JP2016131367A - Moving body system - Google Patents
Moving body system Download PDFInfo
- Publication number
- JP2016131367A JP2016131367A JP2015227268A JP2015227268A JP2016131367A JP 2016131367 A JP2016131367 A JP 2016131367A JP 2015227268 A JP2015227268 A JP 2015227268A JP 2015227268 A JP2015227268 A JP 2015227268A JP 2016131367 A JP2016131367 A JP 2016131367A
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- imaging device
- line
- stereo camera
- moving body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 claims abstract description 70
- 230000007246 mechanism Effects 0.000 claims abstract description 61
- 230000008859 change Effects 0.000 claims abstract description 28
- 238000005452 bending Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 22
- 238000000034 method Methods 0.000 description 9
- 238000004088 simulation Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000009434 installation Methods 0.000 description 4
- 238000012888 cubic function Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000012886 linear function Methods 0.000 description 2
- 238000012887 quadratic function Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
- Studio Devices (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Image Analysis (AREA)
Abstract
Description
本発明は、移動体システムに関する。 The present invention relates to a mobile system.
従来から、移動体にステレオカメラを取り付けることで、移動体周辺の情報を取得する移動体システムが知られている。 2. Description of the Related Art Conventionally, a mobile body system that acquires information around a mobile body by attaching a stereo camera to the mobile body is known.
移動体システムとしては、例えば車両に複数のステレオカメラをそれぞれ同一方向又は異なる方向を撮影するように固定した構成が開示されている(例えば、特許文献1参照)。 As a mobile system, for example, a configuration is disclosed in which a plurality of stereo cameras are fixed to a vehicle so as to photograph the same direction or different directions (see, for example, Patent Document 1).
しかしながら、ステレオカメラがある方向に固定されている状態では、移動体が例えば左方向、右方向に進行方向を変更した場合、移動体周辺の情報を取得するまでの時間が長くなることがある。 However, in a state in which the stereo camera is fixed in a certain direction, when the moving body changes its traveling direction to, for example, the left direction and the right direction, it may take a long time to acquire information around the moving body.
そこで、本発明の一つの案では、移動体周辺の情報を取得するまでの時間の短縮を図ることを目的とする。 Accordingly, an object of the present invention is to shorten the time required to acquire information around a moving object.
一つの案では、移動体に取り付けられた撮像装置と、前記撮像装置の視線方向を変更する視線方向変更機構と、前記移動体の進行方向の変化に応じて、前記撮像装置の視線方向を制御する制御部とを有する、移動体システムが提供される。 In one proposal, an imaging device attached to a moving body, a gaze direction changing mechanism that changes a gaze direction of the imaging device, and a gaze direction of the imaging device is controlled according to a change in a traveling direction of the moving body. There is provided a mobile system having a control unit.
一態様によれば、移動体周辺の情報を取得するまでの時間の短縮を図ることができる。 According to one aspect, it is possible to shorten the time required to acquire information around the mobile object.
以下、本発明の実施形態について添付の図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することによって重複した説明を省く。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has substantially the same function structure, the duplicate description is abbreviate | omitted by attaching | subjecting the same code | symbol.
本発明の一実施形態に係る移動体システムは、移動体に取り付けられた撮像装置と、撮像装置の視線方向を変更する視線方向変更機構と、移動体の進行方向の変化に応じて、撮像装置の視線方向を制御する制御部とを有する。 A moving body system according to an embodiment of the present invention includes an imaging device attached to a moving body, a line-of-sight direction changing mechanism that changes a line-of-sight direction of the imaging device, and an imaging device according to a change in the traveling direction of the moving body. And a control unit for controlling the viewing direction.
以下、移動体の一例として車両を用いた場合の移動体システムについて説明するが、本発明はこの点において限定されるものではない。 Hereinafter, although the mobile body system at the time of using a vehicle as an example of a mobile body is demonstrated, this invention is not limited in this point.
[第1実施形態]
(移動体システムの構成)
本発明の第1実施形態に係る移動体システムについて説明する。図1は、本発明の第1実施形態に係る移動体システムの概略構成図(その1)である。図2は、本発明の第1実施形態に係る移動体システムの制御ブロック図である。なお、図1における矢印は、車両の進行方向を示す。
[First Embodiment]
(Configuration of mobile system)
A mobile system according to a first embodiment of the present invention will be described. FIG. 1 is a schematic configuration diagram (part 1) of a mobile system according to the first embodiment of the present invention. FIG. 2 is a control block diagram of the mobile system according to the first embodiment of the present invention. Note that the arrows in FIG. 1 indicate the traveling direction of the vehicle.
図1及び図2に示すように、移動体システムは、ステレオカメラ100と、回転機構200と、ECU(Electronic Control Unit、電子制御ユニット)300と、回転機構制御部400とを有する。
As shown in FIGS. 1 and 2, the mobile system includes a
ステレオカメラ100は、撮像装置の一例である。ステレオカメラ100は、視点の異なる少なくとも2つのカメラを備え、これらのカメラで撮像対象の人や物体を撮像することで、車両500周辺の情報を取得する。具体的には、ステレオカメラ100は、例えば車両500と、車両500の周囲から近づいてくる人や物との間の距離を測定する。ステレオカメラ100は、例えば回転機構200を介して車両500の天井部(ルーフ)上に取り付けられており、回転機構200が回転することにより回転機構200と共に回転する。
なお、図1では、ステレオカメラ100を撮像装置の一例として用いているが、本発明はこの点において限定されるものではなく、ステレオカメラ100に代えて、単眼カメラを用いてもよい。この場合、画角を広く取るために多数の単眼カメラを並べて人や物体との距離を測定する形態としてもよく、また、位相シフト法を用いて人や物体との距離を測定する形態としてもよい。
In FIG. 1, the
また、図1では、ステレオカメラ100が車両500の天井部上に取り付けられているが、本発明はこの点において限定されるものではなく、例えば車両500のボンネット上に取り付けられていてもよい。
In FIG. 1, the
ステレオカメラ100のハードウェア構成について説明する。図3は、本発明の第1実施形態に係るステレオカメラ100のハードウェア構成を示すブロック図である。
A hardware configuration of the
図3に示すように、ステレオカメラ100は、CPU(Central Processing Unit)101と、ROM(Read Only Memory)102と、RAM(Random Access Memory)103と、撮像部104と、画像処理部105とを備える。なお、ステレオカメラ100の各部は、バス106を介して接続されている。
As illustrated in FIG. 3, the
CPU101は、ROM102に記憶されたプログラムをRAM103を作業メモリに実行し、ステレオカメラ100の制御を行う。
The
ROM102は、不揮発性メモリであり、ROMインタフェース(I/F)107を介してバス106に接続されている。ROM102は、CPU101が実行するプログラム、データ等を格納する。
The
RAM103は、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)等の主記憶装置である。RAM103は、RAMインタフェース(I/F)108を介してバス106に接続されている。RAM103は、各種プログラムがCPU101によって実行される際に展開される、作業領域として機能する。
The
撮像部104は、物体を撮像するカメラであり、画像処理部105に接続されている。撮像部104で撮像された画像(輝度画像)は、適宜、画像処理部105により画像処理される。また、撮像部104は、撮像部制御用インタフェース(I/F)109を介してバス106に接続されている。
The
画像処理部105は、撮像部104により撮像された物体の輝度画像に基づいて視差を算出し、算出した視差に基づいてステレオカメラ100から人や物体までの距離を算出すると共に、視差画像を生成する。また、画像処理部105は、生成した視差画像及び輝度画像に基づいて、人や物体を認識する。画像処理部105により人や物体までの距離を算出(以下「測距」ともいう。)する方法については後述する。なお、視差は、距離についての関数であるため、距離情報の一態様として説明する。
The
回転機構200は、視線方向変更機構の一例である。回転機構200は、ステレオカメラ100の視線方向を自由に変更させることが可能な機構である。なお、図1では、視線方向変更機構の一例として回転機構200を用いているが、ステレオカメラ100の視線方向を自由に変更させることが可能なものであれば特に限定されるものではない。
The
ECU300は、制御部の一例である。ECU300は、車両500の進行方向を示す情報に基づいて、ステレオカメラ100の視線方向を制御する。結果として、ECU300は、車両500の進行方向の変化に応じて、ステレオカメラ100の視線方向を制御する。なお、車両500の進行方向を示す情報としては、ステアリング操舵角、ステアリング操舵速度、車輪傾斜角等のステアリング操舵に関する情報を用いることができる。具体的には、ECU300は、例えば車両500のステアリング操舵角を取得(検出)し、取得したステアリング操舵角の変化に基づいて、ステレオカメラ100の視線方向を制御する。ECU300は、CAN(Controller Area Network)、LIN(Local Interconnect Network)等の車載ネットワークを介して回転機構制御部400、車両500に搭載された他のECU等と通信可能に接続されている。
回転機構制御部400は、車載ネットワークに接続されており、例えばECU300と通信することができる。回転機構制御部400は、回転機構200の回転角がECU300により指定された角度となるように、回転機構200の動作を制御する。
The rotation
(移動体システムの動作)
移動体システムの動作の一例について説明する。
(Mobile system operation)
An example of the operation of the mobile system will be described.
ECU300は、図2に示すように、車両500の進行方向を示す情報に基づいて、回転機構制御部400に対して回転機構200の回転角を決定し、回転機構制御部400を介して回転機構200の動作を制御する。回転機構200が回転すると、回転機構200に取り付けられているステレオカメラ100が回転機構200と共に回転するため、ステレオカメラ100の視線方向が変更される。これにより、車両500周辺の情報を取得するまでの時間の短縮を図ることができる。結果として、車両500と人や物との衝突を防ぐことができる。
As shown in FIG. 2,
ECU300は、車両500の進行方向の変化量に応じて、ステレオカメラ100の視線方向と車両500の進行方向との成す角を変更するように回転機構200の回転角を決定することが好ましい。特に、ECU300は、車両500の進行方向の変化量が大きいほど、ステレオカメラ100の視線方向と車両500の進行方向との成す角が大きくなるように回転機構200の回転角を決定することが好ましい。これにより、運転者が車両500の進行方向を短時間に大きく変化させた場合であっても、車両周辺情報を速やかに取得することができる。
The
ECU300は、車両500の曲がる方向の内側に角度をつけた方向になるように、回転機構200の回転角を決定することが好ましい。これにより、ステレオカメラ100は、車両500の進行方向に対して余分に角度をつけた内側方向に向くため、運転者の視野から外にある物体の存在を特に早く撮像及び認識することができる。
The
ECU300は、ステレオカメラ100の視線方向を変更するために用いる情報として、車両500の進行方向を示す情報に加えて、車両速度の情報を用いることが好ましい。具体的には、ECU300は、車両速度が速いときの回転機構200の回転角が、車両速度が遅いときの回転機構200の回転角よりも大きくなるように回転機構200の回転角を決定することが好ましい。これにより、車両速度が速い場合には、移動する方向に対して余分に角度をつける必要のある角度量を大きくすることができ、車両速度が遅い場合には、移動する方向に対して余分に角度をつける必要のある角度量を小さく抑えることが可能である。
次に、ECU300が行う制御の一例について説明する。図4は、本発明の第1実施形態に係る移動体システムの動作の一例を示すフローチャートである。
Next, an example of control performed by the
図4に示すように、まず、ECU300は、方向指示器(ウィンカ)がオン(点滅)されているか否かを判定する(ステップS11)。
As shown in FIG. 4, first, the
ステップS11において、方向指示器がオンされていると判定された場合、ECU300は、車両500のステアリング操舵角を取得する(ステップS12)。ステップS11において、方向指示器がオンされていないと判定された場合、ステップS11を繰り返す。
When it is determined in step S11 that the direction indicator is turned on,
次いで、ECU300は、ステップS12で取得したステアリング操舵角が所定角度以上であるか否かを判定する(ステップS13)。
Next,
ステップS13において、ステアリング操舵角が所定角度以上であると判定された場合、ECU300は、以下の式1により制御値としてのステレオカメラ100の視線方向(角度)を算出する(ステップS14)。
If it is determined in step S13 that the steering angle is equal to or greater than the predetermined angle, the
θ=A×H 〔式1〕
式1において、θはステレオカメラ100の視線方向、Hはステアリング操舵角、Aは車種、カメラ設置位置、カメラ画角等に応じた定数である。ステップS13において、ステアリング操舵角が所定角度より小さいと判定された場合、ステップS11へ戻る。
θ = A × H [Formula 1]
In Equation 1, θ is the viewing direction of the
次いで、ECU300は、ステップS14において算出された制御値を用いて、算出された角度だけステレオカメラ100の視線方向が変化するようにステレオカメラ100を制御する(ステップS15)。その後、ステップS11へ戻る。
Next, the
なお、図4では、方向指示器がオンされていると判定された場合にECU300が車両500のステアリング操舵角を取得しているが、方向指示器のオン・オフの判定を行うことなく、ECU300が車両500のステアリング操舵角を取得してもよい。ただし、車両500が車線変更する際等に頻繁にステレオカメラ100の視線方向θが変更されてしまうことを抑制できるという観点から、方向指示器のオン・オフの判定を行うことが好ましい。
In FIG. 4, the
また、式1では、ステレオカメラ100の視線方向θがステアリング操舵角Hの1次関数であるが、これに限定されず、例えばステアリング操舵角Hの2次関数、3次関数等の高次関数であってもよい。
In Equation 1, the line-of-sight direction θ of the
また、ECU300は、車種、カメラ設置位置、カメラ画角等に応じて予め定められたステアリング操舵角Hとステレオカメラ100の視線方向θとの関係を示すテーブルに基づいて、ステレオカメラ100を制御してもよい。図5は、ステアリング操舵角Hとステレオカメラ100の視線方向θとの関係を例示するテーブルである。
Further, the
図5(a)に示すテーブルでは、ステアリング操舵角Hが所定の閾値T以下の場合、ステレオカメラ100の視線方向θが0度に制御される。また、ステアリング操舵角Hが所定の閾値Tよりも大きい場合、ステレオカメラ100の視線方向θが90度に制御される。
In the table shown in FIG. 5A, when the steering angle H is equal to or smaller than a predetermined threshold T, the line-of-sight direction θ of the
図5(b)に示すテーブルでは、ステアリング操舵角Hが第1閾値T1以下の場合、ステレオカメラ100の視線方向θが0度に制御される。また、ステアリング操舵角Hが第1閾値T1よりも大きく、第2閾値T2以下の場合、ステレオカメラ100の視線方向θがθに依存させた角度に制御される。さらに、ステアリング操舵角Hが第2閾値T2よりも大きい場合、ステレオカメラ100の視線方向θが90度に制御される。なお、θに依存させた角度とは、例えば上述のθについての1次式や2次式にて規定される角度である。
In the table shown in FIG. 5B, when the steering angle H is equal to or smaller than the first threshold T1, the line-of-sight direction θ of the
次に、ECU300が行う制御の他の例について説明する。図6は、本発明の第1実施形態に係る移動体システムの動作の他の例を示すフローチャートである。
Next, another example of control performed by the
図6に示すように、まず、ECU300は、方向指示器がオンされているか否かを判定する(ステップS21)。
As shown in FIG. 6, first, the
ステップS21において、方向指示器がオンされていると判定された場合、ECU300は、方向指示器と対応する方向に予め定められた角度だけステレオカメラ100の視線方向が変化するようにステレオカメラ100を制御する(ステップS22)。例えば、方向指示器が左方向を指している場合には、ECU300は左方向に予め定められた角度だけステレオカメラ100の視線方向が変化するようにステレオカメラ100を制御する。ステップS21において、方向指示器がオンされていないと判定された場合、ステップS21を繰り返す。
If it is determined in step S21 that the direction indicator is turned on, the
次いで、ECU300は、車両500のステアリング操舵角を取得する(ステップS23)。
Next, the
次いで、ECU300は、ステップS23で取得したステアリング操舵角が所定角度以上であるか否かを判定する(ステップS24)。
Next, the
ステップS24において、ステアリング操舵角が所定角度以上であると判定された場合、ECU300は、以下の式2により制御値としてのステレオカメラ100の視線方向を算出する(ステップS25)。
When it is determined in step S24 that the steering angle is equal to or greater than the predetermined angle, the
θ=A×H+W 〔式2〕
式2において、θはステレオカメラ100の視線方向、Hはステアリング操舵角、Aは車種、カメラ設置位置、カメラ画角等に応じた定数、Wは方向指示器がオンされたときに変更させるステレオカメラ100の角度である。ステップS24において、ステアリング操舵角が所定角度より小さいと判定された場合、ステップS21へ戻る。
θ = A × H + W [Formula 2]
In Equation 2, θ is the line-of-sight direction of the
次いで、ECU300は、ステップS25において算出された制御値を用いて、算出された角度だけステレオカメラ100の視線方向が変化するようにステレオカメラ100を制御する(ステップS26)。その後、ステップS21へ戻る。
Next, the
図6では、運転者により方向指示器がオンされた時点で、ステレオカメラ100の視線方向が方向指示器と対応する方向に向くように制御される。これにより、運転者がステアリング(ハンドル)を操作する前に、車両500が進行する予定の方向の情報を取得することができるため、人、バイク等の巻き込みを特に抑制することができる。
In FIG. 6, when the direction indicator is turned on by the driver, the line-of-sight direction of the
なお、式2では、ステレオカメラ100の視線方向θがステアリング操舵角Hの1次関数であるが、これに限定されず、例えばステアリング操舵角Hの2次関数、3次関数等の高次関数であってもよい。
In Equation 2, the line-of-sight direction θ of the
また、図4の場合と同様に、ECU300は、車種、カメラ設置位置、カメラ画角等に応じて予め定められたステアリング操舵角Hとステレオカメラ100の視線方向θとの関係を示すテーブルに基づいて、ステレオカメラ100を制御してもよい。
Similarly to the case of FIG. 4, the
以下、車両500の進行方向が前方向であるときに、車両500が左方向に曲がる場合を例として、ECU300による具体的な制御について説明する。
Hereinafter, specific control by the
図7は、車両500の進行方向が前方向であるときに、車両500が左方向に操舵された場合の移動体システムの動作を説明するための図である。車両500の進行方向が前方向であるときに、車両500が左方向に曲がる場合(図7中「矢印FL」で示す。)、ECU300は車両500の進行方向の変化に応じてステレオカメラ100の視線方向を制御する。
FIG. 7 is a diagram for explaining the operation of the mobile system when the
以下、車両500の進行方向が前方向から左方向に変わる場合の各地点における車両500の進行方向とステレオカメラ100の視線方向との関係について説明する。
Hereinafter, the relationship between the traveling direction of the
図8は、車両500の進行方向とステレオカメラ100の視線方向との関係を説明するための図である。図8(a)は車両500が左に曲がる場合の車両500の軌跡と軌跡中の地点a,b,c,d及びeを示し、図8(b)は図8(a)における地点a,b,c,d及びeでのステレオカメラ100の視線方向を示している。なお、図8(b)における白抜き矢印は車両500の軌跡を表す。また、図8(b)における実線矢印Ea,Eb,Ec,Ed及びEeは地点a,b,c,d及びeにおけるステレオカメラ100の視線方向を表し、破線Tb,Tc及びTdは地点b,c及びdにおける車両500の軌跡の接線を表す。
FIG. 8 is a diagram for explaining the relationship between the traveling direction of the
地点aでは、運転者は方向指示器をオンさせているが、ステアリングを操作していない(切っていない)。よって、車両500は前方向に直進している。このとき、車両500の進行方向が変化していないため、ECU300は、ステアリングが切られていないという情報であるH=0を取得し、式1によりステレオカメラ100の視線方向θを算出し、ステレオカメラ100の視線方向が車両500の進行方向と同じ状態を維持するように(図8中「矢印Ea」で示す。)、回転機構制御部400を介して回転機構200を制御する。これにより、ステレオカメラ100の視線方向は、矢印Eaの方向となる。
At the point a, the driver turns on the direction indicator, but does not operate the steering (not cut). Therefore, the
地点bでは、運転者はステアリングを左回りに回転させている(左に切っている)。よって、車両500は左方向に曲がるように進行している(図8中「矢印Tb」で示す。)。このとき、ECU300は、ステアリングが左に切られているという情報であるH=h1を取得し、式1によりステレオカメラ100の視線方向θを算出し、ステレオカメラ100の視線方向が車両500の曲がる方向の内側に角度θbをつけた方向になるように(図8中「矢印Eb」で示す。)、回転機構制御部400を介して回転機構200を制御する。これにより、ステレオカメラ100の視線方向は、矢印Ebの方向となる。
At the point b, the driver rotates the steering counterclockwise (turns to the left). Therefore, the
地点cでは、運転者は左に切っていたステアリングを徐々に元の状態に戻している。よって、車両500は左方向に曲がるように進行している(図中「矢印Tc」で示す。)。このとき、ECU300は、ステアリングが左に切られているという情報であるH=h2(h2<h1)を取得し、式1によりステレオカメラ100の視線方向θを算出し、ステレオカメラ100の視線方向が車両500の曲がる方向の内側に角度θcをつけた方向になるように(図8中「矢印Ec」で示す。)、回転機構制御部400を介して回転機構200を制御する。これにより、ステレオカメラ100の視線方向は、矢印Ecの方向となる。
At the point c, the driver gradually returns the steering wheel that has been turned to the left to the original state. Therefore, the
地点dでは、運転者は左に切っていたステアリングを地点cよりも更に元の状態に戻し、まっすぐに近づけている。よって、車両500は左方向に曲がるように進行している(図8中「矢印Td」で示す。)。このとき、ECU300は、ステアリングが左に切られているという情報であるH=h3(h3<h2)を取得し、式1によりステレオカメラ100の視線方向θを算出し、ステレオカメラ100の視線方向が車両500の曲がる方向の内側に角度θdをつけた方向になるように(図8中「矢印Ed」で示す。)、回転機構制御部400を介して回転機構200を制御する。これにより、ステレオカメラ100の視線方向は、矢印Edの方向となる。
At the point d, the driver returns the steering, which has been turned to the left, to the original state further than the point c, and brings the steering closer straight. Therefore, the
地点eでは、運転者は左に切っていたステアリングを元の状態(まっすぐ)に戻し、車両500は左方向に直進している。このとき、車両500の進行方向が変化していないため、ECU300は、ステアリングが切られていないという情報であるH=0を取得し、式1によりステレオカメラ100の視線方向θを算出し、ステレオカメラ100の視線方向が車両500の進行方向と同じ状態を維持するように(図8中「矢印Ee」で示す。)、回転機構制御部400を介して回転機構200を制御する。これにより、ステレオカメラ100の視線方向は、矢印Eeの方向となる。
At the point e, the driver returns the steering that had been turned to the left to the original state (straight), and the
以上に説明したように、ECU300は、車両500のステアリング操舵角を取得し、取得したステアリング操舵角の変化に基づいて、ステレオカメラ100の視線方向を制御する。すなわち、ECU300は、車両500の進行方向の変化に応じて、ステレオカメラ100の視線方向を制御する。このため、車両500周辺の情報を取得するまでの時間の短縮を図ることができる。
As described above, the
なお、上記においては、ステアリング操舵角を利用しているが、これに限定されず、ステアリング操舵速度、車輪傾斜角等の情報によっても実現可能である。 In the above description, the steering angle is used. However, the present invention is not limited to this, and can be realized by information such as the steering speed and the wheel inclination angle.
なお、図9に示すように、車両500の進行方向が前方向であるときに、車両500が右方向に曲がる場合(図9中「矢印FR」で示す。)においても、ECU300は同様の制御を行うことが好ましい。
As shown in FIG. 9, when the traveling direction of the
次に、車両500の進行方向が後方向である場合を例として説明する。図10は、本発明の第1実施形態に係る移動体システムの概略構成図(その2)である。図11は、車両500の進行方向が後方向であるときに、車両500が左方向に操舵された場合の移動体システムの動作を説明するための図である。図12は、車両500の進行方向が後方向であるときに、車両500が右方向に操舵された場合の移動体システムの動作を説明するための図である。なお、図10における矢印は、車両500の進行方向を示す。
Next, a case where the traveling direction of the
図10に示すように、車両500の進行方向が後方向であるときに、車両500が左方向に曲がる場合(図11中「矢印RL」で示す。)、ECU300は、車両500の進行方向の変化に応じてステレオカメラ100の視線方向を制御する。このため、車両500周辺の情報を取得するまでの時間の短縮を図ることができる。
As shown in FIG. 10, when the traveling direction of
また、図12に示すように、車両500の進行方向が後方向であるときに、車両500が右方向に曲がる場合(図12中「矢印RR」で示す。)においても、ECU300は同様の制御を行うことが好ましい。
Also, as shown in FIG. 12, when the traveling direction of the
以上に説明したように、本発明の第1実施形態に係る移動体システムは、車両に取り付けられたステレオカメラと、ステレオカメラの視線方向を変更する回転機構と、車両の進行方向の変化に応じて、ステレオカメラの視線方向を制御するECUとを有する。このため、車両周辺の情報を取得するまでの時間の短縮を図ることができる。その結果、左折の際の人、バイク等の巻き込み事故を抑制することができる。 As described above, the mobile system according to the first embodiment of the present invention is a stereo camera attached to a vehicle, a rotating mechanism that changes the viewing direction of the stereo camera, and a change in the traveling direction of the vehicle. And an ECU for controlling the viewing direction of the stereo camera. For this reason, it is possible to shorten the time required to acquire information around the vehicle. As a result, it is possible to suppress accidents involving people, motorcycles, etc. when making a left turn.
[第2実施形態]
本発明の第2実施形態に係る移動体システムについて説明する。
[Second Embodiment]
A mobile system according to a second embodiment of the present invention will be described.
本発明の第2実施形態に係る移動体システムは、ECU300が、車両500の進行方向の変化に応じて、少なくともステレオカメラ110のフレームレートと認識処理レートのいずれか一方を変更する点で、本発明の第1実施形態に係る移動体システムと異なる。以下、第1実施形態と異なる点を中心に説明する。
The mobile system according to the second embodiment of the present invention is that the
図13は、本発明の第2実施形態に係るステレオカメラ110のハードウェア構成を示すブロック図である。図14は、本発明の第2実施形態に係る移動体システムの制御ブロック図である。
FIG. 13 is a block diagram showing a hardware configuration of a
図13に示すように、ステレオカメラ110は、車両情報インタフェース(I/F)111を有する。
As shown in FIG. 13, the
車両情報インタフェース111は、ECU300と接続されている。このため、ECU300は、車両情報インタフェース111を介して、車両500のステアリング操舵の情報、車両速度の情報等の車両情報をステレオカメラ110に送信することができる。車両情報インタフェース111としては、車両情報を受信することができるインタフェースであれば特に限定されるものではないが、例えばCANインタフェース(I/F)、LINインタフェース(I/F)を用いることができる。
The
ECU300は、図14に示すように、車両500の進行方向を示す情報及び/又は車両速度の情報に基づいて、回転機構制御部400に対して回転機構200の回転角を決定し、回転機構制御部400を介して回転機構200の動作を制御する。車両500の進行方向を示す情報としては、ステアリング操舵角、ステアリング操舵速度、車輪傾斜角等のステアリング操舵に関する情報を用いることができる。
As shown in FIG. 14,
ECU300は、車両500の進行方向を示す情報及び/又は車両速度の情報をステレオカメラ110に送信し、少なくともステレオカメラ110の撮像部のフレームレートとステレオカメラ110の認識処理レートのいずれか一方を変更する。具体的には、ECU300は、ステレオカメラ110の視線方向が変更された場合、少なくともステレオカメラ110のフレームレートと認識処理レートのいずれか一方を高くすることが好ましい。これにより、認識処理に影響を与える画像フレーム間の時間差を短くすることができる。結果として、車両500の運転者の視野外の範囲に関して、時間的に高密度な撮像及び認識を実行することができる。特に、隣接する画像フレームに撮像されている認識対象物のトラッキング精度が確保できるため、認識精度を向上させることができる。
The
また、車両500の進行方向が元の状態に戻された場合には、ECU300は、変更されたステレオカメラ110のフレームレート又は認識処理レートを元に戻すことが好ましい。これにより、車両500の進行方向が変更されていないときの消費電力及び発熱を抑制することができる。
When the traveling direction of the
以上に説明したように、本発明の第2実施形態に係る移動体システムは、車両に取り付けられたステレオカメラと、ステレオカメラの視線方向を変更する回転機構と、車両の進行方向の変化に応じて、ステレオカメラの視線方向を制御するECUとを有する。このため、車両周辺の情報を取得するまでの時間の短縮を図ることができる。 As described above, the mobile system according to the second embodiment of the present invention is a stereo camera attached to a vehicle, a rotating mechanism that changes the viewing direction of the stereo camera, and a change in the traveling direction of the vehicle. And an ECU for controlling the viewing direction of the stereo camera. For this reason, it is possible to shorten the time required to acquire information around the vehicle.
特に、第2実施形態では、ECUが、車両の進行方向の変化に応じて、少なくともステレオカメラのフレームレートと認識処理レートのいずれか一方を変更する。このため、ステレオカメラによる人や物体の認識精度を向上させることができる。 In particular, in the second embodiment, the ECU changes at least one of the frame rate of the stereo camera and the recognition processing rate in accordance with a change in the traveling direction of the vehicle. For this reason, the recognition accuracy of a person or an object by a stereo camera can be improved.
[第3実施形態]
本発明の第3実施形態に係る移動体システムについて説明する。
[Third Embodiment]
A mobile system according to a third embodiment of the present invention will be described.
本発明の第3実施形態に係る移動体システムは、ステレオカメラ100が認識した物体の情報に基づいて、ECU300がステレオカメラ110の動作及び/又は車両500の動作を制御する点で、本発明の第2実施形態に係る移動体システムと異なる。以下、第2実施形態と異なる点を中心に説明する。
The moving body system according to the third embodiment of the present invention is that the
図15は、本発明の第3実施形態に係る移動体システムの制御ブロック図である。 FIG. 15 is a control block diagram of a mobile system according to the third embodiment of the present invention.
ECU300は、ステレオカメラ110により取得された視差情報に基づいて、ステレオカメラ110のフレームレートを変更する。具体的には、ECU300は、視差の大きい物体が視差情報に存在する場合のステレオカメラ110のフレームレートが視差の大きい物体が視差情報に存在しない場合のステレオカメラ110のフレームレートよりも高くなるように、ステレオカメラ110の動作を制御することが好ましい。これにより、車両500からの距離が近い人や物体が存在するときの認識時間の間隔を短くし、隣接する画像フレームに撮像されている認識対象物のトラッキング情報が確保できるため、認識精度を向上させることができる。
The
なお、車両500からの距離が近い人や物体が存在しない場合には、認識時間の間隔を短くする必要はないため、フレームレート及び認識処理レートを、車両500の進行方向が変化していないときと同じ設定にしておくことが好ましい。これにより、車両500の進行方向が変更されていないときの消費電力及び発熱を抑制することができる。
When there is no person or object close to the
また、ECU300は、ステレオカメラ110により認識した人や物体の認識結果を取得して、自動ブレーキ等の車両制御を実行することが好ましい。これにより、車両500が人や物体に衝突することを未然に防ぐことができる。
Moreover, it is preferable that ECU300 acquires the recognition result of the person and object recognized by the
以上に説明したように、本発明の第3実施形態に係る移動体システムは、車両に取り付けられたステレオカメラと、ステレオカメラの視線方向を変更する回転機構と、車両の進行方向の変化に応じて、ステレオカメラの視線方向を制御するECUとを有する。このため、車両周辺の情報を取得するまでの時間の短縮を図ることができる。 As described above, the mobile system according to the third embodiment of the present invention is a stereo camera attached to a vehicle, a rotating mechanism that changes the viewing direction of the stereo camera, and a change in the traveling direction of the vehicle. And an ECU for controlling the viewing direction of the stereo camera. For this reason, it is possible to shorten the time required to acquire information around the vehicle.
特に、第3実施形態では、ステレオカメラが認識した物体の情報に基づいて、ECUがステレオカメラの動作を制御する。このため、ステレオカメラによる人や物体の認識精度を向上させることができる。 In particular, in the third embodiment, the ECU controls the operation of the stereo camera based on information on the object recognized by the stereo camera. For this reason, the recognition accuracy of a person or an object by a stereo camera can be improved.
また、第3実施形態では、ステレオカメラが認識した物体の情報に基づいて、ECUが車両の動作を制御する。このため、車両が人や物体に衝突することを未然に回避することができる。 In the third embodiment, the ECU controls the operation of the vehicle based on the information on the object recognized by the stereo camera. For this reason, it is possible to prevent the vehicle from colliding with a person or an object.
[測距の原理]
本発明の一実施形態において適用される測距の原理について説明する。ここでは、例えば、ステレオカメラから物体に対する視差を導き出し、この視差を示す視差値によって、ステレオカメラから物体までの距離を測定する原理について説明する。図16は、撮像装置から物体までの距離を導き出す原理の説明図である。なお、以下では、説明を簡略化するため、所定領域ではなく、1画素単位により説明する。
[Principles of ranging]
The principle of distance measurement applied in an embodiment of the present invention will be described. Here, for example, the principle of deriving a parallax with respect to an object from a stereo camera and measuring the distance from the stereo camera to the object with a parallax value indicating the parallax will be described. FIG. 16 is an explanatory diagram of the principle of deriving the distance from the imaging device to the object. In the following, in order to simplify the description, the description will be made in units of one pixel instead of a predetermined area.
(視差値算出)
まず、撮像装置10a及び撮像装置10bによって撮像された各画像を、それぞれ基準画像Ia及び比較画像Ibとする。なお、図16では、撮像装置10a及び撮像装置10bが平行等位に設置されているものとする。図16において、3次元空間内の物体E上のS点は、撮像装置10a及び撮像装置10bの同一水平線上の位置に写像される。
(Parallax value calculation)
First, the images captured by the
すなわち、各画像中のS点は、基準画像Ia中の点Sa(x,y)及び比較画像Ib中の点Sb(X,y)において撮像される。このとき、視差値Δは、撮像装置10a上の座標におけるSa(x,y)と撮像装置10b上の座標におけるSb(X,y)とを用いて、次式のように表される。
That is, the S point in each image is imaged at a point Sa (x, y) in the reference image Ia and a point Sb (X, y) in the comparative image Ib. At this time, the parallax value Δ is expressed by the following equation using Sa (x, y) at coordinates on the
Δ=X−x 〔式3〕
ここで、図16のような場合には、基準画像Ia中の点Sa(x,y)と撮像レンズ11aから撮像面上におろした垂線の交点との距離をΔaとし、比較画像Ib中の点Sb(X,y)と撮像レンズ11bから撮像面上におろした垂線の交点との距離をΔbとすると、視差値Δ=Δa+Δbとなる。
Δ = X−x [Formula 3]
Here, in the case as shown in FIG. 16, the distance between the point Sa (x, y) in the reference image Ia and the intersection of the perpendicular line taken from the
(距離算出)
また、視差値Δを用いることで、撮像装置10a,10bと物体Eとの間の距離Zを導き出すことができる。具体的には、距離Zは、撮像レンズ11aの焦点位置と撮像レンズ11bの焦点位置とを含む面から物体E上の特定点Sまでの距離である。
(Distance calculation)
Further, by using the parallax value Δ, the distance Z between the
図16に示されるように、撮像レンズ11a及び撮像レンズ11bの焦点距離f、撮像レンズ11aと撮像レンズ11bとの間の長さである基線長B、及び視差値Δを用いて、次式により、距離Zを算出することができる。
As shown in FIG. 16, using the focal length f of the
Z=(B×f)/Δ 〔式4〕
上記の式4により、視差値Δが大きいほど距離Zは小さく、視差値Δが小さいほど距離Zは大きくなることが分かる。
Z = (B × f) / Δ [Formula 4]
From the above equation 4, it can be seen that the larger the parallax value Δ, the smaller the distance Z, and the smaller the parallax value Δ, the larger the distance Z.
(視差計算手法)
図17を用いて、視差計算手法について説明する。図17は、ステレオカメラにおいて視差画像を生成するための処理工程を説明するための図である。
(Parallax calculation method)
The parallax calculation method will be described with reference to FIG. FIG. 17 is a diagram for explaining a processing process for generating a parallax image in a stereo camera.
視差計算手法は、図17に示すように、画像マッチング部が基準画像Ia及び比較画像Ibを用いて、非類似度であるコスト値を視差ごとに算出し、非類似度が低い位置の視差を算出する。そして、最終的に視差画像生成部により全ての画素における視差値を示す視差画像を導き出す方法である。なお、生成された視差画像は、輝度画像と共に視差画像生成部の後段に設けられる物体認識部による人や物体の認識に用いられる。 As shown in FIG. 17, the parallax calculation method uses the reference image Ia and the comparison image Ib to calculate a cost value that is a dissimilarity for each disparity, and the disparity at a position where the dissimilarity is low. calculate. Then, finally, a parallax image indicating a parallax value in all pixels is derived by the parallax image generation unit. The generated parallax image is used for the recognition of a person or an object by the object recognition unit provided at the subsequent stage of the parallax image generation unit together with the luminance image.
(コスト値の算出)
図18及び図19を用いて、コスト値C(p,d)の算出方法について説明する。
(Calculation of cost value)
A method for calculating the cost value C (p, d) will be described with reference to FIGS. 18 and 19.
図18は、視差探索による画像マッチングを説明するための図である。具体的には、図18(a)は基準画像Iaにおける基準画素を示す概略図であり、図18(b)は図18(a)の基準画素に対して比較画像Ibにおける対応画素の候補を順次シフトしながら(ずらしながら)、シフト量(ズレ量)を算出する際の概略図である。ここで、対応画素とは、基準画像Ia内の基準画素に最も類似する比較画像Ib内の画素のことをいう。 FIG. 18 is a diagram for explaining image matching by parallax search. Specifically, FIG. 18A is a schematic diagram showing reference pixels in the reference image Ia, and FIG. 18B shows corresponding pixel candidates in the comparison image Ib with respect to the reference pixels in FIG. It is the schematic at the time of calculating shift amount (shift amount), shifting sequentially (shifting). Here, the corresponding pixel means a pixel in the comparison image Ib that is most similar to the reference pixel in the reference image Ia.
図19は、シフト量ごとのコスト値を示すグラフである。具体的には、図19における横軸はシフト量dを表し、縦軸はコスト値Cを表す。 FIG. 19 is a graph showing the cost value for each shift amount. Specifically, the horizontal axis in FIG. 19 represents the shift amount d, and the vertical axis represents the cost value C.
図18(a)に示すように、基準画像Ia内の所定の基準画素p(x,y)と、この基準画素p(x,y)に対する比較画像Ib内におけるエピポーラ線EL上の複数の対応画素の候補q(x+d,y)との各輝度値に基づいて、基準画素p(x,y)に対する各対応画素の候補q(x+d,y)のコスト値C(p,d)が算出される。dは、基準画素pと対応画素の候補qのシフト量(ズレ量)であり、本実施形態では、画素単位のシフト量が表されている。 As shown in FIG. 18A, a predetermined reference pixel p (x, y) in the reference image Ia and a plurality of correspondences on the epipolar line EL in the comparison image Ib with respect to the reference pixel p (x, y). Based on each luminance value with the pixel candidate q (x + d, y), the cost value C (p, d) of each corresponding pixel candidate q (x + d, y) with respect to the reference pixel p (x, y) is calculated. The d is the shift amount (deviation amount) between the reference pixel p and the corresponding pixel candidate q, and in this embodiment, the shift amount is expressed in units of pixels.
すなわち、図18では、対応画素の候補q(x+d,y)を予め指定された範囲(例えば、0<d<25)において順次1画素分シフトしながら、対応画素の候補q(x+d,y)と基準画素p(x,y)との輝度値の非類似度であるコスト値C(p,d)が算出される。 That is, in FIG. 18, the corresponding pixel candidate q (x + d, y) is sequentially shifted by one pixel within a predetermined range (for example, 0 <d <25). And a cost value C (p, d), which is a dissimilarity between the luminance values of the reference pixel p (x, y) and the reference pixel p (x, y).
このようにして算出されたコスト値C(p,d)は、例えば図19に示すように、シフト量dごとに示されるグラフによって表すことができる。図19では、コスト値Cは、シフト量d=17で最小値となるため、視差値が17と決まる。 The cost value C (p, d) calculated in this way can be represented by a graph shown for each shift amount d, for example, as shown in FIG. In FIG. 19, since the cost value C is the minimum value when the shift amount d = 17, the parallax value is determined to be 17.
以下、実施例において本発明を具体的に説明するが、本発明はこれらの実施例に限定して解釈されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is limited to these Examples and is not interpreted.
[実施例1]
移動体システムの一例として、車両500のボンネット上に、ステレオカメラ100の視線方向を変更するための回転機構200を設け、回転機構200上にステレオカメラ100を取り付けた。回転機構200は、車両500のステアリング操舵角の情報を元にCAN情報を利用して制御可能となっている。車両500の左折時に、人が左側から車両500との距離が10m離れている状態で道路を横断する場合を想定して、実車でシミュレーションを行った。その結果、ステレオカメラ100が運転者の視野に入っていない人を撮像して認識することができたため、その情報を受け取った車両500は自動的にブレーキをかけ、未然に人との衝突を防ぐことができた。
[Example 1]
As an example of the mobile system, a
[比較例1]
実施例1と同様の移動体システムを用いて、回転機構200をOFFにしてステレオカメラ100の視線方向が動かない状態(車両500の進行方向に固定されている状態)で、実施例1と同様の実車でシミュレーションを行った。その結果、車両500に人の存在が伝えられなかったため、車両500と人とが衝突しそうになった。
[Comparative Example 1]
Using the same moving body system as in the first embodiment, the
[実施例2]
実施例1と同様の移動体システムを用いて、車両500の左折時に、他車両が左側から車両500との距離が20m離れている状態で道路を横断する場合を想定して、実車でシミュレーションを行った。その結果、ステレオカメラ100が運転者の視野に入っていない他車両を撮像して認識することができたため、その情報を受け取った車両500は自動的にブレーキをかけ、未然に他車両との衝突を防ぐことができた。
[Example 2]
Using a mobile system similar to that of the first embodiment, when a
[比較例2]
実施例2と同様の移動体システムを用いて、回転機構200をOFFにしてステレオカメラ100の視線方向が動かない状態で、実施例2と同様の実車でシミュレーションを行った。その結果、車両500に他車両の存在が伝えられなかったため、車両500と他車両とが衝突しそうになった。
[Comparative Example 2]
Using the same moving body system as in the second embodiment, the simulation was performed with the same vehicle as in the second embodiment in a state where the
[実施例3]
移動体システムの一例として、車両500のルーフ上に、ステレオカメラ100の視線方向を変更するための回転機構200を設け、回転機構200上にステレオカメラ100を取り付けた。回転機構200は、車両500の車輪傾斜角の情報を元にCAN情報を利用して制御可能となっている。車両500の左折時に、人が左側から車両500との距離が10m離れている状態で道路を横断する場合を想定して、実車でシミュレーションを行った。その結果、ステレオカメラ100が運転者の視野に入っていない人を撮像して認識することができたため、その情報を受け取った車両500は自動的にブレーキをかけ、未然に人との衝突を防ぐことができた。
[Example 3]
As an example of the mobile system, a
[比較例3]
実施例3と同様の移動体システムを用いて、回転機構200をOFFにしてステレオカメラ100の視線方向が動かない状態で、実施例3と同様の実車でシミュレーションを行った。その結果、車両500に人の存在が伝えられなかったため、車両500と人とが衝突しそうになった。
[Comparative Example 3]
Using the same moving body system as in the third embodiment, the simulation was performed with the same vehicle as in the third embodiment in a state where the
[実施例4]
実施例3と同様の移動体システムを用いて、車両500の左折時に、他車両が左側から車両500との距離が20m離れている状態で道路を横断する場合を想定して、実車でシミュレーションを行った。その結果、ステレオカメラ100が運転者の視野に入っていない他車両を撮像して認識することができたため、その情報を受け取った車両500は自動的にブレーキをかけ、未然に他車両との衝突を防ぐことができた。
[Example 4]
Using a mobile system similar to that of the third embodiment, when the
[比較例4]
実施例4と同様の移動体システムを用いて、回転機構200をOFFにしてステレオカメラ100の視線方向が動かない状態で、実施例4と同様の実車でシミュレーションを行った。その結果、車両500に他車両の存在が伝えられなかったため、車両500と他車両とが衝突しそうになった。
[Comparative Example 4]
Using a mobile system similar to that of the fourth embodiment, the simulation was performed with the same vehicle as that of the fourth embodiment in a state where the
[実施例5]
実施例1の形態で、ステレオカメラ100は10m離れている人についての視差を取得したため、ステレオカメラ100のフレームレートを高くした。その結果、ステレオカメラ100が運転者の視野に入っていない人を撮像して認識することができたため、その情報を受け取った車両500は自動的にブレーキをかけ、余裕を持って衝突を防ぐことができた。
[Example 5]
In the form of Example 1, since the
以上、移動体システムを実施形態により説明したが、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能である。 As mentioned above, although the mobile body system was demonstrated by embodiment, this invention is not limited to the said embodiment, A various deformation | transformation and improvement are possible within the scope of the present invention.
上述の実施形態に係る移動体システムは、移動体の一例として車両の場合について説明したが、本発明はこの点において限定されるものではない。移動体としては、例えば操縦桿で操作されるヘリコプター、飛行機等の飛行体、無線操縦機で遠隔操作される無人飛行体であってもよい。また、移動体としては、船舶であってもよい。 Although the mobile body system which concerns on the above-mentioned embodiment demonstrated the case of a vehicle as an example of a mobile body, this invention is not limited in this point. The moving body may be, for example, a helicopter operated by a control stick, a flying body such as an airplane, or an unmanned flying body remotely operated by a radio pilot. Further, the moving body may be a ship.
移動体が操縦桿で操作される飛行体の場合、移動体システムの制御部は、操縦桿の操縦信号の変化に基づいて、撮像装置の視線方向を制御することが好ましい。 In the case where the moving body is a flying object operated with a control stick, it is preferable that the control unit of the moving body system controls the line-of-sight direction of the imaging device based on a change in the control signal of the control stick.
移動体が無線操縦機で遠隔操作される飛行体の場合、移動体システムの制御部は、無線操縦機の操縦信号又は撮像装置で撮像される画像情報に基づいて、撮像装置の視線方向を制御することが好ましい。撮像装置で撮像される画像情報に基づいて撮像装置の視線方向を制御する場合には、例えば画像情報に基づいて障害物が認識され、認識された障害物を避けるように移動体が制御される。このため、障害物を避けるためにいずれの方向に移動するかの移動信号が算出された際に、その移動信号に基づいて、撮像装置の視線方向が制御されれば良い。なお、画像情報に基づいて撮像装置の視線方向を変更する構成は飛行体において好適ではあるが、前述の車両等においても適用は可能である。 When the moving object is a flying object that is remotely operated by a radio pilot, the control unit of the mobile system controls the line-of-sight direction of the imaging device based on the control signal of the radio pilot or the image information captured by the imaging device. It is preferable to do. When controlling the line-of-sight direction of the imaging device based on image information captured by the imaging device, for example, the obstacle is recognized based on the image information, and the moving body is controlled so as to avoid the recognized obstacle. . For this reason, when the movement signal indicating which direction to move in order to avoid the obstacle is calculated, the line-of-sight direction of the imaging apparatus may be controlled based on the movement signal. Note that the configuration in which the line-of-sight direction of the imaging device is changed based on image information is suitable for a flying object, but can also be applied to the above-described vehicle and the like.
なお、移動体が飛行体の場合、撮像装置の視線方向の制御は、左右方向だけではなく、当然に上下方向にも行われる。 When the moving body is a flying body, the control of the line-of-sight direction of the imaging device is naturally performed not only in the left-right direction but also in the up-down direction.
また、ステレオカメラに代えて、単眼カメラを使用してもよい。単眼カメラを使用する場合、レーザレーダ等により距離情報を取得することができる。ただし、取得した距離情報に基づいて人や物体を認識する場合、レーザレーダを用いると空間分解能がとりにくく認識精度が十分確保できない場合がある。よって、上述の移動体システムのような、移動体前方だけでなく移動体周辺の情報までを取得するシステムにおいては、空間分解能のより高いステレオカメラを用いることが好適である。 A monocular camera may be used instead of the stereo camera. When a monocular camera is used, distance information can be acquired by a laser radar or the like. However, when recognizing a person or an object based on the acquired distance information, it may be difficult to obtain a sufficient recognition accuracy because it is difficult to obtain a spatial resolution using a laser radar. Therefore, it is preferable to use a stereo camera with higher spatial resolution in a system that acquires not only the front of the moving body but also the information around the moving body, such as the above-described moving body system.
100 ステレオカメラ
200 回転機構
300 ECU
500 車両
100
500 vehicles
Claims (15)
前記撮像装置の視線方向を変更する視線方向変更機構と、
前記移動体の進行方向の変化に応じて、前記撮像装置の視線方向を制御する制御部と
を有する、
移動体システム。 An imaging device attached to a moving body;
A line-of-sight direction changing mechanism for changing a line-of-sight direction of the imaging device;
A control unit that controls a line-of-sight direction of the imaging device according to a change in a traveling direction of the moving body,
Mobile body system.
請求項1に記載の移動体システム。 The control unit controls the line-of-sight direction of the imaging apparatus so as to change an angle formed by the line-of-sight direction of the imaging apparatus and the movement direction of the mobile body according to the amount of change in the traveling direction of the moving body. ,
The mobile system according to claim 1.
請求項1又は2に記載の移動体システム。 The control unit controls the line-of-sight direction of the imaging device based on at least one information of a steering steering angle, a steering steering speed, and a wheel inclination angle of the moving body.
The mobile system according to claim 1 or 2.
請求項1に記載の移動体システム。 The control unit controls the line-of-sight direction of the imaging device so that the angle formed by the line-of-sight direction of the imaging device and the travel direction of the mobile body increases as the amount of change in the traveling direction of the moving body increases. ,
The mobile system according to claim 1.
請求項1乃至4のいずれか一項に記載の移動体システム。 The moving body is a vehicle;
The mobile body system as described in any one of Claims 1 thru | or 4.
請求項5に記載の移動体システム。 The control unit controls the line-of-sight direction of the imaging device so as to be a direction with an angle inside the direction of bending of the vehicle;
The mobile system according to claim 5.
請求項5又は6に記載の移動体システム。 The control unit detects a change amount in a traveling direction of the moving body based on a change in an image captured by a steering steering angle, a wheel inclination angle, or the imaging device.
The mobile system according to claim 5 or 6.
請求項1乃至4のいずれか一項に記載の移動体システム。 The moving body is a flying body;
The mobile body system as described in any one of Claims 1 thru | or 4.
前記制御部は、
前記操縦桿の操縦信号の変化に基づいて、前記移動体の進行方向の変化を検出し、前記撮像装置の視線方向を制御する、
請求項8に記載の移動体システム。 The moving body is a flying body operated with a control stick,
The controller is
Detecting a change in the moving direction of the moving body based on a change in a control signal of the control stick, and controlling a line-of-sight direction of the imaging device;
The mobile system according to claim 8.
前記制御部は、前記無線操縦機の操縦信号又は前記撮像装置で撮像される画像情報に基づいて、前記撮像装置の視線方向を制御する、
請求項8に記載の移動体システム。 The moving body is a flying body remotely operated by a radio pilot,
The control unit controls a line-of-sight direction of the imaging device based on a steering signal of the wireless pilot or image information captured by the imaging device;
The mobile system according to claim 8.
請求項1乃至10のいずれか一項に記載の移動体システム。 The control unit changes at least one of a frame rate and a recognition processing rate of the imaging device when the line-of-sight direction of the imaging device is changed.
The mobile body system as described in any one of Claims 1 thru | or 10.
請求項11に記載の移動体システム。 The control unit increases at least one of the frame rate and the recognition processing rate of the imaging device when the line-of-sight direction of the imaging device is changed.
The mobile system according to claim 11.
請求項11又は12に記載の移動体システム。 The control unit returns the changed frame rate or recognition processing rate of the imaging device to the original value when the traveling direction of the moving body returns to straight ahead after the line-of-sight direction of the imaging device is changed.
The mobile system according to claim 11 or 12.
請求項11乃至13のいずれか一項に記載の移動体システム。 The control unit, based on the image information acquired by the imaging device, when an object with a short distance exists around the moving body, than when the object with a short distance does not exist around the moving body, Increasing the frame rate of the imaging device;
The mobile system according to any one of claims 11 to 13.
請求項1乃至14のいずれか一項に記載の移動体システム。 The imaging device is a stereo camera.
The mobile system according to any one of claims 1 to 14.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15202587.0A EP3043202B1 (en) | 2015-01-09 | 2015-12-23 | Moving body system |
US14/983,881 US10171796B2 (en) | 2015-01-09 | 2015-12-30 | Moving body system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015003482 | 2015-01-09 | ||
JP2015003482 | 2015-01-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016131367A true JP2016131367A (en) | 2016-07-21 |
JP6720510B2 JP6720510B2 (en) | 2020-07-08 |
Family
ID=56415690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015227268A Active JP6720510B2 (en) | 2015-01-09 | 2015-11-20 | Mobile system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6720510B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018046484A (en) * | 2016-09-16 | 2018-03-22 | キヤノン株式会社 | Solid-state imaging apparatus and driving method thereof |
JP2018061192A (en) * | 2016-10-07 | 2018-04-12 | キヤノン株式会社 | Solid state image sensor and driving method for the same |
JP2018139375A (en) * | 2017-02-24 | 2018-09-06 | キヤノン株式会社 | Photoelectric conversion device, imaging system and mobile object |
WO2018163300A1 (en) * | 2017-03-07 | 2018-09-13 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッド | Control device, imaging device, imaging system, moving body, control method, and program |
JP2018186455A (en) * | 2017-04-27 | 2018-11-22 | キヤノン株式会社 | Imaging apparatus, imaging system, mobile, and chip |
KR101954619B1 (en) * | 2017-11-28 | 2019-03-06 | 쌍용자동차 주식회사 | Stereo camera control according to vehicle speed |
WO2019117078A1 (en) * | 2017-12-15 | 2019-06-20 | 東芝ライフスタイル株式会社 | Electric cleaner |
JP2019200177A (en) * | 2018-05-18 | 2019-11-21 | 株式会社小糸製作所 | Sensor system |
JP2020030721A (en) * | 2018-08-24 | 2020-02-27 | 株式会社ダイヘン | Moving vehicle |
WO2023077255A1 (en) * | 2021-11-02 | 2023-05-11 | 深圳市大疆创新科技有限公司 | Method and apparatus for controlling movable platform, and movable platform and storage medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0648247A (en) * | 1992-08-03 | 1994-02-22 | Fujitsu Ltd | Car-mounting infrared image display |
JPH07250268A (en) * | 1994-03-14 | 1995-09-26 | Yazaki Corp | Vehicle periphery monitoring device |
JP2004086779A (en) * | 2002-08-28 | 2004-03-18 | Toshiba Corp | Obstacle detection device and its method |
JP2005178512A (en) * | 2003-12-18 | 2005-07-07 | Tietech Co Ltd | On-vehicle image pickup device for police vehicle |
JP2006295676A (en) * | 2005-04-13 | 2006-10-26 | Sanyo Electric Co Ltd | Imaging device for mobile unit |
JP2007172035A (en) * | 2005-12-19 | 2007-07-05 | Fujitsu Ten Ltd | Onboard image recognition device, onboard imaging device, onboard imaging controller, warning processor, image recognition method, imaging method and imaging control method |
JP2007214769A (en) * | 2006-02-08 | 2007-08-23 | Nissan Motor Co Ltd | Video processor for vehicle, circumference monitor system for vehicle, and video processing method |
JP2010268343A (en) * | 2009-05-18 | 2010-11-25 | Olympus Imaging Corp | Photographing device and photographing method |
-
2015
- 2015-11-20 JP JP2015227268A patent/JP6720510B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0648247A (en) * | 1992-08-03 | 1994-02-22 | Fujitsu Ltd | Car-mounting infrared image display |
JPH07250268A (en) * | 1994-03-14 | 1995-09-26 | Yazaki Corp | Vehicle periphery monitoring device |
JP2004086779A (en) * | 2002-08-28 | 2004-03-18 | Toshiba Corp | Obstacle detection device and its method |
JP2005178512A (en) * | 2003-12-18 | 2005-07-07 | Tietech Co Ltd | On-vehicle image pickup device for police vehicle |
JP2006295676A (en) * | 2005-04-13 | 2006-10-26 | Sanyo Electric Co Ltd | Imaging device for mobile unit |
JP2007172035A (en) * | 2005-12-19 | 2007-07-05 | Fujitsu Ten Ltd | Onboard image recognition device, onboard imaging device, onboard imaging controller, warning processor, image recognition method, imaging method and imaging control method |
JP2007214769A (en) * | 2006-02-08 | 2007-08-23 | Nissan Motor Co Ltd | Video processor for vehicle, circumference monitor system for vehicle, and video processing method |
JP2010268343A (en) * | 2009-05-18 | 2010-11-25 | Olympus Imaging Corp | Photographing device and photographing method |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018046484A (en) * | 2016-09-16 | 2018-03-22 | キヤノン株式会社 | Solid-state imaging apparatus and driving method thereof |
JP2018061192A (en) * | 2016-10-07 | 2018-04-12 | キヤノン株式会社 | Solid state image sensor and driving method for the same |
JP2018139375A (en) * | 2017-02-24 | 2018-09-06 | キヤノン株式会社 | Photoelectric conversion device, imaging system and mobile object |
WO2018163300A1 (en) * | 2017-03-07 | 2018-09-13 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッド | Control device, imaging device, imaging system, moving body, control method, and program |
JPWO2018163300A1 (en) * | 2017-03-07 | 2019-03-22 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | CONTROL DEVICE, IMAGING DEVICE, IMAGING SYSTEM, MOBILE OBJECT, CONTROL METHOD, AND PROGRAM |
JP2018186455A (en) * | 2017-04-27 | 2018-11-22 | キヤノン株式会社 | Imaging apparatus, imaging system, mobile, and chip |
KR101954619B1 (en) * | 2017-11-28 | 2019-03-06 | 쌍용자동차 주식회사 | Stereo camera control according to vehicle speed |
JP2019107083A (en) * | 2017-12-15 | 2019-07-04 | 東芝ライフスタイル株式会社 | Vacuum cleaner |
WO2019117078A1 (en) * | 2017-12-15 | 2019-06-20 | 東芝ライフスタイル株式会社 | Electric cleaner |
CN111405862A (en) * | 2017-12-15 | 2020-07-10 | 东芝生活电器株式会社 | Electric vacuum cleaner |
JP7075201B2 (en) | 2017-12-15 | 2022-05-25 | 東芝ライフスタイル株式会社 | Vacuum cleaner |
JP2019200177A (en) * | 2018-05-18 | 2019-11-21 | 株式会社小糸製作所 | Sensor system |
JP7141242B2 (en) | 2018-05-18 | 2022-09-22 | 株式会社小糸製作所 | sensor system |
JP2020030721A (en) * | 2018-08-24 | 2020-02-27 | 株式会社ダイヘン | Moving vehicle |
JP7153505B2 (en) | 2018-08-24 | 2022-10-14 | 株式会社ダイヘン | moving body |
WO2023077255A1 (en) * | 2021-11-02 | 2023-05-11 | 深圳市大疆创新科技有限公司 | Method and apparatus for controlling movable platform, and movable platform and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP6720510B2 (en) | 2020-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6720510B2 (en) | Mobile system | |
JP7160040B2 (en) | Signal processing device, signal processing method, program, moving object, and signal processing system | |
CN108622091B (en) | Collision avoidance device | |
US10171796B2 (en) | Moving body system | |
JP6658978B2 (en) | Driving support vehicle position error correction method and position error correction device | |
CN106796648B (en) | System and method for detecting objects | |
WO2019181284A1 (en) | Information processing device, movement device, method, and program | |
WO2019073920A1 (en) | Information processing device, moving device and method, and program | |
CA3064523C (en) | Parking control method and parking control apparatus | |
US11100675B2 (en) | Information processing apparatus, information processing method, program, and moving body | |
KR20200029050A (en) | Driving control method and driving control device for driving support vehicles | |
CN107122770B (en) | Multi-camera system, intelligent driving system, automobile, method and storage medium | |
JP2015052548A (en) | Vehicle exterior environment recognition device | |
JP2010072807A (en) | Device for detecting and determining road boundary | |
JP2023126642A (en) | Information processing device, information processing method, and information processing system | |
JP2018124768A (en) | Vehicle control device | |
JP7006235B2 (en) | Display control device, display control method and vehicle | |
JP7008040B2 (en) | Methods for creating mappings of environmental models, as well as vehicle control systems and corresponding vehicles | |
WO2020116206A1 (en) | Information processing device, information processing method, and program | |
WO2020129369A1 (en) | Calibration device, calibration method, program, calibration system, and calibration target | |
JP2007188354A (en) | Forward solid object recognition system for vehicle | |
WO2019021591A1 (en) | Image processing device, image processing method, program, and image processing system | |
US20240056694A1 (en) | Imaging device, image processing method, and image processing program | |
JP7409309B2 (en) | Information processing device, information processing method, and program | |
JP2019001298A (en) | Collision determination device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181023 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190723 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200519 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200601 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6720510 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |