JP2016133905A - Luminaire and living matter authentication device - Google Patents

Luminaire and living matter authentication device Download PDF

Info

Publication number
JP2016133905A
JP2016133905A JP2015006987A JP2015006987A JP2016133905A JP 2016133905 A JP2016133905 A JP 2016133905A JP 2015006987 A JP2015006987 A JP 2015006987A JP 2015006987 A JP2015006987 A JP 2015006987A JP 2016133905 A JP2016133905 A JP 2016133905A
Authority
JP
Japan
Prior art keywords
optical element
diffractive optical
illumination
light source
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015006987A
Other languages
Japanese (ja)
Other versions
JP6586729B2 (en
Inventor
智司 前田
Tomoji Maeda
智司 前田
幸弘 安孫子
Yukihiro Abiko
幸弘 安孫子
壮一 ▲浜▼
壮一 ▲浜▼
Soichi Hama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015006987A priority Critical patent/JP6586729B2/en
Priority to EP15198635.3A priority patent/EP3046047A1/en
Priority to US14/967,511 priority patent/US9746687B2/en
Priority to CN201510954244.8A priority patent/CN105807540B/en
Publication of JP2016133905A publication Critical patent/JP2016133905A/en
Application granted granted Critical
Publication of JP6586729B2 publication Critical patent/JP6586729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1312Sensors therefor direct reading, e.g. contactless acquisition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/425Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in illumination systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/44Grating systems; Zone plate systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/145Illumination specially adapted for pattern recognition, e.g. using gratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands

Abstract

PROBLEM TO BE SOLVED: To provide a luminaire capable of making distribution of light intensity in an illumination area uniform.SOLUTION: The luminaire comprises: a light source for irradiating an illumination area with light; and a diffraction optical element disposed between the illumination area and the light source, and in which plural diffraction gratings are disposed in a two-dimensional state, in which distribution of a grating interval of the plural diffraction gratings along a predetermined line in the two-dimensional arrangement plane on the diffraction optical element, is configured so that the grating interval is wider on a center side than on an end side.SELECTED DRAWING: Figure 5

Description

本発明は、照明装置及び生体認証装置に関する。   The present invention relates to an illumination device and a biometric authentication device.

近年、手または指の静脈のパターン、指紋または掌紋のパターンなどの生体情報を表す生体画像に基づいて、システムの利用者を非接触で認証する生体認証技術が開発されている。生体認証技術を利用した生体認証装置は、利用者の生体情報を表す入力生体画像を、予め登録された登録利用者の生体画像を表す登録生体情報と照合する。生体認証装置は、照合処理の結果に基づき、登録生体情報と一致すると判定された入力生体情報で表される生体情報を持つ利用者を正当な権限を有する登録利用者として認証し、上記のシステムの利用を許可する。生体認証装置は、例えば上記のシステム内に組み込まれていても、或いは、上記のシステムに外部接続されていても良い。   2. Description of the Related Art In recent years, biometric authentication technology has been developed that authenticates a user of a system in a contactless manner based on a biometric image representing biometric information such as a hand or finger vein pattern or a fingerprint or palm print pattern. A biometric authentication device using biometric authentication technology collates an input biometric image representing a user's biometric information with registered biometric information representing a registered user's biometric image registered in advance. The biometric authentication device authenticates a user having biometric information represented by the input biometric information determined to match the registered biometric information based on the result of the verification process as a registered user having a legitimate authority, and Allow the use of. For example, the biometric authentication device may be incorporated in the above system, or may be externally connected to the above system.

生体認証装置は、例えばパーソナルコンピュータ(PC:Personal Computer)へのログオン管理、銀行のATM(Automated Teller Machine)における本人確認、オフィスなどの入退室管理などの様々な分野で利用されている。   The biometric authentication device is used in various fields such as log-on management to a personal computer (PC), identity verification in a bank ATM (Automated Teller Machine), and entrance / exit management in an office.

生体認証装置が高精度で利用者を照合するためには、生体画像上で生体情報の特徴的な構造が鮮明に写っていることが望ましい。そこで、生体情報を撮影して生体画像を生成する生体認証装置用センサは、生体情報を含む手などの被写体を結像レンズとCCD(Charge Coupled Device)などの撮像素子で撮影する撮影光学系に加え、被写体に照明光を照射する照明光学系を有していることもある。   In order for the biometric authentication device to collate users with high accuracy, it is desirable that the characteristic structure of the biometric information is clearly shown on the biometric image. Therefore, a sensor for a biometric authentication apparatus that captures biometric information and generates a biometric image is used as a photographing optical system that captures a subject such as a hand containing biometric information with an imaging lens and an imaging element such as a CCD (Charge Coupled Device). In addition, there may be an illumination optical system that irradiates the subject with illumination light.

照明光学系と撮影光学系を備えた生体認証装置用センサの技術が提案されている(例えば特許文献1、特許文献2及び特許文献3)。   Techniques of a biometric authentication device sensor including an illumination optical system and a photographing optical system have been proposed (for example, Patent Document 1, Patent Document 2, and Patent Document 3).

特開2009−31903号公報JP 2009-31903 A 特開2013−130981号公報JP 2013-130981 A 特表2005−527874号公報JP 2005-527874 A

従来の方法では、手などの被写体を照明光学系により均一に照明することが難しい。   In the conventional method, it is difficult to uniformly illuminate a subject such as a hand with an illumination optical system.

そこで、1つの側面では、本発明は、照明領域における光強度の分布の均一化を図ることができる照明装置及び生体認証装置の提供を目的とする。   Accordingly, in one aspect, an object of the present invention is to provide an illumination device and a biometric authentication device that can achieve uniform light intensity distribution in an illumination region.

一局面によれば、照明領域に光を照射する光源と、
前記照明領域と前記光源との間に設けられ、複数の回折格子が2次元配置された回折光学素子とを含み、
前記回折光学素子における2次元配置面内の所定ラインに沿った前記複数の回折格子の格子間隔の分布は、中心側の方が端側よりも格子間隔が広い特性を有する、照明装置が提供される。
According to one aspect, a light source that irradiates the illumination area with light;
A diffractive optical element provided between the illumination region and the light source and having a plurality of diffraction gratings arranged two-dimensionally;
An illumination device is provided in which the distribution of the grating spacing of the plurality of diffraction gratings along a predetermined line in a two-dimensional arrangement plane of the diffractive optical element has a characteristic that the grating spacing is wider on the center side than on the end side. The

照明領域における光強度の分布の均一化を図ることができる照明装置及び生体認証装置が得られる。   An illumination device and a biometric authentication device that can achieve uniform light intensity distribution in the illumination region are obtained.

生体認証装置用センサの第1の例を説明する図である。It is a figure explaining the 1st example of the sensor for biometrics authentication devices. 生体認証装置用センサの第2の例を説明する図である。It is a figure explaining the 2nd example of the sensor for biometrics authentication apparatuses. 第1実施例における照明装置の一例を模式的に断面視で示す図である。It is a figure which shows typically an example of the illuminating device in 1st Example by sectional view. 複数の回折格子が2次元配置された集合体の例を示す図である。It is a figure which shows the example of the aggregate | assembly with which the several diffraction grating was arrange | positioned two-dimensionally. 回折光学素子26の格子間隔の分布特性の一例を示す図である。6 is a diagram illustrating an example of a distribution characteristic of a grating interval of the diffractive optical element 26. FIG. 照明領域33に向けられるn次回折光の光強度の分布を模式的に示す図である。It is a figure which shows typically distribution of the light intensity of the nth-order diffracted light directed to the illumination area | region 33. FIG. 照明領域33における光強度の分布を示す図である。It is a figure which shows distribution of the light intensity in the illumination area | region 33. FIG. 回折光学素子26'のX方向に沿った格子間隔の分布を示す図である。It is a figure which shows distribution of the grating | lattice space | interval along the X direction of diffractive optical element 26 '. 回折光学素子26'により照明領域33に向けられるn次回折光の光強度の分布を模式的に示す図である。It is a figure which shows typically distribution of the light intensity of the nth-order diffracted light directed to the illumination area | region 33 by the diffractive optical element 26 '. 第2実施例における照明装置の一例を模式的に断面視で示す図である。It is a figure which shows an example of the illuminating device in 2nd Example typically by sectional view. 照明装置100Aにより得られる照明領域33における光強度の分布特性の一例を示す図である。It is a figure which shows an example of the distribution characteristic of the light intensity in the illumination area | region 33 obtained by the illuminating device 100A. 照明装置100Aにより得られる照明領域33における光強度の分布特性の他の一例を示す図である。It is a figure which shows another example of the distribution characteristic of the light intensity in the illumination area | region 33 obtained by 100 A of illuminating devices. 図12の特性が得られるときの照明装置100Aの説明図である。It is explanatory drawing of 100 A of illuminating devices when the characteristic of FIG. 12 is acquired. 照明装置100を組み込んだ生体認証装置用センサの一例を上面視で概略的に示す図である。It is a figure which shows roughly an example of the sensor for biometrics apparatuses incorporating the illuminating device 100 by a top view. 回折光学素子26を含む基板261の一例を上面視で概略的に示す図である。It is a figure which shows roughly an example of the board | substrate 261 containing the diffractive optical element 26 by upper surface view. 図14のラインA−Aに沿った断面図である。It is sectional drawing along line AA of FIG. 照明装置100を組み込んだ生体認証装置用センサの他の一例を上面視で概略的に示す図である。It is a figure which shows schematically another example of the sensor for biometrics apparatuses incorporating the illuminating device 100 by a top view. 照明装置100を組み込んだ生体認証装置用センサの更なる他の一例を上面視で概略的に示す図である。It is a figure which shows roughly another example of the sensor for biometrics apparatuses incorporating the illuminating device 100 by a top view. 第3実施例における照明装置の一例を模式的に断面視で示す図である。It is a figure which shows typically an example of the illuminating device in 3rd Example by sectional view. 回折光学素子26Bの格子間隔の分布特性の一例を示す図である。It is a figure which shows an example of the distribution characteristic of the grating | lattice space | interval of the diffractive optical element 26B. 回折光学素子26Bの格子間隔の分布特性の一例を示す図である。It is a figure which shows an example of the distribution characteristic of the grating | lattice space | interval of the diffractive optical element 26B. 照明装置100Bを組み込んだ生体認証装置用センサの一例を上面視で概略的に示す図である。It is a figure which shows roughly an example of the sensor for biometrics apparatuses incorporating the illuminating device 100B in top view. 回折光学素子26Bを含む基板261Bの一例を上面視で概略的に示す図である。It is a figure which shows roughly an example of the board | substrate 261B containing the diffractive optical element 26B by a top view. 図22のラインB−Bに沿った断面図である。It is sectional drawing along line BB of FIG. 照明装置100Bを組み込んだ生体認証装置用センサの他の一例を上面視で概略的に示す図である。It is a figure which shows roughly another example of the sensor for biometrics apparatuses incorporating the illuminating device 100B in top view. 照明装置100Bを組み込んだ生体認証装置用センサの更なる他の一例を上面視で概略的に示す図である。It is a figure which shows schematically another example of the sensor for biometrics apparatuses incorporating the illuminating device 100B in top view. 生体認証装置の一例を示すブロック図である。It is a block diagram which shows an example of a biometrics authentication apparatus. コンピュータの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of a computer.

以下、添付図面を参照しながら各実施例について詳細に説明する。   Hereinafter, embodiments will be described in detail with reference to the accompanying drawings.

図1は、生体認証装置用センサの第1の例を説明する図である。図1中、(a)は生体認証装置用センサの上面図、(b)は生体認証装置用センサの側面の模式図、(c)は照明装置用センサの照明光と照明分布を示す模式図である。生体認証装置用センサ1Aは、カメラなどの撮影光学系2と、照明光学系3とを有する。照明光学系3は、基板4上に設けられた複数(この例では8個)のLED(Light-Emitting Diode)5と、レンズアレイ6を有する。この例では、図1中、(a)に示すように、LED5は撮影光学系2の外側にリング状に配置されており、レンズアレイ6はLED5と対向するようにリング状に設けられている。   FIG. 1 is a diagram illustrating a first example of a biometric authentication device sensor. In FIG. 1, (a) is a top view of the biometric authentication device sensor, (b) is a schematic side view of the biometric authentication device sensor, and (c) is a schematic diagram illustrating illumination light and illumination distribution of the illumination device sensor. It is. The biometric authentication device sensor 1 </ b> A includes a photographing optical system 2 such as a camera and an illumination optical system 3. The illumination optical system 3 includes a plurality (eight in this example) of LEDs (Light-Emitting Diodes) 5 provided on the substrate 4 and a lens array 6. In this example, as shown in FIG. 1A, the LEDs 5 are arranged in a ring shape outside the photographing optical system 2, and the lens array 6 is provided in a ring shape so as to face the LEDs 5. .

図1中、(c)に示すように、各LED5からの照明光はレンズアレイ6により広がりを持たされて照明領域10に照射される。図1中、(c)の上部に示すように、照明光の強度(任意単位)は、照明領域10上の位置(任意単位)に応じて異なり、この例では、照明領域10の中央部分での光強度が照明領域10の他の部分での光強度より高い。このように、LED5の配置及びレンズアレイ6の特性などに応じて、照明領域10には明暗分布が発生し、照射される照明光の強度分布を均一化することは難しい。   As shown in FIG. 1C, the illumination light from each LED 5 is spread by the lens array 6 and is applied to the illumination area 10. As shown in the upper part of (c) in FIG. 1, the intensity (arbitrary unit) of the illumination light varies depending on the position (arbitrary unit) on the illumination region 10, and in this example, at the central portion of the illumination region 10. Is higher than the light intensity in other parts of the illumination area 10. As described above, a brightness / darkness distribution is generated in the illumination area 10 according to the arrangement of the LEDs 5 and the characteristics of the lens array 6, and it is difficult to make the intensity distribution of the illuminated illumination light uniform.

図2は、生体認証装置用センサの第2の例を説明する図である。図2中、(a)は生体認証装置用センサの上面図、(b)は生体認証装置用センサの側面の模式図、(c)は照明装置用センサの照明光と照明分布を示す模式図である。図2中、図1と同一部分には同一符号を付し、その説明は省略する。図2に示す生体認証装置用センサ1Bでは、図1のレンズアレイ6の代わりに、拡散導光板7がLED5と対向するようにリング状に設けられている。図2中、(c)に示すように、各LED5からの照明光は拡散導光板7により拡散されて照明領域10に照射される。図2中、(c)の上部に示すように、照明光の強度(任意単位)は、照明領域10上の位置(任意単位)にかかわらず略均一となる。しかし、拡散された照明光は、照明領域10より広い領域に照射され、照明領域10の外側では、図2中、(c)において楕円で囲んで示すように漏れ光による無駄が増大してしまうので、照明光の強度が低下してしまう。照明光の低下を防止するために、LED5の数を増加させたり、高出力のLEDを用いることが考えられるが、LED5の数を増加させると照明光学系3が大型化してしまう。また、LED5に高出力LEDを用いた場合、高出力LEDが一般的には熱対策のため比較的大型であることから、照明光学系3が大型化してしまう。   FIG. 2 is a diagram illustrating a second example of the biometric authentication device sensor. 2A is a top view of the biometric authentication device sensor, FIG. 2B is a schematic side view of the biometric authentication device sensor, and FIG. 2C is a schematic diagram illustrating illumination light and illumination distribution of the illumination device sensor. It is. In FIG. 2, the same parts as those of FIG. In the biometric authentication device sensor 1 </ b> B shown in FIG. 2, a diffusion light guide plate 7 is provided in a ring shape so as to face the LEDs 5 instead of the lens array 6 of FIG. 1. As shown in FIG. 2C, the illumination light from each LED 5 is diffused by the diffusion light guide plate 7 and applied to the illumination area 10. As shown in the upper part of FIG. 2C, the intensity (arbitrary unit) of the illumination light is substantially uniform regardless of the position (arbitrary unit) on the illumination region 10. However, the diffused illumination light is applied to a wider area than the illumination area 10, and outside the illumination area 10, waste due to leaked light increases as shown by an ellipse in FIG. As a result, the intensity of illumination light decreases. In order to prevent a decrease in illumination light, it is conceivable to increase the number of LEDs 5 or use a high-power LED. However, increasing the number of LEDs 5 increases the size of the illumination optical system 3. Further, when a high-power LED is used as the LED 5, the illumination optical system 3 is increased in size because the high-power LED is generally relatively large for heat countermeasures.

そこで、以下で説明する実施例では、照明装置より照明領域における照明光の強度分布の均一化を図る。また、以下で説明する実施例では、生体認証装置の認証精度低下の防止を図る。   Therefore, in the embodiment described below, the illumination device is intended to make the intensity distribution of illumination light uniform in the illumination area. Further, in the embodiment described below, the biometric authentication device is prevented from being deteriorated in authentication accuracy.

図3は、第1実施例における照明装置の一例を模式的に断面視で示す図である。図3には、第1実施例における照明装置の一例が符号"100"で指示されている。図3には、互いに直交しあう3方向として、X,Y及びZ方向が定義されている。また、図3には、回折光学素子26から照明領域33に向かう光の広がりが模式的にハッチング範囲Sで示されている。尚、第1実施例の説明については、光源25の光軸および回折光学素子26の光軸、回折光学素子26の中心から出射する主光線が一致するものとする。   FIG. 3 is a diagram schematically showing an example of the illumination device in the first embodiment in cross-sectional view. In FIG. 3, an example of the illumination device according to the first embodiment is indicated by reference numeral “100”. In FIG. 3, X, Y, and Z directions are defined as three directions orthogonal to each other. Further, in FIG. 3, the spread of light from the diffractive optical element 26 toward the illumination region 33 is schematically indicated by a hatching range S. In the description of the first embodiment, it is assumed that the optical axis of the light source 25, the optical axis of the diffractive optical element 26, and the principal ray emitted from the center of the diffractive optical element 26 coincide.

図3には、照明領域33が模式的に断面視で示されている。   In FIG. 3, the illumination region 33 is schematically shown in a cross-sectional view.

照明領域33の外形やサイズは、任意であるが、典型的には、認証対象の生体の部位の外形やサイズ等に応じて決まる。例えば、非接触型の認証方法を用いる場合は、照明領域33は、認証時に生体の部位が位置すべき想定領域でありうる。他方、接触型の認証方法を用いる場合は、照明領域33は、生体の部位が接触する部位(例えば、透明なガラス等の素材により形成された載置台)でありうる。尚、照明領域33のサイズは、回折光学素子26の回折領域や光源25の出射面のサイズよりも有意に大きい。以下では、照明領域33は、一例として、XY平面に平行に延在する平面状の矩形領域であるとする。   The outer shape and size of the illumination area 33 are arbitrary, but are typically determined according to the outer shape and size of the body part to be authenticated. For example, when a non-contact type authentication method is used, the illumination area 33 may be an assumed area where a living body part should be located at the time of authentication. On the other hand, when the contact-type authentication method is used, the illumination region 33 can be a part (for example, a mounting table formed of a material such as transparent glass) that comes into contact with a part of the living body. Note that the size of the illumination region 33 is significantly larger than the size of the diffraction region of the diffractive optical element 26 and the size of the exit surface of the light source 25. In the following, it is assumed that the illumination area 33 is a planar rectangular area that extends parallel to the XY plane as an example.

照明装置100は、光源25と、回折光学素子26とを含む。   The illumination device 100 includes a light source 25 and a diffractive optical element 26.

光源25は、照明領域33に光を照射する。光源25の光軸が符号Iで示される。図示の例では、光軸Iは、照明領域33に垂直である(即ち、Z方向に平行)。光源25は、好ましくは、レーザー光のような直進性及び平行性が保たれる光を発生する光源ではなく、LEDなどの発散光源である。光源25は、例えば、LED(例えば近赤外LED、白色LED)により形成される。   The light source 25 irradiates the illumination area 33 with light. The optical axis of the light source 25 is indicated by symbol I. In the illustrated example, the optical axis I is perpendicular to the illumination area 33 (ie, parallel to the Z direction). The light source 25 is preferably a divergent light source such as an LED rather than a light source that generates light that maintains straightness and parallelism such as laser light. The light source 25 is formed of, for example, an LED (for example, a near infrared LED or a white LED).

回折光学素子26は、照明領域33と光源25との間に設けられる。回折光学素子26は、複数の回折格子が2次元配置された集合体(図4参照)により形成される。図3に示す例では、2次元配置面は、XY平面に平行に延在する。回折光学素子26の2次元配置面の中心(以下、「回折光学素子26の中心」ともいう)は、光源25の光軸上に配置される。   The diffractive optical element 26 is provided between the illumination region 33 and the light source 25. The diffractive optical element 26 is formed by an aggregate (see FIG. 4) in which a plurality of diffraction gratings are two-dimensionally arranged. In the example shown in FIG. 3, the two-dimensional arrangement surface extends in parallel to the XY plane. The center of the two-dimensional arrangement surface of the diffractive optical element 26 (hereinafter also referred to as “the center of the diffractive optical element 26”) is disposed on the optical axis of the light source 25.

尚、図3に示す例では、一例として、照明領域33は110mm×110mmの大きさの矩形であり、光源25と回折光学素子26との間隔は6mmである。また、照明領域33と回折光学素子26との間隔はZ方向で51mmである。   In the example shown in FIG. 3, as an example, the illumination area 33 is a rectangle having a size of 110 mm × 110 mm, and the distance between the light source 25 and the diffractive optical element 26 is 6 mm. The distance between the illumination region 33 and the diffractive optical element 26 is 51 mm in the Z direction.

図4は、回折光学素子の回折格子の一例を示す上面図である。尚、図4では、回折光学素子26の中央部以外は、回折格子の図示が省略されている。この例では、回折光学素子26は、マトリクス状に配置された複数の回折格子(以下、「セル」とも言う)263を有する。各セル263の格子間隔(ピッチ)及び回転方向は、互いに異なっても良い。セル263の形状は矩形に限定されず、セル263の配置はマトリクス状に限定されず、セル263の数も特に限定されない。以下の説明では、回折光学素子26の一辺に沿ったセル263の数のことを「ピクセル数PIX」とも言う。また、特定の1つのセル263を特定するときは、X方向及びY方向のPIX番号で指示し、X方向及びY方向のPIX番号は、図4に示すビューで左下のセル263を(1,1)として基準とする。   FIG. 4 is a top view showing an example of the diffraction grating of the diffractive optical element. In FIG. 4, the diffraction grating is not shown except for the central portion of the diffractive optical element 26. In this example, the diffractive optical element 26 includes a plurality of diffraction gratings (hereinafter also referred to as “cells”) 263 arranged in a matrix. The lattice interval (pitch) and the rotation direction of each cell 263 may be different from each other. The shape of the cells 263 is not limited to a rectangle, the arrangement of the cells 263 is not limited to a matrix, and the number of cells 263 is not particularly limited. In the following description, the number of cells 263 along one side of the diffractive optical element 26 is also referred to as “pixel number PIX”. Further, when specifying one specific cell 263, the PIX number in the X direction and the Y direction is indicated, and the PIX number in the X direction and the Y direction indicates (1, 1) in the lower left cell 263 in the view shown in FIG. The standard is as 1).

図5は、回折光学素子26の格子間隔の分布特性の一例を示す図である。図5は、X方向に沿った複数(本例では300個)の回折格子の格子間隔の分布特性を示す。例えば、図5に示す分布特性は、回折光学素子26の中心を通るX方向のライン(所定ラインの一例)に沿った特性である。   FIG. 5 is a diagram illustrating an example of a distribution characteristic of the lattice spacing of the diffractive optical element 26. FIG. 5 shows the distribution characteristics of the grating spacing of a plurality (300 in this example) of diffraction gratings along the X direction. For example, the distribution characteristic shown in FIG. 5 is a characteristic along a line (an example of a predetermined line) in the X direction passing through the center of the diffractive optical element 26.

図5に示す例では、一例として、次のような寸法関係の回折光学素子26から得られる特性が示される。回折光学素子26は、3mm×3mmの大きさの矩形であり、回折光学素子26のピクセル数PIXは300個であり、セル263は0.01mm×0.01mmの大きさの矩形である。図5には、X方向に沿ったセル263毎の格子間隔を結ぶ線が実線で示される。また、図5には、X方向に沿ったセル263毎の格子間隔の各値(各プロット点)に対する二次多項式による近似曲線が破線で示される。尚、近似曲線に係る多項式の次数は、任意である。   In the example shown in FIG. 5, the characteristic obtained from the diffractive optical element 26 having the following dimensional relationship is shown as an example. The diffractive optical element 26 is a rectangle having a size of 3 mm × 3 mm, the number of pixels PIX of the diffractive optical element 26 is 300, and the cell 263 is a rectangle having a size of 0.01 mm × 0.01 mm. In FIG. 5, a line connecting the lattice intervals of the cells 263 along the X direction is indicated by a solid line. In FIG. 5, an approximate curve by a second-order polynomial for each value (each plot point) of the lattice spacing for each cell 263 along the X direction is indicated by a broken line. The order of the polynomial relating to the approximate curve is arbitrary.

図5に示すように、第1実施例では、X方向に沿った格子間隔の分布は、中心側の方が端側よりも格子間隔が広い特性を有する。例えば、図5に示すように、X方向のPIX数"125〜175"での格子間隔は、X方向のPIX数"1〜50"や"250〜300"での格子間隔よりも有意に大きい。尚、図5に示す例では、格子間隔の分布特性は、X方向のPIX数"150"を中心として対称であるが、対称性はなくてもよい。また、近似曲線は、X方向のPIX数"150"(即ち、回折光学素子26のX方向の中心)でピーク値を取るが、ピーク値を取るX方向のPIX数(即ち、回折光学素子26のX方向の位置)は、回折光学素子26の中心に対応する位置であれば、厳密な中心から若干ずれてもよい。   As shown in FIG. 5, in the first embodiment, the distribution of the lattice spacing along the X direction has a characteristic that the lattice spacing is wider on the center side than on the end side. For example, as shown in FIG. 5, the lattice spacing at the PIX numbers “125 to 175” in the X direction is significantly larger than the lattice spacing at the PIX numbers “1 to 50” and “250 to 300” in the X direction. . In the example shown in FIG. 5, the distribution characteristic of the lattice spacing is symmetric with respect to the PIX number “150” in the X direction, but it may not be symmetric. The approximate curve takes a peak value at the PIX number “150” in the X direction (that is, the center in the X direction of the diffractive optical element 26), but the PIX number in the X direction that takes the peak value (that is, the diffractive optical element 26). (The position in the X direction) may be slightly shifted from the exact center as long as the position corresponds to the center of the diffractive optical element 26.

尚、図5に示す分布特性は、上述の如く、回折光学素子26の中心を通るX方向のラインに沿った特性を示す。但し、回折光学素子26は、中心以外の任意の位置を通るX方向のラインに沿って、又は、特定のY方向の範囲内の任意の位置を通るX方向のラインに沿って、図5に示すような特性を有してもよい。また、回折光学素子26は、Y方向のラインに沿って、図5に示すような特性を有してもよい。この場合も同様に、回折光学素子26は、回折光学素子26の中心を通るY方向のラインに沿って、図5に示すような特性を有してもよい。或いは、回折光学素子26は、中心以外の任意の位置を通るY方向のラインに沿って、又は、特定のX方向の範囲内の任意の位置を通るY方向のラインに沿って、図5に示すような特性を有してもよい。或いは、回折光学素子26は、回折光学素子26の中心を通る他の方向(X方向とY方向との組み合わせの方向)のラインに沿って、図5に示すような特性を有してもよい。これらの場合、"図5に示すような特性を有する"とは、厳密に図5に示す特性を有する必要はなく、図5に示す例よりも、中心側の格子間隔と端側の格子間隔との差が大きくてもよいし、小さくてもよい。即ち、各ラインに沿った近似式の多項式の係数は異なってもよい。以下では、回折光学素子26は、一例として、回折光学素子26の中心を通る任意の方向のライン(所定ラインの一例)に沿って、図5に示すような特性を有するものとする。   The distribution characteristics shown in FIG. 5 indicate the characteristics along the line in the X direction passing through the center of the diffractive optical element 26 as described above. However, the diffractive optical element 26 is shown in FIG. 5 along an X direction line passing through an arbitrary position other than the center, or along an X direction line passing through an arbitrary position within a specific Y direction range. It may have the characteristics as shown. Further, the diffractive optical element 26 may have characteristics as shown in FIG. 5 along a line in the Y direction. In this case as well, the diffractive optical element 26 may have characteristics as shown in FIG. 5 along a line in the Y direction passing through the center of the diffractive optical element 26. Alternatively, the diffractive optical element 26 is shown in FIG. 5 along a Y-direction line passing through any position other than the center or along a Y-direction line passing through any position within a specific X-direction range. It may have the characteristics as shown. Alternatively, the diffractive optical element 26 may have characteristics as shown in FIG. 5 along a line in another direction (direction of a combination of the X direction and the Y direction) passing through the center of the diffractive optical element 26. . In these cases, “having the characteristics shown in FIG. 5” does not need to have the characteristics shown in FIG. 5 strictly, and the lattice spacing on the center side and the lattice spacing on the end side than the example shown in FIG. The difference may be large or small. That is, the polynomial coefficients of the approximate expression along each line may be different. In the following, it is assumed that the diffractive optical element 26 has characteristics as shown in FIG. 5 along a line (an example of a predetermined line) in an arbitrary direction passing through the center of the diffractive optical element 26 as an example.

図6は、照明領域33に向けられるn次回折光の光強度の分布を模式的に示す図である。各ライン90は、間隔が広いほど、n次回折光の強度が小さいことを意味し、間隔が狭いほど、n次回折光の強度が大きいことを意味する。   FIG. 6 is a diagram schematically illustrating the light intensity distribution of the nth-order diffracted light directed toward the illumination region 33. Each line 90 means that the larger the interval, the smaller the intensity of the n-th order diffracted light, and the smaller the interval, the greater the intensity of the n-order diffracted light.

ここで、回折の一般的な特性は、以下の近似式で表すことができる。
nλ/d=sinθi+sinθo
n:回折次数
λ:波長
d:格子間隔
θi:入射光角度
θo:回折光角度
この式は、格子間隔dが大きいほど、回折光角度が小さく、格子間隔dが小さいほど、回折光角度が大きくなることを意味する。
Here, the general characteristic of diffraction can be expressed by the following approximate expression.
nλ / d = sinθi + sinθo
n: Diffraction order λ: Wavelength
d: grating spacing θi: incident light angle θo: diffracted light angle This equation means that the larger the grating distance d, the smaller the diffracted light angle, and the smaller the grating distance d, the larger the diffracted light angle.

図7は、照明領域33における光強度の分布を示す図であり、(A)は、0次透過光による光強度の分布を示し、(B)は、n次回折光の分布を示し、(C)は、0次透過光とn次回折光とを足し合わせたときの光強度の分布を示す図である。図7において、グレースケールの黒になるほど、光強度が"小"(即ち"暗")であることを意味する。   7A and 7B are diagrams showing the light intensity distribution in the illumination region 33, where FIG. 7A shows the light intensity distribution due to the 0th order transmitted light, FIG. 7B shows the distribution of the nth order diffracted light, and (C ) Is a diagram showing a light intensity distribution when the 0th order transmitted light and the nth order diffracted light are added together. In FIG. 7, the darker the gray scale, the smaller the light intensity is (ie, “dark”).

ここで、一般的に、回折光の強度としては、格子間隔dが大きいほど、強度が小さくなる。従って、格子間隔が広いと0次透過光が強く、回折光が弱くなり、逆に、格子間隔が狭いと0次透過光が弱く、回折光が強くなることが知られている。   Here, in general, the intensity of diffracted light decreases as the grating interval d increases. Therefore, it is known that when the grating interval is wide, the zeroth order transmitted light is strong and the diffracted light is weak, and conversely, when the grating interval is narrow, the zeroth order transmitted light is weak and the diffracted light becomes strong.

図7(A)に示すように、回折光学素子26においては0次透過光が不可避的に発生するため、照明領域33における照明光の光強度の分布は、0次透過光による照明光の光強度の分布の影響を受ける。特に、回折光学素子26の中心領域では、光源25から入射する光の強度が他の領域よりも高いため(例えば、ガウス分布)、回折光学素子26の中心領域内のセル263からの0次透過光による光強度の分布の影響が大きくなる。第1実施例では、図5に示すように、X方向の中心側の方が端側よりも格子間隔が広いので、X方向の中心側のセル263から照明領域33に向けられる光の強度は、0次透過光が強く、回折光が弱くなる。従って、0次透過光による光強度の分布は、図7(A)に示すように、Z方向に視て、照明領域33の中心(光源25の中心)が最も高くなる。また、図7(B)に示すように、照明領域33の中心領域を照明するn次回折光の強度は、照明領域33の端部領域を照明するn次回折光の強度よりも小さくなる。即ち、n次回折光による光強度の分布は、図7(B)に示すように、Z方向に視て、照明領域33の中心(光源25の中心)が最も低くなる。   As shown in FIG. 7A, since the 0th order transmitted light is inevitably generated in the diffractive optical element 26, the distribution of the light intensity of the illumination light in the illumination region 33 is the light of the illumination light by the 0th order transmitted light. Influenced by intensity distribution. In particular, since the intensity of light incident from the light source 25 is higher in the central region of the diffractive optical element 26 than in other regions (for example, Gaussian distribution), the zero-order transmission from the cell 263 in the central region of the diffractive optical element 26. The influence of light intensity distribution due to light increases. In the first embodiment, as shown in FIG. 5, since the lattice spacing is wider on the center side in the X direction than on the end side, the intensity of light directed from the cell 263 on the center side in the X direction to the illumination region 33 is The 0th order transmitted light is strong and the diffracted light is weak. Therefore, as shown in FIG. 7A, the light intensity distribution due to the 0th-order transmitted light is highest at the center of the illumination area 33 (center of the light source 25) as viewed in the Z direction. In addition, as shown in FIG. 7B, the intensity of the nth order diffracted light that illuminates the central region of the illumination area 33 is smaller than the intensity of the nth order diffracted light that illuminates the end area of the illumination area 33. That is, as shown in FIG. 7B, the light intensity distribution by the n-th order diffracted light has the lowest center of the illumination region 33 (the center of the light source 25) as viewed in the Z direction.

従って、第1実施例によれば、図7(C)に示すように、0次透過光とn次回折光とを足し合わせたときの光強度の分布の均一化の図ることができる。   Therefore, according to the first embodiment, as shown in FIG. 7C, the distribution of the light intensity when the 0th order transmitted light and the nth order diffracted light are added can be made uniform.

次に、図8及び図9を参照して、上述の第1実施例に対する変形例を説明する。   Next, with reference to FIGS. 8 and 9, a modified example of the first embodiment will be described.

図8は、回折光学素子26'のX方向に沿った格子間隔の分布を示す図である。尚、この分布特性は、回折光学素子26'の中心を通るX方向のラインに沿った特性(二次多項式による近似曲線)である。但し、上述した実施例1と同様、回折光学素子26'は、他の方向のラインに沿っても、図8に示すような特性を有してよい。図8において、破線は、上述の第1実施例の場合を示し、一点鎖線は、本変形例の場合を示す。図9は、回折光学素子26'により照明領域33に向けられるn次回折光の光強度の分布を模式的に示す図である。図9において、上述の第1実施例の場合を示した図6と同様、各ライン90は、間隔が広いほど、n次回折光の強度が小さいことを意味し、間隔が狭いほど、n次回折光の強度が大きいことを意味する。   FIG. 8 is a diagram showing the distribution of the lattice spacing along the X direction of the diffractive optical element 26 ′. This distribution characteristic is a characteristic (approximate curve by a second-order polynomial) along a line in the X direction passing through the center of the diffractive optical element 26 '. However, similarly to the above-described first embodiment, the diffractive optical element 26 ′ may have characteristics as shown in FIG. 8 even along lines in other directions. In FIG. 8, a broken line shows the case of the above-mentioned 1st Example, and a dashed-dotted line shows the case of this modification. FIG. 9 is a diagram schematically showing the light intensity distribution of the nth-order diffracted light directed toward the illumination region 33 by the diffractive optical element 26 ′. In FIG. 9, as in FIG. 6 showing the case of the first embodiment described above, each line 90 means that the larger the interval, the smaller the intensity of the n-th order diffracted light. It means that the strength of is large.

本変形例では、回折光学素子26'の格子間隔は、図9に各ライン90の間隔が同一である状態が模式的に示されるように、照明領域33におけるn次回折光の強度分布が均一になるように設定されている。具体的には、本変形例では、図8に示すように、上述の第1実施例と同様、X方向のラインに沿った格子間隔の分布特性は、回折光学素子26'の中心側の方が端側よりも格子間隔が広い。但し、本変形例では、図8に示すように、上述の第1実施例よりも格子間隔が狭い。この傾向は、特にX方向に沿った回折光学素子26'の中心領域で顕著である。   In the present modification, the grating spacing of the diffractive optical element 26 'is such that the intensity distribution of the nth-order diffracted light in the illumination region 33 is uniform, as schematically shown in FIG. It is set to be. Specifically, in this modification, as shown in FIG. 8, the distribution characteristics of the lattice spacing along the line in the X direction are the same as those in the center side of the diffractive optical element 26 ′, as in the first embodiment. Is wider than the end side. However, in this modification, as shown in FIG. 8, the lattice spacing is narrower than that in the first embodiment. This tendency is particularly remarkable in the central region of the diffractive optical element 26 ′ along the X direction.

本変形例によれば、X方向に沿った格子間隔の分布特性は、回折光学素子26'の中心側の方が端側よりも格子間隔が広いが、上述の第1実施例よりも狭いので、照明領域33におけるn次回折光の強度分布の均一化を図ることができる。換言すると、上述の第1実施例では、X方向に沿った格子間隔の分布特性は、本変形例よりも格子間隔が広く、且つ、回折光学素子26の中心側の方が端側よりも格子間隔が広い。この結果、上述の第1実施例によれば、0次透過光とn次回折光とを足し合わせたときの光強度の分布の均一化の図ることができる。   According to this modified example, the distribution characteristic of the grating spacing along the X direction is larger at the center side of the diffractive optical element 26 'than at the end side, but is narrower than that of the first embodiment. The intensity distribution of the nth order diffracted light in the illumination region 33 can be made uniform. In other words, in the first embodiment described above, the distribution characteristics of the grating interval along the X direction are larger than those of the present modification, and the center side of the diffractive optical element 26 is more grating than the end side. Wide spacing. As a result, according to the first embodiment described above, it is possible to make the light intensity distribution uniform when the 0th order transmitted light and the nth order diffracted light are added together.

尚、上述した実施例1(変形例を含む)では、回折光学素子26の格子間隔の分布は、図5や図8に示すように、回折光学素子26のX方向の中心に対応する位置でピーク値を取る。ここで、上述の如く、ピーク値を取る回折光学素子26のX方向の位置は、回折光学素子26のX方向の厳密な中心に一致する必要はなく、厳密な中心から若干ずれてもよい。例えば、回折光学素子26の中心と照明領域33の中心(=撮影光学系72の光軸)がX方向で若干ずれる場合、ピーク値を取る回折光学素子26のX方向の位置は、厳密な中心から照明領域33の中心に向う方向にずれてよい。この場合、回折光学素子26の各格子間隔は、例えば図5に示すような近似曲線が、照明領域33の中心に対応する位置でピーク値を取るように設定されてよい。これは、回折光学素子26の中心と照明領域33の中心が他の方向(X方向以外の方向)で若干ずれる場合も同様である。いずれの場合であっても、回折光学素子26の各格子間隔は、同方向に沿った格子間隔の分布を表す近似曲線が、照明領域33の中心(=撮影光学系72の光軸)に対応する位置でピーク値を取るように設定されてよい。   In the first embodiment (including the modification) described above, the distribution of the lattice spacing of the diffractive optical element 26 is at a position corresponding to the center in the X direction of the diffractive optical element 26 as shown in FIGS. Take the peak value. Here, as described above, the position in the X direction of the diffractive optical element 26 taking the peak value does not need to coincide with the exact center of the diffractive optical element 26 in the X direction, and may slightly deviate from the exact center. For example, when the center of the diffractive optical element 26 and the center of the illumination area 33 (= the optical axis of the photographing optical system 72) are slightly shifted in the X direction, the position of the diffractive optical element 26 taking the peak value in the X direction is the exact center. To the direction toward the center of the illumination area 33. In this case, each grating interval of the diffractive optical element 26 may be set so that an approximate curve as shown in FIG. 5 takes a peak value at a position corresponding to the center of the illumination region 33, for example. The same applies to the case where the center of the diffractive optical element 26 and the center of the illumination region 33 are slightly shifted in other directions (directions other than the X direction). In any case, each grating interval of the diffractive optical element 26 is such that the approximate curve representing the distribution of the grating interval along the same direction corresponds to the center of the illumination region 33 (= the optical axis of the imaging optical system 72). It may be set to take a peak value at the position where

次に、図10乃至図13を参照して、第2実施例による照明装置を説明する。   Next, with reference to FIG. 10 thru | or FIG. 13, the illuminating device by 2nd Example is demonstrated.

図10は、第2実施例における照明装置の一例を模式的に断面視で示す図である。図10には、第2実施例における照明装置の一例が符号"100A"で指示されている。   FIG. 10 is a diagram schematically showing an example of a lighting device in the second embodiment in cross-sectional view. In FIG. 10, an example of the illumination device in the second embodiment is indicated by reference numeral “100A”.

照明装置100Aは、第1実施例において説明した光源25と回折光学素子26を2セット、X方向に配列した点が、上述の第1実施例による照明装置100と異なる。   The illumination device 100A differs from the illumination device 100 according to the first embodiment described above in that two sets of the light source 25 and the diffractive optical element 26 described in the first embodiment are arranged in the X direction.

第1光学セット251は、光源25及び回折光学素子26を含み、第2光学セット252は、光源25及び回折光学素子26を含む。光源25及び回折光学素子26のそれぞれの構成は、上述の第1実施例と同様であってよい。   The first optical set 251 includes the light source 25 and the diffractive optical element 26, and the second optical set 252 includes the light source 25 and the diffractive optical element 26. The configurations of the light source 25 and the diffractive optical element 26 may be the same as those in the first embodiment described above.

図10に示す照明装置100Aによれば、2つの光学セット(第1光学セット251及び第2光学セット252)を備えるので、照明領域33が比較的大きい場合であっても、照明領域33における照明光の光強度の分布を所望の態様で均一化できる。例えば、第1光学セット251及び第2光学セット252のX方向の間隔Δxを調整することで、0次透過光とn次回折光とを足し合わせたときの光強度の分布を所望の態様で均一化できる(図9及び図10参照)。   Since the illumination device 100A shown in FIG. 10 includes two optical sets (the first optical set 251 and the second optical set 252), the illumination in the illumination region 33 is performed even when the illumination region 33 is relatively large. The light intensity distribution of light can be made uniform in a desired manner. For example, by adjusting the X-direction interval Δx between the first optical set 251 and the second optical set 252, the light intensity distribution when the 0th order transmitted light and the nth order diffracted light are added is uniform in a desired manner. (See FIGS. 9 and 10).

尚、図10に示す照明装置100Aでは、2つの光学セット(第1光学セット251及び第2光学セット252)を備えるが、3つ以上の光学セットを備えてもよい。また、図10に示す照明装置100Aでは、2つの光学セット(第1光学セット251及び第2光学セット252)がX方向に配列されているが、Y方向や、X方向とY方向の組み合わせの方向に配列されてもよい。また、3つ以上の光学セットが直線上以外の配列パターンで配置されてもよい。   Note that the illumination device 100A illustrated in FIG. 10 includes two optical sets (a first optical set 251 and a second optical set 252), but may include three or more optical sets. In the illumination device 100A shown in FIG. 10, two optical sets (first optical set 251 and second optical set 252) are arranged in the X direction. However, the Y direction or a combination of the X direction and the Y direction is used. It may be arranged in the direction. Three or more optical sets may be arranged in an arrangement pattern other than a straight line.

図11は、照明装置100Aにより得られる照明領域33における光強度の分布特性の一例を示す図である。図11では、横軸は、照明領域33のX方向の位置を表し、縦軸が強度を表す。尚、図11において、位置"x1"は、第1光学セット251のX方向の位置に対応し、位置"x2"は、第2光学セット252のX方向の位置に対応する。図11において、(A)は、0次透過光による光強度の分布を示し、(B)は、n次回折光の分布を示し、(C)は、0次透過光とn次回折光とを足し合わせたときの光強度の分布を示す図である。図11に示す例は、第1光学セット251及び第2光学セット252のX方向の間隔Δxが比較的大きい場合を示す。図11に示す例では、第1光学セット251及び第2光学セット252のX方向の間隔Δxは、0次透過光とn次回折光とを足し合わせたときの光強度の分布が、図11(C)に示すように均一になるように設定される。   FIG. 11 is a diagram illustrating an example of light intensity distribution characteristics in the illumination region 33 obtained by the illumination device 100A. In FIG. 11, the horizontal axis represents the position of the illumination area 33 in the X direction, and the vertical axis represents the intensity. In FIG. 11, the position “x1” corresponds to the position of the first optical set 251 in the X direction, and the position “x2” corresponds to the position of the second optical set 252 in the X direction. In FIG. 11, (A) shows the distribution of the light intensity due to the 0th order transmitted light, (B) shows the distribution of the nth order diffracted light, and (C) shows the addition of the 0th order transmitted light and the nth order diffracted light. It is a figure which shows distribution of the light intensity when match | combining. The example illustrated in FIG. 11 illustrates a case where the distance Δx in the X direction between the first optical set 251 and the second optical set 252 is relatively large. In the example shown in FIG. 11, the X-direction interval Δx between the first optical set 251 and the second optical set 252 is the distribution of the light intensity when the 0th order transmitted light and the nth order diffracted light are added. It is set to be uniform as shown in C).

図12は、照明装置100Aにより得られる照明領域33における光強度の分布特性の他の一例を示す図である。図12では、横軸は、照明領域33のX方向の位置を表し、縦軸が強度を表す。尚、図12において、位置"x3"は、第1光学セット251及び第2光学セット252間のX方向の中間位置に対応する。図12において、(A)は、0次透過光による光強度の分布を示し、(B)は、n次回折光の分布を示し、(C)は、0次透過光とn次回折光とを足し合わせたときの光強度の分布を示す図である。図12に示す例は、第1光学セット251及び第2光学セット252のX方向の間隔Δxが、図13に示すように、非常に小さい場合を示す。図12に示す例では、第1光学セット251及び第2光学セット252のX方向の間隔Δxは、0次透過光とn次回折光とを足し合わせたときの光強度の分布が、図12(C)に示すように球面強度分布になるように設定される。球面強度分布は、例えば、以下のような式で表現される。
E(θ)=E0×(cosθ)2
ここで、θは、図13に示すように、第1光学セット251及び第2光学セット252のX方向の中心と照明領域33の各点とを結ぶときの直線が、光軸に対してなす角度を表す。
FIG. 12 is a diagram illustrating another example of the light intensity distribution characteristic in the illumination region 33 obtained by the illumination device 100A. In FIG. 12, the horizontal axis represents the position of the illumination area 33 in the X direction, and the vertical axis represents the intensity. In FIG. 12, the position “x3” corresponds to an intermediate position in the X direction between the first optical set 251 and the second optical set 252. In FIG. 12, (A) shows the distribution of the light intensity due to the 0th order transmitted light, (B) shows the distribution of the nth order diffracted light, and (C) shows the addition of the 0th order transmitted light and the nth order diffracted light. It is a figure which shows distribution of the light intensity when match | combining. The example shown in FIG. 12 shows a case where the distance Δx in the X direction between the first optical set 251 and the second optical set 252 is very small as shown in FIG. In the example shown in FIG. 12, the distance Δx in the X direction between the first optical set 251 and the second optical set 252 is the distribution of the light intensity when the 0th order transmitted light and the nth order diffracted light are added. As shown in C), the spherical intensity distribution is set. The spherical intensity distribution is expressed by the following expression, for example.
E (θ) = E0 × (cosθ) 2
Here, as shown in FIG. 13, θ is a straight line connecting the center of the first optical set 251 and the second optical set 252 in the X direction and each point of the illumination area 33 with respect to the optical axis. Represents an angle.

次に、図14乃至図18を参照して、照明装置100を組み込んだ生体認証装置用センサの例について説明する。   Next, an example of a sensor for a biometric authentication device incorporating the illumination device 100 will be described with reference to FIGS.

図14は、照明装置100を組み込んだ生体認証装置用センサの一例を上面視で概略的に示す図である。図14には、照明装置100を組み込んだ生体認証装置用センサの一例が符号"70A"で指示されている。尚、図14では、照明領域33は、図示が省略されている。図15は、回折光学素子26を含む基板261の一例を上面視で概略的に示す図である。図16は、図14のラインA−Aに沿った断面図である。   FIG. 14 is a diagram schematically showing an example of a biometric authentication device sensor incorporating the illumination device 100 in a top view. In FIG. 14, an example of a biometric authentication device sensor that incorporates the illumination device 100 is indicated by the reference numeral “70A”. In FIG. 14, the illumination region 33 is not shown. FIG. 15 is a diagram schematically showing an example of the substrate 261 including the diffractive optical element 26 in a top view. 16 is a cross-sectional view taken along line AA of FIG.

生体認証装置用センサ70Aは、カメラなどの撮影光学系72と、2つの光源25と、2つの回折光学素子26とを含む。2つの回折光学素子26は、例えば、図15に示すように、基板261に形成される。各回折光学素子26は、2つの光源25のそれぞれに対して、光源25の出射面側に設けられる。2つの回折光学素子26は、撮影光学系72の光軸に関して対称に配置される。回折光学素子26及び光源25の各組は、それぞれ、照明装置100を形成する。   The biometric authentication device sensor 70 </ b> A includes a photographing optical system 72 such as a camera, two light sources 25, and two diffractive optical elements 26. The two diffractive optical elements 26 are formed on a substrate 261, for example, as shown in FIG. Each diffractive optical element 26 is provided on the exit surface side of the light source 25 with respect to each of the two light sources 25. The two diffractive optical elements 26 are arranged symmetrically with respect to the optical axis of the photographing optical system 72. Each set of the diffractive optical element 26 and the light source 25 forms the illumination device 100.

尚、図14乃至図16に示す例において、各回折光学素子26は、第1実施例で説明した通りの格子間隔の分布特性(図5、図8参照)を有する。尚、光源25の光軸と各回折光学素子26の中心との間のオフセットが微小である場合は、光源25の光軸上に各回折光学素子26の中心が位置するとみなすことができる。但し、光源25の光軸と各回折光学素子26の中心との間のX方向のオフセットが有意である場合は、各回折光学素子26は、Y方向に関してのみ、第1実施例で説明した通りの格子間隔の分布特性を有してもよい。この場合、X方向に沿った格子間隔の分布特性は、後述する非対称配置に係る分布特性(図20参照)を有してよい。   In the examples shown in FIGS. 14 to 16, each diffractive optical element 26 has the distribution characteristics of the grating spacing as described in the first embodiment (see FIGS. 5 and 8). If the offset between the optical axis of the light source 25 and the center of each diffractive optical element 26 is very small, it can be considered that the center of each diffractive optical element 26 is located on the optical axis of the light source 25. However, when the offset in the X direction between the optical axis of the light source 25 and the center of each diffractive optical element 26 is significant, each diffractive optical element 26 is only in the Y direction as described in the first embodiment. It may have a distribution characteristic of the lattice spacing. In this case, the distribution characteristic of the lattice spacing along the X direction may have a distribution characteristic (see FIG. 20) related to an asymmetric arrangement described later.

図17は、照明装置100を組み込んだ生体認証装置用センサの他の一例を上面視で概略的に示す図である。図17には、照明装置100を組み込んだ生体認証装置用センサの一例が符号"70B"で指示されている。図18は、照明装置100を組み込んだ生体認証装置用センサの更なる他の一例を上面視で概略的に示す図である。図18には、照明装置100を組み込んだ生体認証装置用センサの一例が符号"70C"で指示されている。図17及び図18のいずれの例においても、各回折光学素子26は、撮影光学系72の光軸に関して対称に配置される。回折光学素子26及び光源25の各組は、それぞれ、照明装置100を形成する。このように、回折光学素子26及び光源25は、任意の組数で、撮影光学系72の光軸に関して対称に任意の態様で配置されてもよい。   FIG. 17 is a diagram schematically showing another example of the biometric authentication device sensor incorporating the illumination device 100 in a top view. In FIG. 17, an example of a biometric authentication device sensor that incorporates the illumination device 100 is indicated by a symbol “70B”. FIG. 18 is a diagram schematically showing still another example of the biometric device sensor incorporating the illumination device 100 in a top view. In FIG. 18, an example of a biometric authentication device sensor that incorporates the illumination device 100 is indicated by the reference numeral “70C”. 17 and 18, the diffractive optical elements 26 are arranged symmetrically with respect to the optical axis of the photographing optical system 72. Each set of the diffractive optical element 26 and the light source 25 forms the illumination device 100. As described above, the diffractive optical element 26 and the light source 25 may be arranged in an arbitrary manner symmetrically with respect to the optical axis of the imaging optical system 72 in an arbitrary number of sets.

次に、図19乃至図21を参照して、第3実施例による照明装置を説明する。   Next, with reference to FIG. 19 thru | or FIG. 21, the illuminating device by 3rd Example is demonstrated.

図19は、第3実施例における照明装置の一例を模式的に断面視で示す図である。図19には、第3実施例における照明装置の一例が符号"100B"で指示されている。図3には、回折光学素子26Bから照明領域33に向かう光の広がりが模式的にハッチング範囲Sで示されている。   FIG. 19 is a diagram schematically showing an example of a lighting device in the third embodiment in cross-sectional view. In FIG. 19, an example of the illumination device in the third embodiment is indicated by the reference numeral “100B”. In FIG. 3, the spread of light from the diffractive optical element 26 </ b> B toward the illumination region 33 is schematically indicated by a hatched range S.

第3実施例では、光源25の光軸Iおよび回折光学素子26Bの光軸が撮影光学系72の光軸I2に対してオフセットし、回折光学素子26の中心から出射する主光線I3が斜めになっている点が、上述した実施例1による照明装置100と異なる。尚、上述した実施例1と同様であってよい構成については、同一の参照符号を付して説明を省略する。   In the third embodiment, the optical axis I of the light source 25 and the optical axis of the diffractive optical element 26B are offset with respect to the optical axis I2 of the photographing optical system 72, and the principal ray I3 emitted from the center of the diffractive optical element 26 is inclined. This is different from the illumination device 100 according to the first embodiment described above. In addition, about the structure which may be the same as that of Example 1 mentioned above, the same referential mark is attached | subjected and description is abbreviate | omitted.

照明装置100Bは、光源25と、回折光学素子26Bとを含む。   The illumination device 100B includes a light source 25 and a diffractive optical element 26B.

回折光学素子26Bは、照明領域33と光源25との間に設けられる。回折光学素子26Bは、複数の回折格子が2次元配置された集合体(図4参照)により形成される。回折光学素子26Bの2次元配置面の中心は、光源25の光軸上に配置される。尚、回折光学素子26Bは、後述のようにX方向に沿った格子間隔の分布特性が異なる以外は、上述した実施例1における回折光学素子26と同じであってよい。   The diffractive optical element 26 </ b> B is provided between the illumination region 33 and the light source 25. The diffractive optical element 26B is formed by an aggregate (see FIG. 4) in which a plurality of diffraction gratings are two-dimensionally arranged. The center of the two-dimensional arrangement surface of the diffractive optical element 26 </ b> B is arranged on the optical axis of the light source 25. The diffractive optical element 26B may be the same as the diffractive optical element 26 in the first embodiment described above except that the distribution characteristic of the lattice spacing along the X direction is different as described later.

回折光学素子26Bの中心は、光源25の光軸Iと撮影光学系72の光軸I2がオフセットしていることに伴って、撮影光学系72の光軸I2に対してX方向で有意にオフセットしている。有意にオフセットとは、撮影光学系72の光軸I2が、回折光学素子26Bを通らないほどオフセットしていることを意味する。   The center of the diffractive optical element 26B is significantly offset in the X direction with respect to the optical axis I2 of the photographing optical system 72 as the optical axis I of the light source 25 and the optical axis I2 of the photographing optical system 72 are offset. doing. Significantly offset means that the optical axis I2 of the photographing optical system 72 is offset so as not to pass through the diffractive optical element 26B.

図20は、回折光学素子26Bの格子間隔の分布特性の一例を示す図である。図20は、X方向に沿った複数(本例では300個)の回折格子の格子間隔の分布特性を示す。例えば、図20に示す分布特性は、回折光学素子26Bの中心を通るX方向のライン(所定ラインの一例)に沿った特性である。但し、回折光学素子26Bは、中心以外の任意の位置を通るX方向のラインに沿って、又は、特定のY方向の範囲内の任意の位置を通るX方向のラインに沿って、図20に示すような特性を有してもよい。   FIG. 20 is a diagram illustrating an example of a distribution characteristic of the lattice spacing of the diffractive optical element 26B. FIG. 20 shows the distribution characteristics of the grating spacing of a plurality (300 in this example) of diffraction gratings along the X direction. For example, the distribution characteristic shown in FIG. 20 is a characteristic along a line (an example of a predetermined line) in the X direction passing through the center of the diffractive optical element 26B. However, the diffractive optical element 26B is shown in FIG. 20 along an X direction line passing through an arbitrary position other than the center or along an X direction line passing through an arbitrary position within a specific Y direction range. It may have the characteristics as shown.

図21は、回折光学素子26Bの格子間隔の分布特性の一例を示す図である。図21は、Y方向に沿った複数(本例では300個)の回折格子の格子間隔の分布特性を示す。例えば、図21に示す分布特性は、回折光学素子26Bの中心を通るY方向のライン(所定ラインの一例)に沿った特性である。但し、回折光学素子26Bは、中心以外の任意の位置を通るY方向のラインに沿って、又は、特定のX方向の範囲内の任意の位置を通るY方向のラインに沿って、図21に示すような特性を有してもよい。   FIG. 21 is a diagram illustrating an example of a distribution characteristic of the lattice spacing of the diffractive optical element 26B. FIG. 21 shows the distribution characteristics of the grating spacing of a plurality (300 in this example) of diffraction gratings along the Y direction. For example, the distribution characteristics shown in FIG. 21 are characteristics along a Y-direction line (an example of a predetermined line) passing through the center of the diffractive optical element 26B. However, the diffractive optical element 26B is shown in FIG. 21 along a line in the Y direction passing through an arbitrary position other than the center, or along a line in the Y direction passing through an arbitrary position within a specific X direction range. It may have the characteristics as shown.

図20及び図21に示す例では、一例として、次のような寸法関係の回折光学素子26Bから得られる特性が示される。回折光学素子26Bは、3mm×3mmの大きさの矩形であり、回折光学素子26Bのピクセル数PIXは300個であり、セル263は0.01mm×0.01mmの大きさの矩形である。図20及び図21には、それぞれ、X方向のライン及びY方向のラインに沿ったセル263毎の格子間隔を結ぶ線が実線で示される。また、図20及び図21には、それぞれ、X方向のライン及びY方向のラインに沿ったセル263毎の格子間隔の各値(各プロット点)に対する二次多項式による近似曲線が破線で示される。尚、近似曲線に係る多項式の次数は、任意である。   In the example shown in FIGS. 20 and 21, as an example, the characteristics obtained from the diffractive optical element 26B having the following dimensional relationship are shown. The diffractive optical element 26B is a rectangle having a size of 3 mm × 3 mm, the number of pixels PIX of the diffractive optical element 26B is 300, and the cell 263 is a rectangle having a size of 0.01 mm × 0.01 mm. In FIGS. 20 and 21, lines connecting the lattice intervals of the cells 263 along the line in the X direction and the line in the Y direction are indicated by solid lines. In FIGS. 20 and 21, approximated curves using quadratic polynomials for each value (each plot point) of the lattice spacing for each cell 263 along the line in the X direction and the line in the Y direction are indicated by broken lines. . The order of the polynomial relating to the approximate curve is arbitrary.

第3実施例では、図20に示すように、X方向のラインに沿った格子間隔の分布は、撮影光学系72の光軸I2に近い側の一端から他端に向けて格子間隔が徐々に狭くなる特性を有する。図20に示す例では、X方向のラインに沿った格子間隔の分布特性は、X方向のPIX数が増加するにつれて、格子間隔が徐々に狭くなる特性を有する。   In the third example, as shown in FIG. 20, the distribution of the lattice spacing along the line in the X direction is such that the lattice spacing gradually increases from one end of the photographing optical system 72 closer to the optical axis I2 to the other end. Has the property of narrowing. In the example shown in FIG. 20, the distribution characteristic of the lattice spacing along the line in the X direction has a characteristic that the lattice spacing gradually narrows as the number of PIX in the X direction increases.

また、第3実施例では、図21に示すように、Y方向のラインに沿った格子間隔の分布は、中心側の方が端側よりも格子間隔が広い特性を有する。例えば、図21に示すように、Y方向のPIX数"125〜175"での格子間隔は、Y方向のPIX数"1〜50"や"250〜300"での格子間隔よりも有意に大きい。尚、図21に示す例では、格子間隔の分布特性は、Y方向のPIX数"150"を中心として対称であるが、対称性はなくてもよい。   Further, in the third embodiment, as shown in FIG. 21, the distribution of the lattice spacing along the line in the Y direction has a characteristic that the lattice spacing on the center side is wider than that on the end side. For example, as shown in FIG. 21, the lattice spacing at the PIX numbers “125 to 175” in the Y direction is significantly larger than the lattice spacing at the PIX numbers “1 to 50” and “250 to 300” in the Y direction. . In the example shown in FIG. 21, the distribution characteristic of the lattice spacing is symmetric with respect to the PIX number “150” in the Y direction, but it may not be symmetric.

第3実施例によれば、回折光学素子26Bの中心が撮影光学系72の光軸I2に対してX方向で有意にオフセットする場合でも、上述の第1実施例と同様、0次透過光とn次回折光とを足し合わせたときの光強度の分布の均一化の図ることができる。   According to the third embodiment, even when the center of the diffractive optical element 26B is significantly offset in the X direction with respect to the optical axis I2 of the photographing optical system 72, as in the first embodiment, the 0th-order transmitted light and It is possible to make the light intensity distribution uniform when the n-th order diffracted light is added.

尚、上述した第3実施例では、回折光学素子26Bの中心は、撮影光学系72の光軸I2に対してX方向で有意にオフセットする一方、撮影光学系72の光軸I2に対してY方向ではオフセットしていない。しかしながら、回折光学素子26Bの中心は、撮影光学系72の光軸I2に対してX方向及びY方向の双方で有意にオフセットしてもよい。この場合、Y方向に沿った格子間隔の分布特性についても、図20に示すような特性であってよい。   In the third embodiment described above, the center of the diffractive optical element 26B is significantly offset in the X direction with respect to the optical axis I2 of the photographic optical system 72, while it is Y with respect to the optical axis I2 of the photographic optical system 72. There is no offset in the direction. However, the center of the diffractive optical element 26B may be significantly offset in both the X direction and the Y direction with respect to the optical axis I2 of the photographing optical system 72. In this case, the distribution characteristics of the lattice spacing along the Y direction may also be characteristics as shown in FIG.

次に、図22乃至図26を参照して、照明装置100Bを組み込んだ生体認証装置用センサの例について説明する。   Next, with reference to FIGS. 22 to 26, an example of a sensor for a biometric authentication device incorporating the illumination device 100B will be described.

図22は、照明装置100Bを組み込んだ生体認証装置用センサの一例を上面視で概略的に示す図である。図22には、照明装置100Bを組み込んだ生体認証装置用センサの一例が符号"80A"で指示されている。尚、図22では、照明領域33は、図示が省略されている。図23は、回折光学素子26Bを含む基板261Bの一例を上面視で概略的に示す図である。図24は、図22のラインB−Bに沿った断面図である。   FIG. 22 is a diagram schematically showing an example of a biometric authentication device sensor incorporating the illumination device 100B in top view. In FIG. 22, an example of a biometric authentication device sensor incorporating the illumination device 100 </ b> B is indicated by a sign “80A”. In FIG. 22, the illumination area 33 is not shown. FIG. 23 is a diagram schematically showing an example of the substrate 261B including the diffractive optical element 26B in a top view. 24 is a cross-sectional view taken along line BB in FIG.

生体認証装置用センサ80Aは、撮影光学系72と、光源25と、回折光学素子26Bとを含む。回折光学素子26Bは、例えば、図23に示すように、基板261Bに形成される。回折光学素子26Bは、光源25の出射面側に設けられる。回折光学素子26B及び光源25は、照明装置100Bを形成する。尚、図22乃至図24に示す例において、回折光学素子26Bは、第3実施例で説明した通りの格子間隔の分布特性(図20、図21参照)を有する。   The biometric authentication device sensor 80A includes a photographing optical system 72, a light source 25, and a diffractive optical element 26B. For example, as shown in FIG. 23, the diffractive optical element 26B is formed on a substrate 261B. The diffractive optical element 26 </ b> B is provided on the exit surface side of the light source 25. The diffractive optical element 26B and the light source 25 form an illumination device 100B. In the examples shown in FIGS. 22 to 24, the diffractive optical element 26B has the distribution characteristics of the grating spacing as described in the third embodiment (see FIGS. 20 and 21).

図25は、照明装置100Bを組み込んだ生体認証装置用センサの他の一例を上面視で概略的に示す図である。図25には、照明装置100Bを組み込んだ生体認証装置用センサの一例が符号"80B"で指示されている。図26は、照明装置100Bを組み込んだ生体認証装置用センサの更なる他の一例を上面視で概略的に示す図である。図26には、照明装置100Bを組み込んだ生体認証装置用センサの一例が符号"80C"で指示されている。図25及び図26のいずれの例においても、各回折光学素子26Bは、撮影光学系72の光軸に関して非対称に配置される。回折光学素子26B及び光源25の各組は、それぞれ、照明装置100Bを形成する。このように、回折光学素子26B及び光源25は、任意の組数で、撮影光学系72の光軸に関して非対称に任意の態様で配置されてもよい。   FIG. 25 is a diagram schematically showing another example of the biometric authentication device sensor incorporating the illumination device 100B in a top view. In FIG. 25, an example of a sensor for a biometric authentication device incorporating the illumination device 100B is indicated by reference numeral “80B”. FIG. 26 is a diagram schematically showing still another example of the biometric authentication device sensor incorporating the illumination device 100B in a top view. In FIG. 26, an example of a sensor for a biometric authentication device incorporating the illumination device 100B is indicated by reference numeral “80C”. 25 and 26, each diffractive optical element 26B is disposed asymmetrically with respect to the optical axis of the imaging optical system 72. Each set of the diffractive optical element 26B and the light source 25 forms an illumination device 100B. As described above, the diffractive optical element 26 </ b> B and the light source 25 may be arranged in an arbitrary manner with an arbitrary number of sets and asymmetrically with respect to the optical axis of the imaging optical system 72.

次に、図27及び図28を参照して、一実施例における生体認証装置の例について説明する。   Next, an example of a biometric authentication device in one embodiment will be described with reference to FIGS.

図27は、生体認証装置の一例を示すブロック図である。図27に示す生体認証装置600は、照明光学系23、撮影光学系72、LED制御部63、画像取得部66、生体情報検出部68、照合部71、記憶部73、判定部74、及び結果表示部75を有する。記憶部73は、予め用意された生体テンプレートを記憶しており、照合部71は、生体情報検出部68が検出した生体情報と生体テンプレートを照合する。結果表示部75は、照合部71の照合結果または生体画像を表示する。   FIG. 27 is a block diagram illustrating an example of a biometric authentication device. A biometric authentication device 600 illustrated in FIG. 27 includes an illumination optical system 23, a photographing optical system 72, an LED control unit 63, an image acquisition unit 66, a biometric information detection unit 68, a collation unit 71, a storage unit 73, a determination unit 74, and a result. A display unit 75 is included. The storage unit 73 stores a biometric template prepared in advance, and the collation unit 71 collates the biometric information detected by the biometric information detection unit 68 with the biometric template. The result display unit 75 displays the collation result of the collation unit 71 or the biological image.

照明光学系23は、照明装置100を含む。但し、照明光学系23は、照明装置100A又は100Bを含んでもよい。また、照明光学系23及び撮影光学系72は、上述の生体認証装置用センサ70A〜70C、80A〜80Cのいずれかにより形成されてもよい。   The illumination optical system 23 includes the illumination device 100. However, the illumination optical system 23 may include the illumination device 100A or 100B. Further, the illumination optical system 23 and the photographing optical system 72 may be formed by any of the above-described biometric authentication device sensors 70A to 70C and 80A to 80C.

利用者が生体の一例である手のひらを照明領域33に位置させると、生体認証装置600は認証対象を検知し、LED制御部63が照明光学系23の光源25を点灯する。これにより、光源25は回折光学素子26を介して照明領域33に光を照射する。撮影光学系72は、照明領域33における生体(この例では手のひら)を撮影し、画像取得部66が、撮影された入力画像を取得する。生体情報検出部68は、入力画像に基づいて、利用者固有の生体情報を検出する。照合部71は、検出された生体情報を、記憶部73に予め記憶されていた生体テンプレートと照合する。判定部74は、照合結果に基づいて、正当な利用者であるか否かを判定する。結果表示部75は、照合部71における照合結果又は判定部74の判定結果を表示部に表示する。結果表示部75は、例えば検出された生体情報が生体テンプレートと一致したか否かを示す照合結果のメッセージなどを表示部に表示する。結果表示部75は、照合部71における照合結果を出力する出力部の一例である。照合結果を出力する出力部は、照合結果を表示する結果表示部75に限定されず、例えば照合結果を音声で出力する音声合成部などで形成されても良い。また、判定部74は省略されてもよいし、判定部74の機能は照合部71により実現されてもよい。   When the user positions the palm, which is an example of a living body, in the illumination area 33, the biometric authentication device 600 detects the authentication target, and the LED control unit 63 turns on the light source 25 of the illumination optical system 23. Thereby, the light source 25 irradiates the illumination area 33 with light via the diffractive optical element 26. The imaging optical system 72 images the living body (the palm in this example) in the illumination area 33, and the image acquisition unit 66 acquires the captured input image. The biological information detection unit 68 detects biological information unique to the user based on the input image. The collation unit 71 collates the detected biometric information with the biometric template stored in advance in the storage unit 73. The determination unit 74 determines whether or not the user is a valid user based on the collation result. The result display unit 75 displays the collation result in the collation unit 71 or the determination result of the determination unit 74 on the display unit. The result display unit 75 displays, for example, a verification result message indicating whether or not the detected biometric information matches the biometric template on the display unit. The result display unit 75 is an example of an output unit that outputs a collation result in the collation unit 71. The output unit that outputs the collation result is not limited to the result display unit 75 that displays the collation result, and may be formed by, for example, a voice synthesis unit that outputs the collation result by voice. Further, the determination unit 74 may be omitted, and the function of the determination unit 74 may be realized by the collation unit 71.

図28は、コンピュータの構成の一例を示すブロック図である。図27に示す生体認証装置600は、図28に示すコンピュータ300により形成しても良い。図28に示すコンピュータ300は、例えばパーソナルコンピュータなどの汎用コンピュータであっても良い。コンピュータ300は、CPU301、記憶部302、入力部の一例であるキーボード303、インターフェイス305、及び出力部の一例である表示部306を有しても良い。この例では、CPU301、記憶部302、キーボード303、インターフェイス305、及び表示部306がバス307により接続されているが、コンピュータ300はバス307により接続された構成に限定されない。撮影光学系72及び照明光学系23は、例えばインターフェイス305に接続される。   FIG. 28 is a block diagram illustrating an example of the configuration of a computer. The biometric authentication device 600 shown in FIG. 27 may be formed by the computer 300 shown in FIG. A computer 300 shown in FIG. 28 may be a general-purpose computer such as a personal computer. The computer 300 may include a CPU 301, a storage unit 302, a keyboard 303 that is an example of an input unit, an interface 305, and a display unit 306 that is an example of an output unit. In this example, the CPU 301, the storage unit 302, the keyboard 303, the interface 305, and the display unit 306 are connected via the bus 307, but the computer 300 is not limited to the configuration connected via the bus 307. The photographing optical system 72 and the illumination optical system 23 are connected to the interface 305, for example.

記憶部302は、CPU301が実行するプログラム、生体テンプレートを含む各種データなどを格納する。記憶部302は、メモリ、HDD(Hard Disk Drive)などの記憶装置で形成しても良い。CPU301は、記憶部302に格納されたプログラムを実行することにより、コンピュータ300全体の制御を司る。CPU301は、プログラムを実行することで、図27のLED制御部63、画像取得部66、生体情報検出部68、照合部71、記憶部73、判定部74、及び結果表示部75の全てまたは一部の機能を実現できる。CPU301は、プログラムを実行して例えば照合部71の機能を実現できる。記憶部302は、記憶部73の機能も実現する。   The storage unit 302 stores programs executed by the CPU 301, various data including a biological template, and the like. The storage unit 302 may be formed of a storage device such as a memory or an HDD (Hard Disk Drive). The CPU 301 controls the entire computer 300 by executing a program stored in the storage unit 302. The CPU 301 executes all or one of the LED control unit 63, the image acquisition unit 66, the biological information detection unit 68, the collation unit 71, the storage unit 73, the determination unit 74, and the result display unit 75 in FIG. 27 by executing the program. The function of the part can be realized. The CPU 301 can realize the function of the collation unit 71 by executing a program, for example. The storage unit 302 also realizes the function of the storage unit 73.

キーボード303は、CPU301にコマンド及びデータを入力するのに用いられる。インターフェイス305は、コンピュータ300と外部装置との接続に使用される。表示部306は、CPU301の制御下で、コンピュータ300の利用者(または、オペレータ)に対して各種データを表示する。表示部306が表示する各種データは、取得した入力画像、照合結果のメッセージなどを含んでも良い。   A keyboard 303 is used to input commands and data to the CPU 301. The interface 305 is used for connection between the computer 300 and an external device. The display unit 306 displays various data for the user (or operator) of the computer 300 under the control of the CPU 301. Various data displayed by the display unit 306 may include an acquired input image, a message of a matching result, and the like.

以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。   Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes can be made within the scope described in the claims. It is also possible to combine all or a plurality of the components of the above-described embodiments.

例えば、上述の各実施例において、生体認証は、手のひらの静脈パターンの認証に限定されず、指の静脈パターン、指紋パターン、掌紋パターン、目の虹彩パターン、顔の特徴などの生体情報の認証であっても良い。   For example, in each of the above-described embodiments, biometric authentication is not limited to palm vein pattern authentication, but biometric information such as finger vein patterns, fingerprint patterns, palm print patterns, eye iris patterns, facial features, and the like. There may be.

また、上述した第2実施例において、回折光学素子26に代えて、回折光学素子26'や回折光学素子26Bが使用されてもよい。   In the second embodiment described above, a diffractive optical element 26 ′ or a diffractive optical element 26 B may be used instead of the diffractive optical element 26.

なお、以上の実施例に関し、さらに以下の付記を開示する。
(付記1)
照明領域に光を照射する光源と、
前記照明領域と前記光源との間に設けられ、複数の回折格子が2次元配置された回折光学素子とを含み、
前記回折光学素子における2次元配置面内の所定ラインに沿った前記複数の回折格子の格子間隔の分布は、中心側の方が端側よりも格子間隔が広い特性を有する、照明装置。
(付記2)
前記回折光学素子は、前記2次元配置面が前記光源の光軸に対して垂直であり且つ前記光源の光軸が前記回折光学素子の中心を通るように、前記光源に対して配置され、
前記光源の光軸は、前記照明領域の中心を通る、付記1に記載の照明装置。
(付記3)
前記所定ラインは、前記回折光学素子の中心を通って直交する2本のラインを含む、付記2に記載の照明装置。
(付記4)
前記所定ラインに沿った前記複数の回折格子の格子間隔の分布に対する近似曲線は、前記特性を有する、付記1〜3のうちのいずれか1項に記載の照明装置。
(付記5)
前記近似曲線は、前記回折光学素子の中心に対応する位置でピーク値を有する、付記4に記載の照明装置。
(付記6)
前記回折光学素子は、前記照明領域の中心を通り前記光源の光軸に平行な直線が前記回折光学素子を通る関係で、前記照明領域に対して配置され、
前記近似曲線は、前記照明領域の中心に対応する位置でピーク値を有する、付記4に記載の照明装置。
(付記7)
前記回折光学素子は、格子間隔及び回転方向が異なる前記複数の回折格子が2次元配置された回折格子の集合体である、付記1〜6のうちのいずれか1項に記載の照明装置。
(付記8)
前記複数の回折格子の格子間隔及び回転方向は、前記照明領域の全体にわたる光強度の分布であって、0次透過光及び±1次透過光による光強度の分布が、1次透過光のみによる光強度の分布よりも均一になるように設定される、付記7項に記載の照明装置。
(付記9)
照明領域に光を照射する光源と、
前記照明領域と前記光源との間に設けられ、複数の回折格子が2次元配置された回折光学素子とを含み、
前記光源の光軸は、前記照明領域の中心に対して所定ラインの方向でオフセットし、
前記回折光学素子における2次元配置面内の前記所定ラインに沿った前記複数の回折格子の格子間隔の分布は、前記照明領域の中心に近い側の一端から他端に向けて格子間隔が徐々に狭くなる特性を有する、照明装置。
(付記10)
前記回折光学素子は、前記2次元配置面が前記光源の光軸に対して垂直であり且つ前記光源の光軸が前記回折光学素子の中心を通るように、前記光源に対して配置される、付記9に記載の照明装置。
(付記11)
前記所定ラインに沿った前記複数の回折格子の格子間隔の分布に対する近似曲線は、前記照明領域の一端に対応する位置でピーク値を有する、付記9又は10項に記載の照明装置。
(付記12)
照明領域に光を照射する光源と、
前記照明領域と前記光源との間に設けられ、格子間隔及び回転方向が異なる複数の回折格子が2次元配置された回折格子の集合体とを含み、
前記複数の回折格子の格子間隔及び回転方向は、前記照明領域の全体にわたる光強度の分布であって、0次透過光及び±1次透過光による光強度の分布が、1次透過光のみよる光強度の分布よりも均一になるように設定される、照明装置。
(付記13)
付記1〜13のいずれか1項に記載の照明装置が、前記照明領域に対して複数セット設けられ、
前記複数セットの間の間隔は、前記照明領域の全体にわたる光強度の分布が均一又は球面強度分布になるように設定される、照明装置。
(付記14)
照明領域に光を照射する光源と、
前記照明領域と前記光源との間に設けられ、複数の回折格子が2次元配置された回折光学素子であって、2次元配置面内の所定ラインに沿った前記複数の回折格子の格子間隔の分布が、中心側の方が端側よりも格子間隔が広い特性を有する回折光学素子と、
前記照明領域を撮像する撮影光学系と、
前記撮影光学系により撮像された画像に基づいて、生体認証を行う照合部とを備える、生体認証装置。
(付記15)
照明領域の中心に対して所定ラインの方向でオフセットした光軸を有し、前記照明領域に光を照射する光源と
前記照明領域と前記光源との間に設けられ、複数の回折格子が2次元配置された回折光学素子であって、2次元配置面内の前記所定ラインに沿った前記複数の回折格子の格子間隔の分布が、前記照明領域の中心に近い側の一端から他端に向けて格子間隔が徐々に狭くなる特性を有する回折光学素子と、
前記照明領域を撮像する撮影光学系と、
前記撮影光学系により撮像された画像に基づいて、生体認証を行う照合部とを備える、生体認証装置。
(付記16)
前記回折光学素子は、前記2次元配置面が前記光源の光軸に対して垂直であり且つ前記光源の光軸が前記回折光学素子の中心を通るように、前記光源に対して配置される、付記13又は14記載の生体認証装置。
(付記17)
照明領域に光を照射する光源と、
前記照明領域と前記光源との間に設けられ、複数の回折格子が2次元配置された回折光学素子であって、2次元配置面内の所定ラインに沿った前記複数の回折格子の格子間隔の分布が、中心側の方が端側よりも格子間隔が広い特性を有する回折光学素子と、
前記照明領域を撮像する撮影光学系とを含む、生体認証装置用センサ。
(付記18)
照明領域の中心に対して所定ラインの方向でオフセットした光軸を有し、前記照明領域に光を照射する光源と
前記照明領域と前記光源との間に設けられ、複数の回折格子が2次元配置された回折光学素子であって、2次元配置面内の前記所定ラインに沿った前記複数の回折格子の格子間隔の分布が、前記照明領域の中心に近い側の一端から他端に向けて格子間隔が徐々に狭くなる特性を有する回折光学素子と、
前記照明領域を撮像する撮影光学系とを含む、生体認証装置用センサ。
In addition, the following additional remarks are disclosed regarding the above Example.
(Appendix 1)
A light source that illuminates the illumination area;
A diffractive optical element provided between the illumination region and the light source and having a plurality of diffraction gratings arranged two-dimensionally;
The illumination device in which the distribution of the grating spacing of the plurality of diffraction gratings along a predetermined line in the two-dimensional arrangement plane of the diffractive optical element has a characteristic that the grating spacing is wider on the center side than on the end side.
(Appendix 2)
The diffractive optical element is disposed with respect to the light source such that the two-dimensional arrangement surface is perpendicular to the optical axis of the light source and the optical axis of the light source passes through the center of the diffractive optical element;
The illuminating device according to claim 1, wherein an optical axis of the light source passes through a center of the illumination area.
(Appendix 3)
The illuminating device according to attachment 2, wherein the predetermined line includes two lines orthogonal to each other through the center of the diffractive optical element.
(Appendix 4)
4. The illumination device according to claim 1, wherein an approximate curve with respect to a distribution of grating intervals of the plurality of diffraction gratings along the predetermined line has the characteristic.
(Appendix 5)
The illumination device according to appendix 4, wherein the approximate curve has a peak value at a position corresponding to a center of the diffractive optical element.
(Appendix 6)
The diffractive optical element is disposed with respect to the illumination area in such a relationship that a straight line passing through the center of the illumination area and parallel to the optical axis of the light source passes through the diffractive optical element.
The illumination device according to appendix 4, wherein the approximate curve has a peak value at a position corresponding to a center of the illumination area.
(Appendix 7)
The illumination device according to any one of appendices 1 to 6, wherein the diffractive optical element is an assembly of diffraction gratings in which the plurality of diffraction gratings having different grating intervals and rotation directions are two-dimensionally arranged.
(Appendix 8)
The grating intervals and rotation directions of the plurality of diffraction gratings are distributions of the light intensity over the entire illumination area, and the light intensity distributions of the 0th order transmitted light and the ± 1st order transmitted light are based only on the first order transmitted light. Item 8. The illumination device according to item 7, which is set to be more uniform than the distribution of light intensity.
(Appendix 9)
A light source that illuminates the illumination area;
A diffractive optical element provided between the illumination region and the light source and having a plurality of diffraction gratings arranged two-dimensionally;
The optical axis of the light source is offset in the direction of a predetermined line with respect to the center of the illumination area,
The distribution of the grating spacing of the plurality of diffraction gratings along the predetermined line in the two-dimensional arrangement surface of the diffractive optical element is such that the grating spacing gradually increases from one end closer to the center of the illumination area toward the other end. A lighting device having a narrowing characteristic.
(Appendix 10)
The diffractive optical element is disposed with respect to the light source such that the two-dimensional arrangement plane is perpendicular to the optical axis of the light source and the optical axis of the light source passes through the center of the diffractive optical element. The lighting device according to attachment 9.
(Appendix 11)
The illuminating device according to claim 9 or 10, wherein an approximate curve for a distribution of grating intervals of the plurality of diffraction gratings along the predetermined line has a peak value at a position corresponding to one end of the illumination region.
(Appendix 12)
A light source that illuminates the illumination area;
A set of diffraction gratings provided between the illumination region and the light source and two-dimensionally arranged with a plurality of diffraction gratings having different grating intervals and rotation directions;
The grating intervals and rotation directions of the plurality of diffraction gratings are light intensity distributions throughout the illumination area, and the light intensity distributions of the 0th order transmitted light and the ± 1st order transmitted light depend only on the first order transmitted light. An illumination device that is set to be more uniform than the distribution of light intensity.
(Appendix 13)
A plurality of lighting devices according to any one of appendices 1 to 13 are provided for the lighting area,
The interval between the plurality of sets is set such that the distribution of light intensity over the entire illumination area is uniform or spherical intensity distribution.
(Appendix 14)
A light source that illuminates the illumination area;
A diffractive optical element that is provided between the illumination region and the light source and in which a plurality of diffraction gratings are two-dimensionally arranged, and having a grating interval of the plurality of diffraction gratings along a predetermined line in a two-dimensional arrangement surface A diffractive optical element whose distribution is such that the center side has a wider grating spacing than the end side;
An imaging optical system for imaging the illumination area;
A biometric authentication apparatus comprising: a verification unit that performs biometric authentication based on an image captured by the imaging optical system.
(Appendix 15)
An optical axis offset in the direction of a predetermined line with respect to the center of the illumination area, provided between the light source that irradiates light to the illumination area, the illumination area and the light source, and a plurality of diffraction gratings are two-dimensional The diffractive optical element is arranged, and a distribution of grating intervals of the plurality of diffraction gratings along the predetermined line in a two-dimensional arrangement plane is from one end closer to the center of the illumination area toward the other end. A diffractive optical element having a characteristic that the grating interval is gradually narrowed;
An imaging optical system for imaging the illumination area;
A biometric authentication apparatus comprising: a verification unit that performs biometric authentication based on an image captured by the imaging optical system.
(Appendix 16)
The diffractive optical element is disposed with respect to the light source such that the two-dimensional arrangement plane is perpendicular to the optical axis of the light source and the optical axis of the light source passes through the center of the diffractive optical element. The biometric authentication device according to appendix 13 or 14.
(Appendix 17)
A light source that illuminates the illumination area;
A diffractive optical element that is provided between the illumination region and the light source and in which a plurality of diffraction gratings are two-dimensionally arranged, and having a grating interval of the plurality of diffraction gratings along a predetermined line in a two-dimensional arrangement surface A diffractive optical element whose distribution is such that the center side has a wider grating spacing than the end side;
A biometric authentication device sensor comprising: a photographing optical system that images the illumination area.
(Appendix 18)
An optical axis offset in the direction of a predetermined line with respect to the center of the illumination area, provided between the light source that irradiates light to the illumination area, the illumination area and the light source, and a plurality of diffraction gratings are two-dimensional The diffractive optical element is arranged, and a distribution of grating intervals of the plurality of diffraction gratings along the predetermined line in a two-dimensional arrangement plane is from one end closer to the center of the illumination area toward the other end. A diffractive optical element having a characteristic that the grating interval is gradually narrowed;
A biometric authentication device sensor comprising: a photographing optical system that images the illumination area.

25 光源
26、26'、26B 回折光学素子
33 照明領域
71 照合部
72 撮影光学系
100、100A、100B 照明装置
600 生体認証装置
25 Light source 26, 26 ', 26B Diffractive optical element 33 Illumination area 71 Collation unit 72 Imaging optical system 100, 100A, 100B Illumination device 600 Biometric authentication device

Claims (9)

照明領域に光を照射する光源と、
前記照明領域と前記光源との間に設けられ、複数の回折格子が2次元配置された回折光学素子とを含み、
前記回折光学素子における2次元配置面内の所定ラインに沿った前記複数の回折格子の格子間隔の分布は、中心側の方が端側よりも格子間隔が広い特性を有する、照明装置。
A light source that illuminates the illumination area;
A diffractive optical element provided between the illumination region and the light source and having a plurality of diffraction gratings arranged two-dimensionally;
The illumination device in which the distribution of the grating spacing of the plurality of diffraction gratings along a predetermined line in the two-dimensional arrangement plane of the diffractive optical element has a characteristic that the grating spacing is wider on the center side than on the end side.
前記回折光学素子は、前記2次元配置面が前記光源の光軸に対して垂直であり且つ前記光源の光軸が前記回折光学素子の中心を通るように、前記光源に対して配置され、
前記光源の光軸は、前記照明領域の中心を通る、請求項1に記載の照明装置。
The diffractive optical element is disposed with respect to the light source such that the two-dimensional arrangement surface is perpendicular to the optical axis of the light source and the optical axis of the light source passes through the center of the diffractive optical element;
The lighting device according to claim 1, wherein an optical axis of the light source passes through a center of the illumination area.
前記所定ラインは、前記回折光学素子の中心を通って直交する2本のラインを含む、請求項2に記載の照明装置。   The illumination device according to claim 2, wherein the predetermined line includes two lines orthogonal to each other through the center of the diffractive optical element. 前記所定ラインに沿った前記複数の回折格子の格子間隔の分布に対する近似曲線は、前記特性を有する、請求項1〜3のうちのいずれか1項に記載の照明装置。   The illuminating device according to claim 1, wherein an approximate curve for a distribution of grating intervals of the plurality of diffraction gratings along the predetermined line has the characteristic. 前記近似曲線は、前記回折光学素子の中心に対応する位置でピーク値を有する、請求項4に記載の照明装置。   The illumination device according to claim 4, wherein the approximate curve has a peak value at a position corresponding to a center of the diffractive optical element. 照明領域に光を照射する光源と、
前記照明領域と前記光源との間に設けられ、複数の回折格子が2次元配置された回折光学素子とを含み、
前記光源の光軸は、前記照明領域の中心に対して所定ラインの方向でオフセットし、
前記回折光学素子における2次元配置面内の前記所定ラインに沿った前記複数の回折格子の格子間隔の分布は、前記照明領域の中心に近い側の一端から他端に向けて格子間隔が徐々に狭くなる特性を有する、照明装置。
A light source that illuminates the illumination area;
A diffractive optical element provided between the illumination region and the light source and having a plurality of diffraction gratings arranged two-dimensionally;
The optical axis of the light source is offset in the direction of a predetermined line with respect to the center of the illumination area,
The distribution of the grating spacing of the plurality of diffraction gratings along the predetermined line in the two-dimensional arrangement surface of the diffractive optical element is such that the grating spacing gradually increases from one end closer to the center of the illumination area toward the other end. A lighting device having a narrowing characteristic.
前記所定ラインに沿った前記複数の回折格子の格子間隔の分布に対する近似曲線は、前記照明領域の一端に対応する位置でピーク値を有する、請求項6項に記載の照明装置。   The illumination device according to claim 6, wherein an approximate curve for a distribution of grating intervals of the plurality of diffraction gratings along the predetermined line has a peak value at a position corresponding to one end of the illumination region. 照明領域に光を照射する光源と、
前記照明領域と前記光源との間に設けられ、複数の回折格子が2次元配置された回折光学素子であって、2次元配置面内の所定ラインに沿った前記複数の回折格子の格子間隔の分布が、中心側の方が端側よりも格子間隔が広い特性を有する回折光学素子と、
前記照明領域を撮像する撮影光学系と、
前記撮影光学系により撮像された画像に基づいて、生体認証を行う照合部とを備える、生体認証装置。
A light source that illuminates the illumination area;
A diffractive optical element that is provided between the illumination region and the light source and in which a plurality of diffraction gratings are two-dimensionally arranged, and having a grating interval of the plurality of diffraction gratings along a predetermined line in a two-dimensional arrangement surface A diffractive optical element whose distribution is such that the center side has a wider grating spacing than the end side;
An imaging optical system for imaging the illumination area;
A biometric authentication apparatus comprising: a verification unit that performs biometric authentication based on an image captured by the imaging optical system.
照明領域の中心に対して所定ラインの方向でオフセットした光軸を有し、前記照明領域に光を照射する光源と
前記照明領域と前記光源との間に設けられ、複数の回折格子が2次元配置された回折光学素子であって、2次元配置面内の前記所定ラインに沿った前記複数の回折格子の格子間隔の分布が、前記照明領域の中心に近い側の一端から他端に向けて格子間隔が徐々に狭くなる特性を有する回折光学素子と、
前記照明領域を撮像する撮影光学系と、
前記撮影光学系により撮像された画像に基づいて、生体認証を行う照合部とを備える、生体認証装置。
An optical axis offset in the direction of a predetermined line with respect to the center of the illumination area, provided between the light source that irradiates light to the illumination area, the illumination area and the light source, and a plurality of diffraction gratings are two-dimensional The diffractive optical element is arranged, and a distribution of grating intervals of the plurality of diffraction gratings along the predetermined line in a two-dimensional arrangement plane is from one end closer to the center of the illumination area toward the other end. A diffractive optical element having a characteristic that the grating interval is gradually narrowed;
An imaging optical system for imaging the illumination area;
A biometric authentication apparatus comprising: a verification unit that performs biometric authentication based on an image captured by the imaging optical system.
JP2015006987A 2015-01-16 2015-01-16 Illumination device and biometric authentication device Active JP6586729B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015006987A JP6586729B2 (en) 2015-01-16 2015-01-16 Illumination device and biometric authentication device
EP15198635.3A EP3046047A1 (en) 2015-01-16 2015-12-09 Illumination apparatus and biometric authentication apparatus
US14/967,511 US9746687B2 (en) 2015-01-16 2015-12-14 Illumination apparatus and biometric authentication apparatus
CN201510954244.8A CN105807540B (en) 2015-01-16 2015-12-17 Lighting apparatus and biometric authentication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015006987A JP6586729B2 (en) 2015-01-16 2015-01-16 Illumination device and biometric authentication device

Publications (2)

Publication Number Publication Date
JP2016133905A true JP2016133905A (en) 2016-07-25
JP6586729B2 JP6586729B2 (en) 2019-10-09

Family

ID=55070660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015006987A Active JP6586729B2 (en) 2015-01-16 2015-01-16 Illumination device and biometric authentication device

Country Status (4)

Country Link
US (1) US9746687B2 (en)
EP (1) EP3046047A1 (en)
JP (1) JP6586729B2 (en)
CN (1) CN105807540B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312767A1 (en) 2016-10-20 2018-04-25 Fujitsu Limited Image capturing apparatus and biometric authentication apparatus
EP3312768A1 (en) 2016-10-21 2018-04-25 Fujitsu Limited Illumination apparatus
DE112017003433T5 (en) 2016-07-06 2019-03-21 Nifco Inc. Device for regulating the direction of an air flow

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9259904B2 (en) 2011-10-20 2016-02-16 Apple Inc. Opaque thin film passivation
WO2018057969A1 (en) 2016-09-23 2018-03-29 Apple Inc. Touch sensor panel with top and/or bottom shielding
CN111461040A (en) * 2020-04-07 2020-07-28 武汉华星光电技术有限公司 Electronic equipment and optical fingerprint identification module thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182526A (en) * 1984-02-29 1985-09-18 Toshiba Corp Optical information processor
JPH0961610A (en) * 1994-10-31 1997-03-07 Nippon Steel Corp Binary optics, and light convergence optical system and laser machining device using binary optics
JP2007033576A (en) * 2005-07-22 2007-02-08 Seiko Epson Corp Illumination device and image display device, and projector
JP2007233282A (en) * 2006-03-03 2007-09-13 Fujitsu Ltd Light guide body, illuminating device and imaging apparatus using the same
JP2013205512A (en) * 2012-03-27 2013-10-07 Dainippon Printing Co Ltd Light diffusion film, polarization plate, image forming apparatus, and display device
JP2014071233A (en) * 2012-09-28 2014-04-21 Toppan Printing Co Ltd Image display body and information medium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60039403D1 (en) * 1999-12-16 2008-08-21 Victor Company Of Japan Optical device
US6965685B1 (en) 2001-09-04 2005-11-15 Hewlett-Packard Development Company, Lp. Biometric sensor
KR20080036189A (en) * 2005-07-08 2008-04-25 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Illumination device for illuminating an object
JP4779792B2 (en) * 2006-04-27 2011-09-28 凸版印刷株式会社 Information recording medium and information recording medium authenticity determination device
JP4552956B2 (en) * 2007-04-03 2010-09-29 セイコーエプソン株式会社 Lighting device and projector
JP2009031903A (en) 2007-07-25 2009-02-12 Sony Corp Biometric authentication device
US9557574B2 (en) * 2010-06-08 2017-01-31 Microsoft Technology Licensing, Llc Depth illumination and detection optics
BR112013023154A2 (en) * 2011-03-15 2016-12-20 Fujitsu Frontech Ltd imaging apparatus, imaging method and imaging program
JP2013130981A (en) 2011-12-20 2013-07-04 Hitachi Maxell Ltd Image acquisition device and biometric authentication device
CN103460024B (en) * 2012-02-03 2017-09-22 松下知识产权经营株式会社 Camera device and camera system
JP6520032B2 (en) * 2014-09-24 2019-05-29 富士通株式会社 Lighting device and biometrics device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182526A (en) * 1984-02-29 1985-09-18 Toshiba Corp Optical information processor
JPH0961610A (en) * 1994-10-31 1997-03-07 Nippon Steel Corp Binary optics, and light convergence optical system and laser machining device using binary optics
JP2007033576A (en) * 2005-07-22 2007-02-08 Seiko Epson Corp Illumination device and image display device, and projector
JP2007233282A (en) * 2006-03-03 2007-09-13 Fujitsu Ltd Light guide body, illuminating device and imaging apparatus using the same
JP2013205512A (en) * 2012-03-27 2013-10-07 Dainippon Printing Co Ltd Light diffusion film, polarization plate, image forming apparatus, and display device
JP2014071233A (en) * 2012-09-28 2014-04-21 Toppan Printing Co Ltd Image display body and information medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017003433T5 (en) 2016-07-06 2019-03-21 Nifco Inc. Device for regulating the direction of an air flow
EP3312767A1 (en) 2016-10-20 2018-04-25 Fujitsu Limited Image capturing apparatus and biometric authentication apparatus
US10990788B2 (en) 2016-10-20 2021-04-27 Fujitsu Limited Image capturing apparatus and biometric authentication apparatus to output guidance related to distance
EP3312768A1 (en) 2016-10-21 2018-04-25 Fujitsu Limited Illumination apparatus
JP2018067265A (en) * 2016-10-21 2018-04-26 富士通株式会社 Illumination device
US10839237B2 (en) 2016-10-21 2020-11-17 Fujitsu Limited Illumination apparatus

Also Published As

Publication number Publication date
US20160209668A1 (en) 2016-07-21
CN105807540A (en) 2016-07-27
EP3046047A1 (en) 2016-07-20
CN105807540B (en) 2018-09-25
JP6586729B2 (en) 2019-10-09
US9746687B2 (en) 2017-08-29

Similar Documents

Publication Publication Date Title
JP6586729B2 (en) Illumination device and biometric authentication device
US10248877B2 (en) Illumination device and biometric authentication apparatus
KR101496586B1 (en) Biometric information image-capturing device, biometric authentication apparatus and manufacturing method of biometric information image-capturing device
US10181069B2 (en) Fingerprint identification apparatus
US6829375B1 (en) Fingerprint input apparatus
US20130329031A1 (en) Blood vessel image pickup device, and organism authentication device
US9591194B2 (en) Illumination device and biometric authentication apparatus
EP2669843B1 (en) Imaging device and electronic apparatus
JP5982311B2 (en) Blood vessel imaging device
JPWO2011052323A1 (en) False finger determination device and false finger determination method
WO2012137673A1 (en) Information acquisition device, projection device, and object detection device
EP3001671A1 (en) Image pickup apparatus
JP6346294B2 (en) Ranging light generator
TWI705386B (en) Fingerprint identifying module
EP2490153A1 (en) Vein authentication module
JP6855747B2 (en) Lighting equipment and photography equipment
JP2018005723A (en) Biometric authentication device
TWI836581B (en) Method for an electronic device to perform for detecting spoof fingerprints using an optical fingerprint sensor with a controlled light source and the optical fingerprint sensor of the same
JP2008210230A (en) Fingerprint imaging device and authentication system
JP6051597B2 (en) Biological information reader and electronic device
JP2013069484A (en) Lighting device and reading device equipped with the same
JP2011253333A (en) Biometric authentication device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190826

R150 Certificate of patent or registration of utility model

Ref document number: 6586729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150