WO2022255401A1 - Disease marker expressed in association with abnormal erk-mapk pathway activation - Google Patents

Disease marker expressed in association with abnormal erk-mapk pathway activation Download PDF

Info

Publication number
WO2022255401A1
WO2022255401A1 PCT/JP2022/022276 JP2022022276W WO2022255401A1 WO 2022255401 A1 WO2022255401 A1 WO 2022255401A1 JP 2022022276 W JP2022022276 W JP 2022022276W WO 2022255401 A1 WO2022255401 A1 WO 2022255401A1
Authority
WO
WIPO (PCT)
Prior art keywords
mek1
cancer
mutant
ras
marker
Prior art date
Application number
PCT/JP2022/022276
Other languages
French (fr)
Japanese (ja)
Inventor
睦寛 武川
裕二 久保田
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to JP2023525886A priority Critical patent/JPWO2022255401A1/ja
Publication of WO2022255401A1 publication Critical patent/WO2022255401A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to disease markers.
  • cancer marker molecules have been reported so far for the purpose of cancer diagnosis and post-treatment follow-up. Some of them have already been put to practical use, for example, blood PSA (prostate specific antigen) is used as a marker molecule for prostate cancer.
  • blood PSA prostate specific antigen
  • the expression levels of many other cancer marker molecules do not necessarily match the development of cancer.
  • there are no effective diagnostic markers yet for pancreatic cancer and the difficulty in early detection is a cause of poor prognosis.
  • many reports have been reported so far on activating mutations/gene amplifications of Ras, Raf, MEK, etc. that constitute the ERK-MAP kinase pathway (Raf-MEK-ERK) (pancreatic cancer).
  • KRas is mutated to an active form in more than 90% of pancreatic cancers
  • BRaf is mutated to an active form in about 50% of metastatic melanomas, constitutively activating the ERK pathway.
  • BRaf-activated malignant melanoma and ALK-activated lung cancer although molecular-targeted drugs temporarily disappear, the ERK pathway is eventually reactivated via collateral pathways. Acquisition of drug resistance has been shown to cause cancer recurrence.
  • Non-Patent Document 1 the MEK1 (K57N) mutation found in lung tumors has been shown to significantly promote cell proliferation through activation of the ERK pathway (Non-Patent Document 3).
  • Non-Patent Document 4 Non-Patent Document 4
  • a molecular marker that can sensitively detect abnormal activation of the ERK-MAP kinase pathway can be found, it can be used for early diagnosis of cancer and Ras/MAPK syndrome and prediction of cancer recurrence.
  • any abnormalities in the ERK-MAP kinase pathway are related to cancer or Ras/MAPK syndrome, and it is one of the important problems to be solved in the medical field. be.
  • the present invention clarifies what diseases are triggered by abnormal activation of the ERK-MAPK pathway and what gene expression is induced. It is an object of the present invention to provide markers for early detection of activation-related diseases, particularly cancer, and early detection of Ras/MAPK syndrome.
  • the inventors attempted to search for genes that are highly expressed only when the ERK pathway is constitutively and strongly activated, among genes whose expression is induced downstream of the ERK pathway. .
  • Human-derived epithelial cells were transfected with cancer-derived active MEK1 point mutants or Ras/MAPK syndrome-derived active MEK1 point mutants, and cDNA microarray analysis was performed to obtain genome-wide gene expression profiles in the cells. analyzed exhaustively. As a result, we found that the expression levels of various mRNAs fluctuate greatly.
  • cancer-derived MEK1 mutants we collected various cancer cells (malignant melanoma, lung cancer, pancreatic cancer, colorectal cancer, etc.) in which abnormal activation of the ERK pathway was observed, and examined these genes. When we monitored the expression level at the RNA and protein levels, we confirmed that it was actually strongly expressed in most cancer cell lines. In addition, for some molecules, analysis (immunostaining) using clinical cancer tissue is also performed, and at least in clinical samples of pancreatic cancer, lung cancer, and colon cancer, at high frequency (in 80% or more cases) High expression was confirmed. Interestingly, many of these molecules included secretory proteins and membrane proteins that could serve as novel cancer detection markers.
  • the present invention is the following (1) to (13).
  • a cancer detection marker comprising at least one molecule selected from a group of proteins whose expression is induced by ERK1 or ERK2, wherein said ERK1 and ERK2 are activated by autophosphorylation of the T-loop region.
  • a marker for cancer detection characterized by being activated by a MEK1 mutant or MEK2 mutant.
  • the marker for cancer detection according to (1) above, wherein the mutation in the MEK1 mutant is Q56P, K57N, C121S or E203K.
  • the marker for cancer detection according to (1) above, wherein the mutation in the MEK2 mutant is Q60P.
  • MMP10 EMP1, Rheb2, TM4SF1, TM4SF19, TMEM158, ENDOD1, c2orf89, SLC20A1, LY6K, PLAUR (CD87), PVR (CD155), IL7R (CD127), IL1R2 (CD121b), IL4R, TweakR (CD266), CD3D, CD44, SEMA7, IL13RA2, THBD, XAGE1, PRR9, TRIB1, IER3, c11orf96, c8orf4, PHLDA1, PHLDA2, DUSP5, DUSP6, ERRFI1, GADD45B, IER3, IRX4, SPANXN3, SPANXN4, SPANXN5, TGFb1, BMP2, TFPI2,
  • the cancer detection marker according to (4) above comprising at least one protein selected from the group consisting of EMP1, TM4SF1, TM4SF19, c11orf96, PHLDA1, PHLDA2, TFPI2, Rheb2 and GDF15.
  • MMP10 EMP1, Rheb2, TM4SF1, TM4SF19, TMEM158, ENDOD1, c2orf89, SLC20A1, LY6K, PLAUR (CD87), PVR (CD155), IL7R (CD127), IL1R2 (CD121b), IL4R, TweakR (CD266), CD3D, CD44, SEMA7, IL13RA2, THBD, XAGE1, PRR9, TRIB1, IER3, c11orf96, c8orf4, PHLDA1, PHLDA2, DUSP5, DUSP6, ERRFI1, GADD45B, IER3, IRX4, SPANXN3, SPANXN4, SPANXN5, TGFb1, BMP2, TFPI2, A cancer detection kit comprising antibodies or aptamers against GDF15, PAEP, CCL7, IL11 or CRLF.
  • a method for diagnosing cancer or diagnosing cancer comprising the step of measuring the expression level of the cancer detection marker according to any one of (1) to (6) above present in a sample derived from a subject. Auxiliary method.
  • a marker for cancer detection comprising the step of searching for a protein that induces the expression of ERK1 or ERK2 that is activated by a MEK1 mutant or MEK2 mutant that is activated by autophosphorylation of the T-loop region. screening method.
  • a marker for detecting Ras/MAPK syndrome containing at least one molecule selected from the group of proteins whose expression is induced by ERK1 or ERK2, wherein the ERK1 and ERK2 are not phosphorylated in the T-loop region A marker for detecting Ras/MAPK syndrome, characterized by being activated by a MEK1 mutant or MEK2 mutant having activity even in the case of Ras/MAPK syndrome.
  • the mutation in the MEK2 mutant is F53C, F53V, F57L, K61E, A62P, P128R, G132V, T134C, or Y134H.
  • (12) comprising the step of measuring the expression level of the Ras/MAPK syndrome detection marker according to any one of (9) to (11) present in a subject-derived sample, a method for diagnosing Ras/MAPK syndrome or A diagnostic aid for Ras/MAPK syndrome.
  • (123) Ras/MAPK, including the step of searching for proteins that induce the expression of ERK1 or ERK2 activated by MEK1 or MEK2 mutants that are active even if the T-loop region is not phosphorylated Screening method for markers for syndrome detection.
  • the sign "-" indicates a numerical range including the values on the left and right of it.
  • cancers caused by abnormal activation of the ERK pathway can be detected with high sensitivity and accuracy.
  • Ras/MAPK syndrome detection marker according to the present invention, early diagnosis and detection of Ras/MAPK syndrome, which is difficult to diagnose, becomes possible.
  • (A) shows the results of measuring the kinase activity (using ERK2 as a substrate) of cancer-derived MEK1 mutants and other MEK1 mutants.
  • Kinase-deficient Myc-ERK2(K/N) and HA-MEK1 were co-transfected into HEK293 cells.
  • Phosphorylated ERK2 was detected by immunoblotting and its band intensity was quantified (P-ERK). The same filter was blotted again with an anti-Myc antibody to confirm the amount of ERK present.
  • Mutants with Q56P and K57N mutations are cancer-derived MEK1 mutants. Other variants are those derived from the Ras/MAPK syndrome.
  • K/M K97M mutation that lacks kinase activity
  • AA non-phosphorylated mutant in which Ser218 and Ser222 of the T-loop are replaced with alanine.
  • GST-MEK1 or cancer-derived MEK1 mutants Q56P or K57N were purified from E. coli and immunoblotted with an anti-phospho-MEK antibody. K/M; indicates the kinase activity-deficient K97M mutation.
  • B HA-MEK1 or its mutants (Q56P and K57N) were transiently expressed in HEK293 cells, and T-loop phosphorylation was detected in the same manner as in (A).
  • C Purified MEK1 protein was incubated with ERK2 (K/N) lacking kinase activity, and ERK phosphorylation was detected by blotting with anti-P-ERK antibody. The band intensity of P-ERK was quantified.
  • D GST-MEK1(Q56P) mutants were incubated with kinase activity-deficient MEK1(K/M) or MEK2(K/M), phosphorylation of MEK (GST-MEK1(Q56P)) was inhibited by anti-P-MEK detected with an antibody.
  • AA represents non-phosphorylated mutations.
  • A62P is a RAS/MAPK syndrome-derived variant.
  • B HEK293 cells were transfected with either HA-MEK2 or its mutants, and T-loop phosphorylation was detected with a P-MEK antibody. K/M represents mutations that lack kinase activity. Effects of MEK mutations on ERK pathways.
  • A HEK293 cells expressing HA-MEK1(WT), HA-MEK1(F53S) (derived from Ras/MAPK syndrome) or HA-MEK1(K57N) (derived from cancer) were stimulated with EGF (5 ng/ml). did.
  • Phosphorylation of ERK (“P-ERK”), MEK (“P-MEK”), Raf-1 (“P-Raf1(S338)”) and S6 ribosomal protein (“P-S6K”) after stimulation with EGF was detected with a phosphorylated antibody. Egr1 expression levels were also monitored (“Egr1”).
  • Egr1 Egr1 expression levels were also monitored (“Egr1”).
  • B HEK293 cell lines stably co-expressing ERK1-GFP and various MEK1 proteins were stimulated with EGF (5 ng/ml), and ERK localization was continuously monitored using a time-lapse imaging system. . The amount of ERK1-GFP fluorescence was quantified, and the percentage of ERK1 translocated to the nucleus was graphed.
  • HEK293 (with MEK1(WT) or MEK1(K57N)), H1299 (NRas Q61K ) (from lung cancer), A375 (BRaf V600E ) (from malignant melanoma), sk-Mel28 (BRaf V600E ) and WiDr (BRaf V600E ) (Colon cancer-derived) cells were treated in the presence or absence of U0126 (20 ⁇ M, 24 h), and the results of blotting of cell lysates or cell culture supernatants with antibodies against each protein are shown. Expression levels of C11orf96 protein in human malignancies.
  • a first embodiment is a cancer detection marker comprising at least one molecule selected from a group of proteins whose expression is induced by ERK1 or ERK2, wherein the ERK1 and ERK2 autophosphorylate the T-loop region.
  • a marker for cancer detection characterized by being activated by a MEK1 mutant or a MEK2 mutant that is activated by .
  • ERK1 and ERK2 are members of the MAPK (Mitogen-activated protein kinase) family, have molecular weights of 44 kDa and 42 kDa, respectively, and have approximately 85% homology in their amino acid sequences.
  • Ras activated by extracellular growth factor stimulation binds to Raf and promotes its activation, and Raf phosphorylates and activates MEK, which then phosphorylates ERK. oxidize and activate.
  • Activated ERK translocates from the cytoplasm to the nucleus and activates transcription factors such as ELK, CREB, c-Myc, c-Fos and Sp-1 to induce gene expression.
  • MEK1 and MEK2 mutants have their T-loop regions phosphorylated by intramolecular autophosphorylation and exhibit constitutive and strong kinase activity (see below).
  • MEK1 mutants and/or MEK2 mutants having such characteristics are also described as "MEK1/2 mutants according to the first embodiment") for the first time.
  • ERK1 and ERK2 activated by this MEK1 mutant or MEK2 mutant induce the expression of various cancer cell-specific proteins through the activation of various transcription factors.
  • cancer-derived MEK1/2 mutants which are characterized by their activation by intramolecular autophosphorylation of the T-loop region, indirectly induce the expression of cancer cell-specific proteins.
  • the protein whose expression is induced can be used as an effective marker for detecting the presence of cancer cells (hereinafter also referred to as a "cancer detection marker according to the first embodiment").
  • MEK1/2 and ERK1/2 when MEK1/2 and ERK1/2 are described, they mainly refer to MEK1 protein and/or MEK2 protein, ERK1 protein and/or ERK2 protein. Make a note to that effect.
  • the MEK1/2 T-loop region exists, for example, in the 208th to 233rd amino acid region on the MEK1 amino acid sequence and in the 212th to 237th amino acid region on the MEK2 amino acid sequence.
  • amino acid residues present in the T-loop region are intramolecularly autophosphorylated. It is characterized by being activated, showing constant and strong kinase activity.
  • MEK1/2 mutants according to the first embodiment include, but are not limited to, MEK1 mutants with Q56P, K57N, C121S or E203K mutations, and MEK2 mutants with Q60P mutations. can.
  • the MEK1/2 mutant according to the first embodiment may be naturally occurring or newly produced by genetic engineering or the like. Whether or not the MEK1/2 mutant has the ability to intramolecularly autophosphorylate can be determined, for example, by performing a kinase assay in which the MEK1/2 mutant and the MEK1/2 mutant that has lost the kinase activity are allowed to coexist. In this case, if the MEK1/2 mutant that has lost the kinase activity is not phosphorylated, it can be determined that the MEK1/2 mutant has intramolecular autophosphorylation ability (for details, see Examples checking).
  • a cancer detection marker according to the first embodiment or a cancer detection marker candidate molecule can be searched for, for example, as follows.
  • the MEK1/2 mutant according to the first embodiment is introduced into normal cells that are not cancerous, and the expression levels of various mRNAs of genes in the cells are comprehensively examined using, for example, microarrays and RNAseq. Analyzes are performed, and genes whose expression levels are statistically significantly increased are selected as compared with the expression levels in stably expressing cells transfected with wild-type MEK1/2. If the gene product (protein) of the selected gene is expressed in cancer cells or if the gene product expressed in cancer cells is present in serum-secreted exosomes, the molecule is It can be used as a marker for cancer detection.
  • the cancer detection marker according to the first embodiment or the candidate molecule for the cancer detection marker is a protein
  • a protein is selected, and if the protein is expressed in cancer cells, that molecule can be used as a marker for cancer detection.
  • a second embodiment includes the step of searching for a protein that induces the expression of ERK1 or ERK2 that is activated by a MEK1 mutant or MEK2 mutant that is activated by autophosphorylation of the T-loop region. It is a screening method for cancer detection markers.
  • the search for molecules induced by MEK1 mutants activated by autophosphorylation of the T-loop region or ERK1 or ERK2 activated by MEK2 mutants can be performed by microarray analysis or proteome analysis, as described above.
  • the expression levels of proteins expressed in cells introduced with the MEK1/2 mutant according to the first embodiment and cells introduced with the wild-type MEK1/2 are compared, and MEK1/2 according to the first embodiment It can be carried out by selecting a protein whose expression is significantly increased in cells into which two mutants have been introduced. Here, among the selected proteins, those that have been confirmed to be specifically expressed in cancer cells can be used as cancer detection markers.
  • a third embodiment provides a method for diagnosing cancer or diagnosing cancer, comprising the step of measuring the expression level of the cancer detection marker according to the first embodiment of the present invention present in a sample derived from a subject. It is an auxiliary method.
  • the cancer detection marker according to the first embodiment is not limited to specific cancers, and can be used for early detection of various cancers. For example, malignant melanoma, colon cancer, thyroid cancer, lung cancer, ovarian cancer, pancreatic cancer, breast cancer, gastric cancer, prostate cancer, bladder cancer, It can be used for early detection of blood cancer, sarcoma, and the like.
  • the abundance of the cancer detection marker according to the first embodiment in a sample derived from a subject is When the amount is statistically significantly higher than the abundance of the subject, it can be determined that the subject has or is likely to have some cancer.
  • samples derived from a subject include tissues suspected of developing cancer, blood (including exosomes), and body fluids such as pancreatic fluid and urine.
  • body fluids such as blood, pancreatic fluid and urine derived from healthy subjects.
  • the fourth embodiment is a kit for cancer detection or cancer diagnosis.
  • the kit of the present invention contains at least an antibody or aptamer for detecting the cancer detection marker according to the first embodiment. More specifically, for example, MMP10, EMP1, Rheb2, TM4SF19, TM4SF1, TMEM158, ENDOD1, c2orf89, SLC20A1, LY6K, PLAUR(CD87), PVR(CD155), IL7R(CD127), IL1R2(CD121b), IL4R, TweakR (CD266), CD3D, CD44, SEMA7, IL13RA2, THBD, XAGE1, PRR9, TRIB1, IER3, c11orf96, c8orf4, PHLDA1, PHLDA2, DUSP5, DUSP6, ERRFI1, GADD45B, IER3, IRX4, SPANXN3, SPANXN4, SPANXN5, TGFb1 , BMP2, TFPI2, GDF15
  • a fifth embodiment is a marker for detecting Ras/MAPK syndrome containing at least one molecule selected from the group consisting of proteins whose expression is induced by ERK1 or ERK2, wherein the ERK1 and ERK2 are T-loop regions
  • ERK1 and ERK2 are T-loop regions
  • a marker for detecting Ras/MAPK syndrome characterized by being activated by a MEK1 mutant or MEK2 mutant that has activity even if is not phosphorylated.
  • MEK1 and MEK2 mutants from Ras/MAPK syndrome constitutively have kinase activity even though their T-loop regions are not phosphorylated.
  • MEK1 and/or MEK2 mutants having such characteristics are also described as “MEK1/2 mutants according to the fifth embodiment”). Furthermore, the inventors found that ERK1/2 activated by this MEK1/2 mutant induces the expression of proteins specific to Ras/MAPK syndrome through the activation of various transcription factors. rice field.
  • MEK1/2 mutants which are characterized by having constitutive kinase activity even when the T-loop region is not phosphorylated, indirectly induce the expression of proteins specific to Ras/MAPK syndrome, The protein whose expression is induced is a marker effective for detecting the presence or absence or possibility of the onset of Ras/MAPK syndrome (hereinafter referred to as "marker for detecting Ras/MAPK syndrome according to the fifth embodiment of the present invention").
  • MEK1/2 mutants include, but are not limited to, MEK1 mutations having F53S, T55P, D67N, P124L, P124Q, G128V, G128N, Y130C, Y130N, Y130H, or E203Q mutations.
  • MEK2 mutants with F53C, F53V, F57L, K61E, A62P, P128R, G132V, T134C, or Y134H mutations.
  • the MEK1/2 mutant according to the fifth embodiment may be naturally occurring or newly produced by genetic manipulation or the like.
  • As a marker for detecting Ras / MAPK syndrome according to the fifth embodiment in cells expressing Ras / MAPK syndrome-derived MEK1 mutant (F53S) (one of the MEK1 mutants according to the fifth embodiment) , the Col14A1 protein whose expression level was significantly increased can be exemplified.
  • a sixth embodiment includes the step of searching for a protein that induces the expression of ERK1 or ERK2 activated by a MEK1 mutant or MEK2 mutant that has activity even if the T-loop region is not phosphorylated. , a screening method for markers for detecting Ras/MAPK syndrome. Molecules induced by ERK1 or ERK2, which is activated by MEK1 or MEK2 mutants that are active even if the T-loop region is not phosphorylated, can be explored by methods such as microarray analysis or proteome analysis.
  • the expression levels of proteins expressed in cells introduced with the MEK1/2 mutant according to the fifth embodiment and in cells introduced with the wild-type MEK1/2 are compared, and the MEK1/2 mutant according to the fifth embodiment can be carried out by selecting a protein whose expression is significantly increased in cells into which is introduced.
  • a seventh embodiment comprises the step of measuring the expression level of a Ras/MAPK syndrome detection marker according to the fifth embodiment of the present invention present in a sample derived from a subject, a method for diagnosing Ras/MAPK syndrome or It is a diagnostic aid for Ras/MAPK syndrome.
  • Ras/MAPK syndrome is characterized by specific facial features (interocular dissociation, oblique palpebral fissure, temporal stenosis, etc.), cardiac hypertrophy, mental retardation, and cutaneous symptoms. It is a chromosomal dominant genetic disease (generic term for Costello/Noonan/CFC syndrome, etc.) (Hum Mutat. 2008 Aug;29(8):992-1006).
  • the amount of the marker for detecting Ras/MAPK syndrome according to the fifth embodiment in a sample derived from a subject is A determination is made that the subject has or is at risk of having some form of Ras/MAPK syndrome if it is statistically significantly greater than the abundance in the control sample. be able to.
  • a subject-derived sample for example, by targeting amniotic fluid collected from a pregnant subject, there is a possibility that a newborn can be diagnosed congenitally with Ras/MAPK syndrome before birth. .
  • the cancer detection marker according to the first embodiment and the Ras/MAPK syndrome detection marker according to the fifth embodiment are proteins
  • their expression levels can be detected and measured by known methods.
  • methods include methods using antibodies or aptamers (such as nucleic acid aptamers or peptide aptamers) that specifically bind to the cancer detection marker protein or Ras/MAPK syndrome detection marker protein used.
  • the detection and quantification of marker proteins can be performed by immunological techniques or methods utilizing the binding properties of antibodies or aptamers to marker proteins, such as immunochromatography and Western blotting. , ELISA (e.g.
  • ERK1-GFP fluorescence from cells in randomly selected wells was monitored every 90 seconds. Specifically, EGF was added to the medium to a final concentration of 5 ng/ml, and fluorescence from living cells was observed continuously for 60 minutes using a Nikon Eclipse Ti fluorescence microscope (Rolera EM- C2) equipped with a CCD camera. , QImaging).
  • the ratio of ERK-GFP translocated to the nucleus in each cell was calculated by dividing the fluorescence intensity of the whole cell by the fluorescence intensity of the nuclear region of the same cell. Quantitative analysis of fluorescence intensity was performed using MetaFluor software (Molecular Devices).
  • the three cancer tissue microarrays used in this example were purchased from Biomax US. Tissue slides were deparaffinized and antigen-retrieved by incubation in citrate buffer (pH 6) at 95°C for 40 minutes. Endogenous peroxidase activity in each tissue sample was blocked by treatment with 0.3% hydrogen peroxide. Rehydrated tissue slides were incubated with BlockAce (Yukijirushi) for 10 minutes at room temperature, followed by anti-C11orf96 antibody (1:250 dilution) overnight at 4°C.
  • BlockAce Yukijirushi
  • An anti-rabbit-HRP antibody (Dako Envision systems) was used as a secondary antibody, and DAB (3,3'-Diaminobenzidine) was used to visualize the binding between the primary antibody and the antigen. Immunohistological evaluation of C11orf96 was performed by a pathologist.
  • Plasmid pcDNA3HA, pcDNA3Flag and pcDNA4Myc vectors were used to express MEK1, MEK2, ERK2, BRaf, Raf-1, KSR1 and their mutants.
  • MEK1/2 mutants were generated by site-directed mutagenesis by PCR.
  • pCold (Takara Bio, Japan)
  • pRSF-Duet Merck-Millipore
  • pGEX-6P vectors GE healthcare
  • ERK2 The catalytically inactive form of ERK2 (K/N) replaces the codon of Lys52 with that of asparagine, and the MEK1 (K/M) and MEK2 (K/M) inactive mutants replace codons of Lys97 and Lys101, respectively. was prepared by substituting the codon for methionine.
  • Raf-1 ⁇ N was produced as previously reported (Takekawa et al., Mol Cell 18, 295-306 2005).
  • the DD sequence destabilization region, Clontech
  • Retrovirus infection HEK293 cell lines stably expressing MEK mutants were generated by retrovirus infection. Retroviruses were generated in GP2-293 packaging cells by transient transfection with pVSV and pQCXIP or pQCXIH plasmids. Culture supernatants were harvested 48 hours after transfection, filtered and added with 8 ⁇ g/ml polybrene. Cells were retrovirally infected and cells expressing the protein of interest were selected with puromycin or hygromycin. Retroviral infection of MEFs was performed as described above, except Plat-E packaging cells were used.
  • GST-MEK1, GST-MEK2, GST-ERK2(K/N) and their mutants were expressed in E. coli DH5 ⁇ by adding IPTG (0.5 ⁇ M) and glutathione- It was purified using Sepharose beads (GE healthcare).
  • Phosphorylated MEK1 was purified from E. coli co-expressing GST-MEK1 and 6xHis-BRaf(V600E). His-MEK1 and MEK2 were purified on a His-Trap HP column using FPLC AKTA system (GE healthcare).
  • HEK293 cells were cultured on coverslips and transiently transfected with HA-MEK1 or its mutants. Eighteen hours after transfection, cells were fixed in PBS (pH 7.4) containing 3% paraformaldehyde for 10 minutes. The cells were washed with PBS, incubated with 0.1% Triton X-100 for 5 minutes for membrane permeabilization, washed again, and treated with BlockAce (Yukijirushi) for 1 hour at room temperature. Cells were then incubated with 1 ⁇ g/ml anti-HA mAb 16B12 (Covance) in PBS containing 2% BSA for 50 minutes at room temperature.
  • PBS pH 7.4
  • BlockAce Yukijirushi
  • Co-immunoprecipitation assay HEK293 cells were transiently transfected with the plasmid and lysed with buffer C after 48 hours. The cell lysate was pretreated with protein G at 4°C for 1 hour and then incubated with an anti-Flag antibody at 4°C for 3 hours. Immunoprecipitates were collected with protein G sepharose and washed with cold buffer C several times. Proteins were spun on SDS-PAGE and subjected to immunoblotting analysis with anti-Myc antibody.
  • MEF proliferation assay cells were plated in 3 wells at 1 x 10 3 cells/well in DMEM containing 10% FBS, and the cell count was determined using the Cell Counting Kit. Counted at -8 (Dojindo).
  • the anchorage-independent growth assay in soft agar the dishes were previously covered with SeaPlaque Agarose (DMEM containing 0.5% agar and 10% FBS) and then covered with 0.35% MEF cells. Agar (containing 10% FBS) was added. Medium was added on top to prevent the agar from drying out.
  • MEF stably expressing cells 3 x 104 cells in agar Colonies (>0.1 mm) were counted after inoculation and 4 weeks of culture. Mean colony numbers were calculated based on values obtained from triplicate assays.
  • genes with expression levels >2 or 0.5 ⁇ compared to the gene expression levels in MEK1(WT)-expressing cells were identified in the DAVID database (http://www.daviddatabase.org/). (http://david.abcc.ncifcrf.gov) and subjected to functional annotation analysis.
  • q-PCR Quantitative analysis of mRNA expression levels
  • cDNA samples derived from the HEK293 stable cell line were subjected to q-PCR analysis using the Takara Thermal Cycler Dice real time system (Takara Bio, Japan) and Thunderbird SYBR qPCR mix (Toyobo, Japan). Relative gene expression levels were normalized to GAPDH. All q-PCR experiments were performed in triplicate and represent the mean ⁇ SEM. Primers used in q-PCR analysis are shown in Tables 1 and 2.
  • the MEK variants used here are those from cancer or RAS/MAPK syndrome. All tested MEK mutants showed higher kinase activity than wild-type MEK (Fig. 1A), but the strength of the activity differed depending on the position of the MEK mutation. That is, cancer-derived MEK mutants (e.g., Q56P and K57N) are "highly active” with strong kinase activity, and Ras/MAPK syndrome-derived MEK mutants (e.g., F53S, T55P, D67N and Y130C) , was a "moderately active" type with weaker kinase activity than cancer-derived MEK mutants.
  • cancer-derived MEK mutants e.g., Q56P and K57N
  • Ras/MAPK syndrome-derived MEK mutants e.g., F53S, T55P, D67N and Y130C
  • non-phosphorylated wild-type MEK1(AA) mutant is able to phosphorylate ERK in vivo, its kinase activity is lower than that of non-phosphorylated MEK mutants with the Q56P or K57N mutation (MEK1(Q56P+)). AA) and MEK1 (K57N+AA)), it decreased to about 50% (Fig. 2C).
  • Gln56 of MEK1 is conserved as Gln60 in MEK2, it is possible that these conserved amino acid substitutions in MEK2, namely cancer-derived MEK2(Q60P) mutants, induce T-loop autophosphorylation. As expected, the MEK2(Q60P) mutant showed autophosphorylation activity as well as the MEK1(Q56P) mutant (FIGS. 3A and B).
  • HEK293 cells stably expressing ERK-GFP and HA-MEK1 or its mutants, and observed nuclear translocation of ERK in response to EGF stimulation using a time-lapse microscopy system.
  • Expression of Ras/MAPK syndrome-derived MEK1(F53S) resulted in EGF-dependent ERK translocation to the nucleus and sustained nuclear localization.
  • MEK1(K57N)-expressing cells accumulation of ERK in the nucleus was confirmed independently of EGF treatment (Fig. 4B).
  • Egr1 one of the IEGs
  • MEK1(WT)-expressing cells depended on the time of EGF treatment, peaking at 5 hours after treatment and then decreasing, whereas MEK1(F53S) expression Its expression was prolonged in cells, and MEK1(K57N)-expressing cells exhibited constitutive expression independent of EGF stimulation (Fig. 4C).
  • Col14A1 (collagen type 14A1) is a Ras/MAPK syndrome-derived MEK1 with moderate constitutive activity. We found that it was specifically upregulated only when (F53S) was expressed (Fig. 5). Indeed, no upregulation of Col14A1 was observed when the highly active cancer-derived MEK1(K57N) mutant was expressed. Col14A1 is thought to act as a bridging molecule between extracellular fibers and matrix components (Eyre et al., Biochem Soc Trans 30, 844-848 2002; Schuppan et al., J Biol Chem 265, 8823 -8832 1990).
  • Ras/MAPK syndrome it has been reported that collagen fiber deposition is observed in various organs (Hinek et al. Am J Med Genet A 133A, 1-12. 2005; Mori et al., Am J Med Genet 61, 304-309 1996 ), suggesting that expression of genes regulated by Ras/MAPK syndrome-derived MEK1 mutants, mutants that induce constitutive activation of MEK with or without T-loop phosphorylation, It is suggested that it is associated with the onset of Ras/MAPK syndrome.
  • c11orf96 protein one of the gene products induced by ERK signaling activation by MEK1(K57N), was significantly expressed in colon, lung and pancreatic tumors compared to normal tissues. , was confirmed by immunohistochemical analysis using TMA (tissue microarrays) (Fig. 8).
  • the present invention enables early detection of diseases such as cancer and Ras/MAPK syndrome, and is expected to be used in the medical field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Plant Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention provides disease markers, in particular, a cancer detection marker and a Ras/MAPK syndrome detection marker. Specifically, the present invention is a cancer detection marker containing at least one type of molecule selected from a protein group, the expression of which is induced by ERK1 or ERK2, the cancer detection marker being characterized in that the ERK1 and the ERK2 are activated by an MEK1 mutant or an MEK2 mutant activated by self-phosphorylation of a T-loop region. In addition, the present invention is a Ras/MAPK syndrome detection marker containing at least one type of molecule selected from a protein group, the expression of which is induced by ERK1 or ERK2, the Ras/MAPK syndrome detection marker being characterized in that the ERK1 and the ERK2 are activated by an MEK1 mutant or an MEK2 mutant exhibiting activities even if a T-loop region is not phosphorylated.

Description

ERK-MAPK経路の異常な活性化に伴い発現する疾患マーカーDisease marker expressed with abnormal activation of ERK-MAPK pathway
 本発明は、疾患マーカーに関する。 The present invention relates to disease markers.
 がんの診断や治療後の経過観察を目的として、現在までに様々ながんマーカー分子が報告されている。その一部については既に実用化されており、例えば血中PSA(prostate specific antigen)は前立腺がんのマーカー分子として使用されている。しかしながら、その他多くのがんマーカー分子は、その発現量が、がんの発生と必ずしも一致していない。特に、膵臓がんにおいては未だ有効な診断マーカーは存在せず、早期発見の難しさが予後不良の原因となっている。
 こうした多様ながんの原因として、現在までにERK-MAPキナーゼ経路(Raf-MEK-ERK)を構成するRas、Raf、MEKなどの活性型変異・遺伝子増幅が数多く報告されている(膵臓がん、悪性黒色腫、大腸がん、甲状腺がん、肺がん、卵巣がんなど)。実際に、膵臓がんでは90%以上にKRasが、転移性悪性黒色腫では約50%にBRafが活性型に変異しており、ERK経路を恒常的に活性化している。また、BRaf活性型の悪性黒色腫や、ALK活性型の肺がんにおいては、分子標的薬により一時的にがんが消失するものの、やがて側副経路を介してERK経路が再活性化されることで薬剤抵抗性を獲得し、がんが再発する事が明らかにされている。また、ERK-MAPキナーゼ経路を構成する遺伝子の1つであるMEKにおけるいくつかのミスセンス変異が、肺がん、大腸がん、卵巣がんおよび悪性黒色腫の遺伝子解析によって同定された(非特許文献1および非特許文献2)。実際、肺の腫瘍に見出されたMEK1(K57N)変異は、ERK経路の活性化を介して細胞増殖を著しく促進させることが示されている(非特許文献3)。
Various cancer marker molecules have been reported so far for the purpose of cancer diagnosis and post-treatment follow-up. Some of them have already been put to practical use, for example, blood PSA (prostate specific antigen) is used as a marker molecule for prostate cancer. However, the expression levels of many other cancer marker molecules do not necessarily match the development of cancer. In particular, there are no effective diagnostic markers yet for pancreatic cancer, and the difficulty in early detection is a cause of poor prognosis.
As a cause of such various cancers, many reports have been reported so far on activating mutations/gene amplifications of Ras, Raf, MEK, etc. that constitute the ERK-MAP kinase pathway (Raf-MEK-ERK) (pancreatic cancer). , malignant melanoma, colon cancer, thyroid cancer, lung cancer, ovarian cancer, etc.). In fact, KRas is mutated to an active form in more than 90% of pancreatic cancers, and BRaf is mutated to an active form in about 50% of metastatic melanomas, constitutively activating the ERK pathway. In addition, in BRaf-activated malignant melanoma and ALK-activated lung cancer, although molecular-targeted drugs temporarily disappear, the ERK pathway is eventually reactivated via collateral pathways. Acquisition of drug resistance has been shown to cause cancer recurrence. In addition, several missense mutations in MEK, one of the genes that make up the ERK-MAP kinase pathway, were identified by genetic analysis of lung cancer, colon cancer, ovarian cancer, and malignant melanoma (Non-Patent Document 1 and Non-Patent Document 2). In fact, the MEK1 (K57N) mutation found in lung tumors has been shown to significantly promote cell proliferation through activation of the ERK pathway (Non-Patent Document 3).
 これまで、ERK-MAPキナーゼ経路の構成分子の遺伝子変異が、当該経路を異常に活性化することで、発癌の根本原因となることが明らかにされてきた。また、ERK-MAPキナーゼ経路の異常活性化は、癌細胞の薬剤抵抗性獲得や再発にも関与する。さらに近年、先天性Ras/MAPK症候群の原因として、生殖細胞系におけるRaf やMEKなどの活性型変異が同定されており、心不全、皮膚や骨格筋異常、精神遅滞などの複数の異常を招くことが報告された(非特許文献4)。
 従って、ERK-MAPキナーゼ経路の異常な活性化を鋭敏に検知するような分子マーカーを見出すことができれば、がんやRas/MAPK症候群の早期診断や、がんの再発予測に利用できると考えられるが、現在のところ、ERK-MAPキナーゼ経路のいかなる異常が、がん、あるいは、Ras/MAPK症候群と関連性を有するか、明らかとなっておらず、医療分野における重要な解決課題の1つである。
So far, it has been clarified that genetic mutations in the constituent molecules of the ERK-MAP kinase pathway aberrantly activate the pathway, leading to carcinogenesis. Abnormal activation of the ERK-MAP kinase pathway is also involved in the acquisition of drug resistance and recurrence of cancer cells. Furthermore, in recent years, activating mutations such as Raf and MEK in the germ line have been identified as the cause of congenital Ras/MAPK syndrome, which can lead to multiple abnormalities such as heart failure, skin and skeletal muscle abnormalities, and mental retardation. reported (Non-Patent Document 4).
Therefore, if a molecular marker that can sensitively detect abnormal activation of the ERK-MAP kinase pathway can be found, it can be used for early diagnosis of cancer and Ras/MAPK syndrome and prediction of cancer recurrence. However, at present, it is not clear whether any abnormalities in the ERK-MAP kinase pathway are related to cancer or Ras/MAPK syndrome, and it is one of the important problems to be solved in the medical field. be.
 上記事情に鑑み、本発明は、ERK-MAPK経路の異常な活性化が、いかなる疾患の引き金となり、また、どのような遺伝子の発現が誘導されるかを明らかにし、ERK-MAPK経路の異常な活性化に関連する疾患、特に、がんの早期発見のためのマーカーおよびRas/MAPK症候群の早期発見のためのマーカーを提供することを目的とする。 In view of the above circumstances, the present invention clarifies what diseases are triggered by abnormal activation of the ERK-MAPK pathway and what gene expression is induced. It is an object of the present invention to provide markers for early detection of activation-related diseases, particularly cancer, and early detection of Ras/MAPK syndrome.
 本発明者らは、がんおよびRas/MAPK症候群に由来するMEK1/2遺伝子において同定されているMEK変異が、翻訳後修飾であるリン酸化に影響を与えることによって、MEKのキナーゼ活性を増強することを見出した。具体的には、本発明者らは、がん由来のMEK変異体は、T-loopの分子内自己リン酸化により、恒常的で強いキナーゼ活性を示すこと、また、Ras/MAPK症候群由来のMEK変異体は、T-loopがリン酸化されていない状態であっても、構成的にキナーゼ活性を有することを初めて見いだした。
 上記知見に基づいて、発明者らは、ERK経路の下流で発現誘導される遺伝子群の中でも、特にERK経路が恒常的かつ強力に活性化された場合にのみ高発現する遺伝子の探索を試みた。ヒト由来上皮細胞にがん由来の活性型MEK1点変異体、または、Ras/MAPK症候群由来の活性型MEK1点変異体を導入し、cDNAマイクロアレイ解析を行って、細胞内の遺伝子発現プロファイルをゲノムワイドで網羅的に解析した。その結果、様々なmRNAの発現量が大きく変動していることを見出した。
 特に、がん由来のMEK1変異体に関しては、ERK経路の異常活性化が認められる様々ながん細胞(悪性黒色腫、肺がん、膵臓がん、大腸がんなど)を収集して、これらの遺伝子の発現量を、RNAおよびタンパク質レベルでモニターしたところ、実際に、ほとんどのがん細胞株において強発現している事を確認した。また、一部の分子に関しては、臨床癌組織を用いた解析(免疫染色)も実施し、少なくとも膵臓がん・肺がん・大腸がんの臨床サンプルにおいて、高頻度に(80%以上の症例で)高発現していることを確認した。興味深い事に、この様な分子の中には、新たながん検出用マーカーとなり得る分泌タンパク質および膜タンパク質も多数含まれていた。これらのタンパク質は、ERK経路の異常活性化に起因する多様な孤発性がん(悪性黒色腫、大腸がん、甲状腺がん、肺がん、卵巣がんなど)の診断・早期発見に資する高精度な診断マーカー分子として活用することが可能であると考えられる。
 本発明は上記知見に基づいて完成されたものである。
 
