JP2016138797A - Micro-heater and sensor - Google Patents

Micro-heater and sensor Download PDF

Info

Publication number
JP2016138797A
JP2016138797A JP2015013575A JP2015013575A JP2016138797A JP 2016138797 A JP2016138797 A JP 2016138797A JP 2015013575 A JP2015013575 A JP 2015013575A JP 2015013575 A JP2015013575 A JP 2015013575A JP 2016138797 A JP2016138797 A JP 2016138797A
Authority
JP
Japan
Prior art keywords
holes
insulating layer
bridging
adjacent
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015013575A
Other languages
Japanese (ja)
Other versions
JP6470985B2 (en
Inventor
加藤 友文
Tomofumi Kato
友文 加藤
幸一 井川
Koichi Igawa
幸一 井川
水野 卓也
Takuya Mizuno
卓也 水野
俊幸 松岡
Toshiyuki Matsuoka
俊幸 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2015013575A priority Critical patent/JP6470985B2/en
Publication of JP2016138797A publication Critical patent/JP2016138797A/en
Application granted granted Critical
Publication of JP6470985B2 publication Critical patent/JP6470985B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a micro-heater and a sensor capable of relaxing a heat expansion generated in an insulating layer that forms a diaphragm structure, suppressing a stress applied to the insulating layer and a heating resistance element, suppressing heat escape from the heating resistance element, and cutting power consumption.SOLUTION: A micro-heater 500 comprising: a semiconductor substrate 100 having a hollow part 130 formed therein so as to penetrate the semiconductor substrate 100 from a surface to a bottom surface; an insulating layer 200 provided on the surface of the semiconductor substrate so as to close a surface side of the hollow part; and a heating resistance element 400 buried in a region, which corresponds to the hollow part, of the insulating layer, is configured such that when the micro-heater is viewed along a penetration direction of the hollow part, a plurality of through-holes 200h each formed from a polygon is formed into a honeycomb state is formed in a region, which does not overlap the heating resistance element, of the corresponding region, a width W1 of each of bridge parts 200b1 to 200b3 sandwiched between the adjacent through-holes is constant and the adjacent bridge parts are not aligned linearly in a region which is equal to or higher than 50% of a sum of lengths of the bridge parts 200b1 to 200b3.SELECTED DRAWING: Figure 1

Description

本発明は、ダイヤフラム構造部を有する半導体基板に搭載したマイクロヒータ及びこのマイクロヒータを採用してなるセンサに関する。   The present invention relates to a microheater mounted on a semiconductor substrate having a diaphragm structure and a sensor employing the microheater.

近年、環境・自然保護などの社会的要求から、高効率で、クリーンなエネルギー源として燃料電池の研究が活発に行われている。その中で、低温作動、高出力密度等の利点により、家庭用、車載用などのエネルギー源として固体高分子型燃料電池(PEFC)や水素内燃機関が期待されている。これらのシステムでは、例えば、可燃性ガスである水素を燃料としているため、ガス漏れの検知が重要な課題の一つとして挙げられている。   In recent years, research on fuel cells has been actively conducted as a high-efficiency, clean energy source due to social demands such as environmental protection and nature conservation. Among them, solid polymer fuel cells (PEFCs) and hydrogen internal combustion engines are expected as energy sources for home use and on-vehicle use due to advantages such as low temperature operation and high output density. In these systems, for example, hydrogen, which is a flammable gas, is used as a fuel, so detection of gas leakage is cited as one of the important issues.

この種の被検出雰囲気中に存在する可燃性ガスのガス濃度を検出するガス検出装置として、被検出雰囲気内にガス検出素子を配置し、このガス検出素子に、自身の温度変化(発熱)により抵抗値が変化する発熱抵抗体素子を備えた熱伝導式のガスセンサが知られている(例えば、特許文献1参照)。
このガスセンサは、半導体基板に設けた空洞部を閉じてダイヤフラムを形成する絶縁層を設け、この絶縁層に発熱抵抗体素子を配置したマイクロヒータ(ガス検出素子)から構成されている。そして、発熱抵抗体素子に通電されて発熱抵抗体素子が発熱した際に可燃性ガスへの熱伝導(気体熱伝導)が生じる。そのため、ガスセンサの温度を一定の温度に制御する場合、熱伝導によって発熱抵抗体素子の温度が変化するとともに抵抗値が変化するため、その変化量に基づき、被検出ガスを検出することができる。
そして、上記ガス検出素子はMEMSの技術を用いて作製されており、基板上にダイヤフラムを形成する絶縁層を設け、この絶縁層に発熱抵抗体素子を配置させる構成を採っている。これにより、発熱抵抗体素子から基板への熱逃げがダイヤフラム部分で少なくなるので、発熱抵抗体素子の熱が被検出ガスへ伝わり易くなる。
As a gas detection device that detects the gas concentration of the combustible gas present in this type of detected atmosphere, a gas detection element is arranged in the detected atmosphere, and this gas detection element is subjected to its own temperature change (heat generation). There is known a heat conduction type gas sensor provided with a heating resistor element whose resistance value changes (see, for example, Patent Document 1).
This gas sensor is composed of a micro heater (gas detection element) in which an insulating layer that forms a diaphragm by closing a cavity provided in a semiconductor substrate is provided, and a heating resistor element is disposed on the insulating layer. Then, when the heating resistor element is energized and the heating resistor element generates heat, heat conduction to the combustible gas (gas heat conduction) occurs. Therefore, when the temperature of the gas sensor is controlled to a constant temperature, the temperature of the heating resistor element changes due to heat conduction and the resistance value changes, so that the gas to be detected can be detected based on the change amount.
The gas detection element is manufactured by using a MEMS technique, and has a configuration in which an insulating layer for forming a diaphragm is provided on a substrate and a heating resistor element is disposed on the insulating layer. As a result, heat escape from the heating resistor element to the substrate is reduced at the diaphragm portion, so that the heat of the heating resistor element is easily transferred to the gas to be detected.

ところで、特許文献1記載のガスセンサ(マイクロヒータ)においては、メンブレン構造の保持部材(上記絶縁層に相当)に多数の円形の貫通孔を設けている。図13は、ガスセンサ1000の保持部材(絶縁層)1002のうち、発熱抵抗素子1004を避けた部位に円形の貫通孔1002hを複数設けた例を示す。これにより、貫通孔1002hを通ってガスが保持部材1002の上面側と裏面側とに流通することができるため、センサ領域に到来したガスが留まることがなくなり、ガスにより保持部材1002に不測の応力が印加されることがなくなるとされている。又、特許文献1には、上記貫通孔1002hとして多角形を用いてもよいことが記載されている。   By the way, in the gas sensor (microheater) described in Patent Document 1, a large number of circular through holes are provided in a holding member (corresponding to the insulating layer) having a membrane structure. FIG. 13 shows an example in which a plurality of circular through holes 1002h are provided in a portion of the holding member (insulating layer) 1002 of the gas sensor 1000 where the heating resistor element 1004 is avoided. As a result, gas can flow through the through hole 1002h to the upper surface side and the back surface side of the holding member 1002, so that the gas that has arrived at the sensor region does not stay, and unexpected stress is applied to the holding member 1002 by the gas. Is no longer applied. Patent Document 1 describes that a polygon may be used as the through hole 1002h.

特開2010−230385号公報(図6、段落0026、0138)Japanese Patent Laying-Open No. 2010-230385 (FIG. 6, paragraphs 0026 and 0138)

ところで、発熱抵抗素子1004が発熱すると、ダイヤフラムを構成する保持部材1002は面方向の外側(図13の矢印E方向)に向かって熱膨張するが、熱膨張した保持部材1002が変形する空間(余地)が無いと、保持部材1002自身に応力が発生し、発熱抵抗素子1004にも応力が加わって保持部材1002や発熱抵抗素子1004が破損したり断線するおそれがある。
この場合、図13の拡大図14に示すように、隣接する2個の貫通孔1002hで挟まれる部位に架橋部1002bが形成される。この架橋部1002bは、貫通孔1002hを設けない場合の保持部材1002に比べて狭幅となっているため、変形し易くなっている。このため、保持部材1002が熱膨張しても、架橋部1002bが面方向の各方向に収縮変形して保持部材1002の熱膨張を吸収し、応力の発生を抑制することができる。
しかしながら、特許文献1記載の技術の場合、貫通孔1002が円孔であるため、架橋部1002bの幅W1〜W3が架橋部1002bの位置によって変わる。そして、架橋部1002bの変形は最も狭幅で変形し易い幅W1の部分に集中して生じ、広幅W2の部分での変形は少ない。このため、架橋部1002b全体としての変形量が小さくなり、熱膨張の吸収効果も小さくなるという問題がある。又、広幅W2の部分では発熱抵抗素子1004の熱を保持部材1002の外側に伝え易く、発熱抵抗素子1004の熱逃げが大きくなって消費電力が大きくなるという問題がある。
By the way, when the heating resistor element 1004 generates heat, the holding member 1002 constituting the diaphragm is thermally expanded toward the outside in the surface direction (the direction of arrow E in FIG. 13), but the space (room for deformation) of the thermally expanded holding member 1002 is deformed. ), Stress is generated in the holding member 1002 itself, and stress is also applied to the heating resistor element 1004, and the holding member 1002 and the heating resistor element 1004 may be damaged or disconnected.
In this case, as shown in an enlarged view 14 of FIG. 13, a bridging portion 1002b is formed at a portion sandwiched between two adjacent through holes 1002h. The bridging portion 1002b has a narrower width than the holding member 1002 when the through hole 1002h is not provided, and thus is easily deformed. For this reason, even if the holding member 1002 is thermally expanded, the bridging portion 1002b is contracted and deformed in each direction of the surface direction to absorb the thermal expansion of the holding member 1002, and the generation of stress can be suppressed.
However, in the case of the technique described in Patent Document 1, since the through hole 1002 is a circular hole, the widths W1 to W3 of the bridging portion 1002b vary depending on the position of the bridging portion 1002b. The deformation of the bridging portion 1002b is concentrated in the narrowest and easily deformable width W1, and the deformation in the wide W2 portion is small. For this reason, there exists a problem that the deformation amount as the whole bridge | crosslinking part 1002b becomes small, and the absorption effect of thermal expansion also becomes small. Further, in the portion of the wide width W2, there is a problem that heat of the heating resistor element 1004 is easily transferred to the outside of the holding member 1002, and the heat escape of the heating resistor element 1004 is increased and power consumption is increased.

一方、図15に示すように、保持部材1102に矩形(正方形)の貫通孔1102hを設けた場合には、各架橋部1102b1〜1102b3の幅W1が位置によらずに一定となる。しかしながら、この場合、隣接する各架橋部1102b1〜1102b3が一直線(図15の矢印E1)上に並ぶため、この直線に沿う方向(図15の左右方向)で各架橋部1102b1〜1102b3が繋がって1つの広幅の部材として機能し、変形し難くなる。その結果、変形は、架橋部の間に貫通孔1102hが介在し、架橋部同士が繋がっていない方向(図15の矢印E2)に集中して生じ、やはり架橋部全体としての変形量が小さくなり、熱膨張の吸収効果も小さくなる。さらに、各架橋部1102b1〜1102b3が繋がっている矢印E1の方向では、発熱抵抗素子1004の熱を保持部材1102の外側に伝え易く、発熱抵抗素子1004の熱逃げがさらに大きくなって消費電力が大きくなる。   On the other hand, as shown in FIG. 15, when a rectangular (square) through hole 1102h is provided in the holding member 1102, the width W1 of each of the bridging portions 1102b1 to 1102b3 is constant regardless of the position. However, in this case, since the adjacent bridging portions 1102b1 to 1102b3 are arranged on a straight line (arrow E1 in FIG. 15), the bridging portions 1102b1 to 1102b3 are connected in the direction along the straight line (left and right direction in FIG. 15). Functions as one wide member and is difficult to deform. As a result, the deformation is concentrated in the direction in which the through holes 1102h are interposed between the bridging portions and the bridging portions are not connected to each other (arrow E2 in FIG. 15), and the deformation amount as a whole of the bridging portion is also reduced. Also, the effect of absorbing thermal expansion is reduced. Further, in the direction of the arrow E1 where the bridging portions 1102b1 to 1102b3 are connected, the heat of the heating resistor element 1004 can be easily transferred to the outside of the holding member 1102, and the heat escape of the heating resistor element 1004 is further increased, resulting in higher power consumption. Become.

そこで、本発明は、ダイヤフラム構造部を形成する絶縁層に生じた熱膨張を緩和し、絶縁層や発熱抵抗素子へ加わる応力を確実に抑制すると共に、発熱抵抗素子からの熱逃げを抑制して消費電力を低減したマイクロヒータ及びこのマイクロヒータを採用してなるセンサの提供を目的とする。   Therefore, the present invention relaxes the thermal expansion generated in the insulating layer that forms the diaphragm structure, reliably suppresses stress applied to the insulating layer and the heating resistor element, and suppresses heat escape from the heating resistor element. An object is to provide a microheater with reduced power consumption and a sensor employing the microheater.

上記課題を解決するため、本発明のマイクロヒータは、表面と底面との間を貫通する空洞部を形成してなる半導体基板と、前記空洞部の表面側を閉じるように前記半導体基板の前記表面上に設設けられる絶縁層と、前記絶縁層のうち前記空洞部に対する対応部位に埋設される、発熱抵抗素子と、を備えてなるマイクロヒータにおいて、前記マイクロヒータを前記空洞部の貫通方向に沿って見たとき、前記対応部位のうち前記発熱抵抗素子と重ならない領域に、多角形からなる複数の貫通孔がハニカム状に形成され、隣接する前記貫通孔で挟まれる架橋部の長さの合計に対して50%以上の部位で、該架橋部の幅が一定であり、かつ隣接する前記架橋部同士が一直線上に並ばない   In order to solve the above problems, a microheater according to the present invention includes a semiconductor substrate formed with a cavity penetrating between a surface and a bottom surface, and the surface of the semiconductor substrate so as to close a surface side of the cavity. A microheater comprising: an insulating layer provided thereon; and a heating resistance element embedded in a corresponding portion of the insulating layer with respect to the cavity, wherein the microheater is arranged along a penetration direction of the cavity When viewed, the plurality of polygonal through holes are formed in a honeycomb shape in a region that does not overlap the heating resistor element in the corresponding part, and the total length of the bridging portions sandwiched between the adjacent through holes The width of the cross-linked portion is constant at a site of 50% or more with respect to each other, and the adjacent cross-linked portions are not aligned on a straight line

このマイクロヒータによれば、貫通孔が空洞部に連通してガスを流通させるので、発熱抵抗素子と被検出ガスとの接触面積が増え、貫通孔に隣接する発熱抵抗素子では熱がさらに被検出ガスへ伝わり易くなる。このため、発熱抵抗素子から被検出ガスへの熱伝達率が高くなり、被検出ガスの検出精度を向上させることができる。
さらに、架橋部の幅が、架橋部の長さの合計に対して50%以上の部位で一定であるため、架橋部がほぼ均等に変形する。その結果、発熱抵抗素子が発熱し、ダイヤフラムを構成する絶縁層が面方向の外側に向かって熱膨張したとき、各架橋部がいずれも面方向の各方向に収縮変形するので、架橋部全体としての変形量が大きくなって熱膨張の吸収効果が大きくなり、絶縁層や発熱抵抗素子へ加わる応力を確実に抑制することができる。
又、発熱抵抗素子の熱が広幅の一部の架橋部から集中して絶縁層の外部に伝わることが抑制され、発熱抵抗素子の熱は架橋部から均等にかつ広範に伝わり、各発熱抵抗素子の熱の伝達経路は複数の架橋部を介した長い距離となる。このため、発熱抵抗素子の熱が外部に逃げ難くなり、消費電力を低減することができる。
又、隣接する各架橋部が一直線上に並ばないため、この直線に沿う方向で各架橋部が繋がって1つの広幅の部材となって変形し難くなることが回避される。その結果、各架橋部がいずれも面方向の各方向に収縮変形するので、架橋部全体としての変形量が大きくなって熱膨張の吸収効果が大きくなる。
さらに、各架橋部が一直線上に繋がった場合には、この直線が絶縁層の外部への最短の熱の伝達経路となり、発熱抵抗素子の熱が外部に逃げ易くなる。これに対し、各架橋部が一直線上に並ばないため、発熱抵抗素子の熱の伝達経路は複数の架橋部を介した長い距離となる。このため、発熱抵抗素子の熱が外部に逃げ難くなり、消費電力を低減することができる。
なお、「ハニカム状」とは、多数の貫通孔がごばん目状に形成されている形状をいう。
According to this micro heater, since the through hole communicates with the cavity and allows gas to flow, the contact area between the heating resistor element and the gas to be detected increases, and heat is further detected at the heating resistor element adjacent to the through hole. It becomes easy to be transmitted to gas. For this reason, the heat transfer rate from the heating resistance element to the gas to be detected is increased, and the detection accuracy of the gas to be detected can be improved.
Furthermore, since the width of the bridging portion is constant at a site of 50% or more with respect to the total length of the bridging portion, the bridging portion is deformed almost uniformly. As a result, when the heating resistor element generates heat and the insulating layer constituting the diaphragm is thermally expanded toward the outside in the surface direction, each of the bridge portions contracts and deforms in each direction of the surface direction. As the amount of deformation increases, the effect of absorbing thermal expansion increases, and the stress applied to the insulating layer and the heating resistor element can be reliably suppressed.
In addition, the heat of the heating resistor element is prevented from being concentrated from a part of the wide bridge portion and transmitted to the outside of the insulating layer, and the heat of the heating resistor element is transmitted uniformly and widely from the bridge portion. The heat transfer path is a long distance through a plurality of bridging portions. For this reason, it becomes difficult for the heat of the heating resistance element to escape to the outside, and the power consumption can be reduced.
Further, since the adjacent bridging portions are not arranged in a straight line, it is avoided that the bridging portions are connected in the direction along the straight line and become difficult to be deformed as one wide member. As a result, each of the bridging portions contracts and deforms in each direction of the plane direction, so that the amount of deformation of the entire bridging portion increases and the effect of absorbing thermal expansion increases.
Further, when the respective bridging portions are connected in a straight line, this straight line becomes the shortest heat transfer path to the outside of the insulating layer, and the heat of the heating resistor element easily escapes to the outside. On the other hand, since each bridge | crosslinking part does not line up on a straight line, the heat transfer path | route of a heating resistive element becomes a long distance via a some bridge | crosslinking part. For this reason, it becomes difficult for the heat of the heating resistance element to escape to the outside, and the power consumption can be reduced.
The “honeycomb shape” refers to a shape in which a large number of through-holes are formed in a goblet shape.

本発明のマイクロヒータにおいて、前記貫通孔は4個以上形成され、1個の前記貫通孔を起点とし、異なる2つの方向にそれぞれ隣接する2個の前記貫通孔の重心を結んで構成される2辺について、当該2辺を対辺とする四角形の内側領域の面積をS1とし、前記内側領域に含まれる4個の前記貫通孔の合計開口面積をS2としたとき、開口率(S2/S1)が69%以上であるとよい。
架橋部の幅が50%以上の部位で一定であっても、この幅自体が太過ぎると、架橋部での変形が困難になる場合がある。そして、貫通孔の径に対し、幅を相対的に小さくするほど、架橋部が変形し易くなる。そこで、貫通孔の径(貫通孔の個数に応じた全貫通孔の径の合計)に対し、架橋部の幅の相対的な幅寸法を開口率(S2/S1)で規定し、この開口率を69%以上とすることで、架橋部の幅を相対的に小さくすることができ、架橋部がより変形し易くなる。又、マイクロヒータを長期使用すると、架橋部に有機シリコン等の不純物が堆積し、発熱抵抗素子からの熱逃げが大きくなる傾向にある。そこで、開口率を69%以上とすると、絶縁層において相対的に架橋部の面積割合が小さくなるので、発熱抵抗素子からの熱逃げをさらに抑制して消費電力をより一層低減することができる。
In the microheater according to the present invention, two or more through-holes are formed, and each of the two through-holes is formed by connecting the centers of gravity of the two through-holes adjacent to each other in two different directions. With respect to the side, when the area of the rectangular inner region having the two sides as opposite sides is S1, and the total opening area of the four through holes included in the inner region is S2, the aperture ratio (S2 / S1) is It is good that it is 69% or more.
Even if the width of the cross-linked portion is constant at a site of 50% or more, if the width itself is too thick, deformation at the cross-linked portion may be difficult. And a bridge | crosslinking part becomes easy to deform | transform, so that a width | variety is made relatively small with respect to the diameter of a through-hole. Therefore, the relative width dimension of the width of the bridging portion is defined by the opening ratio (S2 / S1) with respect to the diameter of the through hole (the total diameter of all the through holes according to the number of through holes). By setting the ratio to 69% or more, the width of the crosslinked portion can be relatively reduced, and the crosslinked portion is more easily deformed. Further, when the microheater is used for a long period of time, impurities such as organic silicon are deposited on the bridging portion, and the heat escape from the heating resistor element tends to increase. Therefore, when the aperture ratio is 69% or more, the area ratio of the cross-linked portion in the insulating layer is relatively small, so that heat escape from the heating resistor element can be further suppressed to further reduce power consumption.

本発明のマイクロヒータにおいて、前記多角形は正六角形、又は複数の正六角形を組み合わせた形状をなしてもよい。
このマイクロヒータによれば、架橋部の幅が50%以上の部位で一定で、かつ隣接する架橋部同士が一直線上に並ばないマイクロヒータを容易に製造することができる。
In the microheater of the present invention, the polygon may be a regular hexagon or a combination of a plurality of regular hexagons.
According to this microheater, it is possible to easily manufacture a microheater in which the width of the bridging portion is constant at a portion of 50% or more and the adjacent bridging portions are not arranged in a straight line.

本発明のセンサは、前記マイクロヒータを備える。   The sensor of the present invention includes the micro heater.

この発明によれば、マイクロヒータのダイヤフラム構造部を形成する絶縁層に生じた熱膨張を緩和し、絶縁層や発熱抵抗素子へ加わる応力を確実に抑制すると共に、発熱抵抗素子からの熱逃げを抑制して消費電力を低減することができる。   According to the present invention, the thermal expansion generated in the insulating layer forming the diaphragm structure portion of the microheater is alleviated, the stress applied to the insulating layer and the heating resistance element is surely suppressed, and the heat escape from the heating resistance element is prevented. It is possible to reduce power consumption.

本発明の実施形態に係るマイクロヒータの構成を示す平面図である。It is a top view which shows the structure of the microheater which concerns on embodiment of this invention. 図1におけるA−A線及びB−B線に沿ったマイクロヒータの断面図である。It is sectional drawing of the microheater along the AA line and BB line in FIG. 絶縁層に形成された貫通孔及び架橋部を示す平面図である。It is a top view which shows the through-hole and bridge | crosslinking part which were formed in the insulating layer. 開口率を規定する方法を示す平面図である。It is a top view which shows the method of prescribing | regulating an aperture ratio. マイクロヒータの製造工程を表す図である。It is a figure showing the manufacturing process of a microheater. 図5に続く図である。It is a figure following FIG. 図6に続く図である。It is a figure following FIG. 図7に続く図である。It is a figure following FIG. マイクロヒータが適用されたガスセンサの全体構成図である。1 is an overall configuration diagram of a gas sensor to which a micro heater is applied. 貫通孔の変形例を示す平面図である。It is a top view which shows the modification of a through-hole. 貫通孔の別の変形例を示す平面図である。It is a top view which shows another modification of a through-hole. 貫通孔のさらに別の変形例を示す平面図である。It is a top view which shows another modification of a through-hole. メンブレン構造に円形の貫通孔を設けた従来のマイクロヒータの構成を示す平面図である。It is a top view which shows the structure of the conventional microheater which provided the circular through-hole in the membrane structure. 図13の貫通孔近傍に生じる応力を示す平面図である。It is a top view which shows the stress which arises in the through-hole vicinity of FIG. メンブレン構造に正方形の貫通孔を設けた従来のマイクロヒータの構成を示す平面図である。It is a top view which shows the structure of the conventional microheater which provided the square through-hole in the membrane structure.

以下に、本発明の実施形態を図面と共に説明する。
図1はマイクロヒータ500の平面図を示し、図2は図1のA−A線切断部およびB−B線切断部におけるそれぞれの端面図を示す。尚、図1において、紙面の左右方向をその平面図の左右方向とする。また、図2において、紙面の上下方向をその断面図の上下方向とする。
なお、マイクロヒータ500は、水素ガス濃度を検出する(ガス)センサのガス検出素子を構成している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a plan view of the microheater 500, and FIG. 2 is an end view of each of the AA line cutting part and the BB line cutting part of FIG. In FIG. 1, the left-right direction of the paper surface is the left-right direction of the plan view. In FIG. 2, the vertical direction of the paper surface is the vertical direction of the sectional view.
The microheater 500 constitutes a gas detection element of a (gas) sensor that detects the hydrogen gas concentration.

図1に示すように、マイクロヒータ500は、平板形状(平面視四角形状)をなし、その表面の四隅にそれぞれ電極430,440、88、89が形成され、他方の面(裏面)の中心付近に、詳しくは後述する平面視矩形のダイヤフラム構成部が形成されている。
又、図2に示すように、マイクロヒータ500は、シリコン基板からなる半導体基板100と、この半導体基板100の表面(図2の上面)110に沿い形成される絶縁層200と、半導体基板100の裏面(図2の下面)120に形成される裏側絶縁膜300とを備えている。
そして、絶縁層200の裏面側において、半導体基板100の板厚方向に断面八の字状に(ピラミッド形状(四角錐形状)に)半導体基板100の一部を除去することで、図2に示すように空洞部130が貫通形成されている。そして、絶縁層200のうち、半導体基板100の空洞部130に対する対応部位は、この対応部位に埋設されている発熱抵抗素子400をも含めて、ダイヤフラム構造部を構成している。
As shown in FIG. 1, the microheater 500 has a flat plate shape (square shape in plan view), and electrodes 430, 440, 88, and 89 are formed at the four corners of the surface, respectively, and near the center of the other surface (back surface). In addition, a diaphragm constituting portion having a rectangular shape in plan view, which will be described later in detail, is formed.
As shown in FIG. 2, the microheater 500 includes a semiconductor substrate 100 made of a silicon substrate, an insulating layer 200 formed along the surface (upper surface in FIG. 2) 110 of the semiconductor substrate 100, and the semiconductor substrate 100. And a back-side insulating film 300 formed on the back surface (lower surface in FIG. 2) 120.
Then, on the back surface side of the insulating layer 200, a part of the semiconductor substrate 100 is removed in the shape of an eight-shaped section (in a pyramid shape (quadrangular pyramid shape)) in the plate thickness direction of the semiconductor substrate 100, so that FIG. As shown in FIG. In the insulating layer 200, the corresponding portion of the semiconductor substrate 100 corresponding to the cavity portion 130 includes the heating resistor element 400 embedded in the corresponding portion to form a diaphragm structure portion.

又、絶縁層200のうち空洞部130に対応する領域(薄膜部)、より具体的には下側薄膜210と上側薄膜220との間、即ち両圧縮応力膜212、221の間には、渦巻き状にパターン形成された発熱抵抗素子400が埋設されている。
発熱抵抗素子400は、被検出ガスの温度(詳細には、可燃性ガスへの熱伝導)により自身の温度変化により抵抗値が変化する抵抗体である。発熱抵抗素子400は、温度抵抗係数が大きい導電性材料で構成され、本実施形態では白金(Pt)で形成されている。可燃性ガスとしての水素ガスを検出する場合、水素ガスへの熱伝導によって発熱抵抗素子400から奪われる熱量の大きさは、水素ガス濃度に応じた大きさとなる。このことから、発熱抵抗素子400における電気抵抗値の変化に基づいて、水素ガス濃度を検出することが可能となる。
そして、ダイヤフラム構造部内に発熱抵抗素子400を設けることにより、発熱抵抗素子400が周囲から断熱されるため、短時間にて昇温又は降温する。このため、マイクロヒータ500の熱容量を小さくすることができる。
なお、発熱抵抗素子400の抵抗値変化は被検出ガスの温度による影響を受けるため、後述する測温抵抗体80の電気抵抗値に基づき検出される温度を用いて、発熱抵抗素子400の電気抵抗値変化に基づき検出した被検出ガスの濃度を補正することにより、被検出ガス濃度の検出精度を向上させることができる。
Further, a region (thin film portion) corresponding to the cavity 130 in the insulating layer 200, more specifically, between the lower thin film 210 and the upper thin film 220, that is, between the two compressive stress films 212 and 221, is a spiral. A heating resistance element 400 patterned in a shape is embedded.
The heating resistance element 400 is a resistor whose resistance value changes due to its own temperature change depending on the temperature of the gas to be detected (specifically, heat conduction to the combustible gas). The heating resistance element 400 is made of a conductive material having a large temperature resistance coefficient, and is made of platinum (Pt) in this embodiment. When detecting hydrogen gas as a combustible gas, the amount of heat taken from the heating resistor element 400 by heat conduction to the hydrogen gas is in accordance with the hydrogen gas concentration. From this, it is possible to detect the hydrogen gas concentration based on the change in the electrical resistance value in the heating resistor element 400.
Then, by providing the heating resistor element 400 in the diaphragm structure, the heating resistor element 400 is thermally insulated from the surroundings, so that the temperature is raised or lowered in a short time. For this reason, the heat capacity of the micro heater 500 can be reduced.
Since the change in resistance value of the heating resistor element 400 is affected by the temperature of the gas to be detected, the electrical resistance of the heating resistor element 400 is determined using the temperature detected based on the electrical resistance value of the resistance temperature detector 80 described later. By correcting the concentration of the detected gas detected based on the value change, the detection accuracy of the detected gas concentration can be improved.

絶縁層200は、下側薄膜210及び上側薄膜220を備えている。
下側薄膜210は、引張応力膜211及び圧縮応力膜212を有している。窒化シリコン(Si34)からなる引張応力膜211は、半導体基板100の表面110に積層され、酸化ケイ素(SiO2)からなる圧縮応力膜212は、引張応力膜211の表面に積層されている。
また、上側薄膜220は、圧縮応力膜221及び引張応力膜222を有している。酸化ケイ素(SiO2)からなる圧縮応力膜221は、圧縮応力膜212の表面に積層され、窒化シリコン(Si34)からなる引張応力膜222は、圧縮応力膜221の表面に積層されている。
The insulating layer 200 includes a lower thin film 210 and an upper thin film 220.
The lower thin film 210 has a tensile stress film 211 and a compressive stress film 212. A tensile stress film 211 made of silicon nitride (Si 3 N 4 ) is laminated on the surface 110 of the semiconductor substrate 100, and a compressive stress film 212 made of silicon oxide (SiO 2 ) is laminated on the surface of the tensile stress film 211. Yes.
The upper thin film 220 includes a compressive stress film 221 and a tensile stress film 222. The compressive stress film 221 made of silicon oxide (SiO 2 ) is laminated on the surface of the compressive stress film 212, and the tensile stress film 222 made of silicon nitride (Si 3 N 4 ) is laminated on the surface of the compressive stress film 221. Yes.

窒化シリコン(Si34)からなる裏側絶縁膜300は、半導体基板100の裏面120に沿って形成されている。また、裏側絶縁膜300のうち、空洞部130に対する対応部位が除去されて空洞部130の開口部を形成している。
これにより、絶縁層200の引張応力膜211の裏面のうち、空洞部130に対応する部位が、空洞部130の開口部を通して外方に露出している。
なお、半導体基板100のうち空洞部130以外の部位を、以下、基板部140という。
また、最表層をなす引張応力膜222は、発熱抵抗素子400、測温抵抗体80、配線膜16の汚染や損傷を防止すべくそれらを覆うように設けられている。
又、マイクロヒータ500は、縦横ともに数mm(例えば3mm×3mm)程度の大きさであり、例えば、シリコン半導体基板を用いたマイクロマシニング技術(マイクロマシニング加工)により製造される。
A back side insulating film 300 made of silicon nitride (Si 3 N 4 ) is formed along the back surface 120 of the semiconductor substrate 100. Further, in the back side insulating film 300, the corresponding part with respect to the cavity 130 is removed to form an opening of the cavity 130.
As a result, a portion of the back surface of the tensile stress film 211 of the insulating layer 200 corresponding to the cavity 130 is exposed to the outside through the opening of the cavity 130.
Note that a portion of the semiconductor substrate 100 other than the cavity portion 130 is hereinafter referred to as a substrate portion 140.
The tensile stress film 222 that forms the outermost layer is provided so as to cover the heating resistance element 400, the resistance temperature detector 80, and the wiring film 16 in order to prevent contamination and damage.
The microheater 500 is about several mm (for example, 3 mm × 3 mm) both vertically and horizontally, and is manufactured by, for example, a micromachining technique (micromachining process) using a silicon semiconductor substrate.

図1に戻り、発熱抵抗素子400の左右の端は、発熱抵抗素子400が形成された平面と同じ平面にそれぞれ埋設された配線をなす左側配線膜410及び右側配線膜420(図2)を介して、左側電極430及び右側電極440にそれぞれ接続されている。なお、左側電極430がグランド電極となっている。両電極430,440は、発熱抵抗素子400に接続される配線の引き出し部位であり、コンタクトホール223、224(図2)を介して露出し、例えば、アルミニウム(Al)又は金(Au)で形成されている。
左側配線膜410は、下側薄膜210と上側薄膜220との間、即ち両圧縮応力膜212、221の間で、半導体基板100の基板部140に対応する位置の圧縮応力膜212の表面に薄膜状に形成されている。一方、右側配線膜420は、両圧縮応力膜212、221の間で、半導体基板100の基板部140に対応する位置の圧縮応力膜212の表面に薄膜状に形成されている。
さらに、上側薄膜220に形成したコンタクトホール223を通して左側配線膜410上に、左側電極430が形成されている。同様に、上側薄膜220に形成したコンタクトホール224を通して右側配線膜420上に、右側電極440が形成されている。
Returning to FIG. 1, the left and right ends of the heating resistor element 400 are connected via a left wiring film 410 and a right wiring film 420 (FIG. 2) that form wirings embedded in the same plane as the plane on which the heating resistor element 400 is formed. Are connected to the left electrode 430 and the right electrode 440, respectively. The left electrode 430 is a ground electrode. Both electrodes 430 and 440 are wiring lead portions connected to the heating resistor element 400 and are exposed through the contact holes 223 and 224 (FIG. 2), and are formed of, for example, aluminum (Al) or gold (Au). Has been.
The left wiring film 410 is a thin film on the surface of the compressive stress film 212 at a position corresponding to the substrate portion 140 of the semiconductor substrate 100 between the lower thin film 210 and the upper thin film 220, that is, between the two compressive stress films 212 and 221. It is formed in a shape. On the other hand, the right wiring film 420 is formed as a thin film on the surface of the compressive stress film 212 at a position corresponding to the substrate portion 140 of the semiconductor substrate 100 between the two compressive stress films 212 and 221.
Further, the left electrode 430 is formed on the left wiring film 410 through the contact hole 223 formed in the upper thin film 220. Similarly, the right electrode 440 is formed on the right wiring film 420 through the contact hole 224 formed in the upper thin film 220.

測温抵抗体80は、マイクロヒータ500の配置された空間内に存在するガス(被検出ガス等)の温度を検出するためのものであり、図1に示すようにマイクロヒータ500の上辺(一辺)に沿って、圧縮応力膜221及び引張応力膜222の間に埋設されている。測温抵抗体80は、電気抵抗値が温度に比例して変化(本実施形態では、温度の上昇に伴って抵抗値が増大)する導電性材料で構成され、本実施形態では白金(Pt)で形成されている。
測温抵抗体80は、測温抵抗体80が形成された平面と同じ平面に埋設された配線膜(図示せず)を介して電極88及びグランド電極89に接続されている。電極88及びグランド電極89は、コンタクトホール(図示せず)を介して露出し、例えば、アルミニウム(Al)又は金(Au)で形成されている。
The resistance temperature detector 80 is for detecting the temperature of a gas (detected gas or the like) existing in the space where the microheater 500 is arranged, and as shown in FIG. ) Is embedded between the compressive stress film 221 and the tensile stress film 222. The resistance temperature detector 80 is made of a conductive material whose electric resistance value changes in proportion to the temperature (in this embodiment, the resistance value increases as the temperature rises). In this embodiment, platinum (Pt) It is formed with.
The resistance thermometer 80 is connected to the electrode 88 and the ground electrode 89 via a wiring film (not shown) embedded in the same plane as the plane on which the resistance thermometer 80 is formed. The electrode 88 and the ground electrode 89 are exposed through a contact hole (not shown), and are formed of, for example, aluminum (Al) or gold (Au).

さらに、絶縁層200のうち発熱抵抗素子400の形成部位を避けた領域に、同一の多角形(本実施形態では正六角形)からなる複数の貫通孔200hが形成されている。
貫通孔200hは、空洞部130に連通してガスを流通させるので、発熱抵抗素子400と被検出ガスとの接触面積が増え、貫通孔200hに隣接する発熱抵抗素子400では熱がさらに被検出ガスへ伝わり易くなる。このため、発熱抵抗素子400から被検出ガスへの熱伝達率が高くなり、被検出ガスの検出精度を向上させることができる。なお、多角形の角部(頂点)は、必ずしも鋭角になっている必要はなく、丸みを帯びた形状であってもよい。
Furthermore, a plurality of through-holes 200h made of the same polygon (regular hexagon in this embodiment) are formed in a region of the insulating layer 200 that avoids the formation site of the heating resistor element 400.
Since the through hole 200h communicates with the cavity 130 and allows gas to flow, the contact area between the heating resistor element 400 and the gas to be detected increases, and heat is further detected in the heating resistor element 400 adjacent to the through hole 200h. It becomes easy to be transmitted to. For this reason, the heat transfer rate from the heating resistance element 400 to the gas to be detected is increased, and the detection accuracy of the gas to be detected can be improved. In addition, the corner | angular part (vertex) of a polygon does not necessarily need to be an acute angle, The rounded shape may be sufficient.

又、図3に示すように、各貫通孔200h1〜200h3は、自身の辺と、隣接する貫通孔の辺とが平行になるようにして配置されている。従って、隣接する貫通孔で挟まれる絶縁層200で形成される架橋部200b1〜200b3の幅W1は、どの位置でも一定になっている。具体的には、隣接する貫通孔200h1、200h2で挟まれる絶縁層200が架橋部200b1を形成し、隣接する貫通孔200h1、200h3で挟まれる絶縁層200が架橋部200b2を形成し、隣接する貫通孔200h2、200h2で挟まれる絶縁層200が架橋部200b3を形成する。
そして、これら隣接する架橋部200b1〜200b3は、一辺の長さがW1の正三角形からなる接続部200cの各辺で接続され、各架橋部200b1〜200b3が接続部200cを中心に互いに120度の角度で放射状に延びており、各架橋部200b1〜200b3同士は一直線上に並ばない。ここで、一直線上に並ばないとは、隣接する架橋部200b1〜200b3同士の間には必ず変曲点を有することを意味する。
Moreover, as shown in FIG. 3, each through-hole 200h1-200h3 is arrange | positioned so that the edge | side of an own and the edge | side of an adjacent through-hole may become parallel. Accordingly, the width W1 of the bridging portions 200b1 to 200b3 formed by the insulating layer 200 sandwiched between adjacent through holes is constant at any position. Specifically, the insulating layer 200 sandwiched between the adjacent through holes 200h1 and 200h2 forms the bridging portion 200b1, and the insulating layer 200 sandwiched between the adjacent through holes 200h1 and 200h3 forms the bridging portion 200b2 and is adjacent to the through hole. The insulating layer 200 sandwiched between the holes 200h2 and 200h2 forms a bridging portion 200b3.
And these adjacent bridge | crosslinking parts 200b1-200b3 are connected by each edge | side of the connection part 200c which consists of an equilateral triangle whose one side is W1, and each bridge | crosslinking part 200b1-200b3 is mutually 120 degree | times centering on the connection part 200c. It extends radially at an angle, and the bridging portions 200b1 to 200b3 do not line up in a straight line. Here, not being aligned on a straight line means that there is always an inflection point between the adjacent bridge portions 200b1 to 200b3.

このように、架橋部200b1〜200b3の幅W1がどの位置でも一定であるため、架橋部200b1〜200b3がほぼ均等に変形する。その結果、発熱抵抗素子400が発熱し、ダイヤフラムを構成する絶縁層200が面方向の外側(図2、3図の矢印E方向)に向かって熱膨張したとき、各架橋部がいずれも面方向の各方向に収縮変形するので、架橋部全体としての変形量が大きくなって熱膨張の吸収効果が大きくなり、絶縁層200や発熱抵抗素子400へ加わる応力を確実に抑制することができる。このように、絶縁層200や発熱抵抗素子400へ加わる応力を確実に抑制することができるため、マイクロヒータの耐熱性や、耐久性が向上する。
なお、架橋部200b1〜200b3の幅W1は、架橋部の長さの合計に対して50%以上の部位で一定であればよい。架橋部の長さの合計に対して50%以上の部位が一定であれば、この一定部位で十分に応力を抑制できる。但し、上述のように架橋部200b1〜200b3の幅W1がどの位置でも(つまり、架橋部の長さの合計に対して100%で)一定であることが好ましい。又、一定部位の幅W1は、架橋部のその他の部位の幅よりも狭いと、当該一定部位で変形し易いので好ましい。
又、発熱抵抗素子400の熱が広幅の一部の架橋部から集中して絶縁層200の外部に伝わることが抑制され、発熱抵抗素子400の熱は架橋部から均等にかつ広範に伝わり、各発熱抵抗素子400の熱の伝達経路(図3の矢印H1,H2)は複数の架橋部を介した長い距離となる。このため、発熱抵抗素子400の熱が外部に逃げ難くなり、消費電力を低減することができる。
Thus, since the width W1 of the bridging portions 200b1 to 200b3 is constant at any position, the bridging portions 200b1 to 200b3 are deformed almost uniformly. As a result, when the heating resistance element 400 generates heat and the insulating layer 200 constituting the diaphragm thermally expands toward the outside in the surface direction (the direction of arrow E in FIGS. 2 and 3), each of the bridging portions is in the surface direction. Therefore, the amount of deformation of the entire bridging portion is increased, the thermal expansion absorption effect is increased, and the stress applied to the insulating layer 200 and the heating resistor element 400 can be reliably suppressed. As described above, since the stress applied to the insulating layer 200 and the heating resistor element 400 can be reliably suppressed, the heat resistance and durability of the microheater are improved.
Note that the width W1 of the bridging portions 200b1 to 200b3 may be constant at a portion of 50% or more with respect to the total length of the bridging portions. If the portion of 50% or more is constant with respect to the total length of the cross-linked portions, the stress can be sufficiently suppressed at this constant portion. However, as described above, it is preferable that the width W1 of the bridge portions 200b1 to 200b3 is constant at any position (that is, 100% with respect to the total length of the bridge portions). In addition, it is preferable that the width W1 of the certain portion is narrower than the width of the other portion of the bridging portion because the certain portion is easily deformed.
Further, the heat of the heating resistor element 400 is prevented from being concentrated from a part of the wide bridging portion and transmitted to the outside of the insulating layer 200, and the heat of the heating resistor element 400 is evenly and widely transmitted from the bridging portion. The heat transfer path (arrows H1 and H2 in FIG. 3) of the heating resistor element 400 is a long distance through a plurality of bridging portions. For this reason, it becomes difficult for the heat of the heating resistance element 400 to escape to the outside, and power consumption can be reduced.

又、隣接する各架橋部200b1〜200b3が一直線(図3の矢印E)上に並ばないため、この直線に沿う方向で各架橋部200b1〜200b3が繋がって1つの広幅の部材となって変形し難くなることが回避される。その結果、各架橋部がいずれも面方向の各方向に収縮変形するので、架橋部全体としての変形量が大きくなって熱膨張の吸収効果が大きくなる。
さらに、各架橋部200b1〜200b3が一直線上に繋がった場合には、この直線が絶縁層200の外部への最短の熱の伝達経路となり、発熱抵抗素子400の熱が外部に逃げ易くなる。これに対し、本実施形態では、各架橋部200b1〜200b3が一直線上に並ばないため、発熱抵抗素子400の熱の伝達経路(図3の矢印H1,H2)は複数の架橋部を介した長い距離となる。このため、発熱抵抗素子400の熱が外部に逃げ難くなり、消費電力を低減することができる。
Further, since the adjacent bridging portions 200b1 to 200b3 are not arranged on a straight line (arrow E in FIG. 3), the bridging portions 200b1 to 200b3 are connected in a direction along the straight line to be deformed as one wide member. Difficulty is avoided. As a result, each of the bridging portions contracts and deforms in each direction of the plane direction, so that the amount of deformation of the entire bridging portion increases and the effect of absorbing thermal expansion increases.
Furthermore, when each bridge | crosslinking part 200b1-200b3 is connected on a straight line, this straight line becomes the shortest heat transmission path | route to the exterior of the insulating layer 200, and the heat | fever of the heating resistive element 400 tends to escape outside. On the other hand, in this embodiment, since each bridge | crosslinking part 200b1-200b3 does not line up on a straight line, the heat transfer path (arrow H1, H2 of FIG. 3) of the heating resistive element 400 is long through several bridge | crosslinking parts. Distance. For this reason, it becomes difficult for the heat of the heating resistance element 400 to escape to the outside, and power consumption can be reduced.

なお、接続部200cは一辺の長さがW1の正三角形からなるが、各貫通孔200h1〜200h3の辺(具体的には各貫通孔200h1〜200h3の頂点)と接続部200cとの距離はW1以下(W1より短い)である。このため、接続部200cが各架橋部200b1〜200b3よりも太幅となって変形し難くなることが無く、接続部200cは各架橋部200b1〜200b3の変形を妨げない。   In addition, although the connection part 200c consists of an equilateral triangle with the length of one side W1, the distance of the side of each through-hole 200h1-200h3 (specifically vertex of each through-hole 200h1-200h3) and the connection part 200c is W1. The following (shorter than W1). For this reason, the connection part 200c is wider than each bridge | crosslinking part 200b1-200b3, and it does not become difficult to deform | transform, and the connection part 200c does not prevent the deformation | transformation of each bridge | bridging part 200b1-200b3.

ところで、架橋部200b1〜200b3の幅W1が50%以上の部位で一定であっても、幅W1自体が太過ぎると、架橋部での変形が困難になる場合がある。つまり、貫通孔200h1〜200h3の径に対し、幅W1を相対的に小さくするほど、架橋部が変形し易くなる。そこで、本発明の好ましい実施形態として、幅W1の相対的な幅寸法を、以下の開口率(S2/S1)で規定することとした。
具体的には、図4に示すように1個の貫通孔200h1を起点とし、1つの方向(図4の上下方向)D1に隣接する貫通孔200h2を合わせ、2個の貫通孔200h1、200h2の各重心G1,G2を結んで辺L1を構成する。同様に、貫通孔200h1を起点とし、方向D1と異なる方向(図4の斜め右下がり方向)D2に隣接する貫通孔200h3を合わせ、2個の貫通孔200h1、200h3の各重心G1,G3を結んで辺L2を構成する。
そして、2辺L1、L2を対辺とする四角形の内側領域Rの面積をS1とし、内側領域Rに含まれる4個の貫通孔200h1〜200h4の合計開口面積をS2としたとき、開口率を(S2/S1)で規定する。
By the way, even if the width W1 of the bridging portions 200b1 to 200b3 is constant at a portion of 50% or more, if the width W1 itself is too thick, deformation at the bridging portion may be difficult. That is, as the width W1 is relatively decreased with respect to the diameters of the through holes 200h1 to 200h3, the bridging portion is easily deformed. Therefore, as a preferred embodiment of the present invention, the relative width dimension of the width W1 is defined by the following aperture ratio (S2 / S1).
Specifically, as shown in FIG. 4, a single through hole 200h1 is used as a starting point, and through holes 200h2 adjacent to one direction (vertical direction in FIG. 4) D1 are combined to form two through holes 200h1 and 200h2. A side L1 is formed by connecting the centroids G1 and G2. Similarly, the through-hole 200h3 starting from the through-hole 200h1 and adjacent to a direction D2 different from the direction D1 (diagonal right-down direction in FIG. 4) is combined to connect the centers of gravity G1 and G3 of the two through-holes 200h1 and 200h3. The side L2 is constituted by
Then, when the area of the rectangular inner region R having two sides L1 and L2 as opposite sides is S1, and the total opening area of the four through holes 200h1 to 200h4 included in the inner region R is S2, the aperture ratio is ( S2 / S1).

この開口率(S2/S1)が69%以上であると、貫通孔の径(貫通孔の個数に応じた全貫通孔の径の合計)に対し、幅W1を相対的に小さくすることができ、隣接する貫通孔で挟まれる架橋部がより変形し易くなる。又、マイクロヒータを長期使用すると、架橋部に有機シリコン等の不純物が堆積し、発熱抵抗素子400からの熱逃げが大きくなる傾向にある。そこで、開口率を69%以上とすると、絶縁層200において相対的に架橋部の面積割合が小さくなるので、発熱抵抗素子400からの熱逃げをさらに抑制して消費電力をより一層低減することができる。
なお、開口率の上限は特に限定されないが、貫通孔や架橋部の寸法精度や製造上の問題等から、上限は91%程度である。
When the aperture ratio (S2 / S1) is 69% or more, the width W1 can be made relatively small with respect to the diameter of the through hole (the total diameter of all the through holes according to the number of through holes). The bridging portion sandwiched between the adjacent through holes is more easily deformed. In addition, when the microheater is used for a long period of time, impurities such as organic silicon are deposited on the bridging portion, and the heat escape from the heating resistor element 400 tends to increase. Therefore, when the aperture ratio is 69% or more, the area ratio of the cross-linking portion is relatively small in the insulating layer 200, so that heat escape from the heating resistor element 400 can be further suppressed to further reduce power consumption. it can.
The upper limit of the aperture ratio is not particularly limited, but the upper limit is about 91% due to the dimensional accuracy of the through holes and the bridging portion, manufacturing problems, and the like.

次に、図5〜図8を参照し、マイクロヒータ500の製造工程について説明する。なお、図5〜図8では、各工程について、図1におけるマイクロヒータのA−A線切断部およびB−B線切断部におけるそれぞれの端面状態を表している。なお、マイクロヒータ500は、マイクロマシン技術を利用して製造される。
(1)引張応力膜211及び裏側絶縁膜300の成膜工程
まず、図5に示すように、洗浄したシリコン基板を半導体基板100として準備し、この半導体基板100の表面に、窒化シリコンからなる引張応力膜211を低圧CVD法(LP−CVD法)により、所定膜厚(例えば、0.2μm)で成膜する。なお、引張応力膜211の成膜の際に、絶縁膜300も半導体基板100の裏面120に薄膜状に成膜する。
(2)圧縮応力膜212成膜工程
次に、図5に示すように、引張応力膜211の表面に、酸化シリコンからなる圧縮応力膜212をプラズマCVD法により、所定膜厚(例えば、0.1μm)で成膜する。
Next, the manufacturing process of the micro heater 500 will be described with reference to FIGS. 5-8, about each process, each end surface state in the AA line cutting | disconnection part and BB line cutting | disconnection part of the microheater in FIG. 1 is represented. The micro heater 500 is manufactured using micro machine technology.
(1) Film Forming Step of Tensile Stress Film 211 and Back Side Insulating Film 300 First, as shown in FIG. 5, a cleaned silicon substrate is prepared as a semiconductor substrate 100, and a tensile layer made of silicon nitride is formed on the surface of the semiconductor substrate 100. The stress film 211 is formed with a predetermined film thickness (for example, 0.2 μm) by a low pressure CVD method (LP-CVD method). Note that when the tensile stress film 211 is formed, the insulating film 300 is also formed in a thin film on the back surface 120 of the semiconductor substrate 100.
(2) Compression Stress Film 212 Formation Step Next, as shown in FIG. 5, a compression stress film 212 made of silicon oxide is formed on the surface of the tensile stress film 211 by a plasma CVD method to a predetermined thickness (for example, 0. 1 μm).

(3)発熱抵抗素子400及び左右両側配線膜410、420の成膜工程
次に、図6に示すように、圧縮応力膜212の表面に、白金(Pt)のスパッタリングにより薄膜状の白金膜を成膜した後、この白金膜にパターニング処理を施して、発熱抵抗素子400及び左右両側配線膜410、420を圧縮応力膜212の表面に一体に形成する。
(3) Film Formation Step of Heating Resistance Element 400 and Left and Right Both Side Wiring Films 410 and 420 Next, as shown in FIG. 6, a thin platinum film is formed on the surface of the compressive stress film 212 by sputtering of platinum (Pt). After the film formation, the platinum film is subjected to a patterning process to integrally form the heating resistance element 400 and the left and right wiring films 410 and 420 on the surface of the compressive stress film 212.

(4)圧縮応力膜221成膜工程
次に、図7に示すように、発熱抵抗素子400及び左右両側配線膜410、420を覆うようにして、圧縮応力膜212の表面に、酸化シリコンからなる圧縮応力膜221をプラズマCVD法により、所定膜厚(例えば、0.1μm)で成膜する。
(5)引張応力膜222の成膜工程
さらに、圧縮応力膜221の表面に、窒化シリコンからなる引張応力膜222を低圧CVD法により、所定膜厚(例えば、0.2μm)で成膜する。これにより、圧縮応力膜221及び引張応力膜222からなる上側薄膜220が、発熱抵抗素子400、換言すれば両圧縮応力膜212、221の間を基準に、引張応力膜211及び圧縮応力膜212からなる下側薄膜210に対し対称的に形成される。
なお、引張応力膜222の成膜の際に、絶縁膜300も半導体基板100の裏面120に薄膜状に成膜する。
(4) Compressive Stress Film 221 Formation Process Next, as shown in FIG. 7, the surface of the compressive stress film 212 is made of silicon oxide so as to cover the heating resistance element 400 and the left and right wiring films 410 and 420. The compressive stress film 221 is formed with a predetermined film thickness (for example, 0.1 μm) by plasma CVD.
(5) Film Formation Step of Tensile Stress Film 222 Further, a tensile stress film 222 made of silicon nitride is formed on the surface of the compression stress film 221 with a predetermined film thickness (for example, 0.2 μm) by low-pressure CVD. As a result, the upper thin film 220 composed of the compressive stress film 221 and the tensile stress film 222 is separated from the tensile stress film 211 and the compressive stress film 212 on the basis of the heating resistance element 400, in other words, between the two compressive stress films 212 and 221. The lower thin film 210 is formed symmetrically.
Note that when the tensile stress film 222 is formed, the insulating film 300 is also formed into a thin film on the back surface 120 of the semiconductor substrate 100.

(6)電極及び貫通孔の形成工程
次に、図8に示すように、引張応力膜222を成膜した後の上側薄膜220のうち、左右両側配線膜410、420に対する各対応部位に、各コンタクトホール223、224をエッチング形成する。これに伴い、左右両側配線膜410、420は、その各表面にて、各対応コンタクトホール223、224を通して外部に露呈する。
次いで、各コンタクトホール223、224の内部を含む引張応力膜222の表面に、スパッタリングにより、金(Au)等からなるコンタクト金属膜を成膜する。さらに、当該コンタクト金属膜にパターニング処理及びエッチング処理を施し、各コンタクトホール223、224に左右両側電極430、440を形成する。
さらに、絶縁層200のうち発熱抵抗素子400の形成部位を避けた領域に、貫通孔200hをパターニング処理及びドライエッチング処理により形成する。
なお、貫通孔200hは、絶縁層200を構成する上側薄膜220及び下側薄膜210を貫通するが、半導体基板100を貫通せずにその表面110で終端している。
(6) Step of forming electrodes and through-holes Next, as shown in FIG. 8, in the upper thin film 220 after the tensile stress film 222 is formed, the corresponding portions for the left and right wiring films 410 and 420 Contact holes 223 and 224 are formed by etching. Accordingly, the left and right wiring films 410 and 420 are exposed to the outside through the corresponding contact holes 223 and 224 on the respective surfaces.
Next, a contact metal film made of gold (Au) or the like is formed on the surface of the tensile stress film 222 including the insides of the contact holes 223 and 224 by sputtering. Further, the contact metal film is subjected to patterning processing and etching processing, and left and right side electrodes 430 and 440 are formed in the contact holes 223 and 224, respectively.
Further, the through-hole 200h is formed by patterning and dry etching in a region of the insulating layer 200 where the heating resistor element 400 is not formed.
The through hole 200h penetrates the upper thin film 220 and the lower thin film 210 constituting the insulating layer 200, but terminates at the surface 110 without penetrating the semiconductor substrate 100.

(7)空洞部形成工程
次に、電極及び貫通孔の形成後、裏側絶縁膜300に対し、空洞部130を形成するに要するパターニング処理及びエッチング処理を施す。ここで、空洞部130を形成するエッチング部位130Eは、発熱抵抗素子400及び貫通孔200hの形成部位より面方向の外側とする。
ついで、異方性エッチング液(例えば、TMAH)を用いて、半導体基板100にエッチング処理を施す。これにより、半導体基板100に貫通孔200hと連通する空洞部130を形成し(図2参照)、マイクロヒータ500の製造が終了する。
(7) Cavity Formation Process Next, after the formation of the electrodes and the through holes, the backside insulating film 300 is subjected to patterning processing and etching processing required to form the cavity 130. Here, the etching site 130E that forms the cavity 130 is outside in the surface direction from the site where the heating resistor element 400 and the through hole 200h are formed.
Next, an etching process is performed on the semiconductor substrate 100 using an anisotropic etching solution (for example, TMAH). Thereby, the cavity 130 communicating with the through hole 200h is formed in the semiconductor substrate 100 (see FIG. 2), and the manufacture of the microheater 500 is completed.

次に、図9を参照し、本発明の実施形態に係るマイクロヒータ500が適用されたガスセンサ1について説明する。図9は、ガスセンサ1の全体構成図である。マイクロヒータ500は、水素ガス濃度を検出する熱伝導式のガス検出素子を構成している。また、ガスセンサ1は、熱伝導式のガス検出素子を用いて、可燃性ガスの濃度を検出するものであり、例えば、燃料電池自動車の客室内に設置され、水素の漏れを検出する目的等に用いられる。
なお、図1において、ガス検出素子をなすマイクロヒータ500のうち、測温抵抗体80のみが図示されている。
Next, the gas sensor 1 to which the micro heater 500 according to the embodiment of the present invention is applied will be described with reference to FIG. FIG. 9 is an overall configuration diagram of the gas sensor 1. The micro heater 500 constitutes a heat conduction type gas detection element for detecting the hydrogen gas concentration. The gas sensor 1 detects the concentration of combustible gas using a heat conduction type gas detection element. For example, the gas sensor 1 is installed in a cabin of a fuel cell vehicle and detects the leakage of hydrogen. Used.
In FIG. 1, only the resistance temperature detector 80 is illustrated in the microheater 500 that forms the gas detection element.

図9に示すように、ガスセンサ1は、ガス検出素子と、ガス検出素子を駆動制御する制御回路90とを備えている。又、制御回路90は、ガス検出回路91、及び温度測定回路93を備えている。なお、制御回路90(但し、発熱抵抗素子400および測温抵抗体80を除く),マイコン94は単一の回路基板上に構成され、この回路基板とは別体にガス検出素子は構成されている。
ガス検出回路91は、ガス検出素子に備えられた発熱抵抗素子400と、固定抵抗95,96,97とによって構成されるホイートストーンブリッジ911、及び、ホイートストーンブリッジ911から得られる電位差を増幅するオペアンプ912を備えている。
発熱抵抗素子400として、自身の温度の上昇に伴い抵抗値が上昇する抵抗体を用いた場合、このオペアンプ912は、発熱抵抗素子400の温度が所定の温度に保たれるように、発熱抵抗素子400の温度が上昇した場合には出力する電圧を低くし、発熱抵抗素子400の温度が下降した場合には出力する電圧を高くするように作動する。
As shown in FIG. 9, the gas sensor 1 includes a gas detection element and a control circuit 90 that drives and controls the gas detection element. The control circuit 90 includes a gas detection circuit 91 and a temperature measurement circuit 93. The control circuit 90 (except for the heating resistor element 400 and the resistance temperature detector 80) and the microcomputer 94 are configured on a single circuit board, and the gas detection element is configured separately from the circuit board. Yes.
The gas detection circuit 91 amplifies the Wheatstone bridge 911 configured by the heating resistor element 400 provided in the gas detection element and the fixed resistors 95, 96, and 97, and the potential difference obtained from the Wheatstone bridge 911. An operational amplifier 912 is provided.
When a resistor whose resistance value increases with an increase in its own temperature is used as the heating resistor element 400, the operational amplifier 912 has a heating resistor element so that the temperature of the heating resistor element 400 is maintained at a predetermined temperature. When the temperature of 400 rises, the output voltage is lowered, and when the temperature of the heating resistor element 400 is lowered, the output voltage is raised.

そして、このオペアンプ912の出力は、ホイートストーンブリッジ911に接続されているので、発熱抵抗素子400の温度が所定の温度より上昇すると、発熱抵抗素子400の温度を下げるためにオペアンプ912から出力される電圧は低くなり、ホイートストーンブリッジ911に印加される電圧が低下する。このときの、ホイートストーンブリッジ911の端部を構成する右側電極440(図1参照)の電圧はガス検出回路91の出力としてマイコン94により検出され、マイコン94により検出された出力値は、被検出ガスに含まれ可燃性ガスを検出するための演算処理に供される。
温度測定回路93は、ガス検出素子に備えられた測温抵抗体80と、固定抵抗101,102,103によって構成されるホイートストーンブリッジ931と、ホイートストーンブリッジ931から得られる電位差を増幅するオペアンプ933とを備えている。このオペアンプ933の出力はマイコン94により検出され、マイコン94により検出された出力値は、被検出ガスの温度を測定するのに用いられ、さらに、被検出ガスに含まれ可燃性ガスを検出するための演算処理に供される。
Since the output of the operational amplifier 912 is connected to the Wheatstone bridge 911, when the temperature of the heating resistor element 400 rises above a predetermined temperature, the output of the operational amplifier 912 is output to lower the temperature of the heating resistor element 400. And the voltage applied to the Wheatstone bridge 911 decreases. At this time, the voltage of the right electrode 440 (see FIG. 1) constituting the end of the Wheatstone bridge 911 is detected by the microcomputer 94 as the output of the gas detection circuit 91, and the output value detected by the microcomputer 94 is It is subjected to arithmetic processing for detecting combustible gas contained in the detection gas.
The temperature measurement circuit 93 amplifies a potential difference obtained from the temperature measuring resistor 80 provided in the gas detection element, the Wheatstone bridge 931 configured by the fixed resistors 101, 102, and 103, and the Wheatstone bridge 931. An operational amplifier 933. The output of the operational amplifier 933 is detected by the microcomputer 94, and the output value detected by the microcomputer 94 is used to measure the temperature of the gas to be detected. Further, in order to detect the combustible gas contained in the gas to be detected. It is used for the arithmetic processing.

以上のような構成を有する制御回路90の出力値に基づき、マイコン94により実行される可燃性ガスの濃度を演算する処理は、次のようなものである。まず、マイコン94が備えるCPU(図示せず)は、同じくマイコン94が備える記憶装置(図示せず)に記憶されたプログラムに基づき、ガス検出回路91の出力値から、可燃性ガス濃度にほぼ比例した第1の出力値を出力する。この第1の出力値は、ガスセンサ1の検出空間の雰囲気温度変化による出力変化を含んでいるので、続いて、温度測定回路93からの出力に基づき第1の出力値を補正した第2の出力値を出力する。さらに、マイコン94は、そのマイコン94の記憶装置(図示せず)に記憶された第2の出力値と可燃性ガスの濃度との関係に基づき、被検出ガス中に含まれる可燃性ガスの濃度を出力する。このように、第1の出力値を温度測定回路93の出力に基づき補正しているので、精度よく可燃性ガスを検出できる。尚、可燃性ガスの濃度を演算する処理は、上記のものに限られず、公知の手段を適宜用いれば良い。   The processing for calculating the concentration of the combustible gas executed by the microcomputer 94 based on the output value of the control circuit 90 having the above configuration is as follows. First, a CPU (not shown) provided in the microcomputer 94 is substantially proportional to the combustible gas concentration from the output value of the gas detection circuit 91 based on a program stored in a storage device (not shown) provided in the microcomputer 94. The first output value is output. Since the first output value includes an output change due to an ambient temperature change in the detection space of the gas sensor 1, the second output is obtained by correcting the first output value based on the output from the temperature measurement circuit 93. Output the value. Further, the microcomputer 94 determines the concentration of the combustible gas contained in the detected gas based on the relationship between the second output value stored in the storage device (not shown) of the microcomputer 94 and the concentration of the combustible gas. Is output. Thus, since the 1st output value is amended based on the output of temperature measuring circuit 93, combustible gas can be detected with sufficient accuracy. In addition, the process which calculates the density | concentration of combustible gas is not restricted to said thing, What is necessary is just to use a well-known means suitably.

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。
例えば、図10に示すように、貫通孔として、3つの正六角形を組み合わせた形状の多角形を用いてもよい。図10の例では、絶縁層250に、各貫通孔250h1〜250h3が自身の辺と、隣接する貫通孔の辺とが平行になるようにして配置されている。そして、隣接する貫通孔250h1、250h2で挟まれる絶縁層250が架橋部250b1を形成し、隣接する貫通孔250h1、250h3で挟まれる絶縁層250が架橋部250b2を形成し、隣接する貫通孔250h2、250h3で挟まれる絶縁層250が架橋部250b3を形成している。そして、架橋部250b1〜250b3の幅W1がどの位置でも一定になっている。
また、これら隣接する架橋部250b1〜250b3は、正三角形からなる接続部250cの各辺で接続され、各架橋部250b1〜250b3が接続部250cを中心に互いに120度の角度で放射状に延びており、各架橋部250b1〜250b3同士は一直線上に並ばない。
このように、図10の例でも、架橋部250b1〜250b3の幅W1がどの位置でも一定であり、かつ、隣接する各架橋部250b1〜250b3が一直線上に並ばない。
It goes without saying that the present invention is not limited to the above-described embodiment, but extends to various modifications and equivalents included in the spirit and scope of the present invention.
For example, as shown in FIG. 10, a polygon having a combination of three regular hexagons may be used as the through hole. In the example of FIG. 10, the through holes 250 h 1 to 250 h 3 are arranged in the insulating layer 250 so that the sides of the through holes 250 h 1 to 250 h 3 are parallel to the sides of the adjacent through holes. The insulating layer 250 sandwiched between the adjacent through holes 250h1 and 250h2 forms the bridging portion 250b1, the insulating layer 250 sandwiched between the adjacent through holes 250h1 and 250h3 forms the bridging portion 250b2, and the adjacent through holes 250h2. The insulating layer 250 sandwiched between 250h3 forms a bridging portion 250b3. The width W1 of the bridging portions 250b1 to 250b3 is constant at any position.
Moreover, these adjacent bridge | crosslinking parts 250b1-250b3 are connected by each edge | side of the connection part 250c which consists of equilateral triangles, and each bridge | crosslinking part 250b1-250b3 is radially extended at an angle of 120 degree | times centering on the connection part 250c. The bridging portions 250b1 to 250b3 are not aligned on a straight line.
Thus, also in the example of FIG. 10, the width W1 of the bridging portions 250b1 to 250b3 is constant at any position, and the adjacent bridging portions 250b1 to 250b3 are not aligned in a straight line.

なお、接続部250cは一辺の長さがW1より長い正三角形からなるが、各貫通孔250h1〜250h3の辺(各貫通孔250h1〜250h3の頂点を含む)と接続部250cとの距離はW1である。このため、接続部250cが各架橋部250b1〜250b3よりも太幅となって変形し難くなることが無く、接続部250cは各架橋部250b1〜250b3の変形を妨げない。
又、図10の例では、架橋部250b2が対称線250bxで対称となるようにくの字状に折れ曲がっており、対称線250bxの長さは幅W1より広い(他の架橋部も同様)。しかしながら、対称線250bxは線であって面を構成しないので、対称線250bxが架橋部250b2の変形を妨げることは無い。
In addition, although the connection part 250c consists of an equilateral triangle whose one side is longer than W1, the distance between the side of each through hole 250h1 to 250h3 (including the vertex of each through hole 250h1 to 250h3) and the connection part 250c is W1. is there. For this reason, the connection part 250c is wider than each bridge | crosslinking part 250b1-250b3, and it does not become difficult to deform | transform, and the connection part 250c does not prevent a deformation | transformation of each bridge | crosslinking part 250b1-250b3.
In the example of FIG. 10, the bridging portion 250b2 is bent in a U shape so as to be symmetric with respect to the symmetry line 250bx, and the length of the symmetry line 250bx is wider than the width W1 (the same applies to the other bridging portions). However, since the symmetry line 250bx is a line and does not constitute a surface, the symmetry line 250bx does not hinder the deformation of the bridging portion 250b2.

又、図11に示すように、貫通孔として、7つの正六角形を組み合わせた形状の多角形を用いてもよい。図11の例では、絶縁層260に、各貫通孔260h1〜260h3が自身の辺と、隣接する貫通孔の辺とが平行になるようにして配置されている。そして、隣接する貫通孔260h1、260h2で挟まれる絶縁層260が架橋部260b1を形成し、隣接する貫通孔260h1、260h3で挟まれる絶縁層260が架橋部260b2を形成し、隣接する貫通孔260h2、260h3で挟まれる絶縁層260が架橋部260b3を形成している。そして、架橋部260b1〜260b3の幅がどの位置でも一定になっている。
また、これら隣接する架橋部260b1〜260b3は、正三角形からなる接続部260cの各辺で接続され、各架橋部260b1〜260b3が接続部260cを中心に互いに120度の角度で放射状に延びており、各架橋部260b1〜260b3同士は一直線上に並ばない。
このように、図11の例でも、架橋部260b1〜260b3の幅がどの位置でも一定であり、かつ、隣接する各架橋部260b1〜260b3が一直線上に並ばない。
Moreover, as shown in FIG. 11, you may use the polygon of the shape which combined seven regular hexagons as a through-hole. In the example of FIG. 11, the through holes 260 h 1 to 260 h 3 are arranged in the insulating layer 260 so that the sides of the through holes 260 h 1 to 260 h 3 are parallel to the sides of the adjacent through holes. The insulating layer 260 sandwiched between the adjacent through holes 260h1 and 260h2 forms the bridge portion 260b1, the insulating layer 260 sandwiched between the adjacent through holes 260h1 and 260h3 forms the bridge portion 260b2, and the adjacent through holes 260h2, An insulating layer 260 sandwiched between 260h3 forms a bridging portion 260b3. And the width | variety of bridge | bridging part 260b1-260b3 is constant in any position.
The adjacent bridge portions 260b1 to 260b3 are connected at each side of the connecting portion 260c formed of an equilateral triangle, and the bridge portions 260b1 to 260b3 extend radially at an angle of 120 degrees with respect to the connection portion 260c. The bridging portions 260b1 to 260b3 are not aligned on a straight line.
Thus, also in the example of FIG. 11, the width of the bridging portions 260b1 to 260b3 is constant at any position, and the adjacent bridging portions 260b1 to 260b3 are not aligned in a straight line.

なお、接続部260cは一辺の長さが架橋部の幅より長い正三角形からなるが、各架橋部260b1〜260b3の変形を妨げないのは、接続部250cの場合と同様である。
又、図11の例では、架橋部260b2が2つの対称線260bxでそれぞれ対称となるように2か所で折れ曲がっており、対称線260bxの長さは架橋部の幅より広い(他の架橋部も同様)。しかしながら、対称線260bxが架橋部260b2の変形を妨げることは無いのは、対称線250bxの場合と同様である。
In addition, although the connection part 260c consists of an equilateral triangle whose length of one side is longer than the width | variety of a bridge | bridging part, it is the same as that of the case of the connection part 250c not preventing the deformation | transformation of each bridge | bridging part 260b1-260b3.
In the example of FIG. 11, the bridging portion 260b2 is bent at two positions so as to be symmetric with respect to two symmetric lines 260bx, and the length of the symmetric line 260bx is wider than the width of the bridging portion (the other bridging portions The same). However, the symmetry line 260bx does not hinder the deformation of the bridging portion 260b2, as in the case of the symmetry line 250bx.

又、図12に示すように、貫通孔として、4つの正六角形を組み合わせた形状の多角形を用いてもよい。図12の例では、絶縁層270に、各貫通孔270h1〜270h3が自身の辺と、隣接する貫通孔の辺とが平行になるようにして配置されている。そして、隣接する貫通孔270h1、270h2で挟まれる絶縁層270が架橋部270b1を形成し、隣接する貫通孔270h1、270h3で挟まれる絶縁層270が架橋部270b2を形成し、隣接する貫通孔270h2、270h3で挟まれる絶縁層270が架橋部270b3を形成している。そして、架橋部270b1〜270b3の幅がどの位置でも一定になっている。
また、これら隣接する架橋部270b1〜270b3は、正三角形からなる接続部270cの各辺で接続され、各架橋部270b1〜270b3が接続部270cを中心に互いに120度の角度で放射状に延びており、各架橋部270b1〜270b3同士は一直線上に並ばない。
このように、図12の例でも、架橋部270b1〜270b3の幅がどの位置でも一定であり、かつ、隣接する各架橋部270b1〜270b3が一直線上に並ばない。
Moreover, as shown in FIG. 12, you may use the polygon of the shape which combined four regular hexagons as a through-hole. In the example of FIG. 12, the through holes 270 h 1 to 270 h 3 are arranged in the insulating layer 270 so that the sides of the through holes 270 h 1 to 270 h 3 are parallel to the sides of the adjacent through holes. The insulating layer 270 sandwiched between the adjacent through holes 270h1 and 270h2 forms the bridging portion 270b1, the insulating layer 270 sandwiched between the adjacent through holes 270h1 and 270h3 forms the bridging portion 270b2, and the adjacent through holes 270h2, An insulating layer 270 sandwiched between 270h3 forms a bridging portion 270b3. And the width | variety of bridge | crosslinking part 270b1-270b3 is constant in any position.
Further, these adjacent bridge portions 270b1 to 270b3 are connected at each side of the connecting portion 270c formed of an equilateral triangle, and the respective bridge portions 270b1 to 270b3 extend radially at an angle of 120 degrees with respect to the connection portion 270c. The bridging portions 270b1 to 270b3 do not line up on a straight line.
Thus, also in the example of FIG. 12, the width of the bridging portions 270b1 to 270b3 is constant at any position, and the adjacent bridging portions 270b1 to 270b3 are not aligned on a straight line.

なお、接続部270cは一辺の長さが架橋部の幅より長い正三角形からなるが、各架橋部270b1〜270b3の変形を妨げないのは、接続部250cの場合と同様である。
又、図12の例では、架橋部270b2が2つの対称線270bxでそれぞれ対称となるように2か所で折れ曲がっており、対称線270bxの長さは架橋部の幅より広い(架橋部270b1も同様)。しかしながら、対称線270bxが架橋部270b2の変形を妨げることは無いのは、対称線250bxの場合と同様である。
なお、図12の例では、架橋部270b3は水平方向(図12の左右方向)にまっすぐ延び、架橋部270b1、270b2とは形状が異なっている。
In addition, although the connection part 270c consists of an equilateral triangle whose length of one side is longer than the width | variety of a bridge | bridging part, it is the same as that of the case of the connection part 250c not preventing the deformation | transformation of each bridge | bridging part 270b1-270b3.
In the example of FIG. 12, the bridging portion 270b2 is bent at two places so as to be symmetric with respect to the two symmetrical lines 270bx, and the length of the symmetrical line 270bx is wider than the width of the bridging portion (the bridging portion 270b1 is also The same). However, the symmetry line 270bx does not hinder the deformation of the bridging portion 270b2, as in the case of the symmetry line 250bx.
In the example of FIG. 12, the bridging portion 270b3 extends straight in the horizontal direction (left-right direction in FIG. 12), and the shape is different from the bridging portions 270b1 and 270b2.

さらに、貫通孔を構成する多角形の頂点(隣接する2辺の交点)に丸みを付けると、頂点が尖っている場合に比べ、頂点への応力集中が少なくなるので、架橋部が変形する際に頂点で破断する等の不具合を抑制することができる。
又、図1の例では、発熱抵抗素子400の隣接する発熱パターンの隙間400Gには貫通孔200hを設けなかったが、隙間400Gの幅より貫通孔200hの径が小さい場合には、隙間400Gにも貫通孔200hを設けてもよい。
又、図8のコンタクトホールの形成と、貫通孔の形成を同時に行っても良い。
又、上記実施形態では、水素ガスを検出する場合について説明したが、本発明のガスセンサは他の種類の可燃性ガスも検出可能である。
Furthermore, when the vertex of the polygon that forms the through-hole (the intersection of two adjacent sides) is rounded, the stress concentration on the vertex is reduced compared to the case where the vertex is sharp, so when the bridge is deformed It is possible to suppress problems such as breaking at the apex.
In the example of FIG. 1, the through hole 200h is not provided in the gap 400G of the heating pattern adjacent to the heating resistor element 400. However, when the diameter of the through hole 200h is smaller than the width of the gap 400G, the gap 400G Alternatively, a through hole 200h may be provided.
Further, the formation of the contact hole in FIG. 8 and the formation of the through hole may be performed simultaneously.
Moreover, although the said embodiment demonstrated the case where hydrogen gas was detected, the gas sensor of this invention can also detect another kind of combustible gas.

1 ガスセンサ(センサ)
100 半導体基板
130 空洞部
200、250、260、270 絶縁層
200b1〜200b3、250b1〜250b3、260b1〜260b3、270b1〜270b3 架橋部
200h、200h1〜200h4、250h1〜250h3、260h1〜260h3、270h1〜270h3 貫通孔
400 発熱抵抗素子
500 マイクロヒータ
W1 架橋部の幅
D1,D2 貫通孔の異なる2つの方向
G1、G2、G3 貫通孔の重心
L1、L2 貫通孔の重心を結んで構成される2辺
R 2辺を対辺とする四角形の内側領域
1 Gas sensor (sensor)
100 Semiconductor substrate 130 Cavity part 200, 250, 260, 270 Insulating layer 200b1-200b3, 250b1-250b3, 260b1-260b3, 270b1-270b3 Cross-linking part 200h, 200h1-200h4, 250h1-250h3, 260h1-260h3, 270h1-270h3 Hole 400 Heating resistance element 500 Micro heater W1 Bridge width D1, D2 Two different directions of through-hole G1, G2, G3 Center of gravity of through-hole L1, L2 Two sides configured by connecting the center of gravity of through-hole R 2 sides The inner area of the rectangle with the opposite side

Claims (4)

表面と底面との間を貫通する空洞部を形成してなる半導体基板と、
前記空洞部の表面側を閉じるように前記半導体基板の前記表面上に設設けられる絶縁層と、
前記絶縁層のうち前記空洞部に対する対応部位に埋設される、発熱抵抗素子と、を備えてなるマイクロヒータにおいて、
前記マイクロヒータを前記空洞部の貫通方向に沿って見たとき、
前記対応部位のうち前記発熱抵抗素子と重ならない領域に、多角形からなる複数の貫通孔がハニカム状に形成され、
隣接する前記貫通孔で挟まれる架橋部の長さの合計に対して50%以上の部位で、該架橋部の幅が一定であり、かつ隣接する前記架橋部同士が一直線上に並ばないマイクロヒータ。
A semiconductor substrate formed with a cavity penetrating between the front surface and the bottom surface;
An insulating layer provided on the surface of the semiconductor substrate so as to close the surface side of the cavity,
In a microheater comprising a heating resistance element embedded in a corresponding portion of the insulating layer with respect to the cavity,
When the micro heater is viewed along the penetration direction of the cavity,
A plurality of polygonal through holes are formed in a honeycomb shape in a region that does not overlap with the heating resistor element in the corresponding portion,
A micro-heater in which the width of the bridging portion is constant and the adjacent bridging portions are not aligned in a straight line at a portion of 50% or more of the total length of the bridging portions sandwiched between the adjacent through holes. .
前記貫通孔は4個以上形成され、1個の前記貫通孔を起点とし、異なる2つの方向にそれぞれ隣接する2個の前記貫通孔の重心を結んで構成される2辺について、
当該2辺を対辺とする四角形の内側領域の面積をS1とし、前記内側領域に含まれる4個の前記貫通孔の合計開口面積をS2としたとき、開口率(S2/S1)が69%以上である請求項1に記載のマイクロヒータ。
Four or more through-holes are formed, and two sides are formed by connecting the centers of gravity of two through-holes that are adjacent to each other in two different directions, starting from one through-hole.
The opening ratio (S2 / S1) is 69% or more, where S1 is the area of the rectangular inner region having the two opposite sides and S2 is the total opening area of the four through holes included in the inner region. The micro heater according to claim 1.
前記多角形は正六角形、又は複数の正六角形を組み合わせた形状をなす請求項1又は2に記載のマイクロヒータ。   The micro heater according to claim 1 or 2, wherein the polygon is a regular hexagon or a combination of a plurality of regular hexagons. 請求項1〜3のいずれか1項に記載のマイクロヒータを備えるセンサ。   A sensor comprising the microheater according to claim 1.
JP2015013575A 2015-01-27 2015-01-27 Micro heater and sensor Expired - Fee Related JP6470985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015013575A JP6470985B2 (en) 2015-01-27 2015-01-27 Micro heater and sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015013575A JP6470985B2 (en) 2015-01-27 2015-01-27 Micro heater and sensor

Publications (2)

Publication Number Publication Date
JP2016138797A true JP2016138797A (en) 2016-08-04
JP6470985B2 JP6470985B2 (en) 2019-02-13

Family

ID=56560134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015013575A Expired - Fee Related JP6470985B2 (en) 2015-01-27 2015-01-27 Micro heater and sensor

Country Status (1)

Country Link
JP (1) JP6470985B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074729A (en) * 2018-01-05 2020-12-11 汉席克卡德应用研究协会 Gas sensor and method for operating a gas sensor
WO2022270810A1 (en) * 2021-06-24 2022-12-29 (주)위드멤스 Gas heat conduction type hydrogen sensor having integrated structure
US11686695B2 (en) 2018-01-05 2023-06-27 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Evaluation arrangement for a thermal gas sensor, methods and computer programs
JP7306712B2 (en) 2019-07-26 2023-07-11 株式会社クオルテック Heater chip and bonding layer evaluation device
JP7446187B2 (en) 2020-09-07 2024-03-08 ローム株式会社 Heating device and power storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079910A (en) * 2007-09-25 2009-04-16 Citizen Watch Co Ltd Thin-film gas sensor
JP2010230385A (en) * 2009-03-26 2010-10-14 Citizen Holdings Co Ltd Membrane-type gas sensor
JP2010230386A (en) * 2009-03-26 2010-10-14 Citizen Holdings Co Ltd Membrane-type gas sensor
JP2013124979A (en) * 2011-12-15 2013-06-24 Panasonic Corp Infrared radiation element
US20130249022A1 (en) * 2012-03-23 2013-09-26 University Of Electronic Science And Technology Of China Double-sided diaphragm micro gas-preconcentrator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079910A (en) * 2007-09-25 2009-04-16 Citizen Watch Co Ltd Thin-film gas sensor
JP2010230385A (en) * 2009-03-26 2010-10-14 Citizen Holdings Co Ltd Membrane-type gas sensor
JP2010230386A (en) * 2009-03-26 2010-10-14 Citizen Holdings Co Ltd Membrane-type gas sensor
JP2013124979A (en) * 2011-12-15 2013-06-24 Panasonic Corp Infrared radiation element
US20130249022A1 (en) * 2012-03-23 2013-09-26 University Of Electronic Science And Technology Of China Double-sided diaphragm micro gas-preconcentrator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074729A (en) * 2018-01-05 2020-12-11 汉席克卡德应用研究协会 Gas sensor and method for operating a gas sensor
US11686695B2 (en) 2018-01-05 2023-06-27 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Evaluation arrangement for a thermal gas sensor, methods and computer programs
US11874242B2 (en) 2018-01-05 2024-01-16 Habn-Schickard-Gesellschaft für angewandte Forschung e.V. Evaluation arrangement for a thermal gas sensor, methods and computer programs
JP7306712B2 (en) 2019-07-26 2023-07-11 株式会社クオルテック Heater chip and bonding layer evaluation device
JP7446187B2 (en) 2020-09-07 2024-03-08 ローム株式会社 Heating device and power storage device
WO2022270810A1 (en) * 2021-06-24 2022-12-29 (주)위드멤스 Gas heat conduction type hydrogen sensor having integrated structure
KR20230000493A (en) * 2021-06-24 2023-01-03 (주)위드멤스 Thermal conductivity sensing type hydrogen detector having integrated structure
KR102487972B1 (en) * 2021-06-24 2023-01-16 (주)위드멤스 Thermal conductivity sensing type hydrogen detector having integrated structure

Also Published As

Publication number Publication date
JP6470985B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
JP6470985B2 (en) Micro heater and sensor
CN109001486B (en) Wide-range wind speed sensor and manufacturing method thereof
JP4797771B2 (en) SENSOR DEVICE HAVING MEMBRANE AND MANUFACTURING METHOD THEREOF
US8286478B2 (en) Sensor bridge with thermally isolating apertures
US8661911B2 (en) Piezo-resistive pressure sensor
US9257587B2 (en) Suspension and absorber structure for bolometer
JP6140500B2 (en) Gas sensor
CN204454562U (en) Microheater, gas sensor and infrared light supply
JP2009058389A (en) Gas detection element
KR101196064B1 (en) Pressure sensor and method for manufacturing the same
JP3601993B2 (en) Thermal sensor and method of manufacturing the same
CN104401931B (en) Microheater and manufacture method thereof
JP4622114B2 (en) Flow sensor
CN207133219U (en) Gas sensor
KR20140084583A (en) Gas sensor and manufacturing method thereof
KR101992022B1 (en) Semiconductor gas sensor
TWI601944B (en) Thermal pressure sensor manufacturing process
JP5014938B2 (en) Contact combustion type gas sensor
JP6993893B2 (en) Semiconductor elements and flow rate measuring devices using them
JP2009079910A (en) Thin-film gas sensor
JP6255162B2 (en) Manufacturing method of gas sensor
JP6908355B2 (en) Stress sensor
JP6947710B2 (en) Surface stress sensor and its manufacturing method
JP2010107497A (en) Flow sensor
JP2004093425A (en) Microsensor and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6470985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees