JP2016130209A - Activated clay particle - Google Patents

Activated clay particle Download PDF

Info

Publication number
JP2016130209A
JP2016130209A JP2015211994A JP2015211994A JP2016130209A JP 2016130209 A JP2016130209 A JP 2016130209A JP 2015211994 A JP2015211994 A JP 2015211994A JP 2015211994 A JP2015211994 A JP 2015211994A JP 2016130209 A JP2016130209 A JP 2016130209A
Authority
JP
Japan
Prior art keywords
clay
oil
activated clay
particles
activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015211994A
Other languages
Japanese (ja)
Other versions
JP6618769B2 (en
Inventor
大補 塚原
Daisuke Tsukahara
大補 塚原
正志 羽田野
Masashi Hatano
正志 羽田野
哲司 弭間
Tetsuji Hazuma
哲司 弭間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Publication of JP2016130209A publication Critical patent/JP2016130209A/en
Application granted granted Critical
Publication of JP6618769B2 publication Critical patent/JP6618769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an activated clay particle that is produced from a dioctahedral-type smectite clay mineral or clay composed mainly of the smectite clay mineral by a very simple method and is excellent in both decolorization performance and filterability.SOLUTION: The activated clay particle is produced by subjecting clay composed mainly of a dioctahedral-type smectite clay mineral to acid treatment and has a median diameter (D) in terms of volume of 50 μm or less as determined by a laser diffraction method and a filtration index R in the range of 0.10 to 2.00 as represented by the formula: R=(A/the median diameter)×100, where in the formula, A represents a darcy coefficient as measured using ethanol.SELECTED DRAWING: Figure 2

Description

本発明は、ジオクタヘドラル型スメクタイトの酸処理物から成る活性白土粒子に関するものである。   The present invention relates to activated clay particles comprising an acid-treated product of dioctahedral smectite.

ジオクタヘドラル型スメクタイト粘土鉱物は、吸着性能や脱色性能を有することが古くから知られており、英国ではフーラース・アース、或いはブリーチング・アース等とも呼ばれている。   Dioctahedral smectite clay minerals have long been known to have adsorptive and decolorizing properties, and are also called Fuller's Earth or Bleaching Earth in the UK.

ジオクタヘドラル型スメクタイト粘土鉱物を酸処理して、比表面積等が増大した所謂活性白土を製造することも古くから知られており、酸の濃度、温度及び処理時間等の酸処理条件を調節することにより、粘土鉱物中の酸可溶性塩基成分の少なくとも一部を溶出させ、脱色能や比表面積の向上を図っていた。   It has long been known to produce so-called activated clay with increased specific surface area by acid treatment of dioctahedral smectite clay minerals, by adjusting acid treatment conditions such as acid concentration, temperature and treatment time. At least a part of the acid-soluble base component in the clay mineral was eluted to improve decolorization ability and specific surface area.

活性白土の用途の内、油脂類等の脱色剤の用途に関しては、油脂類等に含まれるクロロフィル等の色素に対して強い吸着性を有することが要求される一方で、生産性の点で精製された油脂類と廃白土との分離に対しては濾過性が良好であることが要求される。   Among the applications of activated clay, the use of bleaching agents such as fats and oils is required to have strong adsorptive properties to pigments such as chlorophyll contained in fats and oils, but it is refined in terms of productivity. The filterability is required to be separated from the separated oils and fats and waste clay.

ところが、従来の活性白土においては、色素等に対する吸着性と濾過性とは両立しがたいものであり、これらの両方を十分に満足するものは知られていない。即ち、色素等の吸着性は活性白土の粒径が微細になればなるほど向上するが、逆に濾過性は粒径が微細になればなるほど著しく低下する。   However, in the conventional activated clay, the adsorptivity to the pigment and the like and the filterability are difficult to achieve at the same time, and those that sufficiently satisfy both of them are not known. That is, the adsorptivity of pigments and the like improves as the particle size of the activated clay becomes finer, but conversely, the filterability decreases remarkably as the particle size becomes finer.

例えば、特許文献1には、ジオクタヘドラル型スメクタイト粘土鉱物を粉砕及び分級し、レーザ回折散乱法による体積換算での平均粒径(D50)が20乃至30μmの範囲にある粉末を調製し、前記粉末を、35乃至45質量%濃度の硫酸水溶液を使用し、該硫酸水溶液中に前記粉末を添加混合し、85℃以上の温度に加熱することにより酸処理を行い、次いで、得られた酸処理物を洗浄し、且つ乾燥することにより、活性白土を製造する方法が開示されており、かかる方法で得られた活性白土を油脂類等の脱色剤として使用することも開示されている。 For example, Patent Document 1 discloses a powder in which dioctahedral smectite clay mineral is pulverized and classified, and a powder having an average particle size (D 50 ) in a volume conversion by a laser diffraction scattering method in the range of 20 to 30 μm is prepared. , Using an aqueous sulfuric acid solution having a concentration of 35 to 45% by mass, adding and mixing the powder in the aqueous sulfuric acid solution, heating to a temperature of 85 ° C. or higher, and then treating the resulting acid-treated product A method for producing activated clay by washing and drying is disclosed, and the use of activated clay obtained by such a method as a decoloring agent for oils and fats is also disclosed.

しかしながら、特許文献1の方法で得られた活性白土を脱色剤として使用したとき、使用後の脱色剤(廃白土)に含まれる油分(オイルリテンション)が少ないという利点を有しているのであるが、脱色性がさほど高いとは言えない。   However, when the activated clay obtained by the method of Patent Document 1 is used as a decoloring agent, there is an advantage that the oil content (oil retention) contained in the used decoloring agent (waste clay) is small. It cannot be said that decolorization is so high.

また、特許文献2には、ジオクタヘドラル型スメクタイト粘土鉱物の酸処理により得られた活性白土であって、レーザ回折法により求めた体積基準メジアン径(D50)が10乃至60μmの定形粒子からなり、水銀圧入法で測定した細孔半径1000〜70000オングストロームの細孔容積が0.63乃至1.00cc/gの範囲にあり、且つBET比表面積が250乃至400m/gの範囲にあることを特徴とする活性白土定形粒子が開示されている。 Further, Patent Document 2 is an active clay obtained by acid treatment of a dioctahedral smectite clay mineral, and is composed of regular particles having a volume-based median diameter (D 50 ) determined by a laser diffraction method of 10 to 60 μm, The pore volume with a pore radius of 1000 to 70000 angstroms measured by mercury porosimetry is in the range of 0.63 to 1.00 cc / g, and the BET specific surface area is in the range of 250 to 400 m 2 / g. And activated clay shaped particles are disclosed.

かかる活性白土は、脱色性能および濾過性の両方に優れているのであるが、スメクタイト粘土鉱物の酸処理を炭酸カルシウムの存在下で行うという特殊な方法により製造しているため、製造コストが高く、また、石膏が副生するため、その除去作業が面倒であったり、排液処理に負担がかかるなどの問題も発生している。   Such activated clay is excellent in both decolorization performance and filterability, but because it is produced by a special method in which the acid treatment of smectite clay mineral is performed in the presence of calcium carbonate, the production cost is high, In addition, since gypsum is by-produced, problems such as troublesome removal work and a burden on the drainage treatment have occurred.

さらに、定形粒子であることで、ハンドリング性の点で流動性は良好であるが噴流性(フラッシング性)が高いという問題がある。   Furthermore, since the particles are shaped, the fluidity is good in terms of handling properties, but there is a problem that the jet property (flushing property) is high.

特開2008−31411号公報JP 2008-31411 A 特開2000−344513号公報JP 2000-344513 A

従って、本発明の目的は、極めてシンプルな方法で、ジオクタヘドラル型スメクタイト粘土鉱物乃至は該スメクタイト粘土鉱物を主成分とする粘土から製造され、しかも、脱色性能と濾過性の両方に優れた活性白土粒子を提供することである。
本発明の他の目的は、油脂類等の脱色剤として好適に使用される活性白土粒子を提供することである。
Accordingly, an object of the present invention is an active clay particle which is produced from a dioctahedral smectite clay mineral or a clay containing the smectite clay mineral as a main component, and which is excellent in both decolorization performance and filterability, in an extremely simple manner. Is to provide.
Another object of the present invention is to provide activated clay particles suitably used as a decolorizing agent for oils and fats.

本発明者等は、ジオクタヘドラル型スメクタイト粘土鉱物乃至は該スメクタイト粘土鉱物を主成分とする粘土を酸処理して活性白土を製造するプロセスについて多くの実験を行い、検討した結果、該スメクタイト粘土鉱物の粒子の表面形状がそのまま残るように処理をすることにより、脱色性能と濾過性とに優れた活性白土粒子が得られるという極めて意外な知見を得、かかる知見に基づき本発明を完成するに至った。   The inventors of the present invention conducted a number of experiments on the process of producing an activated clay by acid treatment of dioctahedral smectite clay mineral or clay mainly composed of the smectite clay mineral. By processing so that the surface shape of the particles remains as it is, an extremely surprising knowledge that active clay particles having excellent decolorization performance and filterability can be obtained was obtained, and the present invention was completed based on such knowledge. .

本発明によれば、ジオクタヘドラル型スメクタイト粘土鉱物乃至は該スメクタイト粘土鉱物を主成分とする粘土の酸処理により得られた活性白土粒子であって、レーザー回折法により求めた体積基準での中位径(D50)が50μm以下であり、且つ、下記式;
R=(A/前記中位径)×100
式中、Aは、エタノールを用いて測定されたダルシー係数を表す、
で示される濾過指数Rが0.10〜2.00の範囲にあることを特徴とする活性白土粒子が提供される。
According to the present invention, dioctahedral smectite clay mineral or activated clay particles obtained by acid treatment of clay mainly composed of the smectite clay mineral, the median diameter on a volume basis determined by a laser diffraction method (D 50 ) is 50 μm or less, and the following formula:
R = (A / median diameter) × 100
Where A represents the Darcy coefficient measured using ethanol,
An activated clay particle is provided in which the filtration index R indicated by is in the range of 0.10 to 2.00.

本発明の活性白土粒子においては、
(1)嵩密度が0.30〜0.50g/cmであること、
(2)差角が1.0〜10.0度であること、
が好適である。
In the activated clay particles of the present invention,
(1) The bulk density is 0.30 to 0.50 g / cm 3 ,
(2) The difference angle is 1.0 to 10.0 degrees,
Is preferred.

本発明によればまた、前記活性白土からなる、油脂類もしくは鉱物油の脱色剤が提供される。   According to the present invention, there is also provided an oil or mineral oil decolorizing agent comprising the activated clay.

本発明の活性白土粒子は、ダルシー係数と中位径とから算出される濾過指数Rが0.10〜2.00の範囲にあるという点に顕著な特徴を有するものであるが、かかる濾過指数Rは、大きい程濾過性に優れており、小さい程濾過がし難いことを示す。例えば、原料粘土を酸処理し、乾燥、粉砕、分級することで得られる一般的な公知の活性白土においては、その濾過係数Rは上記範囲よりも低く、従って、濾過性が乏しい。   The activated clay particles of the present invention have a remarkable feature in that the filtration index R calculated from the Darcy coefficient and the median diameter is in the range of 0.10 to 2.00. The larger R, the better the filterability, and the smaller R, the harder the filtration. For example, in a general known activated clay obtained by acid treatment of raw clay, drying, pulverization, and classification, the filtration coefficient R is lower than the above range, and therefore the filterability is poor.

また、本発明の活性白土粒子は、後述する実施例にも示されているように、脱酸菜種油、RBD(Refined Bleached and Deodorized)パーム油、脱酸米油のいずれに対しても、優れた脱色性を示す。特に、米油は、脱色しにくいことが知られているが、このような米油を含め、本発明の活性白土粒子は、種々の油脂類に対して優れた脱色性を示す。   Moreover, the activated clay particles of the present invention are superior to any of deoxidized rapeseed oil, RBD (Refined Bleached and Deodorized) palm oil, and deoxidized rice oil, as shown in Examples described later. Shows decolorization. In particular, it is known that rice oil is difficult to decolorize, but the active clay particles of the present invention including such rice oil exhibit excellent decoloring properties for various oils and fats.

実施例で用いた原料スメクタイト系粘土のSEM写真(倍率5,000倍)。The SEM photograph (5,000-times multiplication factor) of the raw material smectite type clay used in the Example. 実施例2で得られた本発明の活性白土粒子のSEM写真(倍率5,000倍)。The SEM photograph (magnification 5,000 times) of the activated clay particles of the present invention obtained in Example 2. 比較例1で得られた機械的粉砕を経た公知の活性白土粒子のSEM写真(倍率5,000倍)。The SEM photograph (5,000 times magnification) of the well-known activated clay particle | grains which passed through the mechanical grinding | pulverization obtained by the comparative example 1. FIG.

本発明の活性白土粒子は、中位径が50μm以下、特に30μm以下の比較的微細な粒子であるが、上記で述べたように、濾過指数Rが0.10〜2.00、特に0.30〜1.00と大きな値を示している。即ち、本発明の活性白土粒子は、ジオクタヘドラル型スメクタイト粘土鉱物乃至は該スメクタイト粘土鉱物を主成分とする粘土(以下、単にスメクタイト系粘土と呼ぶことがある)の酸処理により得られるものであるが、上記のような濾過指数Rを有しているということは、原料粘土の粒子表面が、ほとんどそのまま活性白土粒子の表面に残っていることを意味している。   The activated clay particles of the present invention are relatively fine particles having a median diameter of 50 μm or less, particularly 30 μm or less, and as described above, the filtration index R is 0.10 to 2.00, particularly 0.00. A large value of 30 to 1.00 is shown. That is, the activated clay particles of the present invention are obtained by acid treatment of a dioctahedral smectite clay mineral or a clay containing the smectite clay mineral as a main component (hereinafter sometimes simply referred to as smectite clay). Having the filtration index R as described above means that the particle surface of the raw clay remains almost as it is on the surface of the activated clay particles.

例えば、図1は、原料スメクタイト系粘土のSEM写真であるが、このSEM写真によれば、この粘土鉱物に特有の薄片がひだ状に連なった形態を有している。一方、本発明の活性白土粒子のSEM写真は図2に示したが、本発明の粒子表面もまた薄片がひだ状に連なった形態を有していることがわかる。   For example, FIG. 1 is an SEM photograph of the raw smectite clay. According to the SEM photograph, flakes peculiar to the clay mineral have a form of pleats. On the other hand, the SEM photograph of the activated clay particles of the present invention is shown in FIG. 2, and it can be seen that the surface of the particles of the present invention also has a form in which flakes are continuous in a pleat shape.

即ち、このような表面形態を有する本発明の活性白土粒子においては、粒子間の空隙が多く、濾過に際して液体が粒子間を速やかに透過しやすく、この結果、粒子径が小さいにも関わらず、優れた濾過性が示される(濾過指数が前述した範囲に存在する)。また、水系においても、濾過漏れを生じずに、優れた濾過性が示される(後述の実施例を参照)。   That is, in the activated clay particles of the present invention having such a surface morphology, there are many voids between the particles, and the liquid easily permeates between the particles during filtration. As a result, despite the small particle diameter, Excellent filterability is shown (filtration index is in the above-mentioned range). Further, even in an aqueous system, excellent filterability is exhibited without causing filtration leakage (see Examples described later).

更に、上記のような表面形態を有していることは、油脂類等の脱色にあたり、クロロフィル等の色素成分を有効に吸着することができ、この結果、種々の油脂類等に対して優れた脱色性を示すこととなる。   Furthermore, having the surface form as described above can effectively adsorb pigment components such as chlorophyll when decolorizing fats and oils, and as a result, excellent for various fats and oils. Decolorization will be exhibited.

上述した表面形態を有する本発明の活性白土粒子は、例えば、機械的な強粉砕を加えることなく、酸処理することにより得られるものであるが(この点については後記で詳述する)、機械的粉砕がなされている従来公知の活性白土粒子は、図3のSEM写真に示されているように、原料粘土鉱物に特有の表面形態は損なわれている。このため、このような表面を有する活性白土粒子は、本発明の活性白土粒子のような濾過性や脱色性を示さない。   The activated clay particles of the present invention having the above-described surface morphology are obtained by, for example, acid treatment without adding mechanical pulverization (this point will be described in detail later). As shown in the SEM photograph of FIG. 3, the conventionally known activated clay particles that have been subjected to mechanical pulverization have impaired surface morphology unique to the raw clay mineral. For this reason, the activated clay particles having such a surface do not exhibit the filterability and decoloring property like the activated clay particles of the present invention.

本発明の活性白土粒子は、上記のような表面形態を有していることに関連して、嵩密度が小さく、例えば、0.30〜0.50g/cm、特に0.35〜0.45g/cmである。 The activated clay particles of the present invention have a small bulk density in relation to having the surface morphology as described above, for example, 0.30 to 0.50 g / cm 3 , particularly 0.35 to 0.00. 45 g / cm 3 .

更に、表面形態に関連して、本発明の活性白土粒子は、1.0〜10.0度、特に3.0〜8.0度の差角を示す。
ここで、差角は、安息角から崩潰角を差し引いて得られる角度である。
安息角は、所定の大きさの円板に対して、一定の高さに配置されたホッパーから大過剰量の粒子を落下させたとき、円板に形成される円錐形状の堆積物の側面角に相当する角度であり、崩潰角は、上記堆積物を一定の力で崩潰させたとき、円板上に残った堆積物の側面角に相当する角度である。即ち、差角が小さい程、粒子間摩擦が大きく、表面形状が異形であることを示しており、噴流性(フラッシング性)が小さくハンドリング性が良好であることを示す。
Furthermore, in relation to the surface morphology, the activated clay particles of the present invention exhibit a difference angle of 1.0 to 10.0 degrees, especially 3.0 to 8.0 degrees.
Here, the difference angle is an angle obtained by subtracting the collapse angle from the angle of repose.
The angle of repose is the side angle of the conical sediment formed on a disc when a large excess of particles are dropped from a hopper arranged at a certain height with respect to a disc of a predetermined size. The collapse angle is an angle corresponding to the side angle of the deposit remaining on the disk when the deposit is collapsed with a constant force. That is, the smaller the difference angle, the larger the interparticle friction and the irregular surface shape, and the smaller the jetting property (flushing property) and the better the handling property.

さらに、本発明の活性白土粒子は、スメクタイト系粘土を酸処理して得られるものであることから、この原料粘土よりも大きな比表面積を有しており、例えば、そのBET比表面積は150m/g以上、特に200〜400m/g程度の範囲にある。 Furthermore, since the activated clay particles of the present invention are obtained by acid treatment of smectite clay, it has a larger specific surface area than that of the raw clay, for example, its BET specific surface area is 150 m 2 / g or more, particularly in the range of about 200 to 400 m 2 / g.

上述した特性を有する本発明の活性白土粒子は、スメクタイト粘土鉱物を主成分とするため、このX線回折像(Cu−α)では、2θ=19〜20度にモンモリロナイトに特有の回折ピークを示し、一般に、H≦―3.0の固体酸量が0.10〜0.50mmol/gの範囲にある。
また、この活性白土の化学組成は、原料スメクタイト系粘土の化学組成によっても異なるため、一義的に規定することはできないが、一般的な化学組成は次の通りである。
SiO;60〜80質量%
Al;8〜13質量%
Fe;1〜10質量%
MgO;1〜3質量%
CaO;0.1〜2質量%
NaO;0.1〜1質量%
O;0.1〜1質量%
その他の酸化物(TiOなど);1質量%以下
Ig−loss(1050℃);4〜8質量%
Since the activated clay particles of the present invention having the above-mentioned characteristics are mainly composed of smectite clay mineral, this X-ray diffraction image (Cu-α) shows a diffraction peak peculiar to montmorillonite at 2θ = 19 to 20 degrees. In general, the solid acid amount of H 0 ≦ −3.0 is in the range of 0.10 to 0.50 mmol / g.
Moreover, since the chemical composition of this activated clay also differs depending on the chemical composition of the raw smectite clay, it cannot be uniquely defined, but the general chemical composition is as follows.
SiO 2; 60-80 wt%
Al 2 O 3 ; 8 to 13% by mass
Fe 2 O 3; 1~10 wt%
MgO; 1-3 mass%
CaO; 0.1 to 2% by mass
Na 2 O; 0.1 to 1 wt%
K 2 O; 0.1 to 1 wt%
Other oxides (such as TiO 2); 1 wt% or less Ig-loss (1050 ℃); 4~8 wt%

(活性白土粒子の製造方法)
本発明の活性白土粒子は、ジオクタヘドラル型スメクタイト粘土鉱物乃至は該スメクタイト粘土鉱物を主成分とする粘土を原料とし、これを必要に応じて適宜の大きさに造粒し、次いで、酸処理・湿式解砕し、その後、乾燥・分級を行うことによって得ることができるが、かかる全工程を通して、原料粘土鉱物の粒子表面を崩壊させるような機械的粉砕は行われない。そのような機械的粉砕が行われると、濾過指数が大きく低下してしまい、濾過性が損なわれるばかりか、脱色性能も低下してしまうこととなる。
(Method for producing activated clay particles)
The activated clay particles of the present invention are made from dioctahedral smectite clay mineral or clay mainly composed of the smectite clay mineral as a raw material, granulated to an appropriate size as necessary, and then acid-treated / wet Although it can be obtained by pulverizing and then drying and classifying, mechanical pulverization that collapses the particle surface of the raw clay mineral is not performed throughout the entire process. When such mechanical pulverization is performed, the filtration index is greatly lowered, not only the filterability is impaired, but also the decolorization performance is lowered.

原料として用いるジオクタヘドラル型スメクタイトは、AlO八面体層が2つのSiO四面体層でサンドイッチされ、且つAlO八面体層のAlがFeやMgで同形置換され且つSiO四面体層のSiがAlで同形置換された三層構造を基本層単位とし、この基本層単位がc軸方向に積層した積層構造から成り、この層間には同形置換による電荷の不足を補う形で金属カチオンが存在している。 The dioctahedral smectite used as a raw material has an AlO 6 octahedral layer sandwiched between two SiO 4 tetrahedral layers, Al in the AlO 6 octahedral layer is replaced with Fe or Mg, and Si in the SiO 4 tetrahedral layer is replaced by Si. The basic layer unit is a three-layer structure that is isomorphously substituted with Al, and this basic layer unit is laminated in the c-axis direction. Between these layers, metal cations exist to compensate for the lack of charge due to isomorphous substitution. ing.

ジオクタヘドラル型スメクタイト粘土鉱物としては、粘土鉱物分類上、モンモリロナイト、バイデライト、ノントロナイト、ボルコンスコアイトなどが含まれ、スメクタイト系粘土には、いわゆる酸性白土、ベントナイトなどが包含される。
ジオクタヘドラル型スメクタイトは、火山灰や溶岩等が海水の影響下に変性されることにより生成したと考えられる。
代表的な原料粘土鉱物の化学組成の一例を下記に示す。
SiO;50〜70質量%
Al;14〜25質量%
Fe;2〜20質量%
MgO;3〜7質量%
CaO;0.1〜3質量%
NaO;0.1〜3質量%
O;0.1〜3質量%
その他の酸化物(TiOなど);1質量%以下
Ig−loss(1050℃);5〜10質量%
Examples of the dioctahedral smectite clay mineral include montmorillonite, beidellite, nontronite, and bolcon score according to the classification of clay minerals, and the smectite clay includes so-called acid clay and bentonite.
Dioctahedral smectite is thought to have been generated by the modification of volcanic ash, lava, etc. under the influence of seawater.
An example of the chemical composition of a typical raw clay mineral is shown below.
SiO 2; 50-70 wt%
Al 2 O 3; 14~25 wt%
Fe 2 O 3 ; 2 to 20% by mass
MgO; 3-7 mass%
CaO; 0.1-3 mass%
Na 2 O; 0.1 to 3 wt%
K 2 O; 0.1 to 3 wt%
Other oxides (such as TiO 2); 1 wt% or less Ig-loss (1050 ℃); 5~10 wt%

原料として用いるスメクタイト系粘土には、石砂、鉄分、オパールCT、石英等の不純物が含有されている場合がある。これらの不純物を除去するために、石砂分離、浮力選鉱、磁力選鉱等の精製操作を行うことができる。
また、後述する粒度調整を行うに先立って、軽度の酸処理により鉄分を除去したり、また軽度のアルカリ処理によりオパールCT、石英等の不純物を可溶性のケイ酸分に添加したりすることもでき、このように前処理した原料粘土を使用することもできる。
The smectite clay used as a raw material may contain impurities such as stone sand, iron, opal CT, and quartz. In order to remove these impurities, it is possible to carry out refining operations such as stone sand separation, buoyancy beneficiation, and magnetic beneficiation.
Prior to the particle size adjustment described below, iron can be removed by mild acid treatment, and impurities such as opal CT and quartz can be added to soluble silicic acid by mild alkali treatment. The raw clay pretreated in this way can also be used.

上記の原料粘土は、必要により造粒操作に付され、適宜の大きさの粒子に造粒され、次の酸処理に供される。   The raw clay is subjected to a granulation operation as necessary, granulated into particles of an appropriate size, and subjected to the next acid treatment.

尚、上記の造粒操作は、原料粘土の粒子表面形態が保持されるように、強力な機械的粉砕を伴わないような方法で行われる。例えば、この原料粘土が水に分散したスラリーを適当な大きさの開口を有する多孔板を通し、通過した柱状物を適度な大きさにカッティングすることにより行われ、これにより、酸処理を可及的に均一に行うことができる。   The granulation operation is performed by a method that does not involve strong mechanical pulverization so that the particle surface morphology of the raw clay is maintained. For example, the slurry in which the raw clay is dispersed in water is passed through a perforated plate having an opening of an appropriate size, and the passed columnar material is cut to an appropriate size, thereby enabling acid treatment. Can be performed uniformly.

酸処理は、適宜造粒された上記原料粘土を酸水溶液と接触させることにより、行われる。酸水溶液としては、鉱酸類、例えば硫酸、塩酸等、特に硫酸が使用され、その濃度は10〜40質量%程度が適当である。処理温度は60〜100℃、処理時間は3〜20時間程度である。原料粘土の表面形態が維持されるように、条件を選択する。   The acid treatment is performed by bringing the raw clay appropriately granulated into contact with an acid aqueous solution. As the acid aqueous solution, mineral acids such as sulfuric acid, hydrochloric acid and the like, particularly sulfuric acid are used, and the concentration is suitably about 10 to 40% by mass. The processing temperature is 60 to 100 ° C., and the processing time is about 3 to 20 hours. The conditions are selected so that the surface morphology of the raw clay is maintained.

上記のようにして酸処理が行われた後は、処理液を濾過し、水洗し、得られた濾過ケーキを湿式解砕する。
この湿式解砕は、濾過ケーキを形成している酸処理物の粒子をほぐすように、濾過ケーキを水に分散させて行われるものであり、粒子の表面形態の崩壊を有効に回避することができる。例えば、濾過ケーキを水に分散せずに、乾式下で解砕を行うと、粒子の表面形態が崩壊し、前述した薄片がひだ状に連なった表面形態が損なわれるおそれがある。
After the acid treatment is performed as described above, the treatment liquid is filtered and washed with water, and the resulting filter cake is wet-crushed.
This wet crushing is performed by dispersing the filter cake in water so as to loosen the particles of the acid-treated product forming the filter cake, and can effectively avoid the collapse of the surface morphology of the particles. it can. For example, if the filter cake is pulverized under dry conditions without being dispersed in water, the surface morphology of the particles may collapse, and the surface morphology in which the above-described flakes are continuous may be impaired.

湿式解砕は、上記酸処理物の濾過ケーキを一旦水に分散させて行われる。このような解砕は、前述した粘土粒子の表面形態が損なわれないように、濾過ケーキをほぐす程度に行われる。例えば、40〜90℃程度の温水に濾過ケーキを投入し、この液(分散液)を撹拌羽根等を用いて弱く撹拌することにより行われる。撹拌時間は2〜10時間程度である。例えば、ボールミルなどを用いて機械的に強く粉砕してしまうと、原料粘土鉱物に由来する表面形態が崩壊してしまい、濾過性や脱色性能が損なわれてしまう。   The wet crushing is performed by once dispersing the acid-treated product filter cake in water. Such crushing is performed to such an extent that the filter cake is loosened so that the surface morphology of the clay particles described above is not impaired. For example, the filtration cake is put into warm water of about 40 to 90 ° C., and this liquid (dispersion) is weakly stirred using a stirring blade or the like. The stirring time is about 2 to 10 hours. For example, when mechanically strongly pulverizing using a ball mill or the like, the surface form derived from the raw clay mineral is collapsed, and filterability and decolorization performance are impaired.

このような湿式解砕により、以下の乾燥下での粒子の凝集を回避し、前述した小さい中位径の活性白土粒子を得ることができる。   By such wet crushing, the following agglomeration of particles under drying can be avoided, and the above-mentioned small median activated clay particles can be obtained.

上記のようにして解砕された酸処理物は乾燥され、表面シラノール基の濃度が減少し、水中で膨潤し難い構造となる。   The acid-treated product crushed as described above is dried, the surface silanol group concentration is reduced, and a structure that hardly swells in water is obtained.

乾燥は、例えば、水分量が15質量%以下となる程度に行われる。
乾燥手段は特に制限されず、例えば熱風乾燥等、通常の手段を採用することができるが、一般的には、加熱温度や加熱時間を短縮するため、水をエタノール等の揮発性液体に置換して加熱乾燥する方法や、スピンフラッシュドライヤーなどの瞬間乾燥機を用いて行うことが望ましい。必要以上に高い温度に加熱したり、加熱時間を必要以上に長くしたりすると、粒子の収縮などにより原料スメクタイト粘土鉱物に由来する表面形態が損なわれてしまい、その程度に応じて濾過指数の低下を生じてしまう。従って、上記のような手段を用い、加熱乾燥温度は50〜250℃に制限することが望ましく、加熱乾燥時間は、温度によっても異なるが、一般に30分〜20時間に制限することが望ましい。
Drying is performed, for example, to such an extent that the moisture content is 15% by mass or less.
The drying means is not particularly limited, and usual means such as hot air drying can be adopted, but in general, in order to shorten the heating temperature and the heating time, water is replaced with a volatile liquid such as ethanol. It is desirable to carry out heating and drying using an instantaneous dryer such as a spin flash dryer. If heated to a higher temperature than necessary or the heating time is made longer than necessary, the surface morphology derived from the raw smectite clay mineral will be damaged due to particle shrinkage, etc., and the filtration index will decrease depending on the degree Will occur. Therefore, it is desirable to use the means as described above, and the heating and drying temperature is preferably limited to 50 to 250 ° C., and the heating and drying time is generally limited to 30 minutes to 20 hours, although it varies depending on the temperature.

上記のようにして得られる活性白土粒子は、レーザー回折法により求めた体積基準での中位径(D50)が50μm以下となる程度に分級されて使用に供されるが、原料粘土の表面形態が維持されるように各種の処理が行われるという極めてシンプルで容易な手段を採用しているに過ぎず、例えばマクロポアを形成するための炭酸カルシウムなどの格別の剤は必要なく、また格別の処理も必要でないため、極めて安価に製造され、しかも排液処理に要する負担が増大することもなく、これは、本発明の大きな利点である。 The activated clay particles obtained as described above are classified for use so that the median diameter (D 50 ) on a volume basis determined by the laser diffraction method is 50 μm or less. It only uses extremely simple and easy means that various treatments are performed so that the form is maintained, and no special agent such as calcium carbonate is necessary for forming macropores. Since no treatment is required, it is manufactured at a very low cost, and the burden required for the drainage treatment does not increase, which is a great advantage of the present invention.

既に述べたとおり、このようにして得られた本発明の活性白土粒子は、優れた脱色性を有しており、各種の油脂類の脱色剤として好適に使用される。
かかる油脂類としては、植物油脂、動物油脂及び鉱物油の少なくとも1種を挙げることができる。
原料の油脂は、天然の動植物界に広く存在し、脂肪酸とグリセリンとのエステルを主成分とするものであり、例えばサフラワー油、大豆油、菜種油、パーム油、パーム核油、RBDパーム油、ベニ花油、綿実油、ヤシ油、米糠油、ゴマ油、ヒマシ油、亜麻仁油、オリーブ油、桐油、椿油、落花生油、カポック油、カカオ油、木蝋、ヒマワリ油、コーン油、カヤ油などの植物性油脂及びイワシ油、ニシン油、サバ油、メンヘーデン油、イカ油、サンマ油、マグロ油、タラ・スケトウタラ油などの魚油、肝油、鯨油、牛脂、牛酪脂、馬油、豚脂、羊脂などの動物性油脂の単独またはそれらを組み合わせたものが挙げられる。特に、菜種油、RBDパーム油、米油(米糠油)などの比較的脱色し難い油脂に対しても本発明の活性白土粒子は、極めて優れた脱色性能を発揮するため、本発明は、これら油脂類の脱色剤として極めて有用である。
As already described, the activated clay particles of the present invention thus obtained have excellent decolorization properties and are suitably used as decoloring agents for various fats and oils.
Examples of such fats and oils include at least one of vegetable oils, animal fats and mineral oils.
The fats and oils of raw materials are widely present in the natural animal and plant kingdoms, and are mainly composed of esters of fatty acids and glycerin, such as safflower oil, soybean oil, rapeseed oil, palm oil, palm kernel oil, RBD palm oil, Vegetable oils such as beni flower oil, cottonseed oil, palm oil, rice bran oil, sesame oil, castor oil, linseed oil, olive oil, tung oil, camellia oil, peanut oil, kapok oil, cacao oil, wood wax, sunflower oil, corn oil, kaya oil And fish oils such as sardine oil, herring oil, mackerel oil, menhaden oil, squid oil, saury oil, tuna oil, cod fish, and cod oil, liver oil, whale oil, beef tallow, beef tallow, horse oil, tallow, sheep tallow Of oil-based fats and oils or combinations thereof. In particular, since the activated clay particles of the present invention exhibit extremely excellent decolorization performance even for oils and fats that are relatively difficult to decolorize, such as rapeseed oil, RBD palm oil, and rice oil (rice bran oil), the present invention provides these oils and fats. It is extremely useful as a decoloring agent.

また、本発明の活性白土粒子は、上記の油脂類以外にも、鉱物油類の脱色剤としても好適に使用することができる。
このような鉱物油類としては、各種潤滑油、例えばスピンドル油、冷凍機油、ダイナモ油、タービン油、マシン油、船用内燃機関潤滑油、ガソリンエンジン潤滑油、ディーゼルエンジン潤滑油、シリンダー油、マリンエンジン油、ギヤー油、切削油、絶縁油、自動変速機油、圧縮機油、油圧作動油、圧延油等が挙げられる。
Moreover, the activated clay particles of the present invention can be suitably used as a decoloring agent for mineral oils in addition to the above oils and fats.
Such mineral oils include various lubricating oils such as spindle oil, refrigerating machine oil, dynamo oil, turbine oil, machine oil, marine internal combustion engine lubricating oil, gasoline engine lubricating oil, diesel engine lubricating oil, cylinder oil, marine engine. Examples thereof include oil, gear oil, cutting oil, insulating oil, automatic transmission oil, compressor oil, hydraulic fluid, and rolling oil.

脱色処理に際しては、脱色すべき油脂類或いは鉱物油類に、活性白土粒子を、油脂類或いは鉱物油類当たり質量基準で0.1〜10%の量で添加し、50〜250℃の温度で5〜30分間、両者を均一に攪拌することにより脱色処理を完了することができる。   In the decolorization treatment, activated clay particles are added to the fats or mineral oils to be decolored in an amount of 0.1 to 10% on a mass basis per fat or mineral oil, and at a temperature of 50 to 250 ° C. The decoloring process can be completed by stirring both uniformly for 5 to 30 minutes.

しかも、本発明の活性白土粒子は、濾過性にも優れているため、脱色された油脂類や鉱物油類と分離するための濾過を速やかに効率よく行うことができる。
濾過機としては、例えばフィルタープレス、ベルトフィルター、オルバフィルター、アメリカンフィルター、遠心濾過機等の減圧乃至は加圧式濾過機を使用し、脱色された油脂類或いは鉱物油類と使用済みの活性白土粒子(所謂廃白土)とに分離される。
Moreover, since the activated clay particles of the present invention are excellent in filterability, it is possible to quickly and efficiently perform filtration for separating from the decolorized fats and oils and mineral oils.
As a filter, for example, a depressurized or pressurized filter such as a filter press, a belt filter, an Olva filter, an American filter, a centrifugal filter or the like is used. Decolored oil or mineral oil and used activated clay particles (So-called waste white clay).

尚、本発明の活性白土粒子は、触媒或いは触媒担体や水系における吸着剤として用いることもできる。特に、水系での濾過性が高いことから、例えば、食料品或いは飲料の製造工程において好適に使用され、水処理或いは排水処理の分野や水を溶媒として用いる工業分野においても好適に使用することができる。また、本発明の活性白土粒子は、上述したごとく、特に油脂類や鉱物油類の脱色剤として最も好適である。   The activated clay particles of the present invention can also be used as a catalyst or a catalyst carrier or an adsorbent in an aqueous system. In particular, since it is highly filterable in aqueous systems, it is preferably used, for example, in the production process of food products or beverages, and is also preferably used in the field of water treatment or wastewater treatment and the industrial field using water as a solvent. it can. Moreover, the activated clay particles of the present invention are most suitable as a decolorizing agent for oils and fats and mineral oils as described above.

本発明を次の実験例で説明する。
尚、以下の実施例及び比較例における各種の測定は、以下の方法により行った。
The invention is illustrated by the following experimental example.
Various measurements in the following examples and comparative examples were performed by the following methods.

(1)中位径(D50)の測定
体積基準での中位径(μm)は、マルバーン社製のレーザー回折型粒度分布測定装置マスターサイザー2000を使用し、溶媒に水を用いて測定した。
(1) Measurement of median diameter (D 50 ) The median diameter (μm) on a volume basis was measured using a laser diffraction type particle size distribution measuring device Mastersizer 2000 manufactured by Malvern and using water as a solvent. .

(2)ダルシー係数
ビーカーにエタノール(和光試薬1級)を200ml入れ、そこへ110℃で1時間乾燥した活性白土粉末を10g投入し、分散した。ステンレス製ブフナー漏斗(濾過面積38.5cm)に濾紙(ADVANTEC製No.2)をセットし、真空ポンプのスイッチを入れた。白土分散液を漏斗に注ぎ入れ、吸引圧を15〜20cmHgに調整した。濾液の量が100mlになったら、ストップウォッチをスタートさせた。濾過の間、吸引圧は一定に保った。濾液の量が150mlになった時点でストップウォッチを止め、この時間を濾過時間とした。
濾過時間を測定後、濾液が濾過ケーキから落下する間隔が30秒を越えるまで濾過を継続した。落下間隔が30秒を越えたら、濾過ケーキの厚さを測定し、次式によりダルシー係数を算出した。
ダルシー係数=(ケーキ厚cm×濾過液量50ml×液粘度1.074mPa・s)
÷(濾過時間sec×濾過面積cm×(吸引圧cmHg÷76))
(2) Darcy coefficient 200 ml of ethanol (Wako Reagent Grade 1) was placed in a beaker, and 10 g of activated clay powder dried at 110 ° C. for 1 hour was added and dispersed therein. A filter paper (No. 2 made by ADVANTEC) was set on a stainless steel Buchner funnel (filtration area 38.5 cm 2 ), and the vacuum pump was turned on. The clay dispersion was poured into the funnel and the suction pressure was adjusted to 15-20 cmHg. When the filtrate volume reached 100 ml, the stopwatch was started. The suction pressure was kept constant during filtration. The stopwatch was stopped when the amount of the filtrate reached 150 ml, and this time was defined as the filtration time.
After measuring the filtration time, filtration was continued until the interval at which the filtrate dropped from the filter cake exceeded 30 seconds. When the drop interval exceeded 30 seconds, the thickness of the filter cake was measured, and the Darcy coefficient was calculated by the following equation.
Darcy coefficient = (cake thickness cm × filtrate volume 50 ml × liquid viscosity 1.074 mPa · s)
÷ (filtration time sec × filtration area cm 2 × (suction pressure cmHg ÷ 76))

(3)濾過指数R
下記式;
R=(A/前記中位径)×100
式中、Aは、エタノールを用いて測定されたダルシー係数を表す、
により濾過指数Rを計算した。
(3) Filtration index R
The following formula:
R = (A / median diameter) × 100
Where A represents the Darcy coefficient measured using ethanol,
The filtration index R was calculated by

(4)BET比表面積
マイクロメリティクス社製Tristar 3000を用いて窒素吸着法により測定を行ない、BET法により算出した。
(4) BET specific surface area Measurement was performed by a nitrogen adsorption method using a Tristar 3000 manufactured by Micromeritics, and calculated by the BET method.

(5)固体酸量
n―ブチルアミン滴定法にてH≦―3.0の固体酸量を測定した。試料は、予め、150℃で3時間乾燥したものについて測定を行なった。
[参考文献:「触媒」Vol.11,No6,P210―216(1996)]
(5) Solid acid amount The solid acid amount of H 0 ≦ −3.0 was measured by n-butylamine titration method. The sample was measured in advance for drying at 150 ° C. for 3 hours.
[Reference: “Catalyst” Vol. 11, No 6, P210-216 (1996)]

(6)嵩密度
JIS K 6220に準じて、鉄シリンダー法により測定した。
(6) Bulk density Measured by an iron cylinder method according to JIS K 6220.

(7)安息角及び崩潰角、差角の測定
ホソカワミクロン(株)製パウダーテスターPT―R型を用いて測定した。尚、篩は目開き60meshのものを使用し、ヴァイブレイションは調整目盛り1〜3の範囲で測定した。
(7) Measurement of repose angle, collapse angle, and differential angle Measurement was performed using a powder tester PT-R type manufactured by Hosokawa Micron Corporation. In addition, the sieve used the thing of 60 meshes, and the vibration was measured in the range of the adjustment scales 1-3.

(8)脱色試験方法
脱色剤の性能を試験するには、粘土ハンドブック第二版 日本粘土学会編(技報堂出版)p917の図に示す脱色試験機を用いた。
脱色試験機には8本の硬質ガラス製大型試験管(容量200ml)が油浴にセットできる。各試験管には、下端が丸くなった波形の攪拌棒を入れ、その下端は試験管の底部に常に接触するようにゴム管で調節した。8本の攪拌棒は中央の親歯車から分かれた子歯車によって回転するので、その回転速度は全く等しく保たれる。中央の親歯車の下には油浴を攪拌する攪拌羽根がついていて、油浴内の温度を均一に保っている。脱色試験は最大8個まで、任意の数で試験できる。
各試験管に油を30gずつ採取し、所定量の活性白土粉末を加えて脱色試験用の攪拌棒でよく混ぜた。各試験管を110℃に保たれた前記の脱色試験機にセットし、20分間攪拌を行った後脱色試験機から取り出し、油と吸着剤の混合スラリーを濾過することにより各脱色油を得た。
各脱色油の白色光線透過率(蒸留水の透過率を100%としたときの相対値)を(株)平間理化研究所製光電比色計2C型で測定し、その数値をもって各吸着剤の脱色能とした。透過率の数値が高いほど用いた活性白土の脱色能が高いことを表している。
(8) Decoloring test method In order to test the performance of the decoloring agent, a decoloring tester shown in the figure of clay handbook second edition, Japan Clay Society edited by Gihodo Publishing, p917 was used.
Eight hard glass large test tubes (capacity 200 ml) can be set in the oil bath in the decolorization tester. Each test tube was provided with a corrugated stirrer with a rounded lower end, and the lower end thereof was adjusted with a rubber tube so that it always contacted the bottom of the test tube. Since the eight stirring rods are rotated by a child gear separated from the central parent gear, the rotation speeds are kept exactly the same. A stirring blade for stirring the oil bath is attached under the central master gear, and the temperature in the oil bath is kept uniform. A maximum of 8 decolorization tests can be performed.
30 g of oil was collected in each test tube, a predetermined amount of activated clay powder was added, and the mixture was mixed well with a stir bar for decolorization test. Each test tube was set in the above-mentioned decoloring test machine maintained at 110 ° C., stirred for 20 minutes, then taken out from the decoloring test machine, and each decolored oil was obtained by filtering the mixed slurry of oil and adsorbent. .
The white light transmittance (relative value when the transmittance of distilled water is 100%) of each decolorized oil was measured with a photoelectric colorimeter 2C type manufactured by Hirama Rika Laboratory Co., Ltd. Decolorization ability. The higher the transmittance value, the higher the decolorizing ability of the activated clay used.

(比較例1)
新潟県胎内市産のスメクタイト系粘土を原料として用い、この原料を粗砕、混練し5mm径に造粒した。得られた造粒物の水分は36質量%であった。
この造粒物1500gを処理槽に充填し、そこに35質量%硫酸水溶液2000mlを循環させ酸処理を行なった。その時の処理温度は90℃、処理時間は7時間であった。酸処理終了後、酸処理物に洗浄水を循環して水洗を行なった後110℃で乾燥、粉砕し、標準篩100meshを通過する活性白土粉末を得た。
(Comparative Example 1)
Using smectite clay produced in the womb of Niigata Prefecture as a raw material, this raw material was roughly crushed, kneaded and granulated to a diameter of 5 mm. The water content of the obtained granulated product was 36% by mass.
1500 g of this granulated product was charged into a treatment tank, and 2000 ml of 35% by mass sulfuric acid aqueous solution was circulated therein for acid treatment. The treatment temperature at that time was 90 ° C., and the treatment time was 7 hours. After completion of the acid treatment, washing water was circulated through the acid-treated product, followed by washing with water, followed by drying and pulverization at 110 ° C. to obtain an activated clay powder passing through a standard sieve 100 mesh.

(実施例1)
比較例1における水洗終了後の酸処理物(乾燥前)を原料として用いた。この酸処理物に水を加えて、攪拌し、固形分濃度30質量%の水性懸濁液を得た。この攪拌時は液温を60℃に保持した。攪拌時間は6.5時間であった。
この水性懸濁液を110℃で乾燥し、標準篩100meshを通過する活性白土粉末を得た。
Example 1
The acid-treated product after washing with water (before drying) in Comparative Example 1 was used as a raw material. Water was added to the acid-treated product and stirred to obtain an aqueous suspension having a solid concentration of 30% by mass. During the stirring, the liquid temperature was kept at 60 ° C. The stirring time was 6.5 hours.
This aqueous suspension was dried at 110 ° C. to obtain an activated clay powder that passed through a standard sieve 100 mesh.

(実施例2)
実施例1における水性懸濁液を原料として用いた。この懸濁液に対して2倍量のエタノール(試薬1級)を混合し、静置後に上澄み液のみを除去する操作を2回繰り返した。この懸濁液を60℃で3時間程度乾燥し、引き続き110℃で1時間程度乾燥し、標準篩100meshを通過する活性白土粉末を得た。
(Example 2)
The aqueous suspension in Example 1 was used as a raw material. The operation of mixing twice the amount of ethanol (reagent grade 1) with this suspension and removing only the supernatant after standing was repeated twice. This suspension was dried at 60 ° C. for about 3 hours and subsequently dried at 110 ° C. for about 1 hour to obtain an activated clay powder passing through a standard sieve 100 mesh.

(比較例2)
比較例1における35質量%硫酸水溶液に代えて40質量%硫酸水溶液を使用した他は、比較例1と同様にして行い活性白土粉末を得た。
(Comparative Example 2)
An activated clay powder was obtained in the same manner as in Comparative Example 1 except that a 40% by mass sulfuric acid aqueous solution was used instead of the 35% by mass sulfuric acid aqueous solution in Comparative Example 1.

(実施例3)
比較例2における水洗終了後の酸処理物(乾燥前の含水物)を原料として用いた。この酸処理物に水を加えて、攪拌し、固形分濃度30質量%の水性懸濁液を得た。この攪拌時は液温を60℃に保持した。攪拌時間は6.5時間であった。
この懸濁液を濾過し、濾過ケーキを(株)マツボー製スピンフラッシュドライヤーを用いて瞬間乾燥し、標準篩100meshを通過する活性白土粉末を得た。
Example 3
The acid-treated product (water-containing product before drying) after completion of water washing in Comparative Example 2 was used as a raw material. Water was added to the acid-treated product and stirred to obtain an aqueous suspension having a solid concentration of 30% by mass. During the stirring, the liquid temperature was kept at 60 ° C. The stirring time was 6.5 hours.
This suspension was filtered, and the filter cake was instantly dried using a spin flash dryer manufactured by Matsubo Co., Ltd. to obtain an activated clay powder that passed through a standard sieve 100 mesh.

尚、実施例1〜3において、乾燥物を篩に通過させるに先立ち機械的な粉砕、例えばローラーミルや振動ミル等による強粉砕は一切行なわなかった。   In Examples 1 to 3, mechanical pulverization, for example, strong pulverization with a roller mill, a vibration mill, or the like, was not performed prior to passing the dried product through a sieve.

(比較例3)
特許文献2(特開2000−344513号公報)の実施例1に記載の方法で活性白土定形粒子を得た。
(Comparative Example 3)
Activated clay shaped particles were obtained by the method described in Example 1 of Patent Document 2 (Japanese Patent Laid-Open No. 2000-344513).

(比較例4)
特許文献1(特開2008−31411号公報)の実施例1に記載の方法で活性白土粉末を得た。
(Comparative Example 4)
An activated clay powder was obtained by the method described in Example 1 of Patent Document 1 (Japanese Patent Laid-Open No. 2008-31411).

(比較例5)
比較例1における水洗終了後の酸処理物(乾燥前)を原料として用いた。この酸処理物に水を加え、家庭用ミキサーで処理することにより、固形分濃度20質量%の水性懸濁液を得た。
この懸濁液1250gに7.5質量%のNaOH水溶液66gを加え、90℃で5時間攪拌することによりアルカリ処理を行なった。この懸濁液を濾過し、濾過ケーキを1質量%の希硫酸に分散させ、デカンテーション法により酸洗浄を行なった後、水洗した。
水洗後の懸濁液を濾過し、濾過ケーキを乾燥し、粉砕し、分級して活性白土粉末を得た。
(Comparative Example 5)
The acid-treated product after washing with water (before drying) in Comparative Example 1 was used as a raw material. Water was added to this acid-treated product and treated with a home mixer to obtain an aqueous suspension having a solid content concentration of 20% by mass.
To 1250 g of this suspension, 66 g of a 7.5 mass% NaOH aqueous solution was added, and the mixture was stirred at 90 ° C. for 5 hours for alkali treatment. This suspension was filtered, the filter cake was dispersed in 1% by mass of dilute sulfuric acid, acid washed by a decantation method, and then washed with water.
The suspension after washing with water was filtered, and the filter cake was dried, ground and classified to obtain an activated clay powder.

各物性試験の結果を表1に示す。   The results of each physical property test are shown in Table 1.

各脱色試験の結果を表2に示す。   The results of each decolorization test are shown in Table 2.

(9)水の濾過試験
ビーカーにイオン交換水を200ml入れ、そこへ110℃で1時間乾燥した活性白土粉末を5g投入し、分散した。ステンレス製ブフナー漏斗(濾過面積38.5cm)に濾紙(ADVANTEC製No.2)をセットし、真空ポンプのスイッチを入れた。白土分散液を漏斗に注ぎ入れ、吸引圧を20cmHgに調整した。濾液の量が100mlになったら、ストップウォッチをスタートさせた。濾過の間、吸引圧は一定に保った。濾液の量が150mlになった時点でストップウォッチを止め、この時間を濾過時間とした。
濾液の660nm波長光の吸光度を分光光度計(日本分光(株)製V−630)にて測定し、この数値を濁度とした。濁度の数値が高いほど用いた活性白土の濾過漏れ程度が大きいことを示す。
(9) Water filtration test 200 ml of ion-exchanged water was placed in a beaker, and 5 g of activated clay powder dried at 110 ° C. for 1 hour was added and dispersed therein. A filter paper (No. 2 made by ADVANTEC) was set on a stainless steel Buchner funnel (filtration area 38.5 cm 2 ), and the vacuum pump was turned on. The white clay dispersion was poured into the funnel, and the suction pressure was adjusted to 20 cmHg. When the filtrate volume reached 100 ml, the stopwatch was started. The suction pressure was kept constant during filtration. The stopwatch was stopped when the amount of the filtrate reached 150 ml, and this time was defined as the filtration time.
The absorbance of 660 nm wavelength light of the filtrate was measured with a spectrophotometer (V-630 manufactured by JASCO Corporation), and this value was defined as turbidity. The higher the turbidity value, the greater the degree of filtration leakage of the activated clay used.

(比較例6)
比較例1で得た活性白土粉末を乾式遠心分級機で処理し、粗粉側の活性白土粉末(中位径=31μm)を得た。
(Comparative Example 6)
The activated clay powder obtained in Comparative Example 1 was treated with a dry centrifugal classifier to obtain an activated clay powder (median diameter = 31 μm) on the coarse powder side.

水の濾過試験結果を表3に示す。   The results of the water filtration test are shown in Table 3.

Claims (4)

ジオクタヘドラル型スメクタイト粘土鉱物を主成分とする粘土の酸処理により得られた活性白土粒子であって、
レーザー回折法により求めた体積基準での中位径(D50)が50μm以下であり、且つ、下記式;
R=(A/前記中位径)×100
式中、Aは、エタノールを用いて測定されたダルシー係数を表す、
で示される濾過指数Rが0.10〜2.00の範囲にあることを特徴とする活性白土粒子。
Active clay particles obtained by acid treatment of clay mainly composed of dioctahedral smectite clay mineral,
The median diameter (D 50 ) on a volume basis determined by the laser diffraction method is 50 μm or less, and the following formula:
R = (A / median diameter) × 100
Where A represents the Darcy coefficient measured using ethanol,
An activated clay particle having a filtration index R of 0.10 to 2.00.
嵩密度が0.30〜0.50g/cmである、請求項1に記載の活性白土粒子。 The activated clay particles according to claim 1, having a bulk density of 0.30 to 0.50 g / cm 3 . 差角が1.0〜10.0度である、請求項1または2に記載の活性白土。   The activated clay according to claim 1 or 2, wherein the difference angle is 1.0 to 10.0 degrees. 請求項1〜3のいずれかに記載の活性白土からなる、油脂類もしくは鉱物油の脱色剤。   A bleaching agent for fats or oils or mineral oil, comprising the activated clay according to any one of claims 1 to 3.
JP2015211994A 2015-01-09 2015-10-28 Activated clay particles Active JP6618769B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015003570 2015-01-09
JP2015003570 2015-01-09

Publications (2)

Publication Number Publication Date
JP2016130209A true JP2016130209A (en) 2016-07-21
JP6618769B2 JP6618769B2 (en) 2019-12-11

Family

ID=56415250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015211994A Active JP6618769B2 (en) 2015-01-09 2015-10-28 Activated clay particles

Country Status (1)

Country Link
JP (1) JP6618769B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06504946A (en) * 1991-02-27 1994-06-09 ラポート・インダストリーズ・リミテッド adsorbent material
JP2000344513A (en) * 1999-06-01 2000-12-12 Mizusawa Ind Chem Ltd Activated clay shaped particle, its production and its utilization
JP2001521869A (en) * 1997-11-05 2001-11-13 エンゲルハード・コーポレーシヨン Mesoporous silicoaluminate product and its production by controlled acid extraction of aluminum from calcium bentonite clay
JP2003020304A (en) * 2001-07-09 2003-01-24 Japan Polychem Corp Catalyst component for olefin polymerization, catalyst for olefin polymerization, and method of manufacturing catalyst component for olefin polymerization
JP2008303189A (en) * 2007-06-08 2008-12-18 Mizusawa Ind Chem Ltd Oral administration adsorbent excellent in properties of adsorbing nitrogen-containing compound and its production method
JP2010017177A (en) * 2008-06-11 2010-01-28 Fuji Silysia Chemical Ltd Silica gel for beer stabilizing treatment and method for beer stabilizing treatment
WO2010137195A1 (en) * 2009-05-29 2010-12-02 富士シリシア化学株式会社 Silica gel for beer stabilization and method for beer stabilization
JP2014040351A (en) * 2012-08-23 2014-03-06 Mizusawa Ind Chem Ltd Active white clay for treating aromatic hydrocarbon

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06504946A (en) * 1991-02-27 1994-06-09 ラポート・インダストリーズ・リミテッド adsorbent material
JP2001521869A (en) * 1997-11-05 2001-11-13 エンゲルハード・コーポレーシヨン Mesoporous silicoaluminate product and its production by controlled acid extraction of aluminum from calcium bentonite clay
JP2000344513A (en) * 1999-06-01 2000-12-12 Mizusawa Ind Chem Ltd Activated clay shaped particle, its production and its utilization
JP2003020304A (en) * 2001-07-09 2003-01-24 Japan Polychem Corp Catalyst component for olefin polymerization, catalyst for olefin polymerization, and method of manufacturing catalyst component for olefin polymerization
JP2008303189A (en) * 2007-06-08 2008-12-18 Mizusawa Ind Chem Ltd Oral administration adsorbent excellent in properties of adsorbing nitrogen-containing compound and its production method
JP2010017177A (en) * 2008-06-11 2010-01-28 Fuji Silysia Chemical Ltd Silica gel for beer stabilizing treatment and method for beer stabilizing treatment
WO2010137195A1 (en) * 2009-05-29 2010-12-02 富士シリシア化学株式会社 Silica gel for beer stabilization and method for beer stabilization
JP2014040351A (en) * 2012-08-23 2014-03-06 Mizusawa Ind Chem Ltd Active white clay for treating aromatic hydrocarbon

Also Published As

Publication number Publication date
JP6618769B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
KR100675111B1 (en) Activated clay particles having similar shapes, method for production thereof and use thereof
JP6473661B2 (en) Decolorization method of RBD palm oil
JP6664191B2 (en) Decolorizing agent and method for producing decolorizing agent
JP4912168B2 (en) Degreasing agent for fats and oils or mineral oils
JP4393579B1 (en) Novel bleaching agent for activated clay and animal or plant oils or mineral oils
WO2010013363A1 (en) Method of purifying transesterified oil
US6365536B1 (en) Method of making bleaching clay
JP6618769B2 (en) Activated clay particles
US5264597A (en) Process for refining glyceride oil using precipitated silica
JP6930897B2 (en) Anion adsorbent
DE1949590C2 (en) Detergents and / or refining preparations for oily substances
JP4401111B2 (en) Silica / magnesia preparation for iron removal and production method thereof
JP3787023B2 (en) Degreasing agent for fats and oils and method for producing the same
AU628084B2 (en) Process for refining glyceride oil
US20230032214A1 (en) Thermally activated bleaching clay product for oil bleaching
US11992822B2 (en) Thermally activated bleaching clay product for oil bleaching
JP6608293B2 (en) Degreasing agent for oils and fats
WO2021077134A1 (en) Methods of making purified fatty acid compositions
DE102009043418A1 (en) Aluminosilicate-based adsorbents for the purification of triglycerides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191113

R150 Certificate of patent or registration of utility model

Ref document number: 6618769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250