JP2016133048A - Exhaust emission control system - Google Patents

Exhaust emission control system Download PDF

Info

Publication number
JP2016133048A
JP2016133048A JP2015007983A JP2015007983A JP2016133048A JP 2016133048 A JP2016133048 A JP 2016133048A JP 2015007983 A JP2015007983 A JP 2015007983A JP 2015007983 A JP2015007983 A JP 2015007983A JP 2016133048 A JP2016133048 A JP 2016133048A
Authority
JP
Japan
Prior art keywords
nox
exhaust
injection amount
catalyst regeneration
nox purge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015007983A
Other languages
Japanese (ja)
Inventor
輝男 中田
Teruo Nakada
輝男 中田
隆行 坂本
Takayuki Sakamoto
隆行 坂本
長岡 大治
Taiji Nagaoka
大治 長岡
裕之 遊座
Hiroyuki Yuza
裕之 遊座
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2015007983A priority Critical patent/JP2016133048A/en
Publication of JP2016133048A publication Critical patent/JP2016133048A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively prevent deterioration of fuel economy by prohibiting execution of NOx purge in a state where an exhaust lambda value is hard to lower.SOLUTION: An exhaust emission control system includes: an NOx occlusion and reduction type catalyst 32 that occludes NOx in exhaust gas in an exhaust lean state and reduces the occluded NOx for purification in an exhaust rich state; an NOx purge control section 60 for executing NOx purge for reducing the NOx occluded in the NOx occlusion and reduction type catalyst 32 for purification by causing exhaust gas to become a rich state; and an NOx purge prohibiting processing section 70 for prohibiting the execution of the NOx purge by the NOx purge control section 60 when fuel injection amount of an internal combustion engine 10 is smaller than a predetermined lower limit injection amount threshold value.SELECTED DRAWING: Figure 1

Description

本発明は、排気浄化システムに関する。   The present invention relates to an exhaust purification system.

従来、内燃機関から排出される排気中の窒素化合物(NOx)を還元浄化する触媒として、NOx吸蔵還元型触媒が知られている。NOx吸蔵還元型触媒は、排気がリーン雰囲気のときに排気中に含まれるNOxを吸蔵すると共に、排気がリッチ雰囲気のときに排気中に含まれる炭化水素で吸蔵していたNOxを還元浄化により無害化して放出する。このため、触媒のNOx吸蔵量が所定量に達した場合は、NOx吸蔵能力を回復させるべく、排気管噴射やポスト噴射によって排気をリッチ状態にする所謂NOxパージを定期的に行う必要がある(例えば、特許文献1,2参照)。   Conventionally, a NOx occlusion reduction type catalyst is known as a catalyst for reducing and purifying nitrogen compounds (NOx) in exhaust gas discharged from an internal combustion engine. The NOx occlusion reduction catalyst occludes NOx contained in the exhaust when the exhaust is in a lean atmosphere, and harmless NOx occluded by hydrocarbons contained in the exhaust when the exhaust is in a rich atmosphere. And release. For this reason, when the NOx occlusion amount of the catalyst reaches a predetermined amount, so-called NOx purging that makes the exhaust gas rich by exhaust pipe injection or post injection needs to be performed periodically in order to recover the NOx occlusion capacity ( For example, see Patent Documents 1 and 2).

特開2008−202425号公報JP 2008-202425 A 特開2007−16713号公報JP 2007-16713 A

ところで、エンジンの燃料噴射量が少ない時は、排気ラムダは高い状態に維持される。このような、排気ラムダが下がりにくい状態でNOxパージを実施しても、排気ラムダをNOxパージに必要な所望のラムダまで低下させることができず、無駄な排気リッチ噴射による燃費の悪化を招く課題がある。   By the way, when the fuel injection amount of the engine is small, the exhaust lambda is kept high. Even if the NOx purge is performed in such a state that the exhaust lambda is not easily lowered, the exhaust lambda cannot be lowered to a desired lambda required for the NOx purge, and the fuel consumption is deteriorated due to wasteful exhaust rich injection. There is.

開示のシステムは、排気ラムダが下がりにくい状態でNOxパージの実施を禁止することで、燃費の悪化を効果的に防止することを目的とする。   An object of the disclosed system is to effectively prevent deterioration of fuel consumption by prohibiting the execution of NOx purge in a state where the exhaust lambda is hardly lowered.

開示のシステムは、内燃機関の排気系に設けられ、排気リーン状態で排気中のNOxを吸蔵すると共に、排気リッチ状態で吸蔵されていたNOxを還元浄化するNOx吸蔵還元型触媒と、排気をリッチ状態にすることで、前記NOx吸蔵還元型触媒に吸蔵されているNOxを還元浄化させる触媒再生処理を実施する触媒再生手段と、前記内燃機関の燃料噴射量が所定の下限噴射量閾値よりも少ない場合に、前記触媒再生手段による触媒再生処理の実施を禁止する禁止手段と、を備える。   The disclosed system is provided in an exhaust system of an internal combustion engine, stores NOx in exhaust gas in an exhaust lean state, and reduces and purifies NOx stored in an exhaust rich state, and a rich exhaust gas. In this state, the catalyst regeneration means for performing catalyst regeneration processing for reducing and purifying NOx stored in the NOx storage reduction catalyst, and the fuel injection amount of the internal combustion engine is smaller than a predetermined lower limit injection amount threshold value. And a prohibiting means for prohibiting the catalyst regeneration process from being performed by the catalyst regeneration means.

開示のシステムによれば、排気ラムダが下がりにくい状態でNOxパージの実施を禁止することで、燃費の悪化を効果的に防止することができる。   According to the disclosed system, it is possible to effectively prevent the deterioration of fuel consumption by prohibiting the execution of the NOx purge in a state where the exhaust lambda is hardly lowered.

本実施形態に係る排気浄化システムを示す全体構成図である。1 is an overall configuration diagram showing an exhaust purification system according to an embodiment. 本実施形態に係るNOxパージ制御を説明するタイミングチャート図である。It is a timing chart figure explaining NOx purge control concerning this embodiment. 本実施形態に係るNOxパージリーン制御に用いるMAF目標値の設定処理を示すブロック図である。It is a block diagram which shows the setting process of the MAF target value used for NOx purge lean control which concerns on this embodiment. 本実施形態に係るNOxパージリッチ制御に用いる目標噴射量の設定処理を示すブロック図である。It is a block diagram which shows the setting process of the target injection amount used for NOx purge rich control which concerns on this embodiment. 本実施形態に係るNOxパージ制御の禁止処理を示すブロック図である。It is a block diagram which shows the prohibition process of NOx purge control which concerns on this embodiment. 本実施形態に係る禁止判定マップの一例を示す図である。It is a figure which shows an example of the prohibition determination map which concerns on this embodiment. 本実施形態に係る筒内インジェクタの噴射量学習補正の処理を示すブロック図である。It is a block diagram which shows the process of the injection amount learning correction | amendment of the in-cylinder injector which concerns on this embodiment. 本実施形態に係る学習補正係数の演算処理を説明するフロー図である。It is a flowchart explaining the calculation process of the learning correction coefficient which concerns on this embodiment. 本実施形態に係るMAF補正係数の設定処理を示すブロック図である。It is a block diagram which shows the setting process of the MAF correction coefficient which concerns on this embodiment.

以下、添付図面に基づいて、本発明の一実施形態に係る排気浄化システムを説明する。   Hereinafter, an exhaust purification system according to an embodiment of the present invention will be described with reference to the accompanying drawings.

図1に示すように、ディーゼルエンジン(以下、単にエンジンという)10の各気筒には、図示しないコモンレールに畜圧された高圧燃料を各気筒内に直接噴射する筒内インジェクタ11がそれぞれ設けられている。これら各筒内インジェクタ11の燃料噴射量や燃料噴射タイミングは、電子制御ユニット(以下、ECUという)50から入力される指示信号に応じてコントロールされる。   As shown in FIG. 1, each cylinder of a diesel engine (hereinafter simply referred to as “engine”) 10 is provided with an in-cylinder injector 11 that directly injects high-pressure fuel that is stored in a common rail (not shown) into each cylinder. Yes. The fuel injection amount and fuel injection timing of each in-cylinder injector 11 are controlled according to an instruction signal input from an electronic control unit (hereinafter referred to as ECU) 50.

エンジン10の吸気マニホールド10Aには新気を導入する吸気通路12が接続され、排気マニホールド10Bには排気を外部に導出する排気通路13が接続されている。吸気通路12には、吸気上流側から順にエアクリーナ14、吸入空気量センサ(以下、MAFセンサという)40、可変容量型過給機20のコンプレッサ20A、インタークーラ15、吸気スロットルバルブ16等が設けられている。排気通路13には、排気上流側から順に可変容量型過給機20のタービン20B、排気後処理装置30等が設けられている。なお、図1中において、符号41はエンジン回転数センサ、符号42はアクセル開度センサ、符号46はブースト圧センサをそれぞれ示している。   An intake passage 12 for introducing fresh air is connected to the intake manifold 10A of the engine 10, and an exhaust passage 13 for leading the exhaust to the outside is connected to the exhaust manifold 10B. In the intake passage 12, an air cleaner 14, an intake air amount sensor (hereinafter referred to as MAF sensor) 40, a compressor 20A of the variable displacement supercharger 20, an intercooler 15, an intake throttle valve 16 and the like are provided in order from the intake upstream side. ing. The exhaust passage 13 is provided with a turbine 20B of the variable displacement supercharger 20, an exhaust aftertreatment device 30 and the like in order from the exhaust upstream side. In FIG. 1, reference numeral 41 denotes an engine speed sensor, reference numeral 42 denotes an accelerator opening sensor, and reference numeral 46 denotes a boost pressure sensor.

EGR装置21は、排気マニホールド10Bと吸気マニホールド10Aとを接続するEGR通路22と、EGRガスを冷却するEGRクーラ23と、EGR量を調整するEGRバルブ24とを備えている。   The EGR device 21 includes an EGR passage 22 that connects the exhaust manifold 10B and the intake manifold 10A, an EGR cooler 23 that cools EGR gas, and an EGR valve 24 that adjusts the EGR amount.

排気後処理装置30は、ケース30A内に排気上流側から順に酸化触媒31、NOx吸蔵還元型触媒32、パティキュレートフィルタ(以下、単にフィルタという)33を配置して構成されている。また、酸化触媒31よりも上流側の排気通路13には、ECU50から入力される指示信号に応じて、排気通路13内に未燃燃料(主にHC)を噴射する排気インジェクタ34が設けられている。   The exhaust aftertreatment device 30 is configured by arranging an oxidation catalyst 31, a NOx occlusion reduction type catalyst 32, and a particulate filter (hereinafter simply referred to as a filter) 33 in order from the exhaust upstream side in a case 30A. The exhaust passage 13 upstream of the oxidation catalyst 31 is provided with an exhaust injector 34 that injects unburned fuel (mainly HC) into the exhaust passage 13 in accordance with an instruction signal input from the ECU 50. Yes.

酸化触媒31は、例えば、ハニカム構造体等のセラミック製担体表面に酸化触媒成分を担持して形成されている。酸化触媒31は、排気インジェクタ34の排気管噴射又は筒内インジェクタ11のポスト噴射によって未燃燃料が供給されると、これを酸化して排気温度を上昇させる。   The oxidation catalyst 31 is formed, for example, by carrying an oxidation catalyst component on the surface of a ceramic carrier such as a honeycomb structure. When the unburned fuel is supplied by the exhaust pipe injection of the exhaust injector 34 or the post injection of the in-cylinder injector 11, the oxidation catalyst 31 oxidizes this and raises the exhaust temperature.

NOx吸蔵還元型触媒32は、例えば、ハニカム構造体等のセラミック製担体表面にアルカリ金属等を担持して形成されている。このNOx吸蔵還元型触媒32は、排気空燃比がリーン状態のときに排気中のNOxを吸蔵すると共に、排気空燃比がリッチ状態のときに排気中に含まれる還元剤(HC等)で吸蔵したNOxを還元浄化する。   The NOx storage reduction catalyst 32 is formed, for example, by supporting an alkali metal or the like on the surface of a ceramic carrier such as a honeycomb structure. The NOx occlusion reduction type catalyst 32 occludes NOx in the exhaust when the exhaust air-fuel ratio is in a lean state, and occludes with a reducing agent (HC or the like) contained in the exhaust when the exhaust air-fuel ratio is in a rich state. NOx is reduced and purified.

フィルタ33は、例えば、多孔質性の隔壁で区画された多数のセルを排気の流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して形成されている。フィルタ33は、排気中のPMを隔壁の細孔や表面に捕集すると共に、PM堆積推定量が所定量に達すると、これを燃焼除去するいわゆるフィルタ強制再生が実行される。フィルタ強制再生は、排気管噴射又はポスト噴射によって上流側の酸化触媒31に未燃燃料を供給し、フィルタ33に流入する排気温度をPM燃焼温度まで昇温することで行われる。   The filter 33 is formed, for example, by arranging a large number of cells partitioned by porous partition walls along the flow direction of the exhaust gas and alternately plugging the upstream side and the downstream side of these cells. . The filter 33 collects PM in the exhaust gas in the pores and surfaces of the partition walls, and when the estimated amount of PM deposition reaches a predetermined amount, so-called filter forced regeneration is performed in which the PM is burned and removed. Filter forced regeneration is performed by supplying unburned fuel to the upstream side oxidation catalyst 31 by exhaust pipe injection or post injection, and raising the exhaust temperature flowing into the filter 33 to the PM combustion temperature.

第1排気温度センサ43は、酸化触媒31よりも上流側に設けられており、酸化触媒31に流入する排気温度を検出する。第2排気温度センサ44は、NOx吸蔵還元型触媒32とフィルタ33との間に設けられており、フィルタ33に流入する排気温度を検出する。NOx/ラムダセンサ45は、フィルタ33よりも下流側に設けられており、NOx吸蔵還元型触媒32を通過した排気のNOx値及びラムダ値(以下、空気過剰率ともいう)を検出する。   The first exhaust temperature sensor 43 is provided on the upstream side of the oxidation catalyst 31 and detects the exhaust temperature flowing into the oxidation catalyst 31. The second exhaust temperature sensor 44 is provided between the NOx storage reduction catalyst 32 and the filter 33 and detects the exhaust temperature flowing into the filter 33. The NOx / lambda sensor 45 is provided on the downstream side of the filter 33, and detects the NOx value and lambda value (hereinafter also referred to as excess air ratio) of the exhaust gas that has passed through the NOx storage reduction catalyst 32.

ECU50は、エンジン10等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。これら各種制御を行うため、ECU50にはセンサ類40〜46のセンサ値が入力される。また、ECU50は、NOxパージ制御部60と、NOxパージ禁止処理部70と、MAF追従制御部80と、噴射量学習補正部90と、MAF補正係数演算部95とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。   The ECU 50 performs various controls of the engine 10 and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like. In order to perform these various controls, sensor values of the sensors 40 to 46 are input to the ECU 50. The ECU 50 includes a NOx purge control unit 60, a NOx purge prohibition processing unit 70, a MAF follow-up control unit 80, an injection amount learning correction unit 90, and a MAF correction coefficient calculation unit 95 as some functional elements. . Each of these functional elements will be described as being included in the ECU 50 which is an integral hardware, but any one of these may be provided in separate hardware.

[NOxパージ制御]
NOxパージ制御部60は、本発明の触媒再生手段であって、排気をリッチ状態にしてNOx吸蔵還元型触媒32に吸蔵されているNOxを還元浄化により無害化して放出することで、NOx吸蔵還元型触媒32のNOx吸蔵能力を回復させる触媒再生処理(以下、この制御をNOxパージ制御という)を実行する。
[NOx purge control]
The NOx purge control unit 60 is the catalyst regeneration means of the present invention, and makes NOx occluded and reduced by detoxifying and releasing NOx occluded in the NOx occlusion reduction type catalyst 32 in a rich state by reduction purification. A catalyst regeneration process for recovering the NOx occlusion capacity of the type catalyst 32 (hereinafter, this control is referred to as NOx purge control) is executed.

NOxパージ制御の「開始要求」は、例えば、エンジン10の運転状態から単位時間当たりのNOx排出量を推定し、これを累積計算した推定累積値ΣNOxが所定の閾値を超えた場合、あるいは、エンジン10の運転状態から推定される触媒上流側のNOx排出量と、NOx/ラムダセンサ45で検出される触媒下流側のNOx量とからNOx吸蔵還元型触媒32によるNOx浄化率を演算し、このNOx浄化率が所定の判定閾値よりも低くなった場合に成立する。詳細を後述する禁止フラグFPro_NPがオフの状態で「開始要求」が成立すると、NOxパージ制御を実施するNOxパージフラグFNPはオン(FNP=1)にされる(図2の時刻t参照)。 The “start request” of the NOx purge control is, for example, a case where the NOx emission amount per unit time is estimated from the operating state of the engine 10 and the estimated cumulative value ΣNOx obtained by accumulating this is over a predetermined threshold, or the engine The NOx purification rate by the NOx occlusion reduction type catalyst 32 is calculated from the NOx emission amount on the upstream side of the catalyst estimated from the ten operating states and the NOx amount on the downstream side of the catalyst detected by the NOx / lambda sensor 45, and this NOx. This is established when the purification rate is lower than a predetermined determination threshold. When the “start request” is established when the prohibition flag F Pro_NP described later in detail is off, the NOx purge flag F NP for performing the NOx purge control is turned on (F NP = 1) (see time t 1 in FIG. 2). ).

本実施形態において、NOxパージ制御による排気のリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第1目標空気過剰率(例えば、約1.3)まで低下させるNOxパージリーン制御と、噴射系制御によって空気過剰率を第1目標空気過剰率からリッチ側の第2目標空気過剰率(例えば、約0.9)まで低下させるNOxパージリッチ制御とを併用することで実現される。以下、これらNOxパージリーン制御及び、NOxパージリッチ制御の詳細について説明する。   In the present embodiment, the exhaust gas enrichment by the NOx purge control is performed on the lean side from the theoretical air-fuel ratio equivalent value (about 1.0) from the time of steady operation (for example, about 1.5) by the air system control. NOx purge lean control to lower the first target excess air ratio (e.g., about 1.3) and the injection system control to reduce the excess air ratio from the first target excess air ratio to the rich second target excess air ratio (e.g., This is realized by using together with the NOx purge rich control for reducing to about 0.9). The details of the NOx purge lean control and the NOx purge rich control will be described below.

[NOxパージリーン制御]
図3は、NOxパージリーン制御部60AによるMAF目標値MAFNPL_Trgtの設定処理を示すブロック図である。第1目標空気過剰率設定マップ61は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリーン制御時の空気過剰率目標値λNPL_Trgt(第1目標空気過剰率)が予め実験等に基づいて設定されている。
[NOx purge lean control]
FIG. 3 is a block diagram showing a setting process of the MAF target value MAF NPL_Trgt by the NOx purge lean control unit 60A. The first target excess air ratio setting map 61 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge lean control corresponding to the engine speed Ne and the accelerator opening Q. An excess air ratio target value λ NPL_Trgt (first excess air ratio) is set in advance based on experiments or the like.

まず、第1目標空気過剰率設定マップ61から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリーン制御時の空気過剰率目標値λNPL_Trgtが読み取られて、MAF目標値演算部62に入力される。さらに、MAF目標値演算部62では、以下の数式(1)に基づいてNOxパージリーン制御時のMAF目標値MAFNPL_Trgtが演算される。 First, the excess air ratio target value λ NPL_Trgt at the time of NOx purge lean control is read from the first target excess air ratio setting map 61 using the engine speed Ne and the accelerator opening Q as input signals, and is sent to the MAF target value calculation unit 62. Entered. Further, the MAF target value calculation unit 62 calculates the MAF target value MAF NPL_Trgt at the time of NOx purge lean control based on the following formula (1).

MAFNPL_Trgt=λNPL_Trgt×Qfnl_corrd×RoFuel×AFRsto/Maf_corr・・・(1)
数式(1)において、Qfnl_corrdは後述する学習補正された筒内インジェクタ11の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
MAF NPL_Trgt = λ NPL_Trgt × Q fnl_corrd × Ro Fuel × AFR sto / Maf_corr (1)
In Equation (1), Q fnl_cord is the fuel injection amount (excluding post-injection) of the in-cylinder injector 11 corrected later, Ro Fuel is the fuel specific gravity, AFR sto is the stoichiometric air-fuel ratio, and Maf_corr is the MAF correction described later. Each coefficient is shown.

MAF目標値演算部62によって演算されたMAF目標値MAFNPL_Trgtは、NOxパージフラグFNPがオン(図2の時刻t参照)になるとランプ処理部63に入力される。ランプ処理部63は、各ランプ係数マップ63A,Bからエンジン回転数Ne及びアクセル開度Qを入力信号としてランプ係数を読み取ると共に、このランプ係数を付加したMAF目標ランプ値MAFNPL_Trgt_Rampをバルブ制御部64に入力する。 The MAF target value MAF NPL_Trgt calculated by the MAF target value calculation unit 62 is input to the ramp processing unit 63 when the NOx purge flag F NP is turned on (see time t 1 in FIG. 2). The ramp processing unit 63 reads the ramp coefficient from each of the ramp coefficient maps 63A and 63B using the engine speed Ne and the accelerator opening Q as input signals, and uses the MAF target ramp value MAF NPL_Trgt_Ramp to which the ramp coefficient is added as a valve control unit 64. To enter.

バルブ制御部64は、MAFセンサ40から入力される実MAF値MAFActがMAF目標ランプ値MAFNPL_Trgt_Rampとなるように、吸気スロットルバルブ16を閉側に絞ると共に、EGRバルブ24を開側に開くフィードバック制御を実行する。 The valve control unit 64 throttles the intake throttle valve 16 to the close side and opens the EGR valve 24 to the open side so that the actual MAF value MAF Act input from the MAF sensor 40 becomes the MAF target ramp value MAF NPL_Trgt_Ramp. Execute control.

このように、本実施形態では、第1目標空気過剰率設定マップ61から読み取られる空気過剰率目標値λNPL_Trgtと、各筒内インジェクタ11の燃料噴射量とに基づいてMAF目標値MAFNPL_Trgtを設定し、このMAF目標値MAFNPL_Trgtに基づいて空気系動作をフィードバック制御するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。 Thus, in this embodiment, the MAF target value MAF NPL_Trgt is set based on the excess air ratio target value λ NPL_Trgt read from the first target excess air ratio setting map 61 and the fuel injection amount of each in-cylinder injector 11. The air system operation is feedback-controlled based on the MAF target value MAF NPL_Trgt . Thus, without providing a lambda sensor upstream of the NOx storage reduction catalyst 32, or even when a lambda sensor is provided upstream of the NOx storage reduction catalyst 32, the sensor value of the lambda sensor is not used. It is possible to effectively reduce the exhaust gas to a desired excess air ratio required for NOx purge lean control.

また、各筒内インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、MAF目標値MAFNPL_Trgtをフィードフォワード制御で設定することが可能となり、各筒内インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。 Further, by using the fuel injection amount Q fnl_corrd after learning correction as the fuel injection amount of each in-cylinder injector 11, the MAF target value MAF NPL_Trgt can be set by feedforward control. Effects such as deterioration and characteristic changes can be effectively eliminated.

また、MAF目標値MAFNPL_Trgtにエンジン10の運転状態に応じて設定されるランプ係数を付加することで、吸入空気量の急激な変化によるエンジン10の失火やトルク変動によるドライバビリティーの悪化等を効果的に防止することができる。 Further, by adding a ramp coefficient that is set according to the operating state of the engine 10 to the MAF target value MAF NPL_Trgt , it is possible to prevent misfire of the engine 10 due to a sudden change in the intake air amount, deterioration of drivability due to torque fluctuation, and the like. It can be effectively prevented.

[NOxパージリッチ制御の燃料噴射量設定]
図4は、NOxパージリッチ制御部60Bによる排気管噴射又はポスト噴射の目標噴射量QNPR_Trgt(単位時間当たりの噴射量)の設定処理を示すブロック図である。第2目標空気過剰率設定マップ65は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgt(第2目標空気過剰率)が予め実験等に基づいて設定されている。
[NOx purge rich control fuel injection amount setting]
FIG. 4 is a block diagram showing a setting process of the target injection amount Q NPR_Trgt (injection amount per unit time) of exhaust pipe injection or post injection by the NOx purge rich control unit 60B. The second target excess air ratio setting map 65 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q. The air excess rate target value λ NPR_Trgt (second target air excess rate) is preset based on experiments or the like.

まず、第2目標空気過剰率設定マップ65から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgtが読み取られて噴射量目標値演算部66に入力される。さらに、噴射量目標値演算部66では、以下の数式(2)に基づいてNOxパージリッチ制御時の目標噴射量QNPR_Trgtが演算される。 First, the excess air ratio target value λ NPR_Trgt at the time of NOx purge rich control is read from the second target excess air ratio setting map 65 using the engine speed Ne and the accelerator opening Q as input signals, and the injection quantity target value calculation unit 66 is read. Is input. Further, the injection amount target value calculation unit 66 calculates the target injection amount Q NPR_Trgt at the time of NOx purge rich control based on the following formula (2).

NPR_Trgt=MAFNPL_Trgt×Maf_corr/(λNPR_Trgt×RoFuel×AFRsto)−Qfnl_corrd・・・(2)
数式(2)において、MAFNPL_TrgtはNOxパージリーンMAF目標値であって、前述のMAF目標値演算部62から入力される。また、Qfnl_corrdは後述する学習補正されたMAF追従制御適用前の筒内インジェクタ11の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
Q NPR_Trgt = MAF NPL_Trgt × Maf_corr / (λ NPR_Trgt × Ro Fuel × AFR sto ) −Q fnl_corrd (2)
In Expression (2), MAF NPL_Trgt is a NOx purge lean MAF target value, and is input from the MAF target value calculation unit 62 described above. Q fnl_cord is the fuel injection amount (excluding post-injection) of the in-cylinder injector 11 before application of learning corrected MAF follow-up control, which will be described later, Ro Fuel is fuel specific gravity, AFR sto is the stoichiometric air-fuel ratio, and Maf_corr is described later. MAF correction coefficients are shown respectively.

噴射量目標値演算部66によって演算される目標噴射量QNPR_Trgtは、NOxパージフラグFNPがオンになると、排気インジェクタ34又は各筒内インジェクタ11に噴射指示信号として送信される(図2の時刻t)。この噴射指示信号の送信は、後述するNOxパージ制御の終了判定によってNOxパージフラグFNPがオフ(図2の時刻t)にされるまで継続される。 The target injection amount Q NPR_Trgt calculated by the injection amount target value calculation unit 66 is transmitted as an injection instruction signal to the exhaust injector 34 or each in-cylinder injector 11 when the NOx purge flag F NP is turned on (time t in FIG. 2). 1 ). The transmission of the injection instruction signal is continued until the NOx purge flag F NP is turned off (time t 2 in FIG. 2 ) by the end determination of NOx purge control described later.

このように、本実施形態では、第2目標空気過剰率設定マップ65から読み取られる空気過剰率目標値λNPR_Trgtと、各筒内インジェクタ11の燃料噴射量とに基づいて目標噴射量QNPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。 Thus, in the present embodiment, the target injection amount Q NPR_Trgt is set based on the excess air ratio target value λ NPR_Trgt read from the second target excess air ratio setting map 65 and the fuel injection amount of each in-cylinder injector 11. It is supposed to be. Thus, without providing a lambda sensor upstream of the NOx storage reduction catalyst 32, or even when a lambda sensor is provided upstream of the NOx storage reduction catalyst 32, the sensor value of the lambda sensor is not used. It is possible to effectively reduce the exhaust gas to a desired excess air ratio required for NOx purge rich control.

また、各筒内インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、目標噴射量QNPR_Trgtをフィードフォワード制御で設定することが可能となり、各筒内インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。 Further, by using the fuel injection amount Q fnl_corrd after learning correction as the fuel injection amount of each in-cylinder injector 11, the target injection amount Q NPR_Trgt can be set by feedforward control. Effects such as deterioration and characteristic changes can be effectively eliminated.

[NOxパージ制御の禁止処理]
図5は、NOxパージ禁止処理部70による禁止処理を示すブロック図である。NOxパージ禁止処理部70は、本発明の禁止手段であって、以下の禁止条件(1)〜(8)の何れかが成立すると、NOxパージ禁止フラグFPro_NPをオン(FPro_NP=1)にして、NOxパージ制御の実施を禁止する。
(1)エンジン回転数Neが所定の上限回転数閾値Ne_maxよりも高い場合。
(2)エンジン回転数Neが所定の下限回転数閾値Ne_minよりも低い場合。
(3)筒内インジェクタ11の燃料噴射量Qfnl_corrd(ポスト噴射除く)が所定の上限噴射量閾値Q_maxよりも多い場合。
(4)筒内インジェクタ11の燃料噴射量Qfnl_corrd(ポスト噴射除く)が所定の下限噴射量閾値Q_minよりも少ない場合。
(5)エンジン10が所定の高負荷運転状態となり、ブースト圧フィードバック制御(空気系オープンループ制御)が実施される場合。
(6)NOxパージ制御の開始直後にエンジン10が燃料噴射を停止させるモータリング状態になる可能性がある場合。
(7)排気インジェクタ34の最大限界噴射量Qexh_maxから推定される到達可能な排気空気過剰率推定値λest_maxが、上述のNOxパージリッチ制御部60Bによって設定される空気過剰率目標値λNPR_Trgt(第2目標空気過剰率)よりも高くなる場合。
(8)NOx吸蔵還元型触媒32の触媒温度が所定の触媒活性温度未満の場合。
[NOx purge control prohibition process]
FIG. 5 is a block diagram showing prohibition processing by the NOx purge prohibition processing unit 70. The NOx purge prohibition processing unit 70 is a prohibition unit of the present invention, and when any of the following prohibition conditions (1) to (8) is satisfied, the NOx purge prohibition flag F Pro_NP is turned on (F Pro_NP = 1). Therefore, the execution of the NOx purge control is prohibited.
(1) The engine speed Ne is higher than a predetermined upper limit speed threshold value Ne_max .
(2) The engine speed Ne is lower than a predetermined lower limit speed threshold value Ne_min .
(3) (excluding post-injection) fuel injection quantity Q Fnl_corrd in-cylinder injector 11 is often than a predetermined upper-limit injection amount threshold Q _max.
(4) When the fuel injection amount Q Fnl_corrd in-cylinder injector 11 (excluding post injection) is smaller than the predetermined lower limit injection amount threshold Q _min.
(5) The engine 10 is in a predetermined high load operation state, and boost pressure feedback control (air system open loop control) is performed.
(6) When the engine 10 may enter a motoring state in which fuel injection is stopped immediately after the start of the NOx purge control.
(7) The reachable exhaust air excess rate estimated value λ est_max estimated from the maximum limit injection amount Q exh_max of the exhaust injector 34 is the excess air rate target value λ NPR_Trgt set by the NOx purge rich control unit 60B. When it becomes higher than the second target excess air ratio).
(8) The catalyst temperature of the NOx occlusion reduction type catalyst 32 is lower than a predetermined catalyst activation temperature.

以下、これら禁止条件(1)〜(8)の詳細について説明する。   Hereinafter, details of these prohibition conditions (1) to (8) will be described.

禁止条件(1)〜(4)については、予めECU50のメモリに格納された図6に示す禁止判定マップに基づいて判定される。この禁止判定マップは、エンジン回転数Ne及び燃料噴射量Q(アクセル開度)に基づいて参照される二次元マップであって、予め実験等により取得した上限回転数閾値ラインNe_max_L、下限回転数閾値ラインNe_min_L、上限噴射量閾値ラインQ_max_L及び、下限噴射量閾値ラインQ_min_Lが固定値(一定値)として設定されている。すなわち、これら4本の上下限ラインによって囲まれる略矩形状の領域がNOxパージ許可領域αに設定されている。エンジン回転数Ne及び燃料噴射量QがNOxパージ可能領域αから外れた場合は、NOxパージ制御の実施が禁止されるようになっている。 The prohibition conditions (1) to (4) are determined based on the prohibition determination map shown in FIG. 6 stored in the memory of the ECU 50 in advance. The prohibition determination map is a two-dimensional map to be referred to based on the engine speed Ne and fuel injection quantity Q (accelerator opening), advance the upper limit rotational speed threshold line Ne _Max_L obtained by experiment or the like, the lower limit engine speed The threshold line Ne_min_L , the upper limit injection amount threshold line Q_max_L, and the lower limit injection amount threshold line Q_min_L are set as fixed values (constant values). That is, a substantially rectangular area surrounded by these four upper and lower limit lines is set as the NOx purge permission area α. When the engine speed Ne and the fuel injection amount Q are out of the NOx purge possible region α, the execution of the NOx purge control is prohibited.

本実施形態では、このように、エンジン回転数Neが上限回転数閾値Ne_maxよりも高い場合や、筒内インジェクタ11の燃料噴射量が上限噴射量閾値Q_maxよりも多い場合にNOxパージ制御の実施を禁止することで、エンジン温度の急上昇を効果的に防止することができる。また、エンジン回転数Neが下限回転数閾値Ne_minよりも低い場合にNOxパージ制御の実施を禁止することで、HCスリップの増加を効果的に防止することができる。また、筒内インジェクタ11の燃料噴射量が下限噴射量閾値Q_minよりも少ない場合にNOxパージ制御を禁止することで、排気ラムダが下がりにくい状態で無駄なNOxパージ制御の実施を確実に抑止することが可能となり、燃費の悪化を効果的に防止することができる。 In this embodiment, as described above, when the engine speed Ne is higher than the upper limit engine speed threshold value Ne_max , or when the fuel injection amount of the in-cylinder injector 11 is larger than the upper limit injection amount threshold value Q_max , the NOx purge control is performed. By prohibiting the implementation, a rapid increase in engine temperature can be effectively prevented. Further, by prohibiting the execution of NOx purge control when the engine speed Ne is lower than the lower limit speed threshold value Ne_min , an increase in HC slip can be effectively prevented. Further, by prohibiting the NOx purge control when the fuel injection amount of the in-cylinder injector 11 is smaller than the lower limit injection amount threshold value Q_min, it is possible to reliably prevent the wasteful NOx purge control from being performed in a state where the exhaust lambda is difficult to decrease. It is possible to effectively prevent deterioration of fuel consumption.

禁止条件(5)についても、禁止条件(1)〜(4)と同様に、図6に示す禁止判定マップに基づいて判定される。禁止判定マップには、上述の4本の上下限ラインに加え、さらにブースト圧フィードバック制御ラインFB_max_Lが設定されている。ブースト圧フィードバック制御ラインFB_max_Lよりも燃料噴射量Qが多くなる領域では、ブースト圧センサ46のセンサ値に基づいて可変容量型過給機20の開度をフィードバック制御するブース圧フィードバック制御(空気系はオープンループ制御)が実施されるようになっている。 The prohibition condition (5) is also determined based on the prohibition determination map shown in FIG. 6 as in the prohibition conditions (1) to (4). In addition to the above four upper and lower limit lines, a boost pressure feedback control line FB_max_L is set in the prohibition determination map. In the region where the fuel injection amount Q is larger than the boost pressure feedback control line FB_max_L, the booth pressure feedback control (air system) that feedback-controls the opening degree of the variable displacement supercharger 20 based on the sensor value of the boost pressure sensor 46. Open loop control).

ブースト圧フィードバック制御ラインFB_max_Lは、エンジン高回転側にてエンジン回転数Neの上昇に伴い燃料噴射量Qを次第に減少させるように設定され、少なくともその一部がNOxパージ許可領域α内の高負荷領域に含まれるようになっている。すなわち、燃料噴射量Qが上限噴射量閾値Q_max以下となるNOxパージ許可領域α内に、ブース圧フィードバック制御が実施される領域βが設定されている。この領域βでNOxパージ制御を実施すると、空気系制御が互いに干渉することになり、実MAFを目標MAF値に一致させられず、排気リッチ噴射量が不適切になる可能性がある。 The boost pressure feedback control line FB_max_L is set so as to gradually decrease the fuel injection amount Q as the engine speed Ne increases on the high engine speed side, and at least part of the boost pressure feedback control line FB_max_L is a high load within the NOx purge permission region α. It is included in the area. That is, the region β where the booth pressure feedback control is performed is set in the NOx purge permission region α where the fuel injection amount Q is equal to or less than the upper limit injection amount threshold value Q_max . When the NOx purge control is performed in this region β, the air system controls interfere with each other, the actual MAF cannot be matched with the target MAF value, and the exhaust rich injection amount may become inappropriate.

本実施形態では、このような実MAFと目標MAF値とが一致しない領域βをNOxパージ制御の禁止領域に設定することで、排気リッチ噴射量が不適切になることで引き起こされる燃費の悪化や排気過昇温を確実に防止するようになっている。   In this embodiment, by setting the region β in which the actual MAF and the target MAF value do not coincide with each other as the NOx purge control prohibition region, the deterioration of fuel consumption caused by the inappropriate exhaust rich injection amount or the like. Exhaust overheating is reliably prevented.

禁止条件(6)については、上述したNOxパージ制御の「開始要求」が成立した際の筒内インジェクタ11の燃料噴射量変化に基づいて判定される。より詳しくは、NOxパージ制御の「開始要求」が成立した際に、筒内インジェクタ11の燃料噴射量Qfnl_corrdと、噴射量微分値ΔQに所定の時間定数Kを乗じた値との総和がゼロ未満(負の値)となる以下の条件式(3)を満たす場合は、エンジン10が短時間内にモータリング状態になると判定して、NOxパージ制御の実施を禁止するようになっている。 The prohibition condition (6) is determined based on a change in the fuel injection amount of the in-cylinder injector 11 when the above-described “start request” for NOx purge control is satisfied. More specifically, when the “start request” for NOx purge control is established, the sum of the fuel injection amount Q fnl_corrd of the in-cylinder injector 11 and the value obtained by multiplying the injection amount differential value ΔQ by a predetermined time constant K is zero. When the following conditional expression (3) that is less than (a negative value) is satisfied, it is determined that the engine 10 is in a motoring state within a short time, and the execution of the NOx purge control is prohibited.

fnl_corrd−ΔQ×K<0・・・(3)
このように、NOxパージ制御の開始直後にエンジン10がモータリング状態になる可能性がある場合は、NOxパージ制御の実施を禁止することにより、無駄な燃料消費を効果的に防止することができる。
Q fnl_cord −ΔQ × K <0 (3)
As described above, when there is a possibility that the engine 10 enters the motoring state immediately after the start of the NOx purge control, it is possible to effectively prevent wasteful fuel consumption by prohibiting the execution of the NOx purge control. .

禁止条件(7)については、予めECU50のメモリに格納された排気インジェクタ34の最大限界噴射量Qexh_maxに基づいて判定される。より詳しくは、NOxパージ制御の「開始要求」が成立した際に、排気インジェクタ34の最大限界噴射量Qexh_maxに基づいて、NOxパージ制御を実施した場合の到達可能な排気空気過剰率推定値λest_maxを演算すると共に、この排気空気過剰率推定値λest_maxがNOxパージリッチ制御の空気過剰率目標値λNPR_Trgt(第2目標空気過剰率)よりも高い場合(λest_max>λNPR_Trgt)は、NOxパージ制御の実施を禁止するようになっている。 The prohibition condition (7) is determined based on the maximum limit injection amount Q exh_max of the exhaust injector 34 stored in advance in the memory of the ECU 50. More specifically, when the “start request” for NOx purge control is established, the exhaust air excess rate estimated value λ that can be reached when the NOx purge control is performed based on the maximum limit injection amount Q exh_max of the exhaust injector 34. est_max is calculated, and if this exhaust air excess rate estimated value λ est_max is higher than the target value λ NPR_Trgt (second target excess air rate) of NOx purge rich control (λ est_max > λ NPR_Trgt ), NOx Implementation of purge control is prohibited.

このように、NOxパージ制御を実施しても、排気インジェクタ34の最大限界噴射量Qexh_maxの制限によって排気を所望の空気過剰率まで低下させられない場合はNOxパージ制御の実施を禁止することにより、無駄な燃料消費を効果的に防止することが可能になる。 Thus, even if the NOx purge control is performed, if the exhaust gas cannot be reduced to the desired excess air ratio due to the limitation of the maximum limit injection amount Q exh_max of the exhaust injector 34, the execution of the NOx purge control is prohibited. This makes it possible to effectively prevent wasteful fuel consumption.

禁止条件(8)については、NOx吸蔵還元型触媒32の推定触媒温度に基づいて判定される。推定触媒温度は、例えば、第1排気温度センサ43で検出される酸化触媒31の入口温度、酸化触媒31及びNOx吸蔵還元型触媒32の内部での発熱反応等に基づいて推定され、推定触媒温度が所定の触媒活性温度未満の場合は、NOxパージ制御を禁止するようになっている。   The prohibition condition (8) is determined based on the estimated catalyst temperature of the NOx storage reduction catalyst 32. The estimated catalyst temperature is estimated based on, for example, the inlet temperature of the oxidation catalyst 31 detected by the first exhaust temperature sensor 43, the exothermic reaction in the oxidation catalyst 31 and the NOx storage reduction catalyst 32, and the like. Is less than a predetermined catalyst activation temperature, NOx purge control is prohibited.

このように、NOx吸蔵還元型触媒32の触媒温度が触媒活性温度未満のときはNOxパージを禁止することにより、白煙の発生等を効果的に防止することが可能になる。   As described above, when the catalyst temperature of the NOx storage reduction catalyst 32 is lower than the catalyst activation temperature, it is possible to effectively prevent the generation of white smoke and the like by prohibiting the NOx purge.

[NOxパージ制御の終了判定]
NOxパージ制御は、(1)NOxパージフラグFNPのオンから排気管噴射又はポスト噴射の噴射量を累積し、この累積噴射量が所定の上限閾値量に達した場合、(2)NOxパージ制御の開始から計時した経過時間が所定の上限閾値時間に達した場合、(3)エンジン10の運転状態やNOx/ラムダセンサ45のセンサ値等を入力信号として含む所定のモデル式に基づいて演算されるNOx吸蔵還元型触媒32のNOx吸蔵量がNOx除去成功を示す所定の閾値まで低下した場合の何れかの条件が成立すると、NOxパージフラグFNPをオフにして終了される(図2の時刻t参照)。
[Determining completion of NOx purge control]
In the NOx purge control, (1) when the NOx purge flag F NP is turned on, the amount of exhaust pipe injection or post injection is accumulated, and when this cumulative injection amount reaches a predetermined upper limit threshold amount, (2) NOx purge control When the elapsed time counted from the start reaches a predetermined upper threshold time, (3) calculation is performed based on a predetermined model formula including the operating state of the engine 10 and the sensor value of the NOx / lambda sensor 45 as input signals. If any of the conditions in the case where the NOx occlusion amount of the NOx occlusion reduction type catalyst 32 falls to a predetermined threshold value indicating successful NOx removal is satisfied, the NOx purge flag F NP is turned off and the process is terminated (time t 2 in FIG. 2). reference).

このように、本実施形態では、NOxパージ制御の終了条件に累積噴射量及び、経過時間の上限を設けたことで、NOxパージが排気温度の低下等によって成功しなかった場合に燃料消費量が過剰になることを確実に防止することができる。   As described above, in the present embodiment, the cumulative injection amount and the upper limit of the elapsed time are provided in the end condition of the NOx purge control. It is possible to reliably prevent the excess.

[MAF追従制御]
MAF追従制御部80は、(1)通常運転のリーン状態からNOxパージ制御によるリッチ状態への切り替え期間及び、(2)NOxパージ制御によるリッチ状態から通常運転のリーン状態への切り替え期間に、各筒内インジェクタ11の燃料噴射タイミング及び燃料噴射量をMAF変化に応じて補正するMAF追従制御を実行する。
[MAF tracking control]
The MAF follow-up control unit 80 includes (1) a switching period from the lean state in the normal operation to the rich state by the NOx purge control, and (2) a switching period from the rich state to the lean state in the normal operation by the NOx purge control. MAF follow-up control for correcting the fuel injection timing and the fuel injection amount of the in-cylinder injector 11 according to the MAF change is executed.

[噴射量学習補正]
図7に示すように、噴射量学習補正部90は、学習補正係数演算部91と、噴射量補正部92とを有する。
[Injection amount learning correction]
As shown in FIG. 7, the injection amount learning correction unit 90 includes a learning correction coefficient calculation unit 91 and an injection amount correction unit 92.

学習補正係数演算部91は、エンジン10のリーン運転時にNOx/ラムダセンサ45で検出される実ラムダ値λActと、推定ラムダ値λEstとの誤差Δλに基づいて燃料噴射量の学習補正係数FCorrを演算する。排気がリーン状態のときは、排気中のHC濃度が非常に低いので、酸化触媒31でHCの酸化反応による排気ラムダ値の変化は無視できるほど小さい。このため、酸化触媒31を通過して下流側のNOx/ラムダセンサ45で検出される排気中の実ラムダ値λActと、エンジン10から排出された排気中の推定ラムダ値λEstとは一致すると考えられる。すなわち、これら実ラムダ値λActと推定ラムダ値λEstとに誤差Δλが生じた場合は、各筒内インジェクタ11に対する指示噴射量と実噴射量との差によるものと仮定することができる。以下、この誤差Δλを用いた学習補正係数演算部91による学習補正係数の演算処理を図8のフローに基づいて説明する。 The learning correction coefficient calculation unit 91 is based on the error Δλ between the actual lambda value λ Act detected by the NOx / lambda sensor 45 during the lean operation of the engine 10 and the estimated lambda value λ Est, and the learning correction coefficient F for the fuel injection amount. Calculate Corr . When the exhaust is in a lean state, the HC concentration in the exhaust is very low, so that the change in the exhaust lambda value due to the oxidation reaction of HC at the oxidation catalyst 31 is negligibly small. Therefore, the actual lambda value λ Act in the exhaust gas that passes through the oxidation catalyst 31 and is detected by the downstream NOx / lambda sensor 45 matches the estimated lambda value λ Est in the exhaust gas discharged from the engine 10. Conceivable. That is, when an error Δλ occurs between the actual lambda value λ Act and the estimated lambda value λ Est , it can be assumed that the difference is between the instructed injection amount for each in-cylinder injector 11 and the actual injection amount. Hereinafter, the learning correction coefficient calculation processing by the learning correction coefficient calculation unit 91 using the error Δλ will be described with reference to the flow of FIG.

ステップS300では、エンジン回転数Ne及びアクセル開度Qに基づいて、エンジン10がリーン運転状態にあるか否かが判定される。リーン運転状態にあれば、学習補正係数の演算を開始すべく、ステップS310に進む。   In step S300, based on the engine speed Ne and the accelerator opening Q, it is determined whether or not the engine 10 is in a lean operation state. If it is in the lean operation state, the process proceeds to step S310 to start the calculation of the learning correction coefficient.

ステップS310では、推定ラムダ値λEstからNOx/ラムダセンサ45で検出される実ラムダ値λActを減算した誤差Δλに、学習値ゲインK及び補正感度係数Kを乗じることで、学習値FCorrAdptが演算される(FCorrAdpt=(λEst−λAct)×K×K)。推定ラムダ値λEstは、エンジン回転数Neやアクセル開度Qに応じたエンジン10の運転状態から推定演算される。また、補正感度係数Kは、図7に示す補正感度係数マップ91AからNOx/ラムダセンサ45で検出される実ラムダ値λActを入力信号として読み取られる。 In step S310, an error Δλ obtained by subtracting the actual lambda value λ Act detected by the NOx / lambda sensor 45 from the estimated lambda value λ Est is multiplied by the learning value gain K 1 and the correction sensitivity coefficient K 2 to thereby obtain the learning value F CorrAdpt is calculated (F CorrAdpt = (λ Est −λ Act ) × K 1 × K 2 ). The estimated lambda value λ Est is estimated and calculated from the operating state of the engine 10 according to the engine speed Ne and the accelerator opening Q. Further, the correction sensitivity coefficient K 2 is read the actual lambda value lambda Act detected by the NOx / lambda sensor 45 from the correction sensitivity coefficient map 91A shown in FIG. 7 as the input signal.

ステップS320では、学習値FCorrAdptの絶対値|FCorrAdpt|が所定の補正限界値Aの範囲内にあるか否かが判定される。絶対値|FCorrAdpt|が補正限界値Aを超えている場合、本制御はリターンされて今回の学習を中止する。 In step S320, it is determined whether or not the absolute value | F CorrAdpt | of the learning value F CorrAdpt is within the range of the predetermined correction limit value A. If the absolute value | F CorrAdpt | exceeds the correction limit value A, the present control is returned to stop the current learning.

ステップS330では、学習禁止フラグFProがオフか否かが判定される。学習禁止フラグFProとしては、例えば、エンジン10の過渡運転時、NOxパージ制御時(FNP=1)等が該当する。これらの条件が成立する状態では、実ラムダ値λActの変化によって誤差Δλが大きくなり、正確な学習を行えないためである。エンジン10が過渡運転状態にあるか否かは、例えば、NOx/ラムダセンサ45で検出される実ラムダ値λActの時間変化量に基づいて、当該時間変化量が所定の閾値よりも大きい場合に過渡運転状態と判定すればよい。 In step S330, it is determined whether the learning prohibition flag FPro is off. The learning prohibition flag F Pro corresponds to, for example, a transient operation of the engine 10 or a NOx purge control (F NP = 1). This is because when these conditions are satisfied, the error Δλ increases due to a change in the actual lambda value λ Act , and accurate learning cannot be performed. Whether or not the engine 10 is in a transient operation state is determined based on, for example, the time change amount of the actual lambda value λ Act detected by the NOx / lambda sensor 45 when the time change amount is larger than a predetermined threshold value. What is necessary is just to determine with a transient operation state.

ステップS340では、エンジン回転数Ne及びアクセル開度Qに基づいて参照される学習値マップ91B(図7参照)が、ステップS310で演算された学習値FCorrAdptに更新される。より詳しくは、この学習値マップ91B上には、エンジン回転数Ne及びアクセル開度Qに応じて区画された複数の学習領域が設定されている。これら学習領域は、好ましくは、使用頻度が多い領域ほどその範囲が狭く設定され、使用頻度が少ない領域ほどその範囲が広く設定されている。これにより、使用頻度が多い領域では学習精度が向上され、使用頻度が少ない領域では未学習を効果的に防止することが可能になる。 In step S340, the learning value map 91B (see FIG. 7) referred to based on the engine speed Ne and the accelerator opening Q is updated to the learning value F CorrAdpt calculated in step S310. More specifically, on the learning value map 91B, a plurality of learning areas divided according to the engine speed Ne and the accelerator opening Q are set. These learning regions are preferably set to have a narrower range as the region is used more frequently and to be wider as a region is used less frequently. As a result, learning accuracy is improved in regions where the usage frequency is high, and unlearning can be effectively prevented in regions where the usage frequency is low.

ステップS350では、エンジン回転数Ne及びアクセル開度Qを入力信号として学習値マップ91Bから読み取った学習値に「1」を加算することで、学習補正係数FCorrが演算される(FCorr=1+FCorrAdpt)。この学習補正係数FCorrは、図7に示す噴射量補正部92に入力される。 In step S350, the learning correction coefficient F Corr is calculated by adding “1” to the learned value read from the learned value map 91B using the engine speed Ne and the accelerator opening Q as input signals (F Corr = 1 + F). CorrAdpt ). The learning correction coefficient F Corr is input to the injection amount correction unit 92 shown in FIG.

噴射量補正部92は、パイロット噴射QPilot、プレ噴射QPre、メイン噴射QMain、アフタ噴射QAfter、ポスト噴射QPostの各基本噴射量に学習補正係数FCorrを乗算することで、これら燃料噴射量の補正を実行する。 The injection amount correction unit 92 multiplies each basic injection amount of pilot injection Q Pilot , pre-injection Q Pre , main injection Q Main , after-injection Q After , and post-injection Q Post by a learning correction coefficient F Corr. The injection amount is corrected.

このように、推定ラムダ値λEstと実ラムダ値λActとの誤差Δλに応じた学習値で各筒内インジェクタ11に燃料噴射量を補正することで、各筒内インジェクタ11の経年劣化や特性変化、個体差等のバラツキを効果的に排除することが可能になる。 In this way, by correcting the fuel injection amount to each in-cylinder injector 11 with a learning value corresponding to the error Δλ between the estimated lambda value λ Est and the actual lambda value λ Act , the aging deterioration and characteristics of each in-cylinder injector 11 are corrected. Variations such as changes and individual differences can be effectively eliminated.

[MAF補正係数]
MAF補正係数演算部95は、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に用いられるMAF補正係数Maf_corrを演算する。
[MAF correction coefficient]
MAF correction coefficient calculating unit 95 calculates the MAF correction coefficient Maf _Corr used to set the MAF target value MAF NPL_Trgt and the target injection amount Q NPR_Trgt during NOx purge control.

本実施形態において、各筒内インジェクタ11の燃料噴射量は、NOx/ラムダセンサ45で検出される実ラムダ値λActと推定ラムダ値λEstとの誤差Δλに基づいて補正される。しかしながら、ラムダは空気と燃料の比であるため、誤差Δλの要因が必ずしも各筒内インジェクタ11に対する指示噴射量と実噴射量との差の影響のみとは限らない。すなわち、ラムダの誤差Δλには、各筒内インジェクタ11のみならずMAFセンサ40の誤差も影響している可能性がある。 In the present embodiment, the fuel injection amount of each in-cylinder injector 11 is corrected based on the error Δλ between the actual lambda value λ Act detected by the NOx / lambda sensor 45 and the estimated lambda value λ Est . However, since lambda is the ratio of air and fuel, the factor of error Δλ is not necessarily the only effect of the difference between the commanded injection amount and the actual injection amount for each in-cylinder injector 11. That is, there is a possibility that the error of the MAF sensor 40 as well as the in-cylinder injectors 11 affects the lambda error Δλ.

図9は、MAF補正係数演算部95によるMAF補正係数Maf_corrの設定処理を示すブロック図である。補正係数設定マップ96は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したMAFセンサ40のセンサ特性を示すMAF補正係数Maf_corrが予め実験等に基づいて設定されている。 FIG. 9 is a block diagram showing the setting process of the MAF correction coefficient Maf_corr by the MAF correction coefficient calculation unit 95. The correction coefficient setting map 96 is a map that is referred to based on the engine speed Ne and the accelerator opening Q. The MAF indicating the sensor characteristics of the MAF sensor 40 corresponding to the engine speed Ne and the accelerator opening Q is shown in FIG. The correction coefficient Maf_corr is set in advance based on experiments or the like.

MAF補正係数演算部95は、エンジン回転数Ne及びアクセル開度Qを入力信号として補正係数設定マップ96からMAF補正係数Maf_corrを読み取ると共に、このMAF補正係数Maf_corrをMAF目標値演算部62及び噴射量目標値演算部66に送信する。これにより、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に、MAFセンサ40のセンサ特性を効果的に反映することが可能になる。 The MAF correction coefficient calculation unit 95 reads the MAF correction coefficient Maf_corr from the correction coefficient setting map 96 using the engine speed Ne and the accelerator opening Q as input signals, and uses the MAF correction coefficient Maf_corr as the MAF target value calculation unit 62 and It transmits to the injection quantity target value calculating part 66. As a result, the sensor characteristics of the MAF sensor 40 can be effectively reflected in the settings of the MAF target value MAF NPL_Trgt and the target injection amount Q NPR_Trgt during the NOx purge control.

[その他]
なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
[Others]
In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.

10 エンジン
11 筒内インジェクタ
12 吸気通路
13 排気通路
16 吸気スロットルバルブ
24 EGRバルブ
31 酸化触媒
32 NOx吸蔵還元型触媒
33 フィルタ
34 排気インジェクタ
40 MAFセンサ
45 NOx/ラムダセンサ
50 ECU
DESCRIPTION OF SYMBOLS 10 Engine 11 In-cylinder injector 12 Intake passage 13 Exhaust passage 16 Intake throttle valve 24 EGR valve 31 Oxidation catalyst 32 NOx occlusion reduction type catalyst 33 Filter 34 Exhaust injector 40 MAF sensor 45 NOx / lambda sensor 50 ECU

Claims (5)

内燃機関の排気系に設けられ、排気リーン状態で排気中のNOxを吸蔵すると共に、排気リッチ状態で吸蔵されていたNOxを還元浄化するNOx吸蔵還元型触媒と、
排気をリッチ状態にすることで、前記NOx吸蔵還元型触媒に吸蔵されているNOxを還元浄化させる触媒再生処理を実施する触媒再生手段と、
前記内燃機関の燃料噴射量が所定の下限噴射量閾値よりも少ない場合に、前記触媒再生手段による触媒再生処理の実施を禁止する禁止手段と、を備える
排気浄化システム。
A NOx occlusion reduction type catalyst that is provided in an exhaust system of an internal combustion engine and that occludes NOx in exhaust in an exhaust lean state and reduces and purifies NOx occluded in an exhaust rich state;
Catalyst regeneration means for performing catalyst regeneration processing for reducing and purifying NOx stored in the NOx storage reduction catalyst by making the exhaust rich;
An exhaust purification system comprising: prohibiting means for prohibiting execution of catalyst regeneration processing by the catalyst regeneration means when the fuel injection amount of the internal combustion engine is smaller than a predetermined lower limit injection amount threshold value.
前記禁止手段は、さらに、前記内燃機関の燃料噴射量が所定の上限噴射量閾値よりも多い場合も前記触媒再生手段による触媒再生処理の実施を禁止する
請求項1に記載の排気浄化システム。
The exhaust purification system according to claim 1, wherein the prohibiting unit further prohibits the catalyst regeneration process from being performed by the catalyst regeneration unit even when the fuel injection amount of the internal combustion engine is greater than a predetermined upper limit injection amount threshold value.
前記禁止手段は、さらに、前記内燃機関の回転数が所定の上限回転数閾値よりも高い場合も前記触媒再生手段による触媒再生処理の実施を禁止する
請求項1又は2に記載の排気浄化システム。
The exhaust purification system according to claim 1 or 2, wherein the prohibiting unit further prohibits the catalyst regeneration processing by the catalyst regeneration unit even when the rotational speed of the internal combustion engine is higher than a predetermined upper limit rotational speed threshold.
前記禁止手段は、さらに、前記内燃機関の回転数が所定の下限回転数閾値よりも低い場合も前記触媒再生手段による触媒再生処理の実施を禁止する
請求項1から3の何れか一項に記載の排気浄化システム。
4. The prohibition unit further prohibits the catalyst regeneration process from being performed by the catalyst regeneration unit even when the rotational speed of the internal combustion engine is lower than a predetermined lower limit rotational speed threshold. 5. Exhaust purification system.
前記触媒再生手段は、前記内燃機関の空気流量を所定の目標空気流量に基づいてフィードバック制御する空気系制御及び、燃料噴射量を増加させる噴射系制御を併用して前記触媒再生処理を実施し、
前記禁止手段は、前記内燃機関の運転状態がブースト圧をフィードバック制御する高負荷運転状態になると、前記触媒再生手段による触媒再生処理の実施を禁止する
請求項1から4の何れか一項に記載の排気浄化システム。



The catalyst regeneration means performs the catalyst regeneration process by using both air system control for feedback control of the air flow rate of the internal combustion engine based on a predetermined target air flow rate and injection system control for increasing the fuel injection amount,
5. The prohibiting unit prohibits the catalyst regeneration process from being performed by the catalyst regeneration unit when the operating state of the internal combustion engine is in a high-load operation state in which boost pressure is feedback-controlled. 6. Exhaust purification system.



JP2015007983A 2015-01-19 2015-01-19 Exhaust emission control system Pending JP2016133048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015007983A JP2016133048A (en) 2015-01-19 2015-01-19 Exhaust emission control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015007983A JP2016133048A (en) 2015-01-19 2015-01-19 Exhaust emission control system

Publications (1)

Publication Number Publication Date
JP2016133048A true JP2016133048A (en) 2016-07-25

Family

ID=56437488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015007983A Pending JP2016133048A (en) 2015-01-19 2015-01-19 Exhaust emission control system

Country Status (1)

Country Link
JP (1) JP2016133048A (en)

Similar Documents

Publication Publication Date Title
WO2016117516A1 (en) Exhaust purification system and catalyst regeneration method
JP6471857B2 (en) Exhaust purification system
JP6455246B2 (en) Exhaust purification system
WO2016039452A1 (en) Exhaust gas purification system
JP2016133064A (en) Exhaust emission control system
JP6477088B2 (en) NOx storage amount estimation device
JP2016061145A (en) Exhaust emission control system
JP6439334B2 (en) Exhaust purification system
JP6455237B2 (en) Exhaust purification system
JP2017025718A (en) Exhaust emission control system
JP6432411B2 (en) Exhaust purification system
WO2016190315A1 (en) Exhaust purification device, control device, and control method
JP2016118135A (en) Exhaust emission control system
JP2016166541A (en) Exhaust emission control system
JP6405816B2 (en) Exhaust purification system
JP6435730B2 (en) Control device for internal combustion engine
JP2016133048A (en) Exhaust emission control system
JP2016125375A (en) Exhaust emission control system
JP2016133049A (en) Exhaust emission control system
WO2016117612A1 (en) Exhaust purification system and catalyst regeneration method
JP2016061144A (en) Exhaust emission control system and control method for the same
JP6550996B2 (en) Storage amount estimation device
JP2016061147A (en) Exhaust emission control system and control method for the same
JP2016153619A (en) Exhaust emission control system
JP2016153638A (en) Exhaust emission control system