JP2016124125A - Method for producing fiber-reinforced plastic - Google Patents

Method for producing fiber-reinforced plastic Download PDF

Info

Publication number
JP2016124125A
JP2016124125A JP2014264433A JP2014264433A JP2016124125A JP 2016124125 A JP2016124125 A JP 2016124125A JP 2014264433 A JP2014264433 A JP 2014264433A JP 2014264433 A JP2014264433 A JP 2014264433A JP 2016124125 A JP2016124125 A JP 2016124125A
Authority
JP
Japan
Prior art keywords
prepreg laminate
prepreg
shaping
laminate
reinforced plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014264433A
Other languages
Japanese (ja)
Other versions
JP6409569B2 (en
Inventor
藤田 雄三
Yuzo Fujita
雄三 藤田
一朗 武田
Ichiro Takeda
一朗 武田
柴田 誠
Makoto Shibata
誠 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2014264433A priority Critical patent/JP6409569B2/en
Publication of JP2016124125A publication Critical patent/JP2016124125A/en
Application granted granted Critical
Publication of JP6409569B2 publication Critical patent/JP6409569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing fiber-reinforced plastic including a shaping step with good reproductivity of a prepreg laminate in a shaping method which is referred to as hot forming.SOLUTION: A method for producing fiber-reinforced plastic includes: a laminate formation step of laminating a prepreg containing a reinforced-fiber impregnated with a thermosetting resin to form a flat plate-like prepreg laminate 1; a shaping step of pressing the prepreg laminate 1 to a male mold 5 and shaping the prepreg laminate; and a curing step of curing a thermosetting resin. In the shaping step, when a side fixing portion for fixing one side and its opposite side of a holding sheet 2 for holding the prepreg laminate by sandwiching it from both sides is connected to a first operation section for grasping and moving the side fixing portion, the first operation section is operated in a pushing direction of the prepreg laminate to the male mold without substantially causing no deflection, and thereby the prepreg laminate is shaped, an operation speed of the first operation section is controlled to be a range of 0.9-1.1 times of an average speed of the operation speeds.SELECTED DRAWING: Figure 9

Description

本発明は、プリプレグ積層体を三次元形状に賦形する賦形工程を有する繊維強化プラスチックの製造方法に関するものである。   The present invention relates to a method for producing a fiber reinforced plastic having a shaping step of shaping a prepreg laminate into a three-dimensional shape.

強化繊維とマトリックス樹脂とからなる繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから産業用途においても注目され、航空機、宇宙機、自動車、鉄道、船舶、電化製品、スポーツ等の構造用途に展開され、その需要は年々高まりつつある。中でも連続した強化繊維に熱硬化性樹脂を含浸した中間基材であるプリプレグを積層し、オートクレーブ等で加圧成形を行うことで高品質な繊維強化プラスチックが得られる。   Fiber reinforced plastics composed of reinforced fibers and matrix resins are attracting attention in industrial applications because they have high specific strength and specific elastic modulus, excellent mechanical properties, and high functional properties such as weather resistance and chemical resistance. Deployed in structural applications such as aircraft, spacecraft, automobiles, railways, ships, electrical appliances, sports, etc., the demand is increasing year by year. Among them, a high-quality fiber-reinforced plastic can be obtained by laminating a prepreg, which is an intermediate base material impregnated with a thermosetting resin, into continuous reinforcing fibers and performing pressure molding with an autoclave or the like.

オートクレーブ等による成形硬化工程の前に、プリプレグを三次元形状に追従させプリフォームとする賦形工程が、部材品質の成否を左右する重要な工程であることが知られている。主に航空機部材の積層・賦形において、三次元形状に賦形を行なうために、広幅のプリプレグを繊維方向に裁断して細幅に分割したスリットテーププリプレグを、自動機を用いて連続的に積層させるオートファイバープレースメントと呼ばれる方法が知られている(例えば、特許文献1)。スリットテーププリプレグを三次元形状に並べて賦形(テープレイアップ)することで、細幅のスリットテーププリプレグ自体は実質二次元形状に沿うだけでよく、複雑形状であっても形状追従可能としている。しかしながら、スリットテーププリプレグは細幅であるため、所望の形状に並べるために時間がかかり、生産性が低く、製造コストが高くなる上、広幅のプリプレグを裁断してスリットテーププリプレグとする工程が増えるため材料費自体も高くなるという問題があった。   It is known that a shaping process for making a prepreg follow a three-dimensional shape before forming and curing by an autoclave or the like is an important process that determines the success or failure of member quality. Mainly in the lamination and shaping of aircraft parts, slit tape prepregs, which are obtained by cutting wide prepregs in the fiber direction and dividing them into narrow widths, are formed continuously using an automatic machine. A method called “auto fiber placement” is known (for example, Patent Document 1). By arranging the slit tape prepregs in a three-dimensional shape and shaping (tape layup), the narrow slit tape prepreg itself only needs to follow a two-dimensional shape, and can follow the shape even if it is a complicated shape. However, since the slit tape prepreg is thin, it takes time to arrange the slit tape prepreg in a desired shape, the productivity is low, the manufacturing cost is high, and the process for cutting the wide prepreg into a slit tape prepreg is increased. Therefore, there has been a problem that the material cost itself becomes high.

そこで安価な広幅のプリプレグを用い、かつ生産性の高い賦形工程を実現するために、予め自動機を用いて高速に平板状に積層したプリプレグ積層体を、熱を加えながらブラッダーでマンドレルに押し付けて三次元形状に賦形していく、ホットフォーミングと呼ばれる賦形法が開発されている(例えば、特許文献2)。しかしながら、わずかなプロセス条件のズレや材料のばらつきに敏感で、しばしば賦形中にシワが発生する問題があった。そのシワは硬化後にも欠陥として引き継がれ、成形品としての構造強度が低下する可能性がある。   Therefore, in order to achieve a high-productivity shaping process using an inexpensive wide prepreg, a prepreg laminate that has been laminated in a flat plate at high speed using an automatic machine is pressed against a mandrel with a bladder while applying heat. Thus, a shaping method called hot forming, which is shaped into a three-dimensional shape, has been developed (for example, Patent Document 2). However, there is a problem that wrinkles are often generated during shaping because it is sensitive to slight variations in process conditions and material variations. The wrinkles are inherited as defects even after curing, and the structural strength as a molded product may be reduced.

国際公開2009/052263号公報International Publication No. 2009/052263 国際公開96/06725号公報International Publication No. 96/06725

本発明の課題は、かかる背景技術に鑑み、シワの発生しない最適な条件で再現性よくプリプレグ積層体を賦形可能な賦形工程を有する繊維強化プラスチックの製造方法を提供することにある。   In view of the background art, an object of the present invention is to provide a method for producing a fiber reinforced plastic having a shaping step capable of shaping a prepreg laminate with good reproducibility under optimum conditions free from wrinkles.

本発明は、かかる課題を解決するために、次のような手段を講ずるものである。すなわち、熱硬化性樹脂を含浸した強化繊維を含むプリプレグを積層して平板状のプリプレグ積層体を形成する積層体形成工程、プリプレグ積層体を雄型に押し付けて賦形する賦形工程、および熱硬化性樹脂を硬化する硬化工程を含む繊維強化プラスチックの製造方法であって、賦形工程において、プリプレグ積層体を両面から挟んで把持する把持シートの、1つの辺およびその対辺を固定する辺固定部を、辺固定部を掴んで移動する第1稼動部に接続させ、第1稼動部を、プリプレグ積層体が実質的にたわみなく雄型に押しつけられる方向へ稼動させることでプリプレグ積層体を賦形するに際し、第1稼動部の稼動速度を稼動速度の平均速度の0.9から1.1倍の範囲に制御する繊維強化プラスチックの製造方法である。   In order to solve such a problem, the present invention takes the following measures. That is, a laminate forming step of laminating a prepreg containing reinforcing fibers impregnated with a thermosetting resin to form a flat prepreg laminate, a shaping step of pressing the prepreg laminate against a male mold, and heat A fiber reinforced plastic manufacturing method including a curing step of curing a curable resin, and in a shaping step, one side of a grip sheet for gripping a prepreg laminate from both sides and a side fixing that fixes the opposite side Is connected to the first working part that moves by grasping the side fixing part, and the first working part is operated in a direction in which the prepreg laminated body is pressed against the male mold without substantial deflection. In forming the fiber-reinforced plastic, the operating speed of the first operating section is controlled to be in a range of 0.9 to 1.1 times the average speed of the operating speed.

本発明によれば、プリプレグ積層体を最適な賦形条件で再現性よく賦形を行うことができ、高品質な繊維強化プラスチックを製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, a prepreg laminated body can be shape | molded with reproducibility on optimal shaping conditions, and a high quality fiber reinforced plastic can be manufactured.

プリプレグ積層体を把持シートで挟み、把持シートを辺固定部により固定し、辺固定部を第1稼動部で掴んだ様子の概念図である。It is a conceptual diagram of a state where a prepreg laminate is sandwiched between gripping sheets, the gripping sheet is fixed by a side fixing part, and the side fixing part is gripped by a first operating part. 図1のセットを用いた賦形装置の略中央の断面図である。It is sectional drawing of the approximate center of the shaping apparatus using the set of FIG. 図1中の辺固定部および第1稼動部を略雄型稜線状とし、第1稼動部と辺固定部の間に弾性体が設けられている様子を示した概念図である。It is the conceptual diagram which showed a mode that the edge fixing | fixed part and 1st action | operation part in FIG. 1 were made into the shape of a substantially male ridgeline, and the elastic body was provided between the 1st action | operation part and the edge fixation part. 凹形状の壁面を有する雄型の概念図である。It is a conceptual diagram of the male type | mold which has a concave-shaped wall surface. 凸形状の壁面を有する雄型の概念図である。It is a conceptual diagram of the male type | mold which has a convex-shaped wall surface. 凹形状と凸形状の組み合わさった壁面を有する雄型の概念図である。It is a conceptual diagram of the male type | mold which has the wall surface which combined concave shape and convex shape. 図3のセットを用いた賦形装置の略中央の断面図である。It is sectional drawing of the approximate center of the shaping apparatus using the set of FIG. ガイドA,ガイドBを用いた賦形において、賦形前の様子を示した、賦形装置の略中央の断面図である。In the shaping using the guide A and the guide B, it is sectional drawing of the approximate center of the shaping apparatus which showed the mode before shaping. 図8で示した賦形装置で第2稼動部を動かした場合の概念図である。It is a conceptual diagram at the time of moving a 2nd operation part with the shaping apparatus shown in FIG. 雄型および第1稼動部の略中央部断面の概念図である。It is a conceptual diagram of the substantially central part cross section of a male type | mold and a 1st operation part. 実施例1に係るガイドB16−aの形状を示す概略図である。It is the schematic which shows the shape of guide B16-a which concerns on Example 1. FIG. 実施例1に係る雄型の形状を示す概略図である。1 is a schematic diagram showing a male shape according to Example 1. FIG. 実施例1で係る方法で賦形されたプリプレグ積層体を示す概略図である。1 is a schematic view showing a prepreg laminate formed by the method according to Example 1. FIG. 比較例1に係る賦形装置の断面図である。It is sectional drawing of the shaping apparatus which concerns on the comparative example 1.

本発明者らは、熱硬化性樹脂を含浸した強化繊維を含むプリプレグを複数枚積層したプリプレグ積層体を雄型に押し付けて形状追従させる賦形工程において、安定して高品質なプリフォームを製造するために、シワ発生のメカニズムの検証を行った。その結果、シワを抑制するためには、プリプレグ積層体の層間が滑らかに滑ること、各層のプリプレグが面内でせん断変形しやすいこと、各層のプリプレグの曲げ剛性が高いことが重要であることを見出した。加えて、温度を上げることでプリプレグは面内でせん断変形が起きやすくなるが、曲げ剛性は低下してしまう、等のトレードオフの関係があり、賦形する形状や材料特性によってシワ発生の可能性を最小限とする、上記プリプレグ特性をバランスよく満たした最適なプロセス条件が存在することがわかった。賦形中に最適なプロセス条件を持続するために、上記プリプレグ特性を賦形工程中に変化させないことが好ましい。プリプレグ特性に影響を与える因子には、プリプレグに与える温度があり、粘弾性体であるプリプレグの上記特性には速度依存性があるため賦形速度も重要である。したがって、最適な温度・速度を保ち賦形を行なうことが好ましい。   The present inventors stably produce high-quality preforms in a shaping process in which a prepreg laminate in which a plurality of prepregs containing reinforcing fibers impregnated with a thermosetting resin are laminated is pressed against a male mold to follow the shape. In order to do this, the mechanism of wrinkle generation was verified. As a result, in order to suppress wrinkles, it is important that the layers of the prepreg laminate slide smoothly, that the prepreg of each layer is easily shear-deformed in the plane, and that the prepreg of each layer has high bending rigidity. I found it. In addition, the prepreg is prone to shear deformation in the surface by raising the temperature, but there is a trade-off relationship such as lowering the bending rigidity, and wrinkles can occur depending on the shape and material characteristics to be shaped It has been found that there is an optimum process condition that satisfies the above prepreg characteristics in a well-balanced manner and minimizes the properties. In order to maintain optimum process conditions during shaping, it is preferred not to change the prepreg properties during the shaping process. Factors affecting the prepreg characteristics include the temperature applied to the prepreg, and the above-mentioned characteristics of the prepreg, which is a viscoelastic body, are speed-dependent, so the shaping speed is also important. Therefore, it is preferable to perform shaping while maintaining optimum temperature and speed.

以下、本発明の実施形態を、図面を参照し詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

プレプレグは、炭素繊維などの強化繊維に、エポキシ樹脂などの熱硬化性樹脂を含浸して得られる。強化繊維は、一方向に配列した状態であっても、織物などの形態であってもよい。熱硬化性樹脂は通常、モノマー成分以外に、硬化剤が加えられていて熱硬化性が発現するようになっている。斯かるプリプレグは、一般に市販されている。   The prepreg is obtained by impregnating a reinforcing fiber such as carbon fiber with a thermosetting resin such as an epoxy resin. The reinforcing fibers may be arranged in one direction or may be in the form of a woven fabric. In general, a thermosetting resin is added with a curing agent in addition to the monomer component so that the thermosetting property is exhibited. Such prepregs are generally commercially available.

積層体形成工程は、複数枚のプリプレグを積層して平板状のプリプレグ積層体を形成する工程である。プリプレグ積層体は、厚みが一定でもよいが、場所によって積層数が異なりプライドロップを含んでいてもよい。プリプレグを積層する際は、シート状のゴム等の弾性体で挟まれた空間にプリプレグ積層体を置き、その空間を真空引きすることでプリプレグ同士の密着を強めてもよい。プリプレグを1枚重ねる度に真空引きを行ってもよく、全てのプリプレグを積層した後に真空引きを行なってもよい。プリプレグ積層体は、平板状であるため、賦形工程を経て所望の形状のプリフォームに賦形され、硬化工程により繊維強化プラスチックが製造される。   A laminated body formation process is a process of laminating | stacking several prepregs and forming a flat prepreg laminated body. The thickness of the prepreg laminate may be constant, but the number of laminations varies depending on the location, and may include ply drops. When laminating prepregs, the adhesion between prepregs may be strengthened by placing the prepreg laminate in a space sandwiched between elastic bodies such as sheet-like rubber, and evacuating the space. Vacuuming may be performed every time one prepreg is stacked, or evacuation may be performed after all the prepregs are stacked. Since the prepreg laminate is flat, it is shaped into a preform having a desired shape through a shaping process, and a fiber-reinforced plastic is produced by a curing process.

賦形工程は、プリプレグ積層体を雄型に押し付けて賦形して、プリフォームを得る工程である。図1、図2は積層体形成工程により得たプリプレグ積層体1を、例えば航空機構造部材の一つ、スパーのようなC型断面形状のプリフォームに賦形する賦形工程の一例を示している。プリプレグ積層体1は、プリプレグ積層体1を両面から挟む把持シート2によって把持されている。把持シート2は汎用のバグフィルムでもよく、把持シート2間を密閉空間とし、密閉空間を真空ポンプなどで脱気することで圧力を下げ、プリプレグ積層体1を大気圧との差圧で加圧しながら賦形を行なってもよい。また、プリプレグ積層体1と把持シート2とは接していてもよいが、プリプレグ積層体1と把持シート2の間に離型フィルムやシリコーンラバー等の副資材を挿入してもよい。   The shaping step is a step of obtaining a preform by pressing the prepreg laminate to a male mold and shaping. 1 and 2 show an example of a shaping process for shaping a prepreg laminate 1 obtained by a laminate forming process into a C-shaped cross-sectional preform such as one of aircraft structural members, such as a spar. Yes. The prepreg laminate 1 is held by a holding sheet 2 that sandwiches the prepreg laminate 1 from both sides. The gripping sheet 2 may be a general-purpose bag film. The space between the gripping sheets 2 is a sealed space, the pressure is reduced by degassing the sealed space with a vacuum pump or the like, and the prepreg laminate 1 is pressurized with a differential pressure from the atmospheric pressure. However, the shaping may be performed. The prepreg laminate 1 and the grip sheet 2 may be in contact with each other, but a secondary material such as a release film or silicone rubber may be inserted between the prepreg laminate 1 and the grip sheet 2.

図1のように、把持シート2は把持シート2の1つの辺およびその対辺を固定する辺固定部3により固定されている。対辺とは、4辺形などにおいて向かい合った辺を意味する。辺固定部3は、プリプレグ積層体1を挟む2枚の把持シート2を把持するクリップ状でもよく、ボルト等を用いて固定する機構を有していてもよい。辺固定部3は、辺固定部3を掴んで移動する第1稼動部4に接続する。各辺に複数に分割された辺固定部を設け、複数の第1稼動部に接続させてもよい。   As shown in FIG. 1, the grip sheet 2 is fixed by a side fixing portion 3 that fixes one side of the grip sheet 2 and its opposite side. The opposite side means sides facing each other in a quadrilateral or the like. The side fixing part 3 may have a clip shape for holding the two holding sheets 2 sandwiching the prepreg laminated body 1, and may have a mechanism for fixing using a bolt or the like. The side fixing unit 3 is connected to the first operating unit 4 that moves by grasping the side fixing unit 3. A plurality of side fixing portions divided into each side may be provided and connected to a plurality of first operating portions.

このように把持されたプリプレグ積層体1を、図2に示す断面図のように、第1稼動部4を稼動方向6へ稼動させ、賦形を行なう。稼動方向6は、プリプレグ積層体1が実質的にたわみなく雄型5に押しつけられる第1稼動部4の稼動方向である。ここで、実質的にたわみのない状態とは、プリプレグ積層体1、把持シート2の自重を除いた要因によるたわみがない状態を意味する。また、第1稼動部4は、辺固定部3を稼動方向6に動かすことのできる装置であり、ロボットのアームでもよい。第1稼動部4を稼動方向6へ略一定の速度、すなわち平均速度の0.9倍から1.1倍の範囲の速度に制御することで、最適なプロセス条件として選定された速度での賦形を実行できる。本発明において、第1稼動部4の速度は、第1稼動部4の略中央部の速度で定義する。   The prepreg laminate 1 thus gripped is shaped by moving the first working part 4 in the working direction 6 as shown in the sectional view of FIG. The operation direction 6 is an operation direction of the first operation unit 4 in which the prepreg laminate 1 is pressed against the male mold 5 without substantially bending. Here, the state having substantially no deflection means a state in which there is no deflection due to factors other than the weight of the prepreg laminate 1 and the grip sheet 2. Moreover, the 1st operation part 4 is an apparatus which can move the edge fixing | fixed part 3 to the operation direction 6, and may be a robot arm. By controlling the first working unit 4 in the working direction 6 to a substantially constant speed, that is, a speed in the range of 0.9 to 1.1 times the average speed, the adjustment at the speed selected as the optimum process condition is performed. You can execute the shape. In the present invention, the speed of the first operating part 4 is defined by the speed of the substantially central part of the first operating part 4.

さらに、本発明の好ましい実施態様として、第1稼動部4を稼動させる際に、把持シート2を介してプリプレグ積層体1に引張荷重を付与するため、プリプレグ積層体1と雄型の接触部8から第1稼動部4に向かう方向9への引張荷重を把持シート2に付与するのがよい。接触部8は、賦形中のプリプレグ積層体1における雄型5との接触端部を示している(実際にはプリプレグ積層体1は把持シート2を介して雄型5と接触している)。シワ発生の原因はプリプレグ積層体内に発生する圧縮荷重であるため、張力を付与することはシワの抑制に効果がある。好ましくは、張力は、最適なプロセス条件を崩さないために、略一定、すなわち張力の平均値の0.9倍から1.1倍に保つのがよい。   Furthermore, as a preferred embodiment of the present invention, when the first working part 4 is operated, a tensile load is applied to the prepreg laminated body 1 via the grip sheet 2, so that the prepreg laminated body 1 and the male contact part 8 are applied. It is preferable to apply a tensile load in the direction 9 toward the first working unit 4 from the grip sheet 2. The contact portion 8 shows a contact end portion with the male mold 5 in the prepreg laminate 1 during shaping (actually, the prepreg laminate 1 is in contact with the male mold 5 via the grip sheet 2). . Since the cause of wrinkle generation is a compressive load generated in the prepreg laminate, applying a tension is effective in suppressing wrinkles. Preferably, the tension should be kept substantially constant, i.e. 0.9 to 1.1 times the average value of tension, so as not to destroy the optimum process conditions.

さらに、本発明の好ましい実施態様として、把持シート2へ略一定の張力を付与するために、図3のように辺固定部10および第1稼動部11を、互いに並行な略雄型稜線形状のものとし、弾性体12を辺固定部10と第1稼動部11の間に設け、弾性体12が伸びることで把持シート2に張力が作用する機構を有するのがよい。辺固定部10および第1稼動部11は雄型壁面7の稜線に合わせて直線形状や湾曲させた形状でもよい。具体的には、図4で示す、雄型の内側に向かって湾曲した凹形状の雄型稜線13−aに対しては凹形状の辺固定部10および第1稼動部11とするのがよく、図5で示す、雄型の外側に向かって湾曲した凸形状の雄型稜線13−bに対しては、凸形状の辺固定部10および第1稼動部11とするのがよい。また、図6で示す、凸形状と凹形状の組み合わさった雄型稜線13−cに対しては、凹形状と凸形状の組み合わさった形状の辺固定部10および第1稼動部とするのがよい。雄型への押圧力を上げるために、雄型稜線の凹形状部に対しては雄型稜線よりもさらに雄型の内側へ湾曲させ、雄型稜線の凸形状部に対しては雄型稜線よりも直線に近い形状としてもよい。例えば、雄型の稜線が曲率で表される場合、その曲率よりも0.9〜1.1倍大きな曲率を辺固定部10および第1稼動部11に持たせてもよい。弾性体12を伸ばす際は、上記と同様、図7に示すようにプリプレグ積層体1と雄型5の接触部8から第1稼動部11に向かう方向への引張荷重を把持シート2に付与することが好ましい。また、弾性体とは、ゴムやバネなど、弾性を有し伸びやすい材質を意味している。弾性体12が平板状の場合で把持シート2自体の弾性率が十分高く伸び量を無視できるとすれば、基本的には張力は弾性体12の弾性率と弾性体12の伸び量との積で計算できるが、弾性体12の幅と把持シート2の幅が異なる場合、張力は式(1)で計算できる。   Further, as a preferred embodiment of the present invention, in order to apply a substantially constant tension to the gripping sheet 2, the side fixing part 10 and the first working part 11 are formed in a substantially male ridge line shape parallel to each other as shown in FIG. It is preferable that the elastic body 12 is provided between the side fixing portion 10 and the first working portion 11 and has a mechanism in which tension is applied to the grip sheet 2 when the elastic body 12 extends. The side fixing part 10 and the first working part 11 may have a linear shape or a curved shape in accordance with the ridgeline of the male wall surface 7. Specifically, for the concave male ridge line 13-a curved toward the inside of the male mold shown in FIG. 4, it is preferable to use the concave side fixing part 10 and the first working part 11. For the convex male ridge 13-b curved toward the outer side of the male shown in FIG. 5, the convex side fixing part 10 and the first working part 11 are preferably used. Further, for the male ridge line 13-c in which the convex shape and the concave shape are combined as shown in FIG. 6, the side fixing portion 10 and the first working portion having the shape in which the concave shape and the convex shape are combined are used. Is good. In order to increase the pressing force to the male mold, the concave part of the male ridge line is curved further inside the male mold than the male ridge line, and the male ridge line for the convex part of the male ridge line. Alternatively, the shape may be closer to a straight line. For example, when the male ridge line is represented by a curvature, the side fixing unit 10 and the first working unit 11 may have a curvature that is 0.9 to 1.1 times larger than the curvature. When the elastic body 12 is stretched, a tensile load is applied to the grip sheet 2 in the direction from the contact portion 8 of the prepreg laminate 1 and the male mold 5 toward the first working portion 11 as shown in FIG. It is preferable. The elastic body means a material that is elastic and easily stretched, such as rubber or a spring. If the elastic body 12 is in the form of a plate and the elastic modulus of the gripping sheet 2 itself is sufficiently high and the amount of elongation can be ignored, basically the tension is the product of the elastic modulus of the elastic body 12 and the amount of elongation of the elastic body 12. However, when the width of the elastic body 12 and the width of the grip sheet 2 are different, the tension can be calculated by the equation (1).

バネのように把持シート2に付与される荷重がバネの個数に依存する場合は、把持シート2に与えられる単位幅あたりの張力は式(2)で計算できる。このような張力の定量化は、賦形の再現性を高めることに寄与する。   When the load applied to the gripping sheet 2 depends on the number of springs, such as a spring, the tension per unit width applied to the gripping sheet 2 can be calculated by Expression (2). Such quantification of tension contributes to improving the reproducibility of shaping.

さらに、本発明の好ましい実施態様として、固定されたガイドAと、プレス機など、雄型に向かって一方向に等速で稼働する第2稼動部にガイドBを固定し、ガイドAとガイドBの交点に第1稼動部を誘導させ、賦形を行なうのがよい。これにより、工作用ロボットなど大型投資を行なうことなく最適な賦形条件である速度を賦形工程中一定とすることができる。具体的には、図8、図9のように、第1稼動部10を誘導し固定されたガイドA14と、上下に稼動する第2稼動部15に取り付けるガイドB16(図8、図9において右側のガイドB16を便宜上16−a、左側を16−bと称する)を準備する。ガイドAは雄型に固定されていてもよい。図8、図9に示すように、第1稼動部11はガイドA14とガイドB16の重なる箇所に誘導されるよう設計する。第2稼動部15が下方向17に動いた際、図9に示すように、ガイドA14とガイドB16の重なる箇所はガイドA14に沿って移動し、それに伴い第1稼動部11も誘導される。第1稼動部は稼動部自身に稼動機構を有していなくてもよい。ガイドA14の形状は円形の円弧、または楕円形の円弧であることが好ましい。ガイドAおよびガイドBは第1稼動部の動きを安定させるために複数個所設けてもよく、全てのガイドAまたはガイドBの形状は同一である必要はない。   Furthermore, as a preferred embodiment of the present invention, a guide B is fixed to a fixed guide A and a second operating part that operates at a constant speed in one direction toward the male mold, such as a press machine. It is preferable to guide the first working part at the intersection of Thereby, the speed which is an optimal shaping condition can be made constant during the shaping process without making a large investment such as a machine robot. Specifically, as shown in FIGS. 8 and 9, a guide A14 that guides and fixes the first working unit 10 and a guide B16 that is attached to the second working unit 15 that moves up and down (right side in FIGS. 8 and 9). The guide B16 is referred to as 16-a for convenience and the left side is referred to as 16-b). The guide A may be fixed to a male mold. As shown in FIGS. 8 and 9, the first operating unit 11 is designed to be guided to a place where the guide A14 and the guide B16 overlap. When the second operating unit 15 moves in the downward direction 17, as shown in FIG. 9, the overlapping portion of the guide A14 and the guide B16 moves along the guide A14, and the first operating unit 11 is also guided accordingly. The first operating unit may not have an operating mechanism in the operating unit itself. The shape of the guide A14 is preferably a circular arc or an elliptical arc. A plurality of guides A and guides B may be provided in order to stabilize the movement of the first working part, and the shape of all the guides A or guides B need not be the same.

本実施形態は、プリプレグ積層体を雄型に押すつける際に、プリプレグ積層体に生じる角部での曲げ角速度や第2稼動部の速度に対応した治具を自由に設計できることも利点の一つである。図10は雄型5および第1稼動部11の略中央部の断面図の概念図であり、図10において雄型の壁面を表す直線と18と雄型の上面を含む直線19の交点と、点で示されている第1稼動部11を通る直線20と、直線19のなす角を、曲げ角21とする。また、曲げ角速度は曲げ角21における角速度とする。例えば、ガイドA14の形状が半径L(mm)の円形の円弧である場合、第2稼動部の速度V(mm/min),目標とする曲げ角速度C(°/min)を用いて、ガイドB16−aの形状をxy平面上で式(3)および式(4)により表される形状で決定することができる。ここで、tは時間(min)を表し、tは0から、90/Cの範囲である。雄型5や賦形されるプリプレグ積層体1が左右対称の場合は、ガイドB16−bとガイドB16−aの形状は左右対称であるのが好ましい。   One of the advantages of this embodiment is that when pressing the prepreg laminate to the male mold, a jig corresponding to the bending angular velocity at the corner portion generated in the prepreg laminate and the speed of the second working portion can be freely designed. It is. FIG. 10 is a conceptual diagram of a cross-sectional view of a substantially central portion of the male mold 5 and the first working part 11, and in FIG. 10, an intersection of a straight line representing the male wall surface and a straight line 19 including the upper surface of the male mold, An angle formed by the straight line 20 passing through the first working unit 11 indicated by a point and the straight line 19 is a bending angle 21. The bending angular velocity is the angular velocity at the bending angle 21. For example, when the shape of the guide A14 is a circular arc having a radius L (mm), the guide B16 is obtained using the speed V (mm / min) of the second working part and the target bending angular speed C (° / min). The shape of −a can be determined by the shape represented by the equations (3) and (4) on the xy plane. Here, t represents time (min), and t ranges from 0 to 90 / C. When the male mold 5 and the prepreg laminate 1 to be shaped are symmetric, the shapes of the guide B16-b and the guide B16-a are preferably symmetric.

さらに、本発明の好ましい実施態様として、賦形の再現性をさらに向上させるために、プリプレグ積層体全域の温度を均一に保つことがよい。ここでプリプレグ積層体全域の温度が均一とは、プリプレグ積層体内の最大温度と最低温度の差が20℃以内であることを意味する。例えば層間の滑りやすさは温度によって異なるため、局所的に温度が不適切な場所があれば、層間が滑らず、シワが発生する可能性がある。温調されたチャンバ内で一定時間加熱した後に賦形を実施してもよいし、賦形中もチャンバ内で保温してもよい。輻射ヒーターや接触型のヒーターなどで加熱しながら賦形してもよい。温度の測定は熱電対により把持シートの外側から間接的に測定してもよく、非接触温度計を用いてもよい。   Furthermore, as a preferred embodiment of the present invention, in order to further improve the reproducibility of shaping, it is preferable to keep the temperature of the entire prepreg laminated body uniform. Here, the uniform temperature throughout the prepreg laminate means that the difference between the maximum temperature and the minimum temperature within the prepreg laminate is within 20 ° C. For example, since the slipperiness between layers varies depending on the temperature, if there is a place where the temperature is locally inappropriate, the layers do not slip and wrinkles may occur. The shaping may be performed after heating for a certain time in the temperature-controlled chamber, or the temperature may be kept in the chamber during the shaping. You may shape while heating with a radiation heater, a contact-type heater, etc. The temperature may be measured indirectly from the outside of the grip sheet with a thermocouple, or a non-contact thermometer may be used.

賦形工程を経て得られたプリフォームについて、熱硬化性樹脂を硬化する硬化工程を経ることによって、繊維強化プラスチックが製造される。硬化工程は、プリフォームを熱硬化性樹脂が硬化する温度に晒すことで行われ、通常、プリフォームを加熱することで行われる。プリフォームが雄型に押し付けられた状態で加熱を行なってもよい。把持シートで囲まれた空間を真空ポンプと繋がった密閉空間とし、真空引きをしながら硬化させてもよい。熱源は輻射ヒーターや接触型のヒーターなどでもよく、雄型自身が加熱される機構を有していても良い。   About the preform obtained through the shaping step, a fiber reinforced plastic is produced by passing through a curing step of curing the thermosetting resin. The curing step is performed by exposing the preform to a temperature at which the thermosetting resin is cured, and is usually performed by heating the preform. Heating may be performed while the preform is pressed against the male mold. The space surrounded by the grip sheet may be a sealed space connected to the vacuum pump, and may be cured while evacuating. The heat source may be a radiant heater, a contact heater, or the like, or may have a mechanism in which the male mold itself is heated.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to the invention as described in an Example.

(実施例1)
ガイドAおよびガイドBを用いる方法で賦形を行なった。まず、東レ(株)製プリプレグ(P2352W−19)を繊維方向に対して0度および45度方向に150mm×150mmのサイズでカットし、一枚ずつ擬似等方積層[+45/0/90/−45]2sに積層し、平板状のプリプレグ積層体を作成した。プリプレグ積層体を把持する把持シートは汎用のバグフィルムとし、副資材としてシリコーンラバーとFEP(4フッ化エチレン・6フッ化プロピレン共重合体)フィルムを準備した。バグフィルムのサイズは200mm×200mm、シリコーンラバーとFEPフィルムはプリプレグ積層体と同サイズとし、バグフィルム/シリコーンラバー/FEPフィルム/プリプレグ積層体/FEPフィルム/シリコーンラバー/バグフィルムの順番になるようにバグフィルムでプリプレグ積層体を挟んだ。シーラントと呼ばれる粘着材を用いてバグフィルム間を接着させ、バグフィルムで挟まれた空間を密封空間とした。ただし、バグフィルムの1つの辺の中央の、シーラントとバグフィルムの間に1箇所直径3mmのホースを差し込み、真空ポンプとつなげ、賦形が完了するまで前記密封空間内の気圧を100Paまで低下させた状態を保持した。ガイドAの形状は半径100mmの円形の円弧とし、ガイドB16−aに相当するガイドBの形状は、L=100mm、V=20mm/min、C=10°/minとして式(3)および式(4)により計算された、図11に示す形状とした。このガイドBの形状を用いることで、第2稼動部の速度が20mm/minのときに、前記角速度が10°/minとなる。また、第2稼動部の速度Vを変更した場合の前記角速度Cは、C=2Vで計算することができる。ガイドAおよびガイドBは雄型壁面7とは別の面である雄型の1つの面23と、面23の対面である面24に、それぞれ図8に示した断面図と同様に雄型の両サイドに取り付けた。このガイドBを用いて、図12に示したステンレス製の雄型に押し付けてC=45°/minつまり、2分で賦形が完了するように、C字型へ賦形を行なった。図12の雄型の壁面は凹形状の緩やかな曲面となっている。辺固定部10および第1稼動部11も雄型稜線の形状にあわせ、図13に示した湾曲した棒状のものを用いた。辺固定部10と第1稼動部11の間にはバネ定数が0.49N/mmのバネ22を片側10個ずつとりつけると、バネ22が1.2mm伸びた状態で賦形を行なえる。このとき、バグフィルムには0.059N/mmの張力が付与されている。賦形前にプリプレグ積層体をシートヒーターにより60℃に加熱しておき、室温下で設置されている雄型にすばやく移動してセットし、上記速度で賦形を行なった。賦形後は、得られたC字型のプリフォームを雄型と共に180℃に加熱したチャンバ内に移動させ、バグフィルムで挟まれた密閉空間内の圧力を100Paで維持したまま、2時間保持し、C字型の繊維強化プラスチックを製造した。5枚のプリプレグ積層体を準備し賦形を行なったところ、シワのない高品位なC字型の繊維強化プラスチックが4枚得られた。シワの発生した1枚については、幅方向に対して中央の角部でプリプレグ積層体の雄型と接触する面に円弧状のシワが発生していた。他の4つに比べ、温調したプリプレグ積層体の雄型へのセットが遅れ、プリプレグ積層体温度が最適な範囲を外れてしまった可能性がある。
Example 1
Shaping was performed by a method using guide A and guide B. First, a prepreg (P2352W-19) manufactured by Toray Industries, Inc. was cut at a size of 150 mm × 150 mm in the direction of 0 ° and 45 ° with respect to the fiber direction, and quasi-isotropic lamination [+ 45/0/90 / − one by one] 45] 2 s to produce a flat prepreg laminate. The holding sheet for holding the prepreg laminate was a general-purpose bag film, and silicone rubber and FEP (tetrafluoroethylene / hexafluoropropylene copolymer) film were prepared as auxiliary materials. The size of the bag film is 200 mm x 200 mm, the silicone rubber and FEP film are the same size as the prepreg laminate, and the order is bug film / silicone rubber / FEP film / prepreg laminate / FEP film / silicone rubber / bug film. A prepreg laminate was sandwiched between bag films. Adhesives called sealants were used to bond the bag films, and the space between the bag films was defined as a sealed space. However, at the center of one side of the bag film, a hose with a diameter of 3 mm is inserted between the sealant and the bag film and connected to a vacuum pump, and the pressure in the sealed space is reduced to 100 Pa until shaping is completed. The state was kept. The shape of the guide A is a circular arc with a radius of 100 mm, and the shape of the guide B corresponding to the guide B16-a is L = 100 mm, V = 20 mm / min, and C = 10 ° / min. The shape shown in FIG. 11 was calculated according to 4). By using the shape of the guide B, the angular velocity becomes 10 ° / min when the velocity of the second working part is 20 mm / min. Further, the angular velocity C when the velocity V of the second operating unit is changed can be calculated with C = 2V. The guide A and the guide B are respectively formed on a male surface 23 which is a surface different from the male wall 7 and a surface 24 which is opposite to the surface 23 in the same manner as the sectional view shown in FIG. Attached to both sides. Using this guide B, it was pressed into a stainless steel male mold shown in FIG. 12 and shaped into a C-shape so that the shaping was completed in C = 45 ° / min, that is, 2 minutes. The male wall surface of FIG. 12 has a concave and gently curved surface. The side fixing part 10 and the first operating part 11 are also in the shape of a curved bar shown in FIG. 13 in accordance with the shape of the male ridge line. When ten springs 22 having a spring constant of 0.49 N / mm are attached between the side fixing unit 10 and the first working unit 11 on each side, shaping can be performed with the springs 22 extended by 1.2 mm. At this time, a tension of 0.059 N / mm is applied to the bag film. Prior to shaping, the prepreg laminate was heated to 60 ° C. with a sheet heater, quickly moved to a male mold installed at room temperature, and shaped at the above speed. After shaping, the resulting C-shaped preform is moved into the chamber heated to 180 ° C together with the male mold, and maintained for 2 hours while maintaining the pressure in the sealed space sandwiched between bag films at 100 Pa. C-shaped fiber reinforced plastic was manufactured. When five prepreg laminates were prepared and shaped, four high-quality C-shaped fiber-reinforced plastics without wrinkles were obtained. For one sheet with wrinkles, arc-shaped wrinkles were generated on the surface in contact with the male mold of the prepreg laminate at the central corner in the width direction. There is a possibility that the temperature-controlled setting of the prepreg laminate to the male mold is delayed compared to the other four, and the prepreg laminate temperature has deviated from the optimum range.

(実施例2)
賦形工程での加熱手段を除いては、実施例1と同様にして繊維強化プラスチックを製造した。すなわち、賦形前にプリプレグ積層体をシートヒーターにより60℃に加熱する加熱手段に代えて、予め60℃に加熱したチャンバ内で雄型を加熱しておき、プリプレグ積層体も全域が60℃となるようにチャンバ内に10分保持する加熱手段を採用した後で、実施例1と同じガイドA、ガイドBおよび雄型を用いてチャンバ内で賦形を行ない、賦形後は180℃まで昇温させ2時間保持し、繊維強化プラスチックを製造した。5枚のプリプレグ積層体を準備し賦形を行なったところ、5枚ともシワの発生はなく、高品位な繊維強化プラスチックが製造された。
(Example 2)
A fiber reinforced plastic was produced in the same manner as in Example 1 except for the heating means in the shaping step. That is, instead of the heating means for heating the prepreg laminate to 60 ° C. with a sheet heater before shaping, the male mold is heated in a chamber heated to 60 ° C. in advance, and the entire area of the prepreg laminate is 60 ° C. After adopting the heating means to keep in the chamber for 10 minutes, the same guide A, guide B and male mold as in Example 1 are used to form in the chamber, and after shaping, the temperature is increased to 180 ° C. Warmed and held for 2 hours to produce a fiber reinforced plastic. When five prepreg laminates were prepared and shaped, no wrinkles were produced on all the five sheets, and high-quality fiber-reinforced plastic was produced.

(比較例1)
図14に示す装置で、実施例1で得たプリプレグ積層体の賦形および硬化を行なった。図12に示した雄型およびプリプレグを含む密閉空間26と非表示の真空ポンプを接続し、真空ポンプとの接続口27を介して密閉空間26の気圧を100Paまで下げることにより、気圧差により膨張バッグ25が雄型28に押し付けられ、プリプレグ積層体がC字型に賦形される。密閉空間26は図示していない加熱手段によって、温調が可能である。プリプレグ積層体1は、図示していない把持シートで密閉されており、内部を真空引きした状態で保持されている。真空ポンプを起動させ、実施例1と同様に雰囲気温度が60℃に加熱された密閉空間26内で2分でC字型へと賦形が完了するように賦形を行なった。その結果、真空ポンプを起動させると同時にプリプレグ積層体が雄型に押し付けられ賦形が始まったが、曲げ角速度は制御できなかった。賦形後は真空ポンプを起動させたまま密閉空間26内を180℃に加熱後、2時間保持し、プリフォームを硬化させた。C字型へ製造された繊維強化プラスチックの角部の内側にはひだ状のシワが5枚中5枚とも発生していた。
(Comparative Example 1)
With the apparatus shown in FIG. 14, the prepreg laminate obtained in Example 1 was shaped and cured. The sealed space 26 including the male mold and the prepreg shown in FIG. 12 is connected to a vacuum pump (not shown), and the pressure in the sealed space 26 is reduced to 100 Pa through the connection port 27 with the vacuum pump. The bag 25 is pressed against the male mold 28, and the prepreg laminate is shaped into a C shape. The temperature of the sealed space 26 can be adjusted by heating means (not shown). The prepreg laminate 1 is sealed with a gripping sheet (not shown), and is held in a state where the inside is evacuated. The vacuum pump was started, and shaping was performed so that shaping was completed in a C-shaped manner in 2 minutes in the sealed space 26 heated to 60 ° C. as in Example 1. As a result, at the same time when the vacuum pump was started, the prepreg laminate was pressed against the male mold and shaping started, but the bending angular velocity could not be controlled. After shaping, the inside of the sealed space 26 was heated to 180 ° C. with the vacuum pump started, and then held for 2 hours to cure the preform. All 5 out of 5 wrinkled wrinkles were generated inside the corners of the fiber reinforced plastic produced into a C-shape.

1:プリプレグ積層体
2:把持シート
3:辺固定部
4:第1稼動部
5:雄型
5−a:凹形状の壁面を有する雄型
5−b:凸形状の壁面を有する雄型
5−c:凹形状と凸形状の組み合わさった壁面を有する雄型
6:第1稼動部の稼動方向
7:雄型壁面
8:プリプレグ積層体と雄型の接触部
9:張力を付与する方向
10:略雄型稜線形状の辺固定部
11:略雄型稜線形状の第1稼動部
12:弾性体
13−a:凹形状の雄型稜線
13−b:凸形状の雄型稜線
13−c:凹形状と凸形状の組み合わさった雄型稜線
14:ガイドA
15:第2稼動部
16−a:ガイドB 右側
16−b:ガイドB 左側
17:第2稼動部の移動方向
18:雄型5の略中央断面における壁面を示す直線
19:雄型5の略中央断面における上面を含む直線
20:直線18と直線19の交点と、第1稼動部11を含む直線
21:曲げ角
22:バネ
23:雄型の1つの面
24:面23の対面
25:膨張バッグ
26:密閉空間
27:真空ポンプとの接続口
28:図12の雄型の断面図
1: Pre-preg laminate 2: Grasping sheet 3: Side fixing part 4: First working part 5: Male mold 5-a: Male mold with concave wall surface 5-b: Male mold 5- with convex wall surface c: male mold 6 having a wall surface in which concave and convex shapes are combined 6: operating direction of the first working portion 7: male wall surface 8: contact portion 9 between the prepreg laminate and the male die 10: direction 10 in which tension is applied: Side fixing part of approximately male ridgeline shape
11: First male ridge line-shaped first working portion 12: Elastic body 13-a: Concave male ridge line 13-b: Convex male ridge line 13-c: Male combining concave and convex shapes Mold edge 14: Guide A
15: 2nd operation part 16-a: Guide B Right side 16-b: Guide B Left side 17: Movement direction of the 2nd operation part 18: Straight line 19 which shows the wall surface in the substantially center cross section of the male type | mold 5: Abbreviation of the male type | mold 5 Straight line 20 including the upper surface in the central cross section: intersection of straight line 18 and straight line 19, straight line 21 including first working part 11: bending angle 22: spring 23: one surface 24 of male mold 24: facing 25 of surface 23: expansion Bag 26: Sealed space 27: Connection port 28 with vacuum pump: Cross section of male mold in FIG.

Claims (6)

熱硬化性樹脂を含浸した強化繊維を含むプリプレグを積層して平板状のプリプレグ積層体を形成する積層体形成工程、プリプレグ積層体を雄型に押し付けて賦形する賦形工程、および熱硬化性樹脂を硬化する硬化工程を含む繊維強化プラスチックの製造方法であって、賦形工程において、プリプレグ積層体を両面から挟んで把持する把持シートの、1つの辺およびその対辺を固定する辺固定部を、辺固定部を掴んで移動する第1稼動部に接続させ、第1稼動部を、プリプレグ積層体が実質的にたわみなく雄型に押しつけられる方向へ稼動させることでプリプレグ積層体を賦形するに際し、第1稼動部の稼動速度を稼動速度の平均速度の0.9倍から1.1倍の範囲に制御する繊維強化プラスチックの製造方法。 Laminate formation process for laminating prepregs containing reinforcing fibers impregnated with thermosetting resin to form a flat prepreg laminate, shaping process for pressing prepreg laminate to male mold, and thermosetting A method for manufacturing a fiber reinforced plastic including a curing step for curing a resin, and in the shaping step, a side fixing portion for fixing one side of the grip sheet for gripping the prepreg laminate from both sides and a side opposite to the side. The prepreg laminate is shaped by operating the first operative portion in a direction in which the prepreg laminate is pressed against the male mold substantially without bending. At the time, the manufacturing method of the fiber reinforced plastic which controls the operating speed of the 1st operating part in the range of 0.9 times to 1.1 times the average speed of the operating speed. プリプレグ積層体と雄型の接触部から第1稼動部に向かう方向に、把持シートに張力を付与する請求項1に記載の繊維強化プラスチックの製造方法。 The manufacturing method of the fiber reinforced plastics of Claim 1 which provides tension | tensile_strength to a holding | grip sheet | seat in the direction which goes to a 1st operation part from a contact part of a prepreg laminated body and a male type | mold. 把持シートへ付与される張力を、張力の0.9倍から1.1倍の範囲で維持する請求項2に記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to claim 2, wherein the tension applied to the grip sheet is maintained in a range of 0.9 to 1.1 times the tension. 辺固定部および第1稼動部が略雄型稜線形状であり、第1稼動部と辺固定部との間に弾性体を有し、張力が弾性体の弾性率と弾性体の伸び量との積で計算される請求項2または3に記載の繊維強化プラスチックの製造方法。 The side fixing part and the first operating part have a substantially male ridge shape, and have an elastic body between the first operating part and the side fixing part, and the tension is the elastic modulus of the elastic body and the extension amount of the elastic body. The manufacturing method of the fiber reinforced plastics of Claim 2 or 3 calculated by a product. 固定されたガイドAと、雄型に向かって一方向に等速で稼動する第2稼動部に固定されたガイドBとの交点に、第1稼動部が誘導される請求項1〜4のいずれかに記載の繊維強化プラスチックの製造方法。 The first operating part is guided at the intersection of the fixed guide A and the guide B fixed to the second operating part operating at a constant speed in one direction toward the male mold. A method for producing the fiber-reinforced plastic according to claim 1. プリプレグ積層体全域の温度が一定となるように温調する請求項1〜5のいずれかに記載の繊維強化プラスチックの製造方法。
The method for producing a fiber-reinforced plastic according to any one of claims 1 to 5, wherein the temperature is adjusted so that the temperature of the entire prepreg laminate is constant.
JP2014264433A 2014-12-26 2014-12-26 Manufacturing method of fiber reinforced plastic Active JP6409569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014264433A JP6409569B2 (en) 2014-12-26 2014-12-26 Manufacturing method of fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014264433A JP6409569B2 (en) 2014-12-26 2014-12-26 Manufacturing method of fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JP2016124125A true JP2016124125A (en) 2016-07-11
JP6409569B2 JP6409569B2 (en) 2018-10-24

Family

ID=56358525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014264433A Active JP6409569B2 (en) 2014-12-26 2014-12-26 Manufacturing method of fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP6409569B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020093416A (en) * 2018-12-10 2020-06-18 三菱重工業株式会社 Forming method of laminated body and forming jig
WO2022190312A1 (en) * 2021-03-11 2022-09-15 三菱重工業株式会社 Shaping method and shaping device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102418441B1 (en) * 2020-06-29 2022-07-08 월넛 주식회사 Forming method of carbon fiber reinforced plastic

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542590A (en) * 1991-08-12 1993-02-23 Kawasaki Heavy Ind Ltd Molding method of fiber-reinforced composite
JP2007001298A (en) * 2005-05-23 2007-01-11 Toray Ind Inc Method and device for manufacturing preform
JP2010115867A (en) * 2008-11-13 2010-05-27 Fuji Heavy Ind Ltd Folding molding apparatus
US20120090768A1 (en) * 2009-04-14 2012-04-19 Airbus Operations Gmbh Apparatus and method for draping knitted fiber fabrics for curved profiled structural parts of fiber composite material
JP2014051065A (en) * 2012-09-10 2014-03-20 Mitsubishi Heavy Ind Ltd Molding apparatus and molding method of prepreg laminated material
JP2014073580A (en) * 2012-10-02 2014-04-24 Mitsubishi Rayon Co Ltd Method for producing preform

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542590A (en) * 1991-08-12 1993-02-23 Kawasaki Heavy Ind Ltd Molding method of fiber-reinforced composite
JP2007001298A (en) * 2005-05-23 2007-01-11 Toray Ind Inc Method and device for manufacturing preform
JP2010115867A (en) * 2008-11-13 2010-05-27 Fuji Heavy Ind Ltd Folding molding apparatus
US20120090768A1 (en) * 2009-04-14 2012-04-19 Airbus Operations Gmbh Apparatus and method for draping knitted fiber fabrics for curved profiled structural parts of fiber composite material
JP2014051065A (en) * 2012-09-10 2014-03-20 Mitsubishi Heavy Ind Ltd Molding apparatus and molding method of prepreg laminated material
JP2014073580A (en) * 2012-10-02 2014-04-24 Mitsubishi Rayon Co Ltd Method for producing preform

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020093416A (en) * 2018-12-10 2020-06-18 三菱重工業株式会社 Forming method of laminated body and forming jig
JP7153548B2 (en) 2018-12-10 2022-10-14 三菱重工業株式会社 LAMINATED FORMING METHOD AND FORMING JIG
WO2022190312A1 (en) * 2021-03-11 2022-09-15 三菱重工業株式会社 Shaping method and shaping device
JP7351038B2 (en) 2021-03-11 2023-09-26 三菱重工業株式会社 Shaping method and device

Also Published As

Publication number Publication date
JP6409569B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP6222370B2 (en) Manufacturing method of fiber reinforced composite material
JP5668874B2 (en) Preform manufacturing method and fiber reinforced resin molded product manufacturing method
JP5597134B2 (en) Molding method of molding material
US20200024414A1 (en) Prepreg sheet, method for manufacturing same, unit layer with a covering material, method for manufacturing fiber-reinforced composite, and fiber-reinforced composite
JP6048730B2 (en) Preform manufacturing method
JP2008279753A (en) Manufacturing method of fiber-reinforced plastics
WO2014038710A1 (en) Manufacturing method for article molded from fiber-reinforced composite material, and article molded from fiber-reinforced composite material
JP2007118598A (en) Method and apparatus for manufacturing preform
JP2011505281A (en) Method for producing FC parison from a laminate comprising at least two prepreg layers and production apparatus for carrying out this method
JP6409569B2 (en) Manufacturing method of fiber reinforced plastic
JP6411677B1 (en) Manufacturing method of composite material part and composite material part manufacturing apparatus
EP0410599A2 (en) Method of forming thermoformable composite material
JP2015051629A (en) Method for producing laminate substrate and laminate substrate
JP2009292002A (en) Method of manufacturing fiber-reinforced plastics
WO2020138473A1 (en) Method for manufacturing preform, method for manufacturing composite material molded article, and mold
US20220072816A1 (en) Articulated Forming Caul for Composite Blank Vacuum Forming
JPWO2019031478A1 (en) Fiber-reinforced plastic and method for producing fiber-reinforced plastic
JP6649016B2 (en) Thermoformed article manufacturing method and thermoforming material
JP2005288785A (en) Method for producing preform
JP2016179647A (en) Method for producing fiber-reinforced plastic
US11945179B2 (en) Method and device for molding laminate
JP2014073580A (en) Method for producing preform
JP2017148973A (en) Method for manufacturing fiber-reinforced composite material molded product
AU2018100761A4 (en) Composite shell and apparatus and method for forming same
JP7358504B2 (en) Molding method and mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180910

R151 Written notification of patent or utility model registration

Ref document number: 6409569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151