We show that identified MEK mutations in the MEK1/2 genes from cancer and the Ras/MAPK syndrome enhance the kinase activity of MEK by affecting phosphorylation, a post-translational modification I found out. Specifically, the present inventors demonstrated that cancer-derived MEK mutants exhibit constitutive and strong kinase activity due to intramolecular autophosphorylation of the T-loop, and that the Ras/MAPK syndrome-derived MEK We found for the first time that mutants have constitutive kinase activity even in the unphosphorylated state of the T-loop.
Based on the above findings, the inventors attempted to search for genes that are highly expressed only when the ERK pathway is constitutively and strongly activated, among genes whose expression is induced downstream of the ERK pathway. . Human-derived epithelial cells were transfected with cancer-derived active MEK1 point mutants or Ras/MAPK syndrome-derived active MEK1 point mutants, and cDNA microarray analysis was performed to obtain genome-wide gene expression profiles in the cells. analyzed exhaustively. As a result, we found that the expression levels of various mRNAs fluctuate greatly.
In particular, regarding cancer-derived MEK1 mutants, we collected various cancer cells (malignant melanoma, lung cancer, pancreatic cancer, colorectal cancer, etc.) in which abnormal activation of the ERK pathway was observed, and examined these genes. When we monitored the expression level at the RNA and protein levels, we confirmed that it was actually strongly expressed in most cancer cell lines. In addition, for some molecules, analysis (immunostaining) using clinical cancer tissue is also performed, and at least in clinical samples of pancreatic cancer, lung cancer, and colon cancer, at high frequency (in 80% or more cases) High expression was confirmed. Interestingly, many of these molecules included secretory proteins and membrane proteins that could serve as novel cancer detection markers. These proteins contribute to the diagnosis and early detection of various sporadic cancers (malignant melanoma, colorectal cancer, thyroid cancer, lung cancer, ovarian cancer, etc.) caused by abnormal activation of the ERK pathway. It is thought that it is possible to utilize it as a diagnostic marker molecule.
The present invention has been completed based on the above findings.
 すなわち、本発明は、以下の(1)~(13)である。
(1)ERK1またはERK2が発現誘導するタンパク質群から選択される少なくとも1種の分子を含むがん検出用マーカーであって、該ERK1およびERK2が、T-loop領域の自己リン酸化により活性化されるMEK1変異体またはMEK2変異体によって活性化されることを特徴とするがん検出用マーカー。
(2)前記MEK1変異体中の変異が、Q56P、K57N、C121SまたはE203Kであることを特徴とする上記(1)に記載のがん検出用マーカー。
(3)前記MEK2変異体中の変異が、Q60Pであることを特徴とする上記(1)に記載のがん検出用マーカー。
(4)MMP10、EMP1、Rheb2、TM4SF1、TM4SF19、TMEM158、ENDOD1、c2orf89、SLC20A1、LY6K、PLAUR(CD87)、PVR(CD155)、IL7R(CD127)、IL1R2(CD121b)、IL4R、TweakR(CD266)、CD3D、CD44、SEMA7、IL13RA2、THBD、XAGE1、PRR9、TRIB1、IER3、c11orf96、c8orf4、PHLDA1、PHLDA2、DUSP5、DUSP6、ERRFI1、GADD45B、IER3、IRX4、SPANXN3、SPANXN4、SPANXN5、TGFb1、BMP2、TFPI2、GDF15、PAEP、CCL7、IL11およびCRLFからなる群から選択される、少なくとも1種のタンパク質を含む上記(1)に記載のがん検出用マーカー。
(5)EMP1、TM4SF1、TM4SF19、c11orf96、PHLDA1、PHLDA2、TFPI2、Rheb2およびGDF15からなる群から選択される、少なくとも1種のタンパク質を含む上記(4)に記載のがん検出用マーカー。
(6)MMP10、EMP1、Rheb2、TM4SF1、TM4SF19、TMEM158、ENDOD1、c2orf89、SLC20A1、LY6K、PLAUR(CD87)、PVR(CD155)、IL7R(CD127)、IL1R2(CD121b)、IL4R、TweakR(CD266)、CD3D、CD44、SEMA7、IL13RA2、THBD、XAGE1、PRR9、TRIB1、IER3、c11orf96、c8orf4、PHLDA1、PHLDA2、DUSP5、DUSP6、ERRFI1、GADD45B、IER3、IRX4、SPANXN3、SPANXN4、SPANXN5、TGFb1、BMP2、TFPI2、GDF15、PAEP、CCL7、IL11またはCRLFに対する抗体またはアプタマーを含む、がん検出用キット。
(7)被験者由来のサンプル中に存在する上記(1)ないし(6)のいずれかに記載のがん検出用マーカーの発現量を測定する工程を含む、がんの診断方法またはがんの診断補助方法。
(8)T-loop領域の自己リン酸化により活性化されるMEK1変異体またはMEK2変異体によって活性化されるERK1またはERK2が、発現を誘導するタンパク質を探索する工程を含む、がん検出用マーカーのスクリーニング方法。
(9)ERK1またはERK2が発現誘導するタンパク質群から選択される少なくとも1種の分子を含むRas/MAPK症候群検出用マーカーであって、該ERK1およびERK2が、T-loop領域がリン酸化されていなくても活性を有するMEK1変異体またはMEK2変異体によって活性化されることを特徴とする、Ras/MAPK症候群検出用マーカー。
(10)前記MEK1変異体中の変異が、F53S、T55P、D67N、P124L、P124Q、G128V、G128N、Y130C、Y130N、Y130H、またはE203Qの変異をもつMEK1変異体であることを特徴とする上記(9)に記載のRas/MAPK症候群検出用マーカー。
(11)前記MEK2変異体中の変異が、F53C、F53V、F57L、K61E、A62P、P128R、G132V、T134C、またはY134Hであることを特徴とする上記(9)に記載のRas/MAPK症候群検出用マーカー。
(12)被験者由来のサンプル中に存在する上記(9)ないし(11)のいずれかに記載のRas/MAPK症候群検出用マーカーの発現量を測定する工程を含む、Ras/MAPK症候群の診断方法またはRas/MAPK症候群の診断補助方法。
(13)T-loop領域がリン酸化されていなくても活性を有するMEK1変異体またはMEK2変異体によって活性化されるERK1またはERK2が、発現を誘導するタンパク質を探索する工程を含む、Ras/MAPK症候群検出用マーカーのスクリーニング方法。
 なお、本明細書において「~」の符号は、その左右の値を含む数値範囲を示す。
That is, the present invention is the following (1) to (13).
(1) A cancer detection marker comprising at least one molecule selected from a group of proteins whose expression is induced by ERK1 or ERK2, wherein said ERK1 and ERK2 are activated by autophosphorylation of the T-loop region. A marker for cancer detection characterized by being activated by a MEK1 mutant or MEK2 mutant.
(2) The marker for cancer detection according to (1) above, wherein the mutation in the MEK1 mutant is Q56P, K57N, C121S or E203K.
(3) The marker for cancer detection according to (1) above, wherein the mutation in the MEK2 mutant is Q60P.
(4) MMP10, EMP1, Rheb2, TM4SF1, TM4SF19, TMEM158, ENDOD1, c2orf89, SLC20A1, LY6K, PLAUR (CD87), PVR (CD155), IL7R (CD127), IL1R2 (CD121b), IL4R, TweakR (CD266), CD3D, CD44, SEMA7, IL13RA2, THBD, XAGE1, PRR9, TRIB1, IER3, c11orf96, c8orf4, PHLDA1, PHLDA2, DUSP5, DUSP6, ERRFI1, GADD45B, IER3, IRX4, SPANXN3, SPANXN4, SPANXN5, TGFb1, BMP2, TFPI2, The cancer detection marker according to (1) above, comprising at least one protein selected from the group consisting of GDF15, PAEP, CCL7, IL11 and CRLF.
(5) The cancer detection marker according to (4) above, comprising at least one protein selected from the group consisting of EMP1, TM4SF1, TM4SF19, c11orf96, PHLDA1, PHLDA2, TFPI2, Rheb2 and GDF15.
(6) MMP10, EMP1, Rheb2, TM4SF1, TM4SF19, TMEM158, ENDOD1, c2orf89, SLC20A1, LY6K, PLAUR (CD87), PVR (CD155), IL7R (CD127), IL1R2 (CD121b), IL4R, TweakR (CD266), CD3D, CD44, SEMA7, IL13RA2, THBD, XAGE1, PRR9, TRIB1, IER3, c11orf96, c8orf4, PHLDA1, PHLDA2, DUSP5, DUSP6, ERRFI1, GADD45B, IER3, IRX4, SPANXN3, SPANXN4, SPANXN5, TGFb1, BMP2, TFPI2, A cancer detection kit comprising antibodies or aptamers against GDF15, PAEP, CCL7, IL11 or CRLF.
(7) A method for diagnosing cancer or diagnosing cancer, comprising the step of measuring the expression level of the cancer detection marker according to any one of (1) to (6) above present in a sample derived from a subject. Auxiliary method.
(8) A marker for cancer detection, comprising the step of searching for a protein that induces the expression of ERK1 or ERK2 that is activated by a MEK1 mutant or MEK2 mutant that is activated by autophosphorylation of the T-loop region. screening method.
(9) A marker for detecting Ras/MAPK syndrome containing at least one molecule selected from the group of proteins whose expression is induced by ERK1 or ERK2, wherein the ERK1 and ERK2 are not phosphorylated in the T-loop region A marker for detecting Ras/MAPK syndrome, characterized by being activated by a MEK1 mutant or MEK2 mutant having activity even in the case of Ras/MAPK syndrome.
(10) The above ( 9) Ras/MAPK syndrome detection marker.
(11) The mutation in the MEK2 mutant is F53C, F53V, F57L, K61E, A62P, P128R, G132V, T134C, or Y134H. For detecting Ras / MAPK syndrome according to (9) above. marker.
(12) comprising the step of measuring the expression level of the Ras/MAPK syndrome detection marker according to any one of (9) to (11) present in a subject-derived sample, a method for diagnosing Ras/MAPK syndrome or A diagnostic aid for Ras/MAPK syndrome.
(13) Ras/MAPK, including the step of searching for proteins that induce the expression of ERK1 or ERK2 activated by MEK1 or MEK2 mutants that are active even if the T-loop region is not phosphorylated Screening method for markers for syndrome detection.
In this specification, the sign "-" indicates a numerical range including the values on the left and right of it.
 本発明にかかる新規がん検出用マーカーを利用することで、既存のマーカーでは正確な診断が不可能であった多様ながん種、特にERK経路の異常活性化を起因とするがん(膵臓がん、悪性黒色腫、大腸がん、甲状腺がん、肺がん、乳がん、胃がん、卵巣がん、肉腫など)を高感度かつ高精度に検出することが可能となる。 By using the novel cancer detection marker according to the present invention, various cancer types that could not be accurately diagnosed with existing markers, especially cancers caused by abnormal activation of the ERK pathway (pancreatic cancer, malignant melanoma, colon cancer, thyroid cancer, lung cancer, breast cancer, stomach cancer, ovarian cancer, sarcoma, etc.) can be detected with high sensitivity and accuracy.
 また、本発明にかかる新規がん検出用マーカーを利用して、がんの早期診断・発見が可能となる。 In addition, early diagnosis and detection of cancer is possible using the novel cancer detection marker according to the present invention.
 さらに、本発明にかかるRas/MAPK症候群検出用マーカーを利用することで、診断が困難であるRas/MAPK症候群の早期診断・発見が可能となる。 Furthermore, by using the Ras/MAPK syndrome detection marker according to the present invention, early diagnosis and detection of Ras/MAPK syndrome, which is difficult to diagnose, becomes possible.
MEK変異体のキナーゼ活性。(A)がん由来MEK1変異体およびその他のMEK1変異体のキナーゼ活性(ERK2を基質とする)を測定した結果を示す。キナーゼ欠損Myc-ERK2(K/N)およびHA-MEK1をHEK293細胞に、同時にトランスフェクトした。リン酸化ERK2はイムノブロッティングで検出し、そのバンド強度を定量した(P-ERK)。同じフィルターを再度抗Myc抗体でブロッティングし、ERKの存在量を確認した。Q56PおよびK57N変異を有する変異体が、がん由来MEK1変異体である。他の変異体は、Ras/MAPK症候群に由来する変異体である。(BおよびC)HEK293細胞にトランスフェクトしたHA-MEK1変異体(B)または大腸菌から精製した組換えGST-MEK1変異体(C)に対し、抗-phospho-MEK抗体(P-MEK)でブロッティングを行った。(D)Ras/MAPK症候群由来MEK変異が、リン酸化に依存せずに活性化されていることを示す結果である。BRaf(V600E)タンパク質存在下または非存在下において、アフィニティ精製したGST-MEK1またはその変異体タンパク質をインキュベートし、次いで、GST-ERK2(K/N)とインキュベートした。K/M;キナーゼ活性を欠損した K97M変異、 AA;T-loopの Ser218とSer222をアラニンに置換した、リン酸化されない変異体。Kinase activity of MEK mutants. (A) shows the results of measuring the kinase activity (using ERK2 as a substrate) of cancer-derived MEK1 mutants and other MEK1 mutants. Kinase-deficient Myc-ERK2(K/N) and HA-MEK1 were co-transfected into HEK293 cells. Phosphorylated ERK2 was detected by immunoblotting and its band intensity was quantified (P-ERK). The same filter was blotted again with an anti-Myc antibody to confirm the amount of ERK present. Mutants with Q56P and K57N mutations are cancer-derived MEK1 mutants. Other variants are those derived from the Ras/MAPK syndrome. (B and C) Blotting with anti-phospho-MEK antibody (P-MEK) against HA-MEK1 mutant transfected into HEK293 cells (B) or recombinant GST-MEK1 mutant purified from E. coli (C). did (D) Results showing that Ras/MAPK syndrome-derived MEK mutations are activated independently of phosphorylation. Affinity-purified GST-MEK1 or its mutant proteins were incubated in the presence or absence of BRaf(V600E) protein, followed by incubation with GST-ERK2(K/N). K/M; K97M mutation that lacks kinase activity; AA; non-phosphorylated mutant in which Ser218 and Ser222 of the T-loop are replaced with alanine. MEK1変異体のT-loop領域の自己リン酸化。(A)GST-MEK1またはがん由来のMEK1変異体(Q56PまたはK57N)を大腸菌から精製し、抗phospho-MEK抗体でイムノブロッティングした。K/M;キナーゼ活性欠損K97M変異を示す。(B)HA-MEK1またはその変異体(Q56PおよびK57N)をHEK293細胞内で一過的に発現させ、(A)と同様にして、T-loopのリン酸化を検出した。(C)精製したMEK1タンパク質を、キナーゼ活性を欠損しているERK2(K/N)と共にインキュベートし、ERKのリン酸化を抗P-ERK抗体でブロッティングを行い検出した。P-ERKのバンド強度を定量した。(D)GST-MEK1(Q56P)変異体を、キナーゼ活性欠損MEK1(K/M)またはMEK2(K/M)と共にインキュベートし、MEK(GST-MEK1(Q56P))のリン酸化を抗P-MEK抗体で検出した。AAは、リン酸化されない変異を表す。(E)Myc-MEK1(Q56P)を、キナーゼ活性欠損HA-MEK1(K/M)またはHA-MEK2(K/M)と共にHEK293細胞中で一過的に発現させた。TPA処理したHEK293細胞(300 nM, 20分間処理)は、MEKのリン酸化に関するポジティブコントロールとして利用した。Autophosphorylation of the T-loop region of MEK1 mutants. (A) GST-MEK1 or cancer-derived MEK1 mutants (Q56P or K57N) were purified from E. coli and immunoblotted with an anti-phospho-MEK antibody. K/M; indicates the kinase activity-deficient K97M mutation. (B) HA-MEK1 or its mutants (Q56P and K57N) were transiently expressed in HEK293 cells, and T-loop phosphorylation was detected in the same manner as in (A). (C) Purified MEK1 protein was incubated with ERK2 (K/N) lacking kinase activity, and ERK phosphorylation was detected by blotting with anti-P-ERK antibody. The band intensity of P-ERK was quantified. (D) GST-MEK1(Q56P) mutants were incubated with kinase activity-deficient MEK1(K/M) or MEK2(K/M), phosphorylation of MEK (GST-MEK1(Q56P)) was inhibited by anti-P-MEK detected with an antibody. AA represents non-phosphorylated mutations. (E) Myc-MEK1(Q56P) was transiently expressed in HEK293 cells with kinase activity deficient HA-MEK1(K/M) or HA-MEK2(K/M). TPA-treated HEK293 cells (300 nM, 20 min treatment) served as a positive control for MEK phosphorylation. MEK2変異体のT-loop領域の自己リン酸化。(A)GST-MEK2または変異体(MEK2(Q60P)およびMEK2(K61E))の1つを大腸菌で発現させ、そのT-loopのリン酸化をブロッティングで検出した。K/Mはキナーゼ活性を欠損した変異を表す。A62PはRAS/MAPK症候群由来の変異体。(B)HEK293細胞に、HA-MEK2またはその変異体のいずれかをトランスフェクトし、T-loopのリン酸化をP-MEK抗体で検出した。K/Mはキナーゼ活性を欠損した変異を表す。Autophosphorylation of the T-loop region of MEK2 mutants. (A) GST-MEK2 or one of the mutants (MEK2(Q60P) and MEK2(K61E)) was expressed in E. coli and its T-loop phosphorylation was detected by blotting. K/M represents mutations that lack kinase activity. A62P is a RAS/MAPK syndrome-derived variant. (B) HEK293 cells were transfected with either HA-MEK2 or its mutants, and T-loop phosphorylation was detected with a P-MEK antibody. K/M represents mutations that lack kinase activity. MEK変異のERKパスウェイに対する影響。(A)HA-MEK1(WT)、HA-MEK1(F53S)(Ras/MAPK症候群由来)またはHA-MEK1(K57N)(がん由来)を発現するHEK293細胞をEGF(5 ng/ml)で刺激した。EGFで刺激後、ERK(「P-ERK」)、MEK(「P-MEK」)、Raf-1(「P-Raf1(S338)」)およびS6リボソームタンパク質(「P-S6K」)のリン酸化を、リン酸化抗体で検出した。Egr1の発現レベルについてもモニターした(「Egr1」)。(B)ERK1-GFPと各種MEK1タンパク質を安定に共発現させたHEK293細胞株をEGF(5 ng/ml)で刺激し、ERKの局在状態を、継続的にtime-lapse imaging systemでモニターした。ERK1-GFPの蛍光量を定量し、核に移行したERK1の割合をグラフ化した。エラーバーはSEM, n=5を示す。(C)(A)のEgr1の発現量をグラフ化した。Effects of MEK mutations on ERK pathways. (A) HEK293 cells expressing HA-MEK1(WT), HA-MEK1(F53S) (derived from Ras/MAPK syndrome) or HA-MEK1(K57N) (derived from cancer) were stimulated with EGF (5 ng/ml). did. Phosphorylation of ERK (“P-ERK”), MEK (“P-MEK”), Raf-1 (“P-Raf1(S338)”) and S6 ribosomal protein (“P-S6K”) after stimulation with EGF was detected with a phosphorylated antibody. Egr1 expression levels were also monitored (“Egr1”). (B) HEK293 cell lines stably co-expressing ERK1-GFP and various MEK1 proteins were stimulated with EGF (5 ng/ml), and ERK localization was continuously monitored using a time-lapse imaging system. . The amount of ERK1-GFP fluorescence was quantified, and the percentage of ERK1 translocated to the nucleus was graphed. Error bars indicate SEM, n=5. (C) The expression level of Egr1 in (A) was graphed. Ras/MAPK症候群由来MEK1変異体によって誘導される遺伝子発現。(A)MEK1(WT)またはその変異体(F53SまたはK57N)を発現するHEK293細胞中における、COL14A1の相対的発現レベルをq-PCRで定量した。(B)Ras/MAPK症候群由来MEK1変異体(F53S)は構成的なキナーゼ活性を有し、コラーゲンタイプ14(COL14A1)の発現を選択的に誘導した。細胞培養上清を濾過し、SDS-PAGEで分離し、イムノブロッティングを行った結果である。Gene expression induced by MEK1 mutants from Ras/MAPK syndrome. (A) Relative expression levels of COL14A1 in HEK293 cells expressing MEK1 (WT) or its mutants (F53S or K57N) were quantified by q-PCR. (B) The Ras/MAPK syndrome-derived MEK1 mutant (F53S) had constitutive kinase activity and selectively induced the expression of collagen type 14 (COL14A1). This is the result of filtering the cell culture supernatant, separating with SDS-PAGE, and performing immunoblotting. がん由来MEK1変異体(MEK1(K57N))によって誘導される遺伝子発現。MEK(WT)またはMEK変異体(F53SおよびK57N)を安定に発現するHEK293細胞由来のトータルRNAサンプルを用いて、定量PCRを行った結果を示す。エラーバーはSEM(n=3)を示す。**, P < 0.01; *, P < 0.05。Gene expression induced by cancer-derived MEK1 mutant (MEK1(K57N)). The results of quantitative PCR using total RNA samples derived from HEK293 cells stably expressing MEK (WT) or MEK mutants (F53S and K57N) are shown. Error bars indicate SEM (n=3). **, P < 0.01; *, P < 0.05. がん由来MEK1変異(K57N)によって誘導される遺伝子産物のがん細胞中における発現確認。HEK293(MEK1(WT)またはMEK1(K57N)を有する)、H1299 (NRasQ61K)(肺癌由来) 、A375 (BRafV600E)(悪性黒色腫由来)、sk-Mel28 (BRafV600E)およびWiDr(BRafV600E)(大腸癌由来)細胞を、U0126(20μM, 24h)の存在下または非存在下で処理し、それらの細胞ライセートまたは細胞培養上清に対し各タンパク質に対する抗体でブロッティングを行った結果を示す。Confirmation of expression in cancer cells of gene products induced by cancer-derived MEK1 mutation (K57N). HEK293 (with MEK1(WT) or MEK1(K57N)), H1299 (NRas Q61K ) (from lung cancer), A375 (BRaf V600E ) (from malignant melanoma), sk-Mel28 (BRaf V600E ) and WiDr (BRaf V600E ) (Colon cancer-derived) cells were treated in the presence or absence of U0126 (20 μM, 24 h), and the results of blotting of cell lysates or cell culture supernatants with antibodies against each protein are shown. ヒト悪性腫瘍におけるC11orf96タンパク質の発現レベル。膵臓(左)、肺(中)および大腸(右)の正常および悪性腫瘍組織を抗C11orf96抗体(上)で染色した。各組織のc11orf96の茶色の染色強度を以下のカテゴリーに分類した;ネガティブ(染色無し、または弱く染色された細胞が10%未満)、弱い(強く染色された細胞が 10%未満、または弱く染色された細胞が10%以上)、強い(強く染色された細胞が10%以上)。この分類を、棒グラフで示した(右図)。正常組織と悪性腫瘍組織間の発現差はカイ二乗検定で評価した。***, P < 0.001;**, P < 0.01; *, P < 0.05。全ての写真は、x400倍率で示した。Expression levels of C11orf96 protein in human malignancies. Normal and malignant tissues of pancreas (left), lung (middle) and colon (right) were stained with anti-C11orf96 antibody (top). The brown staining intensity of c11orf96 in each tissue was classified into the following categories; negative (no staining or <10% weakly stained cells), weak (<10% strongly stained cells or weakly stained more than 10% of cells stained), strong (more than 10% of strongly stained cells). This classification is shown in a bar graph (right panel). Expression differences between normal and malignant tumor tissues were evaluated with a chi-square test. ***, P < 0.001; **, P < 0.01; *, P < 0.05. All pictures are shown at x400 magnification.
 第1の実施形態は、ERK1またはERK2が発現誘導するタンパク質群から選択される少なくとも1種の分子を含むがん検出用マーカーであって、当該ERK1およびERK2が、T-loop領域の自己リン酸化により活性化されるMEK1変異体またはMEK2変異体によって活性化されることを特徴とするがん検出用マーカーである。
 ERK1およびERK2は、MAPK(Mitogen-activated protein kinase;MAPキナーゼ)ファミリーの一員で、各々、分子量44kDaおよび42kDaで、各アミノ酸配列同士は、約85%の相同性を有している。正常な細胞においては、細胞外からの増殖因子刺激により活性化されたRasは、Rafと結合してその活性化を促し、RafはMEKをリン酸化して活性化し、次いで、MEKがERKをリン酸化して活性化する。活性化されたERKは、細胞質から核へと移行して、ELK、CREB、c-Myc、c-Fos、Sp-1などの転写因子を活性化して遺伝子の発現を誘導する。
A first embodiment is a cancer detection marker comprising at least one molecule selected from a group of proteins whose expression is induced by ERK1 or ERK2, wherein the ERK1 and ERK2 autophosphorylate the T-loop region. A marker for cancer detection characterized by being activated by a MEK1 mutant or a MEK2 mutant that is activated by .
ERK1 and ERK2 are members of the MAPK (Mitogen-activated protein kinase) family, have molecular weights of 44 kDa and 42 kDa, respectively, and have approximately 85% homology in their amino acid sequences. In normal cells, Ras activated by extracellular growth factor stimulation binds to Raf and promotes its activation, and Raf phosphorylates and activates MEK, which then phosphorylates ERK. oxidize and activate. Activated ERK translocates from the cytoplasm to the nucleus and activates transcription factors such as ELK, CREB, c-Myc, c-Fos and Sp-1 to induce gene expression.
 発明者らは、がん(細胞)由来のMEK1変異体およびMEK2変異体は、そのT-loop領域が分子内自己リン酸化によりリン酸化されており、恒常的で強いキナーゼ活性を示す(以下、このような特徴を有するMEK1変異体および/またはMEK2変異体を、「第1の実施形態にかかるMEK1/2変異体」とも記載する)ことを初めて見出した。さらに、発明者らは、このMEK1変異体またはMEK2変異体によって活性化されたERK1およびERK2は、種々の転写因子の活性化を介して、がん細胞特有の様々なタンパク質の発現を誘導することを見出した。すなわち、T-loop領域が分子内自己リン酸化によりリン酸化されて活性化する特徴を有するがん由来のMEK1/2変異体は、間接的に、がん細胞に特有のタンパク質の発現を誘導し、発現誘導されたタンパク質は、がん細胞の存在を検出するために有効なマーカー(以下、「第1の実施形態にかかるがん検出用マーカー」とも記載する)として利用することが可能である。
 なお、本明細書において、MEK1/2、ERK1/2と記載した場合、主に、MEK1タンパク質および/またはMEK2タンパク質、ERK1タンパク質および/またはERK2タンパク質のことを表し、それ以外の場合には、別途その旨記載する。
The inventors have found that cancer (cell)-derived MEK1 and MEK2 mutants have their T-loop regions phosphorylated by intramolecular autophosphorylation and exhibit constitutive and strong kinase activity (see below). MEK1 mutants and/or MEK2 mutants having such characteristics are also described as "MEK1/2 mutants according to the first embodiment") for the first time. Furthermore, the inventors found that ERK1 and ERK2 activated by this MEK1 mutant or MEK2 mutant induce the expression of various cancer cell-specific proteins through the activation of various transcription factors. I found In other words, cancer-derived MEK1/2 mutants, which are characterized by their activation by intramolecular autophosphorylation of the T-loop region, indirectly induce the expression of cancer cell-specific proteins. , the protein whose expression is induced can be used as an effective marker for detecting the presence of cancer cells (hereinafter also referred to as a "cancer detection marker according to the first embodiment"). .
In this specification, when MEK1/2 and ERK1/2 are described, they mainly refer to MEK1 protein and/or MEK2 protein, ERK1 protein and/or ERK2 protein. Make a note to that effect.
 ここで、MEK1/2のT-loop領域とは、例えば、MEK1のアミノ酸配列上208~233番目のアミノ酸領域、また、MEK2のアミノ酸配列上212~237番目のアミノ酸領域に存在する。本発明の第1の実施形態にかかるMEK1変異体およびMEK2変異体は、そのT-loop領域に存在するアミノ酸残基(例えば、MEK1の場合、Ser218、Ser222など)が分子内自己リン酸化されて活性化され、恒常的で強いキナーゼ活性を示す特徴をもつ。第1の実施形態にかかるMEK1/2変異体としては、限定はしないが、例えば、Q56P、K57N、C121SまたはE203Kの変異をもつMEK1変異体、Q60Pの変異を持つMEK2変異体などを挙げることができる。 Here, the MEK1/2 T-loop region exists, for example, in the 208th to 233rd amino acid region on the MEK1 amino acid sequence and in the 212th to 237th amino acid region on the MEK2 amino acid sequence. In the MEK1 mutant and MEK2 mutant according to the first embodiment of the present invention, amino acid residues present in the T-loop region (for example, in the case of MEK1, Ser218, Ser222, etc.) are intramolecularly autophosphorylated. It is characterized by being activated, showing constant and strong kinase activity. MEK1/2 mutants according to the first embodiment include, but are not limited to, MEK1 mutants with Q56P, K57N, C121S or E203K mutations, and MEK2 mutants with Q60P mutations. can.
 第1の実施形態にかかるMEK1/2変異体は、天然に存在するものであっても、遺伝子操作等によって新たに作製したものであってもよい。MEK1/2変異体が、分子内自己リン酸化能を有するかどうかは、例えば、MEK1/2変異体と、キナーゼ活性を喪失している当該MEK1/2変異体とを共存させてキナーゼアッセイを行った場合に、キナーゼ活性を喪失しているMEK1/2変異体がリン酸化されなければ、当該MEK1/2変異体は分子内自己リン酸化能を有していると判断できる(詳細は、実施例を参照のこと)。 The MEK1/2 mutant according to the first embodiment may be naturally occurring or newly produced by genetic engineering or the like. Whether or not the MEK1/2 mutant has the ability to intramolecularly autophosphorylate can be determined, for example, by performing a kinase assay in which the MEK1/2 mutant and the MEK1/2 mutant that has lost the kinase activity are allowed to coexist. In this case, if the MEK1/2 mutant that has lost the kinase activity is not phosphorylated, it can be determined that the MEK1/2 mutant has intramolecular autophosphorylation ability (for details, see Examples checking).
 第1の実施形態にかかるがん検出用マーカー、または、がん検出用マーカーの候補分子は、例えば、以下のようにして探索することができる。
 第1の実施形態にかかるMEK1/2変異体をがん化していない正常な細胞に導入し、その細胞内における遺伝子の各種mRNAの発現量を、例えば、マイクロアレイやRNAseqなどを用いて網羅的に解析し、野生型MEK1/2を導入した安定発現細胞内での発現量と比較して、統計的に有意にその発現量が増加している遺伝子を選択する。選択した遺伝子の遺伝子産物(タンパク質)が、がん細胞において発現しているか、または、がん細胞で発現した遺伝子産物が血清中に分泌されたエキソソーム内に存在していれば、その分子はがん検出用マーカーとして使用することができる。
 あるいは、第1の実施形態にかかるがん検出用マーカー、または、がん検出用マーカーの候補分子がタンパク質の場合には、第1の実施形態にかかるMEK1/2変異体を発現する正常細胞と、野生型MEK1/2が発現する正常細胞から調製したサンプルに対し、プロテオーム解析(あるいは、定量プロテオーム解析)を行い、本実施形態にかかるMEK1/2変異体を発現する正常細胞において有意に発現しているタンパク質を選択し、該タンパク質が、がん細胞において発現していれば、その分子はがん検出用マーカーとして使用することができる。
A cancer detection marker according to the first embodiment or a cancer detection marker candidate molecule can be searched for, for example, as follows.
The MEK1/2 mutant according to the first embodiment is introduced into normal cells that are not cancerous, and the expression levels of various mRNAs of genes in the cells are comprehensively examined using, for example, microarrays and RNAseq. Analyzes are performed, and genes whose expression levels are statistically significantly increased are selected as compared with the expression levels in stably expressing cells transfected with wild-type MEK1/2. If the gene product (protein) of the selected gene is expressed in cancer cells or if the gene product expressed in cancer cells is present in serum-secreted exosomes, the molecule is It can be used as a marker for cancer detection.
Alternatively, when the cancer detection marker according to the first embodiment or the candidate molecule for the cancer detection marker is a protein, normal cells expressing the MEK1/2 mutant according to the first embodiment and , Proteome analysis (or quantitative proteome analysis) was performed on a sample prepared from normal cells expressing wild-type MEK1/2, and significantly expressed in normal cells expressing the MEK1/2 mutant according to the present embodiment. A protein is selected, and if the protein is expressed in cancer cells, that molecule can be used as a marker for cancer detection.
 第1の実施形態にかかるがん検出用マーカーとしては、がん細胞由来のMEK1変異体(K57N)(第1の実施形態にかかるMEK1変異体の1つ)を発現させた細胞内で、その発現量が有意に上昇した以下のタンパク質を例示することができる。
膜タンパク質
EMP1、Rheb2、TM4SF1、TM4SF19、TMEM158、ENDOD1、c2orf89、SLC20A1、LY6K、PLAUR(CD87)、PVR(CD155)、IL7R(CD127)、IL1R2(CD121b)、IL4R、TweakR(CD266)、CD3D、CD44、SEMA7、IL13RA2、THBD
細胞質/核内タンパク質
XAGE1、PRR9、TRIB1、IER3、c11orf96、c8orf4、PHLDA1、PHLDA2、DUSP5、DUSP6、ERRFI1、GADD45B、IER3、IRX4、SPANXN3、SPANXN4、SPANXN5
分泌タンパク質
MMP1、MMP10、TGFb1、BMP2、TFPI2、GDF15、PAEP、CCL7、IL11、CRLF
As a cancer detection marker according to the first embodiment, in cells expressing a cancer cell-derived MEK1 mutant (K57N) (one of the MEK1 mutants according to the first embodiment), The following proteins whose expression level is significantly increased can be exemplified.
membrane protein
EMP1, Rheb2, TM4SF1, TM4SF19, TMEM158, ENDOD1, c2orf89, SLC20A1, LY6K, PLAUR(CD87), PVR(CD155), IL7R(CD127), IL1R2(CD121b), IL4R, TweakR(CD266), CD3D, CD44, SEMA7 , IL13RA2, THBD
Cytoplasmic/nuclear proteins
XAGE1, PRR9, TRIB1, IER3, c11orf96, c8orf4, PHLDA1, PHLDA2, DUSP5, DUSP6, ERRFI1, GADD45B, IER3, IRX4, SPANXN3, SPANXN4, SPANXN5
secretory protein
MMP1, MMP10, TGFb1, BMP2, TFPI2, GDF15, PAEP, CCL7, IL11, CRLF
 第2の実施形態は、T-loop領域の自己リン酸化により活性化されるMEK1変異体またはMEK2変異体によって活性化されるERK1またはERK2が、発現を誘導するタンパク質を探索する工程を含む、がん検出用マーカーのスクリーニング方法である。
 T-loop領域の自己リン酸化により活性化されるMEK1変異体またはMEK2変異体により活性化されるERK1またはERK2によって発現誘導される分子の探索は、前述のように、マイクロアレイ解析あるいはプロテオーム解析などの手法により、第1の実施形態にかかるMEK1/2変異体を導入した細胞と、野生型MEK1/2を導入した細胞において発現するタンパク質の発現量を比較し、第1の実施形態にかかるMEK1/2変異体を導入した細胞においてその発現が有意に増大しているタンパク質を選択することにより、実施することができる。ここで、選択されるタンパク質のうち、がん細胞に特異的に発現することが確認されたものをがん検出用マーカーとすることができる。
A second embodiment includes the step of searching for a protein that induces the expression of ERK1 or ERK2 that is activated by a MEK1 mutant or MEK2 mutant that is activated by autophosphorylation of the T-loop region. It is a screening method for cancer detection markers.
The search for molecules induced by MEK1 mutants activated by autophosphorylation of the T-loop region or ERK1 or ERK2 activated by MEK2 mutants can be performed by microarray analysis or proteome analysis, as described above. By the method, the expression levels of proteins expressed in cells introduced with the MEK1/2 mutant according to the first embodiment and cells introduced with the wild-type MEK1/2 are compared, and MEK1/2 according to the first embodiment It can be carried out by selecting a protein whose expression is significantly increased in cells into which two mutants have been introduced. Here, among the selected proteins, those that have been confirmed to be specifically expressed in cancer cells can be used as cancer detection markers.
 第3の実施形態は、被験者由来のサンプル中に存在する本発明の第1の実施形態にかかるがん検出用マーカーの発現量を測定する工程を含む、がんの診断方法またはがんの診断補助方法である。
 第1の実施形態かかるがん検出用マーカーは、特定のがんに限定されず、様々ながんの早期発見に使用することができる。例えば、ERK経路の異常な活性化に起因して発生する、悪性黒色腫、大腸がん、甲状腺がん、肺がん、卵巣がん、膵臓がん、乳がん、胃がん、前立腺がん、膀胱がん、血液がん、肉腫などの早期発見に使用し得る。本発明の第3の実施形態にかかるがんの診断方法およびがんの診断補助方法において、第1の実施形態にかかるがん検出用マーカーの被験者由来のサンプル中の存在量が、対照サンプル中の存在量よりも、統計的に有意に多い場合に、当該被験者は、何らかのがんに罹患している、あるいは、何らかのがんに罹患するおそれがあるとの判断を行うことができる。ここで、被験者由来のサンプルとして、例えば、がんが発症していることが疑われる組織、血液(エキソソームを含む)、すい液もしくは尿などの体液を挙げることができる。また、対照サンプルとしては、検査対象のサンプルが組織の場合、同じ組織由来であってERK経路が正常に機能していることが確認されている組織または細胞、がんの罹患が確認されていない健常者由来の血液、すい液もしくは尿などの体液などを挙げることができる。
A third embodiment provides a method for diagnosing cancer or diagnosing cancer, comprising the step of measuring the expression level of the cancer detection marker according to the first embodiment of the present invention present in a sample derived from a subject. It is an auxiliary method.
The cancer detection marker according to the first embodiment is not limited to specific cancers, and can be used for early detection of various cancers. For example, malignant melanoma, colon cancer, thyroid cancer, lung cancer, ovarian cancer, pancreatic cancer, breast cancer, gastric cancer, prostate cancer, bladder cancer, It can be used for early detection of blood cancer, sarcoma, and the like. In the method for diagnosing cancer and the method for assisting cancer diagnosis according to the third embodiment of the present invention, the abundance of the cancer detection marker according to the first embodiment in a sample derived from a subject is When the amount is statistically significantly higher than the abundance of the subject, it can be determined that the subject has or is likely to have some cancer. Examples of samples derived from a subject include tissues suspected of developing cancer, blood (including exosomes), and body fluids such as pancreatic fluid and urine. In addition, as a control sample, if the sample to be tested is a tissue, tissue or cells derived from the same tissue that have been confirmed to have the ERK pathway functioning normally, or cancer that has not been confirmed. Examples include body fluids such as blood, pancreatic fluid and urine derived from healthy subjects.
 第4の実施形態は、がん検出用またはがん診断用のキットである。本発明のキットには、少なくとも、第1の実施形態にかかるがん検出用マーカーを検出するための抗体もしくはアプタマーが含まれる。より具体的には、例えば、MMP10、EMP1、Rheb2、TM4SF19、TM4SF1、TMEM158、ENDOD1、c2orf89、SLC20A1、LY6K、PLAUR(CD87)、PVR(CD155)、IL7R(CD127)、IL1R2(CD121b)、IL4R、TweakR(CD266)、CD3D、CD44、SEMA7、IL13RA2、THBD、XAGE1、PRR9、TRIB1、IER3、c11orf96、c8orf4、PHLDA1、PHLDA2、DUSP5、DUSP6、ERRFI1、GADD45B、IER3、IRX4、SPANXN3、SPANXN4、SPANXN5、TGFb1、BMP2、TFPI2、GDF15、PAEP、CCL7、IL11またはCRLFに対する抗体またはアプタマーが含まれていてもよい。 The fourth embodiment is a kit for cancer detection or cancer diagnosis. The kit of the present invention contains at least an antibody or aptamer for detecting the cancer detection marker according to the first embodiment. More specifically, for example, MMP10, EMP1, Rheb2, TM4SF19, TM4SF1, TMEM158, ENDOD1, c2orf89, SLC20A1, LY6K, PLAUR(CD87), PVR(CD155), IL7R(CD127), IL1R2(CD121b), IL4R, TweakR (CD266), CD3D, CD44, SEMA7, IL13RA2, THBD, XAGE1, PRR9, TRIB1, IER3, c11orf96, c8orf4, PHLDA1, PHLDA2, DUSP5, DUSP6, ERRFI1, GADD45B, IER3, IRX4, SPANXN3, SPANXN4, SPANXN5, TGFb1 , BMP2, TFPI2, GDF15, PAEP, CCL7, IL11 or CRLF may be included.
 第5の実施形態は、ERK1またはERK2が発現誘導するタンパク質からなる群から選択される少なくとも1種の分子を含むRas/MAPK症候群検出用マーカーであって、該ERK1およびERK2が、T-loop領域がリン酸化されていなくても活性を有するMEK1変異体またはMEK2変異体によって活性化されることを特徴とする、Ras/MAPK症候群検出用マーカーである。
 発明者らは、Ras/MAPK症候群(Ras/MAPK症候群由来の生殖系細胞)由来のMEK1変異体およびMEK2変異体は、そのT-loop領域がリン酸化されていなくても構成的にキナーゼ活性を有する(以下、このような特徴を有するMEK1および/またはMEK2変異体を、「第5の実施形態にかかるMEK1/2変異体」とも記載する)ことを初めて見出した。さらに、発明者らは、このMEK1/2変異体によって活性化されたERK1/2は、種々の転写因子の活性化を介して、Ras/MAPK症候群に特有のタンパク質の発現を誘導することを見出した。すなわち、T-loop領域がリン酸化されていなくても構成的にキナーゼ活性を有するという特徴を有するMEK1/2変異体は、間接的に、Ras/MAPK症候群に特有のタンパク質の発現を誘導し、発現誘導されたタンパク質は、Ras/MAPK症候群の発症の有無または発症の可能性を検出するために有効なマーカー(以下、「本発明の第5の実施形態にかかるRas/MAPK症候群検出用マーカー」と記載する場合もある)として利用することが可能である。
 第5の実施形態にかかるMEK1/2変異体としては、限定はしないが、例えば、F53S、T55P、D67N、P124L、P124Q、G128V、G128N、Y130C、Y130N、Y130H、またはE203Qの変異をもつMEK1変異体、F53C、F53V、F57L、K61E、A62P、P128R、G132V、T134C、またはY134Hの変異を持つMEK2変異体などを挙げることができる。
A fifth embodiment is a marker for detecting Ras/MAPK syndrome containing at least one molecule selected from the group consisting of proteins whose expression is induced by ERK1 or ERK2, wherein the ERK1 and ERK2 are T-loop regions A marker for detecting Ras/MAPK syndrome characterized by being activated by a MEK1 mutant or MEK2 mutant that has activity even if is not phosphorylated.
We found that MEK1 and MEK2 mutants from Ras/MAPK syndrome (germline cells derived from Ras/MAPK syndrome) constitutively have kinase activity even though their T-loop regions are not phosphorylated. (hereinafter, MEK1 and/or MEK2 mutants having such characteristics are also described as "MEK1/2 mutants according to the fifth embodiment"). Furthermore, the inventors found that ERK1/2 activated by this MEK1/2 mutant induces the expression of proteins specific to Ras/MAPK syndrome through the activation of various transcription factors. rice field. MEK1/2 mutants, which are characterized by having constitutive kinase activity even when the T-loop region is not phosphorylated, indirectly induce the expression of proteins specific to Ras/MAPK syndrome, The protein whose expression is induced is a marker effective for detecting the presence or absence or possibility of the onset of Ras/MAPK syndrome (hereinafter referred to as "marker for detecting Ras/MAPK syndrome according to the fifth embodiment of the present invention"). It is possible to use it as a
MEK1/2 mutants according to the fifth embodiment include, but are not limited to, MEK1 mutations having F53S, T55P, D67N, P124L, P124Q, G128V, G128N, Y130C, Y130N, Y130H, or E203Q mutations. MEK2 mutants with F53C, F53V, F57L, K61E, A62P, P128R, G132V, T134C, or Y134H mutations.
 第5の実施形態にかかるMEK1/2変異体は、天然に存在するものであっても、遺伝子操作等によって新たに作製したものであってもよい。
 第5の実施形態にかかるRas/MAPK症候群検出用マーカーとしては、Ras/MAPK症候群由来のMEK1変異体(F53S)(第5の実施形態にかかるMEK1変異体の1つ)を発現させた細胞内で、その発現量が有意に上昇したCol14A1タンパク質を例示することができる。
The MEK1/2 mutant according to the fifth embodiment may be naturally occurring or newly produced by genetic manipulation or the like.
As a marker for detecting Ras / MAPK syndrome according to the fifth embodiment, in cells expressing Ras / MAPK syndrome-derived MEK1 mutant (F53S) (one of the MEK1 mutants according to the fifth embodiment) , the Col14A1 protein whose expression level was significantly increased can be exemplified.
 第6の実施形態は、T-loop領域がリン酸化されていなくても活性を有するMEK1変異体またはMEK2変異体によって活性化されるERK1またはERK2が、発現を誘導するタンパク質を探索する工程を含む、Ras/MAPK症候群検出用マーカーのスクリーニング方法である。
 T-loop領域がリン酸化されていなくても活性を有するMEK1変異体またはMEK2変異体によって活性化されるERK1またはERK2によって発現誘導される分子の探索は、マイクロアレイ解析あるいはプロテオーム解析などの手法により、第5の実施形態にかかるMEK1/2変異体を導入した細胞と、野生型MEK1/2を導入した細胞において発現するタンパク質の発現量を比較し、第5の実施形態にかかるMEK1/2変異体を導入した細胞においてその発現が有意に増大しているタンパク質を選択することにより、実施することができる。
A sixth embodiment includes the step of searching for a protein that induces the expression of ERK1 or ERK2 activated by a MEK1 mutant or MEK2 mutant that has activity even if the T-loop region is not phosphorylated. , a screening method for markers for detecting Ras/MAPK syndrome.
Molecules induced by ERK1 or ERK2, which is activated by MEK1 or MEK2 mutants that are active even if the T-loop region is not phosphorylated, can be explored by methods such as microarray analysis or proteome analysis. The expression levels of proteins expressed in cells introduced with the MEK1/2 mutant according to the fifth embodiment and in cells introduced with the wild-type MEK1/2 are compared, and the MEK1/2 mutant according to the fifth embodiment can be carried out by selecting a protein whose expression is significantly increased in cells into which is introduced.
 第7の実施形態は、被験者由来のサンプル中に存在する本発明の第5の実施形態にかかるRas/MAPK症候群検出用マーカーの発現量を測定する工程を含む、Ras/MAPK症候群の診断方法またはRas/MAPK症候群の診断補助方法である。
 ここで、Ras/MAPK症候群とは、特異的な顔貌(眼間解離、眼裂斜下、側頭部の狭窄など)・心肥大・精神遅滞・皮膚症状を特徴とし、易発癌性を示す常染色体優性遺伝性疾患(Costello/Noonan/CFC症候群等の総称)である(Hum Mutat. 2008 Aug;29(8):992-1006)。
 第7の実施形態にかかるRas/MAPK症候群の診断方法およびRas/MAPK症候群の診断補助方法において、第5の実施形態にかかるRas/MAPK症候群検出用マーカーの被験者由来のサンプル中の存在量が、対照サンプル中の存在量よりも統計的に有意に多い場合に、当該被験者は、何らかのRas/MAPK症候群に罹患している、あるいは、何らかのRas/MAPK症候群に罹患するおそれがあるとの判断を行うことができる。ここで、被験者由来のサンプルとして、例えば、妊娠した被験者より採取される羊水を対象とすることで、新生児が先天的にRas/MAPK症候群に罹患しているか、出生前診断が出来る可能性がある。
A seventh embodiment comprises the step of measuring the expression level of a Ras/MAPK syndrome detection marker according to the fifth embodiment of the present invention present in a sample derived from a subject, a method for diagnosing Ras/MAPK syndrome or It is a diagnostic aid for Ras/MAPK syndrome.
Here, Ras/MAPK syndrome is characterized by specific facial features (interocular dissociation, oblique palpebral fissure, temporal stenosis, etc.), cardiac hypertrophy, mental retardation, and cutaneous symptoms. It is a chromosomal dominant genetic disease (generic term for Costello/Noonan/CFC syndrome, etc.) (Hum Mutat. 2008 Aug;29(8):992-1006).
In the method for diagnosing Ras/MAPK syndrome and the method for assisting diagnosis of Ras/MAPK syndrome according to the seventh embodiment, the amount of the marker for detecting Ras/MAPK syndrome according to the fifth embodiment in a sample derived from a subject is A determination is made that the subject has or is at risk of having some form of Ras/MAPK syndrome if it is statistically significantly greater than the abundance in the control sample. be able to. Here, as a subject-derived sample, for example, by targeting amniotic fluid collected from a pregnant subject, there is a possibility that a newborn can be diagnosed congenitally with Ras/MAPK syndrome before birth. .
 第1の実施形態にかかるがん検出用マーカーおよび第5の実施形態にかかるRas/MAPK症候群検出用マーカーがタンパク質の場合、その発現量は、既知の方法によって、検出し測定することができる。その方法としては、使用するがん検出用マーカータンパク質またはRas/MAPK症候群検出用マーカータンパク質と特異的に結合する抗体、アプタマー(核酸アプタマーまたはペプチドアプタマーなど)を用いた方法を例示することができる。より具体的には、マーカータンパク質の検出および定量は、免疫学的手法、あるいは、抗体もしくはアプタマーとマーカータンパク質との結合性を利用した方法により行うことができ、例えば、免疫クロマトグラフィ法、ウェスタンブロッティング法、ELISA法(例えば、直接競合ELISA、間接競合ELISA、サンドイッチELISAなど)、放射免疫測定法(RIA)、蛍光免疫測定法(FIA)、免疫組織化学的染色法、水晶振動子マイクロバランス法(Quartz crystal microbalance;QCM)および磁性ビーズを使用した方法など、当業者において周知の方法により、容易に実施することができる。 When the cancer detection marker according to the first embodiment and the Ras/MAPK syndrome detection marker according to the fifth embodiment are proteins, their expression levels can be detected and measured by known methods. Examples of such methods include methods using antibodies or aptamers (such as nucleic acid aptamers or peptide aptamers) that specifically bind to the cancer detection marker protein or Ras/MAPK syndrome detection marker protein used. More specifically, the detection and quantification of marker proteins can be performed by immunological techniques or methods utilizing the binding properties of antibodies or aptamers to marker proteins, such as immunochromatography and Western blotting. , ELISA (e.g. direct competitive ELISA, indirect competitive ELISA, sandwich ELISA, etc.), radioimmunoassay (RIA), fluorescence immunoassay (FIA), immunohistochemical staining, quartz crystal microbalance (Quartz It can be easily carried out by methods well known to those skilled in the art, such as methods using crystal microbalance (QCM) and magnetic beads.
 本明細書が英語に翻訳されて、単数形の「a」、「an」、および「the」の単語が含まれる場合、文脈から明らかにそうでないことが示されていない限り、単数のみならず複数のものも含むものとする。
 以下に実施例を示してさらに本発明の説明を行うが、本実施例は、あくまでも本発明の実施形態の例示にすぎず、本発明の範囲を限定するものではない。
Where this specification has been translated into English and contains the words "a", "an" and "the" in the singular, unless the context clearly indicates otherwise, the singular as well as the singular It also includes multiple items.
EXAMPLES The present invention will be further described below with reference to Examples, but these Examples are merely illustrations of embodiments of the present invention and do not limit the scope of the present invention.
1.材料と実験方法
インビトロキナーゼアッセイ
 精製したMEK1/2または各種MEK1/2変異体(0.6μg)をGST-ERK2(K/N)(キナーゼ活性を喪失したERK2変異体)(0.6μg)と混合し、混合物を160μM ATPを含むキナーゼバッファー中で、26℃、7分間インキュベートした。ERK2のT185およびY187のリン酸化レベルはluminescent image analyzer, LAS-1000 Plus(Fujifilm)を用いて定量した。
1. Materials and experimental methods
In vitro kinase assay Purified MEK1/2 or various MEK1/2 mutants (0.6 μg) were mixed with GST-ERK2(K/N) (an ERK2 mutant that lost kinase activity) (0.6 μg) and the mixture was added to 160 μM ATP. Incubated at 26°C for 7 minutes in a kinase buffer containing The phosphorylation levels of T185 and Y187 of ERK2 were quantified using a luminescent image analyzer, LAS-1000 Plus (Fujifilm).
ERKの核移行の観察
 ERK1-GFPと、HA-MEK1(WT)、HA-MEK1(F53S)またはHA-MEK1(K57N)のいずれかを安定に発現するHEK293細胞をガラス底ディッシュに播種し、37℃で一晩、細胞を接着させた。無作為に選択したウェル中の細胞からのERK1-GFP蛍光を90秒毎にモニターした。具体的には、EGFを最終濃度5 ng/mlとなるように培地へ添加し、生細胞からの蛍光を連続的に60分間 、CCDカメラを備えたNikon Ecripse Ti fluorescence microscope (Rolera EM-C2, QImaging)でモニターした。各細胞中、核移行したERK-GFPの割合は、細胞全体の蛍光強度で、同じ細胞の核領域の蛍光強度で除して算出した。蛍光強度の定量分析は、MetaFluor software (Molecular Devices)を使用して行った。
Observation of nuclear translocation of ERK HEK293 cells stably expressing ERK1-GFP and either HA-MEK1 (WT), HA-MEK1 (F53S) or HA-MEK1 (K57N) were seeded in glass bottom dishes and C. overnight to allow cells to adhere. ERK1-GFP fluorescence from cells in randomly selected wells was monitored every 90 seconds. Specifically, EGF was added to the medium to a final concentration of 5 ng/ml, and fluorescence from living cells was observed continuously for 60 minutes using a Nikon Eclipse Ti fluorescence microscope (Rolera EM- C2) equipped with a CCD camera. , QImaging). The ratio of ERK-GFP translocated to the nucleus in each cell was calculated by dividing the fluorescence intensity of the whole cell by the fluorescence intensity of the nuclear region of the same cell. Quantitative analysis of fluorescence intensity was performed using MetaFluor software (Molecular Devices).
免疫組織化学
 本実施例で使用した3種類のがん組織マイクロアレイ(すい臓; PA484, 肺; LC483および結腸; CO483)は、Biomax USから購入した。組織スライドは、脱パラフィン化し、クエン酸バッファー(pH 6)で、95℃、40分間インキュベートして抗原賦活化した。各組織サンプルの内在性のペルオキシダーゼ活性は、0.3 % 過酸化水素で処理してブロックした。再水和した組織スライドは、BlockAce (Yukijirushi)で、室温にて10分間インキュベートした後、抗C11orf96抗体 (1:250 希釈)と4℃で一晩インキュベートした。二次抗体として抗ラビット-HRP抗体(Dako Envision systems)を用い、DAB(3,3’-Diaminobenzidine)で、1次抗体と抗原との結合を視覚化した。C11orf96の免疫組織学的評価は、病理学者が行った。
Immunohistochemistry The three cancer tissue microarrays used in this example (pancreas; PA484, lung; LC483 and colon; CO483) were purchased from Biomax US. Tissue slides were deparaffinized and antigen-retrieved by incubation in citrate buffer (pH 6) at 95°C for 40 minutes. Endogenous peroxidase activity in each tissue sample was blocked by treatment with 0.3% hydrogen peroxide. Rehydrated tissue slides were incubated with BlockAce (Yukijirushi) for 10 minutes at room temperature, followed by anti-C11orf96 antibody (1:250 dilution) overnight at 4°C. An anti-rabbit-HRP antibody (Dako Envision systems) was used as a secondary antibody, and DAB (3,3'-Diaminobenzidine) was used to visualize the binding between the primary antibody and the antigen. Immunohistological evaluation of C11orf96 was performed by a pathologist.
プラスミド
 pcDNA3HA、pcDNA3FlagおよびpcDNA4Myc ベクターは、MEK1、MEK2、ERK2、BRaf、Raf-1、KSR1およびこれらの変異体を発現させるために使用した。MEK1/2変異体は、PCRで部位特異的突然変異を導入して作製した。
 pCold (Takara Bio, Japan)、pRSF-Duet (Merck-Millipore)およびpGEX-6Pベクター(GE healthcare)は、GSTまたはHis-tagged B-Raf、MEK1、MEK2およびERK2タンパク質を大腸菌で発現させるために使用した。触媒不活性型ERK2(K/N)は、Lys52のコドンをアスパラギンのコドンに置換し、MEK1(K/M)およびMEK2(K/M)不活性型変異体は、各々、Lys97およびLys101のコドンを、メチオニンのコドンに置換することで作製した。Raf-1ΔNは既報の通り作製した(Takekawaら, Mol Cell 18, 295-306 2005)。
 Shield1-dependent protein stabilization systemの利用については、DD配列(不安定化領域、Clontech)を活性型MEK1変異体(S218D/S222D)のN末端側に融合し、融合したコンストラクトをpQCXIPベクターにクローニングした。
Plasmid pcDNA3HA, pcDNA3Flag and pcDNA4Myc vectors were used to express MEK1, MEK2, ERK2, BRaf, Raf-1, KSR1 and their mutants. MEK1/2 mutants were generated by site-directed mutagenesis by PCR.
pCold (Takara Bio, Japan), pRSF-Duet (Merck-Millipore) and pGEX-6P vectors (GE healthcare) are used to express GST or His-tagged B-Raf, MEK1, MEK2 and ERK2 proteins in E. coli did. The catalytically inactive form of ERK2 (K/N) replaces the codon of Lys52 with that of asparagine, and the MEK1 (K/M) and MEK2 (K/M) inactive mutants replace codons of Lys97 and Lys101, respectively. was prepared by substituting the codon for methionine. Raf-1ΔN was produced as previously reported (Takekawa et al., Mol Cell 18, 295-306 2005).
For use of the Shield1-dependent protein stabilization system, the DD sequence (destabilization region, Clontech) was fused to the N-terminal side of the active MEK1 mutant (S218D/S222D), and the fused construct was cloned into the pQCXIP vector.
培地およびバッファー
 インビトロキナーゼアッセイにおいて、25 mM Tris-HCl (pH 7.5)、25 mM MgCl2, 10 mM β-glycerophosphate、0.5 mM sodium vanadateおよび2 mM DTTを含むバッファーを用いた。
Media and Buffers In vitro kinase assays used a buffer containing 25 mM Tris-HCl (pH 7.5), 25 mM MgCl2 , 10 mM β-glycerophosphate, 0.5 mM sodium vanadate and 2 mM DTT.
組織培養および一過的トランスフェクション
 不死化MEK1-/-MEFは、J. Charron氏 (Universite Laval, Quebec) (Giroux et al., 1999)に供与頂いた。細胞は、10 % fetal bovine serum (FBS)、L-glutamine、penicillinおよびstreptomycinを含む高グルコースDMEMで維持した。HEK293細胞は10 % fetal bovine serum (FBS)、L-glutamine、penicillinおよびstreptomycinを含む低グルコースDMEMで培養した。
 一過的トランスフェクションについては、35 mmディッシュで培養したHEK293細胞に、発現プラスミドをX-tremeGENE 9 DNA transfection reagent (Sigma)を使用してトランスフェクトした。DNAの総量は、1μg/ディッシュとした。細胞は、トランスフェクションから48時間後に回収した。
Tissue culture and transiently transfected immortalized MEK1-/- MEFs were kindly provided by J. Charron (Universite Laval, Quebec) (Giroux et al., 1999). Cells were maintained in high glucose DMEM containing 10% fetal bovine serum (FBS), L-glutamine, penicillin and streptomycin. HEK293 cells were cultured in low glucose DMEM containing 10% fetal bovine serum (FBS), L-glutamine, penicillin and streptomycin.
For transient transfections, HEK293 cells cultured in 35 mm dishes were transfected with expression plasmids using X-tremeGENE 9 DNA transfection reagent (Sigma). The total amount of DNA was 1 μg/dish. Cells were harvested 48 hours after transfection.
レトロウイルスのインフェクション
 MEK変異体等を安定に発現するHEK293細胞株は、レトロウイルスインフェクションにより作製した。レトロウイルスは、pVSVおよび、pQCXIPまたはpQCXIHプラスミドで一過的にトランスフェクトすることにより、GP2-293パッケージング細胞中で作製した。培養上清をトランスフェクトから48時間後に回収して、フィルターろ過し、8μg/ml polybreneを添加した。細胞にレトロウイルスを感染させ、目的のタンパク質を発現する細胞を、ピューロマイシンまたはハイグロマイシンで選択した。MEFのレトロウイルス感染は、Plat-Eパッケージング細胞を使用した以外は、上述の通り行った。
Retrovirus infection HEK293 cell lines stably expressing MEK mutants were generated by retrovirus infection. Retroviruses were generated in GP2-293 packaging cells by transient transfection with pVSV and pQCXIP or pQCXIH plasmids. Culture supernatants were harvested 48 hours after transfection, filtered and added with 8 μg/ml polybrene. Cells were retrovirally infected and cells expressing the protein of interest were selected with puromycin or hygromycin. Retroviral infection of MEFs was performed as described above, except Plat-E packaging cells were used.
組換タンパク質の発現と精製
 GST-MEK1、GST-MEK2、GST-ERK2(K/N)およびこれらの変異体は、IPTG (0.5μM)を添加することにより、大腸菌DH5α中で発現させ、グルタチオン-Sepharoseビーズ(GE healthcare)を用いて精製した。リン酸化MEK1は、 GST-MEK1および6xHis-BRaf(V600E)を共発現する大腸菌から精製した。His-MEK1およびMEK2は、FPLC AKTA system (GE healthcare)を使用して、His-Trap HP columnで精製した。 
Expression and Purification of Recombinant Proteins GST-MEK1, GST-MEK2, GST-ERK2(K/N) and their mutants were expressed in E. coli DH5α by adding IPTG (0.5 μM) and glutathione- It was purified using Sepharose beads (GE healthcare). Phosphorylated MEK1 was purified from E. coli co-expressing GST-MEK1 and 6xHis-BRaf(V600E). His-MEK1 and MEK2 were purified on a His-Trap HP column using FPLC AKTA system (GE healthcare).
イムノブロッティング分析および抗体
 イムノブロッティング分析は、既述の通り行った(Takekawaら, Mol Cell 18, 295-306 2005)。
 使用した抗体は以下の通りである;ポリクローナル抗-ERK1抗体、抗-MEK1 C-18抗体、抗-C-Raf-1抗体、モノクローナル抗-HA F-7抗体、抗-GST B-14抗体、抗-Myc 9E10抗体、抗-TFPI2抗体 (Santa Cruz);抗-HA mAb 3F10抗体(Roche);ポリクローナル抗-phospho-Raf-1(S338)抗体、抗-phospho-MEK1/2抗体、抗-phospho-ERK1/2抗体、抗-GDF15抗体、抗-S6抗体およびモノクローナル抗-phospho-S6 (Cell Signaling Technology);ポリクローナル抗-COL14A1抗体、ポリクローナル抗-PHLDA1抗体、抗-PHLDA2 (Abcam)抗体;ポリクローナル抗-TM4SF1抗体、抗-TM4SF19抗体、抗-c11orf96抗体、抗-EMP1抗体 (Sigma);モノクローナル抗-Actin抗体 (Lab Vision)。
 全ての抗体は1:1,000に希釈してイムノブロッティングに使用した。
Immunoblotting analysis and antibody immunoblotting analysis were performed as previously described (Takekawa et al., Mol Cell 18, 295-306 2005).
The antibodies used were: polyclonal anti-ERK1 antibody, anti-MEK1 C-18 antibody, anti-C-Raf-1 antibody, monoclonal anti-HA F-7 antibody, anti-GST B-14 antibody, anti-Myc 9E10 antibody, anti-TFPI2 antibody (Santa Cruz); anti-HA mAb 3F10 antibody (Roche); polyclonal anti-phospho-Raf-1 (S338) antibody, anti-phospho-MEK1/2 antibody, anti-phospho -ERK1/2 antibody, anti-GDF15 antibody, anti-S6 antibody and monoclonal anti-phospho-S6 (Cell Signaling Technology); polyclonal anti-COL14A1 antibody, polyclonal anti-PHLDA1 antibody, anti-PHLDA2 (Abcam) antibody; polyclonal anti -TM4SF1 antibody, anti-TM4SF19 antibody, anti-c11orf96 antibody, anti-EMP1 antibody (Sigma); monoclonal anti-Actin antibody (Lab Vision).
All antibodies were diluted 1:1,000 and used for immunoblotting.
免疫蛍光顕微鏡観察
 HEK293細胞は、カバーグラス上に培養し、HA-MEK1またはその変異体を一過的にトランスフェクトした。トランスフェクションから18時間後、細胞を3 % パラホルムアルデヒドを含むPBS (pH 7.4)中で10分間固定した。細胞をPBSで洗浄した後、0.1 % Triton X-100で5分間インキュベートして膜透過処理を行い、再度洗浄後、BlockAce (Yukijirushi) で、室温にて1時間処理した。次に、細胞を、2 % BSAを含むPBS中、1μg/ml 抗-HA mAb 16B12 (Covance)と共に室温にて50分間インキュベートした。その後、細胞を4回PBSで洗浄した後、 Alexa-Fluor 488 goat anti-mouse IgG1 (Molecular Probe) と共に室温にて、さらに30分間インキュベートした。インキュベート後、細胞を4回PBSで洗浄し、FluorSave (Calbiochem)中にマウントした。核は、DAPI (0.025 mg/ml in PBS)で染色して視覚化した。
Immunofluorescence Microscopy HEK293 cells were cultured on coverslips and transiently transfected with HA-MEK1 or its mutants. Eighteen hours after transfection, cells were fixed in PBS (pH 7.4) containing 3% paraformaldehyde for 10 minutes. The cells were washed with PBS, incubated with 0.1% Triton X-100 for 5 minutes for membrane permeabilization, washed again, and treated with BlockAce (Yukijirushi) for 1 hour at room temperature. Cells were then incubated with 1 μg/ml anti-HA mAb 16B12 (Covance) in PBS containing 2% BSA for 50 minutes at room temperature. Cells were then washed 4 times with PBS and then incubated with Alexa-Fluor 488 goat anti-mouse IgG1 (Molecular Probe) at room temperature for an additional 30 minutes. After incubation, cells were washed four times with PBS and mounted in FluorSave (Calbiochem). Nuclei were visualized by staining with DAPI (0.025 mg/ml in PBS).
サイズ排除クロマトグラフィ
 HA-MEK1 (WT またはK57N)を一過的に発現させたHEK293細胞の抽出物をSuperdex 75 カラム (GE healthcare)で分画した。溶出した画分をSDS-PAGEで分離し、HA-MEK1タンパク質を抗HA抗体で検出した。組換えMEK1(WT)およびMEK1(K57N)のN末端に融合させたGST-tagは、PreScission Protease (Roche)を用いて切断し、MEK1タンパク質をSuperdex 75 カラムで分画した。溶出画分に対し、抗MEK1抗体でMEK1タンパク質の検出を行った。
Size Exclusion Chromatography An extract of HEK293 cells transiently expressing HA-MEK1 (WT or K57N) was fractionated with a Superdex 75 column (GE healthcare). Eluted fractions were separated by SDS-PAGE, and HA-MEK1 protein was detected with an anti-HA antibody. The GST-tag fused to the N-terminus of recombinant MEK1(WT) and MEK1(K57N) was cleaved using PreScission Protease (Roche), and the MEK1 protein was fractionated with a Superdex 75 column. The eluted fraction was subjected to detection of MEK1 protein with an anti-MEK1 antibody.
共免疫沈降アッセイ
 HEK293細胞は、プラスミドで一過的にトランスフェクトし、48時間後にbuffer Cで溶解した。細胞溶解物は、予め、proteinGで4℃にて、1時間処理をした後、抗Flag抗体と共に4℃にて、3時間インキュベートした。免疫沈降物は、protein G sepharoseで回収し、冷却したbuffer Cで数回洗浄した。タンパク質をSDS-PAGEで遠心し、抗Myc抗体でイムノブロッティング分析を行った。
Co-immunoprecipitation assay HEK293 cells were transiently transfected with the plasmid and lysed with buffer C after 48 hours. The cell lysate was pretreated with protein G at 4°C for 1 hour and then incubated with an anti-Flag antibody at 4°C for 3 hours. Immunoprecipitates were collected with protein G sepharose and washed with cold buffer C several times. Proteins were spun on SDS-PAGE and subjected to immunoblotting analysis with anti-Myc antibody.
細胞増殖および足場非依存的増殖アッセイ
 MEFの増殖アッセイについて、10 % FBSを含むDMEM中に、1 x 103 細胞/ウェルとなるように細胞を、3ウェル分播種し、細胞数をCell Counting Kit-8 (Dojindo)でカウントした。 
 ソフトアガー中での足場非依存的増殖アッセイについては、予め、ディッシュをソフトアガー(SeaPlaque Agarose)(0.5 % agarおよび10 % FBSを含む DMEM)でカバーし、その上に、MEF細胞を含む0.35 % アガー(10% FBSを含む)を添加した。アガーの乾燥を防ぐために、上層に培地を加えた。具体的には、HA-MEK1またはその変異体(F53S、Q56P、K57N、C121S、Y130CまたはS218D/S222D)を安定に発現する細胞については、MEF安定発現細胞、3 x 104細胞をアガー中に播種し、4週間培養した後、コロニー(> 0.1 mm)数をカウントした。コロニー数の平均値は、3回のアッセイから得られた数値に基づいて計算した。
Cell Proliferation and Anchorage-Independent Proliferation Assay For the MEF proliferation assay, cells were plated in 3 wells at 1 x 10 3 cells/well in DMEM containing 10% FBS, and the cell count was determined using the Cell Counting Kit. Counted at -8 (Dojindo).
For the anchorage-independent growth assay in soft agar, the dishes were previously covered with SeaPlaque Agarose (DMEM containing 0.5% agar and 10% FBS) and then covered with 0.35% MEF cells. Agar (containing 10% FBS) was added. Medium was added on top to prevent the agar from drying out. Specifically, for cells stably expressing HA-MEK1 or its variants (F53S, Q56P, K57N, C121S, Y130C or S218D/S222D), MEF stably expressing cells, 3 x 104 cells in agar Colonies (>0.1 mm) were counted after inoculation and 4 weeks of culture. Mean colony numbers were calculated based on values obtained from triplicate assays.
DNAマイクロアレイアッセイ
 miRNeasy kit(Qiagen)を使用して各HEK293細胞株からトータルRNAを精製し、PrimeScript RT Master Mix(Takara Bio, Japan)を用いて逆転写を行った。RNAサンプルの純度を確認した後、Agilent SurePrint G3 Human GE microarray 8x60K v2 kit(Agilent)を用いてマイクロアレイ解析を行った。各遺伝子の発現量の平均値は、独立した3回の実験から得られたデータに基づいて計算した。遺伝子の相対的な増減量は、MEK1(WT)発現細胞における遺伝子発現量に対する、その変異体を発現する細胞における遺伝子発現量の倍率として示した。MEK1(F53SまたはK57N)を発現する細胞のenriched KEGGパスウェイ解析については、MEK1(WT)発現細胞における遺伝子発現量に対して、>2または0.5<となる発現量を示す遺伝子を、DAVID database  (http://david.abcc.ncifcrf.gov)を用いて機能アノテーション解析にかけた。
Total RNA was purified from each HEK293 cell line using DNA microarray assay miRNeasy kit (Qiagen) and reverse transcribed using PrimeScript RT Master Mix (Takara Bio, Japan). After confirming the purity of the RNA samples, microarray analysis was performed using the Agilent SurePrint G3 Human GE microarray 8x60K v2 kit (Agilent). The mean expression level of each gene was calculated based on data obtained from three independent experiments. The relative increase/decrease of genes was expressed as a fold of the gene expression level in cells expressing the mutant relative to the gene expression level in MEK1(WT)-expressing cells. For the enriched KEGG pathway analysis of MEK1(F53S or K57N)-expressing cells, genes with expression levels >2 or 0.5< compared to the gene expression levels in MEK1(WT)-expressing cells were identified in the DAVID database (http://www.daviddatabase.org/). (http://david.abcc.ncifcrf.gov) and subjected to functional annotation analysis.
mRNA発現レベルの定量的分析(q-PCR)
 HEK293安定細胞株に由来するcDNAサンプルについて、Takara Thermal Cycler Dice real time system (Takara Bio, Japan) およびThunderbird SYBR qPCR mix (Toyobo, Japan)を用いてq-PCR分析を行った。相対的遺伝子発現量は、GAPDHに対して標準化した。全てのq-PCRの実験は、3回行い、平均値±SEMを示した。q-PCR分析で使用したプライマーを表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
Quantitative analysis of mRNA expression levels (q-PCR)
cDNA samples derived from the HEK293 stable cell line were subjected to q-PCR analysis using the Takara Thermal Cycler Dice real time system (Takara Bio, Japan) and Thunderbird SYBR qPCR mix (Toyobo, Japan). Relative gene expression levels were normalized to GAPDH. All q-PCR experiments were performed in triplicate and represent the mean±SEM. Primers used in q-PCR analysis are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
統計処理
 平均値間の統計的有意差は、スチューデントtテストで検定した。(**, P < 0.01; *, P < 0.05)。データは、平均値±SEMで示した。正常組織と悪性組織間の免疫染色の比較については、発現差をカイ二乗検定で評価した。(***, P < 0.001;**, P < 0.01; *, P < 0.05)
Statistical significance between mean values was tested by Student's t-test. (**, P <0.01; *, P < 0.05). Data are shown as mean±SEM. For comparison of immunostaining between normal and malignant tissues, differential expression was evaluated with the chi-square test. (***, P <0.001; **, P <0.01; *, P < 0.05)
2.結果
がんおよびRas/MAPK症候群由来のMEK変異体の活性化
 これまでに、MEKのN末端部分に存在する分子内制御ヘリックス(helix-A)は、キナーゼドメインの構造を安定化することで、活性化を抑制することが予想されている(Fischmannら, Biochemistry 48, 2661-2674 2009)。そこで、がんおよびRas/MAPK症候群由来のMEK1/2においてしばしば見出されるhelix-A内およびその近傍の変異が、MEKキナーゼ活性にどのような影響を与えるかについて検討した。
 HA-MEK1(WT;野生型)またはMEK変異体と共にMyc-ERK2をHEK293細胞にトランスフェクトし、ERK2のリン酸化レベルを測定した。ここで用いたMEK変異体は、がん、または、RAS/MAPK症候群に由来するものである。検討した全てのMEK変異体は、野生型MEKと比較して、より高いキナーゼ活性を示したが(図1A)、MEK変異の位置によりその活性の強さは異なっていた。すなわち、がん由来のMEK変異体(例えば、Q56PおよびK57N)は強いキナーゼ活性を示す「高活性型」で、Ras/MAPK症候群由来のMEK変異体(例えば、F53S、T55P、D67NおよびY130C)は、がん由来のMEK変異体よりは弱いキナーゼ活性を示す「中活性型」であった。
2. result
Activation of MEK mutants from cancer and Ras/MAPK syndrome Previously, an intramolecular regulatory helix (helix-A) located in the N-terminal part of MEK stabilized the structure of the kinase domain, thereby suppressing its activity. (Fischmann et al., Biochemistry 48, 2661-2674 2009). Therefore, we investigated how mutations in and near helix-A, which are frequently found in MEK1/2 derived from cancer and Ras/MAPK syndrome, affect MEK kinase activity.
HEK293 cells were transfected with Myc-ERK2 along with HA-MEK1 (WT; wild-type) or MEK mutants, and ERK2 phosphorylation levels were measured. The MEK variants used here are those from cancer or RAS/MAPK syndrome. All tested MEK mutants showed higher kinase activity than wild-type MEK (Fig. 1A), but the strength of the activity differed depending on the position of the MEK mutation. That is, cancer-derived MEK mutants (e.g., Q56P and K57N) are "highly active" with strong kinase activity, and Ras/MAPK syndrome-derived MEK mutants (e.g., F53S, T55P, D67N and Y130C) , was a "moderately active" type with weaker kinase activity than cancer-derived MEK mutants.
 MEK活性は、通常、T-loop内の2つのセリン残基(Ser218 およびSer222)のリン酸化によって誘導されることが知られている(Alessiら, EMBO J 13, 1610-1619 1994)。しかし、Ras/MAPK症候群由来のMEK変異体は、大腸菌とヒトの細胞内において、T-loopのリン酸化が増大していなかった(図1BおよびC)。同様の結果が、MEK2変異体の解析からも得られている。これらRas/MAPK症候群由来のMEK変異体の活性は、T-loopのリン酸化を必要としているのかどうかを確認するために、T-loopのアミノ酸残基をアラニンに変えたリン酸化不能型MEK変異体(MEK1(AA))を作製した。これらの変異体を用いてインビボキナーゼアッセイを行うと、Ras/MAPK症候群由来の変異(F53SまたはT55P)を持つMEK1(AA)は、リン酸化可能なMEK変異体とほぼ同程度のキナーゼ活性を有していることが分かった(図1D)。これらのデータから、Ras/MAPK症候群由来のMEK変異は、T-loopのリン酸化の有無とは無関係にMEKの構成的な活性化を誘導することが示唆された。 It is known that MEK activity is normally induced by phosphorylation of two serine residues (Ser218 and Ser222) within the T-loop (Alessi et al., EMBO J 13, 1610-1619 1994). However, Ras/MAPK syndrome-derived MEK mutants did not show increased T-loop phosphorylation in E. coli and human cells (FIGS. 1B and C). Similar results are obtained from analysis of MEK2 mutants. To confirm whether the activity of these Ras/MAPK syndrome-derived MEK mutants requires phosphorylation of the T-loop, we investigated non-phosphorylatable MEK mutants in which the T-loop amino acid residue was changed to alanine. A body (MEK1(AA)) was prepared. In vivo kinase assays with these mutants showed that MEK1(AA) with mutations from Ras/MAPK syndrome (F53S or T55P) had kinase activity similar to that of phosphorylatable MEK mutants. (Fig. 1D). These data suggested that MEK mutations from the Ras/MAPK syndrome induced constitutive activation of MEK regardless of the presence or absence of T-loop phosphorylation.
 がん由来のMEK1変異体については、T-loop内の Ser218とSer222が強くリン酸化されていることが確認された(図1B)。
 がん由来MEK変異体のT-loopは、大腸菌で発現させた場合においても高度にリン酸化されていた(図1C)。大腸菌は、MEKを基質とするセリン/スレオニンキナーゼを持っていないので、がん由来のMEK変異は、MEKのT-loopを自己リン酸化することが考えられた。実際、キナーゼ活性を欠く変異を併せ持つがん由来MEK変異体(Q56PまたはK57N)は、インビボおよびインビトロにおいて、T-loopのリン酸化を誘導することができなかった(図2AおよびB)。また、リン酸化されない野生型MEK1(AA)変異体は、インビボにおいてERKをリン酸化することはできるが、そのキナーゼ活性は、Q56P 変異またはK57N変異を有するリン酸化されないMEK変異体(MEK1(Q56P+AA)およびMEK1(K57N+AA))と比較すると、約50%程度に減少していた(図2C)。
 これらのデータから、がん由来のMEK変異は、T-loopの自己リン酸化、およびリン酸化非依存的な基本的触媒活性の増強を介して、強力なキナーゼ活性を誘導すると考えられる。
In cancer-derived MEK1 mutants, it was confirmed that Ser218 and Ser222 in the T-loop were strongly phosphorylated (Fig. 1B).
The T-loop of the cancer-derived MEK mutant was highly phosphorylated even when expressed in E. coli (Fig. 1C). Since E. coli does not possess a serine/threonine kinase that uses MEK as a substrate, cancer-derived MEK mutations were thought to autophosphorylate the MEK T-loop. Indeed, cancer-derived MEK mutants (Q56P or K57N) that also carry mutations that lack kinase activity were unable to induce T-loop phosphorylation in vivo and in vitro (FIGS. 2A and B). Also, although the non-phosphorylated wild-type MEK1(AA) mutant is able to phosphorylate ERK in vivo, its kinase activity is lower than that of non-phosphorylated MEK mutants with the Q56P or K57N mutation (MEK1(Q56P+)). AA) and MEK1 (K57N+AA)), it decreased to about 50% (Fig. 2C).
These data suggest that cancer-derived MEK mutations induce potent kinase activity through T-loop autophosphorylation and enhanced phosphorylation-independent basal catalytic activity.
 次に、このMEK自己リン酸化は分子内メカニズムによるものか、あるいは、分子間メカニズムによるものかについて検討をおこなった。
 キナーゼ活性を有するMEK(Q56P)変異体とその基質としてキナーゼ活性を喪失しているMEK(Q56P)変異体を混合し、インビトロキナーゼアッセイを行った。その結果、キナーゼ活性を喪失しているMEK1(Q56P)のT-loopのリン酸化は、キナーゼ活性を有するMEK1(Q56P)変異体が共存しているにもかかわらず、検出できなかった(図2D)。また、キナーゼ活性を喪失しているMEK1(Q56P)変異体は、HEK293細胞内において、他のMEK1をリン酸化することができなかった(図2E)。
 以上のことから、がん由来のMEK変異が誘導するT-loopの自己リン酸化は、分子内で行われると結論付けられる。
Next, we examined whether this MEK autophosphorylation is due to an intramolecular mechanism or an intermolecular mechanism.
A MEK(Q56P) mutant having kinase activity and a MEK(Q56P) mutant lacking kinase activity as its substrate were mixed, and an in vitro kinase assay was performed. As a result, phosphorylation of the T-loop of MEK1(Q56P), which has lost its kinase activity, could not be detected despite the coexistence of MEK1(Q56P) mutants with kinase activity (Fig. 2D). ). Also, the MEK1(Q56P) mutant, which lacks kinase activity, was unable to phosphorylate other MEK1 in HEK293 cells (Fig. 2E).
We conclude that cancer-induced MEK mutation-induced T-loop autophosphorylation is intramolecular.
 MEK1のGln56がMEK2においてGln60として保存されていることから、これらのMEK2において保存されているアミノ酸の置換、すなわち、がん由来MEK2(Q60P)変異体がT-loopの自己リン酸化を誘導するかどうか検討したところ、予想した通り、MEK1(Q56P)変異体と同様に、MEK2(Q60P)変異体も自己リン酸化活性を示した(図3AおよびB)。 Since Gln56 of MEK1 is conserved as Gln60 in MEK2, it is possible that these conserved amino acid substitutions in MEK2, namely cancer-derived MEK2(Q60P) mutants, induce T-loop autophosphorylation. As expected, the MEK2(Q60P) mutant showed autophosphorylation activity as well as the MEK1(Q56P) mutant (FIGS. 3A and B).
MEK変異のERKシグナルへの影響
 活性化されたERKは、核に移行し、様々なターゲットをリン酸化して、c-jun、c-fosおよびEgr1などの種々の初期応答遺伝子が誘導される(Buchwalterら, Gene 324, 1-14 2004;PagelおよびDeindl Indian J Biochem Biophys 48, 226-235 2011)。これらの転写因子は、細胞の増殖、分化および生存などの多種多様な細胞内プロセスにとって欠くことのできない特定の遺伝子の発現を制御する。MEK変異のERKシグナルに対する影響を調べるために、MEK1(WT)またはMEK1変異体を発現する細胞をEGFで処理し、細胞内におけるERKのリン酸化レベルを検出した。MEK1(WT)発現細胞中において、内在性ERKとその下流のS6リボソームタンパク質のリン酸化レベルは、EGF刺激後2時間でピークに達し、その後徐々に減少していった(図4A、「P-ERK」および「P-S6K」)。
 これに対し、Ras/MAPK症候群由来MEK1(F53S)については、MEK1(F53S)のリン酸化パターンは、MEK1(WT)のリン酸化パターンと類似していたものの、MEK1(F53S)によるEGF刺激後ERKおよびS6のリン酸化は、リン酸化された状態が長く持続していた(図4A、MEK1(F53S))。
 また、がん由来MEK1(K57N)が発現する細胞内では、EGF刺激が無くてもMEK、ERKおよびS6の構成的なリン酸化が誘導された(図4A、MEK1(K57N)の0 hr)。
Effect of MEK mutations on ERK signaling Activated ERK translocates to the nucleus and phosphorylates various targets to induce various early response genes such as c-jun, c-fos and Egr1 ( Buchwalter et al., Gene 324, 1-14 2004; Pagel and Deindl Indian J Biochem Biophys 48, 226-235 2011). These transcription factors control the expression of specific genes that are essential for a wide variety of intracellular processes such as cell proliferation, differentiation and survival. To investigate the effects of MEK mutations on ERK signaling, cells expressing MEK1(WT) or MEK1 mutants were treated with EGF, and intracellular phosphorylation levels of ERK were detected. In MEK1(WT)-expressing cells, phosphorylation levels of endogenous ERK and its downstream S6 ribosomal protein peaked 2 hours after EGF stimulation and then gradually decreased (Fig. 4A, "P- ERK” and “P-S6K”).
On the other hand, for Ras/MAPK syndrome-derived MEK1(F53S), the phosphorylation pattern of MEK1(F53S) was similar to that of MEK1(WT), but ERK after EGF stimulation by MEK1(F53S) and S6 remained phosphorylated for a long time (FIG. 4A, MEK1(F53S)).
Moreover, in cells expressing cancer-derived MEK1(K57N), constitutive phosphorylation of MEK, ERK and S6 was induced even without EGF stimulation (Fig. 4A, 0 hr of MEK1(K57N)).
  次に、ERK-GFPとHA-MEK1またはその変異体を安定に発現するHEK293細胞を作製し、EGF刺激に応じたERKの核移行をtime-lapse microscopy systemで観察した。
Ras/MAPK症候群由来MEK1(F53S)の発現に伴い、EGF依存的にERKが核移行し核への局在状態が持続した。他方、MEK1(K57N)発現細胞においては、EGF処理に依存することなく、ERKの核への蓄積が確認された(図4B)。
 さらに、Egr1(IEGsの一つ)の発現は、MEK1(WT)発現細胞では、EGFの処理時間に依存して、処理後5時間でピークを迎えその後減少したのに対し、MEK1(F53S)発現細胞では、その発現が延長され、MEK1(K57N)発現細胞では、EGF刺激に依存せずに、構成的な発現を示した(図4C)。
 以上の結果から、Ras/MAPK症候群由来MEK1変異体およびがん由来のMEK1変異体は、野生型MEK1とは異なるERKシグナルを誘導し、ERK下流遺伝子の発現レベルにも影響を与えている可能性が示唆された。
Next, we generated HEK293 cells stably expressing ERK-GFP and HA-MEK1 or its mutants, and observed nuclear translocation of ERK in response to EGF stimulation using a time-lapse microscopy system.
Expression of Ras/MAPK syndrome-derived MEK1(F53S) resulted in EGF-dependent ERK translocation to the nucleus and sustained nuclear localization. On the other hand, in MEK1(K57N)-expressing cells, accumulation of ERK in the nucleus was confirmed independently of EGF treatment (Fig. 4B).
Furthermore, the expression of Egr1 (one of the IEGs) in MEK1(WT)-expressing cells depended on the time of EGF treatment, peaking at 5 hours after treatment and then decreasing, whereas MEK1(F53S) expression Its expression was prolonged in cells, and MEK1(K57N)-expressing cells exhibited constitutive expression independent of EGF stimulation (Fig. 4C).
These results suggest that Ras/MAPK syndrome-derived MEK1 mutants and cancer-derived MEK1 mutants induce ERK signals that are different from wild-type MEK1, and may also affect the expression levels of ERK downstream genes. was suggested.
野生型MEK1発現細胞とRas/MAPK症候群由来MEK1変異体発現細胞における遺伝子発現パターンの比較
 遺伝子発現パターンから、Col14A1(コラーゲンタイプ14A1)が、中程度の構成的な活性を有するRas/MAPK症候群由来MEK1(F53S)が発現されたときにのみ特異的に上方制御されたことを見出した(図5)。実際、高度な活性を示す癌由来MEK1(K57N)変異体を発現させた場合にはCol14A1の上方制御は観察されなかった。Col14A1は、細胞外繊維とマトリックス構成要素との間を架橋する分子として作用していると考えられている(Eyreら, Biochem Soc Trans 30, 844-848 2002;Schuppanら, J Biol Chem 265, 8823-8832 1990)。また、Ras/MAPK症候群において、各種臓器でコラーゲン繊維の沈着が認められるとの報告(HinekらAm J Med Genet A 133A, 1-12. 2005; Moriら, Am J Med Genet 61, 304-309 1996)もあることから、Ras/MAPK症候群由来MEK1変異体、すなわち、T-loopのリン酸化の有無とは無関係にMEKの構成的な活性化を誘導する変異体により制御される遺伝子の発現が、Ras/MAPK症候群の発症と関連性を有することが示唆される。
Comparison of gene expression patterns in wild-type MEK1-expressing cells and Ras/MAPK syndrome-derived MEK1 mutant-expressing cells Gene expression patterns indicate that Col14A1 (collagen type 14A1) is a Ras/MAPK syndrome-derived MEK1 with moderate constitutive activity. We found that it was specifically upregulated only when (F53S) was expressed (Fig. 5). Indeed, no upregulation of Col14A1 was observed when the highly active cancer-derived MEK1(K57N) mutant was expressed. Col14A1 is thought to act as a bridging molecule between extracellular fibers and matrix components (Eyre et al., Biochem Soc Trans 30, 844-848 2002; Schuppan et al., J Biol Chem 265, 8823 -8832 1990). In addition, in Ras/MAPK syndrome, it has been reported that collagen fiber deposition is observed in various organs (Hinek et al. Am J Med Genet A 133A, 1-12. 2005; Mori et al., Am J Med Genet 61, 304-309 1996 ), suggesting that expression of genes regulated by Ras/MAPK syndrome-derived MEK1 mutants, mutants that induce constitutive activation of MEK with or without T-loop phosphorylation, It is suggested that it is associated with the onset of Ras/MAPK syndrome.
野生型MEK1発現細胞とがん由来MEK1発現細胞における遺伝子発現パターンの比較
 DNAマイクロアレイを用いて、MEK1(WT)またはMEK1(K57N)を発現するHEK293細胞における遺伝子発現を網羅的にモニターし、これらの細胞における遺伝子発現パターンを比較した。がん由来MEK1(K57N)変異体の発現により、野生型MEK1が発現する場合とは異なる多くの遺伝子の発現が増加または減少した。
 がん由来MEK1(K57N)発現細胞において発現の増加が確認された遺伝子の中には、ヒトのがんにおいて発現することが報告されているMMP1、TM4SF1などが含まれていた(図6)。そして、これらの遺伝子の遺伝子産物であるタンパク質が、実際に種々のがん細胞内で発現しており(図7)、その発現は、MEK阻害剤であるU0126で細胞を処理してERKパスウェイを阻害することにより、ほぼ完全に抑制された(図7、「MEK阻害剤(U0126)」)。さらに、MEK1(K57N)によるERKシグナルの活性化によって誘導される遺伝子産物の1つであるc11orf96タンパク質が、正常組織と比較して、大腸、肺および膵臓の腫瘍に顕著に発現していることを、TMA(tissue microarrays)を用いた免疫組織化学的解析により確認した(図8)。
Comparison of gene expression patterns in wild-type MEK1-expressing cells and cancer-derived MEK1-expressing cells. Gene expression patterns in cells were compared. Expression of the cancer-derived MEK1(K57N) mutant increased or decreased the expression of a number of genes that differed from wild-type MEK1 expression.
Genes whose expression was confirmed to be increased in cancer-derived MEK1(K57N)-expressing cells included MMP1, TM4SF1, etc., which are reported to be expressed in human cancer (Fig. 6). Proteins, which are the gene products of these genes, are actually expressed in various cancer cells (Fig. 7). It was almost completely suppressed by inhibition (Fig. 7, "MEK inhibitor (U0126)"). Furthermore, we found that c11orf96 protein, one of the gene products induced by ERK signaling activation by MEK1(K57N), was significantly expressed in colon, lung and pancreatic tumors compared to normal tissues. , was confirmed by immunohistochemical analysis using TMA (tissue microarrays) (Fig. 8).
 本発明は、がんやRas/MAPK症候群などの疾患の早期発見を可能にするもので、医療分野における利用が期待される。 The present invention enables early detection of diseases such as cancer and Ras/MAPK syndrome, and is expected to be used in the medical field.

Claims (13)

  1.  ERK1またはERK2が発現誘導するタンパク質群から選択される少なくとも1種の分子を含むがん検出用マーカーであって、該ERK1およびERK2が、T-loop領域の自己リン酸化により活性化されるMEK1変異体またはMEK2変異体によって活性化されることを特徴とするがん検出用マーカー。 A cancer detection marker comprising at least one molecule selected from a group of proteins whose expression is induced by ERK1 or ERK2, wherein the ERK1 and ERK2 are MEK1 mutations activated by autophosphorylation of the T-loop region A marker for cancer detection characterized in that it is activated by a mutant or a MEK2 mutant.
  2.  前記MEK1変異体中の変異が、Q56P、K57N、C121SまたはE203Kであることを特徴とする請求項1に記載のがん検出用マーカー。 The marker for cancer detection according to claim 1, wherein the mutation in the MEK1 mutant is Q56P, K57N, C121S or E203K.
  3.  前記MEK2変異体中の変異が、Q60Pであることを特徴とする請求項1に記載のがん検出用マーカー。 The marker for cancer detection according to claim 1, wherein the mutation in the MEK2 mutant is Q60P.
  4.  MMP10、EMP1、Rheb2、TM4SF1、TM4SF19、TMEM158、ENDOD1、c2orf89、SLC20A1、LY6K、PLAUR(CD87)、PVR(CD155)、IL7R(CD127)、IL1R2(CD121b)、IL4R、TweakR(CD266)、CD3D、CD44、SEMA7、IL13RA2、THBD、XAGE1、PRR9、TRIB1、IER3、c11orf96、c8orf4、PHLDA1、PHLDA2、DUSP5、DUSP6、ERRFI1、GADD45B、IER3、IRX4、SPANXN3、SPANXN4、SPANXN5、TGFb1、BMP2、TFPI2、GDF15、PAEP、CCL7、IL11およびCRLFからなる群から選択される、少なくとも1種のタンパク質を含む請求項1に記載のがん検出用マーカー。 MMP10, EMP1, Rheb2, TM4SF1, TM4SF19, TMEM158, ENDOD1, c2orf89, SLC20A1, LY6K, PLAUR(CD87), PVR(CD155), IL7R(CD127), IL1R2(CD121b), IL4R, TweakR(CD266), CD3D, CD44 , SEMA7, IL13RA2, THBD, XAGE1, PRR9, TRIB1, IER3, c11orf96, c8orf4, PHLDA1, PHLDA2, DUSP5, DUSP6, ERRFI1, GADD45B, IER3, IRX4, SPANXN3, SPANXN4, SPANXN5, TGFb1, BMP2, TFPI2, GDF15, PAEP , CCL7, IL11 and CRLF.
  5.  EMP1、TM4SF1、TM4SF19、c11orf96、PHLDA1、PHLDA2、TFPI2、Rheb2およびGDF15からなる群から選択される、少なくとも1種のタンパク質を含む請求項4に記載のがん検出用マーカー。 The cancer detection marker according to claim 4, comprising at least one protein selected from the group consisting of EMP1, TM4SF1, TM4SF19, c11orf96, PHLDA1, PHLDA2, TFPI2, Rheb2 and GDF15.
  6.  MMP10、EMP1、Rheb2、TM4SF1、TM4SF19、TMEM158、ENDOD1、c2orf89、SLC20A1、LY6K、PLAUR(CD87)、PVR(CD155)、IL7R(CD127)、IL1R2(CD121b)、IL4R、TweakR(CD266)、CD3D、CD44、SEMA7、IL13RA2、THBD、XAGE1、PRR9、TRIB1、IER3、c11orf96、c8orf4、PHLDA1、PHLDA2、DUSP5、DUSP6、ERRFI1、GADD45B、IER3、IRX4、SPANXN3、SPANXN4、SPANXN5、TGFb1、BMP2、TFPI2、GDF15、PAEP、CCL7、IL11またはCRLFに対する抗体またはアプタマーを含む、がん検出用キット。 MMP10, EMP1, Rheb2, TM4SF1, TM4SF19, TMEM158, ENDOD1, c2orf89, SLC20A1, LY6K, PLAUR(CD87), PVR(CD155), IL7R(CD127), IL1R2(CD121b), IL4R, TweakR(CD266), CD3D, CD44 , SEMA7, IL13RA2, THBD, XAGE1, PRR9, TRIB1, IER3, c11orf96, c8orf4, PHLDA1, PHLDA2, DUSP5, DUSP6, ERRFI1, GADD45B, IER3, IRX4, SPANXN3, SPANXN4, SPANXN5, TGFb1, BMP2, TFPI2, GDF15, PAEP , CCL7, IL11 or CRLF antibodies or aptamers for cancer detection.
  7.  被験者由来のサンプル中に存在する請求項1から請求項6までのいずれか1項に記載のがん検出用マーカーの発現量を測定する工程を含む、がんの診断方法またはがんの診断補助方法。 A method for diagnosing cancer or a diagnostic aid for cancer, comprising the step of measuring the expression level of the cancer detection marker according to any one of claims 1 to 6 present in a sample derived from a subject. Method.
  8.  T-loop領域の自己リン酸化により活性化されるMEK1変異体またはMEK2変異体によって活性化されるERK1またはERK2が、発現を誘導するタンパク質を探索する工程を含む、がん検出用マーカーのスクリーニング方法。 A method for screening cancer detection markers, comprising the step of searching for a protein that induces the expression of ERK1 or ERK2 that is activated by a MEK1 mutant or MEK2 mutant that is activated by autophosphorylation of the T-loop region .
  9.  ERK1またはERK2が発現誘導するタンパク質群から選択される少なくとも1種の分子を含むRas/MAPK症候群検出用マーカーであって、該ERK1およびERK2が、T-loop領域がリン酸化されていなくても活性を有するMEK1変異体またはMEK2変異体によって活性化されることを特徴とする、Ras/MAPK症候群検出用マーカー。 A marker for detecting Ras/MAPK syndrome containing at least one molecule selected from a group of proteins whose expression is induced by ERK1 or ERK2, wherein said ERK1 and ERK2 are active even if the T-loop region is not phosphorylated A marker for detecting Ras/MAPK syndrome characterized by being activated by a MEK1 mutant or MEK2 mutant having
  10.  前記MEK1変異体中の変異が、F53S、T55P、D67N、P124L、P124Q、G128V、G128N、Y130C、Y130N、Y130H、またはE203Qの変異をもつMEK1変異体であることを特徴とする請求項9に記載のRas/MAPK症候群検出用マーカー。 10. The MEK1 mutant of claim 9, wherein the mutations in the MEK1 mutant are F53S, T55P, D67N, P124L, P124Q, G128V, G128N, Y130C, Y130N, Y130H, or E203Q mutations. Ras/MAPK syndrome detection marker.
  11.  前記MEK2変異体中の変異が、F53C、F53V、F57L、K61E、A62P、P128R、G132V、T134C、またはY134Hであることを特徴とする請求項9に記載のRas/MAPK症候群検出用マーカー。 The Ras/MAPK syndrome detection marker according to claim 9, wherein the mutation in the MEK2 mutant is F53C, F53V, F57L, K61E, A62P, P128R, G132V, T134C, or Y134H.
  12.  被験者由来のサンプル中に存在する請求項9から請求項11までのいずれか1項に記載のRas/MAPK症候群検出用マーカーの発現量を測定する工程を含む、Ras/MAPK症候群の診断方法またはRas/MAPK症候群の診断補助方法。 Including the step of measuring the expression level of the marker for detecting Ras / MAPK syndrome according to any one of claims 9 to 11 present in a sample derived from a subject, a method for diagnosing Ras / MAPK syndrome or Ras A diagnostic aid for /MAPK syndrome.
  13.  T-loop領域がリン酸化されていなくても活性を有するMEK1変異体またはMEK2変異体によって活性化されるERK1またはERK2が、発現を誘導するタンパク質を探索する工程を含む、Ras/MAPK症候群検出用マーカーのスクリーニング方法。

     
    For detecting Ras/MAPK syndrome, including the step of searching for proteins that induce the expression of ERK1 or ERK2 activated by MEK1 or MEK2 mutants that are active even if the T-loop region is not phosphorylated Marker screening method.

PCT/JP2022/022276 2021-06-03 2022-06-01 Disease marker expressed in association with abnormal erk-mapk pathway activation WO2022255401A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023525886A JPWO2022255401A1 (en) 2021-06-03 2022-06-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021093552 2021-06-03
JP2021-093552 2021-06-03

Publications (1)

Publication Number Publication Date
WO2022255401A1 true WO2022255401A1 (en) 2022-12-08

Family

ID=84323437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022276 WO2022255401A1 (en) 2021-06-03 2022-06-01 Disease marker expressed in association with abnormal erk-mapk pathway activation

Country Status (2)

Country Link
JP (1) JPWO2022255401A1 (en)
WO (1) WO2022255401A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506442A (en) * 2003-05-30 2007-03-22 ゲノミック ヘルス, インコーポレイテッド Gene expression markers for response to EGFR inhibitors
WO2016115376A1 (en) * 2015-01-14 2016-07-21 The Regents Of The University Of California Detection and treatment of double drug resistant melanomas
JP2016140262A (en) * 2015-01-30 2016-08-08 国立大学法人山口大学 Method for predicting risk of metastatic recurrence of hepatocellular carcinoma
JP2016176942A (en) * 2010-06-09 2016-10-06 デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド Mek1 mutation conferring resistance to raf and mek inhibitors
WO2018212192A1 (en) * 2017-05-18 2018-11-22 京都府公立大学法人 Method and marker for estimating prognosis and/or metastasis potential of cancer
JP2019518426A (en) * 2016-04-15 2019-07-04 ジェネンテック, インコーポレイテッド Cancer diagnosis and treatment method
WO2019142636A1 (en) * 2018-01-16 2019-07-25 公立大学法人横浜市立大学 Renal cancer detection method and test drug
WO2020039321A2 (en) * 2018-08-20 2020-02-27 Pfizer Inc. Anti-gdf15 antibodies, compositions and methods of use
JP2020532745A (en) * 2017-09-05 2020-11-12 アイジェノミクス エセ.エレ. Methods and devices for detecting biomarkers associated with pre-eclampsia
JP2020534351A (en) * 2017-08-28 2020-11-26 アンジーエックス・インコーポレーテッド Anti-TM4SF1 antibody and method of using it

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506442A (en) * 2003-05-30 2007-03-22 ゲノミック ヘルス, インコーポレイテッド Gene expression markers for response to EGFR inhibitors
JP2016176942A (en) * 2010-06-09 2016-10-06 デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド Mek1 mutation conferring resistance to raf and mek inhibitors
WO2016115376A1 (en) * 2015-01-14 2016-07-21 The Regents Of The University Of California Detection and treatment of double drug resistant melanomas
JP2016140262A (en) * 2015-01-30 2016-08-08 国立大学法人山口大学 Method for predicting risk of metastatic recurrence of hepatocellular carcinoma
JP2019518426A (en) * 2016-04-15 2019-07-04 ジェネンテック, インコーポレイテッド Cancer diagnosis and treatment method
WO2018212192A1 (en) * 2017-05-18 2018-11-22 京都府公立大学法人 Method and marker for estimating prognosis and/or metastasis potential of cancer
JP2020534351A (en) * 2017-08-28 2020-11-26 アンジーエックス・インコーポレーテッド Anti-TM4SF1 antibody and method of using it
JP2020532745A (en) * 2017-09-05 2020-11-12 アイジェノミクス エセ.エレ. Methods and devices for detecting biomarkers associated with pre-eclampsia
WO2019142636A1 (en) * 2018-01-16 2019-07-25 公立大学法人横浜市立大学 Renal cancer detection method and test drug
WO2020039321A2 (en) * 2018-08-20 2020-02-27 Pfizer Inc. Anti-gdf15 antibodies, compositions and methods of use

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU QING-HUA, SHI MEI-LIN, SUN CHAO, BAI JIN, ZHENG JUN-NIAN: "Role of the ERK1/2 pathway in tumor chemoresistance and tumor therapy", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, ELSEVIER, AMSTERDAM NL, vol. 25, no. 2, 1 January 2015 (2015-01-01), Amsterdam NL , pages 192 - 197, XP093009381, ISSN: 0960-894X, DOI: 10.1016/j.bmcl.2014.11.076 *
NAVA CAROLINE; HANNA NADINE; MICHOT CAROLINE; PEREIRA SABRINA; POUVREAU NATHALIE; NIIHORI TETSUYA; AOKI YOKO; MATSUBARA YOICHI; AR: "Cardio-facio-cutaneous and Noonan syndromes due to mutations in the RAS/MAPK signalling pathway: genotype-phenotype relationships and overlap with Costello syndrome", JOURNAL OF MEDICAL GENETICS, BMJ PUBLISHING GROUP, LONDON, GB, vol. 44, no. 12, 1 December 2007 (2007-12-01), GB , pages 763 - 771, XP009129671, ISSN: 0022-2593 *
YOKO AOKI; TETSUYA NIIHORI; YOKO NARUMI; SHIGEO KURE; YOICHI MATSUBARA: "The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders", HUMAN MUTATION, JOHN WILEY & SONS, INC., US, vol. 29, no. 8, 9 May 2008 (2008-05-09), US , pages 992 - 1006, XP071974666, ISSN: 1059-7794, DOI: 10.1002/humu.20748 *

Also Published As

Publication number Publication date
JPWO2022255401A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
Ni et al. Regulation of PERK signaling and leukemic cell survival by a novel cytosolic isoform of the UPR regulator GRP78/BiP
Rauch et al. Heterogeneous nuclear ribonucleoprotein H blocks MST2-mediated apoptosis in cancer cells by regulating A-Raf transcription
Zhang et al. RHBDD1 promotes colorectal cancer metastasis through the Wnt signaling pathway and its downstream target ZEB1
Kulkarni et al. RUNX1 and RUNX3 protect against YAP-mediated EMT, stem-ness and shorter survival outcomes in breast cancer
Déry et al. Endoplasmic reticulum stress induces PRNP prion protein gene expression in breast cancer
Caspi et al. Aldolase positively regulates of the canonical Wnt signaling pathway
Barber et al. Characterization of desmoglein expression in the normal prostatic gland. Desmoglein 2 is an independent prognostic factor for aggressive prostate cancer
Zhou et al. Targeting CLK3 inhibits the progression of cholangiocarcinoma by reprogramming nucleotide metabolism
Mikawa et al. Senescence-inducing stress promotes proteolysis of phosphoglycerate mutase via ubiquitin ligase Mdm2
Magistroni et al. ERG deregulation induces PIM1 over-expression and aneuploidy in prostate epithelial cells
Piessen et al. Regulation of the human mucin MUC4 by taurodeoxycholic and taurochenodeoxycholic bile acids in oesophageal cancer cells is mediated by hepatocyte nuclear factor 1α
Endo et al. A Compensatory role of NF-κB to p53 in response to 5-FU–based chemotherapy for gastric cancer cell lines
Le Corre et al. The cellular prion protein controls the mesenchymal-like molecular subtype and predicts disease outcome in colorectal cancer
Bhakat et al. Regulation of limited N-terminal proteolysis of APE1 in tumor via acetylation and its role in cell proliferation
Kim et al. Interaction of Nrf2 with dimeric STAT3 induces IL-23 expression: Implications for breast cancer progression
Fang et al. Somatic mutational analysis of FAK in breast cancer: a novel gain-of-function mutation due to deletion of exon 33
Rines et al. Snf1-related kinase inhibits colon cancer cell proliferation through calcyclin-binding protein-dependent reduction of β-catenin
Zhang et al. RASA1 inhibits the progression of renal cell carcinoma by decreasing the expression of miR-223-3p and promoting the expression of FBXW7
Jiang et al. Lysosomal protein transmembrane 5 promotes lung-specific metastasis by regulating BMPR1A lysosomal degradation
Lim et al. TRAF6 mediates IL-1β/LPS-induced suppression of TGF-β signaling through its interaction with the type III TGF-β receptor
JP2024038346A (en) Method of diagnosing cancer from blood
Porcu et al. A yeast-based genomic strategy highlights the cell protein networks altered by FTase inhibitor peptidomimetics
US10828377B2 (en) Method for determining presence or absence of suffering from malignant lymphoma or leukemia, and agent for treatment and/or prevention of leukemia
Rasool et al. Loss of LCMT1 and biased protein phosphatase 2A heterotrimerization drive prostate cancer progression and therapy resistance
Ji et al. MiR-17-3p facilitates aggressive cell phenotypes in colon cancer by targeting PLCD1 through affecting KIF14

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816147

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525886

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816147

Country of ref document: EP

Kind code of ref document: A1