JP2016122158A - Transfer film, optical film, method for manufacturing transfer film, and method for manufacturing optical film - Google Patents

Transfer film, optical film, method for manufacturing transfer film, and method for manufacturing optical film Download PDF

Info

Publication number
JP2016122158A
JP2016122158A JP2014263562A JP2014263562A JP2016122158A JP 2016122158 A JP2016122158 A JP 2016122158A JP 2014263562 A JP2014263562 A JP 2014263562A JP 2014263562 A JP2014263562 A JP 2014263562A JP 2016122158 A JP2016122158 A JP 2016122158A
Authority
JP
Japan
Prior art keywords
layer
peak
retardation layer
retardation
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014263562A
Other languages
Japanese (ja)
Other versions
JP6459507B2 (en
Inventor
貴之 嶋田
Takayuki Shimada
貴之 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2014263562A priority Critical patent/JP6459507B2/en
Publication of JP2016122158A publication Critical patent/JP2016122158A/en
Application granted granted Critical
Publication of JP6459507B2 publication Critical patent/JP6459507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce damage of a phase-difference layer of an optical film prepared by transferring the phase-difference layer by a transfer method.SOLUTION: The present invention includes: a supporting body base material 21; an orientation layer 22 on the supporting body base material 21; and a phase-difference layer 19 on the orientation layer 22 providing phase difference with a transmitting light. The phase-difference layer 19 has an IR peak ratio Peak(810 cm)/Peak(830 cm), which is a ratio of 810 cmIR peak Peak(810 cm) to 830 cmIR peak Peak(830 cm), of not larger than 0.51 in the infrared spectroscopy spectrum.SELECTED DRAWING: Figure 2

Description

本発明は、例えば直線偏光板と1/2波長位相差層との積層による反射防止フィルムに適用することができる。   The present invention can be applied to, for example, an antireflection film formed by laminating a linearly polarizing plate and a half-wave retardation layer.

従来、液晶材料による位相差層を備えた各種の光学フィルムが種々に提案、利用されている。具体的に、例えば、画像表示装置に関して、画像表示パネルのパネル面(視聴者側面)に円偏光板による光学フィルムである反射防止フィルムを配置し、この反射防止フィルムにより外来光の反射を低減する方法が提案されている。   Conventionally, various optical films having a retardation layer made of a liquid crystal material have been proposed and used in various ways. Specifically, for example, for an image display device, an antireflection film, which is an optical film made of a circularly polarizing plate, is arranged on the panel surface (viewer side surface) of the image display panel, and reflection of extraneous light is reduced by this antireflection film. A method has been proposed.

この反射防止フィルムは、直線偏光板、1/4波長板の積層により構成され、画像表示パネルのパネル面に向かう外来光を直線偏光板により直線偏光に変換し、続く1/4波長板により円偏光に変換する。ここでこの円偏光による外来光は、画像表示パネルの表面等で反射するものの、この反射の際に偏光面の回転方向が逆転する。その結果、この反射光は、到来時とは逆に、1/4波長板により、直線偏光板で遮光される方向の直線偏光に変換された後、続く直線偏光板により遮光され、その結果、外部への出射が著しく抑制される。   This antireflection film is composed of a laminate of a linearly polarizing plate and a quarter wavelength plate, converts external light directed to the panel surface of the image display panel into linearly polarized light by the linearly polarizing plate, and then continues to a circle by the quarter wavelength plate. Convert to polarized light. Here, the extraneous light by the circularly polarized light is reflected by the surface of the image display panel or the like, but the rotation direction of the polarization plane is reversed during the reflection. As a result, contrary to the arrival time, this reflected light is converted into linearly polarized light in the direction shielded by the linear polarizing plate by the quarter wavelength plate, and then shielded by the subsequent linear polarizing plate. Outgoing emission is significantly suppressed.

従来、1/4波長板等の位相差板として、液晶材料による位相差層を備えた位相差フィルムが生産されている。すなわちこのような位相差フィルムは、透明フィルム材による基材の表面に、配向層を作製した後、位相差層に係る塗工液を塗工、乾燥、硬化することにより、配向層の配向規制力により液晶材料を配向させた状態で固化して位相差層が作製され、この位相差層により透過光に所望の位相差を付与する。   Conventionally, a retardation film having a retardation layer made of a liquid crystal material has been produced as a retardation plate such as a quarter-wave plate. That is, such a retardation film is prepared by preparing an alignment layer on the surface of a substrate made of a transparent film material, and then applying, drying, and curing the coating liquid related to the retardation layer, thereby regulating the alignment of the alignment layer. A phase difference layer is produced by solidifying the liquid crystal material in an aligned state by force, and a desired phase difference is imparted to transmitted light by the phase difference layer.

この種の反射防止フィルム等の光学フィルムにおいては、いわゆる転写法により作製することにより全体の厚みを薄くすることができると考えられる。ここで転写法とは、例えば基材等の上に所望の層を形成する場合に、この層を直接当該基材等の上に形成するのでは無く、一旦、離型性の支持体上に剥離可能に該層を積層形成して転写体を作製した後、工程、需要等に応じて、該支持体上に形成した層を、最終的に該層を積層すべき基材等(被転写体)の上に接着、積層し、その後、該支持体を剥離除去することにより、該基材等の上に所望の層を形成する方法である(特許文献1〜4)。   In this type of optical film such as an antireflection film, it is considered that the entire thickness can be reduced by producing it by a so-called transfer method. Here, the transfer method means that, for example, when a desired layer is formed on a substrate or the like, this layer is not directly formed on the substrate or the like, but once on a releasable support. After the layer is formed so as to be peelable and a transfer body is produced, the layer formed on the support is finally formed on the support according to the process, demand, etc. It is a method of forming a desired layer on the substrate or the like by bonding and laminating on the body, and then peeling and removing the support (Patent Documents 1 to 4).

すなわち例えば円偏光板による反射防止フィルムに転写法を適用する場合、支持体基材、配向層、位相差層が順次積層されてなる転写フィルムを用意し、位相差層が直線偏光板側となるようにしてこの転写フィルムを直線偏光板に貼り付けた後、支持体基材を剥離する。これにより支持体基材の厚みを低減して円偏光板により反射防止フィルムを作製することができる。   That is, for example, when the transfer method is applied to an antireflection film using a circularly polarizing plate, a transfer film in which a support substrate, an alignment layer, and a retardation layer are sequentially laminated is prepared, and the retardation layer is on the linearly polarizing plate side. Thus, after sticking this transfer film on a linearly polarizing plate, the support substrate is peeled off. Thereby, the thickness of a support base material can be reduced and an antireflection film can be produced with a circularly polarizing plate.

しかしながら支持体基材を剥離する場合、従来の転写フィルムでは、位相差層と配向層との界面で支持体基材が剥離し、その結果、転写後においては、位相差層がむき出しになる。その結果、従来の反射防止フィルム等では、生産過程で位相差層が損傷し易くなる問題がある。なお反射防止フィルムにおいて、位相差層が損傷すると、損傷した箇所では透過光に所望の位相差を位相差層により付与できなくなることにより、局所的に反射防止の機能が損なわれ、光学特性が劣化することになる。   However, when the support substrate is peeled off, in the conventional transfer film, the support substrate peels off at the interface between the retardation layer and the alignment layer, and as a result, the retardation layer is exposed after the transfer. As a result, the conventional antireflection film or the like has a problem that the retardation layer is easily damaged during the production process. In the antireflection film, if the retardation layer is damaged, it becomes impossible to impart a desired retardation to the transmitted light by the retardation layer at the damaged portion, so that the antireflection function is locally impaired and the optical characteristics deteriorate. Will do.

特開2005−309290号公報JP 2005-309290 A 特開2006−323349号公報JP 2006-323349 A 特開2005−309290号公報JP 2005-309290 A 特開2006−323349号公報JP 2006-323349 A

本発明はこのような状況に鑑みてなされたものであり、転写法により位相差層を転写して作製される光学フィルムに関して、位相差層の損傷を低減することを目的とする。   This invention is made | formed in view of such a condition, It aims at reducing the damage of a phase difference layer regarding the optical film produced by transferring a phase difference layer by the transfer method.

本発明者は、上記課題を解決するために鋭意研究を重ね、塗工層側からの紫外線の照射により位相差層を硬化させた後、基材側からの紫外線の照射により位相差層の反応をさらに進める、との着想に至り、本発明を完成するに至った。   The present inventor has made extensive studies to solve the above problems, and after curing the retardation layer by irradiation with ultraviolet rays from the coating layer side, the reaction of the retardation layer by irradiation with ultraviolet rays from the substrate side. The idea of further proceeding was reached, and the present invention was completed.

具体的に、本発明では、以下のものを提供する。   Specifically, the present invention provides the following.

(1) 支持体基材と、
前記支持体基材上に設けられた配向層と、
前記配向層の上に設けられた、透過光に位相差を付与する位相差層とを備え、
前記位相差層は、
赤外分光法スペクトルにおいて、830cm−1のIRピークPeak(830cm-1)に対する810cm−1のIRピークPeak(810cm-1)比であるIRピーク比Peak(810cm-1)/Peak(830cm-1)が0.51以下である転写フィルム。
(1) a support substrate;
An alignment layer provided on the support substrate;
A retardation layer provided on the alignment layer and imparting a retardation to transmitted light;
The retardation layer is
In infrared spectroscopy spectrum, an IR peak Peak (810 cm -1) ratio of 810 cm -1 to IR peak of 830cm -1 Peak (830cm -1) IR peak ratio Peak (810cm -1) / Peak ( 830cm -1 ) Is 0.51 or less.

(1)によれば、IRピーク比Peak(810cm-1)/Peak(830cm-1)が0.51以下であることにより、配向層と支持体基材の密着力に比して、配向層と位相差層との密着力を増大させることができる。これにより転写法により支持体基材を剥離する場合、剥離界面を支持体基材と配向層との界面とすることができ、位相差層と配向層とを一体に転写することができる。その結果、以降の工程において、この配向層を位相差層の保護層として機能させて、位相差層の損傷を低減することができる。 According to (1), when the IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ) is 0.51 or less, the alignment layer is compared with the adhesion between the alignment layer and the support substrate. It is possible to increase the adhesion between the liquid crystal and the retardation layer. Accordingly, when the support substrate is peeled off by the transfer method, the peeling interface can be used as the interface between the support substrate and the alignment layer, and the retardation layer and the alignment layer can be transferred integrally. As a result, in the subsequent steps, this alignment layer can function as a protective layer for the retardation layer, and damage to the retardation layer can be reduced.

(2) 透過光に位相差を付与する位相差層を備えた光学フィルムにおいて、
前記位相差層は、
透明フィルム材による基材に、少なくとも光学機能層を介して設けられ、
前記基材とは逆側面には、配向層が設けられ、
前記位相差層は、
赤外分光法スペクトルにおいて、830cm−1のIRピークPeak(830cm-1)に対する810cm−1のIRピークPeak(810cm-1)比であるIRピーク比Peak(810cm-1)/Peak(830cm-1)が0.51以下である光学フィルム。
(2) In an optical film comprising a retardation layer that imparts a retardation to transmitted light,
The retardation layer is
Provided on the base material by the transparent film material through at least the optical functional layer,
On the side opposite to the substrate, an alignment layer is provided,
The retardation layer is
In infrared spectroscopy spectrum, an IR peak Peak (810 cm -1) ratio of 810 cm -1 to IR peak of 830cm -1 Peak (830cm -1) IR peak ratio Peak (810cm -1) / Peak ( 830cm -1 ) Is 0.51 or less.

(2)によれば、転写法により配向層と一体に位相差層を転写して、この配向層を位相差層の保護層として機能させることができ、位相差層の損傷を低減することができる。   According to (2), the retardation layer can be transferred integrally with the alignment layer by the transfer method, and this alignment layer can function as a protective layer for the retardation layer, thereby reducing damage to the retardation layer. it can.

(3) (2)において、
前記光学機能層が、
直線偏光板としての機能を担う光学機能層である光学フィルム。

(3) In (2),
The optical functional layer is
An optical film that is an optical functional layer that functions as a linear polarizing plate.

(3)によれば、直線偏光板に、転写法により位相差層及び配向層を転写してなる光学フィルムを提供することができる。   According to (3), the optical film formed by transferring the retardation layer and the alignment layer to the linearly polarizing plate by a transfer method can be provided.

(4) 支持体基材に配向層を作製する配向層作製工程と、
前記配向層の上に、位相差層の塗工液を塗工して乾燥することにより前記位相差層の塗工層を作製した後、前記位相差層の塗工層を硬化させて前記位相差層を作製する位相差層の作製工程とを備え、
前記位相差層の作製工程は、
前記位相差層の塗工層側から紫外線を照射して前記位相差層の塗工層を硬化させる前硬化工程と、
前記前硬化工程に続いて、前記支持体基材側から紫外線を照射して前記位相差層の塗工層を硬化させる後硬化工程とを備える転写フィルムの製造方法。
(4) an alignment layer preparation step of preparing an alignment layer on a support substrate;
On the alignment layer, a retardation layer coating liquid is applied and dried to prepare the retardation layer coating layer, and then the retardation layer coating layer is cured to form the retardation layer. A phase difference layer production step for producing a phase difference layer;
The step of producing the retardation layer includes
A pre-curing step of curing the coating layer of the retardation layer by irradiating ultraviolet rays from the coating layer side of the retardation layer;
Following the pre-curing step, a post-curing step of irradiating ultraviolet rays from the support substrate side to cure the coating layer of the retardation layer.

(4)によれば、前硬化工程に続いて、支持体基材側から紫外線を照射して位相差層の塗工層を硬化させる後硬化工程を備えることにより、充分に位相差層の反応を進めて、配向層と支持体基材の密着力に比して、配向層と位相差層との密着力を増大させることができる。これにより転写法により支持体基材を剥離する場合、剥離界面を支持体基材と配向層との界面とすることができ、位相差層と配向層とを一体に転写することができる。その結果、転写後の工程において、この配向層を位相差層の保護層として機能させて、位相差層の損傷を低減することができる。   According to (4), following the pre-curing step, the reaction of the retardation layer is sufficiently achieved by providing a post-curing step of curing the coating layer of the retardation layer by irradiating ultraviolet rays from the support substrate side. The adhesion between the alignment layer and the retardation layer can be increased as compared with the adhesion between the alignment layer and the support substrate. Accordingly, when the support substrate is peeled off by the transfer method, the peeling interface can be used as the interface between the support substrate and the alignment layer, and the retardation layer and the alignment layer can be transferred integrally. As a result, in the post-transfer process, this alignment layer can function as a protective layer for the retardation layer, and damage to the retardation layer can be reduced.

(5) (4)において、
前記位相差層の作製工程は、
前記後硬化工程による前記紫外線の照射により、
赤外分光法スペクトルにおいて、830cm−1のIRピークPeak(830cm-1)に対する810cm−1のIRピークPeak(810cm-1)比であるIRピーク比Peak(810cm-1)/Peak(830cm-1)が0.51以下により前記位相差層を形成する転写フィルムの製造方法。
(5) In (4),
The step of producing the retardation layer includes
By irradiation with the ultraviolet rays in the post-curing step,
In infrared spectroscopy spectrum, an IR peak Peak (810 cm -1) ratio of 810 cm -1 to IR peak of 830cm -1 Peak (830cm -1) IR peak ratio Peak (810cm -1) / Peak ( 830cm -1 ) Is 0.51 or less to form the retardation layer.

(5)によれば、IRピーク比Peak(810cm-1)/Peak(830cm-1)が0.51以下であることにより、より具体的に、配向層と支持体基材の密着力に比して、配向層と位相差層との密着力を増大させることができる。 According to (5), when the IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ) is 0.51 or less, more specifically, the ratio of the adhesive strength between the alignment layer and the support substrate is higher. Thus, the adhesion between the alignment layer and the retardation layer can be increased.

(6) 支持体基材、配向層、位相差層の積層による転写フィルムを作製する転写フィルムの作製工程と、
被転写体に、転写法により、前記転写フィルムの位相差層を前記配向層と一体に配置する光学フィルムの作製工程とを備え、
前記転写フィルムの作製工程は、
前記支持体基材に前記配向層を作製する配向層作製工程と、
前記配向層の上に、前記位相差層の塗工液を塗工して乾燥することにより前記位相差層の塗工層を作製した後、前記位相差層の塗工層を硬化させて前記位相差層を作製する位相差層の作製工程とを備え、
前記位相差層の作製工程は、
前記位相差層の塗工層側から紫外線を照射して前記位相差層の塗工層を硬化させる前硬化工程と、
前記前硬化工程に続いて、前記支持体基材側から紫外線を照射して前記位相差層の塗工層を硬化させる後硬化工程とを備える光学フィルムの製造方法。
(6) a transfer film manufacturing process for manufacturing a transfer film by laminating a support substrate, an alignment layer, and a retardation layer;
The transfer body is provided with a production process of an optical film in which a phase difference layer of the transfer film is disposed integrally with the alignment layer by a transfer method,
The transfer film production process includes:
An alignment layer preparation step of preparing the alignment layer on the support substrate;
On the alignment layer, a coating layer for the retardation layer is prepared by coating and drying the coating liquid for the retardation layer, and then the coating layer for the retardation layer is cured to produce the coating layer for the retardation layer. A phase difference layer production step for producing a phase difference layer;
The step of producing the retardation layer includes
A pre-curing step of curing the coating layer of the retardation layer by irradiating ultraviolet rays from the coating layer side of the retardation layer;
Following the pre-curing step, an optical film manufacturing method comprising a post-curing step of curing the coating layer of the retardation layer by irradiating ultraviolet rays from the support substrate side.

(6)によれば、前硬化工程に続いて、支持体基材側から紫外線を照射して位相差層の塗工層を硬化させる後硬化工程を備えることにより、充分に位相差層の反応を進めて、配向層と支持体基材の密着力に比して、配向層と位相差層との密着力を増大させることができる。これにより転写法により支持体基材を剥離する場合、剥離界面を支持体基材と配向層との界面とすることができ、位相差層と配向層とを一体に転写することができる。その結果、転写後の工程において、この配向層を位相差層の保護層として機能させて、位相差層の損傷を低減することができる。   According to (6), following the pre-curing step, the reaction of the retardation layer is sufficiently achieved by providing a post-curing step of curing the coating layer of the retardation layer by irradiating ultraviolet rays from the support substrate side. The adhesion between the alignment layer and the retardation layer can be increased as compared with the adhesion between the alignment layer and the support substrate. Accordingly, when the support substrate is peeled off by the transfer method, the peeling interface can be used as the interface between the support substrate and the alignment layer, and the retardation layer and the alignment layer can be transferred integrally. As a result, in the post-transfer process, this alignment layer can function as a protective layer for the retardation layer, and damage to the retardation layer can be reduced.

(7) (6)において、
前記位相差層の作製工程は、
前記後硬化工程による前記紫外線の照射により、
赤外分光法スペクトルにおいて、830cm−1のIRピークPeak(830cm-1)に対する810cm−1のIRピークPeak(810cm-1)比であるIRピーク比Peak(810cm-1)/Peak(830cm-1)が0.51以下により前記位相差層を形成する光学フィルムの製造方法。
(7) In (6),
The step of producing the retardation layer includes
By irradiation with the ultraviolet rays in the post-curing step,
In infrared spectroscopy spectrum, an IR peak Peak (810 cm -1) ratio of 810 cm -1 to IR peak of 830cm -1 Peak (830cm -1) IR peak ratio Peak (810cm -1) / Peak ( 830cm -1 ) Is 0.51 or less to form the retardation layer.

(7)によれば、IRピーク比Peak(810cm-1)/Peak(830cm-1)が0.51以下であることにより、より具体的に、配向層と支持体基材の密着力に比して、配向層と位相差層との密着力を増大させることができる。   According to (7), when the IR peak ratio Peak (810 cm-1) / Peak (830 cm-1) is 0.51 or less, it is more specifically compared to the adhesion between the alignment layer and the support substrate. Thus, the adhesion between the alignment layer and the retardation layer can be increased.

本発明によれば、転写法により位相差層を転写して作製される光学フィルムに関して、位相差層の損傷を低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the damage of a phase difference layer can be reduced regarding the optical film produced by transferring a phase difference layer by the transfer method.

本発明の実施形態に係る画像表示装置を示す図である。It is a figure which shows the image display apparatus which concerns on embodiment of this invention. 図1の画像表示装置に係る転写フィルムを示す図である。It is a figure which shows the transfer film which concerns on the image display apparatus of FIG. 図2の転写フィルムの製造工程を示す図である。It is a figure which shows the manufacturing process of the transfer film of FIG. 図1の画像表示装置に係る反射防止フィルムを製造工程を示す図である。It is a figure which shows a manufacturing process of the antireflection film which concerns on the image display apparatus of FIG. IRピーク比の説明に供する図である。It is a figure where it uses for description of IR peak ratio. 計測条件の説明に供する図である。It is a figure where it uses for description of measurement conditions.

以下、図面を参照しながら本発明の実施形態を詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔第1実施形態〕
〔画像表示装置及び光学部品〕
図1は、本発明の第1実施形態に係る画像表示装置を示す図である。この画像表示装置11は、画像表示パネル12のパネル面(視聴者側面)に、円偏光板の機能により反射防止を図る反射防止フィルム13が配置される。ここで画像表示パネル12は、例えば有機ELパネルであり、所望のカラー画像を表示する。なお画像表示パネル12は、有機ELパネルに限らず、液晶表示パネル等、種々の画像表示パネルを広く適用することができる。
[First Embodiment]
[Image display device and optical component]
FIG. 1 is a diagram showing an image display apparatus according to the first embodiment of the present invention. In this image display device 11, an antireflection film 13 for preventing reflection by the function of a circularly polarizing plate is disposed on the panel surface (viewer side surface) of the image display panel 12. Here, the image display panel 12 is an organic EL panel, for example, and displays a desired color image. The image display panel 12 is not limited to an organic EL panel, and various image display panels such as a liquid crystal display panel can be widely applied.

反射防止フィルム13は、PSA(PRessuRe Sensitive Adhesive)粘着剤による粘着層14により画像表示パネル12のパネル面に貼り付けられて保持される。反射防止フィルム13は、直線偏光板15、1/4波長板16を、PSA粘着剤による粘着層18により積層一体化して構成される。なおPSA粘着剤による粘着層に代えて他の粘着剤、接着剤により、反射防止フィルム13を配置しても良く、さらには直線偏光板15、1/4波長板16を積層するようにしてもよい。このような他の粘着剤、接着剤としては、例えば紫外線硬化性樹脂、熱硬化性樹脂等を例示することができる。   The antireflection film 13 is attached to and held on the panel surface of the image display panel 12 by an adhesive layer 14 made of PSA (PRSurRe Sensitive Adhesive) adhesive. The antireflection film 13 is formed by laminating and integrating a linear polarizing plate 15 and a quarter-wave plate 16 with an adhesive layer 18 made of a PSA adhesive. In addition, it may replace with the adhesive layer by a PSA adhesive, and you may arrange | position the antireflection film 13 with another adhesive and an adhesive agent, and also make it laminate | stack the linearly-polarizing plate 15 and the quarter wavelength plate 16. Good. Examples of such other pressure-sensitive adhesives and adhesives include ultraviolet curable resins and thermosetting resins.

直線偏光板15は、直線偏光板として機能を担う光学機能層を1対の基材により挟持して構成される。ここで基材は、TAC(トリアセチルセルロース)による透明フィルム、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸ブチル、(メタ)アクリル酸メチル−(メタ)アクリル酸ブチル共重合体、(メタ)アクリル酸メチル−スチレン共重合体等のアクリル樹脂等の樹脂、ソーダ硝子、カリ硝子、鉛硝子、石英硝子等の硝子等を適用することができる。光学機能層は、例えばポリビニルアルコール(PVA)によるフィルム材に、ヨウ素化合物分子を吸着配向させて作製される。   The linearly polarizing plate 15 is configured by sandwiching an optical functional layer that functions as a linearly polarizing plate between a pair of base materials. Here, the base material is a transparent film made of TAC (triacetylcellulose), poly (meth) methyl acrylate, poly (meth) butyl acrylate, methyl (meth) acrylate-butyl (meth) acrylate copolymer, ( A resin such as an acrylic resin such as a (meth) methyl acrylate-styrene copolymer, a glass such as soda glass, potassium glass, lead glass, and quartz glass can be applied. The optical functional layer is produced, for example, by adsorbing and orienting iodine compound molecules on a film material made of polyvinyl alcohol (PVA).

1/4波長板16は、位相差層19により形成される。この実施形態において、この位相差層19は、後述する転写フィルムから配向層22と一体に転写法により転写して配置される。これにより反射防止フィルム13は、この配向層22により、位相差層19がむき出しにならないように保護され、生産過程における位相差層19の損傷を従来に比して低減する。   The quarter wave plate 16 is formed by the retardation layer 19. In this embodiment, the retardation layer 19 is transferred from a transfer film, which will be described later, together with the alignment layer 22 by a transfer method. Accordingly, the antireflection film 13 is protected by the alignment layer 22 so that the retardation layer 19 is not exposed, and damage of the retardation layer 19 in the production process is reduced as compared with the conventional case.

〔転写フィルム〕
図2は、この反射防止フィルム13の作成に供する転写フィルムを示す図である。この転写フィルム20は、支持体基材21に、配向層22、位相差層19が設けられる。反射防止フィルム13は、この転写フィルム20に設けられた位相差層19を配向層22と一体に転写法により直線偏光板15に積層して作成される。
[Transfer film]
FIG. 2 is a view showing a transfer film used for producing the antireflection film 13. In this transfer film 20, an orientation layer 22 and a retardation layer 19 are provided on a support substrate 21. The antireflection film 13 is formed by laminating the retardation layer 19 provided on the transfer film 20 on the linear polarizing plate 15 together with the alignment layer 22 by a transfer method.

ここで支持体基材21は、TACフィルム等の各種の透明フィルム材を適用することができるものの、この実施形態では、配向層22との密着強度を向上させるコロナ処理等の密着力強化処理を何ら施されていないPET(ポリエチレンテレフタレート)樹脂による透明フィルム材が適用される。   Here, although various transparent film materials such as a TAC film can be applied to the support base material 21, in this embodiment, an adhesion strengthening treatment such as a corona treatment for improving the adhesion strength with the alignment layer 22 is performed. A transparent film material made of PET (polyethylene terephthalate) resin which is not applied at all is applied.

転写フィルム20は、配向層22の配向規制力により位相差層19に係る液晶材料を配向させた状態で硬化させて位相差層19が作成される。配向層22は、これにより位相差層19に係る液晶材料を配向させることが可能な各種の構成を適用することができるものの、この実施形態では光配向層が適用される。これにより転写フィルム20は、光配向層に係る塗工液の塗工、乾燥により、光配向層に係る材料層が基材21上に形成された後、直線偏光による紫外線の照射により配向層22が形成される。なおこの光配向層に係る材料は、光配向の手法を適用可能な各種の材料を適用することができるものの、この実施形態では、例えば光2量化型の材料を使用する。なおこの光2量化型の材料は、「M.Schadt,K.Schmitt,V.Kozinkov and V.ChigReinov:Jpn.J.Appl.Phys.,31,2155(1992)」、「M.Schadt,H.SeibeRele and A.SchusteRe:NatuRe,381,212(1996)」等に開示されている。   The transfer film 20 is cured in a state in which the liquid crystal material related to the retardation layer 19 is aligned by the alignment regulating force of the alignment layer 22, thereby forming the retardation layer 19. As the alignment layer 22, various configurations capable of aligning the liquid crystal material related to the retardation layer 19 can be applied, but in this embodiment, a photo-alignment layer is applied. Thereby, after the material layer which concerns on the photo-alignment layer is formed on the base material 21 by application | coating and drying of the coating liquid which concerns on the photo-alignment layer, the transfer film 20 is aligned layer 22 by irradiation of the ultraviolet-ray by a linearly polarized light. Is formed. In addition, although the material which concerns on this photo-alignment layer can apply the various materials which can apply the technique of photo-alignment, in this embodiment, a light dimerization type material is used, for example. This light dimerization type material is described in “M. Schadt, K. Schmitt, V. Kozinkov and V. ChigReinov: Jpn. J. Appl. Phys., 31, 155 (1992)”, “M. Schadt, H. SeireRele and A. SchusteRe: NaturRe, 381,212 (1996) ".

位相差層19は、対応する塗工液を塗工、乾燥した後、紫外線の照射により硬化することにより、配向層22の配向規制力により液晶材料を配向させた状態で固化(硬化)して作製される。位相差層19は、この硬化に係る紫外線を充分に照射して充分に反応を進めることにより、赤外分光法(IR)スペクトルにおいて、830cm−1のIRピークPeak(830cm-1)に対する810cm−1のIRピークPeak(810cm-1)比であるIRピーク比Peak(810cm-1)/Peak(830cm-1)が0.51以下となるように設定される。なおこのIRピーク比Peak(810cm-1)/Peak(830cm-1)の計測は、例えば日本分光株式会社製FT-IR-610を使用してATR(全反射減衰)法により、位相差層19を計測して求められる。 The retardation layer 19 is solidified (cured) in a state where the liquid crystal material is aligned by the alignment regulating force of the alignment layer 22 by applying and drying the corresponding coating liquid and then curing by irradiation with ultraviolet rays. Produced. Retardation layer 19, 810 cm by proceeding sufficiently reaction sufficiently irradiated with ultraviolet rays according to this curing, infrared spectroscopy in (IR) spectrum, to IR peak Peak (830 cm -1) of 830 cm -1 - 1 of the IR peak peak (810 cm -1) IR peak ratio is the ratio peak (810cm -1) / peak ( 830cm -1) is set to be 0.51 or less. The IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ) is measured by the ATR (total reflection attenuation) method using, for example, FT-IR-610 manufactured by JASCO Corporation. It is calculated by measuring.

ここで830cm−1のIRピークは、紫外線照射による反応で消失しないp置換ベンゼン由来のIRピークであり、810cm−1のIRピークは、紫外線照射による反応で消失するC=C由来のIRピークであり、これにより位相差層19の作製に供するこの種の塗工層では、反応が進むに従って、徐々にIRピーク比Peak(810cm-1)/Peak(830cm-1)の値が小さくなる。 Here, the IR peak at 830 cm −1 is an IR peak derived from p-substituted benzene that does not disappear by the reaction due to ultraviolet irradiation, and the IR peak at 810 cm −1 is an IR peak derived from C═C that disappears by the reaction due to ultraviolet irradiation. There, in this way this type of coating layer to be subjected to production of the phase difference layer 19, as the reaction proceeds, gradually the value of the IR peak ratio peak (810cm -1) / peak ( 830cm -1) becomes small.

ここで転写フィルム20において、位相差層19のIRピーク比Peak(810cm-1)/Peak(830cm-1)が0.52以上であると、配向層22と支持体基材21との密着力に比して、配向層22と位相差層19との密着力が小さく、その結果、支持体基材21を剥離する場合、配向層22と位相差層19との界面が剥離界面となる。従ってこの場合、直線偏光板15への位相差層19の転写により、支持体基材21と一体に配向層22が位相差層19より剥離し、位相差層19がむき出しの状態となる。 Here, in the transfer film 20, when the IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ) of the retardation layer 19 is 0.52 or more, the adhesion between the alignment layer 22 and the support substrate 21. As a result, when the support substrate 21 is peeled off, the interface between the orientation layer 22 and the retardation layer 19 becomes a peeling interface. Therefore, in this case, the transfer of the retardation layer 19 to the linearly polarizing plate 15 causes the alignment layer 22 to peel from the retardation layer 19 integrally with the support substrate 21, and the retardation layer 19 is exposed.

これに対して位相差層19の反応が一定以上進み、IRピーク比Peak(810cm-1)/Peak(830cm-1)が0.51以下となると、配向層22と支持体基材21との密着力に比して、配向層22と位相差層19との密着力が大きくなり、支持体基材21を剥離する場合、配向層22と支持体基材21との界面が剥離界面となる。これによりこの場合、直線偏光板15への位相差層19の転写により、配向層22が位相差層19と一体に直線偏光板15に転写されることになり、以降の工程では、この配向層22を位相差層19の保護層として機能させて、配向層22により位相差層19を保護することができる。これによりこの実施形態では、反射防止フィルム13の製造工程において、位相差層19の損傷を低減することができる。 On the other hand, when the reaction of the retardation layer 19 proceeds to a certain level or more and the IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ) is 0.51 or less, the alignment layer 22 and the support substrate 21 are separated from each other. When the adhesion layer 22 and the phase difference layer 19 have a larger adhesion force than the adhesion force, and the support substrate 21 is peeled off, the interface between the alignment layer 22 and the support substrate 21 becomes a peeling interface. . Accordingly, in this case, the alignment layer 22 is transferred to the linear polarizing plate 15 together with the retardation layer 19 by transferring the retardation layer 19 to the linear polarizing plate 15. The retardation layer 19 can be protected by the alignment layer 22 by causing the layer 22 to function as a protective layer of the retardation layer 19. Thereby, in this embodiment, in the manufacturing process of the antireflection film 13, damage to the retardation layer 19 can be reduced.

なおこれにより支持体基材21と配向層22との密着力の変化により、支持体基材21を剥離する際の剥離界面が、支持体基材21と配向層22との界面から配向層22と位相差層19との界面に変化することになる。しかしながら配向層22との密着力を強化する密着力強化処理を施していないPETフィルムを支持体基材21に適用する場合にあっては、配向層22に種々の材料を適用する場合、位相差層19に種々の材料を適用する場合であっても、IRピーク比Peak(810cm-1)/Peak(830cm-1)を0.51以下とすることにより、配向層22と支持体基材21との界面を剥離界面とすることができる。 In this connection, due to the change in the adhesion between the support substrate 21 and the alignment layer 22, the peeling interface when peeling the support substrate 21 is changed from the interface between the support substrate 21 and the alignment layer 22. And the phase difference layer 19 change. However, in the case where a PET film that has not been subjected to an adhesion strengthening treatment that reinforces the adhesion with the alignment layer 22 is applied to the support substrate 21, when various materials are applied to the alignment layer 22, the phase difference Even when various materials are applied to the layer 19, by setting the IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ) to 0.51 or less, the alignment layer 22 and the support substrate 21 The interface can be a peeling interface.

位相差層19は、光学異方性を発現する液晶材料である各種の重合性液晶組成物を適用することができる。ここでこの重合性液晶組成物は、液晶性を示し、分子内に重合性官能基を有する液晶化合物(以下、「棒状化合物」ともいう。)のほか、アンチブロッキング剤等を含有させることができる。   For the retardation layer 19, various polymerizable liquid crystal compositions, which are liquid crystal materials exhibiting optical anisotropy, can be applied. Here, the polymerizable liquid crystal composition exhibits liquid crystallinity and can contain an antiblocking agent or the like in addition to a liquid crystal compound having a polymerizable functional group in the molecule (hereinafter also referred to as “rod-like compound”). .

位相差層19に係る棒状化合物は、屈折率異方性を有し、配向層22の配向規制力により規則的に配列することにより、所望の位相差性を付与する機能を有する。棒状化合物として、例えば、ネマチック相、スメクチック相等の液晶相を示す材料が挙げられるが、他の液晶相を示す液晶化合物と比較して規則的に配列させることが容易である点で、ネマチック相を示す棒状化合物を用いることがより好ましい。   The rod-shaped compound according to the retardation layer 19 has refractive index anisotropy, and has a function of imparting desired retardation by being regularly arranged by the alignment regulating force of the alignment layer 22. Examples of the rod-like compound include materials exhibiting a liquid crystal phase such as a nematic phase and a smectic phase, but the nematic phase is easier to arrange regularly than liquid crystal compounds exhibiting other liquid crystal phases. It is more preferable to use the rod-shaped compound shown.

本実施形態において用いられる棒状化合物の具体例としては、例えば、下記式(1)〜(13)で表される化合物を例示でき、これらの化合物を重合させて使用することができる。   Specific examples of the rod-shaped compound used in the present embodiment include compounds represented by the following formulas (1) to (13), and these compounds can be polymerized and used.

Figure 2016122158
Figure 2016122158
(gは2〜5の整数)
Figure 2016122158
Figure 2016122158
(G is an integer of 2 to 5)

〔製造工程〕
転写フィルム20は、ロールに巻き取った長尺フィルム形態により基材21が提供され、この基材21をロールより引き出して搬送しながら配向層22、位相差層19が順次作製された後、ロールに巻き取って光学フィルムの製造工程に搬送される。
〔Manufacturing process〕
The transfer film 20 is provided with a base material 21 in the form of a long film wound around a roll, and after the orientation layer 22 and the retardation layer 19 are sequentially produced while the base material 21 is pulled out from the roll and conveyed, the roll And is conveyed to the optical film manufacturing process.

図3は、転写フィルム20の製造工程を示す図である。この製造工程30は、ロール31により基材21が提供され、ロール31から基材21を引き出しながら搬送し、ダイ32により配向層22の塗工液を塗工する。続いて乾燥装置33において、塗工した塗工液を乾燥させた後、光源34からの直線偏光による紫外線の照射により硬化させ、これにより配向層22を作製する。   FIG. 3 is a diagram illustrating a manufacturing process of the transfer film 20. In the manufacturing process 30, the base material 21 is provided by the roll 31, and the base material 21 is conveyed while being pulled out from the roll 31, and the coating liquid for the alignment layer 22 is applied by the die 32. Subsequently, after drying the applied coating liquid in the drying device 33, the coating liquid is cured by irradiation with ultraviolet rays by linearly polarized light from the light source 34, thereby producing the alignment layer 22.

続いてこの製造工程30は、ダイ35により位相差層19に係る塗工液を配向層22の上に塗工した後、乾燥装置36により乾燥する。また続いて前硬化工程において、光源37により紫外線を照射し、これにより配向層22の配向規制力により液晶材料を配向させた状態で硬化させ、位相差層19を作製する。ここでこの紫外線の照射においては、位相差層19に係る塗工液の塗工面側から実行され、これにより塗工層に効率良く紫外線を照射して位相差層19を作製する。なお配向層、位相差層に係る塗工液の塗工にあっては、ダイによる塗工に限らず、種々の手法を広く適用することができる。   Subsequently, in the manufacturing process 30, the coating liquid related to the retardation layer 19 is applied onto the alignment layer 22 by the die 35 and then dried by the drying device 36. Further, subsequently, in the pre-curing step, the light source 37 irradiates ultraviolet rays, and thereby the liquid crystal material is cured in an aligned state by the alignment regulating force of the alignment layer 22, thereby producing the retardation layer 19. Here, the irradiation of the ultraviolet rays is performed from the coating surface side of the coating liquid related to the retardation layer 19, and thereby the ultraviolet rays are efficiently irradiated onto the coating layer to produce the retardation layer 19. In addition, in the coating of the coating liquid which concerns on an orientation layer and a phase difference layer, not only coating by die | dye but various methods can be applied widely.

この実施形態では、このようにして位相差層19を作製して、さらに位相差層19の反応を進める紫外線の追加照射に係る後硬化工程が設けられる。しかしながら種々に実験した結果によれば、単純に、紫外線照射工程を追加して塗工面側から紫外線を照射したのでは、一定以上反応が進まず、IRピーク比Peak(810cm-1)/Peak(830cm-1)も0.52以下には低下しないことが判った。これは位相差層19に含まれる紫外線吸収剤の影響によるものと考えられる。そこでこの実施形態では、支持体基材21側に光源38を設け、支持体基材21側からの紫外線の照射により位相差層19の反応を進める。 In this embodiment, a post-curing step is performed in which the retardation layer 19 is produced in this way, and additional irradiation of ultraviolet rays that further promotes the reaction of the retardation layer 19 is performed. However, according to the results of various experiments, simply adding an ultraviolet irradiation step and irradiating ultraviolet rays from the coated surface side does not cause a reaction to exceed a certain level, and the IR peak ratio Peak (810 cm-1) / Peak ( It has been found that 830 cm −1 ) does not decrease below 0.52. This is considered to be due to the influence of the ultraviolet absorber contained in the retardation layer 19. Therefore, in this embodiment, the light source 38 is provided on the support base material 21 side, and the reaction of the retardation layer 19 is advanced by irradiation of ultraviolet rays from the support base material 21 side.

この製造工程30は、このようにして作製した長尺フィルム形状による転写フィルム20をロール39に巻き取って直線偏光板との一体化工程に搬送する。   In the manufacturing process 30, the transfer film 20 having a long film shape thus manufactured is wound around a roll 39 and conveyed to an integration process with a linearly polarizing plate.

図4は、直線偏光板との一体化工程を示す図である。この製造工程は、ロール39により転写フィルム20が提供される。また粘着層18、PETフィルムによる剥離フィルム41を配置した状態でロール42により直線偏光板15が供給される。この製造工程は、ロール42から直線偏光板15、粘着層18、剥離フィルム41の積層体を引き出しながら、剥離ロール43により剥離フィルム41を剥離し、剥離した剥離フィルム41をロール44に巻き取る。またロール39から転写フィルム20を引き出しながら、剥離フィルム41を剥離してなる直線偏光板15、粘着層18と積層した後、加圧ロール45により加圧し、これにより転写フィルム20、直線偏光板15、粘着層18の積層体を構成する。また続く剥離ロール46により基材21を剥離してロール47に巻き取り、これにより直線偏光板15、粘着層18、位相差層19、配向層22の積層体を形成して反射防止フィルム13を作成し、この反射防止フィルム13をロール48に巻き取る。反射防止フィルム13の製造工程は、その後、粘着層14、セパレータフィルムを配置した後、所望の大きさに切断する。   FIG. 4 is a diagram illustrating an integration process with the linearly polarizing plate. In this manufacturing process, the transfer film 20 is provided by the roll 39. The linearly polarizing plate 15 is supplied by the roll 42 in a state where the adhesive layer 18 and the release film 41 made of a PET film are arranged. In this manufacturing process, the peeling film 41 is peeled off by the peeling roll 43 while the laminate of the linearly polarizing plate 15, the adhesive layer 18, and the peeling film 41 is pulled out from the roll 42, and the peeled peeling film 41 is wound around the roll 44. In addition, while pulling out the transfer film 20 from the roll 39, it is laminated with the linear polarizing plate 15 and the adhesive layer 18 formed by peeling the release film 41, and then pressed by the pressure roll 45, thereby transferring the transfer film 20 and the linear polarizing plate 15. The laminated body of the adhesion layer 18 is comprised. Further, the substrate 21 is peeled off by the subsequent peeling roll 46 and wound around the roll 47, thereby forming a laminate of the linearly polarizing plate 15, the adhesive layer 18, the retardation layer 19, and the orientation layer 22, thereby forming the antireflection film 13. The antireflection film 13 is prepared and wound on a roll 48. The manufacturing process of the antireflection film 13 is then cut into a desired size after arranging the adhesive layer 14 and the separator film.

図5は、後硬化工程に係る追加の紫外線の照射によるIRピーク比Peak(810cm-1)/Peak(830cm-1)の変化を示す計測結果である。この計測結果は、図6に示すように、粘着層18を介して直線偏光板15と転写フィルムとを積層一体化した後、支持体基材21及び配向層22を剥離し、位相差層19の表面を測定面として計測した結果である。なお支持体基材21を剥離して位相差層19側に配向層22が残存する場合、エッチングにより配向層22を削除して位相差層19の表面を露出させ、測定面とした。またIRピーク比Peak(810cm-1)/Peak(830cm-1)の計測は、日本分光株式会社製FT-IR-610を使用してATR(全反射減衰)法により実行した。 FIG. 5 is a measurement result showing a change in IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ) due to additional ultraviolet irradiation in the post-curing process. As shown in FIG. 6, the measurement result is obtained by laminating and integrating the linear polarizing plate 15 and the transfer film via the adhesive layer 18, and then peeling off the support base material 21 and the alignment layer 22. It is the result of having measured the surface of this as a measurement surface. When the support base material 21 was peeled off and the alignment layer 22 remained on the retardation layer 19 side, the alignment layer 22 was removed by etching to expose the surface of the retardation layer 19 to obtain a measurement surface. The IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ) was measured by ATR (total reflection attenuation) method using FT-IR-610 manufactured by JASCO Corporation.

ここで支持体基材21は、密着力強化処理を何ら施していない厚み100μmのPETフィルムを適用した。配向層22は、対応する塗工液を、乾燥膜厚200μmとなるように塗工した後、120℃の熱風により乾燥し、光量20mJ/cmにより直線偏光の紫外線を照射して作製した。この配向層22の塗工液は、PGME溶剤により固形分4.5%となるように作製した。また位相差層19は、対応する塗工液を乾燥膜厚1μmとなるように塗工した後、90℃の熱風により乾燥し、光量450mJ/cmによる前硬化に係る紫外線の照射により作製した。なおこの位相差層19の塗工液は、MEK:MIBK=1:1混合溶剤により固形分25%となるように作製した。 Here, as the support base material 21, a PET film having a thickness of 100 μm which has not been subjected to any adhesion strengthening treatment is applied. The alignment layer 22 was prepared by applying a corresponding coating solution so as to have a dry film thickness of 200 μm, drying with hot air at 120 ° C., and irradiating linearly polarized ultraviolet rays with a light amount of 20 mJ / cm 2 . The coating liquid for the alignment layer 22 was prepared with a PGME solvent so that the solid content was 4.5%. The retardation layer 19 was prepared by applying a corresponding coating solution so as to have a dry film thickness of 1 μm, then drying with hot air at 90 ° C., and irradiating with ultraviolet rays related to pre-curing with a light amount of 450 mJ / cm 2 . . In addition, the coating liquid of this phase difference layer 19 was produced so that it might become 25% of solid content with MEK: MIBK = 1: 1 mixed solvent.

符号L21は、支持体基材21側から追加の紫外線照射を行った場合の計測結果であり、符号L19は位相差層19側から追加の紫外線照射を行った場合の計測結果である。未照射は、追加による紫外線照射を実行しない場合のIRピーク比Peak(810cm-1)/Peak(830cm-1)であり、この場合、IRピーク比Peak(810cm-1)/Peak(830cm-1)は0.565であり、これにより塗工面からの紫外線照射により位相差層19は、IRピーク比Peak(810cm-1)/Peak(830cm-1)が0.565となるまで反応が進んでいることになる。この未照射のサンプルでは、剥離界面は配向層22と位相差層19との界面であった。 Symbol L21 is a measurement result when additional ultraviolet irradiation is performed from the support substrate 21 side, and symbol L19 is a measurement result when additional ultraviolet irradiation is performed from the retardation layer 19 side. Unirradiated is IR peak ratio in the case of not executing the ultraviolet irradiation by adding Peak (810cm -1) / Peak ( 830cm -1), in this case, IR peak ratio Peak (810cm -1) / Peak ( 830cm -1 ) Is 0.565, and as a result, the reaction of the retardation layer 19 progresses until the IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ) becomes 0.565 due to ultraviolet irradiation from the coated surface. Will be. In this unirradiated sample, the peeling interface was the interface between the alignment layer 22 and the retardation layer 19.

図5の計測結果では、このIRピーク比Peak(810cm-1)/(Peak(830cm-1)が0.565である転写フィルムに、光量250mJ/cm、500mJ/cm、750mJ/cmにより塗工層側及び支持体基材21側からそれぞれ紫外線を照射して追加の紫外線照射を実行した場合、紫外線照射光量の増大により何れの側から紫外線を照射する場合でも、徐々にIRピーク比Peak(810cm-1)/Peak(830cm-1)が低下する。しかしながら位相差層19側から紫外線を照射する場合、光量が500mJ/cm、750mJ/cmを超えると、IRピーク比Peak(810cm-1)/Peak(830cm-1)の変化が低下し、IRピーク比Peak(810cm-1)/Peak(830cm-1)の変化に飽和特性が観察される。これにより位相差層19側から紫外線を照射する場合、IRピーク比Peak(810cm-1)/Peak(830cm-1)を0.51以下に低下させることは、困難であると判断される。 Figure in the measurement result 5, the transfer film the IR peak ratio Peak (810cm -1) / (Peak (830cm -1) is 0.565, the amount of light 250mJ / cm 2, 500mJ / cm 2, 750mJ / cm 2 When the additional ultraviolet irradiation is performed by irradiating the ultraviolet rays from the coating layer side and the support substrate 21 side respectively, the IR peak ratio is gradually increased regardless of which side is irradiated with the ultraviolet rays due to the increase in the amount of ultraviolet irradiation light. peak (810cm -1) / peak ( 830cm -1) is reduced. However, when irradiated with ultraviolet light from the phase difference layer 19 side, the light amount is more than 500mJ / cm 2, 750mJ / cm 2, IR peak ratio peak ( 810 cm −1 ) / Peak (830 cm −1 ) decreases, and saturation characteristics are observed in the change in the IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ), whereby the retardation layer 19 side case of irradiation with ultraviolet rays, IR peak ratio peak (810 cm -1) Reducing Peak to (830 cm -1) to 0.51 or less is determined to be difficult.

これに対して支持体基材21側から紫外線を照射する場合には、照射光量に比例するようにIRピーク比Peak(810cm-1)/Peak(830cm-1)が低下し、これにより簡易かつ効率良くIRピーク比Peak(810cm-1)/Peak(830cm-1)を0.51以下に低下させることができる。 On the other hand, when irradiating ultraviolet rays from the support base material 21 side, the IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ) is reduced in proportion to the amount of irradiation light, which makes it easy and simple. The IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ) can be efficiently reduced to 0.51 or less.

ここでIRピーク比Peak(810cm-1)/Peak(830cm-1)が0.52以上の各サンプルでは、剥離界面は位相差層19と配向層22との界面であり、これにより符号Aにより示すIRピーク比Peak(810cm-1)/Peak(830cm-1)が0.52以上の場合、支持体基材21を剥離すると支持体基材21と一緒に配向層22までも剥離してしまうことが判った。 Here, in each sample having an IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ) of 0.52 or more, the peeling interface is an interface between the retardation layer 19 and the alignment layer 22, and thus, according to the symbol A. When the IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ) shown is 0.52 or more, if the support base material 21 is peeled off, the orientation layer 22 is peeled off together with the support base material 21. I found out.

これに対してIRピーク比Peak(810cm-1)/Peak(830cm-1)が0.51のサンプルでは、剥離界面が配向層22と支持体基材21との界面であり、これにより符号Bにより示すIRピーク比Peak(810cm-1)/Peak(830cm-1)が0.51以下の場合、支持体基材21を剥離すると、位相差層19側に配向層22が取り残されることが判った。 On the other hand, in the sample having an IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ) of 0.51, the peeling interface is the interface between the alignment layer 22 and the support substrate 21, thereby It can be seen that when the IR peak ratio Peak (810 cm −1 ) / Peak (830 cm −1 ) shown in FIG. 5 is 0.51 or less, when the support substrate 21 is peeled off, the alignment layer 22 is left behind on the phase difference layer 19 side. It was.

〔他の実施形態〕
以上、本発明の実施に好適な具体的な構成を詳述したが、本発明は、本発明の趣旨を逸脱しない範囲で、上述の実施形態を種々に変更することができる。
[Other Embodiments]
As mentioned above, although the specific structure suitable for implementation of this invention was explained in full detail, this invention can be variously changed in the range which does not deviate from the meaning of this invention.

すなわち上述の実施形態では、円偏光板の機能により反射防止を図る反射防止フィルムによる光学フィルムに本発明を適用する場合について述べたが、本発明はこれに限らず、例えばパッシブ方式による3次元画像表示に適用されるパターン位相差フィルムに係る位相差層を、液晶表示パネルの出射面に配置する直線偏光板に転写法により配置することにより、パターン位相差フィルムと直線偏光板とを一体化した光学フィルム、偏光サングラスにより見る方向による表示画面の明るさの変化を防止する位相差フィルムに係る位相差層を、液晶表示パネルの出射面に配置する直線偏光板に転写法により配置してなる光学フィルム等に広く適用することができる。   That is, in the above-described embodiment, the case where the present invention is applied to the optical film by the antireflection film that prevents reflection by the function of the circularly polarizing plate has been described. However, the present invention is not limited to this, and for example, a three-dimensional image by a passive method Pattern retardation film and linearly polarizing plate were integrated by arranging the retardation layer related to the patterned retardation film applied to display on the linearly polarizing plate placed on the exit surface of the liquid crystal display panel by the transfer method An optical film, an optical film in which a retardation layer related to a retardation film that prevents a change in brightness of a display screen depending on a viewing direction by polarized sunglasses is disposed by a transfer method on a linear polarizing plate disposed on an output surface of a liquid crystal display panel. It can be widely applied to films and the like.

11 画像表示装置
12 画像表示パネル
13 反射防止フィルム
14、18 粘着層
15 直線偏光板
16 1/4波長板
19 位相差層
20 転写フィルム
21 支持体基材
22 配向層
30 製造工程
31、39、42〜48 ロール
32、35 ダイ
33、36 乾燥装置
34、37、38 光源
41 剥離フィルム
41〜48 ロール
DESCRIPTION OF SYMBOLS 11 Image display apparatus 12 Image display panel 13 Antireflection film 14, 18 Adhesive layer 15 Linear polarizing plate 16 1/4 wavelength plate 19 Phase difference layer 20 Transfer film 21 Support base material 22 Orientation layer 30 Manufacturing process 31, 39, 42 -48 rolls 32, 35 dies 33, 36 drying devices 34, 37, 38 light source 41 release film 41-48 rolls

Claims (7)

支持体基材と、
前記支持体基材上に設けられた配向層と、
前記配向層の上に設けられた、透過光に位相差を付与する位相差層とを備え、
前記位相差層は、
赤外分光法スペクトルにおいて、830cm−1のIRピークPeak(830cm-1)に対する810cm−1のIRピークPeak(810cm-1)比であるIRピーク比Peak(810cm-1)/Peak(830cm-1)が0.51以下である
転写フィルム。
A support substrate;
An alignment layer provided on the support substrate;
A retardation layer provided on the alignment layer and imparting a retardation to transmitted light;
The retardation layer is
In infrared spectroscopy spectrum, an IR peak Peak (810 cm -1) ratio of 810 cm -1 to IR peak of 830cm -1 Peak (830cm -1) IR peak ratio Peak (810cm -1) / Peak ( 830cm -1 ) Is 0.51 or less.
透過光に位相差を付与する位相差層を備えた光学フィルムにおいて、
前記位相差層は、
透明フィルム材による基材に、少なくとも光学機能層を介して設けられ、
前記基材とは逆側面には、配向層が設けられ、
前記位相差層は、
赤外分光法スペクトルにおいて、830cm−1のIRピークPeak(830cm-1)に対する810cm−1のIRピークPeak(810cm-1)比であるIRピーク比Peak(810cm-1)/Peak(830cm-1)が0.51以下である
光学フィルム。
In an optical film comprising a retardation layer that imparts a retardation to transmitted light,
The retardation layer is
Provided on the base material by the transparent film material through at least the optical functional layer,
On the side opposite to the substrate, an alignment layer is provided,
The retardation layer is
In infrared spectroscopy spectrum, an IR peak Peak (810 cm -1) ratio of 810 cm -1 to IR peak of 830cm -1 Peak (830cm -1) IR peak ratio Peak (810cm -1) / Peak ( 830cm -1 ) Is 0.51 or less.
前記光学機能層が、
直線偏光板としての機能を担う光学機能層である
請求項2に記載の光学フィルム。
The optical functional layer is
The optical film according to claim 2, which is an optical functional layer having a function as a linear polarizing plate.
支持体基材に配向層を作製する配向層作製工程と、
前記配向層の上に、位相差層の塗工液を塗工して乾燥することにより前記位相差層の塗工層を作製した後、前記位相差層の塗工層を硬化させて前記位相差層を作製する位相差層の作製工程とを備え、
前記位相差層の作製工程は、
前記位相差層の塗工層側から紫外線を照射して前記位相差層の塗工層を硬化させる前硬化工程と、
前記前硬化工程に続いて、前記支持体基材側から紫外線を照射して前記位相差層の塗工層を硬化させる後硬化工程とを備える
転写フィルムの製造方法。
An alignment layer preparation step of preparing an alignment layer on a support substrate;
On the alignment layer, a retardation layer coating liquid is applied and dried to prepare the retardation layer coating layer, and then the retardation layer coating layer is cured to form the retardation layer. A phase difference layer production step for producing a phase difference layer;
The step of producing the retardation layer includes
A pre-curing step of curing the coating layer of the retardation layer by irradiating ultraviolet rays from the coating layer side of the retardation layer;
Subsequent to the pre-curing step, a post-curing step of curing the coating layer of the retardation layer by irradiating ultraviolet rays from the support substrate side.
前記位相差層の作製工程は、
前記後硬化工程による前記紫外線の照射により、
赤外分光法スペクトルにおいて、830cm−1のIRピークPeak(830cm-1)に対する810cm−1のIRピークPeak(810cm-1)比であるIRピーク比Peak(810cm-1)/Peak(830cm-1)が0.51以下により前記位相差層を形成する
請求項4に記載の転写フィルムの製造方法。
The step of producing the retardation layer includes
By irradiation with the ultraviolet rays in the post-curing step,
In infrared spectroscopy spectrum, an IR peak Peak (810 cm -1) ratio of 810 cm -1 to IR peak of 830cm -1 Peak (830cm -1) IR peak ratio Peak (810cm -1) / Peak ( 830cm -1 The method for producing a transfer film according to claim 4, wherein the retardation layer is formed by 0.51 or less.
支持体基材、配向層、位相差層の積層による転写フィルムを作製する転写フィルムの作製工程と、
被転写体に、転写法により、前記転写フィルムの位相差層を前記配向層と一体に配置する光学フィルムの作製工程とを備え、
前記転写フィルムの作製工程は、
前記支持体基材に前記配向層を作製する配向層作製工程と、
前記配向層の上に、前記位相差層の塗工液を塗工して乾燥することにより前記位相差層の塗工層を作製した後、前記位相差層の塗工層を硬化させて前記位相差層を作製する位相差層の作製工程とを備え、
前記位相差層の作製工程は、
前記位相差層の塗工層側から紫外線を照射して前記位相差層の塗工層を硬化させる前硬化工程と、
前記前硬化工程に続いて、前記支持体基材側から紫外線を照射して前記位相差層の塗工層を硬化させる後硬化工程とを備える
光学フィルムの製造方法。
A transfer film production process for producing a transfer film by laminating a support substrate, an alignment layer, and a retardation layer;
The transfer body is provided with a production process of an optical film in which a phase difference layer of the transfer film is disposed integrally with the alignment layer by a transfer method,
The transfer film production process includes:
An alignment layer preparation step of preparing the alignment layer on the support substrate;
On the alignment layer, a coating layer for the retardation layer is prepared by coating and drying the coating liquid for the retardation layer, and then the coating layer for the retardation layer is cured to produce the coating layer for the retardation layer. A phase difference layer production step for producing a phase difference layer;
The step of producing the retardation layer includes
A pre-curing step of curing the coating layer of the retardation layer by irradiating ultraviolet rays from the coating layer side of the retardation layer;
Following the pre-curing step, a post-curing step of curing the coating layer of the retardation layer by irradiating ultraviolet rays from the support substrate side.
前記位相差層の作製工程は、
前記後硬化工程による前記紫外線の照射により、
赤外分光法スペクトルにおいて、830cm−1のIRピークPeak(830cm-1)に対する810cm−1のIRピークPeak(810cm-1)比であるIRピーク比Peak(810cm-1)/Peak(830cm-1)が0.51以下により前記位相差層を形成する
請求項6に記載の光学フィルムの製造方法。
The step of producing the retardation layer includes
By irradiation with the ultraviolet rays in the post-curing step,
In infrared spectroscopy spectrum, an IR peak Peak (810 cm -1) ratio of 810 cm -1 to IR peak of 830cm -1 Peak (830cm -1) IR peak ratio Peak (810cm -1) / Peak ( 830cm -1 ) Is 0.51 or less to form the retardation layer. The method for producing an optical film according to claim 6.
JP2014263562A 2014-12-25 2014-12-25 Transfer film, optical film, transfer film manufacturing method, and optical film manufacturing method Active JP6459507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014263562A JP6459507B2 (en) 2014-12-25 2014-12-25 Transfer film, optical film, transfer film manufacturing method, and optical film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014263562A JP6459507B2 (en) 2014-12-25 2014-12-25 Transfer film, optical film, transfer film manufacturing method, and optical film manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018244519A Division JP6660040B2 (en) 2018-12-27 2018-12-27 Image display device

Publications (2)

Publication Number Publication Date
JP2016122158A true JP2016122158A (en) 2016-07-07
JP6459507B2 JP6459507B2 (en) 2019-01-30

Family

ID=56328979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014263562A Active JP6459507B2 (en) 2014-12-25 2014-12-25 Transfer film, optical film, transfer film manufacturing method, and optical film manufacturing method

Country Status (1)

Country Link
JP (1) JP6459507B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249108A (en) * 2006-03-20 2007-09-27 Fujifilm Corp Optical compensation sheet, polarizing plate using the same, and liquid crystal display device
JP2008009156A (en) * 2006-06-29 2008-01-17 Nitto Denko Corp Method of forming adhesive optical film, adhesive optical film, and image display device
JP2008310097A (en) * 2007-06-15 2008-12-25 Seiko Epson Corp Forming method of retardation film, liquid crystal device, and its manufacturing method
JP2011158671A (en) * 2010-01-29 2011-08-18 Nippon Zeon Co Ltd Composition for forming liquid crystal layer, circular polarization separation sheet and method for producing the same, and luminance-improved film and liquid crystal display device
JP2014222282A (en) * 2013-05-13 2014-11-27 大日本印刷株式会社 Transfer body for optical film, optical film, image display device, manufacturing method of transfer body for optical film, and manufacturing method of optical film
JP2014224838A (en) * 2013-05-08 2014-12-04 大日本印刷株式会社 Image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249108A (en) * 2006-03-20 2007-09-27 Fujifilm Corp Optical compensation sheet, polarizing plate using the same, and liquid crystal display device
JP2008009156A (en) * 2006-06-29 2008-01-17 Nitto Denko Corp Method of forming adhesive optical film, adhesive optical film, and image display device
JP2008310097A (en) * 2007-06-15 2008-12-25 Seiko Epson Corp Forming method of retardation film, liquid crystal device, and its manufacturing method
JP2011158671A (en) * 2010-01-29 2011-08-18 Nippon Zeon Co Ltd Composition for forming liquid crystal layer, circular polarization separation sheet and method for producing the same, and luminance-improved film and liquid crystal display device
JP2014224838A (en) * 2013-05-08 2014-12-04 大日本印刷株式会社 Image display device
JP2014222282A (en) * 2013-05-13 2014-11-27 大日本印刷株式会社 Transfer body for optical film, optical film, image display device, manufacturing method of transfer body for optical film, and manufacturing method of optical film

Also Published As

Publication number Publication date
JP6459507B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6175972B2 (en) Optical film, image display device, optical film transfer body, optical film manufacturing method, and optical film transfer body manufacturing method
JP6171707B2 (en) Optical film transfer body, optical film, optical film transfer body manufacturing method, optical film manufacturing method
JP2015021975A (en) Transfer body for optical film and method for manufacturing transfer body for optical film
JP2014222282A (en) Transfer body for optical film, optical film, image display device, manufacturing method of transfer body for optical film, and manufacturing method of optical film
JP6175973B2 (en) Optical film, image display device, optical film transfer body, optical film manufacturing method, and optical film transfer body manufacturing method
JP2014071380A (en) Transfer body for optical film, optical film, image display device, and production method of optical film
JP6217171B2 (en) Optical film transfer body, optical film, and image display device
JP5876441B2 (en) Image display device
JP2015079256A (en) Optical film, transfer body for optical film, and image display device
JP2014071381A (en) Transfer body for optical film, optical film, image display device and production method of optical film
JP5876440B2 (en) Image display device
JP2015021976A (en) Transfer body for optical film and method for manufacturing transfer body for optical film
JP6179308B2 (en) Optical film, optical film transfer body, image display device
JP6388053B2 (en) Optical film transfer body, optical film, optical film transfer body manufacturing method, optical film manufacturing method
JP2014222283A (en) Transfer body for optical film, optical film, image display device, manufacturing method of transfer body for optical film, and manufacturing method of optical film
JP5799989B2 (en) Optical film, image display device, optical film transfer body, optical film manufacturing method, and optical film transfer body manufacturing method
JP2014123068A (en) Transfer body for circular polarizing plate, circular polarizing plate, image display unit, manufacturing method of transfer body for circular polarizing plate and manufacturing method of circular polarizing plate
JP6459507B2 (en) Transfer film, optical film, transfer film manufacturing method, and optical film manufacturing method
JP6660040B2 (en) Image display device
JP6167725B2 (en) Optical film transfer body, optical film manufacturing method, and optical film transfer body manufacturing method
JP6221455B2 (en) ROLLED BODY OF OPTICAL FILM TRANSFER BODY, PROCESS FOR PRODUCING ROLLED BODY OF OPTICAL FILM TRANSFER
TWI816795B (en) Method for manufacturing optical laminate
JP2015079255A (en) Optical film, transfer body for optical film, and image display device
TWI457665B (en) Patterned phase retardation film and the method for manufacturing the same
JP6648843B2 (en) Optical component, image display device, and method of manufacturing optical component

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181217

R150 Certificate of patent or registration of utility model

Ref document number: 6459507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150