JP2016125407A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2016125407A
JP2016125407A JP2014266171A JP2014266171A JP2016125407A JP 2016125407 A JP2016125407 A JP 2016125407A JP 2014266171 A JP2014266171 A JP 2014266171A JP 2014266171 A JP2014266171 A JP 2014266171A JP 2016125407 A JP2016125407 A JP 2016125407A
Authority
JP
Japan
Prior art keywords
speed
low
exhaust
intake
turbocharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014266171A
Other languages
Japanese (ja)
Other versions
JP6537271B2 (en
Inventor
毅 芹澤
Takeshi Serizawa
毅 芹澤
清貴 若狹
Kiyotaka Wakasa
清貴 若狹
拓真 大芝
Takuma Oshiba
拓真 大芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2014266171A priority Critical patent/JP6537271B2/en
Publication of JP2016125407A publication Critical patent/JP2016125407A/en
Application granted granted Critical
Publication of JP6537271B2 publication Critical patent/JP6537271B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress leakage of a lubricant from a bearing portion of a low-speed exhaust turbosupercharger when operating a high-speed exhaust turbosupercharger included in a two-stage turbo engine to perform supercharging of intake air.SOLUTION: An internal combustion engine comprises: a low-speed exhaust turbosupercharger with a low-speed turbine and a low-speed compressor; a high-speed exhaust turbosupercharger with a high-speed turbine and a high-speed compressor; an exhaust bypass valve for opening and closing a bypass passage which bypasses the low-speed turbine; an intake bypass valve for opening and closing a bypass passage which bypasses the low-speed compressor; and a control device which performs control for closing, or reducing openings of, both the bypass valves in a low-rotation operation region to perform supercharging with the low-speed exhaust turbosupercharger, while opening, or increasing the openings of, both the bypass valves in a high-rotation operation region to perform supercharging with the high-speed exhaust turbosupercharger, as well as maintaining a number of rotation of the low-speed exhaust turbosupercharger at or near a predetermined number of rotation.SELECTED DRAWING: Figure 1

Description

本発明は、排気ターボ過給機が付随する内燃機関に関する。   The present invention relates to an internal combustion engine with an exhaust turbocharger.

車両用の内燃機関として、排気ターボ過給機を備えたターボエンジンが公知である。排気ターボ過給機は、内燃機関の排気通路側に配置した駆動タービンと、吸気通路側に配置したコンプレッサとを同軸で連結し連動するように構成したものである。そして、排気が持つ残存エネルギを利用してタービンひいてはコンプレッサのインペラ(コンプレッサホイール)を回転させ、コンプレッサにポンプ作用を営ませることにより、吸入空気を加圧圧縮(過給)して気筒に送り込むことができる。   As an internal combustion engine for vehicles, a turbo engine provided with an exhaust turbocharger is known. The exhaust turbocharger is configured such that a drive turbine disposed on the exhaust passage side of the internal combustion engine and a compressor disposed on the intake passage side are coaxially connected and interlocked. The remaining energy of the exhaust is used to rotate the turbine, and thus the compressor impeller (compressor wheel), and pump the compressor so that the intake air is compressed (supercharged) and sent to the cylinder. Can do.

近時では、二基の排気ターボ過給機を併用する2ステージターボ(シーケンシャルターボ)エンジンも開発されている(例えば、下記特許文献を参照)。直列式の2ステージターボシステムでは、二基の排気ターボ過給機を直列に接続する。吸気通路上では、高速用ターボ過給機のコンプレッサが低速用ターボ過給機のコンプレッサよりも上流に位置する。排気通路上では、高速用ターボ過給機のタービンが低速用ターボ過給機のタービンの下流に位置する。吸気通路には、低速用ターボ過給機のコンプレッサを迂回する吸気バイパス通路が設けられ、排気通路にも、低速用ターボ過給機のタービンを迂回する排気バイパス通路が設けられる。   Recently, a two-stage turbo (sequential turbo) engine that uses two exhaust turbochargers has also been developed (see, for example, the following patent document). In an in-line two-stage turbo system, two exhaust turbochargers are connected in series. On the intake passage, the compressor of the high-speed turbocharger is located upstream of the compressor of the low-speed turbocharger. On the exhaust passage, the turbine of the high-speed turbocharger is located downstream of the turbine of the low-speed turbocharger. An intake bypass passage that bypasses the compressor of the low-speed turbocharger is provided in the intake passage, and an exhaust bypass passage that bypasses the turbine of the low-speed turbocharger is also provided in the exhaust passage.

エンジン回転数が比較的低い運転領域においては、上記の吸気バイパス通路及び排気バイパス通路を閉鎖し、低速用ターボ過給機による吸気の過給を実行する。他方、エンジン回転数が比較的高い運転領域においては、吸気バイパス通路及び排気バイパス通路を開通して、高速用ターボ過給機による吸気の過給を実行する。   In the operation region where the engine speed is relatively low, the intake bypass passage and the exhaust bypass passage are closed, and the intake air is supercharged by the low-speed turbocharger. On the other hand, in the operation region where the engine speed is relatively high, the intake bypass passage and the exhaust bypass passage are opened, and the intake air is supercharged by the high-speed turbocharger.

高速用ターボ過給機により吸気を過給している際には、圧縮された吸気が吸気バイパス通路を流通する。このとき、低速用ターボ過給機のコンプレッサの入口側が負圧となることがあり、低速用ターボ過給機の軸受けから潤滑油が吸い出される懸念があった。   When the intake air is supercharged by the high-speed turbocharger, the compressed intake air flows through the intake bypass passage. At this time, the inlet side of the compressor of the low-speed turbocharger may become negative pressure, and there is a concern that the lubricating oil is sucked out from the bearing of the low-speed turbocharger.

特開2014−214732号公報JP 2014-214732 A

本発明は、2ステージターボエンジンが備える高速用排気ターボ過給機を稼働させて吸気の過給を実行している際の、低速用排気ターボ過給機の軸受部分からの潤滑油の漏出を抑制することを所期の目的としている。   The present invention prevents leakage of lubricating oil from the bearing portion of the low-speed exhaust turbocharger when the high-speed exhaust turbocharger provided in the two-stage turbo engine is operated to perform supercharging of the intake air. The intended purpose is to suppress it.

