JP2016121979A - Sensor - Google Patents

Sensor Download PDF

Info

Publication number
JP2016121979A
JP2016121979A JP2015028810A JP2015028810A JP2016121979A JP 2016121979 A JP2016121979 A JP 2016121979A JP 2015028810 A JP2015028810 A JP 2015028810A JP 2015028810 A JP2015028810 A JP 2015028810A JP 2016121979 A JP2016121979 A JP 2016121979A
Authority
JP
Japan
Prior art keywords
sensor
surface side
electrode member
side electrode
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015028810A
Other languages
Japanese (ja)
Inventor
克樹 青井
Katsuki Aoi
克樹 青井
和真 近藤
Kazumasa Kondo
和真 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Publication of JP2016121979A publication Critical patent/JP2016121979A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sensor which hardly has a disconnection between a signal path part and a resistance part in an installation environment in which temperature change occurs.SOLUTION: A case 61 of a non-resonance type knocking sensor 1 covers a joint part 27a between a lower surface-side electrode member 17a and a resistance element 27 and a joint part 27b between an upper surface-side electrode member 19a and the resistance element 27, and is made of 66 nylon containing 45 mass% of glass fiber. Namely, the case 61 is made of a material which contains the glass fiber and a coefficient of thermal expansion of 2×10[/°C] or less in a flow direction. The knocking sensor 1 comprising such a case 61 can suppress a size variation amount of the case 61 even if temperature change occurs in an installation environment of the sensor, and has the joint part 27a and joint part 27b suppressed from being disconnected (broken) owing to size change of the case 61.SELECTED DRAWING: Figure 2

Description

本発明は、測定対象の状態変化に応じて変化するセンサ信号を発生するセンサに関する。   The present invention relates to a sensor that generates a sensor signal that changes in accordance with a change in state of a measurement target.

測定対象の状態変化に応じて変化するセンサ信号を発生するセンサとしては、測定対象の状態変化に応じて変化するセンサ信号を発生する信号発生部と、センサ信号の伝達経路を形成する信号経路部と、信号経路部に接続される抵抗部と、樹脂により成形されると共に信号経路部と抵抗部との接続部を少なくとも覆う樹脂成形部と、を備える構成のセンサが知られている。   As a sensor that generates a sensor signal that changes in response to a change in the state of a measurement target, a signal generation unit that generates a sensor signal that changes in response to a change in the state of the measurement target, and a signal path unit that forms a transmission path for the sensor signal A sensor having a configuration including a resistance portion connected to the signal path portion and a resin molding portion that is molded with resin and covers at least the connection portion between the signal path portion and the resistance portion is known.

このような構成のセンサの具体例としては、内燃機関に発生するノッキングを検出するノッキングセンサなどが挙げられる(特許文献1、2)。
このノッキングセンサは、内燃機関でのノッキングの発生状況に応じて変化するセンサ信号(ノッキング検出信号)を発生する。ノッキング検出信号は、例えば、ノッキング判定装置において、ノッキングの有無を判定するために用いることができる。
Specific examples of the sensor having such a configuration include a knocking sensor that detects knocking occurring in an internal combustion engine (Patent Documents 1 and 2).
This knocking sensor generates a sensor signal (knocking detection signal) that changes according to the state of occurrence of knocking in the internal combustion engine. The knocking detection signal can be used, for example, to determine the presence or absence of knocking in a knocking determination device.

また、抵抗部は、当該抵抗部と、センサに接続される外部のエンジン制御装置との間における電気経路の断線(破断)を検出するための異常検出抵抗として機能する。   The resistance unit functions as an abnormality detection resistor for detecting disconnection (breakage) of the electrical path between the resistance unit and an external engine control device connected to the sensor.

特開2005−249601号公報JP-A-2005-249601 特開2006−300605号公報JP 2006-300605 A

しかし、上記のセンサにおいては、センサの設置環境における温度変化によって、信号経路部と抵抗部との接続部が断線(破断)する場合がある。
つまり、温度変化によって樹脂成形部の寸法変化が生じた場合には、信号経路部と抵抗部との接続部に応力が生じて、信号経路部と抵抗部との接続部が断線する(破断する)可能性がある。
However, in the above sensor, the connection portion between the signal path portion and the resistance portion may be broken (broken) due to a temperature change in the installation environment of the sensor.
That is, when the dimensional change of the resin molded portion occurs due to a temperature change, stress is generated in the connection portion between the signal path portion and the resistance portion, and the connection portion between the signal path portion and the resistance portion is disconnected (breaks). )there is a possibility.

そして、このような断線(破断)が生じると、抵抗部が正常に機能しなくなる。
そこで、本発明は、温度変化が生じる設置環境においても、信号経路部と抵抗部との断線(破断)が生じがたいセンサを提供することを目的とする。
And when such a disconnection (break) arises, a resistance part will not function normally.
Therefore, an object of the present invention is to provide a sensor in which disconnection (breakage) between a signal path portion and a resistance portion is unlikely to occur even in an installation environment in which a temperature change occurs.

本発明の第1の局面におけるセンサは、信号発生部と、信号経路部と、抵抗部と、樹脂成形部と、を備える。
信号発生部は、測定対象の状態変化に応じて変化するセンサ信号を発生する。信号経路部は、センサ信号の伝達経路を形成する。抵抗部は、信号経路部に接続される。
The sensor according to the first aspect of the present invention includes a signal generation unit, a signal path unit, a resistance unit, and a resin molding unit.
The signal generator generates a sensor signal that changes according to a change in the state of the measurement target. The signal path section forms a sensor signal transmission path. The resistance unit is connected to the signal path unit.

樹脂成形部は、樹脂により成形されると共に、信号経路部と抵抗部との接続部を少なくとも覆う。また、樹脂成形部は、ガラス繊維を含有してなり、流動方向の線膨張率が2×10−5[/℃]以下の材料で形成される。 The resin molding part is molded of resin and covers at least the connection part between the signal path part and the resistance part. Moreover, the resin molding part contains glass fiber, and is formed with the material whose linear expansion coefficient of a flow direction is 2 * 10 < -5 > [/ degreeC] or less.

流動方向の線膨張率が2×10−5[/℃]以下の材料で形成された樹脂成形部は、温度変化の発生時における寸法変化量が一定範囲内に制限される。
このため、センサの設置環境における温度変化が発生しても、樹脂成形部の寸法変化量を抑制でき、信号経路部と抵抗部との接続部が樹脂成形部の寸法変化によって断線(破断)することを抑制できる。
In a resin molded part formed of a material having a linear expansion coefficient in the flow direction of 2 × 10 −5 [/ ° C.] or less, the amount of dimensional change when a temperature change occurs is limited within a certain range.
For this reason, even if the temperature change in the installation environment of the sensor occurs, the dimensional change amount of the resin molded portion can be suppressed, and the connection portion between the signal path portion and the resistance portion is disconnected (broken) by the dimensional change of the resin molded portion. This can be suppressed.

よって、このセンサによれば、温度変化が生じる設置環境においても、信号経路部と抵抗部との断線(破断)が生じがたくなる。
本発明の他の局面におけるセンサは、信号発生部と、信号経路部と、抵抗部と、樹脂成形部と、を備える。
Therefore, according to this sensor, even in an installation environment where a temperature change occurs, it is difficult for the signal path portion and the resistance portion to be disconnected (broken).
A sensor according to another aspect of the present invention includes a signal generation unit, a signal path unit, a resistance unit, and a resin molding unit.

信号発生部は、測定対象の状態変化に応じて変化するセンサ信号を発生する。信号経路部は、センサ信号の伝達経路を形成する。抵抗部は、信号経路部に接続される。
樹脂成形部は、樹脂により成形されると共に、信号経路部と抵抗部との接続部を少なくとも覆う。また、樹脂成形部は、ガラス繊維を含有してなり、流動方向の線膨張率が2×10−5[/℃]以下であり、かつ、上記流動方向に対する直角の方向である直角方向の線膨張率が7×10−5[/℃]以下の材料で形成される。
The signal generator generates a sensor signal that changes according to a change in the state of the measurement target. The signal path section forms a sensor signal transmission path. The resistance unit is connected to the signal path unit.
The resin molding part is molded of resin and covers at least the connection part between the signal path part and the resistance part. In addition, the resin molded part contains glass fibers, the linear expansion coefficient in the flow direction is 2 × 10 −5 [/ ° C.] or less, and a perpendicular line that is perpendicular to the flow direction. It is formed of a material having an expansion coefficient of 7 × 10 −5 [/ ° C.] or less.

流動方向の線膨張率が2×10−5[/℃]以下であり、かつ、直角方向の線膨張率が7×10−5[/℃]以下の材料で形成された樹脂成形部は、温度変化の発生時における寸法変化量が一定範囲内に制限される。 A resin molded part formed of a material having a linear expansion coefficient in the flow direction of 2 × 10 −5 [/ ° C.] or less and a linear expansion coefficient in the perpendicular direction of 7 × 10 −5 [/ ° C.] or less, The amount of dimensional change when a temperature change occurs is limited within a certain range.

このため、センサの設置環境における温度変化が発生しても、樹脂成形部の寸法変化量を抑制でき、信号経路部と抵抗部との接続部が樹脂成形部の寸法変化によって断線(破断)することを抑制できる。   For this reason, even if the temperature change in the installation environment of the sensor occurs, the dimensional change amount of the resin molded portion can be suppressed, and the connection portion between the signal path portion and the resistance portion is disconnected (broken) by the dimensional change of the resin molded portion. This can be suppressed.

よって、このセンサによれば、温度変化が生じる設置環境においても、信号経路部と抵抗部との断線(破断)が生じがたくなる。
なお、抵抗部としては、当該抵抗部と、センサに接続される外部のエンジン制御装置との間における電気経路の断線(破断)を検出するための異常検出抵抗として機能するものや、抵抗部と信号発生部との間の短絡を検出するための異常検出抵抗として機能するものを挙げることができる。
Therefore, according to this sensor, even in an installation environment where a temperature change occurs, it is difficult for the signal path portion and the resistance portion to be disconnected (broken).
In addition, as a resistance part, what functions as an abnormality detection resistance for detecting the disconnection (break) of the electrical path between the said resistance part and the external engine control apparatus connected to a sensor, and a resistance part The thing which functions as an abnormality detection resistance for detecting the short circuit between signal generation parts can be mentioned.

また、「流動方向の線膨張率」とは、ガラス繊維を含有する樹脂の射出成形時にゲートから金型内に樹脂が射出されて流動する方向となる流動方向のサンプル(試験片)を用いて測定した線膨張率(線膨張係数)を意味する。また、「直角方向の線膨張率」とは、上記流動方向に対する直角の方向のサンプル(試験片)を用いて測定した線膨張率(線膨張係数)を意味している。   In addition, the “linear expansion coefficient in the flow direction” refers to a sample (test piece) in the flow direction in which the resin is injected from the gate into the mold during the injection molding of the resin containing glass fibers. It means the measured linear expansion coefficient (linear expansion coefficient). The term “linear expansion coefficient in the right-angle direction” means a linear expansion coefficient (linear expansion coefficient) measured using a sample (test piece) in a direction perpendicular to the flow direction.

次に、上述のセンサにおいては、樹脂成形部が、信号発生部、信号経路部、抵抗部を覆う構成であっても良い。
つまり、センサは、樹脂成形部が信号経路部および抵抗部のみを覆い、信号発生部が樹脂成形部の外部に備えられる構成に限られることはなく、樹脂成形部が、信号発生部、信号経路部、抵抗部を覆う構成であっても良い。
Next, in the above-described sensor, the resin molding unit may cover the signal generation unit, the signal path unit, and the resistance unit.
That is, the sensor is not limited to a configuration in which the resin molding part covers only the signal path part and the resistance part, and the signal generation part is provided outside the resin molding part. The structure which covers a part and a resistance part may be sufficient.

このようなセンサは、樹脂成形部の内部に、信号発生部、信号経路部、抵抗部が一体に備えられる構成となり、センサの設置箇所を1カ所に集約することが可能となる。
次に、上述のセンサにおいては、信号発生部は、圧電素子であり、測定対象は、内燃機関のノッキングであってもよい。
Such a sensor has a configuration in which a signal generation unit, a signal path unit, and a resistance unit are integrally provided inside the resin molding unit, and the installation locations of the sensors can be integrated into one location.
Next, in the above-described sensor, the signal generation unit may be a piezoelectric element, and the measurement target may be knocking of the internal combustion engine.

つまり、内燃機関のノッキングを検出するノッキングセンサは、センサの設置箇所における温度変化が発生しやすいが、本発明をノッキングセンサに適用することで、信号経路部と抵抗部との断線(破断)が生じがたくなる。   In other words, the knocking sensor that detects knocking of the internal combustion engine is likely to cause a temperature change at the location where the sensor is installed. However, by applying the present invention to the knocking sensor, disconnection (breakage) between the signal path portion and the resistance portion is caused. It is difficult to produce.

本発明のセンサによれば、温度変化が生じる設置環境においても、信号経路部と抵抗部との断線(破断)が生じがたくなる。   According to the sensor of the present invention, disconnection (breakage) between the signal path portion and the resistance portion is unlikely to occur even in an installation environment in which a temperature change occurs.

非共振型ノッキングセンサの外観を表す正面図である。It is a front view showing the external appearance of a non-resonant type knocking sensor. ノッキングセンサの内部構造を示す断面図である。It is sectional drawing which shows the internal structure of a knocking sensor. 抵抗素子、下面側電極部材および上面側電極部材の位置関係を模式的に示した説明図である。It is explanatory drawing which showed typically the positional relationship of a resistive element, a lower surface side electrode member, and an upper surface side electrode member. ノッキングセンサの内部に備えられる構成部品の一部の分解斜視図である。It is a disassembled perspective view of a part of component provided in the inside of a knocking sensor. 66ナイロン(PA66)におけるガラス含有率と線膨張率との相関関係を測定した測定結果を示す説明図である。It is explanatory drawing which shows the measurement result which measured the correlation of the glass content rate and linear expansion coefficient in 66 nylon (PA66). 第2ノッキングセンサの内部蔵構造を示す断面図である。It is sectional drawing which shows the internal storage structure of a 2nd knocking sensor.

以下、本発明が適用された実施形態について、図面を用いて説明する。
尚、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。
Embodiments to which the present invention is applied will be described below with reference to the drawings.
In addition, this invention is not limited to the following embodiment at all, and it cannot be overemphasized that various forms may be taken as long as it belongs to the technical scope of this invention.

[1.第1実施形態]
[1−1.全体構成]
本発明が適用された非共振型ノッキングセンサ1(以下、単に「ノッキングセンサ1」ともいう。)について、図1を用いて説明する。図1は、非共振型ノッキングセンサ1の外観を表す正面図である。
[1. First Embodiment]
[1-1. overall structure]
A non-resonant type knocking sensor 1 to which the present invention is applied (hereinafter also simply referred to as “knocking sensor 1”) will be described with reference to FIG. FIG. 1 is a front view showing the appearance of the non-resonant knock sensor 1.

図1に示すように、本実施形態の非共振型ノッキングセンサ1は、圧電素子23(図2参照)などの構成部品を内部に収納するケース61を備えている。
ケース61は、樹脂(具体的には、PA(ポリアミド))で構成されている。
As shown in FIG. 1, the non-resonant type knocking sensor 1 of the present embodiment includes a case 61 that accommodates components such as the piezoelectric element 23 (see FIG. 2).
The case 61 is made of resin (specifically, PA (polyamide)).

ケース61は、上面側(図1における上側を示す。以下同じ。)がテーパ状に成形された円柱形状の素子収納部63と、外部機器(例えば、点火時期制御装置など)に繋がる外部コネクタを接続するコネクタ部65と、を備えている。コネクタ部65は、素子収納部63の外周壁から外向きに突出して形成される。   The case 61 includes a columnar element storage portion 63 whose upper surface side (shown on the upper side in FIG. 1; the same applies hereinafter) is tapered, and an external connector connected to an external device (for example, an ignition timing control device). And a connector portion 65 to be connected. The connector portion 65 is formed to protrude outward from the outer peripheral wall of the element storage portion 63.

次に、ノッキングセンサ1の内部構造について、図2および図3を用いて説明する。図2は、ノッキングセンサ1の内部構造を示す断面図であり、図3は、抵抗素子27、下面側電極部材17a、上面側電極部材19aの位置関係を模式的に示した説明図である。   Next, the internal structure of the knocking sensor 1 will be described with reference to FIGS. FIG. 2 is a cross-sectional view showing the internal structure of the knocking sensor 1, and FIG. 3 is an explanatory view schematically showing the positional relationship of the resistance element 27, the lower surface side electrode member 17a, and the upper surface side electrode member 19a.

図2に示すように、ノッキングセンサ1は、支持部材11、下面側電極部材17a、圧電素子23、上面側電極部材19a、錘部材31、ナット21、抵抗素子27、ケース61を、主に備えて構成されている。なお、図2では、支持部材11と下面側電極部材17aとの間に配置されて両者間の絶縁を図るための下面側絶縁板、および、上面側電極部材19aと錘部材31との間に配置されて両者間の絶縁を図るための上面側絶縁板については、図示を省略している。   As shown in FIG. 2, the knocking sensor 1 mainly includes a support member 11, a lower surface side electrode member 17a, a piezoelectric element 23, an upper surface side electrode member 19a, a weight member 31, a nut 21, a resistance element 27, and a case 61. Configured. In FIG. 2, the lower surface side insulating plate is disposed between the support member 11 and the lower surface side electrode member 17 a for insulation therebetween, and between the upper surface side electrode member 19 a and the weight member 31. An illustration of an upper-side insulating plate that is arranged and is used for insulation between the two is omitted.

支持部材11は、金属材料(例えば、SWCH25K炭素鋼)で形成され、軸線方向(
圧電素子23をその端面と直交する方向から見たときの方向:図2における上下方向)に延びる円筒形状の本体部12を有すると共に、本体部12のうち軸線方向における下端部から径方向外向きに突出する鍔部13を備えている。
The support member 11 is formed of a metal material (for example, SWCH25K carbon steel) and has an axial direction (
The piezoelectric element 23 has a cylindrical main body 12 extending in a direction when viewed from a direction orthogonal to the end face: the vertical direction in FIG. 2, and radially outward from the lower end of the main body 12 in the axial direction. It is provided with a flange 13 projecting into

本体部12の内部には、軸線方向に貫通する貫通孔71が備えられている。また、本体部12における外周面の上端部および鍔部13の外周面には、ケース61との密着性を高めるための溝部75,76が備えられている。そして、本体部12の外周面のうち溝部75の下面側(図1における下側を示す。以下同じ。)には、ナット21と螺合するネジ溝74が備えられている。   A through-hole 71 that penetrates in the axial direction is provided inside the main body 12. Further, groove portions 75 and 76 for improving adhesion to the case 61 are provided on the upper end portion of the outer peripheral surface of the main body portion 12 and the outer peripheral surface of the flange portion 13. A screw groove 74 that is screwed into the nut 21 is provided on the lower surface side of the groove portion 75 (shown below in FIG. 1; the same applies hereinafter) of the outer peripheral surface of the main body portion 12.

圧電素子23は、圧電効果を有する材料(チタン酸ジルコン酸鉛(PZT)や、チタン酸バリウム等の各種セラミックス、水晶等の各種結晶、ポリフッ化ビニリデン等の各種有機材料、等)を備えて形成されている。圧電素子23は、本体部12の外周を取り囲む環状形状に形成されて、鍔部13の上面側に配置されている。   The piezoelectric element 23 includes a material having a piezoelectric effect (lead zirconate titanate (PZT), various ceramics such as barium titanate, various crystals such as quartz, various organic materials such as polyvinylidene fluoride, etc.). Has been. The piezoelectric element 23 is formed in an annular shape that surrounds the outer periphery of the main body 12, and is disposed on the upper surface side of the flange 13.

なお、圧電素子23は、内燃機関のノッキングの状態変化に応じて変化するノッキング信号(センサ信号)を発生するための信号発生部として備えられている。
錘部材31は、環状形状の金属材料(真鍮等の各種金属材料)により形成されている。錘部材31は、上面側電極部材19aの上面側において、本体部12の外周を取り囲むように配置されて、圧電素子23に対して荷重を印加するために備えられている。
The piezoelectric element 23 is provided as a signal generator for generating a knocking signal (sensor signal) that changes in response to a change in the knocking state of the internal combustion engine.
The weight member 31 is formed of an annular metal material (various metal materials such as brass). The weight member 31 is disposed on the upper surface side of the upper surface side electrode member 19 a so as to surround the outer periphery of the main body 12, and is provided to apply a load to the piezoelectric element 23.

ナット21は、環状形状の金属材料で形成されており、内周面に本体部12のネジ溝74と螺合するネジ溝(図示省略)が形成されて、本体部12に螺合固定できるように構成されている。なお、ナット21は、軸線方向に垂直な面における外周形状が多角形(例えば、六角形)に形成されており、工具などを用いて締め付け固定できるように構成されている。   The nut 21 is formed of an annular metal material, and a screw groove (not shown) that is screwed into the screw groove 74 of the main body 12 is formed on the inner peripheral surface so that the nut 21 can be screwed and fixed to the main body 12. It is configured. The nut 21 has a polygonal shape (for example, a hexagonal shape) on the surface perpendicular to the axial direction, and is configured to be fastened and fixed using a tool or the like.

上面側電極部材19aは、図3に示すように、円環状の環状部192と、この環状部192から突出する端子部191と、を備えている。
環状部192は、本体部12の外周を取り囲む環状形状に形成されており、図2に示すように、圧電素子23の上面に当接している。
As shown in FIG. 3, the upper surface side electrode member 19 a includes an annular annular portion 192 and a terminal portion 191 protruding from the annular portion 192.
The annular portion 192 is formed in an annular shape that surrounds the outer periphery of the main body portion 12, and is in contact with the upper surface of the piezoelectric element 23 as shown in FIG. 2.

また、端子部191は、圧電素子23の上面(環状部192)からコネクタ部65までの区間を電気的に接続し、圧電素子23の上面から出力される電気信号の通電経路として使用される。この端子部191は、所定の位置でコネクタ部65の高さに合わせて上面側に曲げられている。ただし、端子部191が曲げられる方向は、軸線方向および端子部191の突出方向のみであって、この上面側電極部材19aを軸線方向から見たとき(図3の上面図の状態)において、端子部191は、仮想中心線200に対して平行であって一定距離離れて配置されている。   The terminal portion 191 electrically connects a section from the upper surface (annular portion 192) of the piezoelectric element 23 to the connector portion 65, and is used as an energization path for an electric signal output from the upper surface of the piezoelectric element 23. The terminal portion 191 is bent on the upper surface side in accordance with the height of the connector portion 65 at a predetermined position. However, the direction in which the terminal portion 191 is bent is only the axial direction and the protruding direction of the terminal portion 191. When the upper surface side electrode member 19a is viewed from the axial direction (the state of the top view in FIG. 3), the terminal The part 191 is parallel to the virtual center line 200 and is arranged at a certain distance.

なお、仮想中心線200とは、環状部192が配置されている仮想平面上であって、環状部192の外周(および内周)が描く円弧の中心Oを通る直線を示すものとする。
そして、環状部192には、第1切欠部193および第2切欠部194が形成されている。
Note that the virtual center line 200 is a virtual plane on which the annular portion 192 is arranged and indicates a straight line passing through the center O of the arc drawn by the outer periphery (and the inner periphery) of the annular portion 192.
A first cutout 193 and a second cutout 194 are formed in the annular portion 192.

第1切欠部193は、端子部191近傍であって仮想中心線200上の領域に形成されている。また、この第1切欠部193は、仮想中心線200上の領域において、環状部192を分断している。   The first notch 193 is formed in a region on the virtual center line 200 in the vicinity of the terminal portion 191. In addition, the first cutout 193 divides the annular portion 192 in the region on the virtual center line 200.

一方、第2切欠部194は、環状部192の中心Oに対して端子部191とは対向する
位置に形成されている。しかもこの第2切欠部194は、仮想中心線200上の領域において、環状部192の外周側から環状部192の幅が半分程度になる形状に設定されている。つまり、この第2切欠部194は、第1切欠部193とは異なり、環状部192を分断することはない。
On the other hand, the second notch portion 194 is formed at a position facing the terminal portion 191 with respect to the center O of the annular portion 192. Moreover, the second notch 194 is set to have a shape in which the width of the annular part 192 is about half from the outer peripheral side of the annular part 192 in the region on the virtual center line 200. That is, unlike the first notch 193, the second notch 194 does not divide the annular part 192.

次に、下面側電極部材17aは、図3に破線にて示すように、円環状の環状部172と、この環状部172から突出する端子部171とを備えている。
下面側電極部材17aの環状部172は、前述の上面側電極部材19aを仮想中心線200を中心軸として反転させたものとなっている。即ち、環状部172は、上面側電極部材19aの環状部192と全く同様の構成であって、上面側電極部材19aの第1切欠部193および第2切欠部194と同様の第1切欠部173(図4参照)および第2切欠部174(図4参照)を備えている。
Next, as shown by a broken line in FIG. 3, the lower surface side electrode member 17 a includes an annular annular portion 172 and a terminal portion 171 protruding from the annular portion 172.
The annular portion 172 of the lower surface side electrode member 17a is obtained by inverting the upper surface side electrode member 19a described above about the virtual center line 200 as a central axis. That is, the annular portion 172 has the same configuration as the annular portion 192 of the upper surface side electrode member 19a, and the first notch portion 173 similar to the first notch portion 193 and the second notch portion 194 of the upper surface side electrode member 19a. (See FIG. 4) and a second notch 174 (see FIG. 4).

一方、下面側電極部材17aの端子部171は、上面側電極部材19aの端子部191とはその長さや折り曲げられる位置が異なる(図4参照)。
そして、下面側電極部材17aの端子部171の先端部は、コネクタ部65において、上面側電極部材19aの端子部191の先端部と軸線方向位置が同一となるように配置されることになる。
On the other hand, the terminal portion 171 of the lower surface side electrode member 17a differs from the terminal portion 191 of the upper surface side electrode member 19a in the length and the bent position (see FIG. 4).
And the front-end | tip part of the terminal part 171 of the lower surface side electrode member 17a is arrange | positioned so that the axial direction position may become the same as the front-end | tip part of the terminal part 191 of the upper surface side electrode member 19a in the connector part 65.

この結果、下面側電極部材17a,上面側電極部材19aを軸線方向から見た場合においては、図3に示すように、下面側電極部材17aの端子部171および切欠部173,174と、上面側電極部材19aの端子部191および切欠部193,194とは、仮想中心線200に対して線対称に配置されることになる。   As a result, when the lower surface side electrode member 17a and the upper surface side electrode member 19a are viewed from the axial direction, as shown in FIG. 3, the terminal portions 171 and the notches 173 and 174 of the lower surface side electrode member 17a and the upper surface side The terminal portion 191 and the cutout portions 193 and 194 of the electrode member 19a are arranged symmetrically with respect to the virtual center line 200.

また、下面側電極部材17aの端子部171と上面側電極部材19aの端子部191とは、抵抗素子27を介して電気的に接続されている。
抵抗素子27は、当該抵抗素子27と、ノッキングセンサ1に接続される外部のエンジン制御装置との間における電気経路の断線を検出するための異常検出抵抗として機能する。
Further, the terminal portion 171 of the lower surface side electrode member 17 a and the terminal portion 191 of the upper surface side electrode member 19 a are electrically connected via the resistance element 27.
The resistance element 27 functions as an abnormality detection resistor for detecting disconnection of the electrical path between the resistance element 27 and an external engine control device connected to the knocking sensor 1.

[1−2.組み立て作業]
次に、ノッキングセンサ1の組み立て作業について、図4を用いて説明する。図4はノッキングセンサ1の内部に備えられる構成部品の一部の分解斜視図である。なお、図4では、下面側電極部材17a、上面側電極部材19a、抵抗素子27の電気的な接続状態を表すために、抵抗素子27を模式的に図示している。
[1-2. Assembly work]
Next, assembly work of the knocking sensor 1 will be described with reference to FIG. FIG. 4 is an exploded perspective view of a part of the components provided in the knocking sensor 1. In FIG. 4, the resistor element 27 is schematically illustrated in order to represent an electrical connection state of the lower surface side electrode member 17 a, the upper surface side electrode member 19 a, and the resistor element 27.

図4に示すように、ノッキングセンサ1の組み立て作業においては、まず、支持部材11における本体部12の外周を取り囲むように、下面側から上面側に向けて、下面側絶縁板(図示省略)、下面側電極部材17a、圧電素子23、上面側電極部材19a、上面側絶縁板(図示省略)、および錘部材31を、この順に積層する作業を行う。   As shown in FIG. 4, in the assembly operation of the knocking sensor 1, first, a lower surface side insulating plate (not shown) is provided from the lower surface side toward the upper surface side so as to surround the outer periphery of the main body portion 12 in the support member 11. The lower electrode member 17a, the piezoelectric element 23, the upper electrode member 19a, the upper insulating plate (not shown), and the weight member 31 are stacked in this order.

このとき、下面側電極部材17aの端子部171と、上面側電極部材19aの端子部191とを、抵抗素子27を介して電気的に接続する作業を行う。
次に、ナット21を支持部材11のネジ溝74に螺合する作業を行い、支持部材11の鍔部13とナット21との間で、下面側絶縁板(図示省略)、下面側電極部材17a、圧電素子23、上面側電極部材19a、上面側絶縁板(図示省略)、錘部材31を、挟持固定する。
At this time, an operation of electrically connecting the terminal portion 171 of the lower surface side electrode member 17a and the terminal portion 191 of the upper surface side electrode member 19a via the resistance element 27 is performed.
Next, an operation of screwing the nut 21 into the screw groove 74 of the support member 11 is performed, and the lower surface side insulating plate (not shown) and the lower surface side electrode member 17a are interposed between the flange portion 13 of the support member 11 and the nut 21. The piezoelectric element 23, the upper surface side electrode member 19a, the upper surface side insulating plate (not shown), and the weight member 31 are clamped and fixed.

このあと、これらの構成部品を射出成形用金型で取り囲み、これらの構成部品を覆うようにガラス繊維を含有された樹脂を射出成形して、ケース61を形成する作業を行う。
このとき、ケース61は、流動方向の線膨張率が2×10−5[/℃]以下の絶縁材料で形成される。本実施形態では、ケース61を形成する絶縁材料として、ガラス繊維の含有率が45質量%の66ナイロンを用いる。また、ケース61は、下面側電極部材17aと抵抗素子27との接合部27a、および上面側電極部材19aと抵抗素子27との接合部27bを少なくとも覆うように形成されている。
Thereafter, these component parts are surrounded by an injection mold, and a resin containing glass fibers is injection-molded so as to cover these component parts, so that the case 61 is formed.
At this time, the case 61 is formed of an insulating material having a linear expansion coefficient in the flow direction of 2 × 10 −5 [/ ° C.] or less. In the present embodiment, 66 nylon having a glass fiber content of 45 mass% is used as the insulating material forming the case 61. The case 61 is formed so as to cover at least the joint portion 27a between the lower surface side electrode member 17a and the resistance element 27 and the joint portion 27b between the upper surface side electrode member 19a and the resistance element 27.

このようにして、非共振型ノッキングセンサ1は組み立てられる。
なお、ノッキングセンサ1は、ケース61の下面側から支持部材11の鍔部13の下面側の端部が露出し、ケース61の上面側からは支持部材11の本体部12の上面側の端部が露出するように形成される。また、コネクタ部65は、その内側において、下面側電極部材17aの端子部171および上面側電極部材19aの端子部191の一部が露出するように形成される。
In this way, the non-resonant knock sensor 1 is assembled.
Note that, in the knocking sensor 1, an end portion on the lower surface side of the flange portion 13 of the support member 11 is exposed from the lower surface side of the case 61, and an end portion on the upper surface side of the main body portion 12 of the support member 11 from the upper surface side of the case 61. Is formed to be exposed. Moreover, the connector part 65 is formed so that a part of the terminal part 171 of the lower surface side electrode member 17a and a part of the terminal part 191 of the upper surface side electrode member 19a are exposed inside.

このように構成された非共振型ノッキングセンサ1は、自身の下面(詳細には、支持部材11における鍔部13の下面)が内燃機関の最適な箇所(一般にはシリンダブロックの取付部)に当接するようにして、内燃機関に対して取り付けられる。   The non-resonant type knocking sensor 1 configured as described above has its lower surface (specifically, the lower surface of the flange portion 13 of the support member 11) hits an optimal location of the internal combustion engine (generally, the mounting portion of the cylinder block). It attaches with respect to an internal combustion engine so that it may contact.

なお、内燃機関でノッキングなどの異常振動が発生すると、その異常振動が支持部材11の鍔部13を介して圧電素子23に達し、その異常振動に応じて圧電素子23から出力される電気信号が、下面側電極部材17aの端子部171および上面側電極部材19aの端子部191から外部機器(例えば、エンジン制御装置)に対して出力される。   When abnormal vibration such as knocking occurs in the internal combustion engine, the abnormal vibration reaches the piezoelectric element 23 via the flange 13 of the support member 11, and an electric signal output from the piezoelectric element 23 in response to the abnormal vibration is generated. The output is output from the terminal portion 171 of the lower surface side electrode member 17a and the terminal portion 191 of the upper surface side electrode member 19a to an external device (for example, an engine control device).

このとき、下面側電極部材17aおよび上面側電極部材19aは、ノッキング信号の伝達経路を形成する。
[1−3.測定結果]
ここで、66ナイロン(PA66)におけるガラス含有率と線膨張率との相関関係を測定した測定結果について説明する。なお、線膨張率については、流動方向の線膨張率と、直角方向の線膨張率と、をそれぞれ測定した。
At this time, the lower surface side electrode member 17a and the upper surface side electrode member 19a form a knocking signal transmission path.
[1-3. Measurement result]
Here, the measurement result which measured the correlation of the glass content rate and linear expansion coefficient in 66 nylon (PA66) is demonstrated. In addition, about the linear expansion coefficient, the linear expansion coefficient of the flow direction and the linear expansion coefficient of the orthogonal direction were measured, respectively.

図5の測定結果によれば、ガラス含有率が高くなるに従い、流動方向の線膨張率および直角方向の線膨張率のいずれもが低下している。
なお、ノッキングセンサの設置環境での温度変化に伴うケース61の寸法変化量を、下面側電極部材17aと抵抗素子27との接合部27aの断線(破断)や、上面側電極部材19aと抵抗素子27との接合部27bの断線(破断)が生じない範囲内に抑制するためには、流動方向の線膨張率が2×10−5[/℃]以下の材料でケース61を形成するとよい。
According to the measurement result of FIG. 5, as the glass content increases, both the linear expansion coefficient in the flow direction and the linear expansion coefficient in the perpendicular direction decrease.
Note that the amount of dimensional change of the case 61 accompanying the temperature change in the installation environment of the knocking sensor is the disconnection (breakage) of the joint portion 27a between the lower surface side electrode member 17a and the resistance element 27, or the upper surface side electrode member 19a and the resistance element. In order to suppress within a range in which the disconnection (break) of the joint portion 27b with 27 does not occur, the case 61 may be formed of a material having a linear expansion coefficient in the flow direction of 2 × 10 −5 [/ ° C.] or less.

そのため、ケース61を66ナイロンで形成する場合には、ガラス含有率が40質量%以上の66ナイロンを用いることが望ましい。
次に、本実施形態のノッキングセンサ1の効果を確認するため、ノッキングセンサ1の抵抗不良率を測定した測定結果について説明する。
Therefore, when the case 61 is made of 66 nylon, it is desirable to use 66 nylon having a glass content of 40% by mass or more.
Next, in order to confirm the effect of the knocking sensor 1 of the present embodiment, a measurement result obtained by measuring the resistance failure rate of the knocking sensor 1 will be described.

なお、本測定(以下、熱衝撃試験ともいう)では、180℃の環境下に30分間、−40℃の環境下に30分間にわたり設置する期間を1サイクルとして、複数サイクルにわたりノッキングセンサ1に熱衝撃を加えた。   In this measurement (hereinafter, also referred to as a thermal shock test), the knocking sensor 1 is heated over a plurality of cycles, with a period of 30 minutes in a 180 ° C. environment and 30 minutes in a −40 ° C. environment as one cycle. I was shocked.

また、抵抗不良率とは、熱衝撃試験を行ったノッキングセンサ1のうち、下面側電極部材17aと抵抗素子27との接合部27aの断線(破断)、あるいは上面側電極部材19aと抵抗素子27との接合部27bの断線(破断)が生じたノッキングセンサの割合を意味している。換言すれば、熱衝撃試験を行ったノッキングセンサの全数のうち、断線(破
断)が生じたノッキングセンサの個数の割合が、抵抗不良率である。
Further, the resistance defect rate is the disconnection (breakage) of the joint 27a between the lower surface side electrode member 17a and the resistance element 27 or the upper surface side electrode member 19a and the resistance element 27 in the knocking sensor 1 subjected to the thermal shock test. The ratio of the knocking sensor in which the disconnection (breakage) of the joint portion 27b occurs. In other words, of the total number of knocking sensors subjected to the thermal shock test, the ratio of the number of knocking sensors in which disconnection (breakage) has occurred is the resistance failure rate.

ケース61を形成する材料として、ガラス繊維の含有率が45質量%の66ナイロンを用いた本実施形態のノッキングセンサ1では、サイクル数が250回以下では抵抗不良率が20%以下に抑えられており、サイクル数が400回でも抵抗不良率は65%以下に抑えられている。   In the knocking sensor 1 of the present embodiment using 66 nylon having a glass fiber content of 45% by mass as a material for forming the case 61, the resistance failure rate is suppressed to 20% or less when the number of cycles is 250 or less. Thus, even when the number of cycles is 400, the resistance failure rate is suppressed to 65% or less.

[1−4.効果]
以上説明したように、本実施形態の非共振型ノッキングセンサ1は、ノッキング信号(センサ信号)を発生する圧電素子23と、ノッキング信号の伝達経路を形成する下面側電極部材17aおよび上面側電極部材19aと、下面側電極部材17aおよび上面側電極部材19aに接続される抵抗素子27と、下面側電極部材17aと抵抗素子27との接合部27aおよび上面側電極部材19aと抵抗素子27との接合部27bを少なくとも覆うように形成されたケース61と、を備えている。
[1-4. effect]
As described above, the non-resonant type knocking sensor 1 of the present embodiment includes the piezoelectric element 23 that generates a knocking signal (sensor signal), the lower surface side electrode member 17a and the upper surface side electrode member that form a knocking signal transmission path. 19a, a resistance element 27 connected to the lower surface side electrode member 17a and the upper surface side electrode member 19a, a joint portion 27a between the lower surface side electrode member 17a and the resistance element 27, and a connection between the upper surface side electrode member 19a and the resistance element 27 And a case 61 formed so as to cover at least the portion 27b.

そして、ケース61は、下面側電極部材17aと抵抗素子27との接合部27aおよび上面側電極部材19aと抵抗素子27との接合部27bを覆うとともに、ガラス繊維の含有率が45質量%の66ナイロンで形成されている。つまり、ケース61は、流動方向の線膨張率が2×10−5[/℃]以下の材料で形成されている。 The case 61 covers the joint portion 27a between the lower surface side electrode member 17a and the resistive element 27 and the joint portion 27b between the upper surface side electrode member 19a and the resistive element 27, and the glass fiber content is 66% by mass. Made of nylon. That is, the case 61 is made of a material having a linear expansion coefficient in the flow direction of 2 × 10 −5 [/ ° C.] or less.

このようなケース61を備えるノッキングセンサ1は、センサの設置環境における温度変化が発生しても、ケース61の寸法変化量を抑制でき、接合部27aや接合部27bがケース61の寸法変化によって断線(破断)することを抑制できる。   The knocking sensor 1 including such a case 61 can suppress the dimensional change amount of the case 61 even if a temperature change occurs in the sensor installation environment, and the joint portion 27a and the joint portion 27b are disconnected due to the dimensional change of the case 61. (Breaking) can be suppressed.

よって、ノッキングセンサ1によれば、温度変化が生じる設置環境においても、下面側電極部材17aと抵抗素子27との接合部27aの断線(破断)や、上面側電極部材19aと抵抗素子27との接合部27bの断線(破断)が生じがたくなる。   Therefore, according to the knocking sensor 1, even in an installation environment in which a temperature change occurs, disconnection (breakage) of the joint portion 27 a between the lower surface side electrode member 17 a and the resistance element 27, or between the upper surface side electrode member 19 a and the resistance element 27. The disconnection (breaking) of the joint portion 27b is unlikely to occur.

なお、一般に、内燃機関のノッキングを検出するノッキングセンサの設置箇所では温度変化が発生しやすいが、ノッキングセンサ1は、接合部27aの断線(破断)や接合部27bの断線(破断)が生じがたくなるため、抵抗素子27によってノッキングセンサ1の特性を外部機器(例えば、エンジン制御装置)に知らせることが可能となる。   In general, a temperature change is likely to occur at an installation location of a knocking sensor that detects knocking of the internal combustion engine. However, in the knocking sensor 1, disconnection (breakage) of the joint portion 27a or disconnection (breakage) of the joint portion 27b occurs. Therefore, the resistance element 27 can inform the external device (for example, an engine control device) of the characteristics of the knocking sensor 1.

よって、ノッキングセンサ1によれば、自身の特性を外部機器(例えば、エンジン制御装置)に知らせることが可能となり、適切にノッキングを検出できる。
また、ノッキングセンサ1は、ケース61が、圧電素子23,下面側電極部材17a,上面側電極部材19a,抵抗素子27を覆うように構成されている。
Therefore, according to the knocking sensor 1, it becomes possible to notify an external device (for example, an engine control device) of its own characteristics, and knocking can be detected appropriately.
The knocking sensor 1 is configured such that the case 61 covers the piezoelectric element 23, the lower surface side electrode member 17a, the upper surface side electrode member 19a, and the resistance element 27.

このような構成のノッキングセンサ1は、ケース61の内部に、圧電素子23,下面側電極部材17a,上面側電極部材19a,抵抗素子27が一体に備えられる構成となり、センサの設置箇所を1カ所に集約することが可能となる。   The knocking sensor 1 having such a configuration is configured such that the piezoelectric element 23, the lower surface side electrode member 17a, the upper surface side electrode member 19a, and the resistance element 27 are integrally provided inside the case 61, and the sensor is installed at one location. It is possible to aggregate them.

[1−5.特許請求の範囲との対応関係]
ここで、特許請求の範囲と本実施形態とにおける文言の対応関係について説明する。
圧電素子23が信号発生部の一例に相当し、下面側電極部材17aおよび上面側電極部材19aが信号経路部の一例に相当し、抵抗素子27が抵抗部の一例に相当し、ケース61が樹脂成形部の一例に相当し、ノッキングセンサ1がセンサの一例に相当する。
[1-5. Correspondence with Claims]
Here, the correspondence of the words in the claims and the present embodiment will be described.
The piezoelectric element 23 corresponds to an example of a signal generating part, the lower surface side electrode member 17a and the upper surface side electrode member 19a correspond to an example of a signal path part, the resistance element 27 corresponds to an example of a resistance part, and the case 61 is a resin. The knocking sensor 1 corresponds to an example of a molding unit, and the knocking sensor 1 corresponds to an example of a sensor.

[2.他の実施形態]
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるもの
ではなく、本発明の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
[2. Other Embodiments]
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it is possible to implement in various aspects.

例えば、上述のノッキングセンサ1では、ケース61の材料として、ガラス繊維を含有させた66ナイロンを使用したが、樹脂は66ナイロン等のポリアミド樹脂に限定されず、PPS樹脂やPBT樹脂を用いてもよい。ただし、使用する樹脂に対するガラス繊維の含有率を適宜調整することによって、流動方向の線膨張率が2×10−5[/℃]以下となるように材料を構成しても良く、より好ましくは、流動方向の線膨張率が2×10−5[/℃]以下であり、かつ、直角方向の線膨張率が7×10−5[/℃]以下となるように材料を構成しても良い。 For example, in the knocking sensor 1 described above, 66 nylon containing glass fiber is used as the material of the case 61. However, the resin is not limited to polyamide resin such as 66 nylon, and PPS resin or PBT resin may be used. Good. However, the material may be configured such that the linear expansion coefficient in the flow direction is 2 × 10 −5 [/ ° C.] or less by appropriately adjusting the content of the glass fiber with respect to the resin to be used, and more preferably. Even if the material is configured such that the linear expansion coefficient in the flow direction is 2 × 10 −5 [/ ° C.] or less and the linear expansion coefficient in the perpendicular direction is 7 × 10 −5 [/ ° C.] or less. good.

このような材料で形成されたケースは、温度変化の発生時における寸法変化量が一定範囲内に制限される。このため、このケースを備えるノッキングセンサは、設置環境における温度変化が発生しても、ケースの寸法変化量を抑制でき、下面側電極部材17aと抵抗素子27との接合部27aの断線(破断)や、上面側電極部材19aと抵抗素子27との接合部27bの断線(破断)が生じがたくなる。   In a case formed of such a material, the amount of dimensional change when a temperature change occurs is limited within a certain range. For this reason, the knocking sensor provided with this case can suppress the dimensional change amount of the case even if a temperature change occurs in the installation environment, and the disconnection (breakage) of the joint portion 27a between the lower surface side electrode member 17a and the resistance element 27. In addition, disconnection (breaking) of the joint portion 27b between the upper surface side electrode member 19a and the resistance element 27 is unlikely to occur.

よって、このようなケースを備えるノッキングセンサは、上述のノッキングセンサ1と同様に、温度変化が生じる設置環境においても、下面側電極部材17aと抵抗素子27との接合部27aの断線(破断)や、上面側電極部材19aと抵抗素子27との接合部27bの断線(破断)が生じがたくなる。   Therefore, the knocking sensor provided with such a case is similar to the above-described knocking sensor 1, even in an installation environment in which a temperature change occurs, disconnection (breaking) of the joint portion 27 a between the lower surface side electrode member 17 a and the resistance element 27, The disconnection (breaking) of the joint portion 27b between the upper surface side electrode member 19a and the resistance element 27 is unlikely to occur.

また、上述のノッキングセンサ1は、ケース61の内部に、圧電素子23,下面側電極部材17a,上面側電極部材19a,抵抗素子27が一体に備えられる構成であるが、本発明のセンサは、このような構成に限られることはない。例えば、図6に示す第2ノッキングセンサ101のように、圧電素子23(信号発生部)を覆う素子側ケース163と、抵抗素子27(抵抗部)および一対の電極端子117(信号経路部)を覆うコネクタ側ケース165と、を備える構成であってもよい。   Further, the knocking sensor 1 described above is configured such that the piezoelectric element 23, the lower surface side electrode member 17a, the upper surface side electrode member 19a, and the resistance element 27 are integrally provided in the case 61. It is not restricted to such a structure. For example, as in the second knocking sensor 101 shown in FIG. 6, an element side case 163 that covers the piezoelectric element 23 (signal generation unit), a resistance element 27 (resistance unit), and a pair of electrode terminals 117 (signal path unit) are provided. The structure provided with the connector side case 165 to cover may be sufficient.

なお、第2ノッキングセンサ101のうち、ノッキングセンサ1と同様の構成については、同一符号を付している。
第2ノッキングセンサ101は、素子部141およびコネクタ部143が接続ケーブル145を介して接続されている。
In addition, the same code | symbol is attached | subjected about the structure similar to the knocking sensor 1 among the 2nd knocking sensors 101. FIG.
In the second knocking sensor 101, the element part 141 and the connector part 143 are connected via a connection cable 145.

素子部141は、支持部材11、下面側電極部材117a、圧電素子23、上面側電極部材119a、錘部材31、ナット21、素子側ケース163を、主に備えて構成されている。このうち、下面側電極部材117aおよび上面側電極部材119aは、ノッキングセンサ1の下面側電極部材17aおよび上面側電極部材19aと同様の構成であり、下面側電極部材117aおよび上面側電極部材119aの各端部は、接続ケーブル145における芯線(図示省略)に電気的に接続されている。なお、図6では、支持部材11と下面側電極部材117aとの間に配置されて両者間の絶縁を図るための下面側絶縁板、および、上面側電極部材119aと錘部材31との間に配置されて両者間の絶縁を図るための上面側絶縁板については、図示を省略している。   The element unit 141 mainly includes a support member 11, a lower surface side electrode member 117 a, a piezoelectric element 23, an upper surface side electrode member 119 a, a weight member 31, a nut 21, and an element side case 163. Among these, the lower surface side electrode member 117a and the upper surface side electrode member 119a have the same configuration as the lower surface side electrode member 17a and the upper surface side electrode member 19a of the knocking sensor 1, and the lower surface side electrode member 117a and the upper surface side electrode member 119a Each end is electrically connected to a core wire (not shown) in the connection cable 145. In FIG. 6, a lower surface side insulating plate disposed between the support member 11 and the lower surface side electrode member 117 a for insulation between the two, and between the upper surface side electrode member 119 a and the weight member 31. An illustration of an upper-side insulating plate that is arranged and is used for insulation between the two is omitted.

素子側ケース163は、ガラス繊維を45質量%含有してなる66ナイロンで構成されている。素子側ケース163は、支持部材11、下面側電極部材117a、圧電素子23、上面側電極部材119a、錘部材31、ナット21を覆うように形成されている。   The element side case 163 is made of 66 nylon containing 45% by mass of glass fiber. The element side case 163 is formed so as to cover the support member 11, the lower surface side electrode member 117 a, the piezoelectric element 23, the upper surface side electrode member 119 a, the weight member 31, and the nut 21.

コネクタ部143は、抵抗素子27(抵抗部)、一対の電極端子117(信号経路部)、コネクタ側ケース165を、主に備えて構成されている。
抵抗素子27は、一対の電極端子117どうしを電気的に接続する状態で備えられている。一対の電極端子117は、接続ケーブル145の芯線(図示省略)を介して、下面側電極部材117aおよび上面側電極部材119aに電気的に接続されている。
The connector part 143 mainly includes a resistance element 27 (resistance part), a pair of electrode terminals 117 (signal path part), and a connector side case 165.
The resistance element 27 is provided in a state where the pair of electrode terminals 117 are electrically connected to each other. The pair of electrode terminals 117 is electrically connected to the lower surface side electrode member 117a and the upper surface side electrode member 119a via a core wire (not shown) of the connection cable 145.

コネクタ側ケース165は、ケース61と同様に、流動方向の線膨張率が2×10−5[/℃]以下の材料(樹脂材料)で形成されている。つまり、コネクタ側ケース165を形成する材料として、ガラス繊維の含有率が45質量%の66ナイロンを用いている。また、コネクタ側ケース165は、一方の電極端子117と抵抗素子27との接合部127a、および他方の電極端子117と抵抗素子27との接合部(図示省略)を少なくとも覆うように形成されている。 Similar to the case 61, the connector side case 165 is formed of a material (resin material) having a linear expansion coefficient in the flow direction of 2 × 10 −5 [/ ° C.] or less. That is, as a material for forming the connector side case 165, 66 nylon having a glass fiber content of 45 mass% is used. The connector side case 165 is formed so as to cover at least the joint 127a between the one electrode terminal 117 and the resistance element 27 and the joint (not shown) between the other electrode terminal 117 and the resistance element 27. .

このような構成の第2ノッキングセンサ101は、ノッキングセンサ1と同様に、センサの設置環境における温度変化が発生しても、コネクタ側ケース165の寸法変化量を抑制でき、一対の電極端子117と抵抗素子27との接合部127aがコネクタ側ケース165の寸法変化によって断線(破断)することを抑制できる。   Similar to the knocking sensor 1, the second knocking sensor 101 having such a configuration can suppress the dimensional change amount of the connector-side case 165 even if a temperature change occurs in the sensor installation environment, and the pair of electrode terminals 117 and It is possible to suppress disconnection (breaking) of the joint portion 127a with the resistance element 27 due to a dimensional change of the connector side case 165.

よって、第2ノッキングセンサ101によれば、温度変化が生じる設置環境においても、一対の電極端子117と抵抗素子27との接合部127aの断線(破断)が生じがたくなる。   Therefore, according to the second knocking sensor 101, even in an installation environment in which a temperature change occurs, disconnection (breaking) of the joint 127a between the pair of electrode terminals 117 and the resistance element 27 is unlikely to occur.

ここで、特許請求の範囲と第2ノッキングセンサ101とにおける文言の対応関係について説明する。
圧電素子23が信号発生部の一例に相当し、一対の電極端子117が信号経路部の一例に相当し、抵抗素子27が抵抗部の一例に相当し、コネクタ側ケース165が樹脂成形部の一例に相当し、第2ノッキングセンサ101がセンサの一例に相当する。
Here, the correspondence relationship between the claims and the second knocking sensor 101 will be described.
The piezoelectric element 23 corresponds to an example of a signal generation unit, the pair of electrode terminals 117 corresponds to an example of a signal path unit, the resistance element 27 corresponds to an example of a resistance unit, and the connector side case 165 is an example of a resin molding unit. The second knocking sensor 101 corresponds to an example of the sensor.

また、本発明のセンサは、ノッキングセンサに限られることはなく、ガスセンサや温度センサなど、ノッキング以外の測定対象の状態変化を検出するセンサであってもよい。そのようなセンサのうち、信号経路部に接続される抵抗部を備えるセンサであれば、本願発明を適用できる。   The sensor of the present invention is not limited to a knocking sensor, and may be a sensor that detects a change in the state of a measurement target other than knocking, such as a gas sensor or a temperature sensor. Among such sensors, the present invention can be applied to any sensor provided with a resistance portion connected to the signal path portion.

1…非共振型ノッキングセンサ、11…支持部材、12…本体部、13…鍔部、17a…下面側電極部材、19a…上面側電極部材、21…ナット、23…圧電素子、27…抵抗素子、27a…接合部、27b…接合部、31…錘部材、61…ケース、63…素子収納部、65…コネクタ部、101…第2ノッキングセンサ、117…電極端子、117a…下面側電極部材、119a…上面側電極部材、127a…接合部、141…素子部、143…コネクタ部、145…接続ケーブル、163…素子側ケース、165…コネクタ側ケース。   DESCRIPTION OF SYMBOLS 1 ... Non-resonance type knocking sensor, 11 ... Support member, 12 ... Main-body part, 13 ... Gutter part, 17a ... Lower surface side electrode member, 19a ... Upper surface side electrode member, 21 ... Nut, 23 ... Piezoelectric element, 27 ... Resistance element 27a ... joining portion, 27b ... joining portion, 31 ... weight member, 61 ... case, 63 ... element housing portion, 65 ... connector portion, 101 ... second knocking sensor, 117 ... electrode terminal, 117a ... bottom surface side electrode member, 119a: Upper surface side electrode member, 127a: Joining portion, 141 ... Element portion, 143 ... Connector portion, 145 ... Connection cable, 163 ... Element side case, 165 ... Connector side case.

Claims (4)

測定対象の状態変化に応じて変化するセンサ信号を発生する信号発生部と、
前記センサ信号の伝達経路を形成する信号経路部と、
前記信号経路部に接続される抵抗部と、
樹脂により成形されると共に、前記信号経路部と前記抵抗部との接続部を少なくとも覆う樹脂成形部と、
を備えるセンサであって、
前記樹脂成形部は、ガラス繊維を含有してなり、流動方向の線膨張率が2×10−5[/℃]以下の材料で形成されること、
を特徴とするセンサ。
A signal generator that generates a sensor signal that changes in response to a change in the state of the measurement target;
A signal path portion forming a transmission path of the sensor signal;
A resistor connected to the signal path;
A resin molded part that is molded with resin and covers at least a connection part between the signal path part and the resistance part;
A sensor comprising:
The resin molded part contains glass fiber and is formed of a material having a linear expansion coefficient in the flow direction of 2 × 10 −5 [/ ° C.] or less,
Sensor characterized by.
測定対象の状態変化に応じて変化するセンサ信号を発生する信号発生部と、
前記センサ信号の伝達経路を形成する信号経路部と、
前記信号経路部に接続される抵抗部と、
樹脂により成形されると共に、前記信号経路部と前記抵抗部との接続部を少なくとも覆う樹脂成形部と、
を備えるセンサであって、
前記樹脂成形部は、ガラス繊維を含有してなり、流動方向の線膨張率が2×10−5[/℃]以下であり、かつ、前記流動方向に対する直角の方向である直角方向の線膨張率が7×10−5[/℃]以下の材料で形成されること、
を特徴とするセンサ。
A signal generator that generates a sensor signal that changes in response to a change in the state of the measurement target;
A signal path portion forming a transmission path of the sensor signal;
A resistor connected to the signal path;
A resin molded part that is molded with resin and covers at least a connection part between the signal path part and the resistance part;
A sensor comprising:
The resin molded part contains glass fiber, and the linear expansion coefficient in the flow direction is 2 × 10 −5 [/ ° C.] or less, and the linear expansion in the direction perpendicular to the flow direction is perpendicular to the flow direction. A rate of 7 × 10 −5 [/ ° C.] or less;
Sensor characterized by.
前記樹脂成形部は、前記信号発生部、前記信号経路部、前記抵抗部を覆うこと、
を特徴とする請求項1または請求項2に記載のセンサ。
The resin molding part covers the signal generation part, the signal path part, and the resistance part,
The sensor according to claim 1 or 2, wherein
前記信号発生部は、圧電素子であり、
前記測定対象は、内燃機関のノッキングであること、
を特徴とする請求項1から請求項3のうちいずれか一項に記載のセンサ。
The signal generator is a piezoelectric element,
The measurement object is knocking of an internal combustion engine;
The sensor according to any one of claims 1 to 3, wherein:
JP2015028810A 2014-12-25 2015-02-17 Sensor Pending JP2016121979A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014262914 2014-12-25
JP2014262914 2014-12-25

Publications (1)

Publication Number Publication Date
JP2016121979A true JP2016121979A (en) 2016-07-07

Family

ID=56326633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015028810A Pending JP2016121979A (en) 2014-12-25 2015-02-17 Sensor

Country Status (1)

Country Link
JP (1) JP2016121979A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160943A (en) * 1997-08-08 1999-03-05 Ube Ind Ltd Polyamide resin composition with low linear expansion coefficient
JP2005249601A (en) * 2004-03-04 2005-09-15 Ngk Spark Plug Co Ltd Nonresonant knocking sensor
JP2011073374A (en) * 2009-09-30 2011-04-14 Unitika Ltd Method for manufacturing polyamide resin composition molded object, and molded object obtained thereby

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160943A (en) * 1997-08-08 1999-03-05 Ube Ind Ltd Polyamide resin composition with low linear expansion coefficient
JP2005249601A (en) * 2004-03-04 2005-09-15 Ngk Spark Plug Co Ltd Nonresonant knocking sensor
JP2011073374A (en) * 2009-09-30 2011-04-14 Unitika Ltd Method for manufacturing polyamide resin composition molded object, and molded object obtained thereby

Similar Documents

Publication Publication Date Title
JP4386117B2 (en) Glow plug with combustion pressure sensor
RU2567088C1 (en) Electrostatic capacitance-type sensor of fluid medium level
JP6159683B2 (en) Measuring plug
JP2011504587A (en) Parts for measuring force or pressure and sensors comprising such parts
JP5114480B2 (en) Spark plug with built-in pressure sensor
CN105339768B (en) Detonation sensor
US20060137655A1 (en) Pressure gauge for combustion chamber of an internal combustion engine
US9709454B2 (en) Non-resonant knock sensor
JP5778476B2 (en) Knocking sensor
JP2016121979A (en) Sensor
JP4457926B2 (en) Ignition coil
JP2020176970A (en) Physical quantity measuring device
CN103328944B (en) Detonation sensor
JP4242850B2 (en) Non-resonant knock sensor
WO2014010246A1 (en) Combustion sensor
JP4068580B2 (en) Non-resonant knock sensor
JP2016151478A (en) Sensor
JP2007053074A (en) Spark plug with pressure detection function, voltage impression part for spark plug, and ignition coil integrated with plug having pressure detection function
JP6541601B2 (en) Pressure detection device and piezoelectric element
JP7008006B2 (en) Pressure detector
JP2006112858A (en) Piezoelectric acceleration sensor
JP2006300605A (en) Non-resonant knocking sensor
US20200200636A1 (en) Pressure sensor
US11293967B2 (en) Conductivity sensor and method for producing a conductivity sensor
JP2020003414A (en) Knocking sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190226