であると共に、外科的な摘除手術の治療後は再発を怖れずに安心して暮らせる術後補助療法が求められている。   At present, surgical resection is said to be effective as a treatment for HCC, but the recurrence rate within 5 years after surgery is as high as 40 to 80%, and it is known that the prognosis is poor. (Non-Patent Document 2). This high recurrence rate is due to the recurrence due to intrahepatic metastasis in addition to the recurrence due to de novo based on hepatitis virus infection (multicentric recurrence). As described above, the treatment of HCC is associated with a high risk of recurrence, and in particular, early recurrence due to intrahepatic metastasis has a poor prognosis, and predicts recurrence after surgical removal surgery. The development of biomarkers for this purpose also leads to the development of metastasis suppression methods, which is very important from the viewpoint of quality of life (QOL) of HCC patients, and without fear of recurrence after surgical removal surgery There is a need for postoperative adjuvant therapy that allows people to live with peace of mind.

また、これまでにDNAチップ法等の網羅的解析から、がん細胞での遺伝子発現プロファイルが構築され、がん特異的遺伝子が多数同定されてきた。そこで、がん特異的遺伝子のmRNA発現量を指標として、がんに対する早期検出・分類・予後予測等の診断法が開発されている(特許文献1参照)。しかしながら、現在までに実用化されたものは、米国食品医薬品局に認可された、乳がんの再発リスクを70の遺伝子の発現から予測するMammaPrint(登録商標:Agendia社製)にとどまっているのが現状である。また、これまでに本発明者らは、CYP2A6、SLC10A1、SLC22A1、ESR1、GLYAT、TSPAN8、又はNQO1遺伝子のmRNAの発現の増減を検出することによるHCC発症リスクの判定方法(特許文献2参照)を提案して開発を進めているが、実用化には至っていない。   In addition, gene expression profiles in cancer cells have been constructed from a comprehensive analysis such as a DNA chip method, and many cancer-specific genes have been identified so far. Thus, diagnostic methods such as early detection, classification, and prognosis prediction for cancer have been developed using the mRNA expression level of a cancer-specific gene as an index (see Patent Document 1). However, only the MammaPrint (registered trademark: made by Agendia) that predicts the recurrence risk of breast cancer from the expression of 70 genes approved by the US Food and Drug Administration has been put into practical use to date. It is. In addition, the present inventors have previously determined a method for determining the risk of developing HCC by detecting an increase or decrease in mRNA expression of CYP2A6, SLC10A1, SLC22A1, ESR1, GLYAT, TSPAN8, or NQO1 gene (see Patent Document 2). Although it has been proposed and developed, it has not been put to practical use.

一方、がん組織における一部のがん細胞には、胚性幹細胞や体性幹細胞等の幹細胞に特徴的な性質である、自身と同じ細胞を作り出す自己複製能と多種類の細胞に分化できる多分化能とを有するがん幹細胞(cancer stem cells;CSCs)が存在し、かかるがん幹細胞が、自己複製能により自身と同じ細胞を維持しながら、多分化能によりがん組織における多数の分化したがん細胞を生み出していると考えられている。したがって、外科的な摘除手術等によってがん細胞を除いても、体内にごく少数のがん幹細胞が生き残っていれば再発が起こりうることになる。   On the other hand, some cancer cells in cancer tissue can differentiate into many types of cells with the self-replicating ability to produce the same cells as the self, which is a characteristic property of stem cells such as embryonic stem cells and somatic stem cells There are cancer stem cells (CSCs) having pluripotency, and such cancer stem cells maintain the same cells as themselves due to their self-replicating ability, while multiple differentiation in cancer tissues due to pluripotency. It is thought that it has produced cancer cells. Therefore, even if cancer cells are removed by surgical resection or the like, recurrence can occur if very few cancer stem cells survive in the body.

上記がん幹細胞はがん細胞のなかでごく少数しか含まれていないため、がん幹細胞の研究はあまり進んでいなかった。そこで本発明者らは、血清を含有しない動物細胞培養用基礎培地に、神経生存因子−1(NSF−1)を添加した無血清培地を用いた消化器系がん幹細胞の増殖方法(特許文献3参照)を提案した。かかる方法を用いれば、がん幹細胞がほとんど含まれていないSK−HEP−1等の低分化型のHCC由来細胞株からHCC幹細胞を効率よく誘導・濃縮することや、HCC幹細胞を長期間安定して増殖培養することが可能となり、HCC幹細胞をターゲットとしたHCC治療薬の開発が期待されている。   Since the cancer stem cells contain only a small number of cancer cells, research on cancer stem cells has not progressed much. Therefore, the present inventors have developed a method for proliferating digestive cancer stem cells using a serum-free medium in which nerve survival factor-1 (NSF-1) is added to a basal medium for animal cell culture that does not contain serum (Patent Literature). 3) was proposed. By using such a method, HCC stem cells can be efficiently induced / concentrated from a poorly differentiated HCC-derived cell line such as SK-HEP-1 containing almost no cancer stem cells, and HCC stem cells can be stabilized for a long period of time. Thus, it is possible to proliferate and culture, and development of HCC therapeutic agents targeting HCC stem cells is expected.

特開2010−178650号公報JP 2010-178650 A 特開2014−027898号公報JP 2014-027898 A 特開2013−208104号公報JP2013-208104A

Umeura T. et al., Journal of Gastroenterology 44:102-107 (2009)Umeura T. et al., Journal of Gastroenterology 44: 102-107 (2009) Hashimoto N. et al., BMC Cancer 14:722(2014)Hashimoto N. et al., BMC Cancer 14: 722 (2014)

HCCは再発率が高い疾患であり、また、de novoによる再発に比べて転移性再発は予後が悪いため、早期に転移性再発リスクを予測することが肝要である。そこで、本発明の課題は、HCCの転移性再発リスクを予測する方法や、かかる方法に用いるためのキットを提供することにある。   HCC is a disease with a high recurrence rate, and metastatic recurrence has a poor prognosis compared to de novo recurrence, so it is important to predict the risk of metastatic recurrence at an early stage. Therefore, an object of the present invention is to provide a method for predicting the risk of HCC metastatic recurrence and a kit for use in such a method.

これまでにがんの再発予測リスクの判定方法が実用化に至っていない背景として、がん細胞のみならず、がん細胞集団の中でも極少数であるがん幹細胞においても多様性(heterogeneity)が存在することが挙げられ、真に転移性再発の原因となる細胞に対する特異的特徴を明らかとする必要がある。上記、HCC幹細胞の誘導・濃縮によって得られた肝転移能の亢進を示す細胞に共通し、また、術後肝内再発を来したヒト臨床検体においても共通する発現プロファイルは、HCCの再発予測リスクを予測する方法及びHCC治療薬開発において有用である。   The reason why the risk assessment method for cancer recurrence has not been put into practical use so far is that not only cancer cells but also cancer stem cells, which are a very small number of cancer cell populations, have diversity (heterogeneity). It is necessary to clarify specific features for cells that are truly responsible for metastatic recurrence. The expression profile common to the above-mentioned cells showing enhanced liver metastasis obtained by induction and concentration of HCC stem cells, and also common to human clinical specimens that have undergone postoperative intrahepatic recurrence is the risk of HCC recurrence prediction It is useful in the method for predicting the development of HCC and therapeutic agents for HCC.

本発明者らは、上記課題を解決すべく鋭意研究を続けていく過程において、HCC細胞株であるSK−HEP−1細胞株と、該SK−HEP−1細胞株を上記特許文献3記載の方法で培養して得られた細胞塊(sphere:HCC幹細胞)を、それぞれRag欠損(Ragnull)マウスとIL−2rγノックアウトマウスを交配して作製された免疫不全のNRGマウス(Pearson, T. et al., Clin. Exp. Immunol 154: 270-284(2008))に投与した試験により、SK−HEP−1細胞株由来の浮遊細胞塊はSK−HEP−1細胞株と比較して肝転移能が亢進することを見いだした。そこで、SK−HEP−1細胞株由来の浮遊細胞塊に、転移性再発に関与する遺伝子が含まれていると考え、SK−HEP−1細胞株とSK−HEP−1細胞株由来の浮遊細胞塊におけるmRNA発現解析を行って比較したところ、mRNAの発現量の増減が3倍以上となる遺伝子が125種類あることを確認した。さらに、摘除手術後1年以内肝内再発HCC患者と摘除手術後2年以上肝内無再発HCC患者からの摘除標本(摘除した肝組織)におけるmRNA発現解析を行うことで、上記125遺伝子のうち、TM4SF19遺伝子、HILPDA遺伝子、KISS1遺伝子、PAPPA遺伝子が再発と相関があることを見いだした。また、SK−HEP−1細胞株とSK−HEP−1細胞株由来の浮遊細胞塊におけるタンパク質発現解析を行って比較したところ、発現量の増減量が2倍以上となるタンパク質が59種類あることを確認し、そのうちRAB27Bが摘除標本においても再発と相関があることを見いだし、本発明を完成した。   In the process of continuing intensive research to solve the above-mentioned problems, the present inventors described the SK-HEP-1 cell line, which is an HCC cell line, and the SK-HEP-1 cell line described in Patent Document 3 above. The cell mass (sphere: HCC stem cells) obtained by culturing by the above method was used to cross-combine Rag-deficient (Ragnull) mice with IL-2rγ knockout mice, and immunodeficient NRG mice (Pearson, T. et al , Clin. Exp. Immunol 154: 270-284 (2008)), the floating cell mass derived from the SK-HEP-1 cell line has a liver metastasis ability compared to the SK-HEP-1 cell line. I found it to increase. Therefore, it is considered that the floating cell mass derived from the SK-HEP-1 cell line contains a gene involved in metastatic recurrence, and the floating cells derived from the SK-HEP-1 cell line and the SK-HEP-1 cell line When the mRNA expression analysis in the lump was performed and compared, it was confirmed that there were 125 genes whose increase or decrease in the expression level of mRNA was 3 times or more. Furthermore, by analyzing mRNA expression in excised specimens (extracted liver tissue) from patients with recurrent intrahepatic HCC within 1 year after excision surgery and patients with non-hepatic recurrent HCC for 2 years or more after excision surgery, The TM4SF19 gene, the HILPDA gene, the KISS1 gene, and the PAPPA gene were found to be correlated with recurrence. In addition, when protein expression analysis is performed and compared in the floating cell mass derived from the SK-HEP-1 cell line and the SK-HEP-1 cell line, there are 59 types of proteins in which the amount of increase / decrease in the expression level is twice or more. As a result, RAB27B was found to correlate with recurrence even in the excised specimen, and the present invention was completed.

すなわち、本発明は以下に示すとおりである。
(1)被検者から採取した生体試料中のTM4SF19遺伝子、HILPDA遺伝子、KISS1遺伝子、PAPPA遺伝子又はRAB27B遺伝子のmRNAの発現量、又は前記mRNAがコードするタンパク質の発現量を指標として、肝細胞がんの転移性再発リスクを予測する方法。
(2)生体試料が、肝組織であることを特徴とする上記(1)記載の方法。
(3)上記(1)又は(2)記載の方法に用いるためのキットであって、被検者から採取した生体試料中のTM4SF19遺伝子、HILPDA遺伝子、KISS1遺伝子、PAPPA遺伝子又はRAB27B遺伝子のmRNAの発現量を検出するためのプライマー対若しくはプローブ、又はそれらの標識物を備えることを特徴とするキット。
(4)上記(1)又は(2)記載の方法に用いるためのキットであって、被検者から採取した生体試料中のTM4SF19遺伝子、HILPDA遺伝子、KISS1遺伝子、PAPPA遺伝子又はRAB27B遺伝子のmRNAがコードするタンパク質に特異的に結合する抗体、又はこれらの標識物を備えることを特徴とするキット。
That is, the present invention is as follows.
(1) With reference to the expression level of mRNA of TM4SF19 gene, HILPDA gene, KISS1 gene, PAPPA gene or RAB27B gene in a biological sample collected from a subject, or the expression level of the protein encoded by the mRNA, hepatocytes Of predicting the risk of metastatic recurrence of cancer.
(2) The method according to (1) above, wherein the biological sample is liver tissue.
(3) A kit for use in the method described in (1) or (2) above, wherein the mRNA of TM4SF19 gene, HILPDA gene, KISS1 gene, PAPPA gene or RAB27B gene in a biological sample collected from a subject A kit comprising a primer pair or a probe for detecting the expression level, or a label thereof.
(4) A kit for use in the method described in (1) or (2) above, wherein the mRNA of TM4SF19 gene, HILPDA gene, KISS1 gene, PAPPA gene or RAB27B gene in a biological sample collected from a subject is A kit comprising an antibody that specifically binds to an encoded protein, or a label thereof.

なお、上記本発明のHCCの転移性再発リスクを予測する方法には医師による診断行為は含まれず、また上記HCCの転移性再発リスクを予測する方法のその他の態様としては、HCCの再発リスクの予測を補助する方法や、HCCの再発リスクを予測するためのデータを収集する方法を挙げることができる。   The method of predicting the metastatic recurrence risk of HCC of the present invention does not include a diagnostic action by a doctor, and as another aspect of the method of predicting the metastatic recurrence risk of HCC, the method of predicting the risk of recurrence of HCC may be used. Examples include a method for assisting prediction and a method for collecting data for predicting the risk of recurrence of HCC.

本発明によると、HCC治療における術後のHCCの転移性再発リスクを予測することが可能となり、HCC治療の術後の治療方針を決定することができる。また、本発明によりHCCの転移性再発リスクを予測することで、HCCの転移性再発の予防及び早期発見のために有用な情報を提供することができる。   According to the present invention, it becomes possible to predict the risk of metastatic recurrence of HCC after surgery in HCC treatment, and the postoperative treatment policy of HCC treatment can be determined. Further, by predicting the risk of HCC metastatic recurrence according to the present invention, it is possible to provide information useful for the prevention and early detection of HCC metastatic recurrence.

SK−HEP−1細胞株、及びSK−HEP−1細胞株由来の浮遊細胞塊(SK−sphere)の写真である。It is a photograph of the floating cell mass (SK-sphere) derived from SK-HEP-1 cell line and SK-HEP-1 cell line. DNAチップ法により、KISS1遺伝子、TM4SF19遺伝子、PAPPA遺伝子、又はHILPDA遺伝子について、摘除手術後1年以内肝内再発HCC患者(with IHR)と摘除手術後2年以上肝内無再発HCC患者(without IHR)の摘除標本におけるがん部肝組織、及び非がん部肝組織(non-Tumor)におけるmRNAの発現量を調べた結果示す図である。With the DNA chip method, KISS1 gene, TM4SF19 gene, PAPPA gene, or HILPDA gene can be relapsed within 1 year after resection surgery (with IHR) and non-recurrence HCC patients within 2 years after resection surgery (without IHR) It is a figure which shows the result of having investigated the expression level of mRNA in the cancer part liver tissue and non-cancer part liver tissue (non-Tumor) in the excised specimen of). 定量PCRにより、KISS1遺伝子、TM4SF19遺伝子、PAPPA遺伝子、又はHILPDA遺伝子について、SK−HEP−1細胞株(左カラム:SK−HEP−1)とSK−HEP−1細胞株由来の浮遊細胞塊(右カラム:SK−sphere)におけるmRNAの発現量を示す図である。By quantitative PCR, the KISS1 gene, TM4SF19 gene, PAPPA gene, or HILPDA gene was analyzed for floating cell mass (right column) derived from the SK-HEP-1 cell line (left column: SK-HEP-1) and the SK-HEP-1 cell line. It is a figure which shows the expression level of mRNA in column: SK-sphere). 定量PCRにより、KISS1遺伝子、TM4SF19遺伝子、又はHILPDA遺伝子について、摘除手術後1年以内肝内再発HCC患者(with IHR)と摘除手術後2年以上肝内無再発HCC患者(without IHR)の摘除標本におけるがん部肝組織(Tumor)、及び非がん部肝組織(non-Tumor)のmRNAの発現量を調べた結果示す図である。Quantitative PCR analysis of KISS1 gene, TM4SF19 gene, or HILPDA gene in patients with recurrent intrahepatic HCC (with IHR) within 1 year after excision surgery and patients with no recurrence of intrahepatic HCC (without IHR) for 2 years or more after excision surgery It is a figure which shows the result of having investigated the expression level of mRNA of the cancer part liver tissue (Tumor) and non-cancer part liver tissue (non-Tumor) in FIG. 定量PCRにより、KISS1遺伝子、TM4SF19遺伝子について、高分化型HCC(HCC(G1))患者、中分化型HCC(HCC(G2))患者、低分化型HCC(HCC(G3))患者の摘除標本における非がん部肝組織(non-Tumor)及びがん部肝組織(G1,G2,G3)のmRNAの発現量を調べた結果示す図である。By quantitative PCR, the KISS1 gene and the TM4SF19 gene were isolated from well-differentiated HCC (HCC (G1)) patients, moderately differentiated HCC (HCC (G2)) patients, and poorly differentiated HCC (HCC (G3)) patients. It is a figure which shows the result of having investigated the expression level of mRNA of a non-cancer part liver tissue (non-Tumor) and a cancer part liver tissue (G1, G2, G3). 定量PCRにより、RAB27B遺伝子について、摘除手術後1年以内肝内再発HCC患者(with IHR)と摘除手術後2年以上肝内無再発HCC患者(without IHR)の摘除標本におけるがん部肝組織(Tumor)、及び非がん部組織(non-Tumor)のmRNAの発現量を調べた結果示す図である。By quantitative PCR, RAB27B gene liver tissue in resected specimens of HCC patients with intrahepatic recurrence (with IHR) within 2 years and without recurrence of intrahepatic non-hepatic HCC patients (without IHR) within 2 years after surgery ( (Tumor) and non-tumor tissue (non-Tumor) mRNA expression levels were examined.

本発明のHCCの転移性再発リスクを予測する方法としては、被検者から採取した生体試料中のTM4SF19遺伝子、HILPDA遺伝子(別名:HIG2遺伝子)、KISS1遺伝子、PAPPA遺伝子又はRAB27B遺伝子(以下、「本件HCCバイオマーカー遺伝子」ともいう)のmRNAの発現量、又は前記mRNAがコードするタンパク質の発現量を指標として、HCCの転移性再発リスクを予測する方法であれば特に制限されず、ここで、本発明において「HCCの転移性再発」とは、肝炎ウイルス感染を素地とするde novoによる再発とは異なり、肝内転移巣や血液からの遺残がん細胞の再増殖によるHCCの再発を意味し、主として摘除手術後1年若しくは2年以内の再発である。   As a method for predicting the risk of metastatic recurrence of HCC of the present invention, TM4SF19 gene, HIPDA gene (also known as HIG2 gene), KISS1 gene, PAPPA gene or RAB27B gene (hereinafter, “ It is not particularly limited as long as it is a method for predicting the risk of metastatic recurrence of HCC, using as an index the expression level of mRNA of the present HCC biomarker gene ”or the expression level of the protein encoded by the mRNA, In the present invention, “metastatic recurrence of HCC” means recurrence of HCC due to regrowth of residual cancer cells from intrahepatic metastases and blood, unlike recurrence due to de novo based on hepatitis virus infection. However, recurrence is mainly within one year or two years after the resection surgery.

また、本発明のHCCの転移性再発リスクを予測する方法に用いるためのキットとしては、被検者から採取した生体試料中の本件HCCバイオマーカー遺伝子のmRNAの発現量を検出するためのプライマー対若しくはプローブ、又はそれらの標識物を備えたキット(以下、「本件キット1」ともいう)や、被検者から採取した生体試料中の本件HCCバイオマーカー遺伝子のmRNAがコードするタンパク質に特異的に結合する抗体、又はこれらの標識物を備えたキット(以下、「本件キット2」ともいう)であれば特に制限されず、かかるキットを用いることで、HCCの転移性再発リスクを容易に予測することが可能となる。   The kit for use in the method for predicting the risk of metastatic recurrence of HCC of the present invention includes a primer pair for detecting the mRNA expression level of the present HCC biomarker gene in a biological sample collected from a subject. Alternatively, it is specific to the protein encoded by the mRNA of the subject HCC biomarker gene in a biological sample collected from a subject (hereinafter also referred to as “the present kit 1”) or a probe or a label thereof. The kit is not particularly limited as long as it is a binding antibody or a kit provided with these labeled substances (hereinafter also referred to as “this kit 2”). By using such a kit, the risk of recurrence of HCC metastasis can be easily predicted. It becomes possible.

本発明のHCCの転移性再発リスクを予測する方法、本件キット1及び本件キット2における本件HCCバイオマーカー遺伝子は、1種でも2種以上組み合わせてもよく、また、本件HCCバイオマーカー遺伝子に、HCCの転移性再発リスクを予測可能な他の遺伝子を組み合わせてもよい。   The method of predicting the metastatic recurrence risk of HCC of the present invention, the present HCC biomarker genes in the present kit 1 and the present kit 2 may be used alone or in combination of two or more thereof. Other genes that can predict the risk of metastatic recurrence may be combined.

本発明において、生体試料としては、肝組織、細胞等の非液性試料や、血液、血清、唾液等の液性試料を例示することができ、肝組織であることを好適に例示することができ、TM4SF19遺伝子、HILPDA遺伝子、KISS1遺伝子又はPAPPA遺伝子のmRNAの発現量や、前記mRNAがコードするタンパク質の発現量を指標とする場合には、がん部肝組織であることが好ましく、RAB27B遺伝子のmRNAの発現量や、RAB27B遺伝子のmRNAがコードするタンパク質の発現量を指標とする場合には、非がん部肝組織であることが好ましい。なお、転移生再発は血行性転移でもあることから、上記細胞として血液中の循環がん細胞を用いてもよい。また、上記肝組織は、被検者より採取された後に、凍結処理が施された凍結組織であっても、病理組織学的処理が施された病理組織であってもよく、かかる病理組織としては、ホルマリン固定組織や、ホルマリン固定パラフィン包埋組織等を例示することができる。   In the present invention, examples of the biological sample include non-liquid samples such as liver tissue and cells, and liquid samples such as blood, serum, and saliva, and preferably a liver tissue. When the expression level of mRNA of TM4SF19 gene, HIPPDA gene, KISS1 gene or PAPPA gene or the expression level of the protein encoded by the mRNA is used as an index, it is preferably a cancer liver tissue, and the RAB27B gene When using the expression level of mRNA or the expression level of the protein encoded by the mRNA of the RAB27B gene as an index, non-cancerous liver tissue is preferable. Since metastatic live recurrence is also hematogenous metastasis, circulating cancer cells in blood may be used as the cells. In addition, the liver tissue may be a frozen tissue that has been collected from the subject and then subjected to a freezing treatment, or may be a pathological tissue that has been subjected to a histopathological treatment. Can be exemplified by formalin-fixed tissue, formalin-fixed paraffin-embedded tissue and the like.

本発明のHCCの転移性再発リスクを予測する方法におけるHCCの転移性再発リスクの予測は、被検者から採取された生体試料中の本件HCCバイオマーカー遺伝子のmRNAの発現量、又は前記mRNAがコードするタンパク質の発現量を測定することによって行うことができる。例えば、事前に摘除手術後1年以上肝内無再発HCC患者、好ましくは摘除手術後2年以上肝内無再発HCC患者と、摘除手術後2年以内肝内再発HCC患者、好ましくは摘除手術後1年以内肝内再発HCC患者それぞれ2検体以上、好ましくは4検体以上、より好ましくは5検体以上から採取された生体試料中の本件HCCバイオマーカー遺伝子のmRNAの発現量、又は前記mRNAがコードするタンパク質の発現量を測定し、かかる発現量の中央値又は平均値を算出し、前記中央値又は平均値を基にカットオフ値を定める。次いで被検者から採取された生体試料中の本件HCCバイオマーカー遺伝子のmRNAの発現量、又は前記mRNAがコードするタンパク質の発現量を測定し、被検者から採取された生体試料中のmRNAの発現量、又は前記mRNAがコードするタンパク質の発現量と前記カットオフ値とを比較することで、被検者におけるHCCの転移性再発リスクを予測することが可能である。   The prediction of the risk of metastatic recurrence of HCC in the method for predicting the risk of metastatic recurrence of HCC of the present invention is based on the expression level of the mRNA of the present HCC biomarker gene in the biological sample collected from the subject, This can be done by measuring the expression level of the encoded protein. For example, patients with non-hepatic recurrent HCC for 1 year or more after excision surgery, preferably patients with non-hepatic recurrence for 2 or more years after resection surgery, patients with recurrent HCC within 2 years after resection surgery, preferably after resection surgery The expression level of mRNA of the present HCC biomarker gene in a biological sample collected from 2 or more samples, preferably 4 samples or more, more preferably 5 samples or more, respectively, within one year, or the mRNA encodes The expression level of the protein is measured, the median value or the average value of the expression levels is calculated, and the cutoff value is determined based on the median value or the average value. Subsequently, the mRNA expression level of the present HCC biomarker gene in the biological sample collected from the subject or the expression level of the protein encoded by the mRNA is measured, and the mRNA level in the biological sample collected from the subject is measured. By comparing the expression level or the expression level of the protein encoded by the mRNA and the cut-off value, it is possible to predict the risk of HCC metastatic recurrence in the subject.

被検者から採取された生体試料中のmRNAの発現量、又は前記mRNAがコードするタンパク質の発現量がカットオフ値以上であれば、被検者のHCCの転移性再発リスクが高い、或いは被検者におけるHCC治療の予後が悪い(予後不良)と予測することができる。一方、被検者から採取された生体試料中のmRNAの発現量、又は前記mRNAがコードするタンパク質の発現量がカットオフ値未満であれば、被検者のHCCの転移性再発リスクが低い、或いは被検者におけるHCC治療の予後がよい(予後良好)と予測することができる。   If the expression level of mRNA in the biological sample collected from the subject or the expression level of the protein encoded by the mRNA is equal to or higher than the cut-off value, the subject has a high risk of metastatic recurrence of HCC, or the subject It can be predicted that the prognosis of HCC treatment in the examiner is poor (poor prognosis). On the other hand, if the expression level of mRNA in the biological sample collected from the subject or the expression level of the protein encoded by the mRNA is less than the cut-off value, the risk of metastatic recurrence of HCC in the subject is low, Alternatively, it can be predicted that the prognosis of HCC treatment in the subject is good (good prognosis).

この他、被検者から採取された生体試料中のmRNAの発現量、又は前記mRNAがコードするタンパク質の発現量、及び、摘除手術後1年以上肝内無再発HCC患者、好ましくは摘除手術後2年以上肝内無再発HCC患者と、摘除手術後2年以内肝内再発HCC患者、好ましくは摘除手術後1年以内肝内再発HCC患者それぞれ2検体以上、好ましくは4検体以上、より好ましくは5検体以上から採取された生体試料中の本件HCCバイオマーカー遺伝子のmRNAの発現量、又は前記mRNAがコードするタンパク質の発現量とを組み合わせた判別式をロジスティック回帰分析等により構築して予測する方法を挙げることができる。   In addition, the expression level of mRNA in a biological sample collected from a subject, or the expression level of a protein encoded by the mRNA, and an HCC patient with no recurrence in the liver for 1 year or more after resection surgery, preferably after resection surgery Patients with HCC with no recurrence for 2 years or more, patients with HCC with recurrence within 2 years after surgery, preferably patients with 2 or more liver recurrence within 1 year after surgery, preferably 4 or more, more preferably Method of constructing and predicting a discriminant that combines the expression level of the mRNA of the present HCC biomarker gene in a biological sample collected from five or more specimens or the expression level of the protein encoded by the mRNA by logistic regression analysis or the like Can be mentioned.

なお、上記HCCの転移性再発リスクの予測方法において、本件HCCバイオマーカー遺伝子のmRNA又はタンパク質の発現量の代わりに、本件HCCバイオマーカー遺伝子のmRNA又はタンパク質の発現量と相関又は逆相関の関係にあるフリーDNA又はフリーRNAの発現量を測定してもよい。   In the method for predicting the risk of metastatic recurrence of HCC, the expression level of the HCC biomarker gene mRNA or protein is correlated or inversely correlated with the expression level of the HCC biomarker gene mRNA or protein. You may measure the expression level of a certain free DNA or free RNA.

本発明のHCCの転移性再発リスクを予測する方法において、遺伝子のmRNAの発現量を検出する方法としては、本件HCCバイオマーカー遺伝子のmRNAの一部若しくは全部を特異的に検出できる方法であればどのような方法であってもよく、具体的には、被検者から採取された生体試料中の全RNAを抽出・精製し、本件HCCバイオマーカー遺伝子のmRNAに相補的な塩基配列からなるプローブを用いたノーザンブロッティング法で検出する方法や、被検者から採取された生体試料中の細胞における全RNAを抽出・精製し、逆転写酵素を用いてcDNAを合成した後、かかるcDNAを特異的に増幅するプライマー対を用いた、競合的PCR法、リアルタイムPCR法等の定量PCR法で検出する方法や、被検者から採取された生体試料中の全RNAを抽出・精製し、逆転写酵素を用いてcDNAを合成した後、ビオチン(biotin)やジゴキシゲニン(digoxigenin)等でcDNAをラベルし、蛍光物質が標識されたビオチンに対する親和性の高いアビジン(avidin)やジゴキシゲニンを認識する抗体等で間接的にcDNAを標識した後、ガラス、シリコン、プラスチック等のハイブリダイゼーションに使用可能な支持体上に固定化された、本件HCCバイオマーカー遺伝子のcDNAに相補的な塩基配列からなるプローブを用いたマイクロアレイで検出する方法や、被検者から採取された生体試料中の全RNAを抽出・精製し、逆転写酵素を用いてcDNAを合成した後、cDNAを制限酵素(MspI、MseI等)によって切断し、アダプター配列を結合した後、これらを鋳型DNAとしたPCRを行い、それぞれのPCR産物をキャピラリー電気泳動により展開し、得られたPCR産物由来のピークを検証するHiCEP法等の方法を挙げることができる。なお、本件HCCバイオマーカー遺伝子のmRNAやcDNAの配列情報は、例えば本件HCCバイオマーカー遺伝子名を基に、NCBI(http://www.ncbi.nlm.nih.gov/guide/)のデータベースで検索することにより得ることができる。   In the method for predicting the risk of metastatic recurrence of HCC of the present invention, the method for detecting the expression level of mRNA of a gene is any method that can specifically detect part or all of the mRNA of the HCC biomarker gene. Any method may be used, specifically, a probe comprising a base sequence complementary to the mRNA of the present HCC biomarker gene by extracting and purifying total RNA in a biological sample collected from a subject. This method uses a Northern blotting method to detect the total RNA in cells in a biological sample collected from a subject, synthesizes cDNA using reverse transcriptase, Detected by quantitative PCR methods such as competitive PCR and real-time PCR using primer pairs that are amplified in Extract and purify total RNA from biological samples, synthesize cDNA using reverse transcriptase, label cDNA with biotin, digoxigenin, etc., and affinity for biotin labeled with a fluorescent substance The HCC biomarker gene immobilized on a support that can be used for hybridization such as glass, silicon, plastic, etc. after indirectly labeling cDNA with an antibody that recognizes high avidin (avidin) or digoxigenin A method of detecting with a microarray using a probe consisting of a base sequence complementary to the cDNA of, and extracting and purifying total RNA in a biological sample collected from a subject, and synthesizing cDNA using reverse transcriptase Thereafter, the cDNA is cleaved with a restriction enzyme (MspI, MseI, etc.), and adapter sequences are bound. A method such as HiCEP method for performing PCR using as a template DNA, developing each PCR product by capillary electrophoresis, and verifying the peak derived from the obtained PCR product can be mentioned. For example, the mRNA and cDNA sequence information of the HCC biomarker gene is searched from the NCBI (http://www.ncbi.nlm.nih.gov/guide/) database based on the HCC biomarker gene name, for example. Can be obtained.

本発明のHCCの転移性再発リスクを予測する方法において、タンパク質の発現量を検出する方法としては、本件HCCバイオマーカー遺伝子のmRNAがコードするタンパク質(以下、「本件HCCバイオマーカータンパク質」という)の一部若しくは全部を特異的に検出できる方法であればどのような方法であってもよく、具体的には、本件HCCバイオマーカータンパク質を特異的に認識する抗体を用いた免疫学的測定法や、本件HCCバイオマーカータンパク質を構成するペプチドを検出する質量分析法を挙げることができる。なお、本件HCCバイオマーカータンパク質のアミノ酸配列情報は、例えば本件HCCバイオマーカータンパク質名を基に、NCBI(http://www.ncbi.nlm.nih.gov/guide/)のデータベースで検索することにより得ることができる。   In the method for predicting the risk of metastatic recurrence of HCC of the present invention, as a method for detecting the expression level of protein, a protein encoded by mRNA of the HCC biomarker gene (hereinafter referred to as “the HCC biomarker protein”) is used. Any method can be used as long as it can specifically or partially detect, specifically, an immunoassay using an antibody that specifically recognizes the HCC biomarker protein, And mass spectrometry for detecting peptides constituting the present HCC biomarker protein. The amino acid sequence information of the HCC biomarker protein can be obtained by searching the NCBI (http://www.ncbi.nlm.nih.gov/guide/) database based on the name of the HCC biomarker protein, for example. Can be obtained.

本件キット1におけるプライマー対としては、本件HCCバイオマーカー遺伝子から合成されるcDNAの上流及び下流の配列の一部とアニーリングしうる相補的なプライマー対であれば、プライマー配列の長さ、かかるcDNAとアニーリングする部位、増幅するcDNAの長さ等は、DNAの増幅効率や特異性を考慮して適宜選択することができる。例えば、プライマー配列の長さとしては、15〜30塩基を選択することができ、また、増幅するcDNAの長さとしては、50〜300塩基を選択することができる。   As the primer pair in the present kit 1, as long as it is a complementary primer pair capable of annealing with a part of the upstream and downstream sequences of cDNA synthesized from the present HCC biomarker gene, the length of the primer sequence, such cDNA and The annealing site, the length of the cDNA to be amplified, and the like can be appropriately selected in consideration of the amplification efficiency and specificity of the DNA. For example, 15 to 30 bases can be selected as the length of the primer sequence, and 50 to 300 bases can be selected as the length of the cDNA to be amplified.

本件キット1におけるプローブとしては、本件HCCバイオマーカー遺伝子、又はかかる遺伝子から合成したcDNAの一部若しくは全部がハイブリダイゼーションするプローブであれば、プローブの長さ、かかるスプライシングバリアントとハイブリダイズする部位等は、ハイブリダイゼーションの効率や特異性を考慮して適宜選択することができる。また、本件キット1には、必要と目的に応じた緩衝液、pH調製剤、反応容器、HCCの転移性再発リスクを予測する方法を記載した説明書等をさらに備えたものであってもよい。   As a probe in the present kit 1, as long as the present HCC biomarker gene or a part or all of cDNA synthesized from such a gene is a hybridized probe, the length of the probe, the site that hybridizes with the splicing variant, etc. These can be appropriately selected in consideration of the efficiency and specificity of hybridization. In addition, the present kit 1 may further include a buffer, a pH adjuster, a reaction container, a manual describing a method for predicting the risk of metastatic recurrence of HCC, etc. according to necessity and purpose. .

本件キット2における抗体としては、モノクローナル抗体、ポリクローナル抗体、ヒト抗体、キメラ抗体、ヒト化抗体等の抗体であってもよく、また、この中には、F(ab’)2、Fab、diabody、Fv、ScFv、Sc(Fv)2等の抗体の一部からなる抗体断片も含まれる。また、本件キット2には、本件HCCバイオマーカータンパク質のアミノ酸残基に結合した本件キット2における抗体を検出するための、蛍光物質、酵素等の標識物質をコンジュゲートした2次抗体を含めることや、本件キット2における抗体とは異なるエピトープと反応する少なくとも1種類の抗体を含めることができる。また、本件キット2には、必要と目的に応じた緩衝液、pH調製剤、反応容器、HCCの転移性再発リスクを予測する方法を記載した説明書等をさらに備えたものであってもよい。 The antibody in the present kit 2 may be a monoclonal antibody, a polyclonal antibody, a human antibody, a chimeric antibody, a humanized antibody or the like, and among these, F (ab ′) 2 , Fab, diabody, Antibody fragments comprising a part of an antibody such as Fv, ScFv, Sc (Fv) 2 are also included. In addition, the present kit 2 includes a secondary antibody conjugated with a labeling substance such as a fluorescent substance or an enzyme for detecting the antibody in the present kit 2 bound to an amino acid residue of the present HCC biomarker protein. In addition, at least one kind of antibody that reacts with an epitope different from the antibody in the present kit 2 can be included. In addition, the present kit 2 may further include a buffer, a pH adjuster, a reaction container, a manual describing a method for predicting the risk of metastatic recurrence of HCC, etc. according to necessity and purpose. .

本件キット1におけるプライマー対の標識物やプローブの標識物としては、標識物質が結合した上記プライマー対や標識物質が結合した上記プローブであればよく、本件キット2における抗体の標識物としては、標識物質が結合した上記抗体であればよく、かかる標識物質としては、例えばビオチン、緑色蛍光タンパク質(Green Fluorescent Protein;GFP)、西洋ワサビペルオキシダーゼ(Horse Radish Peroxidase;HRP)、32P等を具体的に挙げることができる。   The labeled product of the primer pair and the labeled product of the probe in the present kit 1 may be any of the above-mentioned primer pair or the labeled material bound to the labeled substance, and the labeled product of the antibody in the present kit 2 may be a label. The above-mentioned antibody to which a substance is bound may be used. Specific examples of such a labeling substance include biotin, green fluorescent protein (GFP), horseradish peroxidase (HRP), and 32P. Can do.

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, the technical scope of this invention is not limited to these illustrations.

[細胞塊の調製]
転移に関わるがん幹細胞様細胞を誘導するために、まずはHCC由来細胞株から浮遊細胞塊を調製した。
[Preparation of cell mass]
In order to induce cancer stem cell-like cells involved in metastasis, a suspension cell mass was first prepared from an HCC-derived cell line.

(無血清培地の作製)
SK−HEP−1を培養して浮遊細胞塊を作製するための無血清培地として、以下の成分A、B、及びCからなるものを作製した。
(1)成分A
DMEM/F12(シグマ−アルドリッチ社製社製) 86mL
1M Hepes(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 900μl
Antibiotic/antimycotic liquid(100倍濃度) 900μl
30%グルコース 1.7ml
(2)成分B
DMEM/F12培地(シグマ−アルドリッチ社製) 8.6ml
30%グルコース(シグマ−アルドリッチ社製) 200μl
トランスフェリン(シグマ−アルドリッチ社製) 10mg+H2O 200μl
インスリン(シグマ−アルドリッチ社製)2.5mg+0.1N HCl 100μl(先にインスリンを溶解)+H2O 900μl(溶解後に加える) 計1ml
プトレシン(Alexis Biochemicals社製) 19.33mg
0.3mM 亜セレン酸ナトリウム(シグマ−アルドリッチ社製) 10μl
2mM プロゲステロン(シグマ−アルドリッチ社製) 1μl
(3)成分C
200μg/ml ヒトEGF(シグマ−アルドリッチ社製) 10μl
4μg/ml Basic FGF(和光純薬工業社製) 500μl
1mg/ml ヘパリン(シグマ−アルドリッチ社製) 200μl
10μg/ml LIF(ケミコン社製) 100μl
NSF−1(50倍濃度)(カンブレックス社製) 2ml(最終濃度;2%[w/v])
60mg/ml N−アセチルシステイン(N-acetylcysteine)(シグマ−アルドリッチ社製) 100μl
(Preparation of serum-free medium)
As a serum-free medium for culturing SK-HEP-1 to produce a floating cell mass, a medium comprising the following components A, B, and C was prepared.
(1) Component A
86 mL of DMEM / F12 (manufactured by Sigma-Aldrich)
1M Hepes (4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid) 900 μl
Antibiotic / antimycotic liquid (100 times concentration) 900μl
30% glucose 1.7 ml
(2) Component B
8.6 ml of DMEM / F12 medium (manufactured by Sigma-Aldrich)
30% glucose (Sigma-Aldrich) 200 μl
Transferrin (Sigma-Aldrich) 10 mg + H 2 O 200 μl
Insulin (Sigma-Aldrich) 2.5 mg + 0.1 N HCl 100 μl (Insulin dissolved first) + H 2 O 900 μl (added after dissolution) Total 1 ml
Putrescine (Alexis Biochemicals) 19.33mg
0.3 mM sodium selenite (manufactured by Sigma-Aldrich) 10 μl
2 mM progesterone (manufactured by Sigma-Aldrich) 1 μl
(3) Component C
200 μg / ml human EGF (Sigma-Aldrich) 10 μl
4 μg / ml Basic FGF (Wako Pure Chemical Industries) 500 μl
1 mg / ml heparin (manufactured by Sigma-Aldrich) 200 μl
10 μg / ml LIF (Chemicon) 100 μl
NSF-1 (50-fold concentration) (Cambrex) 2 ml (final concentration; 2% [w / v])
60 mg / ml N-acetylcysteine (manufactured by Sigma-Aldrich) 100 μl

なお、ここでは約100mlの無血清培地を作製する場合の組成を記載している。また、無血清培地は、成分A、B及びCをそれぞれ個別に作製した後、混合して作製した。   Here, the composition in the case of producing about 100 ml of serum-free medium is described. In addition, the serum-free medium was prepared by separately preparing components A, B, and C and then mixing them.

(SK−HEP−1細胞株由来の細胞塊の形成)
SK−HEP−1細胞株の生細胞数をトリパンブルー染色より計測し、1.0x10個/mlとなるように上記で作製した無血清培地に懸濁した後、ベントキャップタイプフラスコ(BDファルコン社製)、又は超低接着表面フラスコ カントネック ベントキャップ(Corning社製)に播種し、37℃、5%CO2条件下で培養した。培養後7日目には、SK−HEP−1細胞株由来の浮遊細胞塊を形成した。SK−HEP−1細胞株、及び形成したSK−HEP−1細胞株由来の浮遊細胞塊(SK−sphere)を図1に示す。
(Formation of cell mass derived from SK-HEP-1 cell line)
The number of viable cells of the SK-HEP-1 cell line was measured by trypan blue staining, suspended in the serum-free medium prepared as described above so as to be 1.0 × 10 5 cells / ml, and then a vent cap type flask (BD Falcon). Or an ultra-low adhesion surface flask Canneck vent cap (Corning), and cultured under conditions of 37 ° C. and 5% CO 2 . On the 7th day after the culture, a floating cell mass derived from the SK-HEP-1 cell line was formed. FIG. 1 shows the SK-HEP-1 cell line and the formed floating cell mass (SK-sphere) derived from the SK-HEP-1 cell line.

[DNAチップ法によるmRNA発現解析]
(SK−HEP−1細胞株とSK−HEP−1細胞株由来の浮遊細胞塊におけるmRNA発現解析)
DNAチップ法により、SK−HEP−1細胞株とSK−HEP−1細胞株由来の浮遊細胞塊のmRNA発現量を調べて比較した。
[MRNA expression analysis by DNA chip method]
(MRNA expression analysis in floating cell mass derived from SK-HEP-1 cell line and SK-HEP-1 cell line)
The mRNA expression levels of the floating cell mass derived from the SK-HEP-1 cell line and the SK-HEP-1 cell line were examined and compared by the DNA chip method.

まず、SK−HEP−1細胞株とSK−HEP−1細胞株由来の浮遊細胞塊から、miRNeasy(QIAGEN社製)により全RNAの抽出・精製を行った。次にcRNAを3D−Gene(登録商標)全遺伝子型DNAチップ(東レ社製)を用いて、そのプロトコルに従ってDNAチップ解析を行った。その後の統計学的解析は、GeneSpring GX(アジレント・テクノロジー社製)を用いて行った。選択基準(Fold-change>3.0、P値<0.05)を基に、HCC再発に関わる候補遺伝子を同定した。P値は、漸近計算した対応のないt−検定(unpaired t-test)とBenjamini-Hochberg FDR多重検定(multiple-testing correction)により算出した。   First, total RNA was extracted and purified by miRNeasy (manufactured by QIAGEN) from SK-HEP-1 cell line and floating cell mass derived from SK-HEP-1 cell line. Next, cRNA was subjected to DNA chip analysis using a 3D-Gene (registered trademark) all-genotype DNA chip (manufactured by Toray Industries, Inc.) according to the protocol. Subsequent statistical analysis was performed using GeneSpring GX (manufactured by Agilent Technologies). Based on the selection criteria (Fold-change> 3.0, P value <0.05), candidate genes involved in HCC recurrence were identified. P values were calculated by asymptotically calculated unpaired t-test and Benjamini-Hochberg FDR multiple-testing correction.

SK−HEP−1細胞株由来の浮遊細胞塊における各mRNAの発現量をSK−HEP−1細胞株における各mRNAの発現量と比較したところ、mRNAの発現量の増減が3倍以上となる遺伝子が125種類あることが確認された。   When the expression level of each mRNA in the floating cell mass derived from the SK-HEP-1 cell line is compared with the expression level of each mRNA in the SK-HEP-1 cell line, the increase or decrease in the expression level of the mRNA is 3 times or more. It was confirmed that there are 125 types.

(肝組織におけるmRNA発現解析)
摘除手術後2年以上肝内無再発HCC患者(without IHR)及び摘除手術後1年以内肝内再発HCC患者(with IHR)からの摘除標本におけるがん部肝組織、及び非がん部肝組織(non-Tumor)(それぞれn=5)から、TRIzol Reagent(Life Technologies社製)とPureLink Micro-to-Midi Total RNA Purification Kit(Life Technologies社製)を用いて全RNAの抽出・精製及びcDNA合成を行い、DNA Labeling Kits(Roche Applied Science社製)を用いてCy3で上記cDNAを蛍光標識した後、かかるcDNAをHuman Gene Expression 4x72K Arrays(Roche Diagnostics社製)にハイブリダイズさせた。ハイブリダイゼーションは、Hybridization Kits(Roche Applied Science社製)及びNimbleGen Hybridization Systems(Roche Applied Science社製)を用いて42℃にて16時間の条件下で行った。蛍光シグナルのスキャニングは、GenePix 4000B(Molecular Devices社製)を用いて行い、取得した蛍光シグナルの画像解析は、NimbleScan Software(Roche Applied Science社製)を用いて行った。その後の統計学的解析は、GeneSpring GX(アジレント・テクノロジー社製)を用いて行った。
(MRNA expression analysis in liver tissue)
Cancer liver tissue and non-cancer liver tissue in resected specimens from HCC patients without recurrent liver (without IHR) and recurrent intrahepatic HCC patients within 1 year after resection surgery (with IHR) (Non-Tumor) (n = 5 for each), extraction and purification of total RNA and cDNA synthesis using TRIzol Reagent (Life Technologies) and PureLink Micro-to-Midi Total RNA Purification Kit (Life Technologies) The above cDNA was fluorescently labeled with Cy3 using DNA Labeling Kits (Roche Applied Science), and then hybridized with Human Gene Expression 4x72K Arrays (Roche Diagnostics). Hybridization was performed using Hybridization Kits (Roche Applied Science) and NimbleGen Hybridization Systems (Roche Applied Science) at 42 ° C. for 16 hours. Scanning of the fluorescent signal was performed using GenePix 4000B (manufactured by Molecular Devices), and image analysis of the acquired fluorescent signal was performed using NimbleScan Software (manufactured by Roche Applied Science). Subsequent statistical analysis was performed using GeneSpring GX (manufactured by Agilent Technologies).

摘除手術後1年以内肝内再発HCC患者と摘除手術後2年以上肝内無再発HCC患者の摘除標本におけるがん部肝組織のmRNAの発現量を比較したところ、mRNAの発現量の増減が2倍以上となる遺伝子が3166種類あることが確認された。このうち、KISS1遺伝子、TM4SF19遺伝子、PAPPA遺伝子、HILPDA遺伝子は、上述のSK−HEP−1細胞株とSK−HEP−1細胞株由来の浮遊細胞塊におけるmRNA発現解析によって得られた125種類のHCC再発に関わる候補遺伝子に含まれていた。4種類それぞれの遺伝子の摘除手術後1年以内肝内再発HCC患者と摘除手術後2年以上肝内無再発HCC患者の摘除標本におけるがん部肝組織、及び非がん部肝組織におけるmRNAの発現量を図2に示す。図2において、縦軸はDNAチップ解析から得られた発現量をGlobal normalization法により標準化した数値を任意の値(Arbitrary Unit)として示したものである。   When the expression level of mRNA in the liver tissue of a cancerous part of the resected specimens of HCC patients with recurrent intrahepatic recurrence within 1 year after resection surgery and patients with HCC without recurrence within 2 years after resection surgery was compared, It was confirmed that there were 3166 types of genes that more than doubled. Among these, KISS1 gene, TM4SF19 gene, PAPPA gene, and HILPDA gene are 125 types of HCC obtained by mRNA expression analysis in the above-mentioned SK-HEP-1 cell line and SK-HEP-1 cell line-derived floating cell mass. It was included in candidate genes involved in recurrence. MRNA of cancerous liver tissue and non-cancerous liver tissue in resected specimens of HCC patients with recurrent intrahepatic recurrence within 1 year after surgery for each of the four types of genes and patients with non-hepatic recurrence of HCC more than 2 years after surgery The expression level is shown in FIG. In FIG. 2, the vertical axis indicates the numerical value obtained by standardizing the expression level obtained from the DNA chip analysis by the Global normalization method as an arbitrary value (Arbitrary Unit).

図2に示すように、KISS1遺伝子、TM4SF19遺伝子、PAPPA遺伝子、HILPDA遺伝子は、HCC患者の非がん部肝組織や摘除手術後2年以上肝内無再発HCC患者の摘除標本におけるがん部肝組織と比較して摘除手術後1年以内肝内再発HCC患者の摘除標本におけるがん部肝組織において発現量が多く、KISS1遺伝子、TM4SF19遺伝子、PAPPA遺伝子、又はHILPDA遺伝子の発現量を調べることで、HCCの転移性再発を予測できることが明らかとなった。   As shown in FIG. 2, KISS1 gene, TM4SF19 gene, PAPPA gene, and HILPDA gene are found in the non-cancerous liver tissue of HCC patients and the cancerous liver in resection specimens of non-hepatic non-recurrent HCC patients for 2 years or more after resection surgery. By comparing the expression level of KISS1 gene, TM4SF19 gene, PAPPA gene, or HILPDA gene in the hepatic tissue of the cancerous part in the resected specimen of HCC patients with recurrent intrahepatic recurrence within 1 year after surgical removal It was revealed that metastatic recurrence of HCC can be predicted.

[定量PCR法によるmRNA発現解析]
(SK−HEP−1細胞株とSK−HEP−1細胞株由来の浮遊細胞塊におけるmRNA発現解析)
上述のKISS1遺伝子、TM4SF19遺伝子、PAPPA遺伝子、又はHILPDA遺伝子の4種類について、定量PCRによりSK−HEP−1細胞株とSK−HEP−1細胞株由来の浮遊細胞塊のmRNA発現を調べて比較した。まず、SK−HEP−1細胞株とSK−HEP−1細胞株由来の浮遊細胞塊を用いて、miRNeasy(QIAGEN社製)を用いて全RNAを抽出・精製し、さらにPrimeScript RT reagent Kit(TaKaRa Bio社製)を用いてcDNAを合成した。合成したcDNAを鋳型として、LightCycler 480 Probe Master(Roche Diagnostics社製)、Universal ProbeLibrary(Roche Diagnostics社製)、及びLightCycler480 System II(Roche Diagnostics社製)を用いて定量PCRを行った。結果を図3に示す。図3において、縦軸の各mRNAの発現量(mRNA level)はGAPDH及びPGK1を参照遺伝子として標準化した後に、SK−HEP−1細胞株からの発現量を基準(1.0)とした相対値である。
[MRNA expression analysis by quantitative PCR]
(MRNA expression analysis in floating cell mass derived from SK-HEP-1 cell line and SK-HEP-1 cell line)
Regarding the above four types of KISS1 gene, TM4SF19 gene, PAPPA gene, or HILPDA gene, mRNA expression of floating cell mass derived from SK-HEP-1 cell line and SK-HEP-1 cell line was examined by quantitative PCR and compared. . First, using the SK-HEP-1 cell line and the floating cell mass derived from the SK-HEP-1 cell line, total RNA was extracted and purified using miRNeasy (manufactured by QIAGEN), and then PrimeScript RT reagent Kit (TaKaRa) Bio was used to synthesize cDNA. Using the synthesized cDNA as a template, quantitative PCR was performed using LightCycler 480 Probe Master (Roche Diagnostics), Universal Probe Library (Roche Diagnostics), and LightCycler480 System II (Roche Diagnostics). The results are shown in FIG. In FIG. 3, the expression level (mRNA level) of each mRNA on the vertical axis is a relative value based on the expression level from the SK-HEP-1 cell line as a standard (1.0) after standardization using GAPDH and PGK1 as reference genes. It is.

図3に示すように、いずれの遺伝子もSK−HEP−1細胞株と比べて肝転移能が高いSK−HEP−1細胞株由来の浮遊細胞塊で発現量が高いことが定量PCR法においても確認された。   As shown in FIG. 3, any gene is a floating cell mass derived from the SK-HEP-1 cell line having a higher liver metastasis ability than the SK-HEP-1 cell line, and the expression level is high in the quantitative PCR method. confirmed.

(肝組織におけるmRNA発現解析1)
摘除手術後2年以上肝内無再発HCC患者(without IHR)及び摘除手術後1年以内肝内再発HCC患者(with IHR)からの摘除標本において、それぞれ摘除した非がん部肝組織(non-Tumor)及びがん部肝組織(Tumor)(それぞれn=6)から全RNAを抽出・精製し、上記と同様の方法で定量PCRを行ってKISS1遺伝子、TM4SF19遺伝子、又はHILPDA遺伝子のmRNAの発現量を測定した。結果を図4に示す。図4において、縦軸はGAPDH及びPGK1を参照遺伝子として標準化した後に、非がん部肝組織12例の平均値を基準(1.0)とした相対値である。また、カラムの中の太線は中央値であり、fold chargeは平均値を用いて示している。
(MRNA expression analysis in liver tissue 1)
In non-hepatic recurrent HCC patients (without IHR) and recurrent intrahepatic recurrent HCC patients (with IHR) within 1 year after resection surgery Tumor) and tumor liver tissue (Tumor) (n = 6 for each), extracted and purified total RNA, and quantitative PCR was performed in the same manner as described above to express mRNA of KISS1 gene, TM4SF19 gene, or HILPDA gene The amount was measured. The results are shown in FIG. In FIG. 4, the vertical axis represents a relative value based on an average value of 12 cases of non-cancerous liver tissue as a standard (1.0) after standardizing GAPDH and PGK1 as reference genes. Further, the bold line in the column is the median value, and the fold charge is shown using an average value.

図4に示すように、KISS1遺伝子、TM4SF19遺伝子、HILPDA遺伝子は、摘除手術後2年以上肝内無再発HCC患者の摘除標本におけるがん部肝組織と比較して摘除手術後1年以内肝内再発HCC患者の摘除標本におけるがん部肝組織において発現量が多く、がん部肝組織のKISS1遺伝子、TM4SF19遺伝子、又はHILPDA遺伝子の発現量を調べることで、HCCの転移性再発を予測できることが確認された。   As shown in FIG. 4, KISS1 gene, TM4SF19 gene, and HILPDA gene are intrahepatic within 1 year after excision surgery compared with cancer liver tissue in resected specimens of non-hepatic HCC patients for 2 years or more after excision surgery. It is possible to predict metastatic recurrence of HCC by examining the expression level of KISS1 gene, TM4SF19 gene, or HILPDA gene in the liver tissue of the cancerous part in the excised specimen of recurrent HCC patients. confirmed.

(肝組織におけるmRNA発現解析2)
高分化型HCC(HCC(G1))患者、中分化型HCC(HCC(G2))患者、低分化型HCC(HCC(G3))患者の摘除標本における非がん部肝組織(non-Tumor)及びがん部肝組織(G1,G2,G3)から全RNAを抽出・精製し、上記と同様の方法で定量PCRを行ってKISS1遺伝子、TM4SF19遺伝子のmRNAの発現量を測定した。結果を図5に示す。図5において、縦軸はGAPDH及びPGK1を参照遺伝子として標準化した後に、非がん部肝組織12例の平均値を基準(1.0)とした相対値である。また、カラムの中の太線は中央値である。
(MRNA expression analysis in liver tissue 2)
Non-tumor liver tissue (non-Tumor) in resected specimens of well-differentiated HCC (HCC (G1)) patients, moderately differentiated HCC (HCC (G2)) patients, and poorly differentiated HCC (HCC (G3)) patients Total RNA was extracted from the liver tissue (G1, G2, G3) of the cancer site and purified, and quantitative PCR was performed in the same manner as described above to measure the expression levels of KISS1 gene and TM4SF19 gene mRNA. The results are shown in FIG. In FIG. 5, the vertical axis represents a relative value based on the average value of 12 non-cancerous liver tissues after the standardization with GAPDH and PGK1 as reference genes. The thick line in the column is the median value.

図5に示すように、KISS1遺伝子、TM4SF19遺伝子は、非がん部肝組織と比べて転移性再発の可能性が高い低分化型HCC患者のがん部肝組織において発現量が多いことが明らかとなり、KISS1遺伝子やTM4SF19遺伝子の発現量と転移性再発に相関があることが確認された。   As shown in FIG. 5, it is clear that the KISS1 gene and TM4SF19 gene are highly expressed in the cancerous liver tissue of poorly differentiated HCC patients with a high possibility of metastatic recurrence compared with the non-cancerous liver tissue. Thus, it was confirmed that there was a correlation between the expression level of the KISS1 gene and the TM4SF19 gene and metastatic recurrence.

(iTRAQ標識(登録商標)2D−LC−MS/MS解析によるタンパク質発現解析)
iTRAQ標識2D−LC−MS/MS解析により、SK−HEP−1細胞株とSK−HEP−1細胞株由来の浮遊細胞塊のタンパク質発現量を調べて比較した。
(Protein expression analysis by iTRAQ label (registered trademark) 2D-LC-MS / MS analysis)
By iTRAQ-labeled 2D-LC-MS / MS analysis, the protein expression levels of floating cell mass derived from SK-HEP-1 cell line and SK-HEP-1 cell line were examined and compared.

まず、SK−HEP−1細胞株とSK−HEP−1細胞株由来の浮遊細胞塊からタンパク質画分を調製し、トリプシン消化の後に安定同位体標識iTRAQ試薬(Applied Biosystems社製)で処理して、2D−LC−MS/MS解析を行った。得られたペプチド配列について、NCBIのタンパク質データベースとタンパク質同定ソフトウェアProteinPlotを用いてタンパク質を同定した。   First, a protein fraction is prepared from the SK-HEP-1 cell line and the floating cell mass derived from the SK-HEP-1 cell line, treated with a stable isotope-labeled iTRAQ reagent (Applied Biosystems) after trypsin digestion. 2D-LC-MS / MS analysis was performed. About the obtained peptide sequence, protein was identified using the protein database of NCBI, and protein identification software ProteinPlot.

SK−HEP−1細胞株由来の浮遊細胞塊における各タンパク質の発現量をSK−HEP−1細胞株における各タンパク質の発現量と比較したところ、59種類のタンパク質において、発現量の増減が2倍以上であることが確認され、そのうち、RAB27BはSK−HEP−1細胞株と比較してSK−HEP−1細胞株由来の浮遊細胞塊において発現量が4.7倍であった。さらに実施例2におけるDNAチップ法によるmRNA発現解析により、SK−HEP−1細胞株と比較してSK−HEP−1細胞株由来の浮遊細胞塊においてRAB27B遺伝子のmRNAの発現量は2.2倍であったことから、RAB27B遺伝子をHCC再発に関わる候補遺伝子とした。   When the expression level of each protein in the floating cell mass derived from the SK-HEP-1 cell line was compared with the expression level of each protein in the SK-HEP-1 cell line, the increase or decrease in the expression level was doubled in 59 types of proteins. Of these, it was confirmed that RAB27B was 4.7 times more expressed in floating cell mass derived from the SK-HEP-1 cell line than the SK-HEP-1 cell line. Furthermore, according to the mRNA expression analysis by the DNA chip method in Example 2, the expression amount of RAB27B gene mRNA in the floating cell mass derived from the SK-HEP-1 cell line was 2.2 times that of the SK-HEP-1 cell line. Therefore, the RAB27B gene was selected as a candidate gene involved in HCC recurrence.

(肝組織におけるRAB27B遺伝子のmRNA発現解析)
摘除手術後2年以上肝内無再発HCC患者(without IHR)及び摘除手術後1年以内肝内再発HCC患者(with IHR)からの摘除標本において、それぞれ摘除した非がん部肝組織(non-Tumor)及びがん部肝組織(Tumor)(それぞれn=6)から全RNAを抽出・精製し、実施例3と同様の方法で定量PCRを行ってRAB27B遺伝子のmRNAの発現量を測定した。結果を図6に示す。図6において、縦軸はGAPDH及びPGK1を参照遺伝子として標準化した後に、非がん部肝組織12例の平均値を基準(1.0)とした相対値である。また、カラムの中の太線は中央値であり、fold chargeは平均値を用いて示している。
(RNA expression analysis of RAB27B gene in liver tissue)
In non-hepatic recurrent HCC patients (without IHR) and recurrent intrahepatic recurrent HCC patients (with IHR) within 1 year after resection surgery Tumor) and cancerous liver tissue (Tumor) (each n = 6) were extracted and purified, and quantitative PCR was performed in the same manner as in Example 3 to measure the expression level of RAB27B gene mRNA. The results are shown in FIG. In FIG. 6, the vertical axis represents a relative value based on an average value of 12 non-cancerous liver tissues as a standard (1.0) after standardizing GAPDH and PGK1 as reference genes. Further, the bold line in the column is the median value, and the fold charge is shown using an average value.

図6に示すように、RAB27B遺伝子は、摘除手術後2年以上肝内無再発HCC患者の摘除標本における非がん部肝組織と比較して摘除手術後1年以内肝内再発HCC患者の摘除標本における非がん部肝組織において発現量が多く、非がん部肝組織のRAB27B遺伝子の発現量を調べることで、HCCの転移性再発を予測できることが確認された。   As shown in FIG. 6, RAB27B gene was removed from patients with recurrent HCC within 1 year after resection surgery compared to non-cancerous liver tissue in resected specimens of non-hepatic recurrent HCC patients for 2 years or more after resection surgery. It was confirmed that metastatic recurrence of HCC can be predicted by examining the expression level of the RAB27B gene in the non-cancerous liver tissue in the specimen, and the expression level is high in the non-cancerous liver tissue.

以上の結果から、KISS1遺伝子、TM4SF19遺伝子、PAPPA遺伝子、HILPDA遺伝子又はRAB27B遺伝子や、RAB27B遺伝子をコードするタンパク質はin vitro解析において転移能が高いHCC幹細胞において発現量が多く、さらにHCC再発や進展といった臨床所見を伴うヒト臨床検体においてもそれらの発現量と臨床所見との相関が確認された。したがって、KISS1遺伝子、TM4SF19遺伝子、PAPPA遺伝子、HILPDA遺伝子又はRAB27B遺伝子や、これら遺伝子をコードするタンパク質の発現量を調べることにより、HCCの転移性再発リスクを予測することができることが明らかとなった。本構成要素により予測されるHCCの再発は、転移生再発の根源的原因と考えられるがん幹細胞の発生を予測するものであり、従来の門脈浸潤や門脈塞栓などよりも早い段階でのがんの悪性化を検出するものである。   From the above results, KISS1 gene, TM4SF19 gene, PAPPA gene, HIPPA gene or RAB27B gene, and the protein encoding RAB27B gene have a high expression level in HCC stem cells with high metastatic ability in in vitro analysis, and further, HCC recurrence and progress In human clinical specimens with clinical findings, the correlation between their expression level and clinical findings was confirmed. Therefore, it was revealed that the risk of metastatic recurrence of HCC can be predicted by examining the expression levels of the KISS1 gene, TM4SF19 gene, PAPPA gene, HIPPDA gene, RAB27B gene, and proteins encoding these genes. The recurrence of HCC predicted by this component predicts the occurrence of cancer stem cells that are considered to be the root cause of metastatic live recurrence, and is earlier than conventional portal vein invasion and portal vein embolism. It detects cancer malignancy.

本発明によると、HCC治療における術後のHCCの転移性再発リスクを予測することが可能となり、HCC治療の術後の治療方針を決定する場合に利用可能である。   According to the present invention, it becomes possible to predict the risk of metastatic recurrence of HCC after surgery in HCC treatment, and it can be used when determining the postoperative treatment policy of HCC treatment.

Claims (4)

被検者から採取した生体試料中のTM4SF19遺伝子、HILPDA遺伝子、KISS1遺伝子、PAPPA遺伝子又はRAB27B遺伝子のmRNAの発現量、又は前記mRNAがコードするタンパク質の発現量を指標として、肝細胞がんの転移性再発リスクを予測する方法。 Metastasis of hepatocellular carcinoma using as an index the mRNA expression level of TM4SF19 gene, HILPDA gene, KISS1 gene, PAPPA gene or RAB27B gene in the biological sample collected from the subject, or the expression level of the protein encoded by the mRNA How to predict the risk of sexual recurrence. 生体試料が、肝組織であることを特徴とする請求項1記載の方法。 The method according to claim 1, wherein the biological sample is liver tissue. 請求項1又は2記載の方法に用いるためのキットであって、被検者から採取した生体試料中のTM4SF19遺伝子、HILPDA遺伝子、KISS1遺伝子、PAPPA遺伝子又はRAB27B遺伝子のmRNAの発現量を検出するためのプライマー対若しくはプローブ、又はそれらの標識物を備えることを特徴とするキット。 A kit for use in the method according to claim 1 or 2, for detecting the expression level of mRNA of TM4SF19 gene, HILPDA gene, KISS1 gene, PAPPA gene or RAB27B gene in a biological sample collected from a subject. A kit comprising a primer pair or a probe, or a label thereof. 請求項1又は2記載の方法に用いるためのキットであって、被検者から採取した生体試料中のTM4SF19遺伝子、HILPDA遺伝子、KISS1遺伝子、PAPPA遺伝子又はRAB27B遺伝子のmRNAがコードするタンパク質に特異的に結合する抗体、又はこれらの標識物を備えることを特徴とするキット。 A kit for use in the method according to claim 1 or 2, which is specific for a protein encoded by mRNA of TM4SF19 gene, HILPDA gene, KISS1 gene, PAPPA gene or RAB27B gene in a biological sample collected from a subject. A kit characterized by comprising an antibody that binds to or a label thereof.
JP2015016586A 2015-01-30 2015-01-30 Method of predicting metastatic recurrence risk of hepatocellular carcinoma Active JP6551967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015016586A JP6551967B2 (en) 2015-01-30 2015-01-30 Method of predicting metastatic recurrence risk of hepatocellular carcinoma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015016586A JP6551967B2 (en) 2015-01-30 2015-01-30 Method of predicting metastatic recurrence risk of hepatocellular carcinoma

Publications (2)

Publication Number Publication Date
JP2016140262A true JP2016140262A (en) 2016-08-08
JP6551967B2 JP6551967B2 (en) 2019-07-31

Family

ID=56567923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016586A Active JP6551967B2 (en) 2015-01-30 2015-01-30 Method of predicting metastatic recurrence risk of hepatocellular carcinoma

Country Status (1)

Country Link
JP (1) JP6551967B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607725A (en) * 2017-08-30 2018-01-19 福建师范大学 Application, prognosis in hcc assessment kit and method of the HILPDA albumen in prognosis evaluation reagent kit after preparing Liver Cancer Operation
CN113046436A (en) * 2021-02-09 2021-06-29 深圳市人民医院 Hypoxia-related gene marker combination for hepatocellular carcinoma and application thereof
WO2022255401A1 (en) * 2021-06-03 2022-12-08 国立大学法人 東京大学 Disease marker expressed in association with abnormal erk-mapk pathway activation
WO2022255843A1 (en) * 2021-06-03 2022-12-08 주식회사 메드팩토 Tm4sf19 inhibitor and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027898A (en) * 2012-07-31 2014-02-13 Yamaguchi Univ Method for judging onset risk of hepatocarcinoma
JP2014525584A (en) * 2011-08-31 2014-09-29 オンコサイト コーポレーション Methods and compositions for the treatment and diagnosis of cancer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525584A (en) * 2011-08-31 2014-09-29 オンコサイト コーポレーション Methods and compositions for the treatment and diagnosis of cancer
JP2014027898A (en) * 2012-07-31 2014-02-13 Yamaguchi Univ Method for judging onset risk of hepatocarcinoma

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. GASTROENTEROL., vol. 45, no. 2, JPN6018035796, 2010, pages 146 - 152, ISSN: 0003973437 *
J. HEPATOL., vol. 41, no. 2, JPN6018035793, 2004, pages 284 - 291, ISSN: 0003973436 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607725A (en) * 2017-08-30 2018-01-19 福建师范大学 Application, prognosis in hcc assessment kit and method of the HILPDA albumen in prognosis evaluation reagent kit after preparing Liver Cancer Operation
CN113046436A (en) * 2021-02-09 2021-06-29 深圳市人民医院 Hypoxia-related gene marker combination for hepatocellular carcinoma and application thereof
WO2022255401A1 (en) * 2021-06-03 2022-12-08 国立大学法人 東京大学 Disease marker expressed in association with abnormal erk-mapk pathway activation
WO2022255843A1 (en) * 2021-06-03 2022-12-08 주식회사 메드팩토 Tm4sf19 inhibitor and uses thereof

Also Published As

Publication number Publication date
JP6551967B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
JP7256840B2 (en) Splice variants associated with neomorphic SF3B1 mutants
Li et al. Somatic SF3B1 hotspot mutation in prolactinomas
AU2008251381B2 (en) Biomarkers for melanoma
EA037995B1 (en) Biomarker panel for the detection of cancer
JP2016525883A (en) Prognostic classification and treatment of adenocarcinoma
JP2021502069A (en) Non-coding RNA for detecting cancer
JP6551967B2 (en) Method of predicting metastatic recurrence risk of hepatocellular carcinoma
US9347088B2 (en) Molecular signature of liver tumor grade and use to evaluate prognosis and therapeutic regimen
US20110151443A1 (en) Marker for gastric cancer
EP3851543A1 (en) Method for estimating breast cancer cell abundance
EP3318632B1 (en) Marker for heterogeneity of cancer tissue, and use thereof
WO2011122634A1 (en) Prognostic method for pulmonary adenocarcinoma, pulmonary adenocarcinoma detection kit, and pharmaceutical composition for treating pulmonary adenocarcinoma
CA3152887A1 (en) Novel biomarkers and diagnostic profiles for prostate cancer integrating clinical variables and gene expression data
Tamura et al. SHISA2 enhances the aggressive phenotype in prostate cancer through the regulation of WNT5A expression
WO2019134994A1 (en) Prognostic biomarkers for human papillomavirus positive cancers
KR100568724B1 (en) Detection kit for cholangiocarcinoma by measuring the expression of cholangiocarcinoma-related genes
US7901877B2 (en) Genetic markers and methods for detecting and treating cancers
US20220135979A1 (en) Diagnosis and treatment of medulloblastoma
CN114582509A (en) Grape membrane melanoma prognosis risk scoring model and application thereof
CN106811532B (en) Application of ACTA1 as tongue squamous carcinoma diagnosis and treatment marker
US20090011423A1 (en) Genes for prognosis of cancer
CN110093419B (en) Application of circular RNA, kit and pharmaceutical composition and application thereof
EP4317458A1 (en) Follicular thyroid cancer-specific marker
CN110499366B (en) Application of PI15 as osteoarthritis marker
JP2017171641A (en) Prostate cancer therapeutic agent, prostate cancer diagnostic marker, and method for differentiating prostate cancer morbidity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190627

R150 Certificate of patent or registration of utility model

Ref document number: 6551967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250