JP2016138823A - Magnetic core and current sensor - Google Patents

Magnetic core and current sensor Download PDF

Info

Publication number
JP2016138823A
JP2016138823A JP2015014229A JP2015014229A JP2016138823A JP 2016138823 A JP2016138823 A JP 2016138823A JP 2015014229 A JP2015014229 A JP 2015014229A JP 2015014229 A JP2015014229 A JP 2015014229A JP 2016138823 A JP2016138823 A JP 2016138823A
Authority
JP
Japan
Prior art keywords
magnetic
core
current
magnetic flux
magnetoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015014229A
Other languages
Japanese (ja)
Inventor
池田 正和
Masakazu Ikeda
正和 池田
明博 永井
Akihiro Nagai
明博 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2015014229A priority Critical patent/JP2016138823A/en
Publication of JP2016138823A publication Critical patent/JP2016138823A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To excellently collect a magnetic flux generated around a power line to be detected by making a current through the clamped power line to be detected and a magnetic flux generated in a plurality of different current regions, respectively, to guide them to a magnetoelectric conversion part.SOLUTION: Disclosed is a magnetic core 1 in which a magnetic flux generated around a power line 2 to be detected by making a current I through the clamped power line 2 to be detected is collected to be guided to a magnetoelectric conversion part 3. This magnetic core includes core bodies 4, 5 which collect the magnetic flux, respectively, to guide them to the magnetoelectric conversion part 3. Respective core bodies 4, 5 have magnetic characteristics in which magnetic permeability is maximized in magnetic fields having different strength from each other and which are integrated with each other.SELECTED DRAWING: Figure 1

Description

本発明は、クランプした被検出電路に電流が流れることによってこの被検出電路の周囲に発生する磁束を収集して磁電変換部に導く磁気コア、およびこの磁気コアを備えた電流センサに関するものである。   The present invention relates to a magnetic core that collects a magnetic flux generated around a detected electric circuit when a current flows through a clamped detected electric circuit and guides the magnetic flux to a magnetoelectric conversion unit, and a current sensor including the magnetic core. .

この種の電流センサとして、出願人が下記の特許文献1において開示した電流センサ(分割型変流器)が既に知られている。この電流センサは、パーマロイなどのような高透磁率の磁性材料で形成された透磁性金属板を積層することで形成された磁気コア部を備えている。   As this type of current sensor, a current sensor (divided current transformer) disclosed by the applicant in Patent Document 1 below is already known. This current sensor includes a magnetic core portion formed by laminating magnetically permeable metal plates formed of a high permeability magnetic material such as permalloy.

特開2010−232612号公報(第4−5頁、第1−3図)JP 2010-232612 (page 4-5, Fig. 1-3)

ところが、上記した電流センサには、以下のような改善すべき課題が存在している。すなわち、この電流センサでは、磁気コア部は、材質が同じ種類の磁性材料(一つの種類の磁性材料)で形成された透磁性金属板を積層することで形成されている。この場合、磁気コア部で収集し得る磁束の密度(磁束密度)の上限(飽和磁束密度)は磁性材料で決まっている(飽和磁束密度は磁性材料毎に異なっている)。また、磁気コア部に加えられる磁界を次第に強め、この磁界の強さが磁性材料の透磁率が最大となる磁界の強さを超えたときには、磁気コア部内の磁束密度が徐々にその上限に近づくことから、この磁束密度が徐々に頭打ち気味になる。したがって、磁気コア部に加えられる磁界の強さが、磁性材料の透磁率が最大となる磁界の強さを超える領域では、被検出電路に流れる電流の電流値と、磁気コア部に収集される磁束の密度(つまり、磁気コア部によって磁電変換部に導かれる磁束密度)との比例関係が大きく崩れることから、被検出電路に流れる電流の電流値を磁電変換部において正確に検出するのが困難となる。   However, the above-described current sensor has the following problems to be improved. That is, in this current sensor, the magnetic core part is formed by laminating magnetically permeable metal plates made of the same kind of magnetic material (one kind of magnetic material). In this case, the upper limit (saturation magnetic flux density) of the magnetic flux density (magnetic flux density) that can be collected by the magnetic core portion is determined by the magnetic material (the saturation magnetic flux density differs for each magnetic material). Further, when the magnetic field applied to the magnetic core portion is gradually increased and the magnetic field strength exceeds the magnetic field strength at which the magnetic material has the maximum permeability, the magnetic flux density in the magnetic core portion gradually approaches its upper limit. For this reason, the magnetic flux density gradually becomes flat. Therefore, in the region where the strength of the magnetic field applied to the magnetic core portion exceeds the strength of the magnetic field where the magnetic permeability of the magnetic material is maximized, the current value of the current flowing through the detected circuit and the magnetic core portion are collected. Since the proportional relationship with the magnetic flux density (that is, the magnetic flux density guided to the magnetoelectric conversion section by the magnetic core section) is greatly broken, it is difficult to accurately detect the current value of the current flowing through the detected electric path in the magnetoelectric conversion section. It becomes.

一方、透磁率が最大となる磁界の強さが大きな(別の見方をすれば、飽和磁束密度に達する磁界の強さが大きな)磁性材料を使用したり、磁気コア部にギャップを形成したりする構成を採用することで、検出し得る電流の最大電流値を大きくすることが可能である。しかしながら、この構成を採用したときには、磁気コア部に加えられる磁界が弱い領域(小電流領域)において、この磁界の強さの変化に対する磁気コア部に収集される磁束の密度(つまり、磁気コア部によって磁電変換部に導かれる磁束密度)の変化量が小さくなることから、やはり被検出電路に流れる電流の電流値を磁電変換部において正確に検出するのが難しいという課題が生じる。   On the other hand, a magnetic material with a maximum magnetic permeability (a magnetic field that reaches the saturation magnetic flux density from another point of view) is used, or a gap is formed in the magnetic core. By adopting such a configuration, it is possible to increase the maximum current value that can be detected. However, when this configuration is adopted, in the region where the magnetic field applied to the magnetic core portion is weak (small current region), the density of magnetic flux collected in the magnetic core portion with respect to the change in the magnetic field strength (that is, the magnetic core portion) As a result, the amount of change in the magnetic flux density guided to the magnetoelectric conversion unit is reduced, which causes a problem that it is difficult to accurately detect the current value of the current flowing in the detected electric circuit in the magnetoelectric conversion unit.

本発明は、かかる課題を解決するためになされたものであり、クランプした被検出電路に電流が流れることによって被検出電路の周囲に発生する磁束を収集して磁電変換部に導く磁気コアであって、異なる複数の電流領域において発生する磁束をそれぞれ良好に収集して磁電変換部に導き得る磁気コア、およびこの磁気コアを備えた電流センサを提供することを主目的とする。   The present invention has been made to solve such a problem, and is a magnetic core that collects a magnetic flux generated around a detected electric circuit when a current flows through the clamped detected electric circuit and guides it to a magnetoelectric conversion unit. Thus, it is a main object of the present invention to provide a magnetic core that can properly collect magnetic fluxes generated in a plurality of different current regions and guide them to a magnetoelectric conversion unit, and a current sensor including the magnetic core.

上記目的を達成すべく請求項1記載の磁気コアは、クランプした被検出電路に電流が流れることによって当該被検出電路の周囲に発生する磁束を収集して磁電変換部に導く磁気コアであって、前記磁束をそれぞれ収集して前記磁電変換部に導く複数のコア体を備え、当該複数のコア体は、互いに異なる強さの磁界において透磁率が最大となる磁化特性を有すると共に一体化されている。   In order to achieve the above object, the magnetic core according to claim 1 is a magnetic core that collects a magnetic flux generated around the detected electric circuit when the current flows through the clamped detected electric circuit and guides it to the magnetoelectric conversion unit. A plurality of core bodies each collecting the magnetic flux and guiding it to the magnetoelectric conversion unit, the plurality of core bodies having a magnetization characteristic that maximizes permeability in magnetic fields having different strengths and being integrated. Yes.

請求項2記載の磁気コアは、請求項1記載の磁気コアにおいて、前記複数のコア体は、材質が互いに異なる磁性材料で構成されている。   A magnetic core according to a second aspect is the magnetic core according to the first aspect, wherein the plurality of core bodies are made of different magnetic materials.

請求項3記載の電流センサは、請求項1または2記載の磁気コア、および前記磁電変換部を備えている。   A current sensor according to a third aspect includes the magnetic core according to the first or second aspect, and the magnetoelectric conversion unit.

請求項1記載の磁気コアによれば、互いに異なる強さの磁界において透磁率が最大となる磁化特性を有すると共に一体化された複数のコア体を備えているため、被検出電路に流れる電流について、電流値が一の電流領域(例えば小電流領域)に含まれる場合だけでなく、この一の電流領域とは異なる電流領域(例えば大電流領域)に含まれる場合についても、この電流が被検出電路に流れることによって被検出電路の周囲に発生する磁束を各電流領域に対応したコア体で良好に収集して磁電変換部に導くことができる。したがって、この磁気コアを備えた請求項3記載の電流センサによれば、異なる電流領域の電流をそれぞれ正確に検出することができる。   According to the magnetic core of claim 1, since the magnetic core has the magnetization characteristics that maximize the permeability in magnetic fields having different strengths and includes a plurality of integrated core bodies, the current flowing through the detected circuit This current is detected not only when the current value is included in one current region (for example, a small current region) but also when the current value is included in a current region different from the one current region (for example, a large current region). The magnetic flux generated around the detected electric circuit by flowing through the electric circuit can be well collected by the core body corresponding to each current region and guided to the magnetoelectric conversion unit. Therefore, according to the current sensor according to claim 3 provided with this magnetic core, it is possible to accurately detect currents in different current regions.

請求項2記載の磁気コア、およびこの磁気コアを備えた請求項3記載の電流センサによれば、上記の効果に加えて、材質が互いに異なる磁性材料で複数のコア体を構成するため、例えば、材質が同じ種類の異方性磁性材料を使用すると共に、容易軸と困難軸のずらす角度を変える工程を製造工程に追加して異なる磁化特性の複数のコア体を構成する場合と比較して、磁気コアを容易に製造することができる。   According to the magnetic core according to claim 2 and the current sensor according to claim 3 provided with the magnetic core, in addition to the above effect, the plurality of core bodies are made of magnetic materials different from each other. Compared to the case where multiple core bodies with different magnetization characteristics are formed by using the same type of anisotropic magnetic material and adding a process to change the angle of shifting the easy axis and difficult axis to the manufacturing process. The magnetic core can be easily manufactured.

磁気コア1および電流センサ6の構成図である。2 is a configuration diagram of a magnetic core 1 and a current sensor 6. FIG. 他の磁気コア1Aおよび他の電流センサ6Aの構成図である。It is a block diagram of the other magnetic core 1A and the other current sensor 6A. 磁気コア1,1Aを構成するコア体4,5についての磁界Hに対する透磁率μの特性図である。It is a characteristic view of permeability μ with respect to the magnetic field H for the core bodies 4 and 5 constituting the magnetic cores 1 and 1A. 磁気コア1,1Aを構成するコア体4,5についての磁界Hに対する磁束密度Bの特性図である。It is a characteristic view of the magnetic flux density B with respect to the magnetic field H about the core bodies 4 and 5 which comprise the magnetic cores 1 and 1A.

以下、磁気コアおよび電流センサの実施の形態について、添付図面を参照して説明する。   Hereinafter, embodiments of a magnetic core and a current sensor will be described with reference to the accompanying drawings.

最初に、磁気コアおよび電流センサの各構成について、図面を参照して説明する。   First, each configuration of the magnetic core and the current sensor will be described with reference to the drawings.

まず、図1に示す磁気コアとしての磁気コア1の構成について説明する。この磁気コア1は、同図に示すように環状体に形成されて、クランプした被検出電路2に電流Iが流れることによってこの被検出電路2の周囲に発生する不図示の磁束を収集して、後述するギャップ11内に配設されている後述の磁電変換部3に導く磁気コアであって、複数のコア体(複数の一例として、本例では2つのコア体4,5)を備えている。   First, the configuration of the magnetic core 1 as the magnetic core shown in FIG. 1 will be described. The magnetic core 1 is formed into an annular body as shown in the figure, and collects a magnetic flux (not shown) generated around the detected electric circuit 2 when the current I flows through the clamped detected electric circuit 2. A magnetic core that leads to a later-described magnetoelectric conversion unit 3 disposed in a later-described gap 11 and includes a plurality of core bodies (in this example, two core bodies 4 and 5 as a plurality of examples). Yes.

このコア体4,5は、図示はしないが、例えば、共通のケースに収容されたり、互いに接着などの手法によって連結されたりすることによって一体化されている。また、コア体4,5は、それぞれが被検出電路2を取り囲む閉磁路を形成することで、上記の磁束を個別に収集して磁電変換部3に導くように構成されている。また、コア体4,5のそれぞれの一部には、全体として磁気コア1の1つのギャップ11を構成するギャップ12,13が形成されている。   Although not shown, the core bodies 4 and 5 are integrated by, for example, being housed in a common case or being connected to each other by a technique such as adhesion. The core bodies 4 and 5 are configured to individually collect the above magnetic fluxes and guide them to the magnetoelectric conversion unit 3 by forming closed magnetic circuits that surround the detected electric circuit 2. In addition, gaps 12 and 13 constituting one gap 11 of the magnetic core 1 as a whole are formed in a part of each of the core bodies 4 and 5.

図1に示す磁気コア1では、コア体4,5は、平面視形状(矢印A方向から見た形状)が同一に形成されて、互いに幅方向に積層される構成であるが、図2に示す磁気コア1Aのように、直径の異なる複数のコア体を径方向に積層する構成(1つのコア体に対してその内周側や外周側に他のコア体を積層する構成)を採用することもできる。図2の磁気コア1Aでは、一例として小径のコア体4Aの外周側に、このコア体4Aよりも大径のコア体5Aを積層する構成(コア体5A内にコア体4Aを配置する構成)を採用している。なお、磁気コア1と同一の構成については同一の符号を付して重複する説明を省略する。   In the magnetic core 1 shown in FIG. 1, the core bodies 4 and 5 have the same shape in plan view (the shape seen from the arrow A direction) and are stacked in the width direction. Like the magnetic core 1A shown, a configuration in which a plurality of core bodies having different diameters are stacked in the radial direction (a configuration in which another core body is stacked on the inner peripheral side or the outer peripheral side with respect to one core body) is employed. You can also In the magnetic core 1A of FIG. 2, as an example, a configuration in which a core body 5A having a larger diameter than the core body 4A is stacked on the outer peripheral side of the small-diameter core body 4A (a configuration in which the core body 4A is disposed in the core body 5A). Is adopted. In addition, about the structure same as the magnetic core 1, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

また、上記の磁気コア1を構成する複数のコア体としての2つのコア体4,5は、図3に示すように、互いに異なる強さの磁界Hにおいて透磁率μが最大となる磁化特性を有している。具体的には、コア体4は、初透磁率がμ1であり、磁界H1において最大透磁率μ2(>μ1)となる磁化特性を有する磁性材料で構成されている。一方、コア体5は、初透磁率が初透磁率μ1よりも小さいμ3であり、磁界H1よりも強い磁界H2において最大透磁率μ4(一例として、初透磁率μ1よりも小さく初透磁率μ3よりも大きい透磁率)となる磁化特性を有する磁性材料(コア体4の磁性材料とは異なる磁性材料)で構成されている。なお、磁性材料としては、例えば、パーマロイ、ケイ素鋼、フェライトなどの材質の異なる公知の磁性材料から磁化特性の異なる任意の磁性材料を適宜選択する。   Further, as shown in FIG. 3, the two core bodies 4 and 5 as the plurality of core bodies constituting the magnetic core 1 have a magnetization characteristic that maximizes the permeability μ in the magnetic fields H having different strengths. Have. Specifically, the core body 4 is made of a magnetic material having an initial permeability of μ1 and a magnetization characteristic that provides a maximum permeability μ2 (> μ1) in the magnetic field H1. On the other hand, the core body 5 has an initial permeability of μ3 smaller than the initial permeability μ1, and a maximum permeability μ4 (for example, smaller than the initial permeability μ1 and smaller than the initial permeability μ3 in the magnetic field H2 stronger than the magnetic field H1. (A magnetic material different from the magnetic material of the core body 4) having a magnetization characteristic that provides a high magnetic permeability). As the magnetic material, for example, an arbitrary magnetic material having different magnetization characteristics is appropriately selected from known magnetic materials having different materials such as permalloy, silicon steel, and ferrite.

これにより、2つのコア体4,5は、一例として図4に示すような磁界Hに対する磁束密度Bの特性をそれぞれ有している。具体的には、コア体4は、第1磁界領域RE1(<H1)において、磁界Hの変化に対して磁束密度Bがほぼリニアに変化する特性(直線性の特性)を有し、コア体5は、第1磁界領域RE1においては、磁界Hの変化に対して磁束密度Bはほぼゼロに近い状態に維持され、第2磁界領域RE2(H1を超えH2未満の領域)において、磁界Hの変化に対して磁束密度Bがほぼリニアに変化する特性(直線性の特性)を有している。なお、コア体4A,5Aも、コア体4,5についての上記した特性と同じ特性を有しているものとする。   Thereby, the two core bodies 4 and 5 have the characteristic of the magnetic flux density B with respect to the magnetic field H as shown in FIG. 4 as an example. Specifically, the core body 4 has characteristics (linear characteristics) in which the magnetic flux density B changes almost linearly with respect to changes in the magnetic field H in the first magnetic field region RE1 (<H1). 5, in the first magnetic field region RE1, the magnetic flux density B is maintained almost zero with respect to the change of the magnetic field H, and in the second magnetic field region RE2 (region that exceeds H1 and less than H2), The magnetic flux density B has a characteristic (linear characteristic) that changes almost linearly with respect to the change. It is assumed that the core bodies 4A and 5A have the same characteristics as those described above for the core bodies 4 and 5.

したがって、2つのコア体4,5を備えた磁気コア1、および2つのコア体4A,5Aを備えた磁気コア1Aは、被検出電路2の周囲に発生する磁界Hの強さが第1磁界領域RE1内となる小電流領域内に含まれる電流I、および被検出電路2の周囲に発生する磁界Hの強さが第2磁界領域RE2内となる大電流領域内に含まれる電流Iを検出可能となっている。   Therefore, in the magnetic core 1 having the two core bodies 4 and 5 and the magnetic core 1A having the two core bodies 4A and 5A, the strength of the magnetic field H generated around the detected electric circuit 2 is the first magnetic field. The current I included in the small current region in the region RE1 and the current I included in the large current region in which the strength of the magnetic field H generated around the detected electric circuit 2 is in the second magnetic field region RE2 are detected. It is possible.

次に、図1に示す電流センサとしての電流センサ6の構成について説明する。この電流センサ6は、上記の磁気コア1、磁電変換部3および増幅部7を備え、磁電変換部3を通過する磁束の磁束密度Bに比例した後述の出力電圧V2を出力する。   Next, the configuration of the current sensor 6 as the current sensor shown in FIG. 1 will be described. The current sensor 6 includes the magnetic core 1, the magnetoelectric conversion unit 3, and the amplification unit 7, and outputs an output voltage V 2, which will be described later, proportional to the magnetic flux density B of the magnetic flux passing through the magnetoelectric conversion unit 3.

磁電変換部3は、例えばホール素子などのような磁束を電圧V1に変換して出力する磁電変換素子を有して、磁気コア1のギャップ11を通過する磁束量(磁束密度Bに比例する量)に応じた電圧値の電圧V1を出力する。増幅部7は、この電圧V1を増幅して出力電圧V2として出力する。なお、図2に示す電流センサ6Aは、磁気コア1A以外の構成は電流センサ6と同一であるため、同一の構成については同一の符号を付して重複する説明を省略する。   The magnetoelectric conversion unit 3 includes a magnetoelectric conversion element that converts a magnetic flux into a voltage V1 and outputs it, such as a Hall element, and passes through the gap 11 of the magnetic core 1 (an amount proportional to the magnetic flux density B). The voltage V1 having a voltage value corresponding to () is output. The amplifying unit 7 amplifies the voltage V1 and outputs it as an output voltage V2. 2 is the same as that of the current sensor 6 except for the magnetic core 1A, the same components are denoted by the same reference numerals, and redundant description is omitted.

続いて、磁気コア1,1Aおよび電流センサ6,6Aの被検出電路2に流れる電流Iについての検出動作について図面を参照して説明する。なお、磁気コア1Aおよび電流センサ6Aの検出動作は、磁気コア1および電流センサ6の検出動作と同じであるため、磁気コア1および電流センサ6を例に挙げて説明する。この場合、磁気コア1は被検出電路2に予めクランプされているものとする。   Next, the detection operation for the current I flowing through the detected electric path 2 of the magnetic cores 1 and 1A and the current sensors 6 and 6A will be described with reference to the drawings. Note that the detection operations of the magnetic core 1A and the current sensor 6A are the same as the detection operations of the magnetic core 1 and the current sensor 6, and therefore the magnetic core 1 and the current sensor 6 will be described as examples. In this case, it is assumed that the magnetic core 1 is clamped in advance on the detected electric circuit 2.

まず、被検出電路2に電流Iが流れることによって被検出電路2の周囲に磁界Hが発生しているときには、コア体4,5のうちの透磁率μのより高いコア体4が磁気飽和するまでは、このコア体4が主として磁束を収集する。このため、コア体4が磁気飽和に達しない小電流領域内では、コア体4が主として磁束を収集して磁電変換部3に導き、このコア体4に収集されている磁束量(磁束密度B)は、被検出電路2に電流Iが流れることによって被検出電路2の周囲に発生している磁界Hの強さに比例して変化する。   First, when the magnetic field H is generated around the detected electric circuit 2 due to the current I flowing through the detected electric circuit 2, the core body 4 having a higher permeability μ among the core bodies 4 and 5 is magnetically saturated. Until this time, the core body 4 mainly collects magnetic flux. For this reason, in the small current region where the core body 4 does not reach magnetic saturation, the core body 4 mainly collects the magnetic flux and guides it to the magnetoelectric conversion unit 3, and the amount of magnetic flux collected in the core body 4 (magnetic flux density B ) Changes in proportion to the strength of the magnetic field H generated around the detected electric circuit 2 when the current I flows through the detected electric circuit 2.

磁電変換部3は、この磁束を電圧V1に変換して出力し、増幅部7がこの電圧V1を増幅して出力電圧V2として出力する。この出力電圧V2は、コア体4が収集して磁電変換部3に導いた磁束量(磁束密度B)に比例した電圧値となっているため、第1磁界領域RE1における磁界Hと磁束密度Bとの関係から予め求めた係数で、電流センサ6から出力される出力電圧V2の電圧値を補正することにより、被検出電路2に流れる電流I(小電流領域の電流)を検出することが可能になっている。   The magnetoelectric conversion unit 3 converts the magnetic flux into a voltage V1 and outputs the voltage V1, and the amplification unit 7 amplifies the voltage V1 and outputs it as an output voltage V2. Since the output voltage V2 has a voltage value proportional to the amount of magnetic flux (magnetic flux density B) collected by the core body 4 and guided to the magnetoelectric conversion unit 3, the magnetic field H and the magnetic flux density B in the first magnetic field region RE1. By correcting the voltage value of the output voltage V2 output from the current sensor 6 with a coefficient obtained in advance from the relationship with the above, it is possible to detect the current I (current in the small current region) flowing through the detected circuit 2 It has become.

また、コア体4が磁気飽和に達した状態となる大電流領域内では、コア体4に収集されている磁束量(磁束密度B)はほぼ一定(一定の磁束)の状態で、コア体5に収集されている磁束量(磁束密度B)が、被検出電路2に電流Iが流れることによって被検出電路2の周囲に発生している磁界Hの強さに比例して変化する。磁電変換部3は、このコア体4から導かれる一定の磁束と、このコア体5から導かれる電流Iの電流値に比例した磁束の合計磁束(全体として、被検出電路2に電流Iが流れることによって被検出電路2の周囲に発生している磁界Hの強さに比例した磁束)を電圧V1に変換して出力し、増幅部7がこの電圧V1を増幅して出力電圧V2として出力する。このため、第2磁界領域RE2における磁界Hと磁束密度Bとの関係から予め求めた係数で、電流センサ6から出力されるこの出力電圧V2の電圧値を補正することにより、被検出電路2に流れる電流I(大電流領域の電流)を検出することが可能になっている。   Further, in the large current region where the core body 4 has reached magnetic saturation, the amount of magnetic flux (magnetic flux density B) collected in the core body 4 is substantially constant (constant magnetic flux), and the core body 5 The amount of magnetic flux collected (magnetic flux density B) changes in proportion to the strength of the magnetic field H generated around the detected electric circuit 2 when the current I flows through the detected electric circuit 2. The magnetoelectric conversion unit 3 is a total magnetic flux of a constant magnetic flux guided from the core body 4 and a magnetic flux proportional to the current value of the current I guided from the core body 5 (the current I flows through the detected circuit 2 as a whole. Thus, the magnetic flux H proportional to the strength of the magnetic field H generated around the detected electric circuit 2 is converted into the voltage V1 and output, and the amplifying unit 7 amplifies the voltage V1 and outputs it as the output voltage V2. . For this reason, by correcting the voltage value of the output voltage V2 output from the current sensor 6 with a coefficient obtained in advance from the relationship between the magnetic field H and the magnetic flux density B in the second magnetic field region RE2, The flowing current I (current in a large current region) can be detected.

このように、この磁気コア1(1A)によれば、互いに異なる強さの磁界Hにおいて透磁率が最大となる磁化特性を有すると共に一体化されたコア体4,5(4A,5A)を備えているため、被検出電路2に流れる電流Iについて、電流値が一の電流領域(例えば小電流領域)に含まれる場合だけでなく、この一の電流領域とは異なる電流領域(例えば大電流領域)に含まれる場合についても、この電流Iが被検出電路2に流れることによって被検出電路2の周囲に発生する磁束を各電流領域に対応したコア体4,5(4A,5A)で良好に収集して磁電変換部3に導くことができる。したがって、この磁気コア1(1A)を備えた電流センサ6(6A)によれば、異なる電流領域の電流Iをそれぞれ正確に検出することができる。   Thus, according to the magnetic core 1 (1A), the core bodies 4 and 5 (4A and 5A) having the magnetic characteristics that maximize the magnetic permeability in the magnetic fields H having different strengths are provided. Therefore, the current I flowing through the detected circuit 2 is not only included in one current region (for example, a small current region), but also a current region different from the one current region (for example, a large current region). ), The magnetic flux generated around the detected circuit 2 due to the current I flowing through the detected circuit 2 is excellent in the core bodies 4 and 5 (4A, 5A) corresponding to the respective current regions. It can be collected and guided to the magnetoelectric converter 3. Therefore, according to the current sensor 6 (6A) including the magnetic core 1 (1A), the currents I in different current regions can be accurately detected.

なお、上記の例では、磁気コア1(1A)を構成するコア体4,5(4A,5A)を、磁化特性が互いに異なる異種の磁性材料(異なる材質の磁性材料)で形成する構成を採用することで、コア体の製造を容易にしているが、異方性磁性材料については、容易軸と困難軸のずらす角度を変えることによって、材質が同じ種類の磁性材料を用いたとしても、その磁化特性(透磁率が最大となる磁界の強さ)を異なるものにすることが可能である。このため、この容易軸と困難軸のずらす角度を変える工程を製造工程に追加することにより、製造工程が増えるものの、材質が同じ種類の異方性磁性材料を使用しつつ、異なる磁化特性のコア体4,5(4A,5A)を形成して磁気コアを構成することもできる。   In the above example, the core bodies 4 and 5 (4A and 5A) constituting the magnetic core 1 (1A) are formed of different kinds of magnetic materials (magnetic materials of different materials) having different magnetization characteristics. This makes it easier to manufacture the core body, but for anisotropic magnetic materials, even if the same kind of magnetic material is used by changing the angle between the easy axis and the difficult axis, It is possible to vary the magnetization characteristics (the strength of the magnetic field that maximizes the magnetic permeability). For this reason, by adding a process for changing the angle at which the easy axis and the difficult axis are shifted to the manufacturing process, the manufacturing process is increased. However, while using the same kind of anisotropic magnetic material, the core has different magnetization characteristics. It is also possible to form the magnetic core by forming the bodies 4 and 5 (4A, 5A).

また、磁気コアを2つのコア体で構成する例について説明したが、2つに限定されず、3つ、4つなど、更に多くのコア体(磁化特性の異なるコア体)で磁気コアを構成することもできる。また、磁気コアについては、被検出電路2をクランプする構成である限り、分割型および非分割型のいずれであってもよい。   Moreover, although the example which comprises a magnetic core with two core bodies was demonstrated, it is not limited to two, but a magnetic core is comprised with more core bodies (core bodies from which a magnetization characteristic differs), such as three and four You can also In addition, the magnetic core may be either a split type or a non-split type as long as the detected electric path 2 is clamped.

1,1A 磁気コア
2 被検出電路
3 磁電変換部
4,4A コア体
5,5A コア体
6,6A 電流センサ
DESCRIPTION OF SYMBOLS 1,1A Magnetic core 2 Detected electric circuit 3 Magnetoelectric conversion part 4, 4A Core body 5, 5A Core body 6, 6A Current sensor

Claims (3)

クランプした被検出電路に電流が流れることによって当該被検出電路の周囲に発生する磁束を収集して磁電変換部に導く磁気コアであって、
前記磁束をそれぞれ収集して前記磁電変換部に導く複数のコア体を備え、当該複数のコア体は、互いに異なる強さの磁界において透磁率が最大となる磁化特性を有すると共に一体化されている磁気コア。
A magnetic core that collects a magnetic flux generated around the detected electric circuit when a current flows through the clamped detected electric circuit and guides the magnetic flux to the magnetoelectric conversion unit;
A plurality of core bodies that respectively collect the magnetic fluxes and guide them to the magnetoelectric conversion unit are provided. The plurality of core bodies have a magnetization characteristic that maximizes permeability in magnetic fields having different strengths and are integrated. Magnetic core.
前記複数のコア体は、材質が互いに異なる磁性材料で構成されている請求項1記載の磁気コア。   The magnetic core according to claim 1, wherein the plurality of core bodies are made of different magnetic materials. 請求項1または2記載の磁気コア、および前記磁電変換部を備えている電流センサ。   The current sensor provided with the magnetic core of Claim 1 or 2, and the said magnetoelectric conversion part.
JP2015014229A 2015-01-28 2015-01-28 Magnetic core and current sensor Pending JP2016138823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015014229A JP2016138823A (en) 2015-01-28 2015-01-28 Magnetic core and current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015014229A JP2016138823A (en) 2015-01-28 2015-01-28 Magnetic core and current sensor

Publications (1)

Publication Number Publication Date
JP2016138823A true JP2016138823A (en) 2016-08-04

Family

ID=56560036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015014229A Pending JP2016138823A (en) 2015-01-28 2015-01-28 Magnetic core and current sensor

Country Status (1)

Country Link
JP (1) JP2016138823A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49147515U (en) * 1973-04-18 1974-12-19
JPS60173814A (en) * 1984-02-20 1985-09-07 Toshiba Corp Through-type current transformer
US20020145416A1 (en) * 2001-04-10 2002-10-10 Farshid Attarian Compact low cost current sensor and current transformer core having improved dynamic range
JP2009058451A (en) * 2007-09-03 2009-03-19 Osaki Electric Co Ltd Current sensor-use magnetic core and current sensor employing the same
US20110156697A1 (en) * 2009-12-31 2011-06-30 Schneider Electric USA, Inc. Compact, two stage, zero flux electronically compensated current or voltage transducer employing dual magnetic cores having substantially dissimilar magnetic characteristics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49147515U (en) * 1973-04-18 1974-12-19
JPS60173814A (en) * 1984-02-20 1985-09-07 Toshiba Corp Through-type current transformer
US20020145416A1 (en) * 2001-04-10 2002-10-10 Farshid Attarian Compact low cost current sensor and current transformer core having improved dynamic range
JP2009058451A (en) * 2007-09-03 2009-03-19 Osaki Electric Co Ltd Current sensor-use magnetic core and current sensor employing the same
US20110156697A1 (en) * 2009-12-31 2011-06-30 Schneider Electric USA, Inc. Compact, two stage, zero flux electronically compensated current or voltage transducer employing dual magnetic cores having substantially dissimilar magnetic characteristics

Similar Documents

Publication Publication Date Title
JP6107942B2 (en) Magnetic current sensor and current measuring method
JP5308500B2 (en) Geomagnetic sensor
US20180240588A1 (en) Transformer and resonant circuit having same
JP2010112936A (en) Current sensor and magnetic detection method
CN105988034A (en) Current detection device
CN204241670U (en) Based on the high sensitivity magnetic field sensor of amorphous alloy material
JP5121679B2 (en) Fluxgate magnetic sensor
JP2011017574A (en) Electric current detector
JP2016138823A (en) Magnetic core and current sensor
JP5665422B2 (en) Magnetic flux detection device and method of manufacturing magnetic flux detection device
JP2013044543A (en) Magnetic flux zero point detector
WO2016021383A1 (en) Current sensor
JP2014106101A (en) Current sensor
JP2012198053A (en) Magnetic sensor and current sensor using the same
JP2014153325A (en) Eddy current sensor
JP2015135239A (en) Curent sensor
JP2012198158A (en) Current sensor
JP4884384B2 (en) Broadband current detector
WO2010032825A1 (en) Magnetic coupling-type isolator
JP5007828B2 (en) Torque sensor and manufacturing method thereof
JP2010107247A (en) Quick reacting and less current consuming non-contact direct current sensor
JP4660709B2 (en) Extended differential fluxgate sensor
US10247790B2 (en) Magnetic sensor
JP2013050330A (en) Magnetic sensor and current sensor using the same
JP5317027B2 (en) Torque sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190312