JP2016128695A - Control device for nox purification device - Google Patents

Control device for nox purification device Download PDF

Info

Publication number
JP2016128695A
JP2016128695A JP2016048868A JP2016048868A JP2016128695A JP 2016128695 A JP2016128695 A JP 2016128695A JP 2016048868 A JP2016048868 A JP 2016048868A JP 2016048868 A JP2016048868 A JP 2016048868A JP 2016128695 A JP2016128695 A JP 2016128695A
Authority
JP
Japan
Prior art keywords
nox
catalyst
nox purification
reducing agent
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016048868A
Other languages
Japanese (ja)
Inventor
将利 勝木
Masatoshi Katsuki
将利 勝木
正樹 戸田
Masaki Toda
正樹 戸田
増田 具承
Tomotsugu Masuda
具承 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2016048868A priority Critical patent/JP2016128695A/en
Publication of JP2016128695A publication Critical patent/JP2016128695A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect abnormalities of NOx, NH, temperature sensors, etc. provided in an exhaust passage and maintain performance of an NOx purification device by making a reducing agent supply amount appropriate even when an abnormality occurs in the sensor in the NOx purification device in which a device for supplying an exhaust gas reducing agent is arranged upstream of a reduction catalyst provided in the exhaust passage of an internal combustion engine.SOLUTION: An NOx purification device includes: NOx purification performance calculation means 33 for calculating NOx purification performance of a NOx catalyst on the basis of a signal from a NOx sensor 21 located downstream of the NOx catalyst; means for setting target catalyst NOx purification performance of a reduction catalyst in any operating state; and determination means 39 for determining an abnormality of the NOx sensor on the basis of a comparison between a purification performance value calculated by the NOx purification performance calculation means 33 when inlet ammonia supply amount corresponding to the target catalyst NOx purification performance is supplied with a set target catalyst NOx purification performance value. When an abnormality is determined, the reducing agent supply amount is calculated based on the target catalyst NOx purification performance value.SELECTED DRAWING: Figure 2

Description

本発明は、内燃機関の排ガス中のNOxを浄化するNOx浄化装置の制御装置に関し、特に、排気系に設けられた還元触媒の上流側に排気ガス還元剤の供給装置を備えたNOx浄化装置の制御装置に関するものである。   The present invention relates to a control device for a NOx purification device that purifies NOx in exhaust gas of an internal combustion engine, and more particularly, to a NOx purification device that includes an exhaust gas reducing agent supply device upstream of a reduction catalyst provided in an exhaust system. The present invention relates to a control device.

ディーゼルエンジン等の内燃機関から排出される排気ガスには、環境汚染を及ぼすおそれのあるNOx(NOやNO等の窒素酸化物)が含まれている。NOxを還元して排気ガスを浄化するために用いられる排気浄化装置として、尿素水溶液等のアンモニア由来の液体還元剤を用いた排気浄化装置が知られている。 The exhaust gas discharged from an internal combustion engine such as a diesel engine contains NOx (nitrogen oxides such as NO and NO 2 ) that may cause environmental pollution. As an exhaust purification device used for reducing NOx to purify exhaust gas, an exhaust purification device using a liquid reducing agent derived from ammonia such as an aqueous urea solution is known.

この排気浄化装置は、尿素水溶液等を還元触媒の上流側で排気通路内に噴射し、尿素が加水分解することによって生成されるアンモニアを還元触媒に吸着させ、還元触媒に流入してくるNOxを、アンモニアによって窒素や水等に分解して放出するものである。   This exhaust purification device injects urea aqueous solution or the like into the exhaust passage on the upstream side of the reduction catalyst, adsorbs ammonia produced by the hydrolysis of urea to the reduction catalyst, and removes NOx flowing into the reduction catalyst. It is decomposed and released into nitrogen and water by ammonia.

還元剤の要求噴射量は、内燃機関から排出されるNOx流量や、還元触媒の温度、還元触媒に吸着されているアンモニアの吸着量等を含む複数のパラメータ値に基づいて演算で求められる。
さらに高効率なNOx浄化性能を得るために、演算噴射量に加えてNOxおよびアンモニアに感応するセンサを用いて還元剤の実噴射量を補正することも行われている。
The required injection amount of the reducing agent is obtained by calculation based on a plurality of parameter values including the NOx flow rate discharged from the internal combustion engine, the temperature of the reduction catalyst, the adsorption amount of ammonia adsorbed on the reduction catalyst, and the like.
In order to obtain a more efficient NOx purification performance, the actual injection amount of the reducing agent is corrected using a sensor that is sensitive to NOx and ammonia in addition to the calculated injection amount.

また、特開2010−133354号公報(特許文献1)には、還元剤の噴射量の適正化を図るために、還元触媒の下流側にNOx及びアンモニアに感応する特定ガス濃度センサを設け、これらセンサによって検出されたセンサ値を所定の閾値と比較して還元剤の実噴射量の異常を判定して、異常が生じたときには、噴射量演算部での噴射量演算パラメータ値を補正するものが示されている。   In addition, JP 2010-133354 A (Patent Document 1) is provided with a specific gas concentration sensor that is sensitive to NOx and ammonia on the downstream side of the reduction catalyst in order to optimize the injection amount of the reducing agent. A sensor value detected by the sensor is compared with a predetermined threshold value to determine an abnormality in the actual injection amount of the reducing agent, and when an abnormality occurs, the injection amount calculation parameter value in the injection amount calculation unit is corrected. It is shown.

特開2010−133354号公報JP 2010-133354 A

しかしながら、高効率なNOx浄化性能を得るために、演算噴射量に加えてNOxおよびアンモニアに感応するセンサを用いて還元剤の実噴射量を補正するものや、前記特許文献1に示されるような、NOx及びアンモニアに感応する特定ガス濃度センサによって検出されたセンサ値を基に還元剤の実噴射量の異常を判定して、噴射量演算部での噴射量演算パラメータ値を補正するものにおいては、NOxやアンモニアに感応するセンサ自体が正常に作動していることが前提であり、これらセンサ自体に異常がある場合には所望の作用効果は得られ難い。   However, in order to obtain high-efficiency NOx purification performance, the actual injection amount of the reducing agent is corrected using a sensor that is sensitive to NOx and ammonia in addition to the calculated injection amount. In the case of determining abnormality in the actual injection amount of the reducing agent based on the sensor value detected by the specific gas concentration sensor sensitive to NOx and ammonia, and correcting the injection amount calculation parameter value in the injection amount calculation unit It is assumed that the sensors that are sensitive to NOx and ammonia are operating normally. If these sensors themselves are abnormal, it is difficult to obtain a desired effect.

また、還元触媒の前後流側、または後流側に設置したNOxセンサ、NHセンサ、温度センサ等により還元剤の噴射量を決定する場合においては、センサの誤作動、信号にノイズ等が加わった場合には、還元剤噴射量を過大に設定することもあり、この場合には、次のような問題が生じる。
(1)還元剤からNHを生成する以外の副反応が生じ、還元剤噴射ノズル周辺に還元剤の分解によって固形析出物を形成し配管を閉塞するおそれがある。
(2)還元触媒も同様に閉塞や、上流側で形成された固形析出物の飛来による触媒の破損のおそれがある。
(3)還元剤を無駄に消費するばかりでなく多量のNHを還元触媒の後流に排出してしまう、所謂アンモニアスリップ量が増大するおそれがある。
In addition, when the injection amount of the reducing agent is determined by the NOx sensor, NH 3 sensor, temperature sensor, etc. installed on the upstream or downstream side or downstream side of the reduction catalyst, sensor malfunction or noise is added to the signal. In this case, the reducing agent injection amount may be set excessively. In this case, the following problem occurs.
(1) Side reactions other than generating NH 3 from the reducing agent may occur, and solid precipitates may be formed around the reducing agent injection nozzle due to decomposition of the reducing agent, thereby blocking the piping.
(2) Similarly, the reduction catalyst may be clogged or the catalyst may be damaged due to flying solid precipitates formed on the upstream side.
(3) There is a possibility that the amount of so-called ammonia slip, which not only wastes the reducing agent but also discharges a large amount of NH 3 to the downstream of the reduction catalyst, increases.

そこで、本発明はこれら問題に鑑みてなされたもので、内燃機関の排気通路に設けられた還元触媒の上流側に排気ガス還元剤の供給装置を備えたNOx浄化装置において、排気通路に設けられるNOxセンサ、NHセンサ温度センサ等の異常を検知するとともに、センサの異常時においても還元剤供給量を適正化してNOx浄化装置の性能維持を図ることができるNOx浄化装置の制御装置を提供することを目的とする。 Therefore, the present invention has been made in view of these problems, and is provided in an exhaust passage in a NOx purifying apparatus having an exhaust gas reducing agent supply device upstream of a reduction catalyst provided in an exhaust passage of an internal combustion engine. Provided is a control device for a NOx purification device capable of detecting abnormalities in a NOx sensor, NH 3 sensor , temperature sensor, etc. and maintaining the performance of the NOx purification device by optimizing the reducing agent supply amount even when the sensor is abnormal. The purpose is to do.

前記課題を解決するために、本発明は、内燃機関の排気通路に設けられた還元触媒の上流側に排気ガス還元剤の供給装置を備えたNOx浄化装置の制御装置において、排気通路の前記還元触媒の下流側に配設されたNOxセンサと、該NOxセンサからの信号に基づいて前記還元触媒によるNOx浄化性能を算出するNOx浄化性能算出手段と、任意の運転状態における前記還元触媒による目標触媒NOx浄化性能を設定する手段と、前記目標触媒NOx浄化性能に応じた入口アンモニア供給量を設定する手段と、前記設定された入口アンモニア供給量を供給したときの前記NOx浄化性能算出手段による浄化性能値と前記設定された目標触媒NOx浄化性能値との比較に基づいて前記NOxセンサが異常であるか否かを判定する判定手段と、を備え、該判定手段によって異常であると判定したとき、前記目標触媒NOx浄化性能値に応じて設定される入口アンモニア供給量に基づいて前記排気ガス還元剤の供給量を算出する還元剤供給量制御手段を備えたこと特徴とする。   In order to solve the above-described problems, the present invention provides a control device for a NOx purifying apparatus including an exhaust gas reducing agent supply device upstream of a reduction catalyst provided in an exhaust passage of an internal combustion engine, wherein the reduction of the exhaust passage is performed. A NOx sensor disposed on the downstream side of the catalyst, NOx purification performance calculating means for calculating NOx purification performance by the reduction catalyst based on a signal from the NOx sensor, and a target catalyst by the reduction catalyst in an arbitrary operation state A means for setting the NOx purification performance, a means for setting the inlet ammonia supply amount according to the target catalyst NOx purification performance, and a purification performance by the NOx purification performance calculating means when the set inlet ammonia supply amount is supplied Determining means for determining whether or not the NOx sensor is abnormal based on a comparison between a value and the set target catalyst NOx purification performance value; A reducing agent supply amount that calculates a supply amount of the exhaust gas reducing agent based on an inlet ammonia supply amount that is set according to the target catalyst NOx purification performance value. A control means is provided.

かかる発明によれば、還元触媒の下流側に設置されたNOxセンサの異常を、NOxセンサを用いずに排ガス温度および内燃機関からのNOx排出量等の情報を基にマップまたは演算式を用いて算出された還元触媒の浄化能力と、NOxセンサ信号に基づいて算出された還元触媒の浄化能力とを比較して判定する。例えば、これらの浄化能力の偏差または対比値が所定値より大きい場合にはNOxセンサが異常と判定する。   According to this invention, the abnormality of the NOx sensor installed on the downstream side of the reduction catalyst is detected using a map or an arithmetic expression based on information such as the exhaust gas temperature and the NOx emission amount from the internal combustion engine without using the NOx sensor. A determination is made by comparing the calculated purification capability of the reduction catalyst with the purification capability of the reduction catalyst calculated based on the NOx sensor signal. For example, when the deviation or contrast value of these purification capacities is larger than a predetermined value, the NOx sensor is determined to be abnormal.

そして、異常と判定したときには、還元触媒の目標触媒NOx浄化性能値に基づいて前記排気ガス還元剤の供給量を算出するので、NOxセンサの誤作動によって、過剰な還元剤噴霧を抑制することができる。その結果、還元剤噴射ノズル周辺に還元剤の分解による固形析出物の生成を抑制でき、また、配管の閉塞や、上流側で形成された固形析出物の飛来による触媒の破損の防止、さらに、無駄な還元剤の噴霧の防止とともに還元触媒後流への排出を抑制できる。   And when it determines with it being abnormal, since the supply amount of the said exhaust gas reducing agent is calculated based on the target catalyst NOx purification performance value of a reduction catalyst, it can suppress excessive reducing agent spray by malfunction of a NOx sensor. it can. As a result, it is possible to suppress the formation of solid precipitates due to the decomposition of the reducing agent around the reducing agent injection nozzle, and to prevent the catalyst from being damaged due to the blockage of the piping and the arrival of the solid precipitate formed on the upstream side, It is possible to prevent wasteful reducing agent from being sprayed and suppress discharge to the downstream of the reducing catalyst.

また、本発明において好ましくは、前記還元剤供給量制御手段は、前記目標触媒NOx浄化性能値から算出される前記排気ガス還元剤量に安全係数として0.5〜1未満の安全係数である補正係数を乗算するとよい。   In the present invention, it is preferable that the reducing agent supply amount control means corrects the exhaust gas reducing agent amount calculated from the target catalyst NOx purification performance value by a safety factor of less than 0.5 to 1 as a safety factor. Multiply by a coefficient.

このように、内燃機関から排出されるNOx排出量および排ガス温度等の情報を基に算出された還元触媒の目標触媒NOx浄化性能値に基づいて前記排気ガス還元剤の供給量を算出した場合には、過剰噴霧にならないように、安全係数としての補正係数(0.5〜1未満の係数)を乗算して、過剰噴霧の抑制を確実にしている。   As described above, when the supply amount of the exhaust gas reducing agent is calculated based on the target catalyst NOx purification performance value of the reduction catalyst calculated based on the information such as the NOx emission amount discharged from the internal combustion engine and the exhaust gas temperature. In order to prevent overspraying, multiplication of a correction factor (coefficient less than 0.5 to 1) as a safety factor ensures overspray suppression.

また、本発明において好ましくは、排ガス還元剤の濃度を検出する還元剤濃度センサを備え、還元剤濃度の設定値と前記還元剤濃度センサの検出値とを比較して排ガス還元剤濃度が適正であるときに前記判定手段による判定を実行するとよい。   In the present invention, preferably, a reducing agent concentration sensor for detecting the concentration of the exhaust gas reducing agent is provided, and the exhaust gas reducing agent concentration is appropriate by comparing the set value of the reducing agent concentration with the detection value of the reducing agent concentration sensor. In some cases, the determination by the determination means may be executed.

還元剤タンクに設置した還元剤濃度センサにより、還元剤濃度を検知して、還元剤タンクに貯留した還元剤が還元剤としての規格濃度から大きく外れた濃度でないときに、NOxセンサの異常の判定を行うことで、NOxセンサの異常判定の精度を向上できる。   When the reducing agent concentration sensor installed in the reducing agent tank detects the reducing agent concentration and the reducing agent stored in the reducing agent tank does not deviate significantly from the standard concentration as the reducing agent, it is judged whether the NOx sensor is abnormal. By performing this, it is possible to improve the accuracy of the NOx sensor abnormality determination.

また、本発明において好ましくは、前記還元触媒の温度を推定するために前記還元触媒の少なくとも上流側または下流側の一方に設置された温度センサによって検出された排ガス温度に基づいて算出された還元触媒温度と、前記温度センサ以外の他の排ガス温度センサによって検出された排ガス温度または内燃機関の運転状態から算出した排ガス温度に基づいて推定される還元触媒の温度とを比較して前記温度センサが異常か否かを判定する温度センサ異常判定手段を備えるとよい。   In the present invention, it is preferable that the reduction catalyst calculated based on the exhaust gas temperature detected by a temperature sensor installed on at least one of the upstream side and the downstream side of the reduction catalyst in order to estimate the temperature of the reduction catalyst. The temperature sensor is abnormal by comparing the temperature with the exhaust gas temperature detected by the exhaust gas temperature sensor other than the temperature sensor or the exhaust gas temperature calculated from the operating state of the internal combustion engine. It may be provided with a temperature sensor abnormality determination means for determining whether or not.

還元触媒の温度を推定するための温度センサの異常を判定することで、内燃機関からのNOx排出量等のデータを基に還元触媒における触媒温度およびアンモニア吸着量を導出して還元触媒のNOx浄化性能を算出する第2のNOx浄化性能算出手段の精度を高めることができ、その結果、NOxセンサの異常判定の精度を高めることができる。   By determining abnormality of the temperature sensor for estimating the temperature of the reduction catalyst, the NOx purification of the reduction catalyst is derived by deriving the catalyst temperature and the ammonia adsorption amount in the reduction catalyst based on the data such as the NOx emission amount from the internal combustion engine. The accuracy of the second NOx purification performance calculating means for calculating the performance can be increased, and as a result, the accuracy of the NOx sensor abnormality determination can be increased.

また、前記温度センサ異常判定手段によって温度センサが異常であると判定したときに、前記温度センサ以外の他の排ガス温度センサによって検出された排ガス温度または内燃機関の運転状態から算出した排ガス温度に基づいて還元触媒の温度を推定することによって、温度センサの異常時においても排ガス還元剤の適切な制御がなされて過剰な供給を抑制できる。   Further, when the temperature sensor abnormality determining means determines that the temperature sensor is abnormal, it is based on the exhaust gas temperature detected by the exhaust gas temperature sensor other than the temperature sensor or the exhaust gas temperature calculated from the operating state of the internal combustion engine. By estimating the temperature of the reduction catalyst, appropriate control of the exhaust gas reducing agent can be performed even when the temperature sensor is abnormal, and excessive supply can be suppressed.

本発明によれば、還元触媒の下流側に設置されたNOxセンサの異常を、NOxセンサを用いずに排ガス温度および内燃機関からのNOx排出量を基にマップまたは演算式を用いて算出された還元触媒の浄化能力と、NOxセンサ信号に基づいて算出された還元触媒の浄化能力とを比較して判定する。
そして、異常と判定したときには、還元触媒の目標触媒NOx浄化性能値に基づいて前記排気ガス還元剤の供給量を算出するので、NOxセンサの誤作動によって、過剰な還元剤噴霧を抑制することができる。
その結果、排気通路に設けられるNOx、温度センサ等の異常を検知するとともに、センサの異常時においても還元剤供給量を適正化してNOx浄化装置の性能維持を図ることができる。
According to the present invention, the abnormality of the NOx sensor installed on the downstream side of the reduction catalyst is calculated using a map or an arithmetic expression based on the exhaust gas temperature and the NOx emission amount from the internal combustion engine without using the NOx sensor. The determination is made by comparing the purification capability of the reduction catalyst with the purification capability of the reduction catalyst calculated based on the NOx sensor signal.
And when it determines with it being abnormal, since the supply amount of the said exhaust gas reducing agent is calculated based on the target catalyst NOx purification performance value of a reduction catalyst, it can suppress excessive reducing agent spray by malfunction of a NOx sensor. it can.
As a result, it is possible to detect the abnormality of the NOx, temperature sensor, etc. provided in the exhaust passage and to optimize the reducing agent supply amount even when the sensor is abnormal to maintain the performance of the NOx purification device.

本発明の全体構成図である。1 is an overall configuration diagram of the present invention. NOx浄化装置の制御装置の構成ブロック図である。It is a block diagram of the configuration of the control device of the NOx purification device. 第1実施形態の制御装置の制御フローチャートである。It is a control flowchart of the control apparatus of 1st Embodiment. 図3−1の続きのフローチャートである。3 is a flowchart subsequent to FIG. 3-1. 第2実施形態の制御装置の制御フローチャートである。It is a control flowchart of the control apparatus of 2nd Embodiment. 第3実施形態の制御装置の制御フローチャートである。It is a control flowchart of the control apparatus of 3rd Embodiment. NOx浄化装置に用いられるNOx触媒のアンモニア吸着量とNOx浄化率との関係を示す特性線図である。It is a characteristic line figure which shows the relationship between the ammonia adsorption amount of a NOx catalyst used for a NOx purification apparatus, and a NOx purification rate. NOx浄化装置に用いられるNOx触媒の触媒温度とNOx浄化率との関係を示す特性線図である。It is a characteristic line figure which shows the relationship between the catalyst temperature of the NOx catalyst used for a NOx purification apparatus, and a NOx purification rate. NOx浄化装置に用いられるNOx触媒の触媒温度とアンモニア吸着量との関係を示す特性線図である。It is a characteristic diagram which shows the relationship between the catalyst temperature of the NOx catalyst used for a NOx purification apparatus, and the ammonia adsorption amount.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

図1を参照して、本発明に係るNOx浄化装置の全体構成について説明する。
図示しない車両に搭載されたディーゼルエンジン1の排気通路3には、排気上流側から、酸化触媒(以下DOCと略す)5と、排ガス中に含まれるパティキュレートマター(粒子状物質、PMと略す)を捕集するディーゼルパティキュレートフィルター(以下DPFと略す)7と、尿素SCRシステム9とが設けられている。
尿素SCRシステム9は、還元触媒のNOx触媒11と、NOx触媒11の上流側に還元剤である尿素水を排気通路3内に噴射する噴霧ノズル12を有する尿素水噴射手段(還元剤噴射手段)13と、尿素水噴射手段13へ尿素水を供給する尿素水タンク15によって構成されている。
With reference to FIG. 1, the whole structure of the NOx purification apparatus which concerns on this invention is demonstrated.
An exhaust passage 3 of a diesel engine 1 mounted on a vehicle (not shown) has an oxidation catalyst (hereinafter abbreviated as DOC) 5 and particulate matter contained in exhaust gas (abbreviated as particulate matter, PM) from the exhaust upstream side. A diesel particulate filter (hereinafter abbreviated as DPF) 7 and a urea SCR system 9 are provided.
The urea SCR system 9 is a urea water injection means (reducing agent injection means) having a NOx catalyst 11 as a reduction catalyst and a spray nozzle 12 for injecting urea water as a reducing agent into the exhaust passage 3 upstream of the NOx catalyst 11. 13 and a urea water tank 15 for supplying urea water to the urea water injection means 13.

このように排気通路3には、エンジン1から排出された排ガスを、DOC5で排ガス中の燃料を酸化させて、排ガス温度を上昇させ、DPF7に通して、該DPF7に堆積されたPMを加熱された排ガスによって燃焼させ、尿素SCRシステム9によって、排ガス中の窒素酸化物の脱硝を行うように構成された排ガス後処理装置が備えられている。   In this way, the exhaust gas discharged from the engine 1 is oxidized in the exhaust passage 3 by oxidizing the fuel in the exhaust gas with the DOC 5, the exhaust gas temperature is raised, and the PM accumulated in the DPF 7 is heated through the DPF 7. An exhaust gas aftertreatment device is provided which is configured to denitrate nitrogen oxides in the exhaust gas by the urea SCR system 9 by burning with the exhaust gas.

尿素SCRシステム9は、尿素水噴射手段13によって排気通路3内に尿素水を噴霧するが、この噴霧された尿素水は、排気通路3内の熱および水分によって、式(1)のように熱分解及び加水分解をして、NHを放出する。
(NHCO+HO→2NH+CO (1)
その後、生成された、アンモニアは、排ガスとともに排気通路3内を流れて、NOx触媒11に到達する。なお、尿素水の一部は、アンモニアにならずに、尿素水のままNOx触媒11に到達する。そのため、NOx触媒11内でも式(1)の反応により、尿素水からアンモニアが生成される。NOx触媒11に到達したアンモニアは、排ガス中に含まれる窒素酸化物が反応して、窒素酸化物から酸素を取り除き、窒素に還元する。具体的には、以下の式(2)〜(4)に示す反応により窒素酸化物が還元されてNを生成する。
4NH+4NO+O→4N+6HO (2)
2NH+NO+NO→2N+3HO (3)
8NH+6NO→7N+12HO (4)
The urea SCR system 9 sprays urea water into the exhaust passage 3 by the urea water injection means 13, and the sprayed urea water is heated as shown in the equation (1) by heat and moisture in the exhaust passage 3. Decompose and hydrolyze to release NH 3 .
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2 (1)
Thereafter, the generated ammonia flows in the exhaust passage 3 together with the exhaust gas and reaches the NOx catalyst 11. A part of the urea water does not become ammonia but reaches the NOx catalyst 11 as the urea water. Therefore, ammonia is generated from the urea water also in the NOx catalyst 11 by the reaction of the formula (1). The ammonia that has reached the NOx catalyst 11 reacts with nitrogen oxides contained in the exhaust gas, removes oxygen from the nitrogen oxides, and is reduced to nitrogen. Specifically, nitrogen oxides are reduced by the reactions shown in the following formulas (2) to (4) to generate N 2 .
4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 O (2)
2NH 3 + NO + NO 2 → 2N 2 + 3H 2 O (3)
8NH 3 + 6NO 2 → 7N 2 + 12H 2 O (4)

以上のように構成されたNOx浄化装置における制御装置20について説明する。
制御装置20には、NOx触媒11の下流側に設置されたNOxセンサ21からの信号、NOx触媒11の下流側に配置された下流側温度センサ25からの信号、尿素水の噴霧ノズル12の上流側で、且つDPF7の下流側の位置に配置された上流側温度センサ27からの信号、さらに、DPF7の入口側に配置されたDPF入口温度センサ29からの信号、DOCの入口側に配置されたDOC入口温度センサ31からの信号が入力されている。
更に、エンジン1から運転状態に関するエンジン回転数、エンジン負荷、燃料噴射量等の信号が入力されている。
The control device 20 in the NOx purification device configured as described above will be described.
The control device 20 includes a signal from a NOx sensor 21 disposed downstream of the NOx catalyst 11, a signal from a downstream temperature sensor 25 disposed downstream of the NOx catalyst 11, and an upstream of the urea water spray nozzle 12. The signal from the upstream temperature sensor 27 disposed on the downstream side of the DPF 7, the signal from the DPF inlet temperature sensor 29 disposed on the inlet side of the DPF 7, and the signal disposed from the DOC inlet side A signal from the DOC inlet temperature sensor 31 is input.
Furthermore, signals such as the engine speed, engine load, and fuel injection amount relating to the operating state are input from the engine 1.

(第1実施形態)
制御装置20の第1実施形態を、図2の構成ブロック図および図3−1、図3−2のフローチャートを参照して説明する。
図2に示すように、NOxセンサ21からの信号に基づいてNOx浄化性能を算出する第1のNOx浄化性能算出手段(NOx浄化性能算出手段)33と、エンジン運転状態算出手段35によってNOx排出量、排ガス温度を算出し、それに基づいてNOx浄化性能を算出する第2のNOx浄化性能算出手段37とを備えている。
また、第1のNOx浄化性能算出手段33と第2のNOx浄化性能算出手段37とからのそれぞれの算出結果を比較して、NOxセンサ21が異常か否かを判定する判定手段39を備えている。
(First embodiment)
A first embodiment of the control device 20 will be described with reference to the block diagram of FIG. 2 and the flowcharts of FIGS. 3-1 and 3-2.
As shown in FIG. 2, the first NOx purification performance calculating means (NOx purification performance calculating means) 33 for calculating the NOx purification performance based on the signal from the NOx sensor 21 and the engine operating state calculating means 35 are used for NOx emission. And a second NOx purification performance calculating means 37 for calculating the exhaust gas temperature and calculating the NOx purification performance based on the exhaust gas temperature.
Further, a determination unit 39 that compares the calculation results from the first NOx purification performance calculation unit 33 and the second NOx purification performance calculation unit 37 to determine whether the NOx sensor 21 is abnormal is provided. Yes.

さらに、判定手段39の結果に基づいて、第1のNOx浄化性能算出手段33からの算出結果を用いるか、第2のNOx浄化性能算出手段37からの算出結果を用いるかを制御して尿素水噴射手段13への尿素水供給量を制御する還元剤供給量制御手段43を備えている。具体的には、判定手段39によって異常であると判定されたときには、第2のNOx浄化性能算出手段37によって算出した浄化性能に基づいて排気ガス還元剤の供給量を算出した結果を尿素水噴射手段13に出力する。   Furthermore, based on the result of the determination means 39, it is controlled whether the calculation result from the first NOx purification performance calculation means 33 or the calculation result from the second NOx purification performance calculation means 37 is used, and urea water is used. A reducing agent supply amount control means 43 for controlling the urea water supply amount to the injection means 13 is provided. Specifically, when it is determined that the determination unit 39 is abnormal, the result of calculating the supply amount of the exhaust gas reducing agent based on the purification performance calculated by the second NOx purification performance calculation unit 37 is the urea water injection Output to means 13.

また、第2のNOx浄化性能算出手段37へは、NOx触媒11の下流側温度センサ25および上流側温度センサ27からの信号が入力されて、この上流側温度センサ27と下流側温度センサ25の異常を判定する温度センサ異常判定手段45が接続されている。また、判定手段39には、尿素水タンク15に注入されている尿素水の濃度を検出する尿素水濃度センサ(還元剤濃度センサ)47からの信号が入力されて、尿素水の濃度を判定している。
これらの、上流側温度センサ27および下流側温度センサ25からの信号処理については第3実施形態で、尿素水濃度センサ47からの信号処理については第2実施形態で後述する。
Further, signals from the downstream temperature sensor 25 and the upstream temperature sensor 27 of the NOx catalyst 11 are input to the second NOx purification performance calculating means 37, and the upstream temperature sensor 27 and the downstream temperature sensor 25 A temperature sensor abnormality determining means 45 for determining abnormality is connected. The determination means 39 receives a signal from a urea water concentration sensor (reducing agent concentration sensor) 47 that detects the concentration of the urea water injected into the urea water tank 15 and determines the concentration of the urea water. ing.
The signal processing from the upstream temperature sensor 27 and the downstream temperature sensor 25 will be described later in the third embodiment, and the signal processing from the urea water concentration sensor 47 will be described later in the second embodiment.

次に、図3−1、図3−2のフローチャートを参照して、第1実施形態のNOxセンサ21の異常判定および異常時の対応の制御を説明する。
まず、ステップS1で、エンジン運転状態を入力する。エンジン回転数(Ne)、エンジン負荷(Le)、燃料噴射量(Qf)等の信号をそれぞれ取り込む。
Next, with reference to the flowcharts of FIGS. 3A and 3B, the abnormality determination of the NOx sensor 21 according to the first embodiment and the control corresponding to the abnormality will be described.
First, in step S1, an engine operating state is input. Signals such as engine speed (Ne), engine load (Le), fuel injection amount (Qf) and the like are captured.

ステップS2では、それらエンジン運転状態の情報を基に、データマップを用いてエンジン1から排出される排ガス温度(TEX)、エンジン1から排出されるNOx排出流量(NOx触媒の入口NOx流量)(FNOxIN)を算出する。NOx触媒の上流に酸化触媒(DOC)やディーゼルパティキュレートフィルタ(DPF)等がある場合には、エンジン排出NOx量に対して、DOCやDPFでのNOx反応を考慮したNOx排出量をFNOxINとしても良い。   In step S2, the exhaust gas temperature (TEX) exhausted from the engine 1 and the NOx exhaust flow rate (NOx catalyst inlet NOx flow rate) exhausted from the engine 1 (FNOxIN) based on the information on these engine operating states are used. ) Is calculated. If there is an oxidation catalyst (DOC), diesel particulate filter (DPF), etc. upstream of the NOx catalyst, the NOx emission amount taking into account the NOx reaction in the DOC or DPF relative to the engine exhaust NOx amount can be set as FNOxIN. good.

ステップS3では、ステップS2で求めたエンジン1から排出される排ガス温度(TEX)を基にNOx触媒11の触媒温度(Tcat)を推定する。
推定にはエンジン1の出口からNOx触媒11までの排気通路3の長さ、放熱等の要素を考慮した相関式を用いて算出する。考慮する要素としては、排気通路3での放熱量による温度低下、DOC5での熱容量による応答遅れ、DOC5での未燃燃料(CO、HC)の酸化反応による温度上昇、DPF7での熱容量による応答遅れ、DPF7での未燃燃料(CO、HC)の酸化反応による温度上昇、さらに、NOx触媒11での熱容量による応答遅れが考えられる。
In step S3, the catalyst temperature (Tcat) of the NOx catalyst 11 is estimated based on the exhaust gas temperature (TEX) discharged from the engine 1 obtained in step S2.
The estimation is performed by using a correlation equation considering factors such as the length of the exhaust passage 3 from the outlet of the engine 1 to the NOx catalyst 11 and heat radiation. Factors to consider include temperature drop due to heat release in exhaust passage 3, response delay due to heat capacity at DOC5, temperature rise due to oxidation reaction of unburned fuel (CO, HC) at DOC5, response delay due to heat capacity at DPF7 The temperature rise due to the oxidation reaction of unburned fuel (CO, HC) in the DPF 7 and the response delay due to the heat capacity in the NOx catalyst 11 can be considered.

また、ステップS3では、NH吸着量(Zcat)を算出する。このNH吸着量は、図8に示すような触媒温度とアンモニア吸着量との予め設定された関係マップ(関係式)を用いて算出する。
図6に示すように、アンモニア吸着量が多いほど、NOx浄化率が高く、しかも図7のように、触媒温度が高いほど高浄化率を確保できる。このため、アンモニア吸着量を高く制御することが好ましいが、NOx触媒に吸着できるアンモニア吸着量には限界がある。 一定の温度、排ガス流量、排ガス濃度等の条件にて長時間運転した場合には、アンモニア吸着量は限界まで到達するが、運転状態に変化をともなう場合には触媒上でのアンモニア吸着反応及び脱着反応速度から触媒でのNH吸着量が推定される。
In step S3, the NH 3 adsorption amount (Zcat) is calculated. The NH 3 adsorption amount is calculated by using a preset relationship map (relational expression) between the catalyst temperature and the ammonia adsorption amount as shown in FIG.
As shown in FIG. 6, the NOx purification rate increases as the ammonia adsorption amount increases, and as shown in FIG. 7, the higher the catalyst temperature, the higher the purification rate. For this reason, it is preferable to control the ammonia adsorption amount high, but there is a limit to the ammonia adsorption amount that can be adsorbed to the NOx catalyst. When operating for a long time at a certain temperature, exhaust gas flow rate, exhaust gas concentration, etc., the ammonia adsorption amount reaches the limit, but if there is a change in the operating state, ammonia adsorption reaction and desorption on the catalyst. The amount of NH 3 adsorbed on the catalyst is estimated from the reaction rate.

ステップS4では、目標触媒NOx浄化性能(ηtg)を設定する。この目標触媒NOx浄化性能(ηtg)は、ある運転状態点で得たいと考える浄化性能である。すなわち、ある運転状態点で最大NH吸着量、触媒温度、触媒量、排ガス流量、還元剤供給量から決まる触媒の目標最大NOx浄化性能を設定するものである。
図8のようなNH吸着量特性マップや、ステップS3で推定した触媒温度(Tcat)等に基づいて目標触媒NOx浄化性能(ηtg)を求めて、目標触媒NOx浄化性能(ηtg)を設定する。
In step S4, the target catalyst NOx purification performance (ηtg) is set. This target catalyst NOx purification performance (ηtg) is the purification performance that is desired to be obtained at a certain operating state point. That is, the target maximum NOx purification performance of the catalyst determined from the maximum NH 3 adsorption amount, the catalyst temperature, the catalyst amount, the exhaust gas flow rate, and the reducing agent supply amount at a certain operating state point is set.
The target catalyst NOx purification performance (ηtg) is obtained based on the NH 3 adsorption amount characteristic map as shown in FIG. 8 and the catalyst temperature (Tcat) estimated in step S3, and the target catalyst NOx purification performance (ηtg) is set. .

ステップS5では、入口NH供給流量(FNH3IN)を設定する。ステップS4で設定した目標触媒NOx浄化性能(ηtg)から、該目標触媒NOx浄化性能(ηtg)に応じた入口NH供給流量(FNH3IN)を算出して設定する。なお、NHの供給量が決まれば、式(1)の反応式により尿素水供給量も決まる。 In step S5, an inlet NH 3 supply flow rate (FNH3IN) is set. From the target catalyst NOx purification performance (ηtg) set in step S4, the inlet NH 3 supply flow rate (FNH3IN) corresponding to the target catalyst NOx purification performance (ηtg) is calculated and set. If the supply amount of NH 3 is determined, the urea water supply amount is also determined by the reaction formula (1).

ステップS6では、推定触媒NOx浄化性能(ηa)を算出する。この推定触媒NOx浄化性能(ηa)は、その運転状態での触媒のNOx浄化性能を推定するものである。ステップS5で求めた入口NH供給流量(FNH3IN)、ステップS3で求めたその運転状態における触媒温度(Tcat)、およびNH吸着量(Zcat)より、その運転状態での触媒NOx浄化性能を推定する。 In step S6, the estimated catalyst NOx purification performance (ηa) is calculated. The estimated catalyst NOx purification performance (ηa) is for estimating the NOx purification performance of the catalyst in its operating state. From the inlet NH 3 supply flow rate (FNH3IN) determined in step S5, the catalyst temperature (Tcat) in the operating state determined in step S3, and the NH 3 adsorption amount (Zcat), the NOx purification performance in the operating state is estimated. To do.

ステップS7では、ステップS6で算出した推定触媒NOx浄化性能(ηa)を用いて、NOx触媒11の出口側の出口NOx濃度(CNOxout)、および出口NH濃度(CNH3out)をそれぞれ算出する。 In step S7, by using the estimated catalyst NOx purification performance calculated in step S6 (ηa), calculates the outlet NOx concentration at the outlet side of the NOx catalyst 11 (CNOxout), and an outlet NH 3 concentrations (CNH3out), respectively.

ステップS8では、ステップS5で設定したアンモニア量になるように還元剤の噴霧を実行する。
ステップS9では、NOx触媒11の下流側に設置されたNOxセンサ21からの信号を基に、出口NOx濃度(SNOxout)を算出する。
In step S8, the reducing agent is sprayed so as to have the ammonia amount set in step S5.
In step S9, the outlet NOx concentration (SNOxout) is calculated based on the signal from the NOx sensor 21 installed on the downstream side of the NOx catalyst 11.

ステップ10では、ステップS9のNOxセンサ21からの信号に基づくNOx濃度から、触媒NOx浄化性能(ηb)を算出する。
そして、ステップS11で、ステップS4で設定した目標触媒NOx浄化性能(ηtg)とステップS10で算出した触媒NOx浄化性能(ηb)とを比較し、実測値の浄化性能が、目標値の浄化性能より小さい時には、NOとなりステップS15に進んでアンモニア流量の増量補正を行う。
In step 10, the catalyst NOx purification performance (ηb) is calculated from the NOx concentration based on the signal from the NOx sensor 21 in step S9.
Then, in step S11, the target catalyst NOx purification performance (ηtg) set in step S4 is compared with the catalyst NOx purification performance (ηb) calculated in step S10, and the actually measured purification performance is greater than the target value purification performance. When it is small, the determination becomes NO, and the process proceeds to step S15 to correct the increase in the ammonia flow rate.

また、実測値の浄化性能が、目標値の浄化性能より大きい時には、YesとなりステップS12に進んで、ステップS7においてエンジンの運転状態のデータより算出した出口NOx濃度(CNOxout)と、ステップS9においてNOxセンサ21からの信号で算出した出口NOx濃度(SNOxout)とを比較して、濃度比のSNOxout/CNOxoutが、所定の閾値α未満か否かが判定される。
なお、濃度比でなく濃度偏差の絶対値|CNOxout−SNOxout|が所定閾値α'未満か否かとして判定してもよい。
Further, when the actual purification performance is greater than the target purification performance, the determination becomes Yes, the process proceeds to step S12, the outlet NOx concentration (CNOxout) calculated from the engine operating state data in step S7, and the NOx in step S9. The outlet NOx concentration (SNOxout) calculated from the signal from the sensor 21 is compared, and it is determined whether or not the concentration ratio SNOxout / CNOxout is less than a predetermined threshold value α.
It may be determined whether the absolute value | CNOxout−SNOxout | of the concentration deviation is less than the predetermined threshold value α ′ instead of the concentration ratio.

ステップS12でYesの場合、すなわち閾値α未満の場合には、NOxセンサ21は正常と判定して、ステップS13でアンモニア流量の減量補正を行う。
ステップS14では、再度、ステップS4で設定した目標触媒NOx浄化性能(ηtg)とステップS10で算出した触媒NOx浄化性能(ηb)とが等しくなったかを判定して、等しくなった場合には終了し、等しくない場合には、ステップS11にリターンして同様の手順を繰り返す。
If Yes in step S12, that is, if it is less than the threshold value α, the NOx sensor 21 is determined to be normal, and the ammonia flow rate is reduced in step S13.
In step S14, it is determined again whether the target catalyst NOx purification performance (ηtg) set in step S4 is equal to the catalyst NOx purification performance (ηb) calculated in step S10. If they are not equal, the process returns to step S11 and the same procedure is repeated.

また、ステップS12でNOの場合、すなわち閾値α以上の場合には、ステップS16でNOxセンサ21が異常であると判定し、ステップS17で、入口NH供給流量(FNH3IN)を、エンジン運転状態から算出したNOx排出流量(FNOxIN)に基づいて算出した目標触媒NOx浄化性能(ηtg)に対してアンモニア流量設定を行い、さらに、安全係数である補正係数βを乗算する。
このように、安全係数としての補正係数β(0.5〜1未満の係数)を乗算して、過剰噴霧の抑制を確実にしている。
Further, if NO in step S12, that is, if the threshold value α is equal to or larger than the threshold value α, it is determined in step S16 that the NOx sensor 21 is abnormal, and in step S17, the inlet NH 3 supply flow rate (FNH3IN) is changed from the engine operating state. An ammonia flow rate is set for the target catalyst NOx purification performance (ηtg) calculated based on the calculated NOx discharge flow rate (FNOxIN), and further, a correction coefficient β, which is a safety coefficient, is multiplied.
In this way, the overspray is reliably suppressed by multiplying the correction coefficient β (coefficient less than 0.5 to 1) as a safety coefficient.

また、ステップS16でNOxセンサ21が異常であると判定した場合に、前記のようにアンモニア流量設定値を減少させて尿素水噴霧を抑制するのではなく、尿素水噴霧自体を停止するようにしてもよい。このように、NOxセンサ21が異常時には、尿素水の供給を停止することで、尿素水の無駄な消費や、NOx触媒の下流側への多量のアンモニアの排出を確実に防止できる。   Further, when it is determined in step S16 that the NOx sensor 21 is abnormal, the urea water spray itself is stopped instead of decreasing the ammonia flow rate setting value to suppress the urea water spray as described above. Also good. As described above, when the NOx sensor 21 is abnormal, by stopping the supply of the urea water, it is possible to reliably prevent wasteful consumption of the urea water and discharge of a large amount of ammonia downstream of the NOx catalyst.

なお、ステップS12の判定における閾値αは、一定値であっても、また変化させてもよく、例えば、エンジン回転数とトルクとから算出されるNOx排出量(NOx触媒の入口NOx流量)(FNOxIN)に応じてαを変化させて、NOx排出量の増大(エンジン回転数と負荷の増大)に応じて閾値αを大きくしてもよい。
エンジンからのNOx排出量の増大にともなって、NOx触媒出口のNOx排出量も増大することがあるため、αを変化させ推定精度を向上させることで有害物質であるNOxを極力排出しないようにする。
また、NOx排出量の増大にともなって、NOx触媒出口のNOx排出量も増大することがあるため、過渡的な運転状態でNOxセンサの検出がエンジン回転数とトルクから算出されるNOx排出量より大きくなるような場合に、ステップS12でNOと判定してステップS16でNOxセンサの異常と誤判定してしまうことを防止して判定精度を向上する。
The threshold value α in the determination in step S12 may be a constant value or may be changed. For example, the NOx emission amount (NOx catalyst inlet NOx flow rate) calculated from the engine speed and torque (FNOxIN) ) May be changed in accordance with (), and the threshold value α may be increased in accordance with an increase in NOx emission (an increase in engine speed and load).
As the NOx emission from the engine increases, the NOx emission at the NOx catalyst outlet may also increase. Therefore, by changing α to improve the estimation accuracy, NOx, which is a harmful substance, is avoided as much as possible. .
Further, as the NOx emission amount increases, the NOx emission amount at the NOx catalyst outlet may also increase. Therefore, in the transient operation state, the detection of the NOx sensor is based on the NOx emission amount calculated from the engine speed and torque. In such a case, the determination accuracy is improved by preventing NO in step S12 and erroneously determining that the NOx sensor is abnormal in step S16.

以上の第1実施形態によれば、NOx触媒11の下流側に設置されたNOxセンサ21の異常を、NOxセンサ21を用いずに内燃機関からのNOx排出量や排ガス温度を基にマップまたは演算式を用いて算出されたNOx触媒11の浄化能力である出口NOx濃度(CNOxout)と、NOxセンサ21からの信号に基づいて算出されたNOx触媒11の浄化能力である出口NOx濃度(SNOxout)とを比較して判定することによって、具体的には、対比値のSNOxout/CNOxoutが、所定の閾値α未満か否かによって判定されるので、NOxセンサ21の異常を確実に判定できる。   According to the first embodiment described above, an abnormality of the NOx sensor 21 installed on the downstream side of the NOx catalyst 11 is mapped or calculated based on the NOx emission amount and the exhaust gas temperature from the internal combustion engine without using the NOx sensor 21. The outlet NOx concentration (CNOxout) that is the purification capability of the NOx catalyst 11 calculated using the equation, and the outlet NOx concentration (SNOxout) that is the purification capability of the NOx catalyst 11 calculated based on the signal from the NOx sensor 21. Specifically, since the determination is made based on whether or not the contrast value SNOxout / CNOxout is less than the predetermined threshold value α, the abnormality of the NOx sensor 21 can be reliably determined.

その結果、NOxセンサ21誤作動による過剰な還元剤噴霧を抑制することができる。そして、還元剤噴射ノズル周辺に還元剤の分解による固形析出物の生成を抑制でき、また、配管の閉塞や、上流側で形成された固形析出物の飛来による触媒の破損の防止、さらに、無駄な還元剤の噴霧の防止とともに還元触媒後流への排出を抑制できる。   As a result, excessive reducing agent spray due to the malfunction of the NOx sensor 21 can be suppressed. In addition, it is possible to suppress the formation of solid precipitates due to decomposition of the reducing agent around the reducing agent injection nozzle, to prevent the damage of the catalyst due to blockage of the piping and the arrival of solid precipitates formed on the upstream side. In addition to preventing spraying of the reducing agent, it is possible to suppress discharge to the downstream of the reduction catalyst.

なお、ステップS12において判定したエンジン運転状態に基づく触媒浄化性能から算出した出口NOx濃度(CNOxout)とNOxセンサ21からの信号に基づく出口NOx濃度(SNOxout)との比較に代えて、エンジン運転状態に基づく触媒浄化性能から算出した出口NH濃度とアンモニアセンサからの信号に基づいてアンモニアセンサの異常判定も可能である。 Instead of comparing the outlet NOx concentration (CNOxout) calculated from the catalyst purification performance based on the engine operating state determined in step S12 and the outlet NOx concentration (SNOxout) based on the signal from the NOx sensor 21, the engine operating state is set. The abnormality determination of the ammonia sensor is also possible based on the outlet NH 3 concentration calculated from the catalyst purification performance based on this and the signal from the ammonia sensor.

(第2実施形態)
次に、制御装置20の第2実施形態を、図2の構成ブロック図および図4のフローチャートを参照して説明する。
第2実施形態は、図2において尿素水濃度センサ47を設けて、尿素水濃度を検出し、尿素水濃度の設定値と尿素水濃度センサ47の検出値とを比較し、例えば、偏差または濃度比が所定値より小さいときには、尿素水濃度が適正であると判定して、判定手段39での判定を実行する。図4において、第1実施形態に対してPの部分が追加されている。その他の構成で第1実施形態と同様の構成には同一の符号を付して説明を省略する。
(Second Embodiment)
Next, a second embodiment of the control device 20 will be described with reference to the configuration block diagram of FIG. 2 and the flowchart of FIG.
In the second embodiment, the urea water concentration sensor 47 is provided in FIG. 2 to detect the urea water concentration, and the set value of the urea water concentration and the detection value of the urea water concentration sensor 47 are compared. When the ratio is smaller than the predetermined value, it is determined that the urea water concentration is appropriate, and the determination by the determination means 39 is executed. In FIG. 4, a portion P is added to the first embodiment. In other configurations, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図4において、ステップS12の判定において、NOの場合、すなわち閾値α以上の場合には、ステップS16でNOxセンサ21が異常であると判定されるが、その判定の前に、ステップS21で、還元剤である尿素水の濃度が規定の濃度にあるかを判定する。すなわち、還元剤設定濃度Uaと還元剤実測濃度Ubとの偏差の絶対値が閾値δ以下か否かを判定する。または偏差でなく比率を算出して判定してもよい。   In FIG. 4, if the determination in step S <b> 12 is NO, that is, if it is equal to or greater than the threshold value α, it is determined in step S <b> 16 that the NOx sensor 21 is abnormal, but before that determination, the reduction is performed in step S <b> 21. It is determined whether the concentration of urea water as the agent is at a specified concentration. That is, it is determined whether or not the absolute value of the deviation between the reducing agent set concentration Ua and the reducing agent measured concentration Ub is equal to or less than the threshold δ. Or you may determine by calculating a ratio instead of a deviation.

ステップS21で閾値δ以上の場合には、ステップS22に進んで、システム異常を出力して、警報または警報ランプを発する。さらに警報を発すると共に尿素水供給を停止し、エンジンを停止するようにしてもよい。その他の構成は第1実施形態と同様である。
第2実施形態によれば、尿素水タンク15に設置した尿素水濃度センサ47により、尿素水濃度を検知して、尿素水タンク15に貯留した還元剤である尿素水が規格の濃度から外れた濃度でないときに、NOxセンサ21の異常判定を実行するので、第1実施形態でのNOxセンサ21の異常判定の精度を向上できる。
If it is greater than or equal to the threshold value δ in step S21, the process proceeds to step S22 to output a system abnormality and issue an alarm or an alarm lamp. Further, an alarm may be issued and the urea water supply may be stopped to stop the engine. Other configurations are the same as those of the first embodiment.
According to the second embodiment, the urea water concentration sensor 47 installed in the urea water tank 15 detects the urea water concentration, and the urea water as the reducing agent stored in the urea water tank 15 deviates from the standard concentration. Since the abnormality determination of the NOx sensor 21 is executed when the concentration is not, the accuracy of the abnormality determination of the NOx sensor 21 in the first embodiment can be improved.

(第3実施形態)
次に、制御装置20の第3実施形態を、図2の構成ブロック図および図5のフローチャートを参照して説明する。
第3実施形態は、図2において、NOx触媒11の上下流側に設置された上流側温度センサ27および下流側温度センサ25が設けられ、これらの信号を基にNOx触媒11の温度が推定されている。そして、これら温度センサからの信号を基に、温度センサに異常かあるかを判定する。この判定は温度センサ異常判定手段45で行われ、その結果が第2のNOx浄化性能算出手段37に入力される。
なお、図5において、第1実施形態に対してR1、R2の部分が追加されている。その他の構成で第1実施形態と同様の構成には同一の符号を付して説明を省略する。
(Third embodiment)
Next, a third embodiment of the control device 20 will be described with reference to the configuration block diagram of FIG. 2 and the flowchart of FIG.
In FIG. 2, the third embodiment includes an upstream temperature sensor 27 and a downstream temperature sensor 25 installed on the upstream and downstream sides of the NOx catalyst 11, and the temperature of the NOx catalyst 11 is estimated based on these signals. ing. Based on the signals from these temperature sensors, it is determined whether the temperature sensor is abnormal. This determination is performed by the temperature sensor abnormality determination unit 45 and the result is input to the second NOx purification performance calculation unit 37.
In FIG. 5, R1 and R2 are added to the first embodiment. In other configurations, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図5より、ステップS31で、触媒入口ガス温度(TIN)および触媒出口ガス温度(TOUT)の少なくとも一方の温度を、それぞれ上流側温度センサ27、下流側温度センサ25によって検出する。
そして、ステップS32では、ステップS31で検出した触媒入口ガス温度(TIN)および触媒出口ガス温度(TOUT)の少なくとも一方の温度によって、触媒温度(Tcat)を算出する。この算出に際しては、所定の関係式または予め試験によって求められた触媒温度と触媒入口ガス温度(TIN)および触媒出口ガス温度(TOUT)との相関関係によって算出される。その後、ステップS3ではそのステップS32で算出された触媒温度を用いて以降の算出が進む。
As shown in FIG. 5, in step S31, at least one of the catalyst inlet gas temperature (TIN) and the catalyst outlet gas temperature (TOUT) is detected by the upstream temperature sensor 27 and the downstream temperature sensor 25, respectively.
In step S32, the catalyst temperature (Tcat) is calculated from at least one of the catalyst inlet gas temperature (TIN) and the catalyst outlet gas temperature (TOUT) detected in step S31. This calculation is performed by a predetermined relational expression or a correlation between the catalyst temperature obtained in advance by a test, the catalyst inlet gas temperature (TIN), and the catalyst outlet gas temperature (TOUT). Thereafter, in step S3, the subsequent calculation proceeds using the catalyst temperature calculated in step S32.

ステップS3〜S10までは、第1実施形態と同様である。
第3実施形態においては、ステップS33で、上流側温度センサ27および下流側温度センサ25以外の温度センサ、例えば、DPF7の入口側に配置したDPF入口温度センサ29からの信号(TDPF)、DOC5の入口側に配置したDOC入口温度センサ31からの信号が入力(TDOC)、さらに、エンジン運転状態の情報を基に、データマップに用いてエンジン1から排出される排ガス温度(TEX)を用いて触媒温度(T'cat)を、それぞれ必要とする関係式を用いて算出する。この関係式は、例えば、排気通路3の長さ、放熱量等を考慮して設定される所定の関係式から算出する。
Steps S3 to S10 are the same as in the first embodiment.
In the third embodiment, in step S33, a signal (TDPF) from the temperature sensor other than the upstream temperature sensor 27 and the downstream temperature sensor 25, for example, the DPF inlet temperature sensor 29 disposed on the inlet side of the DPF 7, the DOC5 A signal from a DOC inlet temperature sensor 31 arranged on the inlet side is input (TDOC), and further, based on the information on the engine operating state, a catalyst using the exhaust gas temperature (TEX) discharged from the engine 1 using a data map. The temperature (T′cat) is calculated using the necessary relational expressions. This relational expression is calculated from a predetermined relational expression set in consideration of, for example, the length of the exhaust passage 3 and the amount of heat radiation.

次に、ステップS34では、ステップS32で求めた触媒温度(Tcat)と、ステップS33で求めた触媒温度(T'cat)との偏差を基に該偏差が所定の閾値γ未満か否かを判定する。
Yesの場合には、図3−2の[1]へ進み、NOの場合には、該偏差が所定の閾値γ以上であるので上流側温度センサ27および下流側温度センサ25はセンサ異常と判定する。
そして、ステップS36で、ステップS33で求めた触媒温度(T'cat)をステップS32の触媒温度Tcatとして、[3]に戻る。
Next, in step S34, it is determined whether the deviation is less than a predetermined threshold γ based on the deviation between the catalyst temperature (Tcat) obtained in step S32 and the catalyst temperature (T′cat) obtained in step S33. To do.
In the case of Yes, the process proceeds to [1] in FIG. 3-2. In the case of NO, since the deviation is equal to or greater than the predetermined threshold γ, it is determined that the upstream temperature sensor 27 and the downstream temperature sensor 25 are abnormal. To do.
In step S36, the catalyst temperature (T′cat) obtained in step S33 is set as the catalyst temperature Tcat in step S32, and the process returns to [3].

以上の第3実施形態によれば、NOx触媒11の温度を推定するためのNOx触媒11の上流側温度センサ27および下流側温度センサ25の異常を判定することで、第2のNOx浄化性能算出手段37の判断精度を高めることができる。すなわち、図5のステップS3における触媒温度の算出精度および信頼性を高めることができ、結果としてNOxセンサ21の異常判定の精度を高めることができる。   According to the third embodiment described above, the second NOx purification performance calculation is performed by determining the abnormality of the upstream temperature sensor 27 and the downstream temperature sensor 25 of the NOx catalyst 11 for estimating the temperature of the NOx catalyst 11. The determination accuracy of the means 37 can be increased. That is, the calculation accuracy and reliability of the catalyst temperature in step S3 of FIG. 5 can be improved, and as a result, the accuracy of abnormality determination of the NOx sensor 21 can be increased.

また、上流側温度センサ27及び下流側温度センサ25が異常であると判定した時には、当該上流側温度センサ27および下流側温度センサ25以外の他の排ガス温度センサによって検出された排ガス温度または内燃機関の運転状態から算出した排ガス温度に基づいて推定されたNOx触媒の温度を触媒温度とすることによって、上流側温度センサ27及び下流側温度センサ25の異常時においても、制御装置20によって制御される尿素水の過剰な供給を抑制できる。   When it is determined that the upstream temperature sensor 27 and the downstream temperature sensor 25 are abnormal, the exhaust gas temperature detected by another exhaust gas temperature sensor other than the upstream temperature sensor 27 and the downstream temperature sensor 25 or the internal combustion engine By controlling the temperature of the NOx catalyst estimated based on the exhaust gas temperature calculated from the operating state as the catalyst temperature, the controller 20 controls the upstream temperature sensor 27 and the downstream temperature sensor 25 even when the upstream temperature sensor 27 and the downstream temperature sensor 25 are abnormal. An excessive supply of urea water can be suppressed.

なお、第1実施形態に対して第2実施形態と第3実施形態をそれぞれ組み合わせて実施してもよいことは勿論であり、それぞれの実施形態で説明した作用効果が得られる。   In addition, of course, you may implement combining 2nd Embodiment and 3rd Embodiment with respect to 1st Embodiment, respectively, and the effect demonstrated in each embodiment is acquired.

本発明によれば、内燃機関の排気通路に設けられた還元触媒の上流側に排気ガス還元剤の供給装置を備えたNOx浄化装置において、排気通路に設けられるNOx、NH3、温度センサ等の異常を検知するとともに、センサの異常時においても還元剤供給量を適正化してNOx浄化装置の性能維持を図ることができるNOx浄化装置の制御装置への利用に適している。 According to the present invention, in a NOx purification device provided with an exhaust gas reducing agent supply device upstream of a reduction catalyst provided in an exhaust passage of an internal combustion engine, such as NOx, NH3 , temperature sensor, etc. provided in the exhaust passage. It is suitable for use in a control device for a NOx purification device that can detect an abnormality and optimize the amount of reducing agent supplied even when the sensor is abnormal to maintain the performance of the NOx purification device.

1 ディーゼルエンジン(内燃機関)
3 排気通路
5 DOC(酸化触媒)
7 DPF(ディーゼルパティキュレートフィルター)
9 尿素SCRシステム
11 NOx触媒(還元触媒)
13 尿素水噴射手段(還元剤噴射手段)
15 尿素水タンク
20 NOx浄化装置の制御装置
21 NOxセンサ
25 下流側温度センサ
27 上流側温度センサ
29 DPF入口温度センサ
31 DOC入口温度センサ
33 第1のNOx浄化性能算出手段
35 エンジン運転状態算出手段
37 第2のNOx浄化性能算出手段
39 判定手段
43 還元剤供給量制御手段
45 温度センサ異常判定手段
47 尿素水濃度センサ(還元剤濃度センサ)

1 Diesel engine (internal combustion engine)
3 Exhaust passage 5 DOC (oxidation catalyst)
7 DPF (diesel particulate filter)
9 Urea SCR system 11 NOx catalyst (reduction catalyst)
13 Urea water injection means (reducing agent injection means)
DESCRIPTION OF SYMBOLS 15 Urea water tank 20 Control apparatus of NOx purification apparatus 21 NOx sensor 25 Downstream temperature sensor 27 Upstream temperature sensor 29 DPF inlet temperature sensor 31 DOC inlet temperature sensor 33 First NOx purification performance calculation means 35 Engine operation state calculation means 37 Second NOx purification performance calculation means 39 Determination means 43 Reducing agent supply amount control means 45 Temperature sensor abnormality determination means 47 Urea water concentration sensor (reducing agent concentration sensor)

Claims (5)

内燃機関の排気通路に設けられた還元触媒の上流側に排気ガス還元剤の供給装置を備えたNOx浄化装置の制御装置において、
排気通路の前記還元触媒の下流側に配設されたNOxセンサと、
該NOxセンサからの信号に基づいて前記還元触媒によるNOx浄化性能を算出するNOx浄化性能算出手段と、
任意の運転状態における前記還元触媒による目標触媒NOx浄化性能を設定する手段と、
前記目標触媒NOx浄化性能に応じた入口アンモニア供給量を設定する手段と、
前記設定された入口アンモニア供給量を供給したときの前記NOx浄化性能算出手段による浄化性能値と前記設定された目標触媒NOx浄化性能値との比較に基づいて前記NOxセンサが異常であるか否かを判定する判定手段と、を備え、
該判定手段によって異常であると判定したとき、前記目標触媒NOx浄化性能値に応じて設定される入口アンモニア供給量に基づいて前記排気ガス還元剤の供給量を算出する還元剤供給量制御手段を備えたこと特徴とするNOx浄化装置の制御装置。
In a control device for a NOx purification device comprising an exhaust gas reducing agent supply device upstream of a reduction catalyst provided in an exhaust passage of an internal combustion engine,
A NOx sensor disposed downstream of the reduction catalyst in the exhaust passage;
NOx purification performance calculating means for calculating NOx purification performance by the reduction catalyst based on a signal from the NOx sensor;
Means for setting a target catalyst NOx purification performance by the reduction catalyst in an arbitrary operation state;
Means for setting an inlet ammonia supply amount in accordance with the target catalyst NOx purification performance;
Whether or not the NOx sensor is abnormal based on a comparison between the purification performance value by the NOx purification performance calculating means when the set inlet ammonia supply amount is supplied and the set target catalyst NOx purification performance value Determining means for determining
A reducing agent supply amount control means for calculating a supply amount of the exhaust gas reducing agent on the basis of an inlet ammonia supply amount set according to the target catalyst NOx purification performance value when the determination means determines that the abnormality is present; A control device for a NOx purification device, comprising:
前記還元剤供給量制御手段は、前記目標触媒NOx浄化性能値から算出される前記排気ガス還元剤量に安全係数として0.5〜1未満の補正係数を乗算することを特徴とする請求項1記載のNOx浄化装置の制御装置。   2. The reducing agent supply amount control means multiplies the exhaust gas reducing agent amount calculated from the target catalyst NOx purification performance value by a correction coefficient of 0.5 to less than 1 as a safety coefficient. The control apparatus of the NOx purification apparatus as described. 排ガス還元剤の濃度を検出する還元剤濃度センサを備え、還元剤濃度の設定値と前記還元剤濃度センサの検出値とを比較して排ガス還元剤濃度が適正であるときに前記判定手段による判定を実行することを特徴とする請求項1記載のNOx浄化装置の制御装置。   A reducing agent concentration sensor for detecting the concentration of the exhaust gas reducing agent is provided. When the exhaust gas reducing agent concentration is appropriate by comparing the set value of the reducing agent concentration with the detection value of the reducing agent concentration sensor, the determination by the determining means The control device for the NOx purification device according to claim 1, wherein: 前記還元触媒の温度を推定するために前記還元触媒の少なくとも上流側または下流側の一方に設置された温度センサによって検出された排ガス温度に基づいて算出された還元触媒温度と、前記温度センサ以外の他の排ガス温度センサによって検出された排ガス温度または内燃機関の運転状態から算出した排ガス温度に基づいて推定される還元触媒の温度とを比較して前記温度センサが異常か否かを判定する温度センサ異常判定手段を備えたことを特徴とする請求項1記載のNOx浄化装置の制御装置。   In order to estimate the temperature of the reduction catalyst, a reduction catalyst temperature calculated based on an exhaust gas temperature detected by a temperature sensor installed at least on one of the upstream side and the downstream side of the reduction catalyst, and other than the temperature sensor A temperature sensor that compares the exhaust gas temperature detected by another exhaust gas temperature sensor or the temperature of the reduction catalyst estimated based on the exhaust gas temperature calculated from the operating state of the internal combustion engine to determine whether or not the temperature sensor is abnormal The control device for the NOx purification device according to claim 1, further comprising abnormality determination means. 前記温度センサ異常判定手段によって温度センサが異常であると判定したときに、前記温度センサ以外の他の排ガス温度センサによって検出された排ガス温度または内燃機関の運転状態から算出した排ガス温度に基づいて還元触媒の温度を推定することを特徴とする請求項4記載のNOx浄化装置の制御装置。   When the temperature sensor abnormality determining means determines that the temperature sensor is abnormal, reduction based on the exhaust gas temperature detected by the exhaust gas temperature sensor other than the temperature sensor or the exhaust gas temperature calculated from the operating state of the internal combustion engine The control device for the NOx purification device according to claim 4, wherein the temperature of the catalyst is estimated.
JP2016048868A 2016-03-11 2016-03-11 Control device for nox purification device Pending JP2016128695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048868A JP2016128695A (en) 2016-03-11 2016-03-11 Control device for nox purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048868A JP2016128695A (en) 2016-03-11 2016-03-11 Control device for nox purification device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010255415A Division JP6130619B2 (en) 2010-11-15 2010-11-15 Control device for NOx purification device

Publications (1)

Publication Number Publication Date
JP2016128695A true JP2016128695A (en) 2016-07-14

Family

ID=56384213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048868A Pending JP2016128695A (en) 2016-03-11 2016-03-11 Control device for nox purification device

Country Status (1)

Country Link
JP (1) JP2016128695A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057502A (en) * 2006-09-01 2008-03-13 Honda Motor Co Ltd Abnormality determination apparatus for temperature detection device
JP2010071227A (en) * 2008-09-19 2010-04-02 Mazda Motor Corp Engine exhaust emission control device
JP2010248963A (en) * 2009-04-14 2010-11-04 Nippon Soken Inc Exhaust emission control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057502A (en) * 2006-09-01 2008-03-13 Honda Motor Co Ltd Abnormality determination apparatus for temperature detection device
JP2010071227A (en) * 2008-09-19 2010-04-02 Mazda Motor Corp Engine exhaust emission control device
JP2010248963A (en) * 2009-04-14 2010-11-04 Nippon Soken Inc Exhaust emission control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP6130619B2 (en) Control device for NOx purification device
JP3979153B2 (en) NOx purification device for internal combustion engine
JP6257941B2 (en) Method for reducing nitrogen oxides in diesel engine exhaust gas
EP2918805B1 (en) Exhaust gas purification device for internal-combustion engine
US9238984B2 (en) Exhaust emission prediction system and method
US9097159B2 (en) Method for detecting urea deposits in an exhaust line of an automotive vehicle, method for eliminating urea deposits and automotive vehicle adapted to such methods
KR20170039579A (en) Method for the operation of an exhaust gas aftertreatment system
EP2591216B1 (en) Exhaust gas purification apparatus and reductant dispensing method for internal combustion engine
WO2010079621A1 (en) Apparatus for determination of component passing through catalyst, and exhaust gas purification apparatus for internal combustion engine
US10145284B2 (en) Exhaust after-treatment system including sliding mode ammonia controller
JP2011196311A (en) Exhaust emission purifying method and exhaust emission purifying apparatus
JP5915516B2 (en) Exhaust gas purification device for internal combustion engine
JP6344259B2 (en) Urea addition control device, learning device
JP2011196309A (en) Exhaust emission control method and exhaust emission control device
JP2009156159A (en) Device for determining abnormal section of exhaust emission control system
EP3135875B1 (en) Exhaust purifying system
CN109154223B (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2011094572A (en) Nox cleaning device for internal combustion engine
JP2012082703A (en) DEVICE AND METHOD FOR DETECTING DEGRADATION OF SELECTIVE REDUCTION TYPE NOx CATALYST
KR20140137498A (en) Reductant injection volume control device of a vehicle and method of controlling the same
EP2905443B1 (en) Exhaust gas purification apparatus for an internal combustion engine
US9228467B2 (en) Urea injection controller for a motorized system
JP2016128695A (en) Control device for nox purification device
JP6121974B2 (en) Exhaust gas purification device for internal combustion engine
JP2011226402A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170929