JP2016130331A - Molten iron physical distribution planning method and apparatus - Google Patents
Molten iron physical distribution planning method and apparatus Download PDFInfo
- Publication number
- JP2016130331A JP2016130331A JP2015003876A JP2015003876A JP2016130331A JP 2016130331 A JP2016130331 A JP 2016130331A JP 2015003876 A JP2015003876 A JP 2015003876A JP 2015003876 A JP2015003876 A JP 2015003876A JP 2016130331 A JP2016130331 A JP 2016130331A
- Authority
- JP
- Japan
- Prior art keywords
- hot metal
- pretreatment
- transport container
- ratio
- facility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009826 distribution Methods 0.000 title claims abstract description 96
- 238000000034 method Methods 0.000 title claims abstract description 79
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title abstract description 18
- 229910052742 iron Inorganic materials 0.000 title abstract description 9
- 238000005457 optimization Methods 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims description 218
- 229910052751 metal Inorganic materials 0.000 claims description 218
- 238000009628 steelmaking Methods 0.000 claims description 44
- 229910000831 Steel Inorganic materials 0.000 abstract description 19
- 239000010959 steel Substances 0.000 abstract description 19
- 238000011282 treatment Methods 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000010365 information processing Effects 0.000 description 6
- 238000002203 pretreatment Methods 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- General Factory Administration (AREA)
Abstract
Description
本発明は、製鉄所において高炉から製鋼工場の間に溶銑の予備処理を実施する溶銑物流操業を最適化する溶銑物流計画方法および溶銑物流計画装置に関する。 The present invention relates to a hot metal distribution planning method and a hot metal distribution planning apparatus for optimizing hot metal distribution operation in which hot metal pretreatment is performed between a blast furnace and a steelmaking factory in an ironworks.
一般に、製鉄所の高炉から製鋼工場の間で、溶銑は溶銑輸送容器として、例えばトピードカー(TP)に入れられて運搬される。溶銑は、TPにより高炉から製鋼工場へ運搬される間には、途中に設置された予備処理設備で予備処理(脱リン処理)が行われリン濃度が半減する。製鋼工場で空になったTPは高炉へと搬送される。なお、予備処理は、時間に余裕がある場合に実施される。TPは、溶銑に予備処理で成分調整が行われる場合に予備処理設備を経由し、予備処理が行われない場合には製鋼工場に直送される。 In general, hot metal is transported as a hot metal transport container, for example, in a topped car (TP) between a blast furnace at a steel works and a steelmaking factory. While the hot metal is transported from the blast furnace to the steel factory by TP, pretreatment (dephosphorization treatment) is performed by a pretreatment facility installed on the way, and the phosphorus concentration is reduced by half. The TP emptied at the steelmaking factory is transported to the blast furnace. Preliminary processing is performed when there is time to spare. TP passes through a pretreatment facility when component adjustment is performed on the hot metal in the pretreatment, and is sent directly to the steelmaking factory when the pretreatment is not performed.
通常の操業時、溶銑入りの盈車として運用されるTPは、ディーゼルで運搬される。また、複数の予備処理設備のそれぞれには、1つまたは2つのステーションが存在し、各ステーションでは2つのTPの溶銑に対して同時に予備処理を実施できる。ただし、単一のTPの溶銑に対する予備処理を実施中には、その処理が終了してTPが搬出されるまで、この予備処理設備では新たなTPの溶銑に対する予備処理を開始することはできない。 During normal operation, the TP operated as a hot car with hot metal is carried by diesel. Each of the plurality of preliminary processing facilities has one or two stations, and each station can perform preliminary processing on two TP hot metal simultaneously. However, during the preliminary process for a single TP hot metal, the preliminary process for the new TP hot metal cannot be started in the preliminary processing facility until the process is completed and the TP is unloaded.
このような溶銑物流操業は、複数の管理部門(溶銑HQ、鉄道HQ、原料HQ)により実施されている。溶銑HQは、各製鋼工場における生産計画に基づき製鋼に遅滞なく連続的に溶銑を供給するように、各TPの向け先の製鋼工場を決定する。また、溶銑HQは、各溶鋼鍋(CH)の成分制約を考慮した上で、各TPの向け先製鋼工場や予備処理を行うか否か(予備処理有無)を決定する。鉄道HQは、溶銑HQの決定を受けて、各ディーゼル運転員に対し、どのTPをどこまで運搬するのかを指示する。原料HQは、TPが製鋼工場に到着し次第、各CHの成分制約を満たすように、複数のTPからの成分の異なる溶銑をCHに分配し混合する。 Such hot metal logistics operations are carried out by a plurality of management departments (hot metal HQ, railway HQ, raw material HQ). The hot metal HQ determines the steelmaking factory to which each TP is directed so as to continuously supply hot metal to steelmaking without delay based on the production plan at each steelmaking factory. In addition, the hot metal HQ determines whether or not to perform a destination steelmaking factory or preliminary treatment for each TP (presence or absence of preliminary treatment) in consideration of the component restrictions of each molten steel pan (CH). The railway HQ receives the determination of the hot metal HQ, and instructs each diesel operator which TP is to be transported to where. As soon as the TP arrives at the steelmaking plant, the raw material HQ distributes and mixes hot metal having different components from a plurality of TPs to the CH so as to satisfy the component constraints of each CH.
上記のように、溶銑物流操業はオペレータによりマニュアルで実施されており、各工程のリードタイムや設備の競合(設備干渉)は、オペレータの主観的な予測に基づいて決定あるいは判断されている。そのため、本来ならば予備処理設備で予備処理を行うことができたTPの溶銑を、時間に余裕がないものとして製鋼工場に直送してしまう場合があり、予備処理設備を経由するTP数の全TP数に対する割合である予備処理比率が低下する。そうすると、成分制約の厳しいCHへ分配できる溶銑が不足して、全体として溶銑物流の効率が低下してしまう。 As described above, the hot metal logistics operation is performed manually by an operator, and the lead time of each process and the competition of equipment (equipment interference) are determined or determined based on the subjective prediction of the operator. For this reason, the TP hot metal that could be pre-treated in the pre-treatment facility may be sent directly to the steelmaking plant as having no time, and the total number of TPs passing through the pre-treatment facility may be reduced. The pretreatment ratio, which is a ratio with respect to the number of TPs, decreases. If it does so, the hot metal which can be distributed to CH with severe component restrictions will run short, and the efficiency of hot metal distribution will fall as a whole.
そこで、数理最適化により溶銑物流の効率を改善するために、例えば、特許文献1には、TPの溶銑の各CHへの分配(引当て)量、各TPの予備処理を行うか否かを決定するアルゴリズムが開示されている。また、特許文献2には、各製鋼工場の要求成分量、要求成分および要求時刻からスケジュールを逆算し、各TPの溶銑に対していつまでに予備処理を行うべきであるかを決定する、物流シミュレーションに基づくアルゴリズムが開示されている。
Therefore, in order to improve the efficiency of hot metal distribution by mathematical optimization, for example,
本来、TPは、高炉と製鋼工場との間に潤沢に存在し、予備処理を実施するだけの時間的余裕がある場合にのみ予備処理設備を経由できる。したがって、いつ、各TPが予備処理設備に到着し、各TPの溶銑の予備処理が終了し、各TPが製鋼工場に向けて予備処理設備を出発するかというTPのスケジューリング問題と、各TPの溶銑をどれだけ各CHに分配するかというCHの溶銑分配問題とは、不可分の問題である。すなわち、TPのスケジューリング問題とCHの溶銑分配問題とは、同時に最適化を行うべき問題である。実際に、各TPの向け先製鋼工場および予備処理有無を決定する溶銑HQは、各TPの溶銑の各CHへの分配量を決定する原料HQ、および各TPを牽引するディーゼルの運行を統括している鉄道HQと、密に連絡を取り合いながら操業を行っている。 Originally, TP exists abundantly between the blast furnace and the steelmaking factory, and can pass through the pretreatment facility only when there is enough time to perform the pretreatment. Therefore, when each TP arrives at the pretreatment facility, the pretreatment of the hot metal of each TP is completed, and the TP scheduling problem of when each TP leaves the pretreatment facility toward the steel factory, The CH hot metal distribution problem of how much hot metal is distributed to each CH is an inseparable problem. That is, the TP scheduling problem and the CH hot metal distribution problem are problems to be optimized simultaneously. Actually, the hot steel HQ that determines the steelmaking factory for each TP and the presence or absence of preliminary treatment controls the raw material HQ that determines the distribution amount of the hot metal of each TP to each CH and the operation of the diesel that pulls each TP. It operates while keeping close contact with the railway HQ.
しかしながら、特許文献1記載の技術では、いつ、各TPが予備処理設備に到着し、このTPの溶銑の予備処理が終了し、TPが製鋼工場に向けて予備処理設備を出発するかというTPのスケジュールを決定できない。
However, according to the technique described in
また、特許文献2記載の技術では、スケジュール通りに高炉で溶銑の出銑が行われ、スケジュール通りに盈車が得られることが前提とされている。そのため、大まかなスケジューリングのアルゴリズムとしては有効であるが、出銑速度の変化等の外乱の下でのオンラインのスケジューリングのアルゴリズムとしては不十分である。実際に、盈車数は高炉での出銑速度に依存し、時間に余裕がある場合にのみ予備処理設備を経由させることが可能であるため、溶銑HQは、状況に応じた柔軟な判断が求められる。したがって、直近の盈車数等の操業実績値を反映できる最適化アルゴリズムの開発が期待されている。
Moreover, in the technique of
本発明は、上記課題に鑑みてなされたものであって、予備処理比率の高い溶銑物流のスケジューリングを行うことができる溶銑物流計画方法および溶銑物流計画装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a hot metal distribution planning method and a hot metal distribution planning apparatus capable of scheduling hot metal distribution with a high pretreatment ratio.
上記課題を解決し、目的を達成するために、本発明に係る溶銑物流計画方法は、高炉と製鋼工場との間に溶銑の予備処理設備が設置されている製鉄所内における溶銑物流計画を作成する溶銑物流計画方法であって、前記予備処理設備においてペアで予備処理の対象とされる溶銑を積載する溶銑輸送容器のペアの組み合わせの候補を生成するステップと、前記各溶銑輸送容器の採り得る通過工程を、移動を含む処理の順列で表されたルートの候補として生成するステップと、前記ルートの候補について、前記予備処理設備の競合に関する制約と、前記各製鋼工場での一定期間内に要求される溶銑量の積算量および予備処理後溶銑量の積算量に関する制約とを満たしつつ、全溶銑輸送容器のうち予備処理が実施される溶銑輸送容器の比率である予備処理比率を最大化するように数理最適化問題を解くことにより、該ルートの候補および前記ペアの組み合わせの候補のうち、該予備処理比率が最も高いものを選択して、当該ペアの前記各溶銑輸送容器の向け先の製鋼工場、該各トピードカーの溶銑に対して予備処理を行うか否か、および使用する前記予備処理設備が決定した溶銑物流計画を作成するステップと、を含むことを特徴とする。 In order to solve the above problems and achieve the object, the hot metal logistics planning method according to the present invention creates a hot metal logistics plan in an ironworks where a hot metal pretreatment facility is installed between a blast furnace and a steelmaking factory. A hot metal distribution planning method, comprising: generating a candidate combination of hot metal transport container pairs loaded with hot metal to be pretreated in pairs in the pretreatment facility; and possible passage of each hot metal transport container Generating a process as a route candidate represented by a process permutation including movement, the route candidate, restrictions on competition of the preliminary processing equipment, and required within a certain period of time at each steelmaking plant. The ratio of the hot metal transport container in which the pretreatment is performed among all the hot metal transport containers while satisfying the restrictions on the cumulative amount of hot metal and the cumulative amount of hot metal after pretreatment. By solving the mathematical optimization problem so as to maximize the processing ratio, the candidate having the highest preliminary processing ratio is selected from the candidates for the route and the combinations of the pair, and the hot metal of the pair is selected. And a step of creating a hot metal distribution plan determined by the pretreatment facility to be used, and whether or not to perform pretreatment on the hot metal of each topped car, and To do.
また、本発明に係る溶銑物流計画方法は、上記発明において、所定期間A内に発生する溶銑を積載する溶銑輸送容器を対象として前記溶銑物流計画を作成した後、当該所定期間A内の最初の所定期間Bについて発生する溶銑を積載する溶銑輸送容器について、作成された前記溶銑物流計画を既定とするとともに、前記所定期間Aの時間枠を該所定期間Bだけ後にずらした期間に発生する溶銑を積載する溶銑輸送容器を対象として、前記溶銑物流計画を作成することを特徴とする。 In the hot metal distribution planning method according to the present invention, in the above invention, the hot metal distribution plan for the hot metal transport container loaded with the hot metal generated within the predetermined period A is created, and then the first hot metal distribution plan within the predetermined period A is used. For the hot metal transport container for loading the hot metal generated during the predetermined period B, the hot metal distribution plan created is set as a default, and the hot metal generated during a period in which the time frame of the predetermined period A is shifted by the predetermined period B is used. The hot metal distribution plan is created for the hot metal transport container to be loaded.
また、本発明に係る溶銑物流計画装置は、高炉と製鋼工場との間に溶銑の予備処理設備が設置されている製鉄所内における溶銑物流計画を作成する溶銑物流計画装置であって、前記予備処理設備においてペアで予備処理の対象とされる溶銑を積載する溶銑輸送容器のペアの組み合わせの候補を生成する手段と、前記各溶銑輸送容器の採り得る通過工程を、移動を含む処理の順列で表されたルートの候補として生成する手段と、前記ルートの候補について、前記予備処理設備の競合に関する制約と、前記各製鋼工場での一定期間内に要求される溶銑量の積算量および予備処理後溶銑量の積算量に関する制約とを満たしつつ、全溶銑輸送容器のうち予備処理が実施される溶銑輸送容器の比率である予備処理比率を最大化するように数理最適化問題を解くことにより、該ルートの候補および前記ペアの組み合わせの候補のうち、該予備処理比率が最も高いものを選択して、当該ペアの前記各溶銑輸送容器の向け先の製鋼工場、該各溶銑輸送容器の溶銑に対して予備処理を行うか否か、および使用する前記予備処理設備が決定した溶銑物流計画を作成する手段と、を備えることを特徴とする。 The hot metal distribution planning apparatus according to the present invention is a hot metal distribution planning apparatus for creating a hot metal distribution plan in an ironworks where a hot metal pretreatment facility is installed between a blast furnace and a steelmaking factory, The means for generating a combination of hot metal transport container pairs for loading the hot metal to be pretreated in pairs in the facility, and the passing steps that can be taken by each of the hot metal transport containers are represented in a permutation of processing including movement. A means for generating the route candidate, restrictions on the competition of the pretreatment facility, the accumulated amount of hot metal required within a certain period in each steelmaking factory, and the hot metal after pretreatment Mathematical optimization problem to maximize the pretreatment ratio, which is the ratio of the hot metal transport containers to which pretreatment is carried out, while satisfying the restrictions on the accumulated quantity By solving, the one with the highest pretreatment ratio among the route candidates and the pair combination candidates is selected, and the steelmaking factory to which each hot metal transport container of the pair is directed, each hot metal transport And a means for creating a hot metal distribution plan determined by the pretreatment equipment to be used, and whether or not to perform pretreatment on the hot metal in the container.
本発明に係る溶銑物流計画方法および溶銑物流計画装置によれば、予備処理比率の高い溶銑物流のスケジューリングを行うことができる。 According to the hot metal distribution planning method and hot metal distribution planning apparatus according to the present invention, hot metal distribution having a high pretreatment ratio can be scheduled.
以下、図面を参照して、本発明の一実施形態である溶銑物流計画装置による溶銑物流計画処理について説明する。なお、この実施の形態により本発明が限定されるものではない。 Hereinafter, with reference to the drawings, hot metal distribution planning processing by the hot metal distribution planning apparatus according to an embodiment of the present invention will be described. In addition, this invention is not limited by this embodiment.
〔溶銑物流の設備〕
はじめに、図1を参照して、本発明の一実施形態である溶銑物流計画処理により作成される溶銑物流計画の対象である溶銑物流に関わる設備の配置について説明する。図1に例示する製鉄所には、3つの高炉(1高炉〜3高炉)と2つの製鋼工場(1製鋼、2製鋼)との間に、2つの予備処理設備(予備処理設備1、予備処理設備2)が配置されている。このうち予備処理設備1には2つのステーション(予備処理設備1−1、予備処理設備1−2)が配置され、予備処理設備2には1つのステーションが配置されている。また、予備処理設備1の両隣には、除滓設備(前除滓、後除滓)が配置されている。
[Hot metal logistics equipment]
First, with reference to FIG. 1, an arrangement of equipment related to hot metal distribution that is a target of the hot metal distribution plan created by the hot metal distribution planning process according to an embodiment of the present invention will be described. The steel works illustrated in FIG. 1 have two pretreatment facilities (
通常の操業時、いずれかの高炉(BF)で産出された溶銑は、溶銑輸送容器として、TPにより受銑され、いずれかの製鋼工場(1製鋼、2製鋼)へ運搬される。TPは、例えば40台程度のうち25台程度が溶銑入りの盈車として運用される。これらのTPは10台程度のディーゼルで運搬される。 During normal operation, the hot metal produced in one of the blast furnaces (BF) is received by the TP as a hot metal transport container and transported to one of the steelmaking plants (1 steelmaking, 2 steelmaking). For example, about 40 of about 40 TPs are operated as a cast iron containing hot metal. These TPs are transported by about 10 diesels.
溶銑に予備処理により成分調整が行なわれる場合には、TPが予備処理設備を経由して、TPの溶銑に対して予備処理が実施され、溶銑のリン濃度が半減する。予備処理設備の各ステーションでは、2つのTPの溶銑に対して同時に予備処理を実施できる。ただし、単一のTPの溶銑に対する予備処理の実施中には、その処理が終了してTPが搬出されるまで、この予備処理設備では新たなTPの溶銑に対する予備処理を開始することはできない。なお、TPは、予備処理設備1を経由する場合には、その前後に前除滓および/または後除滓を経由する。一方、溶銑に予備処理が行われない場合には、TPは製鋼工場に直送される。
When the component adjustment is performed on the hot metal by the pretreatment, the pretreatment is performed on the hot metal of TP via the pretreatment facility, and the phosphorus concentration of the hot metal is reduced by half. At each station of the pretreatment facility, pretreatment can be performed simultaneously on two TP hot metal. However, during the preliminary processing for a single TP hot metal, the preliminary processing equipment cannot start the preliminary processing for a new TP hot metal until the processing is completed and the TP is carried out. When the TP passes through the
〔溶銑物流計画装置の構成〕
次に、図2を参照して、本発明の一実施形態である溶銑物流計画装置の構成について説明する。図2は、本発明の一実施形態である溶銑物流計画装置の構成を示すブロック図である。図2に示すように、本発明の一実施形態である溶銑物流計画装置1は、ワークステーションやパーソナルコンピュータ等の情報処理装置10で実現され、電源スイッチおよび入力キーなどの入力デバイスである入力部20、表示装置や印刷装置等の出力部30を備える。この溶銑物流計画装置1は、情報処理装置10内部のCPU等の演算処理装置がメモリに記憶された制御プログラムを実行することによって、ペア生成部11、ルート生成部12、最適化部13として機能する。これら各部の機能については後述する。
[Configuration of hot metal logistics planning equipment]
Next, with reference to FIG. 2, the structure of the hot metal physical distribution planning apparatus which is one embodiment of the present invention will be described. FIG. 2 is a block diagram showing a configuration of a hot metal distribution planning apparatus according to an embodiment of the present invention. As shown in FIG. 2, a hot metal
なお、本実施の形態では、制御プログラムをCP(Constraint Programming)を用いて実装する。また、溶銑物流計画装置1には、図示しない上位システムがLANやインターネットなどの電気通信回線を介してデータ通信可能に接続される。溶銑物流計画装置1は、上位システムから各種の操業実績値を取得する。
In the present embodiment, the control program is implemented using CP (Constraint Programming). The hot metal
〔物流計画作成処理〕
このような構成を有する溶銑物流計画装置1では、情報処理装置10が以下に示す溶銑物流計画処理を実行する。これにより、各溶鋼鍋(CH)で要求される溶銑到着時刻、各CHの目標成分、予備処理設備の競合制約等の溶銑HQが考慮する操業制約を満たしつつ、予備処理比率が最大となるように、各TPについての向け先製鋼工場、予備処理有無、および使用する予備処理設備等の変数が決定された溶銑物流計画が作成される。
[Logistics planning process]
In the hot metal
以下、図3に示すフローチャートを参照して、この溶銑物流計画処理を実行する際の情報処理装置10の動作について説明する。図3に示すフローチャートは、例えば、操作者による起動の指示入力があったタイミングで処理が開始され、溶銑物流計画処理はステップS1の処理に進む。
Hereinafter, with reference to the flowchart shown in FIG. 3, the operation of the
ステップS1の処理では、ペア生成部11が、高炉で発生する盈車(TP)を、例えば直近6時間の発生頻度の実績値に基づいて、以降も同じ頻度で発生するものとして予測して、同時に予備処理設備での予備処理対象とするTPのペアの組み合わせの候補を生成(列挙)する。その際、ペア生成部11は、次の操業制約を満たすTPのペアの組み合わせを全て列挙する。
In the process of step S1, the
同一の高炉で50分以下の時間間隔で発生するTP同士をペアとする。同一の高炉のTPとするのは、異なる高炉のTPでは、TPを牽引するディーゼルの移動時間に無駄が生じるためである。また、製鋼工場での要求時刻がひっ迫している場合を除き、単一TPの溶銑に対する予備処理の実施を防止するため、可能な限り多数のTPのペアを生成する。そのため、時間的に隣接して発生し、その時間間隔が50分以下のTPをペアとする。これにより、ステップS1の処理は完了し、溶銑物流計画処理はステップS2の処理に進む。 A pair of TPs generated in the same blast furnace at a time interval of 50 minutes or less is paired. The reason why the TPs of the same blast furnace are used is that, in the TPs of different blast furnaces, the travel time of diesel that pulls the TP is wasted. In addition, unless the required time at the steel factory is tight, as many TP pairs as possible are generated in order to prevent the pretreatment of the molten iron of a single TP. Therefore, a pair of TPs that are adjacent in time and whose time interval is 50 minutes or less is paired. Thereby, the process of step S1 is completed and the hot metal distribution planning process proceeds to the process of step S2.
ステップS2の処理では、ルート生成部12が、各TPの採り得るルートの候補を生成する。ここで、図4を参照して、各TPの採り得るルートについて説明する。図4に示すように、各TPの高炉から製鋼工場までに採り得るルートは、7つに分類される。各ルートについて、工程を分割し、移動を含む各処理をJobと定義し、Jobの順列で表される各ルートをPatternと定義する。例えば、ルート1は、高炉から前除滓への移動(Job1)、前除滓での処理(Job2)、前除滓から予備処理設備1−1への移動(待ち時間を含む)(Job3)、予備処理設備1−1での処理(Job4)、予備処理設備1−1から1製鋼への移動(Job5)、および1製鋼での溶鋼鍋への払い出し(Job6)の6つのJobの順列からなるPatternで表される。これにより、ステップS2の処理は完了し、溶銑物流計画処理はステップS3の処理に進む。
In the process of step S2, the
なお、図1のレイアウト上では、除滓設備として前除滓および後除滓を図示したが、予備処理設備を通過した場合は必ず後除滓を通過するため、本実施形態では予備処理設備から製鋼工場への移動所要時間に後除滓での処理所要時間を含め、後除滓についての計画を陽には解かないという簡略化を行った。 In the layout of FIG. 1, pre-removal and post-removal are shown as the dehulling equipment. However, when the pre-removing equipment is passed, the post-removal is always passed. Including the time required for post-removal treatment in the time required to move to the steelmaking factory, the plan for post-removal was not solved explicitly.
ここで、図5はTP、Pattern、Jobの関係を示す概念図である。図5に示すように、PatternとはTPの通過工程に相当し、Jobとは各通過工程を構成するプロセスに相当する。各TPについてそれぞれ複数のJobで構成される複数のPatternのうちの1つが選択されると、各TPのルートの1つが選択され、向け先製鋼工場、予備処理有無、および使用する予備処理設備等の変数が決定する。 Here, FIG. 5 is a conceptual diagram showing the relationship between TP, Pattern, and Job. As shown in FIG. 5, “Pattern” corresponds to a passing process of TP, and “Job” corresponds to a process constituting each passing process. When one of a plurality of Patterns each composed of a plurality of jobs is selected for each TP, one of the routes of each TP is selected, the destination steel factory, the presence / absence of preliminary processing, and the preliminary processing equipment to be used, etc. The variables are determined.
ステップS3の処理では、最適化部13が、ステップS1の処理で生成されたTPのペアの組み合わせの候補と、ステップS2の処理で生成された各TPの採り得るルートの候補との中から、予備処理比率が高いものを採用する。具体的に、図6に処理の概要を示すように、最適化部13は、各TPのルートの候補の中から、設備干渉、時間制約、成分制約等の制約条件を満たしつつ、予備処理比率を評価する評価関数の値が最適値(最大値)となるように、TPのペアの組み合わせとルートとを選択する。
In the process of step S3, the
このとき、最適化部13は、併せて各Jobの開始時刻と終了時刻とを決定する。また、最適化部13は、実績値に基づいて、各工程のリードタイムとTP(盈車)の発生時刻とを設定する。
At this time, the
これにより、最適化部13が、向け先製鋼工場、予備処理有無、予備処理設備等の変数を決定して、溶銑物流計画を最適化する。これにより、ステップS3の処理は完了し、溶銑物流計画処理は、ステップS4の処理に進む。
Thereby, the
ステップS4の処理では、出力部30が、最適化された溶銑物流計画を適宜形式で出力する。これにより、ステップS4の処理は完了し、一連の溶銑物流計画処理は終了する。
In the process of step S4, the
以下、ステップS3の処理における制約条件および評価関数について、具体的に説明する。 Hereinafter, the constraint condition and the evaluation function in the process of step S3 will be specifically described.
〔制約条件〕
最適化部13は、各TPのPatternを選択する際、以下に例示する制約条件を考慮する。
[Restrictions]
The
〔設備干渉〕
設備の競合に関して、予備処理設備1−1、予備処理設備1−2、予備処理設備2の各設備において、同時に予備処理を実施可能なTP数を2台までとする。また、この同時に同一の予備処理設備で予備処理を実施できるTPは、ステップS1の処理で生成されたペアを構成するTPのみとする。このペアのTPの予備処理の開始時刻および終了時刻は同一とする。
[Equipment interference]
Concerning equipment competition, the number of TPs that can be simultaneously subjected to preliminary processing in the preliminary processing equipment 1-1, the preliminary processing equipment 1-2, and the
〔時間制約〕
各TPが製鋼工場での各CHの要求時刻に間に合うこと。
[Time constraints]
Each TP must be in time for the time required for each CH at the steel plant.
〔成分制約〕
各CHの成分の目標値を満たすことは、以下の手順で考慮される。すなわち、本実施の形態では、時間制約および成分制約を充足するため、各製鋼工場に運搬されるTPの溶銑量の積算量および予備処理後溶銑量の積算量が、各製鋼工場で要求される溶銑量(要求溶銑量)および予備処理後溶銑量(予備処理後要求溶銑量)を上回るように、各TPの向け先製鋼工場を決定する。
(Component restriction)
Satisfying the target value of each CH component is considered in the following procedure. That is, in this embodiment, in order to satisfy the time constraint and the component constraint, the integrated amount of the hot metal amount of TP transported to each steelmaking plant and the integrated amount of the hot metal amount after pretreatment are required in each steelmaking plant. The destination steelmaking factory of each TP is determined so as to exceed the amount of hot metal (required hot metal amount) and the amount of hot metal after pretreatment (required amount of hot metal after pretreatment).
以下、図7を参照してこの手順を具体的に説明する。まず、各製鋼工場が要求しているCHのリン成分の目標値が所定の閾値以下である場合に、予備処理によりこの成分の低減が必要なものとして、このCHの溶銑量をこの製鋼工場の予備処理後要求溶銑量に積算する。なお、本実施例では目標リン濃度のみに着目しているが、珪素、硫黄等の他成分についても同様の制約を追加することが可能である。 Hereinafter, this procedure will be specifically described with reference to FIG. First, when the target value of the phosphorus component of CH required by each steelmaking factory is below a predetermined threshold value, it is necessary to reduce this component by pretreatment. Accumulate the required amount of hot metal after pretreatment. In this embodiment, attention is focused only on the target phosphorus concentration, but the same restriction can be added to other components such as silicon and sulfur.
また、各TPの採り得る7つのルート(図4参照)のうち、例えば、向け先製鋼工場が1製鋼であるルート1〜3のTPの溶銑量を積算して1製鋼の計画溶銑量とし、予備処理設備を経由するルート1,2のTPの溶銑量を積算して1製鋼の予備処理後計画溶銑量とする。なお、各TPが製鋼工場に到着した時点でCHへの分配が可能になるものとする。
Moreover, among the seven routes (see FIG. 4) that each TP can take, for example, the destination steelmaking factory integrates the amount of hot metal of TPs of
そして、図7に例示するように、1製鋼に運搬される計画溶銑量および予備処理後計画溶銑量が、各CHに順に分配される各時点で、常に要求溶銑量および予備処理後要求溶銑量を上回るように、各TPの向け先製鋼工場を決定する。 Then, as illustrated in FIG. 7, the required amount of hot metal and the amount of hot metal required after preliminary treatment are always obtained at each time point when the amount of planned hot metal and the amount of hot metal after preliminary treatment conveyed to one steelmaking are sequentially distributed to each CH. The destination steel factory for each TP will be determined to exceed
〔評価関数〕
本実施の形態の溶銑物流計画処理では、予備処理工程を通過したTP数の合計を評価関数として、この値を最大化するものを最適解とする。
〔Evaluation function〕
In the hot metal distribution planning process of the present embodiment, the optimum solution is the one that maximizes this value using the total number of TPs that have passed through the preliminary process as an evaluation function.
以上の説明から明らかなように、本実施の形態の溶銑物流計画装置1の溶銑物流計画処理では、ペア生成部11が高炉で発生するTPのペアの組み合わせの候補を生成する。また、ルート生成部12が各TPの採り得るルートの候補として、移動を含む処理の順列で表されたPatternを生成する。そして、最適化部13が、設備干渉制約、時間制約、および成分制約等の制約条件を満たして、予備処理比率を評価する評価関数が最適値となるように、TPのペアの組み合わせとルートとを決定し、溶銑物流計画の向け先製鋼工場、予備処理有無、および予備処理設備等の変数を決定する。とくに、各製鋼工場に運搬される計画溶銑量および予備処理後計画溶銑量が、各製鋼工場の要求溶銑量および予備処理後要求溶銑量を上回るようにTPのルートが選択されることにより、時間制約および成分制約を充足する溶銑物流計画が作成される。以上のように、溶銑物流計画の作成を予備処理比率を最大化する数理最適化問題に置き換えて解くことにより、予備処理比率が高い溶銑物流計画が作成される。
As is clear from the above description, in the hot metal distribution planning process of the hot metal
なお、本実施の形態では、溶銑物流計画装置1は、溶銑物流計画処理の対象を、まず、3時間に発生するTPに限定し、この溶銑物流計画処理対象の時間枠を1時間ずつ後にずらしながら、溶銑物流計画処理を繰り返す。
In the present embodiment, the hot metal
図8は、このように時間枠を限定して実施する処理手順を説明するための概念図である。具体的に、溶銑物流計画装置1は、図8(a)に示すように、溶銑物流計画処理の開始時(現在)には、過去のTP(発生済み盈車)については、通過済みあるいは通過予定の工程を固定する。そして、溶銑物流計画装置1は、図8(b)に示すように、まず、現在から3時間先までに発生するTPを対象に、溶銑物流計画処理を実施する。次に、溶銑物流計画装置1は、図8(c)に示すように、現在から1時間先までの1時間に発生するTPについて、計画された通過工程を固定する。次に、溶銑物流計画装置1は、図8(d)に示すように、現在より1時間先から4時間先までの3時間に発生するTPを対象に、溶銑物流計画処理を実施する。そして、溶銑物流計画装置1は、図8(e)に示すように、現在より1時間先から2時間先までの1時間に発生するTPについて、計画された通過工程を既定として固定する。溶銑物流計画装置1は、以後も同様の処理を繰り返す。
FIG. 8 is a conceptual diagram for explaining the processing procedure performed with the time frame limited as described above. Specifically, as shown in FIG. 8 (a), the hot metal
このように、溶銑物流計画装置1は、TPの通過工程を指定する溶銑物流計画を3時間の時間枠で作成し、最初の1時間の溶銑物流計画を既定として固定するとともに時間枠を1時間ずつ後ろにずらして再度溶銑物流計画を作成する処理を繰り返す。これにより、溶銑物流計画装置1は、情報処理装置10の負荷を低減しつつ、長時間分のTPの溶銑物流計画を作成することができる。
As described above, the hot metal
なお、計画を作成するTPを将来3時間までに限定したのは、実用的な計算時間(例えば1分以内)で解を得るためには、将来3時間程度に発生するTPの台数程度までに計画対象を限定せざるを得ないためである(現状の高速なPC等使用した場合)。 In addition, the reason for limiting the TP for creating a plan to 3 hours in the future is to obtain a solution with a practical calculation time (for example, within 1 minute) until the number of TPs generated in about 3 hours in the future. This is because the planning target must be limited (when a current high-speed PC or the like is used).
また、将来「1時間分」のTPの計画のみを固定したのは、次の理由による。すなわち、1回の処理で計画を立案する3時間分のTP全てについての計画を固定してしまうと、さらに計算ステップを進めてTPの計画を作成する際に、既に固定した計画が多すぎて計画の自由度が失われ実行不能に陥る可能性があるためである。そこで、最初の1時間のみ(ここでは例えば全体の1/3程度)を固定することにより、次回計画時の計画の自由度を保持するようにした。ここで、上記の3時間、1時間の枠はあくまで例であり、時間枠を変更してもよい。 In addition, the reason for fixing the TP plan for “one hour” in the future is as follows. In other words, if the plan for all TPs for 3 hours for which a plan is created in one process is fixed, there are too many plans already fixed when creating a TP plan by further calculating steps. This is because the degree of freedom in planning may be lost and it may become impossible to execute. Therefore, by fixing only the first hour (here, for example, about 1/3 of the entire time), the degree of freedom of the plan at the next plan is maintained. Here, the frame of 3 hours and 1 hour is merely an example, and the time frame may be changed.
また、上記実施の形態において、溶銑輸送容器としてトピードカーを例示したが、溶銑輸送容器は溶銑鍋やその他の容器でもよく、溶銑物流計画処理を適用できる。 Moreover, in the said embodiment, although the topped car was illustrated as a hot metal transport container, the hot metal transport container may be a hot metal ladle or other containers, and the hot metal distribution planning process can be applied.
(実施例)
本実施の形態の溶銑物流計画処理を1日半分のTPに対して実行した。図9は、溶銑物流計画処理の開始から3時間分のTPについて作成された溶銑物流計画を例示するガントチャートである。また、図10は、1日半分のTPについて作成された溶銑物流計画を例示するガントチャートである。表1に、予備処理比率(予備処理設備通過割合)を計算値として示す。また、表1に、オペレータによるマニュアル操業の結果の予備処理比率を実績値として示す。
(Example)
The hot metal distribution planning process of the present embodiment was executed for half a day of TP. FIG. 9 is a Gantt chart illustrating the hot metal distribution plan created for the TP for 3 hours from the start of the hot metal distribution plan process. FIG. 10 is a Gantt chart illustrating a hot metal distribution plan created for half a day of TP. Table 1 shows the preliminary treatment ratio (pretreatment facility passage ratio) as a calculated value. Table 1 shows the preliminary processing ratio of the result of the manual operation by the operator as the actual value.
表1に示すように、本実施の形態の溶銑物流計画処理により、予備処理比率が10%程度向上することが確認された。 As shown in Table 1, it was confirmed that the pretreatment ratio was improved by about 10% by the hot metal distribution planning process of the present embodiment.
以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明が限定されることはない。すなわち、本実施形態に基づいて当業者などによりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれる。 Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.
1 溶銑物流計画装置
10 情報処理装置
11 ペア生成部
12 ルート生成部
13 最適化部
20 入力部
30 出力部
DESCRIPTION OF
Claims (3)
前記予備処理設備においてペアで予備処理の対象とされる溶銑を積載する溶銑輸送容器のペアの組み合わせの候補を生成するステップと、
前記各溶銑輸送容器の採り得る通過工程を、移動を含む処理の順列で表されたルートの候補として生成するステップと、
前記ルートの候補について、前記予備処理設備の競合に関する制約と、前記各製鋼工場での一定期間内に要求される溶銑量の積算量および予備処理後溶銑量の積算量に関する制約とを満たしつつ、全溶銑輸送容器のうち予備処理が実施される溶銑輸送容器の比率である予備処理比率を最大化するように数理最適化問題を解くことにより、該ルートの候補および前記ペアの組み合わせの候補のうち、該予備処理比率が最も高いものを選択して、当該ペアの前記各溶銑輸送容器の向け先の製鋼工場、該各溶銑輸送容器の溶銑に対して予備処理を行うか否か、および使用する前記予備処理設備が決定した溶銑物流計画を作成するステップと、
を含むことを特徴とする溶銑物流計画方法。 A hot metal logistics planning method for creating a hot metal logistics plan in an ironworks where a hot metal pretreatment facility is installed between a blast furnace and a steelmaking factory,
Generating a combination candidate of a hot metal transport container for loading hot metal to be pretreated in pairs in the pretreatment facility; and
Generating a passing process that can be taken by each hot metal transport container as a route candidate represented by a permutation of processing including movement; and
For the route candidates, while satisfying the restrictions on the competition of the pretreatment equipment and the restrictions on the accumulated amount of hot metal and the accumulated amount of hot metal after pretreatment required within a certain period in each steelmaking factory, By solving the mathematical optimization problem so as to maximize the pretreatment ratio, which is the ratio of the hot metal transport containers in which the pretreatment is performed among all the hot metal transport containers, among the candidates for the route and the combinations of the pairs , Select the one with the highest pretreatment ratio, and whether or not to perform pretreatment for the hot metal of each hot metal transport container, the steelmaking factory to which each hot metal transport container of the pair is directed Creating a hot metal distribution plan determined by the pretreatment facility;
A hot metal logistics planning method characterized by comprising:
前記予備処理設備においてペアで予備処理の対象とされる溶銑を積載する溶銑輸送容器のペアの組み合わせの候補を生成する手段と、
前記各溶銑輸送容器の採り得る通過工程を、移動を含む処理の順列で表されたルートの候補として生成する手段と、
前記ルートの候補について、前記予備処理設備の競合に関する制約と、前記各製鋼工場での一定期間内に要求される溶銑量の積算量および予備処理後溶銑量の積算量に関する制約とを満たしつつ、全溶銑輸送容器のうち予備処理が実施される溶銑輸送容器の比率である予備処理比率を最大化するように数理最適化問題を解くことにより、該ルートの候補および前記ペアの組み合わせの候補のうち、該予備処理比率が最も高いものを選択して、当該ペアの前記各溶銑輸送容器の向け先の製鋼工場、該各溶銑輸送容器の溶銑に対して予備処理を行うか否か、および使用する前記予備処理設備が決定した溶銑物流計画を作成する手段と、
を備えることを特徴とする溶銑物流計画装置。 A hot metal logistics planning apparatus method for creating a hot metal logistics plan in an ironworks where a hot metal pretreatment facility is installed between a blast furnace and a steelmaking factory,
Means for generating candidate combinations of hot metal transport container pairs for loading hot metal to be pretreated in pairs in the pretreatment facility;
Means for generating a passing step that can be taken by each hot metal transport container as a route candidate represented by a permutation of processing including movement;
For the route candidates, while satisfying the restrictions on the competition of the pretreatment equipment and the restrictions on the accumulated amount of hot metal and the accumulated amount of hot metal after pretreatment required within a certain period in each steelmaking factory, By solving the mathematical optimization problem so as to maximize the pretreatment ratio, which is the ratio of the hot metal transport containers in which the pretreatment is performed among all the hot metal transport containers, among the candidates for the route and the combinations of the pairs , Select the one with the highest pretreatment ratio, and whether or not to perform pretreatment for the hot metal of each hot metal transport container, the steelmaking factory to which each hot metal transport container of the pair is directed Means for creating a hot metal distribution plan determined by the pretreatment facility;
A hot metal logistics planning device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015003876A JP6191629B2 (en) | 2015-01-13 | 2015-01-13 | Hot metal logistics planning method and hot metal logistics planning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015003876A JP6191629B2 (en) | 2015-01-13 | 2015-01-13 | Hot metal logistics planning method and hot metal logistics planning device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016130331A true JP2016130331A (en) | 2016-07-21 |
JP6191629B2 JP6191629B2 (en) | 2017-09-06 |
Family
ID=56415271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015003876A Expired - Fee Related JP6191629B2 (en) | 2015-01-13 | 2015-01-13 | Hot metal logistics planning method and hot metal logistics planning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6191629B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115503784A (en) * | 2022-09-30 | 2022-12-23 | 马鞍山钢铁股份有限公司 | Enterprise railway information error real-time early warning method and system |
CN115537481A (en) * | 2021-06-29 | 2022-12-30 | 上海梅山钢铁股份有限公司 | Be used for torpedo ladle to cover blast furnace intelligence tapping system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6296611A (en) * | 1985-10-21 | 1987-05-06 | Kobe Steel Ltd | Method for making refining plan |
JPH09249903A (en) * | 1996-03-14 | 1997-09-22 | Sumitomo Metal Ind Ltd | Scheduling method in molten iron supply and demand control |
JP2003055705A (en) * | 2001-08-10 | 2003-02-26 | Nkk Corp | Physical distribution plan preparing method, and program thereof |
US20030195648A1 (en) * | 2000-03-31 | 2003-10-16 | Edson Bacin | Methods and systems for scheduling work |
JP2004083963A (en) * | 2002-08-26 | 2004-03-18 | Kobe Steel Ltd | Unit and method for controlling physical distribution of molten iron and program |
JP2008156740A (en) * | 2006-12-26 | 2008-07-10 | Jfe Steel Kk | Method for allotting molten iron and apparatus therefor |
-
2015
- 2015-01-13 JP JP2015003876A patent/JP6191629B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6296611A (en) * | 1985-10-21 | 1987-05-06 | Kobe Steel Ltd | Method for making refining plan |
JPH09249903A (en) * | 1996-03-14 | 1997-09-22 | Sumitomo Metal Ind Ltd | Scheduling method in molten iron supply and demand control |
US20030195648A1 (en) * | 2000-03-31 | 2003-10-16 | Edson Bacin | Methods and systems for scheduling work |
JP2003055705A (en) * | 2001-08-10 | 2003-02-26 | Nkk Corp | Physical distribution plan preparing method, and program thereof |
JP2004083963A (en) * | 2002-08-26 | 2004-03-18 | Kobe Steel Ltd | Unit and method for controlling physical distribution of molten iron and program |
JP2008156740A (en) * | 2006-12-26 | 2008-07-10 | Jfe Steel Kk | Method for allotting molten iron and apparatus therefor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115537481A (en) * | 2021-06-29 | 2022-12-30 | 上海梅山钢铁股份有限公司 | Be used for torpedo ladle to cover blast furnace intelligence tapping system |
CN115537481B (en) * | 2021-06-29 | 2023-09-05 | 上海梅山钢铁股份有限公司 | Intelligent blast furnace tapping system for torpedo tank capping of torpedo hot metal mixer car |
CN115503784A (en) * | 2022-09-30 | 2022-12-23 | 马鞍山钢铁股份有限公司 | Enterprise railway information error real-time early warning method and system |
CN115503784B (en) * | 2022-09-30 | 2024-03-08 | 马鞍山钢铁股份有限公司 | Enterprise railway information error real-time early warning method and system |
Also Published As
Publication number | Publication date |
---|---|
JP6191629B2 (en) | 2017-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106779220A (en) | A kind of steel-making continuous casting hot rolling integrated scheduling method and system | |
CN105974891B (en) | A kind of mold production process self-adaptation control method based on dynamic billboard | |
JP4407543B2 (en) | Steelmaking process operation schedule creation system, steelmaking process operation schedule creation method, and computer program | |
JP6428435B2 (en) | Transportation plan creation device and transportation plan creation method | |
CN107578158A (en) | A kind of Order Scheduling optimization method suitable for manufacturing works | |
CN106611221A (en) | Steelmaking-continuous casting rescheduling method for solving continuous casting machine fault | |
Ye et al. | An improved heuristic for no-wait flow shop to minimize makespan | |
CN103984324B (en) | Method for steel-making continuous casting dynamic dispatching based on heuristic algorithm cluster | |
Rahman et al. | Multiple-order permutation flow shop scheduling under process interruptions | |
JP6191629B2 (en) | Hot metal logistics planning method and hot metal logistics planning device | |
JP2012133633A (en) | Production plan creation device | |
CN108022010A (en) | The optimization method of ladle scheduling problem | |
Kammammettu et al. | Multistage adaptive optimization for steelmaking and continuous casting scheduling under processing time uncertainty | |
Tang et al. | A branch-and-price algorithm to solve the molten iron allocation problem in iron and steel industry | |
CN105785963A (en) | Steelmaking and continuous casting scheduling method based on artificial bee colony (ABC) | |
JP4501740B2 (en) | Steelmaking process operation schedule creation system, steelmaking process operation schedule creation method, and computer program | |
JP2016130332A (en) | Molten iron physical distribution planning method and apparatus | |
JPH09235610A (en) | Operational schedule making system in steelmaking process | |
Huang et al. | Two-stage method and application for molten iron scheduling problem between iron-making plants and steel-making plants | |
Long et al. | Production planning system for the whole steelmaking process of Panzhihua Iron and Steel Corporation | |
JP4959125B2 (en) | Processing plan creation device, operation control device, processing plan creation method, operation control method, computer program, and recording medium | |
JP6602026B2 (en) | Logistics processing schedule creation device in steelmaking factory | |
JP6187429B2 (en) | Distribution plan creation apparatus and distribution plan creation method | |
Nakhaeinejad | Production scheduling optimization algorithm for the steel-making continuous casting processes | |
JP2014001423A (en) | Operation schedule generation method and operation schedule generation device of steel mill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170516 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170622 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170711 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170724 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6191629 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |