JP2016121287A - Water-absorbing resin and method for producing the same - Google Patents

Water-absorbing resin and method for producing the same Download PDF

Info

Publication number
JP2016121287A
JP2016121287A JP2014262493A JP2014262493A JP2016121287A JP 2016121287 A JP2016121287 A JP 2016121287A JP 2014262493 A JP2014262493 A JP 2014262493A JP 2014262493 A JP2014262493 A JP 2014262493A JP 2016121287 A JP2016121287 A JP 2016121287A
Authority
JP
Japan
Prior art keywords
water
absorbent resin
polyglutamic acid
partially neutralized
pga
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014262493A
Other languages
Japanese (ja)
Other versions
JP6474251B2 (en
Inventor
太田 義久
Yoshihisa Ota
義久 太田
素子 西田
Motoko Nishida
素子 西田
橋本 孝之
Takayuki Hashimoto
孝之 橋本
竹田 弘
Hiroshi Takeda
弘 竹田
義治 野田
Yoshiharu Noda
義治 野田
達朗 植木
Tatsuro Ueki
達朗 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUOKA PREFECTURE SHOYU JOZO KYODO KUMIAI
Livedo Corp
Nagase and Co Ltd
Original Assignee
FUKUOKA PREFECTURE SHOYU JOZO KYODO KUMIAI
Livedo Corp
Nagase and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUOKA PREFECTURE SHOYU JOZO KYODO KUMIAI, Livedo Corp, Nagase and Co Ltd filed Critical FUKUOKA PREFECTURE SHOYU JOZO KYODO KUMIAI
Priority to JP2014262493A priority Critical patent/JP6474251B2/en
Publication of JP2016121287A publication Critical patent/JP2016121287A/en
Application granted granted Critical
Publication of JP6474251B2 publication Critical patent/JP6474251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water-absorbing resin which is formed of a cross-linked body of γ-polyglutamic acid partially neutralized product and is excellent in a saturation absorption amount and an absorption amount under load.SOLUTION: A water-absorbing resin includes a cross-linked body in which γ-polyglutamic acid partially neutralized product is crosslinked with a polyvalent glycidyl compound. The γ-polyglutamic acid constituting the γ-polyglutamic acid partially neutralized product is γ-polyglutamic acid which is prepared by cultivation of Bacillus natto and has a weight average molecular weight of 1,000,000 to 30,000,000, and pH of the γ-polyglutamic acid partially neutralized product is 3.5-6.8.SELECTED DRAWING: None

Description

本発明は、γ−ポリグルタミン酸(以下「γ−PGA」という)を用いた吸水性樹脂に関する。   The present invention relates to a water absorbent resin using γ-polyglutamic acid (hereinafter referred to as “γ-PGA”).

吸水性樹脂は、その自重の数百倍の水分を吸収することができ、また、吸収した水分を保持することができるため、このような特性を活かして種々の用途に使用されている。このような吸水性樹脂として、特許文献1〜5には原料としてポリアミノ酸を用いたものが提案されている。   Since the water-absorbent resin can absorb water several hundred times its own weight and can retain the absorbed water, the water-absorbing resin is used for various applications taking advantage of such characteristics. As such a water-absorbing resin, Patent Documents 1 to 5 propose using a polyamino acid as a raw material.

特許文献1および特許文献3では、特許文献6に記載のγ−PGAが使用されている(特許文献1(段落[0010])参照)。なお、特許文献6に係るγ−PGAは、分子量が50〜100万である(特許文献6(第3頁左下欄第14、15行)参照)。特許文献2の吸水性樹脂は、分子量20万のポリアスパラギン酸が使用されている(特許文献2(段落[0053])参照。)。特許文献4では、ポリアミノ酸の数平均分子量は3000〜200万、重量平均分子量は6000〜400万が好ましいと記載されているが、実施例で使用されているものの分子量は記載されていない(特許文献4(段落[0025]、[0030])参照)。特許文献5には、ポリアミノ酸の分子量については記載されていない。   In Patent Literature 1 and Patent Literature 3, γ-PGA described in Patent Literature 6 is used (see Patent Literature 1 (paragraph [0010])). Note that γ-PGA according to Patent Document 6 has a molecular weight of 500 to 1,000,000 (see Patent Document 6 (page 3, lower left column, lines 14 and 15)). As the water-absorbent resin of Patent Document 2, polyaspartic acid having a molecular weight of 200,000 is used (see Patent Document 2 (paragraph [0053])). Patent Document 4 describes that the number average molecular weight of the polyamino acid is preferably 3,000 to 2,000,000, and the weight average molecular weight is preferably 6,000 to 4,000,000, but the molecular weight of what is used in the examples is not described (patent Reference 4 (see paragraphs [0025] and [0030])). Patent Document 5 does not describe the molecular weight of the polyamino acid.

また、特許文献6の他に、γ−PGAに関する技術が提案されている。例えば、特許文献7には、耐塩性菌株バチルス・サブチルスチョンクチャン(Bacillus subtilis var. chungkookjang, KCTC0697BP)によって製造された、平均分子量が5000kDa以上であるγ−PGAが記載されている。   In addition to Patent Document 6, a technique related to γ-PGA has been proposed. For example, Patent Document 7 describes γ-PGA having an average molecular weight of 5000 kDa or more produced by a salt-tolerant strain, Bacillus subtilis var. Chungkokjang, KCTC0697BP.

特許2005−179534号公報Japanese Patent No. 2005-179534 特開平10−298282号公報JP-A-10-298282 特開平11−343339号公報JP-A-11-343339 特開平10−330478号公報Japanese Patent Laid-Open No. 10-330478 特開2001−131283号公報JP 2001-131283 A 特開平1−174397号公報Japanese Patent Laid-Open No. 1-174397 特開2008−202043号公報JP 2008-202043 A

従来、原料としてポリアミノ酸を用いた吸水性樹脂が提案されているが、いずれも原料として分子量の小さいγ−PGAが使用されている。このように分子量が小さいγ−PGAを用いた場合、得られる吸水性樹脂の荷重下吸収量および飽和吸収量が劣る傾向がある。分子量が小さいγ−PGAを用いる場合でも、架橋密度を高めることにより荷重下吸収量を高めることができる。しかしながら、架橋密度を高めると飽和吸収量が低下する傾向がある。本発明は上記事情に鑑みてなされたものであり、γ−PGAの部分中和物の架橋体からなり、荷重下吸収量および飽和吸収量に優れた吸水性樹脂を提供することを目的とする。   Conventionally, water-absorbing resins using polyamino acids as raw materials have been proposed, but all use γ-PGA having a low molecular weight as a raw material. When γ-PGA having a small molecular weight is used as described above, the absorption capacity under load and the saturated absorption capacity of the resulting water-absorbent resin tend to be inferior. Even when γ-PGA having a small molecular weight is used, the amount of absorption under load can be increased by increasing the crosslinking density. However, when the crosslinking density is increased, the saturated absorption amount tends to decrease. This invention is made | formed in view of the said situation, and consists of the bridge | crosslinking body of the partially neutralized substance of (gamma) -PGA, and aims at providing the water absorbing resin excellent in the absorption amount under load and the saturated absorption amount. .

上記課題を解決することができた本発明の吸水性樹脂は、γ−PGAの部分中和物を多価グリシジル化合物で架橋した架橋体からなり、前記γ−PGAの部分中和物を構成するγ−PGAが、納豆菌の培養により作製された、重量平均分子量が100万〜3000万のγ−PGAであり、前記γ−PGAの部分中和物のpHが3.5〜6.8であることを特長とする。   The water-absorbent resin of the present invention that has been able to solve the above problems comprises a crosslinked product obtained by crosslinking a partially neutralized product of γ-PGA with a polyvalent glycidyl compound, and constitutes the partially neutralized product of γ-PGA. γ-PGA is a γ-PGA having a weight average molecular weight of 1,000,000 to 30,000,000 produced by culture of Bacillus natto, and the pH of the partially neutralized product of γ-PGA is 3.5 to 6.8. It is characterized by being.

納豆菌の培養により作製された、重量平均分子量が100万〜3000万のγ−PGAを使用し、γ−PGAの部分中和物のpHを3.5〜6.8とすることにより、合成した吸水性樹脂は十分な荷重下吸収量および飽和吸収量が得られる。   Using γ-PGA having a weight average molecular weight of 1,000,000 to 30,000,000 produced by culture of Bacillus natto, the pH of the partially neutralized product of γ-PGA is adjusted to 3.5 to 6.8. The obtained water-absorbent resin can obtain a sufficient amount of absorption and saturation absorption under load.

前記γ−PGAの部分中和物のカチオン成分は、ナトリウムおよび/またはカリウムが好ましく、より好ましくはナトリウムである。前記多価グリシジル化合物は2価のグリシジル化合物が好ましい。本発明の吸水性樹脂を構成する架橋体は、表面架橋剤により表面架橋処理が施されていることが好ましい。前記表面架橋剤としては、グリシジルエーテル化合物が好ましく、より好ましくはポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリグリセリンジグリシジルエーテルである。本発明の吸水性樹脂は、飽和吸収量が30g/g〜100g/g、荷重下吸収量が7g/g〜30g/gであることが好ましい。   The cationic component of the partially neutralized product of γ-PGA is preferably sodium and / or potassium, more preferably sodium. The polyvalent glycidyl compound is preferably a divalent glycidyl compound. The crosslinked body constituting the water-absorbent resin of the present invention is preferably subjected to surface crosslinking treatment with a surface crosslinking agent. The surface cross-linking agent is preferably a glycidyl ether compound, and more preferably polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, or polyglycerin diglycidyl ether. The water-absorbing resin of the present invention preferably has a saturated absorption of 30 g / g to 100 g / g and an absorption under load of 7 g / g to 30 g / g.

本発明には、納豆菌の培養により、重量平均分子量が100万〜3000万のγ−PGAを製造する工程;前記γ−PGAとカチオン源とを混合して、pHが3.5〜6.8のγ−PGAの部分中和物を得る工程;および、前記γ−PGAの部分中和物を、多価グリシジル化合物により架橋し架橋体を製造する工程;を含む吸水性樹脂の製造方法も含まれる。   In the present invention, a step of producing γ-PGA having a weight average molecular weight of 1,000,000 to 30,000,000 by culturing Bacillus natto; the γ-PGA and a cation source are mixed, and the pH is 3.5 to 6. And a step of obtaining a partially neutralized product of γ-PGA of 8; and a step of producing a crosslinked product by crosslinking the partially neutralized product of γ-PGA with a polyvalent glycidyl compound. included.

本発明によれば、γ−PGAの部分中和物の架橋体からなり、飽和吸収量および荷重下吸収量に優れた吸水性樹脂が得られる。   ADVANTAGE OF THE INVENTION According to this invention, it consists of the bridge | crosslinking body of the partially neutralized substance of (gamma) -PGA, and the water absorbing resin excellent in the saturated absorption amount and the absorption amount under load is obtained.

[吸水性樹脂]
本発明の吸水性樹脂は、γ−PGAの部分中和物を多価グリシジル化合物で架橋した架橋体からなる。そして、前記γ−PGAの部分中和物を構成するγ−PGAが、納豆菌の培養により作製された、重量平均分子量が100万〜3000万のγ−PGAであり、前記γ−PGAの部分中和物のpHが3.5〜6.8であることを特長とする。
[Water absorbent resin]
The water-absorbent resin of the present invention comprises a crosslinked product obtained by crosslinking a partially neutralized γ-PGA with a polyvalent glycidyl compound. The γ-PGA constituting the partially neutralized product of γ-PGA is a γ-PGA having a weight average molecular weight of 1,000,000 to 30,000,000 produced by culture of Bacillus natto, and the γ-PGA part. The neutralized product has a pH of 3.5 to 6.8.

(γ−PGA)
前記γ−PGAの部分中和物について説明する。前記γ−PGAは、納豆菌の培養により得られるものが好ましい。
(Γ-PGA)
The partially neutralized product of γ-PGA will be described. The γ-PGA is preferably obtained by culturing Bacillus natto.

γ−PGAを生産する微生物としては、重量平均分子量100万以上のγ−PGAを生産する微生物であれば特に制限しない。例えば、Bacillus subtilis、Bacillus anthracis、Bacillus licheniformis、Bacillus megaterium、Bacillus subtilis var. chungkookjang、Bacillus halodurans、Bacillus subtilis var. natto、Natrialba aegyptiacaなどを挙げることが出来る。また、好ましくは、Bacillus subtilis var. natto、市販納豆の製造に用いられている納豆菌であり、これらの納豆菌メーカーにて入手できる。   The microorganism producing γ-PGA is not particularly limited as long as it is a microorganism producing γ-PGA having a weight average molecular weight of 1 million or more. For example, Bacillus subtilis, Bacillus anthracis, Bacillus licheniformis, Bacillus megaterium, Bacillus subtilis var. Chungkookjang, Bacillus halodurans, Bacillus subtilis var. Further, Bacillus subtilis var. Natto, and Bacillus natto used in the production of commercially available natto, can be obtained from these natto bacterium manufacturers.

前記γ−PGAの重量平均分子量(Mw)は、100万以上が好ましく、より好ましくは200万以上、さらに好ましくは230万以上であり、特に好ましくは250万以上であり、3000万以下が好ましく、より好ましくは2000万以下、さらに好ましくは1300万以下である。重量平均分子量が100万以上であれば合成した吸水性樹脂が十分な荷重下吸収量および飽和吸収量を有するようになり、3000万以下であれば水溶液粘度が高くなりすぎず吸水性樹脂の合成が容易に行える。   The γ-PGA has a weight average molecular weight (Mw) of preferably 1 million or more, more preferably 2 million or more, further preferably 2.3 million or more, particularly preferably 2.5 million or more, and preferably 30 million or less. More preferably, it is 20 million or less, More preferably, it is 13 million or less. If the weight average molecular weight is 1 million or more, the synthesized water-absorbing resin has sufficient absorption and saturated absorption under load, and if it is 30 million or less, the viscosity of the aqueous solution does not become too high. Can be done easily.

前記γ−PGAは、分子量100万以上の分子の割合が、80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。また、前記γ−PGAは、分子量60万未満の分子の割合が、20質量%以下が好ましく、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。   In the γ-PGA, the proportion of molecules having a molecular weight of 1 million or more is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more. The γ-PGA preferably has a molecular weight of less than 600,000, preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less.

前記γ−PGAの部分中和物を構成するカチオン成分は特に限定されない。前記カチオン成分としては、アンモニウムイオン、金属イオン、および、有機陽イオンのいずれであってもよい。金属イオンとしては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム、銀などの1価の金属イオン;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、亜鉛、カドミウム、銅、コバルト、ニッケル、マンガンなどの2価の金属イオン;アルミニウム、鉄などの3価の金属イオン;錫、ジルコニウム、チタンなどのその他のイオンが挙げられる。前記金属イオンとしては、ナトリウムイオン、カリウムイオンが好ましい。前記金属イオンは、単独または2種以上の混合物であってもよい。   The cationic component constituting the partially neutralized product of γ-PGA is not particularly limited. The cation component may be any of ammonium ion, metal ion, and organic cation. Examples of metal ions include monovalent metal ions such as lithium, sodium, potassium, rubidium, cesium, francium, silver; beryllium, magnesium, calcium, strontium, barium, zinc, cadmium, copper, cobalt, nickel, manganese, and the like And divalent metal ions such as aluminum and iron; and other ions such as tin, zirconium and titanium. As said metal ion, a sodium ion and a potassium ion are preferable. The metal ions may be used alone or as a mixture of two or more.

前記有機陽イオンとは、炭素鎖を有する陽イオンである。前記有機陽イオンとしては、特に限定されず、例えば、有機アンモニウムイオンが挙げられる。前記有機アンモニウムイオンとしては、例えば、ステアリルアンモニウムイオン、ヘキシルアンモニウムイオン、オクチルアンモニウムイオン、2−エチルヘキシルアンモニウムイオンなどの1級アンモニウムイオン、ドデシル(ラウリル)アンモニウムイオン、オクタデシル(ステアリル)アンモニウムイオンなどの2級アンモニウムイオン;トリオクチルアンモニウムイオンなどの3級アンモニウムイオン;ジオクチルジメチルアンモニウムイオン、ジステアリルジメチルアンモニウムイオンなどの4級アンモニウムイオンなどが挙げられる。これらの有機陽イオンは単独で用いてもよいし、2種以上を併用してもよい。   The organic cation is a cation having a carbon chain. The organic cation is not particularly limited, and examples thereof include organic ammonium ions. Examples of the organic ammonium ion include primary ammonium ions such as stearyl ammonium ion, hexyl ammonium ion, octyl ammonium ion, and 2-ethylhexyl ammonium ion, and secondary such as dodecyl (lauryl) ammonium ion and octadecyl (stearyl) ammonium ion. Ammonium ion; tertiary ammonium ion such as trioctyl ammonium ion; quaternary ammonium ion such as dioctyl dimethyl ammonium ion and distearyl dimethyl ammonium ion. These organic cations may be used alone or in combination of two or more.

前記γ−PGAの部分中和物のpHは、3.5以上、好ましくは3.6以上、さらに好ましくは3.7以上であり、6.8以下、好ましくは6.7以下、さらに好ましくは6.6以下である。前記γ−PGAの部分中和物のpHが3.5未満、あるいは、6.8を超えると合成した吸水性樹脂に十分な荷重下吸収量および飽和吸収量が得られない。γ−PGAのpHは、カチオン成分の使用量や、透析によって調整できる。なお、未中和のγ−PGAのpHは3.3である。   The pH of the partially neutralized product of γ-PGA is 3.5 or more, preferably 3.6 or more, more preferably 3.7 or more, 6.8 or less, preferably 6.7 or less, more preferably 6.6 or less. When the pH of the partially neutralized product of γ-PGA is less than 3.5 or more than 6.8, sufficient absorption under load and saturated absorption cannot be obtained for the synthesized water absorbent resin. The pH of γ-PGA can be adjusted by the amount of cationic component used or by dialysis. The pH of unneutralized γ-PGA is 3.3.

(多価グリシジル化合物)
本発明の吸水性樹脂を構成する前記架橋体は、γ−PGAの部分中和物を多価グリシジル化合物で架橋したものである。前記多価グリシジル化合物としては、分子内にグリシジル基を2個以上有するものであれば、特に限定されない。前記多価グリシジル化合物としては、例えば、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリエチレンジグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルなどの2価のグリシジル化合物;グリセリントリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどの3価以上のグリシジル化合物;などが挙げられる。前記多価グリシジル化合物は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、多価グリシジル化合物としては、2価または3価のグリシジル化合物が好ましく、より好ましくは2価のグリシジル化合物である。
(Polyvalent glycidyl compound)
The crosslinked body constituting the water-absorbent resin of the present invention is obtained by crosslinking a partially neutralized product of γ-PGA with a polyvalent glycidyl compound. The polyvalent glycidyl compound is not particularly limited as long as it has two or more glycidyl groups in the molecule. Examples of the polyvalent glycidyl compound include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyethylene diglycidyl ether, polyglycerol polyglycidyl ether, polypropylene glycol diglycidyl ether, and the like. And divalent glycidyl compounds such as glycerin triglycidyl ether and polyglyceryl polyglycidyl ether. The said polyvalent glycidyl compound may be used independently and may use 2 or more types together. Among these, as the polyvalent glycidyl compound, a divalent or trivalent glycidyl compound is preferable, and a divalent glycidyl compound is more preferable.

(添加剤)
前記吸水性樹脂は、防腐剤、防かび剤、抗菌剤、酸化防止剤、紫外線吸収剤、着色剤、芳香剤、消臭剤、無機質粉末、有機質繊維状物などの添加剤を含んでもよい。前記添加剤を含有させる場合、架橋体中の添加剤の含有率は、0.001質量%以上が好ましく、より好ましくは0.01質量%以上、さらに好ましくは0.05質量%以上、特に好ましくは0.1質量%以上であり、10質量%以下が好ましく、より好ましくは5質量%以下、さらに好ましくは1質量%以下、特に好ましくは0.5質量%以下である。
(Additive)
The water-absorbent resin may contain additives such as preservatives, fungicides, antibacterial agents, antioxidants, ultraviolet absorbers, colorants, fragrances, deodorants, inorganic powders, and organic fibrous materials. When the additive is contained, the content of the additive in the crosslinked body is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, still more preferably 0.05% by mass or more, particularly preferably. Is 0.1% by mass or more, preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less.

(表面架橋剤)
前記架橋体は表面架橋剤により表面架橋処理が施されていることが好ましい。表面架橋処理を施すことにより、さらに吸水性能を向上させることができる。前記表面架橋処理に使用される表面架橋剤としては、カルボキシ基、カルボキシレート基と反応し得る官能基を2個以上有する化合物が挙げられ、例えば、グリシジルエーテル化合物、ハロエポキシ化合物、アルデヒド化合物などが挙げられる。これらの中で、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリグリセリンジグリシジルエーテルなどのジグリシジルエーテル系化合物が適しており、特にジエチレングリコールジグリシジルエーテルが吸水性樹脂中のカルボキシレート基との反応性から最も適している。
(Surface cross-linking agent)
The crosslinked body is preferably subjected to a surface crosslinking treatment with a surface crosslinking agent. By performing the surface crosslinking treatment, the water absorption performance can be further improved. Examples of the surface cross-linking agent used in the surface cross-linking treatment include compounds having two or more functional groups capable of reacting with a carboxy group and a carboxylate group, such as a glycidyl ether compound, a haloepoxy compound, and an aldehyde compound. It is done. Among these, diglycidyl ether compounds such as polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and polyglycerin diglycidyl ether are suitable. In particular, diethylene glycol diglycidyl ether is used as a carboxylate group in the water absorbent resin. Most suitable due to reactivity.

表面架橋剤の添加量は前記架橋体に対して、通常10ppm〜100000ppm、好ましくは50ppm〜5000ppmである。   The addition amount of the surface cross-linking agent is usually 10 ppm to 100,000 ppm, preferably 50 ppm to 5000 ppm with respect to the cross-linked product.

(表面改質剤)
前記架橋体は、さらに表面改質剤で処理されていてもよい。表面改質剤としては、硫酸アルミニウム、カリウム明礬、アンモニウム明礬、ナトリウム明礬、(ポリ)塩化アルミニウム、これらの水和物などの多価金属化合物;ポリエチレンイミン、ポリビニルアミン、ポリアリルアミンなどのポリカチオン化合物;無機微粒子;炭化水素基を含有する表面改質剤;フッ素原子をもつ炭化水素基を含有する表面改質剤;及び、ポリシロキサン構造をもつ表面改質剤などが挙げられる。
(Surface modifier)
The crosslinked body may be further treated with a surface modifier. Surface modifiers include aluminum sulfate, potassium alum, ammonium alum, sodium alum, (poly) aluminum chloride, polyvalent metal compounds such as hydrates thereof; polycation compounds such as polyethyleneimine, polyvinylamine, polyallylamine Inorganic fine particles; surface modifiers containing hydrocarbon groups; surface modifiers containing hydrocarbon groups having fluorine atoms; and surface modifiers having a polysiloxane structure.

前記架橋体の形状は特に限定されないが、粒子状であることが好ましい。前記架橋体の重量平均粒子径は、吸水性樹脂の用途に応じて適宜調整すればよい。   The shape of the crosslinked body is not particularly limited, but is preferably particulate. What is necessary is just to adjust the weight average particle diameter of the said crosslinked body suitably according to the use of water absorbing resin.

例えば、吸水性樹脂を吸収性物品に使用する場合、前記架橋体の重量平均粒子径(μm)は、100μm以上が好ましく、より好ましくは200μm以上、さらに好ましくは250μm以上、特に好ましくは300μm以上であり、800μm以下が好ましく、より好ましくは700μm以下、さらに好ましくは600μm以下、特に好ましくは500μm以下である。吸水性樹脂粒子の重量平均粒子径(μm)が、前記範囲内であれば、吸収性能がさらに良好となる。なお、重量平均粒子径は、ロータップ試験篩振とう機及び標準ふるい(JIS Z8801−1:2006)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンバニー、1984、21頁)に記載の方法で測定される。医療分野、農業分野、化粧品分野、電気・電子分野、土木分野などにおいては、100μm未満が好ましい場合もある。   For example, when a water absorbent resin is used for an absorbent article, the weight average particle diameter (μm) of the crosslinked body is preferably 100 μm or more, more preferably 200 μm or more, still more preferably 250 μm or more, particularly preferably 300 μm or more. It is preferably 800 μm or less, more preferably 700 μm or less, still more preferably 600 μm or less, and particularly preferably 500 μm or less. When the weight average particle diameter (μm) of the water absorbent resin particles is within the above range, the absorption performance is further improved. In addition, the weight average particle diameter was measured using a low-tap test sieve shaker and a standard sieve (JIS Z8801-1: 2006), Perry's Chemical Engineers Handbook, 6th edition (McGlow Hill Book Company, 1984). , Page 21). In the medical field, the agricultural field, the cosmetic field, the electrical / electronic field, the civil engineering field, etc., it may be preferable that the thickness is less than 100 μm.

前記吸水性樹脂の飽和吸収量は、30g/g以上が好ましく、より好ましくは33g/g以上、さらに好ましくは35g/g以上であり、100g/g以下が好ましく、より好ましくは95g/g以下、さらに好ましくは90g/g以下である。前記飽和吸収量は、吸水性樹脂がどの程度の量を吸水できるかを示す尺度である。   The saturated absorption amount of the water-absorbing resin is preferably 30 g / g or more, more preferably 33 g / g or more, still more preferably 35 g / g or more, preferably 100 g / g or less, more preferably 95 g / g or less, More preferably, it is 90 g / g or less. The saturated absorption amount is a scale indicating how much the water absorbent resin can absorb water.

前記吸水性樹脂の荷重下吸収量は7g/g以上が好ましく、より好ましくは8g/g以上、さらに好ましくは9g/g以上である。荷重下吸収量は吸水性樹脂に所定の荷重をかけた状態で吸水させる。荷重がかかった状態で、どの程度の量を吸水できるかを示す尺度である。   The absorption amount under load of the water absorbent resin is preferably 7 g / g or more, more preferably 8 g / g or more, and still more preferably 9 g / g or more. The amount of absorption under load is absorbed in a state where a predetermined load is applied to the water absorbent resin. It is a scale showing how much water can be absorbed under load.

前記吸水性樹脂の保水量は、20g/g以上が好ましく、より好ましくは22g/g以上、さらに好ましくは25g/g以上であり、90g/g以下が好ましく、より好ましくは85g/g以下、さらに好ましくは80g/g以下である。保水量は、吸水性樹脂が吸収した液をどの程度保持できるかを示す尺度である。前記保水量が20g/g以上であると、少量の吸水性樹脂によって体液の保持容量を所定のレベルに保つことができる。   The water retention amount of the water-absorbent resin is preferably 20 g / g or more, more preferably 22 g / g or more, still more preferably 25 g / g or more, preferably 90 g / g or less, more preferably 85 g / g or less, Preferably it is 80 g / g or less. The water retention amount is a scale indicating how much the liquid absorbed by the water absorbent resin can be retained. When the water retention amount is 20 g / g or more, the body fluid retention capacity can be maintained at a predetermined level with a small amount of water-absorbing resin.

[吸水性樹脂の製造方法]
以下、吸水性樹脂の製造方法について説明する。本発明の吸水性樹脂の製造方法は、γ−PGAの部分中和物を製造する工程(生成工程);前記γ−PGAとカチオン源および/またはアニオン源とを混合して、γ−PGAの部分中和物のpHを調整する工程(pH調整工程);および、前記γ−PGAの部分中和物を、多価グリシジル化合物により架橋し架橋体を製造する工程(架橋工程);を含む。
[Method for producing water-absorbing resin]
Hereinafter, the manufacturing method of a water absorbing resin is demonstrated. The method for producing a water absorbent resin of the present invention comprises a step of producing a partially neutralized product of γ-PGA (generation step); the γ-PGA and a cation source and / or anion source are mixed, A step of adjusting the pH of the partially neutralized product (pH adjusting step); and a step of crosslinking the partially neutralized product of γ-PGA with a polyvalent glycidyl compound to produce a crosslinked product (crosslinking step).

(生成工程)
前記γ−PGAを製造する工程では、納豆菌の培養により、重量平均分子量が100万〜3000万のγ−PGAを製造する。
(Generation process)
In the step of producing γ-PGA, γ-PGA having a weight average molecular weight of 1 million to 30 million is produced by culturing natto bacteria.

納豆菌の培養方法は、納豆菌がγ−PGAの生産し得る培養方法であれば特に制限は無いが、γ−PGAを容易に回収するためには液体培養が好ましい。   The culture method of Bacillus natto is not particularly limited as long as Bacillus natto can produce γ-PGA, but liquid culture is preferable for easily recovering γ-PGA.

納豆菌の培養に用いる培地には、炭素源、窒素源、無機塩類、その他必要な栄養源を含有するものを使用する。炭素源としては、例えば、糖類(グルコースなど)が挙げられる。窒素源としては、例えば、アミノ酸やその塩類(グルタミン酸、グルタミン酸ナトリウムなど)、ペプチド類やその塩類(大豆ペプチドなど)などが挙げられる。無機塩類としては、塩化ナトリウム、硫酸マグネシウム・7水和物などが挙げられる。栄養源としては、リン酸塩(リン酸水素2ナトリウム・12水和物、リン酸2水素カリウムなど)、ビタミン類(ビオチンなど)が挙げられる。前記培地にカチオン源を配合させることにより、pHが3.5〜6.8のγ−PGAの部分中和物を得ることもできる。この場合、後述するpH調整工程を省略することもできる。   As a medium used for culturing Bacillus natto, a medium containing a carbon source, a nitrogen source, inorganic salts, and other necessary nutrient sources is used. Examples of the carbon source include saccharides (such as glucose). Examples of the nitrogen source include amino acids and salts thereof (such as glutamic acid and sodium glutamate), peptides and salts thereof (such as soybean peptide), and the like. Examples of inorganic salts include sodium chloride and magnesium sulfate heptahydrate. Examples of nutrient sources include phosphates (disodium hydrogen phosphate, 12 hydrate, potassium dihydrogen phosphate, etc.) and vitamins (biotin, etc.). A partially neutralized product of γ-PGA having a pH of 3.5 to 6.8 can also be obtained by adding a cation source to the medium. In this case, a pH adjustment step described later can be omitted.

培養温度は30℃以上が好ましく、より好ましくは35℃以上、さらに好ましくは40℃以上であり、50℃以下が好ましく、より好ましくは45℃以下である。また、培養温度40℃〜50℃で培養を行い、培養途中で培養温度を40℃未満に変更することも好ましい。培養途中で培養温度を40℃未満に変更することで、γ−PGA分解酵素の生産を抑制することができる。培養温度を40℃未満に変更する時期としては、対数増殖期の中期から後期が挙げられる。   The culture temperature is preferably 30 ° C or higher, more preferably 35 ° C or higher, still more preferably 40 ° C or higher, preferably 50 ° C or lower, more preferably 45 ° C or lower. It is also preferable to perform the culture at a culture temperature of 40 ° C. to 50 ° C. and change the culture temperature to less than 40 ° C. during the culture. By changing the culture temperature to less than 40 ° C. during the culture, production of γ-PGA degrading enzyme can be suppressed. Examples of the time for changing the culture temperature to less than 40 ° C. include the middle to late phase of the logarithmic growth phase.

(pH調整工程)
前記pH調整工程では、γ−PGAまたはその部分中和物とカチオン源および/またはアニオン源とを混合するか、あるいはγ−PGAの部分中和物を透析して、pHが3.5〜6.8のγ−ポリグルタミン酸の部分中和物を得る。なお、γ−PGAの部分中和物を透析後、カチオン源および/またはアニオン源と混合してもよい。具体的には、γ−PGAとカチオン源とを混合する方法;γ−PGAの部分中和物とアニオン源とを混合する方法;γ−PGAの部分中和物を透析した後、アニオン源と混合する方法;γ−PGAを酸性透析した後、カチオン源と混合する方法;などが挙げられる。
(PH adjustment step)
In the pH adjustment step, γ-PGA or a partially neutralized product thereof and a cation source and / or anion source are mixed, or the partially neutralized product of γ-PGA is dialyzed to have a pH of 3.5 to 6. 8 partially neutralized γ-polyglutamic acid is obtained. The partially neutralized product of γ-PGA may be mixed with a cation source and / or an anion source after dialysis. Specifically, a method of mixing γ-PGA and a cation source; a method of mixing a partially neutralized product of γ-PGA and an anion source; And a method of mixing γ-PGA after acid dialysis and then mixing with a cation source.

前記γ−PGAとカチオン源および/またはアニオン源とを混合する方法としては、溶媒の存在下でγ−PGAとカチオン源および/またはアニオン源とを混合する方法が挙げられる。溶媒としては、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルモルホリン及びそれらの混合物などが挙げられる。前記カチオン源の使用量は、γ−PGAが有するカルボン酸1当量に対して、0.1当量以上10当量未満が好ましい。   Examples of the method for mixing the γ-PGA with the cation source and / or the anion source include a method for mixing the γ-PGA with the cation source and / or the anion source in the presence of a solvent. Examples of the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylmorpholine, and mixtures thereof. The amount of the cation source used is preferably 0.1 equivalents or more and less than 10 equivalents with respect to 1 equivalent of carboxylic acid contained in γ-PGA.

前記カチオン源としては、前記カチオン成分を含む化合物が挙げられる。このようなカチオン源としては、前記金属イオンを含む金属水酸化物、金属炭酸化物、有機酸塩が挙げられる。金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどが挙げられる。金属炭酸化物としては、炭酸ナトリウム、炭酸カリウムなどが挙げられる。有機酸塩としては、クエン酸ナトリウム、乳酸ナトリウム、酒石酸ナトリウム、フマル酸ナトリウムなどが挙げられる。前記アニオン源としては、無機酸、有機酸などが挙げられる。無機酸としては、塩酸、硫酸、硝酸などが挙げられる。有機酸としてはクエン酸などが挙げられる。   Examples of the cation source include compounds containing the cation component. Examples of such a cation source include metal hydroxides, metal carbonates, and organic acid salts containing the metal ions. Examples of the metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide and the like. Examples of the metal carbonate include sodium carbonate and potassium carbonate. Examples of the organic acid salt include sodium citrate, sodium lactate, sodium tartrate, and sodium fumarate. Examples of the anion source include inorganic acids and organic acids. Examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid and the like. Examples of the organic acid include citric acid.

γ−PGAの部分中和物を透析する方法は特に限定されないが、例えば、γ−PGAの部分中和物の水溶液を透析膜チューブに入れた後、この透析膜チューブを脱イオン水または酸性溶液に浸漬する方法が挙げられる。前記透析膜は、γ−PGA分子を通さず、カチオン成分を通すことができるものが使用できる。前記酸性溶液としては、塩酸、硫酸、硝酸などが挙げられる。   The method for dialyzing the partially neutralized product of γ-PGA is not particularly limited. For example, after an aqueous solution of the partially neutralized product of γ-PGA is put into a dialysis membrane tube, the dialysis membrane tube is deionized water or an acidic solution. The method of immersing in is mentioned. As the dialysis membrane, one that can pass a cation component without passing γ-PGA molecules can be used. Examples of the acidic solution include hydrochloric acid, sulfuric acid, and nitric acid.

(架橋工程)
架橋体を製造する工程では、前記γ−PGAの部分中和物を、多価グリシジル化合物により架橋する。架橋反応を行う方法は特に限定されないが、溶媒の存在下でγ−PGAと多価グリシジル化合物を混合し、加熱する方法が挙げられる。溶媒としてはグリシジル化合物を溶解もしくは分散させるものであれば特に限定されないが、例えば、水、アルコール系溶剤(例えば、メタノール、エタノール、イソプロパノール、エチレングリコール、グリセリン等)、ケトン系溶剤(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等)、エーテル系溶剤(例えば、エチルセロソルブ、テトラヒドロフラン、プロピレングリコールモノメチルエーテル等)、アミド系溶剤(例えば、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルモルホリン等)、スルホキシド系溶剤(例えば、ジメチルスルホキシド等)及びそれらの混合物が挙げられる。また、溶媒として緩衝液を用いることも好ましい。緩衝液としては、クエン酸緩衝液(クエン酸とクエン酸ナトリウムとの混合溶液)、酢酸緩衝液(酢酸と酢酸ナトリウムとの混合溶液)、リン酸緩衝液(リン酸とリン酸ナトリウムとの混合溶液)などが挙げられる。
(Crosslinking process)
In the step of producing a crosslinked product, the partially neutralized product of γ-PGA is crosslinked with a polyvalent glycidyl compound. A method for performing the crosslinking reaction is not particularly limited, and examples thereof include a method in which γ-PGA and a polyvalent glycidyl compound are mixed and heated in the presence of a solvent. The solvent is not particularly limited as long as it dissolves or disperses the glycidyl compound. For example, water, alcohol solvents (for example, methanol, ethanol, isopropanol, ethylene glycol, glycerin, etc.), ketone solvents (for example, acetone, Methyl ethyl ketone, methyl isobutyl ketone, etc.), ether solvents (eg, ethyl cellosolve, tetrahydrofuran, propylene glycol monomethyl ether, etc.), amide solvents (eg, dimethylformamide, dimethylacetamide, N-methylmorpholine, etc.), sulfoxide solvents (eg, , Dimethyl sulfoxide and the like) and mixtures thereof. It is also preferable to use a buffer as a solvent. Buffers include citrate buffer (mixed solution of citrate and sodium citrate), acetate buffer (mixed solution of acetic acid and sodium acetate), phosphate buffer (mixed of phosphate and sodium phosphate) Solution).

混合方法としては、溶媒にγ−PGAを溶解させた後、このγ−PGA溶液に多価グリシジル化合物を添加する方法;別々の溶媒にγ−PGA、多価グリシジル化合物をそれぞれ溶解させた後、これらの溶液を混合する方法;などが挙げられる。特に、緩衝液にγ−PGAを溶解させ、このγ−PGA溶液と多価グリシジル化合物の水溶液とを混合する方法が好ましい。   As a mixing method, after dissolving γ-PGA in a solvent, a method of adding a polyvalent glycidyl compound to the γ-PGA solution; after dissolving γ-PGA and a polyvalent glycidyl compound in separate solvents, And a method of mixing these solutions. Particularly preferred is a method in which γ-PGA is dissolved in a buffer solution, and this γ-PGA solution and an aqueous solution of a polyvalent glycidyl compound are mixed.

前記多価グリシジル化合物の配合量は、γ−PGA100質量部に対して、0.5質量部以上が好ましく、より好ましくは1.5質量部以上、さらに好ましくは2.0質量部以上であり、115質量部以下が好ましく、より好ましくは55質量部以下、さらに好ましくは15質量部以下である。多価グリシジル化合物の配合量が0.5質量部以上であれば合成した吸水性樹脂の荷重下吸収量および飽和吸収量が向上し、115質量部以下であれば合成した吸水性樹脂に過度な内部架橋が生じることが抑制される。   The blending amount of the polyvalent glycidyl compound is preferably 0.5 parts by mass or more, more preferably 1.5 parts by mass or more, further preferably 2.0 parts by mass or more, with respect to 100 parts by mass of γ-PGA. 115 parts by mass or less is preferable, more preferably 55 parts by mass or less, and still more preferably 15 parts by mass or less. If the blending amount of the polyvalent glycidyl compound is 0.5 parts by mass or more, the absorbed amount and the saturated absorption amount of the synthesized water absorbent resin are improved, and if it is 115 parts by mass or less, the synthesized water absorbent resin is excessive. The occurrence of internal crosslinking is suppressed.

架橋反応を行う際の反応液のpHは、3.5以上が好ましく、より好ましくは4.0以上、さらに好ましくは5.0以上であり、6.8以下が好ましく、より好ましくは6.7以下、さらに好ましくは6.6以下である。反応液のpHが3.5未満、あるいは、6.8超であれば合成した吸水性樹脂の荷重下吸収量および飽和吸収量が劣る。反応液のpHは、pHメーター(HANNA社製 型式「HI−98109」)により測定できる。   The pH of the reaction solution during the crosslinking reaction is preferably 3.5 or more, more preferably 4.0 or more, still more preferably 5.0 or more, and preferably 6.8 or less, more preferably 6.7. Hereinafter, it is more preferably 6.6 or less. If the pH of the reaction solution is less than 3.5 or more than 6.8, the synthesized water-absorbent resin has poor absorption and saturation absorption under load. The pH of the reaction solution can be measured with a pH meter (Model “HI-98109” manufactured by HANNA).

架橋反応を行う際の反応液の温度は、60℃以上が好ましく、より好ましくは70℃以上、さらに好ましくは80℃以上であり、120℃以下が好ましく、より好ましくは110℃以下、さらに好ましくは100℃以下である。反応時間は0.5時間以上が好ましく、より好ましくは0.75時間以上、さらに好ましくは1時間以上であり、80時間以下が好ましく、より好ましくは24時間以下、さらに好ましくは6時間以下である。   The temperature of the reaction solution during the crosslinking reaction is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, further preferably 80 ° C. or higher, preferably 120 ° C. or lower, more preferably 110 ° C. or lower, and still more preferably. It is 100 degrees C or less. The reaction time is preferably 0.5 hours or more, more preferably 0.75 hours or more, further preferably 1 hour or more, preferably 80 hours or less, more preferably 24 hours or less, still more preferably 6 hours or less. .

架橋反応後、反応液から余分な溶媒を除去することで架橋体の含水ゲルを得る。含水ゲルは、架橋体と水とからなるものである。含水ゲルの水分含有率は特に限定されないが、通常30質量%〜99.9質量%である。含水ゲルは、必要に応じて細断することができる。細断後のゲルの大きさ(最長径)は、50μm〜10cmが好ましく、100μm〜2cmがより好ましく、1mm〜1cmがさらに好ましい。この範囲であると、乾燥工程での乾燥性がさらに良好となる。細断は、公知の方法で行うことができ、例えば、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機、衝撃式粉砕機及びロール式粉砕機などの従来の細断装置を使用して細断できる。   After the crosslinking reaction, an excess solvent is removed from the reaction solution to obtain a crosslinked hydrous gel. The hydrous gel is composed of a crosslinked body and water. The water content of the hydrogel is not particularly limited, but is usually 30% by mass to 99.9% by mass. The hydrogel can be shredded as necessary. The size (longest diameter) of the gel after shredding is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, and even more preferably 1 mm to 1 cm. Within this range, the drying property in the drying process is further improved. Shredding can be performed by a known method. For example, the shredding can be performed using a conventional shredding device such as a Bex mill, a rubber chopper, a pharma mill, a mincing machine, an impact grinder, and a roll grinder.

架橋反応に溶媒(有機溶媒、水など)を使用する場合、反応後に溶媒を留去し、架橋体の乾燥物を得る。溶媒(水を含む。)を留去する方法としては、80℃〜230℃の温度の熱風で留去(乾燥)する方法、100℃〜230℃に加熱されたドラムドライヤーなどによる薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法、赤外線による乾燥法、デカンテーション及び濾過などが適用できる。さらに、メタノール、エタノールなどの親水性溶媒を用いて脱水した後に上記手法で乾燥しても良い。   When a solvent (such as an organic solvent or water) is used for the crosslinking reaction, the solvent is distilled off after the reaction to obtain a dried product of the crosslinked product. As a method of distilling off the solvent (including water), a method of distilling (drying) with hot air at a temperature of 80 ° C. to 230 ° C., a thin film drying method using a drum dryer heated to 100 ° C. to 230 ° C., etc. (Heating) A vacuum drying method, a freeze drying method, a drying method using infrared rays, decantation, filtration, and the like can be applied. Furthermore, after dehydrating using a hydrophilic solvent such as methanol or ethanol, it may be dried by the above method.

架橋体の乾燥物は、粉砕することができる。粉砕方法については、特に限定されず、例えば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機などの通常の粉砕装置が使用できる。粉砕された架橋体は、必要によりふるい分けなどにより粒度調整できる。   The dried product of the crosslinked product can be pulverized. The pulverization method is not particularly limited, and for example, a normal pulverizer such as a hammer pulverizer, an impact pulverizer, a roll pulverizer, and a shet airflow pulverizer can be used. The pulverized crosslinked product can be adjusted in particle size by sieving or the like, if necessary.

架橋体は、必要に応じて表面架橋処理を施してもよい。架橋体について、表面架橋処理を施す場合、表面架橋処理は表面架橋剤を含む水溶液を架橋体に噴霧又は含浸させた後、加熱処理する方法等により達成できる。   The cross-linked product may be subjected to surface cross-linking treatment as necessary. In the case of subjecting the crosslinked body to a surface crosslinking treatment, the surface crosslinking treatment can be achieved by a method of spraying or impregnating the crosslinked body with an aqueous solution containing a surface crosslinking agent and then performing a heat treatment.

前記表面架橋処理は、水および水溶性レベリング剤の存在下で、架橋体と表面架橋剤とを反応させることにより行うことが好ましい。水溶性レベリング剤を用いることにより、架橋体の表面に対して、表面架橋剤をより均一に分散させることができる。よって、架橋体の表面をより均一に表面架橋することができる。このような方法としては、例えば、表面架橋剤、水溶性レベリング剤および水を含む溶液を架橋体に噴霧または含侵させた後、加熱処理する方法;表面架橋剤および水溶性レベリング剤を含む液を、水を含有する架橋体に噴霧した後、加熱処理する方法;などが挙げられる。   The surface cross-linking treatment is preferably performed by reacting the cross-linked product with the surface cross-linking agent in the presence of water and a water-soluble leveling agent. By using the water-soluble leveling agent, the surface crosslinking agent can be more uniformly dispersed on the surface of the crosslinked body. Therefore, the surface of the crosslinked body can be more uniformly surface-crosslinked. Examples of such a method include a method of spraying or impregnating a crosslinked body with a solution containing a surface crosslinking agent, a water-soluble leveling agent and water and then heat-treating; a liquid containing a surface crosslinking agent and a water-soluble leveling agent Is sprayed onto a crosslinked product containing water, followed by heat treatment.

前記表面架橋剤の使用量は、架橋体100質量部に対して、0.005質量部以上が好ましく、より好ましくは0.008質量部以上、さらに好ましくは0.01質量部以上であり、1.5質量部以下が好ましく、より好ましくは1.2質量部以下、さらに好ましくは1.0質量部以下である。多価グリシジル化合物の配合量が0.005質量部〜1.5質量部の範囲内であれば、ゲルブロッキングが防止でき、十分な吸収量が得られる。   The amount of the surface crosslinking agent used is preferably 0.005 parts by mass or more, more preferably 0.008 parts by mass or more, and still more preferably 0.01 parts by mass or more with respect to 100 parts by mass of the crosslinked product. 0.5 mass part or less is preferable, More preferably, it is 1.2 mass parts or less, More preferably, it is 1.0 mass part or less. If the blending amount of the polyvalent glycidyl compound is in the range of 0.005 to 1.5 parts by mass, gel blocking can be prevented and a sufficient absorption amount can be obtained.

前記水溶性レベリング剤は、表面架橋剤を溶解することができ、かつ、架橋体に実質的に吸収されないものであれば特に限定されない。前記水溶性レベリング剤としては、例えば、メタノール、エタノール、イソプロパノールなどのアルコール類が挙げられる。水溶性レベリング剤の使用量は、吸水性樹脂100質量部に対して0.05質量部以上が好ましく、より好ましくは0.08質量部以上、さらに好ましくは0.1質量部以上であり、15質量部以下が好ましく、より好ましくは13質量部以下、さらに好ましくは10質量部以下である。   The water-soluble leveling agent is not particularly limited as long as it can dissolve the surface crosslinking agent and is not substantially absorbed by the crosslinked body. Examples of the water-soluble leveling agent include alcohols such as methanol, ethanol, and isopropanol. The amount of the water-soluble leveling agent used is preferably 0.05 parts by mass or more, more preferably 0.08 parts by mass or more, still more preferably 0.1 parts by mass or more, based on 100 parts by mass of the water absorbent resin. The amount is preferably at most 10 parts by mass, more preferably at most 13 parts by mass, even more preferably at most 10 parts by mass.

表面架橋処理における加熱温度は、30℃以上が好ましく、より好ましくは40℃以上であり、150℃以下が好ましく、より好ましくは130℃以下である。また、加熱時間は、10分間以上が好ましく、より好ましくは20分間以上であり、60分間以下が好ましく、より好ましくは40分間以下である。   The heating temperature in the surface cross-linking treatment is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, 150 ° C. or lower, more preferably 130 ° C. or lower. The heating time is preferably 10 minutes or longer, more preferably 20 minutes or longer, preferably 60 minutes or shorter, more preferably 40 minutes or shorter.

架橋体は、必要に応じてその表面を表面改質材で処理してもよい。表面改質剤で処理する方法としては、表面改質剤が架橋体の表面に存在するように処理する方法であれば、特に限定されない。しかし、表面改質剤は、架橋重合体の含水ゲル又は架橋重合体を重合する前の重合液ではなく、架橋体の乾燥体と混合されることが表面の表面改質剤の量をコントロールする観点から好ましい。なお、混合は、均一に行うことが好ましい。表面処理を行う場合、架橋体の水分量を15質量%〜25重量%に調整しておくことが好ましい。   The surface of the crosslinked body may be treated with a surface modifier as necessary. The method for treating with the surface modifier is not particularly limited as long as the method is performed so that the surface modifier is present on the surface of the crosslinked body. However, the surface modifier is not a water-containing gel of the cross-linked polymer or a polymer solution before polymerizing the cross-linked polymer, but is mixed with the dried product of the cross-linked polymer to control the amount of the surface modifier. It is preferable from the viewpoint. The mixing is preferably performed uniformly. When performing the surface treatment, it is preferable to adjust the water content of the crosslinked product to 15% by mass to 25% by mass.

本発明の吸水性樹脂は、使い捨ておむつ、生理用ナプキン、失禁パッドなどの衛生分野、医療分野、農業分野、化粧品分野、電気・電子分野、土木分野などに利用できる。   The water-absorbent resin of the present invention can be used in hygiene fields such as disposable diapers, sanitary napkins, incontinence pads, medical fields, agricultural fields, cosmetics fields, electrical / electronic fields, civil engineering fields, and the like.

以下、本発明を実施例によって詳細に説明するが、本発明は、下記実施例によって限定されるものではなく、本発明の趣旨を逸脱しない範囲の変更、実施の態様は、いずれも本発明の範囲内に含まれる。   Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples, and all modifications and embodiments without departing from the gist of the present invention are not limited thereto. Included in range.

1.評価方法
1−1.重量平均分子量
γ−ポリグルタミン酸の重量平均分子量は、ゲルパーミエーション・クロマトグラフィー(GPC)を用いて、下記条件にて測定した。
測定装置;
ポンプ:PU−2089 Plus(日本分光社製)
デガッサ:PU−2089 Plus(日本分光社製)
ミキサ:PU−2089 Plus(日本分光社製)
オートサンプラ:AS−2057 Plus(日本分光社製)
カラムオーブン:CO−2065 Plus(日本分光社製)
検出器:RI−2031 Plus(日本分光社製)
解析ソフト:ChromNAV(日本分光社製)
測定条件;
使用カラム;TSKgel GMPWXL(7.8mmI.D.×30cm)(東ソー製)
カラム温度;40℃
検出方法;示差屈折計(RI検出器),多角度光散乱検出器(MALS)
移動相;50mMリン酸緩衝液(pH=8.0)
試料濃度;0.5mg/mL
サンプル量;100μL
検量線;プルラン
1. Evaluation method 1-1. Weight average molecular weight The weight average molecular weight of (gamma) -polyglutamic acid was measured on condition of the following using gel permeation chromatography (GPC).
measuring device;
Pump: PU-2089 Plus (manufactured by JASCO)
Degasser: PU-2089 Plus (manufactured by JASCO)
Mixer: PU-2089 Plus (manufactured by JASCO)
Autosampler: AS-2057 Plus (manufactured by JASCO)
Column oven: CO-2065 Plus (manufactured by JASCO)
Detector: RI-2031 Plus (manufactured by JASCO)
Analysis software: ChromNAV (manufactured by JASCO)
Measurement condition;
Column used: TSKgel GMPW XL (7.8 mm ID × 30 cm) (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Detection method: differential refractometer (RI detector), multi-angle light scattering detector (MALS)
Mobile phase: 50 mM phosphate buffer (pH = 8.0)
Sample concentration: 0.5 mg / mL
Sample volume: 100 μL
Calibration curve; pullulan

1−2.γ−PGAの部分中和物のpH
γ−PGAの部分中和物のpHは、γ−PGAを水に溶解させ、このγ−PGA溶液(濃度1.0質量%)のpHをpHメーター(HANNA社製 型式「HI-98109」)にて測定した。
1-2. pH of partially neutralized product of γ-PGA
The pH of the partially neutralized product of γ-PGA is such that γ-PGA is dissolved in water, and the pH of this γ-PGA solution (concentration: 1.0% by mass) is adjusted to a pH meter (Model “HI-98109” manufactured by HANNA). Measured with

1−3.飽和吸収量
飽和吸収量の測定は、JIS K7223(1996)に準拠して行った。目開き63μmのナイロン網(JIS Z8801−1(2000))を幅10cm、長さ40cmの長方形に切断して長手方向中央で二つ折りにし、両端をヒートシールして幅10cm(内寸9cm)、長さ20cmのナイロン袋を作製した。測定試料1.00gを精秤し、作製したナイロン袋の底部に均一になるように入れた。試料の入ったナイロン袋を、生理食塩水に浸漬させた。浸漬開始から60分後にナイロン袋を生理食塩水から取り出し、1時間垂直状態に吊るして水切りした後の質量R1(g)を測定した。また、試料を用いないで同様の操作を行い、そのときの質量R0(g)を測定した。そして、これら質量R1、R0および試料の質量から、次式に従って、目的とする飽和吸収量を算出した。
飽和吸収量(g/g)=(R1−R0−試料の質量)/試料の質量
1-3. Saturated absorption amount The saturated absorption amount was measured according to JIS K7223 (1996). Nylon mesh (JIS Z8801-1 (2000)) with a mesh size of 63 μm is cut into a rectangle with a width of 10 cm and a length of 40 cm, folded in half at the center in the longitudinal direction, and both ends are heat-sealed to give a width of 10 cm (inner size: 9 cm), A nylon bag having a length of 20 cm was produced. 1.00 g of a measurement sample was precisely weighed and placed uniformly at the bottom of the produced nylon bag. The nylon bag containing the sample was immersed in physiological saline. After 60 minutes from the start of soaking, the nylon bag was taken out from the physiological saline, and the mass R1 (g) after being drained by hanging in a vertical state for 1 hour was measured. Further, the same operation was performed without using a sample, and the mass R0 (g) at that time was measured. And the target saturated absorption amount was computed from these mass R1, R0 and the mass of the sample according to following Formula.
Saturated absorption (g / g) = (R1-R0-mass of sample) / mass of sample

1−4.荷重下吸収量
目開き63μm(JIS Z8801−1(2006)に準拠)のナイロン網を底面に貼った円筒型プラスチックチューブ(内径30mm、高さ60mm)内に測定試料0.1gを秤量し、プラスチックチューブを垂直にしてナイロン網上に測定試料がほぼ均一厚さになるように整え、この測定試料の上に60g/cmの荷重となるように外径29.5mm×22mmの分銅を乗せた。生理食塩水(食塩濃度0.9%)60mlの入ったシャーレ(直径:12cm)の中に測定試料及び分銅の入ったプラスチックチューブを垂直に立ててナイロン網側を下面にして浸し、放置し、10分後に試料及び分銅の入ったプラスチックチューブを計量し、測定試料が生理食塩水を吸収して増加した重量を算出し、この増加重量の10倍値を生理食塩水に対する荷重下吸収量(g/g)とした。なお、使用する生理食塩水及び測定雰囲気の温度は25℃±2℃であった。
1-4. Absorption under load Weigh 0.1 g of measurement sample in a cylindrical plastic tube (inner diameter 30 mm, height 60 mm) with a nylon mesh with a mesh opening of 63 μm (conforming to JIS Z8801-1 (2006)) on the bottom. The measurement sample was arranged on the nylon net with a vertical tube so that the thickness was almost uniform, and a weight of 29.5 mm × 22 mm in outer diameter was placed on the measurement sample so that a load of 60 g / cm 2 was applied. . In a petri dish (diameter: 12 cm) containing 60 ml of physiological saline (salt concentration 0.9%), place a plastic tube containing a measurement sample and a weight vertically, immerse the nylon mesh side on the bottom, and let it stand, After 10 minutes, the plastic tube containing the sample and the weight is weighed, the weight of the measurement sample absorbed by the physiological saline is calculated, and the weight increased by 10 times the increased weight under the load with respect to the physiological saline (g / G). The physiological saline used and the temperature of the measurement atmosphere were 25 ° C. ± 2 ° C.

1−5.保水量
保水量の測定は、JIS K 7223(1996)に準拠して行った。目開き63μmのナイロン網(JIS Z8801−1(2000))を幅10cm、長さ40cmの長方形に切断して長手方向中央で二つ折りにし、両端をヒートシールして幅10cm(内寸9cm)、長さ20cmのナイロン袋を作製した。測定試料1.00gを精秤し、作製したナイロン袋の底部に均一になるように入れた。試料の入ったナイロン袋を、生理食塩水に浸漬させた。浸漬開始から60分後にナイロン袋を生理食塩水から取り出し、1時間垂直状態に吊るして水切りした後、遠心脱水器(コクサン(株)製、型式H−130C特型)を用いて脱水した。脱水条件は、143G(800rpm)で2分間とした。脱水後試料の質量F1(g)を測定した。また、試料を用いないで同様の操作を行い、そのときの質量F0(g)を測定した。そして、これら質量F1、F0および試料の質量から、次式に従って、目的とする吸収倍率を算出した。
保水量(g/g)=(F1−F0)/試料の質量
1-5. Water retention amount The water retention amount was measured according to JIS K 7223 (1996). Nylon mesh (JIS Z8801-1 (2000)) with a mesh size of 63 μm is cut into a rectangle with a width of 10 cm and a length of 40 cm, folded in half at the center in the longitudinal direction, and both ends are heat-sealed to give a width of 10 cm (inner size: 9 cm), A nylon bag having a length of 20 cm was produced. 1.00 g of a measurement sample was precisely weighed and placed uniformly at the bottom of the produced nylon bag. The nylon bag containing the sample was immersed in physiological saline. After 60 minutes from the start of immersion, the nylon bag was taken out from the physiological saline, suspended in a vertical state for 1 hour, drained, and then dehydrated using a centrifugal dehydrator (Kokusan Co., Ltd., model H-130C special model). The dehydrating condition was 143 G (800 rpm) for 2 minutes. The mass F1 (g) of the sample after dehydration was measured. Moreover, the same operation was performed without using a sample, and the mass F0 (g) at that time was measured. And from these masses F1 and F0 and the mass of the sample, the target absorption ratio was calculated according to the following equation.
Water retention amount (g / g) = (F1-F0) / sample mass

1−6.無荷重下吸収速度、逆戻り量
円筒管(内径60mm、高さ50mm)を、吸収性物品の表面シート上の吸収体中央に相当する部分に設置した。この円筒管内に生理食塩水(食塩濃度0.9%)80mLを10秒かけて注入した。生理食塩水の注入を開始してから、生理食塩水が吸収性物品に吸収されて円筒管内から消えるまでの時間を計測した。この計測した時間を無荷重下吸収速度(秒)とした。
1-6. Absorption speed under no load, reversal amount A cylindrical tube (inner diameter 60 mm, height 50 mm) was installed in a portion corresponding to the center of the absorbent body on the top sheet of the absorbent article. 80 mL of physiological saline (saline concentration: 0.9%) was injected into this cylindrical tube over 10 seconds. The time from the start of physiological saline injection until the physiological saline was absorbed by the absorbent article and disappeared from the cylindrical tube was measured. This measured time was defined as an absorption rate (seconds) under no load.

次に、生理食塩水の注入を開始してから5分後に、吸収性物品から円筒管を取り除き、予め質量を測定したろ紙(寸法100mm×100mm)を吸収性物品上に置いた。このろ紙の上におもり(寸法100mm×100mm、重さ3.5kg)を置いた。おもりを置いてから3分後におもりを取り除き、ろ紙の質量を測定した。そして、吸収性物品上に置く前後の質量から、吸収性物品の逆戻り量を算出した。   Next, 5 minutes after starting the injection of physiological saline, the cylindrical tube was removed from the absorbent article, and a filter paper (size 100 mm × 100 mm) whose mass was measured in advance was placed on the absorbent article. A weight (size 100 mm × 100 mm, weight 3.5 kg) was placed on the filter paper. Three minutes after placing the weight, the weight was removed, and the mass of the filter paper was measured. And the return amount of the absorbent article was calculated from the mass before and after placing on the absorbent article.

上記生理食塩水の注入および吸収、生理食塩水吸収後のろ紙への逆戻り量の測定を3回行い、3回目の測定における吸収速度(秒)、逆戻り量(g)を記録した。各測定は、生理食塩水の注入開始した時から、次回の生理食塩水の注入開始までの間隔を10分間とした。   The injection and absorption of the physiological saline and the measurement of the amount of return to the filter paper after absorption of the physiological saline were performed three times, and the absorption rate (seconds) and the amount of return (g) in the third measurement were recorded. In each measurement, the interval from the start of physiological saline injection to the start of the next physiological saline injection was 10 minutes.

1−7.荷重下吸収速度、逆戻り量
円筒管(内径60mm、高さ50mm)を、吸収性物品の表面シート上の吸収体中央に相当する部分に設置した。また、吸収体の前記円筒管が設置されていない部分に60g/cmの荷重がかかるようおもりを設置した。前記円筒管内に生理食塩水(食塩濃度0.9%)80mLを10秒かけて注入した。生理食塩水の注入を開始してから、生理食塩水が吸収性物品に吸収されて円筒管内から消えるまでの時間を計測した。この計測した時間が荷重下吸収速度(秒)とした。
1-7. Absorption speed under load, reversal amount A cylindrical tube (inner diameter 60 mm, height 50 mm) was installed in a portion corresponding to the center of the absorbent body on the top sheet of the absorbent article. Moreover, the weight was installed so that the load of 60 g / cm < 2 > might be applied to the part in which the said cylindrical tube of an absorber is not installed. 80 mL of physiological saline (salt concentration: 0.9%) was injected into the cylindrical tube over 10 seconds. The time from the start of physiological saline injection until the physiological saline was absorbed by the absorbent article and disappeared from the cylindrical tube was measured. This measured time was taken as the absorption rate under load (seconds).

次に、生理食塩水の注入を開始してから5分後に、吸収性物品から円筒管とおもりを取り除き、予め質量を測定したろ紙(寸法100mm×100mm)を吸収性物品上に置いた。このろ紙の上におもり(寸法100mm×100mm、重さ3.5kg)を置いた。おもりを置いてから3分後におもりを取り除き、ろ紙の質量を測定した。そして、吸収性物品上に置く前後の質量から、吸収性物品の逆戻り量を算出した。   Next, 5 minutes after starting the injection of physiological saline, the cylindrical tube and the weight were removed from the absorbent article, and a filter paper (size 100 mm × 100 mm) whose mass was measured in advance was placed on the absorbent article. A weight (size 100 mm × 100 mm, weight 3.5 kg) was placed on the filter paper. Three minutes after placing the weight, the weight was removed, and the mass of the filter paper was measured. And the return amount of the absorbent article was calculated from the mass before and after placing on the absorbent article.

上記生理食塩水の注入および吸収、生理食塩水吸収後のろ紙への逆戻り量の測定を3回行い、3回目の測定における荷重下吸収速度(秒)、逆戻り量(g)を記録した。各測定は、生理食塩水の注入開始した時から、次回の生理食塩水の注入開始までの間隔を10分間とした。   The injection and absorption of the physiological saline and the measurement of the amount of return to the filter paper after absorption of the physiological saline were performed three times, and the absorption rate under load (seconds) and the amount of return (g) in the third measurement were recorded. In each measurement, the interval from the start of physiological saline injection to the start of the next physiological saline injection was 10 minutes.

2.γ−PGA(1)の作製
蒸留水に、グルコース;2.0質量%、グルタミン酸ナトリウム;5.0質量%、大豆ペプチド;0.2質量%、リン酸水素2ナトリウム・12水和物;0.42質量%、リン酸2水素カリウム;0.27質量%、塩化ナトリウム;0.05質量%、硫酸マグネシウム・7水和物;0.05質量%、ビオチン;0.0001質量%を添加して液体培地(pH6.4)を調製した。この液体培地に、納豆菌(Bacillus subtilis var. natto)を接種した。培地を37℃で4日間保管し、液体培養して納豆菌培養液を得た。納豆菌培養液100mLにエタノールを添加し、沈殿を生じさせ、この沈殿物をろ取し真空乾燥することで1gのγ−PGA(1)の部分中和物を得た。さらに、このγ−PGA(1)の部分中和物を透析チューブ(和光純薬工業社製、Dialysis Membranes サイズ36)に入れ、脱イオン水に対して10日間透析した。得られたγ−PGA(1)の部分中和物のpHは6.8、γ−PGA(1)の重量平均分子量は120万(分子量100万以上の分子の含有率92質量%、分子量100万未満の分子の含有率8質量%)であった。
2. Preparation of γ-PGA (1) In distilled water, glucose; 2.0% by mass, sodium glutamate; 5.0% by mass, soybean peptide; 0.2% by mass, disodium hydrogen phosphate 12 hydrate; 0 .42% by mass, potassium dihydrogen phosphate; 0.27% by mass, sodium chloride; 0.05% by mass, magnesium sulfate heptahydrate; 0.05% by mass, biotin; 0.0001% by mass A liquid medium (pH 6.4) was prepared. This liquid medium was inoculated with Bacillus subtilis var. Natto. The medium was stored at 37 ° C. for 4 days and cultured in liquid to obtain a Bacillus natto culture solution. Ethanol was added to 100 mL of the Bacillus natto culture solution to cause precipitation, and this precipitate was collected by filtration and dried under vacuum to obtain 1 g of a partially neutralized product of γ-PGA (1). Further, this partially neutralized product of γ-PGA (1) was placed in a dialysis tube (Dialysis Membranes size 36, manufactured by Wako Pure Chemical Industries, Ltd.) and dialyzed against deionized water for 10 days. The pH of the partially neutralized product of γ-PGA (1) obtained was 6.8, and the weight average molecular weight of γ-PGA (1) was 1.2 million (content of molecules having a molecular weight of 1 million or more, 92 mass%, molecular weight 100). The content of molecules less than 10,000 was 8% by mass).

3.吸水性樹脂粉末の合成
3−1.吸水性樹脂粉末No.1
上記で得たγ−PGA(1)の部分中和物1gをクエン酸緩衝液(pH5.3)に溶解後、同緩衝液で100mLに定容しγ−PGA溶液を調製した。調製後のγ−PGA溶液中のγ−PGA(1)の部分中和物のpHは5.3となった。グリセロールポリグリシジルエーテル(ナガセケムテックス社製、「デナコール(登録商標) EX−313」)0.25gを脱イオン水に溶解し、100mLに定容し架橋剤溶液を調製した。γ−PGA溶液9質量部と架橋剤溶液1質量部とを混和し、混合液を80℃で1時間恒温した。その後、この混合液にエタノールを添加し、沈殿を生じさせた。この沈殿物を回収し、真空乾燥して架橋体の乾燥物を得た。
3. 3. Synthesis of water absorbent resin powder 3-1. Water-absorbent resin powder No. 1
1 g of the partially neutralized product of γ-PGA (1) obtained above was dissolved in a citrate buffer (pH 5.3), and then the volume was adjusted to 100 mL with the same buffer to prepare a γ-PGA solution. The pH of the partially neutralized product of γ-PGA (1) in the γ-PGA solution after preparation was 5.3. 0.25 g of glycerol polyglycidyl ether (manufactured by Nagase ChemteX Corporation, “Denacol (registered trademark) EX-313”) was dissolved in deionized water, and the volume was adjusted to 100 mL to prepare a crosslinking agent solution. 9 parts by mass of the γ-PGA solution and 1 part by mass of the cross-linking agent solution were mixed, and the mixture was incubated at 80 ° C. for 1 hour. Thereafter, ethanol was added to the mixture to cause precipitation. The precipitate was collected and dried in vacuum to obtain a dried product of a crosslinked product.

前記架橋体の乾燥物をジューサーミキサー(Oster社製、OSTERIZER BLENDER)にて粉砕した後、目開き150μmおよび710μmのふるいを用いて150μm〜710μmの粒度に調整することにより、乾燥体粉末を得た。   After the dried product of the crosslinked product was pulverized with a juicer mixer (Osterizer Blender, manufactured by Oster), a dried product powder was obtained by adjusting the particle size to 150 μm to 710 μm using a sieve having openings of 150 μm and 710 μm. .

この乾燥体粉末100質量部を高速撹拌(細川ミクロン社製、高速攪拌タービュライザー:回転数2000rpm)しながら、エチレングリコールジグリシジルエーテル溶液(エチレングリコールジグリシジルエーテル濃度;2質量%、溶媒;水/メタノールの重量比=70/30)5質量部をスプレー噴霧により加えた。その後、150℃で30分間静置し、表面架橋した。得られた粉末の重量平均粒子径を400μmに調整して、吸水性樹脂粉末No.1を得た。   An ethylene glycol diglycidyl ether solution (ethylene glycol diglycidyl ether concentration; 2% by mass, solvent; water) while 100 parts by mass of the dry powder was stirred at high speed (manufactured by Hosokawa Micron Corporation, high-speed stirring turbulizer: rotation speed 2000 rpm). / Methanol weight ratio = 70/30) 5 parts by weight were added by spraying. Then, it left still for 30 minutes at 150 degreeC, and surface bridge | crosslinked. The weight average particle diameter of the obtained powder was adjusted to 400 μm, and the water absorbent resin powder No. 1 was obtained.

3−2.吸水性樹脂粉末No.2
上記で得たγ−PGA(1)の部分中和物1gを水に溶解後、水で100mLに定容しγ−PGA溶液を調製した。グリセロールポリグリシジルエーテル(ナガセケムテックス社製、「デナコール(登録商標) EX-313」)0.5gを脱イオン水に溶解し、100mLに定容し架橋剤溶液を調製した。γ−PGA溶液9質量部と架橋剤溶液1質量部とを混和し、混合液を80℃で1時間恒温した。その後、この混合液にエタノールを添加し、沈殿を生じさせた。この沈殿物を回収し、真空乾燥して架橋体の乾燥物を得た。
3-2. Water-absorbent resin powder No. 2
1 g of the partially neutralized product of γ-PGA (1) obtained above was dissolved in water and then made up to a volume of 100 mL with water to prepare a γ-PGA solution. 0.5 g of glycerol polyglycidyl ether (manufactured by Nagase ChemteX Corporation, “Denacol (registered trademark) EX-313”) was dissolved in deionized water, and the volume was adjusted to 100 mL to prepare a crosslinking agent solution. 9 parts by mass of the γ-PGA solution and 1 part by mass of the cross-linking agent solution were mixed, and the mixture was incubated at 80 ° C. for 1 hour. Thereafter, ethanol was added to the mixture to cause precipitation. The precipitate was collected and dried in vacuum to obtain a dried product of a crosslinked product.

前記架橋体の乾燥物をジューサーミキサー(Oster社製、OSTERIZER BLENDER)にて粉砕した後、目開き150μmおよび710μmのふるいを用いて150μm〜710μmの粒度に調整することにより、乾燥体粉末を得た。   After the dried product of the crosslinked product was pulverized with a juicer mixer (Osterizer Blender, manufactured by Oster), a dried product powder was obtained by adjusting the particle size to 150 μm to 710 μm using a sieve having openings of 150 μm and 710 μm. .

この乾燥体粉末100質量部を高速撹拌(細川ミクロン社製、高速攪拌タービュライザー:回転数2000rpm)しながら、エチレングリコールジグリシジルエーテル溶液(エチレングリコールジグリシジルエーテル濃度;2質量%、溶媒;水/メタノールの重量比=70/30)5質量部をスプレー噴霧により加えた。その後、150℃で30分間静置し、表面架橋した。得られた粉末の重量平均粒子径を400μmに調整して、吸水性樹脂粉末No.2を得た。   An ethylene glycol diglycidyl ether solution (ethylene glycol diglycidyl ether concentration; 2% by mass, solvent; water) while 100 parts by mass of the dry powder was stirred at high speed (manufactured by Hosokawa Micron Corporation, high-speed stirring turbulizer: rotation speed 2000 rpm) / Methanol weight ratio = 70/30) 5 parts by weight were added by spraying. Then, it left still for 30 minutes at 150 degreeC, and surface bridge | crosslinked. The weight average particle diameter of the obtained powder was adjusted to 400 μm, and the water absorbent resin powder No. 2 was obtained.

3−3.吸水性樹脂粉末No.3
市販の吸水性樹脂粉末(日本触媒社製、「アクアリック(登録商標)CA101」、ポリアクリル酸ベース)を用いた。
3-3. Water-absorbent resin powder No. 3
Commercially available water-absorbent resin powder (manufactured by Nippon Shokubai Co., Ltd., “AQUALIC (registered trademark) CA101”, polyacrylic acid base) was used.

3−4.吸水性樹脂粉末No.4
市販の吸水性樹脂粉末(SDPグローバル社製、「サンウェット(登録商標) IM720」、ポリアクリル酸ベース)を用いた。
3-4. Water-absorbent resin powder No. 4
Commercially available water-absorbent resin powder (manufactured by SDP Global, “Sunwet (registered trademark) IM720”, polyacrylic acid base) was used.

吸収性樹脂粉末No.1〜4の評価結果を表1に示した。   Absorbent resin powder no. The evaluation results of 1 to 4 are shown in Table 1.

Figure 2016121287
Figure 2016121287

4.吸収性物品の作製
吸収性物品No.1
非透液性シートの上に合成ゴム系ホットメルト接着剤を塗布し、この上にティッシュペーパーを積層した。前記ティッシュペーパー上に合成ゴム系ホットメルト接着剤を塗布した後、パルプと吸水性樹脂粉末No.1を混合した状態で散布(パルプの目付200g/m、吸水性樹脂粉末の目付け200g/m)し、この上に合成ゴム系ホットメルト接着剤を塗布し、さらにティッシュペーパーを積層し400mm×200mmの大きさの吸収体を形成した。ティッシュペーパー上にさらに合成ゴム系ホットメルト接着剤を塗布し、透液性不織布(トップシート)を積層して吸収性物品を形成した。
4). Production of Absorbent Article Absorbent Article No. 1
A synthetic rubber-based hot melt adhesive was applied on the liquid-impermeable sheet, and tissue paper was laminated thereon. After applying a synthetic rubber-based hot melt adhesive on the tissue paper, pulp and water-absorbing resin powder No. 1 were used. 1 in a mixed state (weight of pulp 200 g / m 2 , weight of water-absorbent resin powder 200 g / m 2 ), and a synthetic rubber-based hot melt adhesive is applied thereon, and tissue paper is further laminated to 400 mm. An absorber having a size of × 200 mm was formed. A synthetic rubber-based hot melt adhesive was further applied onto tissue paper, and a liquid-permeable nonwoven fabric (top sheet) was laminated to form an absorbent article.

吸収性物品No.2
吸水性樹脂粉末を、吸水性樹脂粉末No.2に変更したこと以外は、吸収性物品No.1の作製方法と同様にして吸収性物品No.2を形成した。
Absorbent article no. 2
The water absorbent resin powder is designated as water absorbent resin powder No. Except for having changed to 2, the absorbent article no. Absorbent article No. 1 was prepared in the same manner as the production method of No. 1. 2 was formed.

吸収性物品No.3
吸水性樹脂粉末を、吸水性樹脂粉末No.3に変更したこと以外は、吸収性物品No.1の作製方法と同様にして吸収性物品No.3を形成した。
Absorbent article no. 3
The water absorbent resin powder is designated as water absorbent resin powder No. Except for the change to No. 3, the absorbent article no. Absorbent article No. 1 was prepared in the same manner as the production method of No. 1. 3 was formed.

吸収性物品No.4
吸水性樹脂粉末を、吸水性樹脂粉末No.4に変更したこと以外は、吸収性物品No.1の作製方法と同様にして吸収性物品No.4を形成した。
Absorbent article no. 4
The water absorbent resin powder is designated as water absorbent resin powder No. Except for having changed to No. 4, the absorbent article no. Absorbent article No. 1 was prepared in the same manner as the production method of No. 1. 4 was formed.

各吸収性物品についての評価結果を表2に示した。   The evaluation results for each absorbent article are shown in Table 2.

Figure 2016121287
Figure 2016121287

本発明の吸水性樹脂は、使い捨ておむつ、生理用ナプキン、失禁パッドなどの衛生分野、医療分野、農業分野、化粧品分野、電気・電子分野、土木分野などに利用できる。   The water-absorbent resin of the present invention can be used in hygiene fields such as disposable diapers, sanitary napkins, incontinence pads, medical fields, agricultural fields, cosmetics fields, electrical / electronic fields, civil engineering fields, and the like.

Claims (10)

γ−ポリグルタミン酸の部分中和物を多価グリシジル化合物で架橋した架橋体からなり、
前記γ−ポリグルタミン酸の部分中和物を構成するγ−ポリグルタミン酸が、納豆菌の培養により作製された重量平均分子量が100万〜3000万のγ−ポリグルタミン酸であり、
前記γ−ポリグルタミン酸の部分中和物のpHが3.5〜6.8であることを特長とする吸水性樹脂。
It consists of a crosslinked product obtained by crosslinking a partially neutralized product of γ-polyglutamic acid with a polyvalent glycidyl compound,
The γ-polyglutamic acid constituting the partially neutralized product of γ-polyglutamic acid is γ-polyglutamic acid having a weight average molecular weight of 1 to 30 million produced by culturing Bacillus natto,
A water-absorbent resin, wherein the pH of the partially neutralized product of γ-polyglutamic acid is 3.5 to 6.8.
前記γ−ポリグルタミン酸の部分中和物のカチオン成分が、ナトリウムおよび/またはカリウムである請求項1に記載の吸水性樹脂。   The water-absorbent resin according to claim 1, wherein the cationic component of the partially neutralized product of γ-polyglutamic acid is sodium and / or potassium. 前記γ−ポリグルタミン酸の部分中和物のカチオン成分が、ナトリウムである請求項1に記載の吸水性樹脂。   The water-absorbent resin according to claim 1, wherein the cationic component of the partially neutralized product of γ-polyglutamic acid is sodium. 前記多価グリシジル化合物が2価のグリシジル化合物である請求項1〜3のいずれか一項に記載の吸水性樹脂。   The water-absorbent resin according to any one of claims 1 to 3, wherein the polyvalent glycidyl compound is a divalent glycidyl compound. 表面架橋剤により表面架橋処理が施されている請求項1〜4のいずれか一項に記載の吸水性樹脂。   The water-absorbent resin according to any one of claims 1 to 4, wherein the surface cross-linking treatment is performed with a surface cross-linking agent. 前記表面架橋剤が、グリシジルエーテル化合物である請求項5に記載の吸水性樹脂。   The water absorbent resin according to claim 5, wherein the surface crosslinking agent is a glycidyl ether compound. 前記表面架橋剤が、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルまたはポリグリセリンジグリシジルエーテルである請求項5または6に記載の吸水性樹脂。   The water absorbent resin according to claim 5 or 6, wherein the surface cross-linking agent is polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether or polyglycerin diglycidyl ether. 飽和吸収量が30g/g〜100g/gである請求項1〜7のいずれか一項に記載の吸水性樹脂。   The water-absorbent resin according to any one of claims 1 to 7, which has a saturated absorption amount of 30 g / g to 100 g / g. 納豆菌の培養により、重量平均分子量が100万〜3000万のγ−ポリグルタミン酸を製造する工程;
前記γ−ポリグルタミン酸とカチオン源を混合して、pHが3.5〜6.8のγ−ポリグルタミン酸の部分中和物を得る工程;および、
前記γ−ポリグルタミン酸の部分中和物を、多価グリシジル化合物により架橋し架橋体を製造する工程;を含むことを特長とする吸水性樹脂の製造方法。
A step of producing γ-polyglutamic acid having a weight average molecular weight of 1 to 30 million by culture of Bacillus natto;
Mixing the γ-polyglutamic acid and a cation source to obtain a partially neutralized product of γ-polyglutamic acid having a pH of 3.5 to 6.8; and
A method for producing a water-absorbent resin, comprising: a step of producing a crosslinked product by crosslinking the partially neutralized product of γ-polyglutamic acid with a polyvalent glycidyl compound.
前記架橋体を粒子状とした後、水および水溶性レベリング剤の存在下で、架橋体と表面架橋剤とを反応させることにより表面架橋処理を施す工程を含む請求項9に記載の吸水性樹脂の製造方法。
The water-absorbent resin according to claim 9, further comprising a step of subjecting the crosslinked body to a surface crosslinking treatment by reacting the crosslinked body with a surface crosslinking agent in the presence of water and a water-soluble leveling agent after the crosslinked body is made into particles. Manufacturing method.
JP2014262493A 2014-12-25 2014-12-25 Water absorbent resin and method for producing the same Active JP6474251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014262493A JP6474251B2 (en) 2014-12-25 2014-12-25 Water absorbent resin and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014262493A JP6474251B2 (en) 2014-12-25 2014-12-25 Water absorbent resin and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016121287A true JP2016121287A (en) 2016-07-07
JP6474251B2 JP6474251B2 (en) 2019-02-27

Family

ID=56327150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014262493A Active JP6474251B2 (en) 2014-12-25 2014-12-25 Water absorbent resin and method for producing the same

Country Status (1)

Country Link
JP (1) JP6474251B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3118566A1 (en) * 2021-01-07 2022-07-08 Societe D'exploitation De Produits Pour Les Industries Chimiques Seppic Phytosanitary composition comprising, as thickening agent, a composition which exhibits thickening properties of polar media
WO2024071279A1 (en) * 2022-09-30 2024-04-04 国立大学法人神戸大学 Super-high-molecular gamma-polyglutamic acid, bacillus genus bacterium variant strain that produces said polyglutamic acid, and method for screening for said bacillus genus bacterium variant strain

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4389797A1 (en) * 2022-12-20 2024-06-26 Evonik Superabsorber GmbH Biologically degradable superabsorber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343339A (en) * 1997-09-30 1999-12-14 Toshio Hara Biodegradable water-absorbing resin
JP2001131283A (en) * 1999-11-05 2001-05-15 Mitsui Chemicals Inc Crosslinked polyamino acid-containing particle having crosslinked surface
JP2005179534A (en) * 2003-12-19 2005-07-07 Tung Hai Biotechnology Corp Three-dimensionally crosslinked, high water-absorptivity gamma polyglutamic acid hydrogel with stable biodegradability, and method for producing the same
JP2005532462A (en) * 2002-07-10 2005-10-27 バイオリーダーズ コーポレイション Ultra-high molecular weight poly-gamma-glutamic acid and method of using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343339A (en) * 1997-09-30 1999-12-14 Toshio Hara Biodegradable water-absorbing resin
JP2001131283A (en) * 1999-11-05 2001-05-15 Mitsui Chemicals Inc Crosslinked polyamino acid-containing particle having crosslinked surface
JP2005532462A (en) * 2002-07-10 2005-10-27 バイオリーダーズ コーポレイション Ultra-high molecular weight poly-gamma-glutamic acid and method of using the same
JP2005179534A (en) * 2003-12-19 2005-07-07 Tung Hai Biotechnology Corp Three-dimensionally crosslinked, high water-absorptivity gamma polyglutamic acid hydrogel with stable biodegradability, and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3118566A1 (en) * 2021-01-07 2022-07-08 Societe D'exploitation De Produits Pour Les Industries Chimiques Seppic Phytosanitary composition comprising, as thickening agent, a composition which exhibits thickening properties of polar media
WO2022148661A1 (en) * 2021-01-07 2022-07-14 Societe D'exploitation De Produits Pour Les Industries Chimiques Seppic Phytosanitary composition comprising, as thickening agent, a composition having polar media thickening properties
WO2024071279A1 (en) * 2022-09-30 2024-04-04 国立大学法人神戸大学 Super-high-molecular gamma-polyglutamic acid, bacillus genus bacterium variant strain that produces said polyglutamic acid, and method for screening for said bacillus genus bacterium variant strain

Also Published As

Publication number Publication date
JP6474251B2 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
Bhaladhare et al. Cellulose: A fascinating biopolymer for hydrogel synthesis
JP6017529B2 (en) Particulate water-absorbing agent and method for producing the same
US10525445B2 (en) Particulate water absorbing agent and water absorbent article
AU2004210275A1 (en) Particulate water absorbent containing water absorbent resin as a main component
JP2007119757A (en) Method for producing particle-formed water-absorbing agent, and particle-formed water-absorbing agent
JP2008531805A (en) Hydrolytically stable post-crosslinked superabsorbent
JP6474251B2 (en) Water absorbent resin and method for producing the same
JP2010540206A (en) Water absorbing agent and method for producing the same
Yu et al. Synthesis and characterization of pH-and thermoresponsive poly (N-isopropylacrylamide-co-itaconic acid) hydrogels crosslinked with N-maleyl chitosan
CA2873361A1 (en) Compounded surface treated carboxyalkylated starch polycrylate composites
US9517289B2 (en) Water-absorbing agent and method for producing the same
JPH0889796A (en) Water-absorbing resin, its production and water-absorbing product
TW201837108A (en) superabsorbent polymer and the method of fabricating the same
WO2009093708A1 (en) Water absorbent and process for production thereof
JP5188824B2 (en) Absorbent resin particles and method for producing the same
KR20200036604A (en) Super absorbent polymer and its preparation method
JP5356712B2 (en) Method for producing absorbent resin particles
Wei et al. pH-responsive CMC/PAM/PVP semi-IPN hydrogels for theophylline drug release
Babaladimath et al. Pectin-graft-poly (2-acrylamido-2-methyl-1-propane sulfonic acid) silver nanocomposite hydrogel beads: evaluation as matrix material for sustained release formulations of ketoprofen and antibacterial assay
JP2023528308A (en) Biodegradable high performance absorbable polymer and method
JP6751582B2 (en) Manufacturing method of water absorbent
Erceg et al. Synthesis and characterization of chitosan-acrylic acid based hydrogels and investigation the properties of bilayered design with incorporated alginate beads
KR20180073335A (en) Preparation method for super absorbent polymer, and super absorbent polymer
JP2009235199A (en) Water-absorbing resin composition, absorbent, and absorptive article
KR102487978B1 (en) Preparation method for antibacterial super absorbent polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190129

R150 Certificate of patent or registration of utility model

Ref document number: 6474251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250