本発明では、排気通路上に配置され排気のエネルギを利用して回転する低速用のタービン、及び吸気通路上に配置され前記低速用タービンに従動して回転し吸気を加圧圧縮する低速用のコンプレッサを要素とする低速用の排気ターボ過給機と、排気通路上における前記低速用タービンの下流に配置され排気のエネルギを利用して回転する高速用のタービン、及び吸気通路上における前記低速用コンプレッサの上流に配置され前記高速用タービンに従動して回転し吸気を加圧圧縮する高速用のコンプレッサを要素とする高速用の排気ターボ過給機と、前記低速用タービンを迂回する排気バイパス通路を開閉する排気バイパスバルブと、前記低速用コンプレッサを迂回する吸気バイパス通路を開閉する吸気バイパスバルブと、エンジン回転数が所定以下の低回転運転領域にて前記排気バイパスバルブ及び前記吸気バイパスバルブを閉止ないしその開度を縮小して前記低速用排気ターボ過給機による吸気の過給を実行する一方、エンジン回転数が所定以上の高回転運転領域にて前記排気バイパスバルブ及び前記吸気バイパスバルブを開放ないしその開度を拡大して前記高速用排気ターボ過給機による吸気の過給を実行するとともに、高速用排気ターボ過給機による吸気の過給を実行する際の低速用排気ターボ過給機の回転数を、当該低速用排気ターボ過給機において潤滑油漏れを起こさないような回転数に維持する制御を行う制御装置とを具備する内燃機関を構成した。   In the present invention, a low-speed turbine that is arranged on the exhaust passage and rotates by utilizing the energy of the exhaust, and a low-speed turbine that is arranged on the intake passage and rotates by following the low-speed turbine to compress and compress the intake air. A low-speed exhaust turbocharger having a compressor as an element, a high-speed turbine that is disposed downstream of the low-speed turbine on the exhaust passage and rotates using the energy of the exhaust, and the low-speed turbine on the intake passage A high-speed exhaust turbocharger including a high-speed compressor that is arranged upstream of a compressor and rotates following the high-speed turbine to compress and compress the intake air, and an exhaust bypass passage that bypasses the low-speed turbine An exhaust bypass valve that opens and closes the engine, an intake bypass valve that opens and closes an intake bypass path that bypasses the low-speed compressor, and an engine speed. In the following low speed operation region, the exhaust bypass valve and the intake bypass valve are closed or the opening degree thereof is reduced, and supercharging of the intake air is performed by the low speed exhaust turbocharger, while the engine speed is predetermined. In the above high speed operation region, the exhaust bypass valve and the intake bypass valve are opened or the opening thereof is expanded to perform supercharging of the intake air by the high speed exhaust turbocharger, and the high speed exhaust turbocharger. Control for maintaining the rotational speed of the low-speed exhaust turbocharger when performing supercharging of intake air by the turbocharger at a rotational speed that does not cause lubricating oil leakage in the low-speed exhaust turbocharger An internal combustion engine comprising the apparatus.

前記高速用排気ターボ過給機による吸気の過給を実行する際の前記制御装置による制御においては、前記低速用排気ターボ過給機の回転数を、低速用排気ターボ過給機による吸気の過給を実行することで最大のエンジントルクが出力される状態における低速用排気ターボ過給機の回転数よりも低い回転数に保つ。   In the control by the control device when the supercharging of the intake air by the high-speed exhaust turbocharger is executed, the rotation speed of the low-speed exhaust turbocharger is set to the intake air supercharging by the low-speed exhaust turbocharger. By maintaining the engine speed, the engine speed is kept lower than the engine speed of the low-speed exhaust turbocharger when the maximum engine torque is output.

また、前記高速用排気ターボ過給機による吸気の過給を実行する際、前記制御装置が、前記低速用コンプレッサの上流側の吸気圧と下流側の吸気圧との差圧が所定以下となるように前記排気バイパスバルブを操作することが好ましい。   Further, when supercharging the intake air by the high-speed exhaust turbocharger, the control device causes the differential pressure between the intake pressure on the upstream side and the intake pressure on the downstream side of the low-speed compressor to be a predetermined value or less. Thus, it is preferable to operate the exhaust bypass valve.

本発明によれば、高速用排気ターボ過給機を稼働させて吸気の過給を実行している際の、低速用排気ターボ過給機の軸受部分からの潤滑油の漏出を好適に抑制できる。   According to the present invention, it is possible to suitably suppress leakage of lubricating oil from the bearing portion of the low-speed exhaust turbocharger when the high-speed exhaust turbocharger is operated to perform intake supercharging. .

本発明の一実施形態の車両用内燃機関の構成を示す図。The figure which shows the structure of the internal combustion engine for vehicles of one Embodiment of this invention. 同実施形態の内燃機関の運転領域と排気ターボ過給機による過給との関係を示す図。The figure which shows the relationship between the driving | operation area | region of the internal combustion engine of the embodiment, and supercharging by an exhaust turbo supercharger.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態の内燃機関は、例えばディーゼルエンジンやHCCI(Homogeneous−Charge Compression Ignition)エンジン等のような圧縮着火式の4ストロークエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の燃焼室の天井部には、当該気筒1の燃焼室内に直接に燃料を噴射するインジェクタ11を設置している。また、各気筒1の吸気ポート近傍に、グロープラグ(余熱プラグ)12及びスワールコントロールバルブ13を設けている。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an internal combustion engine for a vehicle in the present embodiment. The internal combustion engine of the present embodiment is a compression ignition type four-stroke engine such as a diesel engine or a HCCI (homogeneous-charge compression ignition) engine, and a plurality of cylinders 1 (one of which is shown in FIG. 1). Are shown). An injector 11 that directly injects fuel into the combustion chamber of the cylinder 1 is installed on the ceiling of the combustion chamber of each cylinder 1. Further, a glow plug (residual heat plug) 12 and a swirl control valve 13 are provided in the vicinity of the intake port of each cylinder 1.

吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、排気ターボ過給機5のコンプレッサ51、排気ターボ過給機6のコンプレッサ61、水冷式インタクーラ35、電子スロットルバルブ32、サージタンク33及び吸気マニホルド34を、上流からこの順序に配置している。   The intake passage 3 for supplying intake air takes in air from the outside and guides it to the intake port of each cylinder 1. On the intake passage 3, an air cleaner 31, a compressor 51 of the exhaust turbocharger 5, a compressor 61 of the exhaust turbocharger 6, a water-cooled intercooler 35, an electronic throttle valve 32, a surge tank 33 and an intake manifold 34 are disposed upstream. Are arranged in this order.

排気を排出するための排気通路4は、気筒1内で燃料を燃焼させた結果発生した排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42、排気ターボ過給機6の排気タービン62、排気ターボ過給機5の排気タービン52及び排気浄化装置41を配置している。排気浄化装置41は、排気に含まれる粒子状物質(Particulate Material)を漉し取るフィルタ(Praticulate Filter)や、有害物質の酸化または還元を促す触媒を包含する。   The exhaust passage 4 for discharging the exhaust guides the exhaust generated as a result of burning the fuel in the cylinder 1 from the exhaust port of each cylinder 1 to the outside. An exhaust manifold 42, an exhaust turbine 62 of the exhaust turbocharger 6, an exhaust turbine 52 of the exhaust turbocharger 5, and an exhaust purification device 41 are disposed on the exhaust passage 4. The exhaust emission control device 41 includes a filter that removes particulate matter contained in the exhaust (Particulate Material) and a catalyst that promotes oxidation or reduction of harmful substances.

排気ターボ過給機5、6は、排気タービン52、62とコンプレッサ51、61のインペラとをシャフトを介して同軸で連結し、連動するように構成したものである。そして、タービン52、62及びコンプレッサ51、61のインペラを排気のエネルギを利用して回転駆動し、その回転力を以てコンプレッサにポンプ作用を営ませることにより、吸入空気を加圧圧縮(過給)して気筒1に送り込む。   The exhaust turbochargers 5 and 6 are configured such that the exhaust turbines 52 and 62 and the impellers of the compressors 51 and 61 are coaxially connected via a shaft and interlocked with each other. Then, the impellers of the turbines 52 and 62 and the compressors 51 and 61 are rotationally driven using the energy of the exhaust, and the compressor is pumped with the rotational force to compress and compress (supercharge) the intake air. Into cylinder 1.

本実施形態の内燃機関は、排気ターボ過給機5、6を二基備える、いわゆる2ステージターボ(シーケンシャルターボ)エンジンである。排気ターボ過給機5は、エンジン回転数が比較的高い運転領域で仕事をする高速用ターボ過給機である。他方、排気ターボ過給機6は、エンジン回転数が比較的低い運転領域で仕事をする低速用ターボ過給機である。低速用ターボ過給機6の容量は、高速用ターボ過給機5の容量と比較して小さい。   The internal combustion engine of the present embodiment is a so-called two-stage turbo (sequential turbo) engine including two exhaust turbochargers 5 and 6. The exhaust turbocharger 5 is a high-speed turbocharger that works in an operation region where the engine speed is relatively high. On the other hand, the exhaust turbocharger 6 is a low-speed turbocharger that works in an operation region where the engine speed is relatively low. The capacity of the low-speed turbocharger 6 is smaller than the capacity of the high-speed turbocharger 5.

吸気通路3においては、低速用ターボ過給機6のコンプレッサ61を迂回する吸気バイパス通路36を設け、かつこの吸気バイパス通路36の出口を開閉するバルブ37を設置している。吸気バイパスバルブ37は、吸気バイパス通路36を流通する吸気の流量を制御する。高速用ターボ過給機5のコンプレッサ51を迂回する吸気バイパス通路は、存在しない。   In the intake passage 3, an intake bypass passage 36 that bypasses the compressor 61 of the low-speed turbocharger 6 is provided, and a valve 37 that opens and closes the outlet of the intake bypass passage 36 is provided. The intake bypass valve 37 controls the flow rate of intake air flowing through the intake bypass passage 36. There is no intake bypass passage that bypasses the compressor 51 of the high-speed turbocharger 5.

さらに、排気通路4においても、低速用ターボ過給機6のタービン62を迂回する排気バイパス通路43、及び高速用ターボ過給機5のタービン52を迂回する排気バイパス通路44を設けており、かつこれら排気バイパス通路43、44のそれぞれの入口を開閉する排気バイパスバルブ45、46を設置している。バルブ45は排気バイパス通路43を流通する排気の流量を制御し、バルブ46は排気バイパス通路44を流通する排気の流量を制御する。排気バイパスバルブ45、46は、WGV(Waste Gate Valve)と呼称されることもある。   Further, the exhaust passage 4 also includes an exhaust bypass passage 43 that bypasses the turbine 62 of the low-speed turbocharger 6, and an exhaust bypass passage 44 that bypasses the turbine 52 of the high-speed turbocharger 5, and Exhaust bypass valves 45 and 46 for opening and closing the respective inlets of the exhaust bypass passages 43 and 44 are provided. The valve 45 controls the flow rate of exhaust flowing through the exhaust bypass passage 43, and the valve 46 controls the flow rate of exhaust flowing through the exhaust bypass passage 44. The exhaust bypass valves 45 and 46 may be referred to as WGV (Waste Gate Valve).

バルブ37、46は、負圧アクチュエータ371、461を使用したVSV(Vaccum Switching Valve)である。負圧アクチュエータ371、461はダイヤフラム式アクチュエータであり、そのダイヤフラムの一方の面には負圧及び内蔵のスプリングによる弾性付勢力が、他方の面には大気圧が加わる。負圧は、バキュームポンプ91から供給される。バキュームポンプ91は、一定の大きさの負圧を発生させる。ダイヤフラム式アクチュエータ371、461とバキュームポンプ91とを接続する管路上にはそれぞれ、電磁ソレノイドバルブ372、462を設置している。ダイヤフラム式アクチュエータ371、461のダイヤフラムの一方の面に実際に作用する負圧の大きさは、電磁ソレノイドバルブ372、462の開度に応じて変化する。そして、バルブ37、46の開度は、ダイヤフラムの両面に作用する負圧及び大気圧の差圧と、ダイヤフラムを弾性付勢するスプリングの弾性付勢力との差に応じて変化する。つまり、電磁ソレノイドバルブ372、462の開度の操作を通じて、バルブ37、46の開度を操作することが可能である。   Valves 37 and 46 are VSV (Vaccum Switching Valve) using negative pressure actuators 371 and 461. The negative pressure actuators 371 and 461 are diaphragm actuators, and negative pressure and an elastic biasing force by a built-in spring are applied to one surface of the diaphragm, and atmospheric pressure is applied to the other surface. The negative pressure is supplied from the vacuum pump 91. The vacuum pump 91 generates a negative pressure having a certain magnitude. Electromagnetic solenoid valves 372 and 462 are installed on pipes connecting the diaphragm actuators 371 and 461 and the vacuum pump 91, respectively. The magnitude of the negative pressure that actually acts on one surface of the diaphragms of the diaphragm actuators 371 and 461 varies depending on the opening degree of the electromagnetic solenoid valves 372 and 462. The opening degrees of the valves 37 and 46 change according to the difference between the differential pressure between the negative pressure and the atmospheric pressure acting on both surfaces of the diaphragm and the elastic biasing force of the spring that elastically biases the diaphragm. That is, the opening degree of the valves 37 and 46 can be operated through the operation of the opening degree of the electromagnetic solenoid valves 372 and 462.

これに対し、バルブ45は、電磁バルブであるEVRV(Electric Vacuum Regulating Valve)である。   On the other hand, the valve 45 is an EVRV (Electric Vacuum Regulating Valve) which is an electromagnetic valve.

外部EGR(Exhaust Gas Recirculation)装置2、7は、排気通路4を流れる排気の一部を吸気通路3に還流して吸気に混交せしめるものである。本実施形態の内燃機関は、EGR装置2、7を二基備える。EGR装置2は、いわゆる低圧ループEGRを実現するものであり、排気通路4における排気浄化装置41の下流側を吸気通路3における高速用ターボ過給機5のコンプレッサ51の上流側に連通させるEGR通路21と、当該EGR通路21を開閉するEGRバルブ22とを要素に含む。EGRバルブ22は、EGR通路21を流通する低圧ループEGRガスの流量を制御する。   External EGR (Exhaust Gas Recirculation) devices 2 and 7 return a part of the exhaust gas flowing through the exhaust passage 4 to the intake passage 3 to be mixed with the intake air. The internal combustion engine of this embodiment includes two EGR devices 2 and 7. The EGR device 2 realizes a so-called low pressure loop EGR, and communicates the downstream side of the exhaust purification device 41 in the exhaust passage 4 to the upstream side of the compressor 51 of the high-speed turbocharger 5 in the intake passage 3. 21 and an EGR valve 22 that opens and closes the EGR passage 21 are included as elements. The EGR valve 22 controls the flow rate of the low-pressure loop EGR gas that flows through the EGR passage 21.

EGR装置7は、いわゆる高圧ループEGRを実現するものであり、排気通路4における低速用ターボ過給機6のタービン62の上流側を吸気通路3におけるインタクーラ35の下流側に連通させるEGR通路71と、当該EGR通路71を開閉するEGRバルブ72とを要素に含む。EGRバルブ72は、EGR通路71を流通する高圧ループEGRガスの流量を制御する。   The EGR device 7 realizes a so-called high-pressure loop EGR, and an EGR passage 71 that communicates the upstream side of the turbine 62 of the low-speed turbocharger 6 in the exhaust passage 4 to the downstream side of the intercooler 35 in the intake passage 3. An EGR valve 72 that opens and closes the EGR passage 71 is included as an element. The EGR valve 72 controls the flow rate of the high-pressure loop EGR gas that flows through the EGR passage 71.

加えて、排気通路4における、低圧ループEGR通路21の接続箇所よりも下流の箇所に、排気絞りバルブ47を設置している。低圧ループEGR通路21が接続している吸気通路のコンプレッサ51の上流側の圧力は、当該コンプレッサ51による過給の度合いに応じて変動する。その結果として、低圧ループEGR通路21を流れるEGRガスの流量が変化する。排気絞りバルブ47は、EGRバルブ22とともに、低圧ループEGRガスの流量、ひいては気筒1に充填される吸気に占めるEGRガスの割合であるEGR率を目標値に収束させるために機能する。   In addition, an exhaust throttle valve 47 is installed in the exhaust passage 4 at a location downstream of the connection location of the low-pressure loop EGR passage 21. The pressure on the upstream side of the compressor 51 in the intake passage to which the low-pressure loop EGR passage 21 is connected varies depending on the degree of supercharging by the compressor 51. As a result, the flow rate of EGR gas flowing through the low pressure loop EGR passage 21 changes. The exhaust throttle valve 47, together with the EGR valve 22, functions to converge the flow rate of the low-pressure loop EGR gas, and thus the EGR rate, which is the ratio of EGR gas in the intake air charged in the cylinder 1, to the target value.

本実施形態の内燃機関の制御装置たるECU(Electronic Control Unit)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。   An ECU (Electronic Control Unit) 0 serving as a control device for an internal combustion engine according to the present embodiment is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like.

ECU0の入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、クランクシャフトの回転角度及びエンジン回転数を検出するエンジン回転センサから出力されるクランク角信号b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(いわば、要求されるエンジントルクまたは負荷)として検出するセンサから出力されるアクセル開度信号c、吸気通路3のサージタンク33内の(即ち、気筒1に流入する)吸気の温度及び圧力(過給圧)を検出する吸気温・吸気圧センサから出力される吸気温・吸気圧信号d、大気圧を検出する大気圧センサから出力される大気圧信号e、吸気通路3の最上流即ちエアクリーナ31の下流かつ低圧ループEGR通路21の接続箇所の上流における新気の流量及び温度を検出するエアフローメータ・新気温センサから出力される新気流量・温度信号f、吸気通路3のコンプレッサ51の下流かつコンプレッサ61の上流における吸気の圧力(高速用ターボ過給機5による過給圧)を検出する吸気圧センサから出力される吸気圧信号g、内燃機関の温度を示唆する冷却水温を検出するセンサから出力される冷却水温信号h等が入力される。   The input interface of the ECU 0 includes a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed of the vehicle, a crank angle signal b output from an engine rotation sensor that detects the rotation angle of the crankshaft and the engine speed, and an accelerator pedal. The accelerator opening signal c output from a sensor that detects the amount of depression of the engine or the opening of the throttle valve 32 as an accelerator opening (in other words, a required engine torque or load), and in the surge tank 33 of the intake passage 3 (that is, The intake air temperature / intake pressure signal d output from the intake air temperature / intake pressure sensor for detecting the temperature and pressure (supercharging pressure) of the intake air (flowing into the cylinder 1), and output from the atmospheric pressure sensor for detecting the atmospheric pressure. At the atmospheric pressure signal e, the most upstream of the intake passage 3, that is, downstream of the air cleaner 31 and upstream of the connection point of the low pressure loop EGR passage 21. An air flow meter for detecting the flow rate and temperature of fresh air, a fresh air flow rate / temperature signal f output from a fresh air temperature sensor, an intake pressure downstream of the compressor 51 and upstream of the compressor 61 in the intake passage 3 (high-speed turbocharger) An intake pressure signal g output from an intake pressure sensor that detects a supercharging pressure by the machine 5, a cooling water temperature signal h output from a sensor that detects a cooling water temperature that indicates the temperature of the internal combustion engine, and the like are input.

ECU0の出力インタフェースからは、インジェクタ11に対して燃料噴射信号i、スロットルバルブ32に対して開度操作信号j、EGRバルブ22に対して開度操作信号k、EGRバルブ72に対して開度操作信号l、VSV37の開閉駆動を司る電磁ソレノイドバルブ372に対して開度操作信号m、EVRV45に対して開度操作信号n、VSV46の開閉駆動を司る電磁ソレノイドバルブ462に対して開度操作信号o、排気絞りバルブ47に対して開度操作信号p等を出力する。   From the output interface of the ECU 0, the fuel injection signal i for the injector 11, the opening operation signal j for the throttle valve 32, the opening operation signal k for the EGR valve 22, and the opening operation signal for the EGR valve 72. Opening operation signal m for the electromagnetic solenoid valve 372 that controls the opening / closing drive of the signal l, VSV 37, opening operation signal n for the EVRV 45, and opening operation signal o for the electromagnetic solenoid valve 462 that controls the opening / closing drive of the VSV 46. The opening operation signal p and the like are output to the exhaust throttle valve 47.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに、気筒1に充填される吸気(新気)量に見合った燃料噴射量を推算する。また、それとともに、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、要求EGR率(または、EGR量)、排気ターボ過給機5、6による過給の目標過給圧等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、l、m、n、o、pを出力インタフェースを介して印加する。   The processor of the ECU 0 interprets and executes a program stored in the memory in advance, calculates operation parameters, and controls the operation of the internal combustion engine. The ECU 0 acquires various information a, b, c, d, e, f, g, and h necessary for operation control of the internal combustion engine via the input interface, knows the engine speed, and is filled in the cylinder 1. Estimate the fuel injection amount commensurate with the amount of intake air (fresh air). At the same time, fuel injection timing (including the number of times of fuel injection for one combustion), fuel injection pressure, required EGR rate (or EGR amount), and target supercharging of supercharging by the exhaust turbochargers 5 and 6 Various operating parameters such as pressure are determined. The ECU 0 applies various control signals i, j, k, l, m, n, o, and p corresponding to the operation parameters via the output interface.

図2に、本実施形態の内燃機関の運転領域と、排気ターボ過給機5、6による過給との関係を示している。図2に関し、横軸はエンジン回転数、縦軸はエンジントルクである。アクセル開度が小さく、内燃機関が出力するエンジントルクが比較的小さい領域A1では、排気通路4を流れる排気の流量が小さく、排気ターボ過給機5、6が殆どないし全く仕事をしない。よって、ECU0は、VSV37、46及びEVRV45をそれぞれ開弁し、バイパス通路36、43、44を開通させて内燃機関のポンピングロスをできる限り低減する。このとき、吸気圧信号gを参照して知得される、コンプレッサ51の下流かつコンプレッサ61の上流の吸気圧が目標吸気圧となるよう、VSV46の開度をフィードバック制御しても構わない。その目標吸気圧は、大気圧信号eを参照して知得される大気圧またはその近傍の値に設定することが好ましい。さすれば、吸気通路3における、高速用ターボ過給機5のコンプレッサ51によるロスが小さくなり、燃費性能の向上に寄与し得る。   FIG. 2 shows the relationship between the operating range of the internal combustion engine of the present embodiment and the supercharging by the exhaust turbochargers 5 and 6. In FIG. 2, the horizontal axis represents the engine speed and the vertical axis represents the engine torque. In a region A1 where the accelerator opening is small and the engine torque output from the internal combustion engine is relatively small, the flow rate of the exhaust gas flowing through the exhaust passage 4 is small, and the exhaust turbochargers 5 and 6 do little or no work. Accordingly, the ECU 0 opens the VSVs 37 and 46 and the EVRV 45, respectively, and opens the bypass passages 36, 43 and 44 to reduce the pumping loss of the internal combustion engine as much as possible. At this time, the opening degree of the VSV 46 may be feedback-controlled so that the intake pressure downstream of the compressor 51 and upstream of the compressor 61, which is known with reference to the intake pressure signal g, becomes the target intake pressure. The target intake pressure is preferably set to an atmospheric pressure obtained by referring to the atmospheric pressure signal e or a value in the vicinity thereof. Then, the loss due to the compressor 51 of the high-speed turbocharger 5 in the intake passage 3 is reduced, which can contribute to improvement in fuel efficiency.

アクセル開度がある程度以上大きく、エンジントルクもある程度以上大きいが、エンジン回転数が比較的低い領域A2では、低速用ターボ過給機6による過給を行う。当該領域A2において、ECU0は、VSV37を全閉して吸気バイパス通路36を閉鎖し、吸気通路3を流れる吸気を全てコンプレッサ61に流入させる。それとともに、EVRV45を全閉するかその開度を絞り、排気通路4を流れる排気を十分にタービン62に流入させる。このとき、吸気温・吸気圧信号dを参照して知得される吸気圧を目標過給圧に追従させるよう、EVRV45の開度をフィードバック制御してもよい。加えて、ECU0は、吸気圧信号gを参照して知得される、コンプレッサ51の上流かつコンプレッサ61の下流の吸気圧が目標吸気圧となるように、VSV46の開度をフィードバック制御する。その目標吸気圧は、大気圧信号eを参照して知得される大気圧またはその近傍の値に設定することが好ましい。さすれば、低速用ターボ過給機6のコンプレッサ61の入口側が負圧とならず、気筒1に充填される吸気の過給が効率化する上、高速用ターボ過給機5のコンプレッサ51によるロスが小さくなり、燃費性能の向上に寄与し得る。   In the region A2 where the accelerator opening is larger than a certain level and the engine torque is larger than a certain level, but the engine speed is relatively low, supercharging by the low speed turbocharger 6 is performed. In the region A2, the ECU 0 fully closes the VSV 37 and closes the intake bypass passage 36, and causes all the intake air flowing through the intake passage 3 to flow into the compressor 61. At the same time, the EVRV 45 is fully closed or its opening degree is reduced, and the exhaust gas flowing through the exhaust passage 4 is sufficiently introduced into the turbine 62. At this time, the opening degree of the EVRV 45 may be feedback-controlled so that the intake pressure obtained by referring to the intake air temperature / intake pressure signal d follows the target boost pressure. In addition, the ECU 0 feedback-controls the opening degree of the VSV 46 so that the intake pressure upstream of the compressor 51 and downstream of the compressor 61, which is known with reference to the intake pressure signal g, becomes the target intake pressure. The target intake pressure is preferably set to an atmospheric pressure obtained by referring to the atmospheric pressure signal e or a value in the vicinity thereof. Then, the inlet side of the compressor 61 of the low-speed turbocharger 6 does not become negative pressure, the supercharging of the intake air charged in the cylinder 1 becomes efficient, and the compressor 51 of the high-speed turbocharger 5 Loss is reduced, which can contribute to improved fuel efficiency.

アクセル開度がある程度以上大きく、エンジントルクもある程度以上大きく、エンジン回転数が比較的高い領域A4では、高速用ターボ過給機5による過給を行う。当該領域A4において、ECU0は、VSV37及びEVRV45を開弁してバイパス通路36、43を開通させる。その上で、VSV46を全閉するかその開度を絞り、排気通路4を流れる排気を十分にタービン52に流入させる。このとき、吸気温・吸気圧信号dを参照して知得される吸気圧、及び/または、吸気圧信号gを参照して知得されるコンプレッサ51の上流かつコンプレッサ61の下流の吸気圧を目標過給圧に追従させるように、VSV46の開度をフィードバック制御する。   In the region A4 where the accelerator opening is larger than a certain level, the engine torque is larger than a certain level, and the engine speed is relatively high, supercharging is performed by the high-speed turbocharger 5. In the area A4, the ECU 0 opens the VSV 37 and the EVRV 45 to open the bypass passages 36 and 43. Then, the VSV 46 is fully closed or its opening degree is reduced, and the exhaust gas flowing through the exhaust passage 4 is sufficiently introduced into the turbine 52. At this time, the intake pressure obtained by referring to the intake air temperature / intake pressure signal d and / or the intake pressure upstream of the compressor 51 and downstream of the compressor 61 obtained by referring to the intake pressure signal g are determined. The opening degree of the VSV 46 is feedback-controlled so as to follow the target boost pressure.

アクセル開度がある程度以上大きく、エンジントルクもある程度以上大きく、エンジン回転数が中程度の領域A3は、上述の低速ターボ領域A2と高速ターボ領域A4との間の過渡領域である。この過渡領域A3においては、低速用ターボ過給機6及び高速用ターボ過給機5の両方による過給を行う。低速ターボ領域A2から高速ターボ領域A4へと遷移する過程では、エンジン回転数が上昇するにつれて、VSV37及びEVRV45のそれぞれの開度が略全閉から略全開に向かうように徐々に拡大してゆく。このとき、ECU0は、吸気温・吸気圧信号dを参照して知得される吸気圧を目標過給圧に追従させるよう、EVRV45の開度をフィードバック制御する。翻って、VSV46の開度は、エンジン回転数が上昇するにつれて徐々に縮小してゆく。ECU0は、吸気圧信号gを参照して知得される、コンプレッサ51の上流かつコンプレッサ61の下流の吸気圧を目標過給圧に追従させるよう、VSV46の開度をフィードバック制御する。   A region A3 where the accelerator opening is larger than a certain level, the engine torque is larger than a certain level, and the engine speed is medium is a transient region between the low-speed turbo region A2 and the high-speed turbo region A4. In the transition region A3, supercharging is performed by both the low-speed turbocharger 6 and the high-speed turbocharger 5. In the process of transition from the low-speed turbo region A2 to the high-speed turbo region A4, as the engine speed increases, the respective openings of the VSV 37 and the EVRV 45 gradually increase so as to go from substantially fully closed to substantially fully open. At this time, the ECU 0 feedback-controls the opening degree of the EVRV 45 so that the intake pressure obtained by referring to the intake air temperature / intake pressure signal d follows the target boost pressure. In turn, the opening of the VSV 46 gradually decreases as the engine speed increases. The ECU 0 feedback-controls the opening degree of the VSV 46 so that the intake pressure upstream of the compressor 51 and downstream of the compressor 61, which is known with reference to the intake pressure signal g, follows the target boost pressure.

なお、高速ターボ領域A4では、積極的には低速用ターボ過給機6による過給を行わないが、コンプレッサ61及びタービン62の回転は、過回転とならない程度の回転数に維持する。これは、低速用ターボ過給機6の軸受のシールが軸の回転を前提としており、コンプレッサ61及びタービン62の回転が衰えまたは止まってしまうと潤滑油漏れが起こる(吸気バイパス通路36が開通しており、コンプレッサ51の入口側が負圧の状態になると潤滑油が吸われてしまう)ことによる。   In the high-speed turbo region A4, the turbocharging by the low-speed turbocharger 6 is not actively performed, but the rotation of the compressor 61 and the turbine 62 is maintained at a rotational speed that does not cause excessive rotation. This is based on the assumption that the bearing seal of the low-speed turbocharger 6 rotates the shaft, and if the rotation of the compressor 61 and the turbine 62 ceases or stops, lubricating oil leakage occurs (the intake bypass passage 36 is opened). And when the inlet side of the compressor 51 is in a negative pressure state, the lubricating oil is sucked).

そのために、ECU0は、吸気バイパスバルブであるVSV37の開度をできる限り大きく開いておく一方で、排気バイパスバルブであるEVRV45の開度を、低速用ターボ過給機6(のコンプレッサ61及びタービン62)の回転数が所定回転数(例えば、100000rpm程度)またはその近傍の範囲に維持されるように、全開よりもやや絞る操作をする。換言すれば、ECU0が、低速用ターボ過給機6の回転数と所定回転数との差の絶対値が所定以下に収まるように、EVRV45の開度を制御する。ここで、所定回転数は、低速ターボ領域A2にて最大のエンジントルクが出力される点Xにおける低速用ターボ過給機6の回転数よりも低い回転数とする。また、低速用ターボ過給機6の回転数が所定回転数近傍に収束することにより、コンプレッサ61の上流側の吸気圧と下流側の吸気圧との差圧が所定以下となる。   For this purpose, the ECU 0 keeps the opening degree of the VSV 37 that is the intake bypass valve as large as possible, while setting the opening degree of the EVRV 45 that is the exhaust bypass valve to the low-speed turbocharger 6 (the compressor 61 and the turbine 62). ) Is kept slightly narrower than fully opened so that the rotation number is maintained at a predetermined rotation number (for example, about 100,000 rpm) or a range in the vicinity thereof. In other words, the ECU 0 controls the opening degree of the EVRV 45 so that the absolute value of the difference between the rotational speed of the low-speed turbocharger 6 and the predetermined rotational speed is within a predetermined value. Here, the predetermined rotation speed is set to be lower than the rotation speed of the low-speed turbocharger 6 at the point X at which the maximum engine torque is output in the low-speed turbo region A2. Further, when the rotational speed of the low-speed turbocharger 6 converges to the vicinity of the predetermined rotational speed, the differential pressure between the intake pressure on the upstream side of the compressor 61 and the intake pressure on the downstream side becomes equal to or less than a predetermined value.

ECU0のメモリには予め、内燃機関の運転領域[エンジン回転数,アクセル開度(または、エンジントルク、サージタンク33内吸気圧、気筒1に充填される吸気(新気)量)]と、VSV37及びEVRV45の各々の開度との関係を規定したマップデータが格納されている。高速ターボ領域A4にあって、ECU0は、現在の内燃機関の運転領域を表すパラメータをキーとして当該マップを検索し、VSV37及びEVRV45の各開度を知得して、VSV37及びEVRV45を当該開度に操作する。結果として、低速用ターボ過給機6の回転数が、所定回転数の近傍の範囲に維持される。なお、マップデータから知得したVSV37の開度及び/またはEVRV45の開度を、そのときの大気圧や外気温(エアクリーナ31近傍の新気温)、内燃機関の冷却水温または潤滑油温等を基づき補正し、その補正した開度にVSV37及び/またはEVRV45を操作するようにしてもよい。   In the memory of the ECU 0, the operating area of the internal combustion engine [engine speed, accelerator opening (or engine torque, intake pressure in the surge tank 33, intake air amount filled in the cylinder 1), and VSV 37 are stored in advance. And map data defining the relationship with the respective opening degrees of the EVRV 45 is stored. In the high-speed turbo region A4, the ECU 0 searches the map using the parameter indicating the current operation region of the internal combustion engine as a key, knows the respective opening amounts of the VSV 37 and the EVRV 45, and sets the VSV 37 and the EVRV 45 to the opening amount. To operate. As a result, the rotational speed of the low-speed turbocharger 6 is maintained in the range near the predetermined rotational speed. The opening degree of VSV 37 and / or the opening degree of EVRV 45 obtained from the map data is determined based on the atmospheric pressure, the outside air temperature (new air temperature in the vicinity of the air cleaner 31), the cooling water temperature of the internal combustion engine, the lubricating oil temperature, or the like. You may make it correct | amend and operate VSV37 and / or EVRV45 to the corrected opening degree.

本実施形態では、排気通路4上に配置され排気のエネルギを利用して回転する低速用のタービン62、及び吸気通路3上に配置され前記低速用タービン62に従動して回転し吸気を加圧圧縮する低速用のコンプレッサ61を要素とする低速用の排気ターボ過給機6と、排気通路4上における前記低速用タービン62の下流に配置され排気のエネルギを利用して回転する高速用のタービン52、及び吸気通路3上における前記低速用コンプレッサ61の上流に配置され前記高速用タービン52に従動して回転し吸気を加圧圧縮する高速用のコンプレッサ51を要素とする高速用の排気ターボ過給機5と、前記低速用タービン62を迂回する排気バイパス通路43を開閉する排気バイパスバルブ45と、前記低速用コンプレッサ61を迂回する吸気バイパス通路36を開閉する吸気バイパスバルブ37と、エンジン回転数が所定以下の低回転運転領域A2にて前記排気バイパスバルブ45及び前記吸気バイパスバルブ37を閉止ないしその開度を縮小して前記低速用排気ターボ過給機6による吸気の過給を実行する一方、エンジン回転数が所定以上の高回転運転領域A4にて前記排気バイパスバルブ45及び前記吸気バイパスバルブ37を開放ないしその開度を拡大して前記高速用排気ターボ過給機5による吸気の過給を実行するとともに、高速用排気ターボ過給機5による吸気の過給を実行する際の低速用排気ターボ過給機6の回転数を、当該低速用排気ターボ過給機6において潤滑油漏れを起こさないような所定回転数またはその近傍に維持する制御を行う制御装置0とを具備する内燃機関を構成した。   In the present embodiment, a low-speed turbine 62 that is arranged on the exhaust passage 4 and rotates using the energy of the exhaust, and a low-speed turbine 62 that is arranged on the intake passage 3 and is rotated by the low-speed turbine 62 to pressurize the intake air. A low-speed exhaust turbocharger 6 having a low-speed compressor 61 as a component, and a high-speed turbine that is disposed on the exhaust passage 4 downstream of the low-speed turbine 62 and rotates using the energy of the exhaust gas. 52 and a high-speed exhaust turbocharger that includes a high-speed compressor 51 that is arranged upstream of the low-speed compressor 61 on the intake passage 3 and rotates in accordance with the high-speed turbine 52 to compress and compress the intake air. A feeder 5, an exhaust bypass valve 45 that opens and closes an exhaust bypass passage 43 that bypasses the low speed turbine 62, and an intake that bypasses the low speed compressor 61. The intake bypass valve 37 that opens and closes the bypass passage 36, and the exhaust bypass valve 45 and the intake bypass valve 37 are closed or reduced in the low-speed operation region A2 where the engine speed is equal to or less than a predetermined value. While the supercharging of the intake air is performed by the exhaust turbo supercharger 6, the exhaust bypass valve 45 and the intake bypass valve 37 are opened or the degree of opening thereof is increased in the high speed operation region A4 where the engine speed is a predetermined value or more. In addition to executing the supercharging of the intake air by the high-speed exhaust turbocharger 5, the rotational speed of the low-speed exhaust turbocharger 6 when executing the supercharging of the intake air by the high-speed exhaust turbocharger 5 is set. The low-speed exhaust turbocharger 6 includes a control device 0 that performs control to maintain at or near a predetermined rotational speed that does not cause leakage of lubricating oil. To constitute a combustion engine.

本実施形態によれば、2ステージターボエンジンが備える高速用排気ターボ過給機5を稼働させて吸気の過給を実行している際の、低速用排気ターボ過給機6の軸受部分からの潤滑油の漏出を抑制することができる。   According to the present embodiment, when the high-speed exhaust turbocharger 5 provided in the two-stage turbo engine is operated to perform supercharging of the intake air, the low-speed exhaust turbocharger 6 from the bearing portion The leakage of the lubricating oil can be suppressed.

加えて、前記高速用排気ターボ過給機5による吸気の過給を実行する際の前記制御装置0による制御において、前記低速用排気ターボ過給機6の回転数を、低速用排気ターボ過給機6による吸気の過給を実行することで最大のエンジントルクが出力される状態(点X)における低速用排気ターボ過給機6の回転数よりも低い回転数に保つように前記排気バイパスバルブ45の開度を操作し、前記低速用コンプレッサ61の上流側の吸気圧と下流側の吸気圧との差圧が所定以下となるようにしているため、高速ターボ領域A4において低速用ターボ過給機6のタービン61が徒に排気のエネルギを奪ってしまうことがなく、高速用ターボ過給機5による過給の効率が高まり、内燃機関の出力の増大及び燃費性能の良化に奏功する。   In addition, in the control by the control device 0 when the supercharging of the intake air by the high speed exhaust turbocharger 5 is executed, the rotational speed of the low speed exhaust turbocharger 6 is set to the low speed exhaust turbocharger. The exhaust bypass valve is configured to keep the rotational speed lower than the rotational speed of the low-speed exhaust turbocharger 6 in a state where the maximum engine torque is output by executing supercharging of the intake air by the machine 6 (point X). 45 is operated so that the differential pressure between the intake pressure on the upstream side and the intake pressure on the downstream side of the low-speed compressor 61 is less than or equal to a predetermined value, so that the low-speed turbocharger is used in the high-speed turbo region A4. The turbine 61 of the machine 6 does not take away the energy of the exhaust gas easily, the efficiency of supercharging by the high-speed turbocharger 5 is increased, and the output of the internal combustion engine is increased and the fuel efficiency is improved.

なお、本発明は以上に詳述した実施形態に限られるものではない。例えば、上記実施形態では、高速ターボ領域A4における排気バイパスバルブ45の開度を予め策定したマップデータに則って操作するようにしていたが、低速用ターボ過給機6(のタービン61及びコンプレッサ62)の回転数をセンサを介して実測できる場合には、その実測の回転数が所定回転数に収束するように排気バイパスバルブ45をフィードバック制御することができる。   The present invention is not limited to the embodiment described in detail above. For example, in the above-described embodiment, the opening degree of the exhaust bypass valve 45 in the high-speed turbo region A4 is operated in accordance with map data prepared in advance, but the low-speed turbocharger 6 (the turbine 61 and the compressor 62 thereof). ) Can be measured via the sensor, the exhaust bypass valve 45 can be feedback controlled so that the actually measured rotational speed converges to a predetermined rotational speed.

さらに、高速ターボ領域A4において、吸気温・吸気圧信号dを参照して知得されるサージタンク33内の過給圧と、吸気圧信号gを参照して知得されるコンプレッサ51の下流かつコンプレッサ61の上流の過給圧との差圧が所定以下となるように、排気バイパスバルブ45をフィードバック制御することも考えられる。   Further, in the high-speed turbo region A4, the supercharging pressure in the surge tank 33 obtained by referring to the intake air temperature / intake pressure signal d, the downstream of the compressor 51 obtained by referring to the intake pressure signal g, and It is also conceivable to perform feedback control of the exhaust bypass valve 45 so that the differential pressure from the supercharging pressure upstream of the compressor 61 is equal to or less than a predetermined value.

その他各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   Other specific configurations of each part can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載される内燃機関に適用することができる。   The present invention can be applied to an internal combustion engine mounted on a vehicle or the like.

0…制御装置(ECU)
1…気筒
3…吸気通路
36…吸気バイパス通路
37…吸気バイパスバルブ(VSV)
4…排気通路
43…排気バイパス通路
45…排気バイパスバルブ(EVRV)
5…高速用排気ターボ過給機
51…高速用コンプレッサ
52…高速用タービン
6…低速用排気ターボ過給機
61…低速用コンプレッサ
62…低速用タービン
0 ... Control unit (ECU)
DESCRIPTION OF SYMBOLS 1 ... Cylinder 3 ... Intake passage 36 ... Intake bypass passage 37 ... Intake bypass valve (VSV)
4 ... Exhaust passage 43 ... Exhaust bypass passage 45 ... Exhaust bypass valve (EVRV)
5 ... High speed exhaust turbocharger 51 ... High speed compressor 52 ... High speed turbine 6 ... Low speed exhaust turbocharger 61 ... Low speed compressor 62 ... Low speed turbine

Claims (3)

排気通路上に配置され排気のエネルギを利用して回転する低速用のタービン、及び吸気通路上に配置され前記低速用タービンに従動して回転し吸気を加圧圧縮する低速用のコンプレッサを要素とする低速用の排気ターボ過給機と、
排気通路上における前記低速用タービンの下流に配置され排気のエネルギを利用して回転する高速用のタービン、及び吸気通路上における前記低速用コンプレッサの上流に配置され前記高速用タービンに従動して回転し吸気を加圧圧縮する高速用のコンプレッサを要素とする高速用の排気ターボ過給機と、
前記低速用タービンを迂回する排気バイパス通路を開閉する排気バイパスバルブと、
前記低速用コンプレッサを迂回する吸気バイパス通路を開閉する吸気バイパスバルブと、
エンジン回転数が所定以下の低回転運転領域にて前記排気バイパスバルブ及び前記吸気バイパスバルブを閉止ないしその開度を縮小して前記低速用排気ターボ過給機による吸気の過給を実行する一方、エンジン回転数が所定以上の高回転運転領域にて前記排気バイパスバルブ及び前記吸気バイパスバルブを開放ないしその開度を拡大して前記高速用排気ターボ過給機による吸気の過給を実行するとともに、高速用排気ターボ過給機による吸気の過給を実行する際の低速用排気ターボ過給機の回転数を、当該低速用排気ターボ過給機において潤滑油漏れを起こさないような回転数に維持する制御を行う制御装置と
を具備する内燃機関。
A low-speed turbine arranged on the exhaust passage and rotating by utilizing the energy of the exhaust, and a low-speed compressor arranged on the intake passage and rotated in accordance with the low-speed turbine to compress and compress the intake air An exhaust turbocharger for low speed,
A high-speed turbine that is arranged downstream of the low-speed turbine on the exhaust passage and rotates using the energy of exhaust gas, and is arranged upstream of the low-speed compressor on the intake passage and is driven by the high-speed turbine to rotate. A high-speed exhaust turbocharger that uses a high-speed compressor that compresses and compresses intake air,
An exhaust bypass valve that opens and closes an exhaust bypass passage that bypasses the low-speed turbine;
An intake bypass valve that opens and closes an intake bypass passage that bypasses the low-speed compressor;
While closing the exhaust bypass valve and the intake bypass valve in a low speed operation region where the engine speed is less than a predetermined value or reducing the opening thereof, the supercharging of the intake air by the low speed exhaust turbocharger is performed, While opening the exhaust bypass valve and the intake bypass valve in a high speed operation region where the engine speed is equal to or higher than a predetermined value or increasing the opening thereof, supercharging of the intake air by the high-speed exhaust turbocharger is performed, Maintains the speed of the low-speed exhaust turbocharger when the supercharging of the intake air is performed by the high-speed exhaust turbocharger so that no lubricating oil leaks in the low-speed exhaust turbocharger. An internal combustion engine comprising a control device that performs control.
前記高速用排気ターボ過給機による吸気の過給を実行する際の前記制御装置による制御において、前記低速用排気ターボ過給機の回転数を、低速用排気ターボ過給機による吸気の過給を実行することで最大のエンジントルクが出力される状態における低速用排気ターボ過給機の回転数よりも低い回転数に保つ請求項1記載の内燃機関。 In the control by the control device when the supercharging of the intake air by the high speed exhaust turbocharger is executed, the rotational speed of the low speed exhaust turbocharger is set to the supercharging of the intake air by the low speed exhaust turbocharger. The internal combustion engine according to claim 1, wherein the engine speed is maintained at a lower speed than that of the low-speed exhaust turbocharger in a state where the maximum engine torque is output by executing. 前記高速用排気ターボ過給機による吸気の過給を実行する際、前記制御装置が、前記低速用コンプレッサの上流側の吸気圧と下流側の吸気圧との差圧が所定以下となるように前記排気バイパスバルブを操作する請求項1記載の内燃機関。 When performing supercharging of intake air by the high-speed exhaust turbocharger, the control device is configured so that a differential pressure between the intake pressure on the upstream side and the intake pressure on the downstream side of the low-speed compressor is equal to or less than a predetermined value. The internal combustion engine according to claim 1, wherein the exhaust bypass valve is operated.
JP2014266171A 2014-12-26 2014-12-26 Internal combustion engine Expired - Fee Related JP6537271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014266171A JP6537271B2 (en) 2014-12-26 2014-12-26 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014266171A JP6537271B2 (en) 2014-12-26 2014-12-26 Internal combustion engine

Publications (2)

Publication Number Publication Date
JP2016125407A true JP2016125407A (en) 2016-07-11
JP6537271B2 JP6537271B2 (en) 2019-07-03

Family

ID=56357698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266171A Expired - Fee Related JP6537271B2 (en) 2014-12-26 2014-12-26 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP6537271B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2558640A (en) * 2017-01-13 2018-07-18 Perkins Engines Co Ltd Turbocharger assembly with oil carry-over protection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383424U (en) * 1986-11-19 1988-06-01
JPH03202636A (en) * 1989-12-28 1991-09-04 Mazda Motor Corp Engine with turbo-supercharger
JP2001221076A (en) * 2000-02-07 2001-08-17 Nissan Motor Co Ltd Controller of engine
JP2010013963A (en) * 2008-07-02 2010-01-21 Toyota Motor Corp Multi-stage supercharging system for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383424U (en) * 1986-11-19 1988-06-01
JPH03202636A (en) * 1989-12-28 1991-09-04 Mazda Motor Corp Engine with turbo-supercharger
JP2001221076A (en) * 2000-02-07 2001-08-17 Nissan Motor Co Ltd Controller of engine
JP2010013963A (en) * 2008-07-02 2010-01-21 Toyota Motor Corp Multi-stage supercharging system for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2558640A (en) * 2017-01-13 2018-07-18 Perkins Engines Co Ltd Turbocharger assembly with oil carry-over protection
US20180202370A1 (en) * 2017-01-13 2018-07-19 Perkins Engines Company Limited Turbocharger assembly with oil carry-over protection
CN108301914A (en) * 2017-01-13 2018-07-20 珀金斯发动机有限公司 With the turbocharger assembly for altering oil guard
GB2558640B (en) * 2017-01-13 2020-02-26 Perkins Engines Co Ltd Turbocharger assembly with oil carry-over protection
US10590857B2 (en) 2017-01-13 2020-03-17 Perkins Engines Company Limited Turbocharger assembly with oil carry-over protection
CN108301914B (en) * 2017-01-13 2021-12-10 珀金斯发动机有限公司 Turbocharger assembly with oil blow-by protection

Also Published As

Publication number Publication date
JP6537271B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
JP4741678B2 (en) Diesel engine with supercharger
US8640459B2 (en) Turbocharger control systems and methods for improved transient performance
US20070074513A1 (en) Turbo charging in a variable displacement engine
JP5187123B2 (en) Control device for internal combustion engine
US20110067395A1 (en) Method of controlling an engine during transient operating conditions
CN107461262B (en) Apparatus and method for engine control
JP2008546946A (en) Supercharged diesel engine
JP2013057289A (en) Supercharging system of internal combustion engine
CN105840355A (en) All-working-condition EGR rate adjustable two-stage booster system of internal combustion engine and control method thereof
JP2011069305A (en) Internal combustion engine and method for controlling the same
CN102906400A (en) Method for operating internal combustion engine and internal combustion engine
CN102301105B (en) Method and apparatus for controlling turbine efficiency
JP6448361B2 (en) Internal combustion engine
US10145297B2 (en) Control device for engine equipped with turbo-supercharger
JP6558896B2 (en) Internal combustion engine
KR102144759B1 (en) Control method and control device of internal combustion engine
JP2006299892A (en) Internal combustion engine with supercharger
JP6537271B2 (en) Internal combustion engine
CN110566340A (en) Engine system and method of using same
JP2010138812A (en) Control device for internal combustion engine
JP2010223077A (en) Internal combustion engine
JP6494280B2 (en) Control device for internal combustion engine
KR20180038308A (en) Engine system
JP2010168954A (en) Control device for internal combustion engine
JP6576190B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190604

R150 Certificate of patent or registration of utility model

Ref document number: 6537271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees