JP2016120271A - 位相補正装置、行動識別装置、行動識別システム、マイクロコントローラ、位相補正方法、及びプログラム - Google Patents

位相補正装置、行動識別装置、行動識別システム、マイクロコントローラ、位相補正方法、及びプログラム Download PDF

Info

Publication number
JP2016120271A
JP2016120271A JP2015154753A JP2015154753A JP2016120271A JP 2016120271 A JP2016120271 A JP 2016120271A JP 2015154753 A JP2015154753 A JP 2015154753A JP 2015154753 A JP2015154753 A JP 2015154753A JP 2016120271 A JP2016120271 A JP 2016120271A
Authority
JP
Japan
Prior art keywords
phase
acceleration data
acceleration
unit
identification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015154753A
Other languages
English (en)
Inventor
基重 金
Gi Jung Kim
基重 金
将治 松平
Masaharu Matsudaira
将治 松平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to US14/942,122 priority Critical patent/US10139428B2/en
Publication of JP2016120271A publication Critical patent/JP2016120271A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】適切に補正することができる位相補正装置、行動識別装置、行動識別システム、マイクロコントローラ、位相補正方法、及びプログラムを提供すること。【解決手段】複数の加速度データが入力され、前記複数の加速度データの所定時間毎の標準偏差を求める標準偏差演算部162と、前記複数の加速度データが入力され、前記加速度データの前記所定時間毎の平均値を求める平均値演算部164と、標準偏差が所定の閾値より小さいときの平均値を用いて、第1の座標軸及び第2の座標軸を有する空間における平均値の位相を推定する位相推定部170と、推定された位相を用いて、平均値を位相補正する位相補正部180と、を有するものである。【選択図】図16

Description

本発明は計測装置、位相補正装置、行動識別装置、行動識別システム、マイクロコントローラ、位相補正方法、及びプログラムに関する。
従来より、加速度センサを用いて人間の活動量を計測する装置や、その計測結果に基づいて人間の行動を識別するシステムが多く提案されている。また、同様の装置及びシステムは、人間以外の動物の活動量計測及び行動識別にも適用されている。
特許文献1は、動物に加速度センサを取り付け、加速度センサから取得した加速度データを角度に変換し、角度と運動量から動物の状態を推定するシステムを開示している。特許文献3の手法では、互いに直交する3軸(X軸、Y軸、Z軸)方向の加速度を検出する加速度センサを、動物の胴部に装着するハーネスあるいは首輪に固定する。加速度センサを固定する際には、X軸、Y軸、Z軸をそれぞれ動物の前後方向、左右方向、上下方向に一致させる。そして、計測装置が、加速度センサが検出した加速度データに基づいてZ方向に対するXY面の前後傾き角θx、左右傾き角θyを算出し、これらの傾き角の変化を2次元表示する。計測装置はさらに、3軸の加速度データを合成した合成加速度に対し、短時間フーリエ変換を行う。これにより、合成加速度を周波数成分に分解し、周波数分布を算出できる。計測装置は、この周波数分布に基づいて動物の行動を識別する。
特許文献2は、被試験体に取り付けられた加速度センサの軸と被試験体の軸とが一致しない場合、両者の軸のずれを補正する方法を示している。具体的には、加速度センサを実装した正六面体の筐体を被試験体に接触させ、静止状態で重力加速度を測定する。この手順を六面すべてで実施する。
加速度センサによる行動識別は人間にも適用されている。特許文献3には、人間の歩行状態を短時間で推定する手法が記載されている。特許文献3の手法では、加速度センサを対象者の腰部付近に装着し、対象者の進行方向に対してほぼ直交する水平方向(左右方向)の加速度を検出する。そして、歩行中の加速度データの自己相関のばらつきを特徴量として利用し、SVM(Support Vector Machine)を用いて歩行状態を推定する。
特開2011−217928号公報 特開平10−267651号公報 特開2013−094316号公報
しかしながら、特許文献1記載の構成では、加速度センサの軸と重力方向とを一致させるようにして、動物に加速度センサを取り付ける記述がある。しかしながら、これを正確に実施することは困難である。具体的には、動物が活動すると、加速度センサの取付位置や軸方向は変化する。すると、測定の度に加速度の基準が異なることとなり、加速度データから動物の状態を正確に推定することが困難となる。
特許文献2記載の構成では、動物に加速度センサを取り付けた状態で、キャリブレーションのための静止状態を作り出すことが困難であるという問題がある。また、特許文献2が開示するのは被試験体に加速度センサを取り付けた初期段階で軸のずれを補正する方法であるため、動物に加速度センサを取り付けた場合のように軸方向が時間の経過により変化する場合には、軸のずれが補正されないまま加速度データが取得されてしまう。そして、発生した軸のずれを随時補正しようとする場合には、筐体の六面体の面の位置を変えながら何度か加速度を測定するといった、加速度センサ等を直接手で操作する行為が必要になる。
また、特許文献1及び3はいずれも、加速度センサが所期の位置及び方向に装着されており、一度定めた加速度センサの位置及び方向が維持されるという前提のもとで、行動識別を行っている。しかしながら、現実には、同じ対象物であっても、常に一定の位置及び方向に加速度センサを装着することは極めて難しい。もし、加速度センサの装着位置及び方向が毎回異なれば、各回の加速度データ間には位相ずれが発生する。
また、対象物の運動により、加速度センサが初期装着位置及び方向から次第にずれる場合もある。この場合も、時間経過に従って加速度データに位相ずれが発生することになる。
加速度センサを用いた行動識別においては、加速度データに基づいて、閾値や機械学習パラメータを決定する手順を要する。仮に、加速度センサの装着位置及び方向のずれが発生しないとすれば、加速度センサの装着や加速度データの取得を何回実施したとしても、同じ対象物については毎回同じ閾値やパラメータを適用できるはずである。しかし、上述のように測定毎に加速度データに位相差が生じる場合は、測定毎に閾値やパラメータを算出する必要が生じる。すなわち、複数回の測定を通じて閾値やパラメータを共有することが困難となる。また、測定毎に閾値やパラメータを算出することは多大な手間が掛かる作業であり、非効率である。
このような問題の解決策としては、対象物に加速度センサを装着する際にキャリブレーションを行い、位相差を補正する方法が考えられる。しかしながら、キャリブレーションの際は静止状態を保つことが必要である。もし対象物が動物であれば、一定時間にわたり静止状態を維持させることは困難である。また、当該方法では、装着後の対象物の動き等に起因して発生する位相差を補正することができない。
本発明は、このような問題点を解決するためになされたものであり、適切に補正することができる位相補正装置、行動識別装置、行動識別システム、マイクロコントローラ、位相補正方法、及びプログラムを提供することを目的とする。
その他の課題と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。
一実施の形態によれば、位相補正装置は、複数の加速度データが入力され、前記複数の加速度データの所定時間毎の標準偏差を求める標準偏差演算部と、前記複数の加速度データが入力され、前記加速度データの前記所定時間毎の代表値を求める代表値演算部と、前記標準偏差が所定の閾値より小さいときの前記代表値を用いて、第1の座標軸及び第2の座標軸を有する空間における前記代表値の位相を推定する位相推定部と、前記推定された位相を用いて、前記代表値を位相補正する位相補正部と、を有する。
一実施の形態によれば、行動識別装置は、前記位相補正装置と、前記位相補正装置が位相補正した前記代表値を用いて、機械学習を行う識別学習部と、前記位相補正装置が位相補正した前記代表値を用いて、行動識別を行う識別処理部と、を有する。
一実施の形態によれば、行動識別システムは、前記行動識別装置と、対象物に取り付けられて加速度データを出力する加速度センサを含む送信部と、を有する。
一実施の形態によれば、マイクロコントローラは、前記行動識別装置と、外部制御に応じて、前記識別学習部又は前記識別処理部のいずれか一方を動作状態に設定するレジスタ設定部と、を有する。
一実施の形態によれば、位相補正方法は、複数の加速度データが入力され、前記複数の加速度データの所定時間毎の標準偏差を求める標準偏差演算ステップと、前記複数の加速度データが入力され、前記加速度データの前記所定時間毎の代表値を求める代表値演算ステップと、前記標準偏差が所定の閾値より小さいときの前記代表値を用いて、第1の座標軸及び第2の座標軸を有する空間における前記代表値の位相を推定する位相推定ステップと、前記推定された位相を用いて、前記代表値を位相補正する位相補正ステップと、を有する。
一実施の形態は、前記位相補正方法をコンピュータに実行させるためのプログラムである。
本発明により、加速度センサを被試験体に取り付けた後であっても、加速度データの統計情報を用いることにより、加速度センサの取付誤差を修正することができる計測装置、計測システム、計測方法及びプログラムを提供することができる。
実施の形態1にかかる計測システム100の構成を示す図である。 実施の形態1にかかる補正処理の概念を示す図である。 実施の形態1にかかる計測システム100の動作を示すフローチャートである。 実施の形態2にかかる計測システム100の動作を示すフローチャートである。 実施の形態2にかかる計測システム100の動作を示す図である。 実施の形態3にかかる補正処理の概念を示す図である。 実施の形態3にかかる計測システム100の動作を示すフローチャートである。 実施の形態4にかかる計測システム100の動作を示すフローチャートである。 実施の形態5にかかる計測システム100の動作を示すフローチャートである。 実施の形態5にかかる補正処理の概念を示す図である。 実施の形態5にかかる補正処理の概念を示す図である。 実施の形態6にかかる補正処理の概念を示す図である。 実施の形態6にかかる計測システム100の動作を示すフローチャートである。 実施の形態7にかかる計測システム100の構成を示す図である。 本発明の実施の形態の説明において使用する変数の一覧である。 実施の形態8にかかる位相補正装置150の構成を示す図である。 実施の形態8にかかる位相補正装置150の動作を示す図である。 実施の形態8にかかる位相補正処理の概要を示す図である。 実施の形態8にかかる位相補正処理の概要を示す図である。 実施の形態9にかかる位相補正処理の概要を示す図である。 実施の形態9にかかる位相補正処理の概要を示す図である。 実施の形態9にかかる行動識別装置200の構成を示す図である。 実施の形態9にかかる行動識別装置200の動作を示す図である。 実施の形態10にかかる行動識別処理の概要を示す図である。 実施の形態11にかかる行動識別システム300の構成を示す図である。 実施の形態12にかかるマイクロコントローラ400の構成を示す図である。
以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
<実施の形態1>
まず、図1を用いて、本発明の実施の形態1にかかる計測システム100の構成について説明する。
計測システム100は、計測装置110、センサモジュール120を含む。
センサモジュール120は、被試験体に取り付けて使用され、被試験体が動作することにより発生する加速度を計測し、計測値を示す加速度データを出力する処理を行う。センサモジュール120は、典型的には加速度センサ、加速度センサの出力信号から加速度データを生成及び出力するMCU(Micro Control Unit)、加速度データを変調して無線送信するRFユニットを含む。あるいは、RFユニットの代わりに、加速度データを有線で送信するための各種通信インターフェイスを備えても良い。なお、加速度センサは3軸(X,Y,Zとする)の加速度をそれぞれ出力可能であるものとする。
計測装置110は、センサモジュール120が出力する加速度データを受信し、加速度データの統計処理を行って、加速度センサの取付誤差を修正する処理を行う。計測装置110は、典型的にはPC(パーソナルコンピュータ)やサーバコンピュータ等の情報処理装置であり、CPU(演算処理装置)、揮発性又は不揮発性メモリ等の記憶装置、入出力装置等により実現される。計測装置110は、記憶装置に格納されたプログラムに基づいて所定の処理を実行することにより、後述の入力部111、解析部112を論理的に実現する。
入力部111は、センサモジュール120から加速度データを受信する処理を行う。加速度データの受信は、例えばアクセスポイントによる無線信号の受信及び復調、又は各種通信インターフェイスによる有線通信により行う。
解析部112は、入力部111が取得した加速度データの統計処理を行って、加速度センサの取付誤差を修正する処理を行う。
つぎに、実施の形態1にかかる計測システム100を用いて、加速度センサの取付誤差を修正する手法の概要について説明する。ここでは、被試験体を動物とし、動物にセンサモジュール120を取り付けて加速度データを取得する場合を例として説明を行う。
まず、動物にセンサモジュール120を取り付ける。センサモジュール120は、後に加速度データを解釈しやすい軸方向で、かつ動きすなわち加速度が発生しやすい部位に取り付けることが望ましい。本実施の形態では、センサモジュール120を動物の頭部に取り付ける。また、センサモジュール120が計測可能な3軸(X,Y,Z)のうち、X方向を動物の進行方向、Y方向を動物の左右方向、Z方向を動物の上下方向にそれぞれ一致させるように取り付ける。
つぎに、任意の時間、例えば10分程度にわたり動物を自由に行動させながら、加速度データを取得する。センサモジュール120は、加速度センサで生成された加速度データを無線又は有線通信により計測装置110に伝送する。
計測装置110は、加速度データを受信すると以下の演算処理を行う。まず、計測装置110の解析部112は、一定時間毎に加速度データの平均値を求める。例えば、加速度データをサンプリングレート400Hzで取得し、1秒毎に平均値を求める場合は、1秒間の加速データ400個の平均値を計算する。以下、この平均値を平均加速度という。解析部112は、平均加速度の計算を、3方向(X,Y,Z)それぞれについて行う。
つぎに、解析部112は、実際に取得された加速度データの統計的な分布と、予め想定された理想的な加速度データの統計的な分布と、を比較して、実際に取得された加速度データを補正する処理を行う。この処理の概念を以下に説明する。
図2は、実際に取得した加速度データから計算した、X方向とY方向の平均加速度を丸印「○」でプロットしたグラフである。一方、プラス印「+」は、予め想定された理想的なX方向とY方向の平均加速度を示す。
一般に、平均加速度をプロットすると、動物の姿勢や行動に応じて、一定の傾向をもった分布を示す。ここでは、Y方向が動物の左右方向と一致するように加速度センサを取り付けているため、理想的には、動物が左右対称の動きに応じてY方向の加速度a=0の線を中心に平均加速度が分布するはずである(「+」の分布)。すなわち、理想的な平均加速度の分布は、直線a=0で近似できるはずである。
しかし、実際には、加速度センサの取り付け誤差により、動物の左右方向とY軸とは必ずしも一致しない。また、動物が活動することで取付位置が変化するなどの理由により、想定している理想的な軸と実際の加速度センサの軸が乖離する。したがって、実際の平均加速度の分布(「○」の分布)は、理想的な平均加速度の分布(「+」の分布)から乖離したものとなる。すなわち、実際の平均加速度の分布の近似直線は、理想的な平均加速度の分布の近似直線に対し、幾らか傾斜する。
解析部112は、X及びY方向の平均加速度の近似直線の傾きを、例えば最小二乗法により求める。このとき精度を向上させるために、使用するデータ領域を指定してもよい。算出した傾きは、理想的な軸と実際の軸のずれを示すものである。例えば、解析部112は、算出した傾きに基づいて算出した補正係数により加速度データを補正する。
なお、本実施の形態ではX,Yの2方向の平均加速度の統計的分布をもとに補正係数を計算するが、理想的な統計的分布を予め想定できるのであれば、他の任意の軸方向の分布を用いても良い。また、2方向に限定されず、X,Y,Zの3軸をプロットした3次元空間における統計的分布を用いて、同様の手法で補正係数を算出することも可能であろう。
また、上述の一連の処理において、解析部112は、実際の平均加速度の分布(「○」の分布)及び理想的な平均加速度の分布(「+」の分布)をプロットしたグラフを現実に生成する処理は必ずしも必要ではない。解析部112は、上述のような概念を背景として、統計的分布のずれに基づいた補正係数の計算処理のみを実行すればよい。しかしながら、例えばユーザに提示するために、解析部112が上記グラフの生成、表示処理を具備していることが望ましい。
続いて、上述の加速度データの補正処理に関し、解析部112が実行する具体的な演算処理について、図3のフローチャートを用いて詳細に説明する。
S101:加速度データの取得
計測装置110の入力部111は、センサモジュール120から送信された加速度データを無線又は有線通信により受信する。入力部111は、予め定められた計測時間が経過した場合に、加速度データの取得を終了することができる。
S102:一定時間あたりの平均加速度を算出
解析部112は、入力部111が取得した加速度データを対象に、一定時間毎の加速度の平均値を求める。例えば、1秒毎に平均値を求めることとした場合は、加速度データ全体を1秒間単位の群に分割し、各群について平均値を計算する。解析部112は、同様の処理を、加速度センサが加速度データを出力する3方向(X,Y,Z)全てについて行う。
S103:平均加速度の分布の近似直線の傾きを算出
解析部112は、S102で算出された平均加速度群を近似する直線の傾きAを算出する。例えば、XY平面における近似直線の傾きAは、以下の式(1)により計算できる。
Figure 2016120271
ここで、a(i)はi番目の平均加速度のX成分の値、M(a)は全ての平均加速度のX成分の平均値、a(i)はi番目の平均加速度のY成分、M(a)は全ての平均加速度のY成分の平均値である。
なお、解析部112は、S102で算出された全ての平均加速度ではなく、一部の平均加速度のみを使用して、S103に直線近似処理を実行しても良い。例えば、図4の半径1の円弧付近に分布する平均加速度を除外するようなデータ有効領域を設定し、このデータ有効領域の内側にある平均加速度のみを用いて、上述の直線近似を行う。これにより、直線近似を効率的に行うことが可能となる。このようなデータ有効領域は、例えばx+y<(0.8)のような条件式により定義できる。
S104:補正係数の算出及び補正
解析部112は、S103で算出した近似直線の傾きAを用いて、補正係数を算出し、加速度データを補正する。本実施の形態では、解析部112は、以下の式(2)及び(3)により加速度データを補正する。
Figure 2016120271
ここで、a’X0及びa’Y0は補正された加速度データのX成分及びY成分、aX0及びaY0は補正前の(S101で取得された)加速度データのX成分及びY成分、cos(tan−1A)及びsin(tan−1A)は補正係数である。図15に、上記補正式及び後述する他の補正式において使用される変数の一覧を示す。
S104の処理により、S103で算出された実際の平均加速度の近似直線の傾きが、理想的な平均加速度の近似直線の傾きに一致するように、加速度データが補正される。これにより、取り付け誤差や時間経過の影響により発生する加速度センサの取り付け軸のずれが実質的に補正される。
なお、本実施の形態では、式(1)乃至(3)により近似直線の傾きの算出、補正係数の算出及び補正を行う例を示したが、本実施形態は必ずしもこれに限定されるものではない。平均加速度の分布の軸を補正する機能を果たすものであれば、解析部112は、他の好適な数式等により加速度データを補正しても良い。
また、本実施の形態では、S104において加速度データを補正対象としたが、目的により、例えば平均加速度を補正対象としても良い。
また、本実施の形態では、S102で平均加速度を算出し、平均加速度を用いて補正係数を算出した。しかし、本実施形態は必ずしもこれに限定されるものでなく、平均加速度の代わりに、例えば平均値以外の任意の代表値、或いは、実際に取得した加速度データをそのまま用いて補正係数を算出しても良い。但し、実際に取得した加速度データをそのまま用いる場合に比べ、平均値その他の代表値を介する場合の方が、データの分布の乱雑さが抑制され、妥当な結果が得られやすいと考えられる。また、データ有効領域の指定、グラフの確認等のプロセスにおいて、ユーザが理解しやすいという効果もある。
本実施の形態においては、計測装置110が、実際に取得した加速度データの一定時間毎の平均加速度の分布と、理想的な平均加速度の分布と、の差に基づく補正係数により、実際の加速度データを補正する。これにより、計測装置110は、加速度データの統計情報のみを用いて加速度データの補正(キャリブレーション)を行うことができる。したがって、加速度センサを被試験体の人や動物等に取り付けた後に、当該人や動物等が活動している間であっても、加速度センサを直接操作することなく、加速度センサの取付誤差を補正することができる。また、時間経過に伴って発生する軸のずれを継続的に補正することができる。
<実施の形態2>
実施の形態2は、加速度データの取得ステップ(実施の形態1におけるS101)において、統計処理を行う上で十分なデータが得られたと判定された場合には、加速度データの取得を終了する点に特徴を有する。
すなわち、実施の形態1は、統計データを用いて加速度センサのキャリブレーションを行うものであるところ、実施の形態2は、その統計データが有効なものであるか否かを予め検査するものである。
実施の形態2にかかる計測システム100の構成は、実施の形態1と略同様であるため詳細な説明を省略する。
図4のフローチャートを用いて、実施の形態2にかかる計測装置110が行う加速度データの補正処理について説明する。ここでは、主に実施の形態1と異なる処理内容について説明を行う。
S201:加速度データの取得及びデータ取得終了処理
計測装置110の入力部111は、実施の形態1のS101と同様に、センサモジュール120から送信された加速度データを無線又は有線通信により受信する。
ここで入力部111は、取得した加速度データについて随時、決定係数を計算し、決定係数の変化量が規定値以下になった時点で加速度データの取得を終了する。決定係数とは、データの直線性を示す統計量である。決定係数は0から1までの値をとる統計学上の指標であり、対象となるデータの分布が直線に近いほど1に近い値をとる。
そして、決定係数は、データを蓄積する過程で、データ量が少ないときは大きな値をとるが、データ量が増えるにつれて徐々に一定値へ収束するという性質を有する。したがって、入力部111は、決定係数の変化量(絶対値)を随時観測し、例えば変化量が規定値(例えば0.001)以下となった場合に、十分な測定点(加速度データ)が得られたと判定することができる(図5)。
なお、上述の判定は、決定係数そのものでなく、決定係数の変化量を用いて行う方がより好適である。決定係数はノイズ(異常値)やデータ量に応じて大きく値が変化し、決定係数自体を用いて上述の判定を行うと誤りが生じることがあるためである。一方、決定係数の変化量は、データ量が増えるほど収束していくため、上述の判定に用いやすい。
決定係数の計算式(4)、及び決定係数の変化量の計算式(5)を以下に示す。
Figure 2016120271
ここで、Rは決定係数、Nは全データ数、nは決定係数の判定回数である。
なお、本実施の形態では上述の決定係数やその変化量によりデータ取得終了のタイミングを決定する例を示したが、本実施形態はこれに限定されるものではない。入力部111は、他の好適な指標により、取得データ量が統計処理に十分であるか否かを判定しても良い。
入力部111は、十分な加速度データを取得したと判定できた場合は、センサモジュール120に対し、加速度データの取得又は送信を停止又は待機状態にさせる信号を無線又は有線伝送する。あるいは、入力部111において、単に加速度データの取得を停止又は待機することとしても良い。
S102乃至S104:
解析部112は、S201で取得された加速度データを用いて、実施の形態1と同様の手順により加速度データの補正処理を行う。
本実施の形態においては、入力部111が、統計処理を行う上で十分なデータ量が得られたと判定した場合に、加速度データの取得を終了する。これにより、統計解析に十分なデータ量が得られた場合にはデータ取得が停止又は待機状態となるため、データ取得作業を自動化できる。例えば、十分なデータ量を取得できていれば実施の形態1の規定時間よりも短い時間で終了したり、あるいはデータ量が不足していれば上記規定時間よりも長い時間測定するなどの対応を行うことができる。また、センサモジュール120の電源として電池を搭載している場合には、本実施の形態により効率良く加速度データの測定を行うことで、電池の消耗を抑える効果がある。
<実施の形態3>
実施の形態1では加速度センサの軸のずれを補正する例を示したが、実施の形態3は、加速度の大きさのずれをさらに補正する点に特徴を有するものである。
加速度センサが取り付けられた被試験体が偏りなく動作した場合、加速度センサが出力する加速度を平均すると重力加速度(1G)に近い値を示すはずである。しかし、加速度センサ起動時の初期位置や、加速度センサの個体差等により、このような状態にならない場合がある。例えば、図6に示すように、X方向及びZ方向の1秒平均加速度をプロットすると、理想的には、平均加速度は実線で示す円弧状に分布する。これに対し、実際に取得された平均加速度の分布は、破線で示す円弧状となり、理想的な分布からZ方向にシフトした状態となる場合がある。
そこで、本実施の形態では、図6に示した分布のずれを補正する補正値Cを計算し、この補正値を用いて、実際の分布が理想的な分布と一致するよう、実際の加速度データの補正を行う。換言すれば、実施の形態1ではデータの分布の軸の回転を補正するのに対し、実施の形態3では分布の原点のずれ(シフト誤差)を補正する。
実施の形態3にかかる計測システム100の構成は、実施の形態1と略同様であるため詳細な説明を省略する。
図7のフローチャートを用いて、実施の形態3にかかる計測装置110が行う加速度データの補正処理について説明する。ここでは、主に実施の形態1と異なる処理内容について説明を行う。
S101乃至S103:
計測装置110の入力部111は、センサモジュール120から加速度データを取得する。解析部112は、取得された加速度データを対象に、一定時間毎の加速度の平均値を求める。また、解析部112は、平均加速度の分布を近似する直線の傾きAを算出する。
S304:加速度の大きさにかかる補正係数の算出
解析部112は、以下の式(6)により、加速度データの大きさを補正するための補正係数Cを算出する。
Figure 2016120271
ここで、a及びaは実際に取得した平均加速度のX成分及びZ成分である。なお、a及びaに代えて、後述のS305において近似直線の傾きAを用いて補正した平均加速度のX成分及びZ成分を使用し、補正係数Cを算出しても良い。
S305:近似直線の傾き及び加速度の大きさにかかる補正係数による加速度の補正
解析部112は、近似直線の傾きAを用いた補正係数により加速度データを補正する(式(2)及び(3))。その後、加速度データのZ成分に対し、算出した補正係数Cを加算することで加速度データの補正を行う。例えば、図6にプロットしたデータセットでは、補正値Cは−0.119と計算される。この場合、加速度データのZ成分に−0.119を加算することで、破線上に分布していた平均加速度が、理想的な実線上の分布にシフトされる。
なお、本実施の形態では、実施の形態1の加速度センサの軸のずれを補正する構成に付随するものとして、加速度の大きさのずれを補正する構成を示した。しかしながら、実施の形態3にかかる構成は、実施の形態1とは独立に実施されても差し支えない。すなわち、近似直線の傾きAを用いた補正係数により軸のずれを補正する処理を実施することなく、加速度の大きさにかかる補正係数Cにより加速度の大きさのずれを補正する処理を実施しても構わない。
また、本実施の形態では、式(6)により補正係数Cを算出し、補正を行う例を示したが、本実施形態は必ずしもこれに限定されるものではない。平均加速度の分布の中心を補正する機能を果たすものであれば、解析部112は、他の好適な数式等により加速度データを補正しても良い。
また、本実施の形態では、加速度データを補正対象としたが、目的により、例えば平均加速度を補正対象としても良い。
また、本実施の形態では、平均加速度を用いて補正係数を算出したが、平均加速度の代わりに、例えば平均値以外の任意の代表値、或いは、実際に取得した加速度データをそのまま用いて補正係数を算出しても良い。
本実施の形態においては、計測装置110が、加速度の大きさのずれを補正する処理を行う。これにより、センサモジュール120を被試験体の動物等に取り付けた後であっても、センサ起動時の初期位置による加速度データの誤差やデバイスの個体差を補正することができる。
<実施の形態4>
実施の形態4は、実施の形態1に示した加速度データの補正処理において、被試験体(例えば人や動物)の行動の種類も併せて考慮することで、補正の精度を向上させる点に特徴を有する。通常、加速度データの分布の態様は、行動パターン(例えば立ち上がる、歩く等)毎に異なると考えられる。よって、行動パターン毎に独立して適切な補正処理を行うことで、補正の精度を向上させることができる。
また、実施の形態1は平均加速度の分布が直線で近似できることを前提としていたが、実施の形態4は、直線近似が適切でない分布の平均加速度に対しても適用可能な、加速度データの重心のずれを利用した補正手法を提案する。
実施の形態4にかかる計測システム100においては、計測装置110が、ユーザの入力を受け付けるため入力装置、例えばキーボードを備えている必要がある。その余の構成は、実施の形態1と略同様である。
図8のフローチャートを用いて、実施の形態4にかかる計測装置110の処理について説明する。ここでは、主に実施の形態1と異なる処理内容について説明を行う。
S401:加速度データ及び行動パターンの取得
計測装置110の入力部111は、センサモジュール120から送信された加速度データを無線又は有線通信により受信する。なお、加速度データは、センサモジュール120によって生成された後、遅滞なく計測装置110に伝送されることが好ましい。
ここで、ユーザは、被試験体(人や動物)の行動を観察し、その行動パターンを示す情報を、入力装置を介して入力部111に入力する。例えば入力装置がキーボードであれば、所定の行動パターンに対応するキーを予め定義しておく。より具体的には、立ち上がる、歩くの行動に対して、R,Wのキーを割り当てておけばよい。そして、ユーザは、例えば被試験体の人や動物が立ち上がる動作をしている時にはキーRを、歩く動作をしている時にはキーWを押下する。
入力部111は、入力装置から、被試験体(人や動物)の行動パターンを示すユーザ入力を入力する。そして、入力部111は、取得された加速度データと、その時に入力されていた行動パターンを示すデータ(上記キーボードの場合は、押下されたキーの情報)とを対応付けて、記憶装置に記憶する。
S402:行動パターン毎に重心座標を算出
解析部112は、記憶部を参照して、行動パターン毎に、当該行動パターンに対応付けられている全ての加速度データの平均値を算出する。そして、全データの平均値のX方向及びY方向成分を、当該行動パターンの実際の重心座標と定義する。
S403:行動パターン毎の重心座標のずれ角を算出
解析部112は、予め想定された当該行動パターンにおける理想の重心座標と、上記実際の重心座標とが、原点を介してなす角度θを計算する。例えば、行動パターンRについて、理想の重心座標と、実際の重心座標とがなす角θは式(7)により計算できる。ここで、行動パターン毎の理想の重心座標は、記憶装置に予め格納されているものとする。
Figure 2016120271
ここで、行動パターンRにおける理想の重心座標を(XRI,YRI)、行動パターンRにおける実際の重心座標を(X,Y
とする。
S404:補正係数の算出及び補正
解析部112は、S403で算出した重心座標のずれ角θを用いて、行動パターンRにおける補正係数を算出し、行動パターンRにかかる加速度データを補正する。本実施の形態では、解析部112は、以下の式(8)及び(9)により加速度データを補正する。
Figure 2016120271
ここで、a’X0及びa’Y0は行動パターンRにかかる補正された加速度データのX成分及びY成分、a及びaは行動パターンRにかかる補正前の(S401で取得された)加速度データのX成分及びY成分、cosθ及びsinθは行動パターンRにかかる補正係数である。
解析部112は、S402乃至S404に係る処理を、全ての行動パターンについて実施する。
なお、本実施の形態ではX,Yの2方向の重心のずれに基づいて補正係数を算出したが、上記以外の任意の2方向の重心を用いて補正係数を算出しても良い。また、X,Y,Zの3方向の重心のずれに基づいて同様に補正係数を算出しても良い。3方向の重心を用いる場合、2方向の重心を用いる場合よりも精度が向上するという効果があるが、計算量は増加する。
また、本実施の形態では、加速度データを補正対象としたが、目的により、例えば平均加速度を補正対象としても良い。
また、本実施の形態では、加速度データの平均値(重心座標)を用いて補正係数を算出したが、平均加速度の代わりに、例えば平均値以外の任意の代表値を用いて補正係数を算出しても良い。
本実施の形態においては、入力部111が加速度データと行動パターンとを関連付け、解析部112が行動パターン毎に重心座標のずれ角を用いた加速度データの補正を行う。これにより、加速度データの分布を直線で近似することが適切でない場合であっても、適切な補正を行うことができる。特に、本実施例では全データの統計分布を対象にするのではなく、行動パターン毎に処理対象を限定して補正を行うので、精度が向上する。
<実施の形態5>
実施の形態5は、実施の形態1に示した加速度データの補正処理において、直線近似が適切でない場合に、代替手法により補正を行う点に特徴を有する。また、実施の形態4との比較においては、実施の形態4が行動パターン毎に重心に応じた補正を行うのに対し、実施の形態5は加速度データ全体の重心に応じた補正を行う点に特徴を有する。
実施の形態5にかかる計測システム100構成は、実施の形態1と略同様であるため、詳細な説明を省略する。
図9のフローチャートを用いて、実施の形態5にかかる計測装置110の処理について説明する。ここでは、主に実施の形態1と異なる処理内容について説明を行う。
S501:加速度データの取得
計測装置110の入力部111は、センサモジュール120から送信された加速度データを無線又は有線通信により受信する。
S502:決定係数による補正手法の決定
入力部111は、上述の式(4)により決定係数を計算する。決定係数が規定値(例えば0.3)に満たない場合は、平均加速度群を直線近似することが相応しくないと判定し、後述の手法による補正処理を行う。一方、決定係数が上記規定値以上である場合は、平均加速度群を直線近似することができると判定し、例えば実施の形態1の手法による補正処理を行う。
S503:加速度データの平均値を算出
解析部112は、全ての加速度データを対象に、任意の方向(ここではY方向)の成分の平均値を算出する。
S504:加速度データを回転させ平均値を算出
解析部112は、全ての加速度データを、XY平面上で原点を中心に角度θだけ回転させ、S503と同様にして再度、加速度データのY方向成分の平均値を算出する。ここで、加速度データを角度θだけ回転した際のY方向成分a’Y0は、以下の式(10)により算出できる。
Figure 2016120271
解析部112は、角度θを変化させながら、例えば−90度から+90度まで10度毎に繰り返し平均値を算出する。
S505:ずれ角の決定
解析部112は、予め想定された理想の平均値M(aYI)(例えば0)と、S504において算出した一連の平均値M(a’Y0)とを比較し、差の絶対値|M(a’Y0)−M(aYI)|が最小となる角度θを特定する。ここで、理想の平均値は、記憶装置に予め格納されているものとする。
この処理の概念を図10及び図11に示す。XY平面にプロットされた加速度データを、原点中心に角度θだけ回転させる(図10)。すると、角度θの大きさの変化に応じて、|M(a’Y0)−M(aYI)|の値が変化し、あるθにおいて最小となる(図11)。本実施の形態では、このときのθを、実際の加速度データと理想値とのずれが最小になる角度とみなし、当該θを用いた補正処理を実施する。
S506:補正係数の算出及び補正
解析部112は、S505で算出したずれ角θを用いて、補正係数を算出し、加速度データを補正する。ずれ角を用いた加速度データの補正は、実施の形態4と同様の手法、すなわち式(8)及び(9)のθをθと読み替えることにより実施できる。
なお、本実施の形態では入力部111が決定係数による分岐処理を行う例を示したが(S502)、この分岐処理を行うことなく直接S503以降の補正処理を実施することとしても良い。
なお、本実施の形態ではY方向の平均値に基づいて補正係数を算出したが、上記以外の任意の1方向の平均を用いて補正係数を算出しても良い。また、任意の2又は3方向の重心に基づいて同様に補正係数を算出しても良い。2又は3方向の重心を用いる場合、1方向の平均値を用いる場合よりも精度が向上するという効果があるが、計算量は増加する。
また、本実施の形態では、加速度データを補正対象としたが、目的により、例えば平均加速度を補正対象としても良い。
また、本実施の形態では、任意方向の加速度データの平均値を用いて補正係数を算出したが、平均加速度の代わりに、例えば平均値以外の任意の代表値を用いて補正係数を算出しても良い。
本実施の形態においては、解析部112が、加速度データ全体の平均値のずれに応じた補正を行う。これにより、加速度データの直線近似が適切でない場合であっても、加速度データを適切に補正することができる。
<実施の形態6>
実施の形態6は、実施の形態1において示した加速度データの補正処理を所定の時間間隔で実行することにより、軸のずれの変化を観測可能とした点に特徴を有する。例えば、被試験体の形状が時間経過に伴って変化する場合や、時間経過とともに加速度センサの取り付け方向又は位置が常に変化し得るような場合において、それらの変化を示す時系列データを生成することができる(図12)。
実施の形態6にかかる計測システム100構成は、実施の形態1と略同様であるため、詳細な説明を省略する。
図13のフローチャートを用いて、実施の形態6にかかる計測装置110の処理について説明する。ここでは、主に実施の形態1と異なる処理内容について説明を行う。
S101乃至S104:
計測装置110の入力部111は、センサモジュール120から加速度データを無線又は有線通信により受信する。解析部112は、一定時間毎の平均加速度を求め、平均加速度の分布を近似する直線の傾きを算出する。そして、近似直線の傾きを用いて補正係数を算出し、平均加速度を補正する。
S605:センサ待機
解析部112は、算出した近似直線の傾き、すなわち軸のずれを計測装置110の記憶装置に格納する。
入力部111は、センサモジュール120に対し、待機命令を伝送する。センサモジュール120は、待機命令を受信すると、加速度データの取得又は送信を中止し、待機状態に遷移する。
S606:センサ起動及び繰り返し処理
入力部111は、規定時間経過すると、センサモジュール120に対し起動命令を伝送する。センサモジュール120は、起動命令を受信すると、加速度データの取得又は送信を再開し、S101乃至S605に係る一連の処理を再度実行する。例えば、規定時間として24時間が指定されていれば、入力部111は24時間毎にセンサモジュール120を起動し、軸のずれを算出するための一連の処理を開始する。
また、入力部111は、規定された回数に達するまで、S606に係る処理を繰り返し実行する。例えば、規定回数として7回が指定されていれば、1週間にわたって、1日毎に軸のずれの算出を行う。
本実施の形態においては、入力部111が所定時間毎に繰り返し軸のずれを算出する処理を起動することにより、軸のずれの経時変化を示すデータ群を生成することができる。これにより、例えば加速度センサの被試験体への固定が不十分であって常に軸がずれる可能性がある場合でも、その都度軸のずれを補正することができる。また、人や動物の体の一部分(例えば患部)が時間的に変化する場合や、橋やトンネルなどの構造物の一部分(例えば接合部)が時間的に変化する場合に、当該部分に加速度センサを固定することにより、当該変化を観測することができる。
<実施の形態7>
実施の形態7にかかる計測システム100は、1つの計測装置110に対し、複数のセンサモジュール120が接続される点に特徴を有する(図14)。
センサモジュール120は、複数の被試験体にそれぞれ1つ取り付けられても良く、あるいは1つの被試験体に対し複数のセンサモジュール120が取り付けられてもよい。例えば、1つの人又は動物の様々な部位に複数のセンサモジュール120を取り付けることにより、人又は動物の動作をより詳細に検出することが可能となる。
計測装置110は、例えば時分割で複数のセンサモジュール120と通信する。典型的には、計測装置110は、各センサモジュール120から取得された加速度データを、センサモジュール120毎に独立して補正する処理を行う。なお、例えば性別や年齢、体重などの分類上、複数の人又は動物を同一の個体とみなして大量の加速度データを取得したい場合には、複数のセンサモジュール120から取得された加速度データを1つにまとめて扱い、補正処理を行うことも可能である。
<その他の実施の形態>
なお、本実施形態は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、実施の形態2乃至6に係る構成は、実施の形態1だけでなく、他の任意の実施と組み合わせて実施することもできる。
また、上述の実施の形態では加速度センサを主に人や動物に取り付ける例について説明したが、加速度センサは任意の被試験体に取り付けうることは言うまでもない。例えば、橋やトンネルなどの構造物に取り付け、加速度の時間的変化を測定することで、老朽化の事前予測を行うことが可能である。
また、上述の実施の形態ではセンサモジュール120として、主に3軸の加速度センサを利用する例について説明した。しかしながら、本実施形態を1軸の加速度センサに適用することも可能である。例えば、被試験体の動物の頭、背中、脚にそれぞれ1軸の加速度センサを取り付けた場合、計測装置110は、取得された3つの加速度データを3軸の加速度データと同様に処理することが可能である。
<実施の形態8>
まず、図16を用いて、実施の形態8にかかる位相補正装置150の構成について説明する。
位相補正装置150は、加速度センサ(図示せず)が出力する加速度データを受信し、加速度データの位相補正処理を行う。位相補正装置150は、典型的にはPC(パーソナルコンピュータ)やサーバコンピュータ、マイクロコントローラ等の情報処理装置であり、CPU(演算処理装置)、揮発性又は不揮発性メモリ等の記憶装置、入出力装置等により構成される。位相補正装置150は、記憶装置に格納されたプログラムに基づいて所定の処理を実行することにより、後述の特徴量推定部160、位相推定部170、位相推定部180を論理的に実現する。
なお、加速度センサは、対象物に取り付けられ、発生する加速度を計測し、計測値を示す加速度データを出力する。加速度データは、3軸(X軸、Y軸、Z軸)方向の加速度をそれぞれ含むものとする。
特徴量推定部160は、加速度データを入力し、統計処理を行う。特徴量推定部160は、標準偏差演算部162、平均値演算部164を含む。標準偏差演算部162は、加速度データの各軸別標準偏差値を算出する。平均値演算部164は、加速度データの各軸別平均値を算出する。
位相推定部170は、標準偏差演算部162が算出した標準偏差値に応じ、平均値演算部164が算出した平均値を用いて、所定の軸のバイアス補正及び位相推定処理を行う。
位相推定部180は、位相推定部170による位相推定結果に応じ、平均値演算部164が算出した平均値に対する位相補正処理を行い、処理結果を出力する。
ここで、実施の形態8にかかる位相補正装置150の位相補正手法について概要を説明する。本手法では、加速度センサの位相補正を行うため以下の手順を踏む。
まず、実際に取得された加速度データの位相、すなわち対象物への加速度センサの装着状態に起因して生じた誤差を含む位相データから、理想的な装着状態で得られる加速度データからの角度のずれを推定する。ここで理想的な装着状態とは、例えば対象物の行動の特徴が表れやすい装着位置に、加速度センサの軸をそれぞれ対象物の行動の特徴を捉えやすい方向に一致させるよう装着した状態をいう。
実際に取得された加速度データの位相を推定するにあたっては、対象物が静止状態にあるときの加速度データを用いることが望ましい。したがって、本実施の形態では、加速度データの標準偏差値が所定の閾値よりも小さくなる期間の加速度データのみを抽出して、加速度データの位相を推定する。
次に、実際に得られた加速度データの位相補正を行う。すなわち、実際に得られた加速度データを、理想的な加速度センサの装着状態であれば得られたであろう値に補正する。
本実施の形態では、取得された加速度データそのものではなく、一定時間毎に、その時間帯に取得された加速度データの平均値を算出し、当該平均値を対象に位相補正を行う。このように加速度データの代表値を使用することにより、位相補正処理の負荷を抑制できる。また、加速度データの平均値は、対象物の行動識別に適した特徴量であるため、位相補正後の平均値をそのまま行動識別に利用できるという利点もある。
加速度データの平均値が行動識別のための特徴量として適している理由は以下の通りである。発明者は、一定時間毎の加速度データの平均値の分布が、対象物の行動種別(例えば移動、姿勢変化など)によって偏在することを発見した。すなわち、例えば一定時間毎に加速度データのX軸及びY軸の値の平均値を算出し、これらの平均値をXY座標上にプロットすると、それぞれ座標平面上の異なる領域に、行動種別毎の集団が形成される傾向が存在するのである。
続いて、実施の形態8にかかる位相補正装置150の動作について、図17のフローチャートを用いて説明する。
S10:
特徴量推定部160の標準偏差演算部162は、加速度センサ(図示せず)から加速度データが入力される。通常、加速度データは、計測開始から終了までの間、連続して入力される。
本実施の形態では、位相補正装置150は、加速度データのうちX軸方向の値aX、Y軸方向の値aYのみを入力する。発明者の知見によれば、静止状態の判定及び行動識別のいずれにおいても、aX及びaYのみを用いることで良い精度が得られる。なお、本実施形態はこれに限定されるものでなく、他の任意の2軸又は3軸方向の値を用いて同様の処理を行っても差し支えない。
標準偏差演算部162は、一定時間(例えば1秒)毎に、当該時間内に入力された加速度データの集合の標準偏差値を算出する。標準偏差演算部162は、この標準偏差値の算出処理を繰返し実行する。
S11:
特徴量推定部160の平均値演算部164は、標準偏差演算部162と並行して、加速度センサから加速度データが入力される。そして一定時間(例えば1秒)毎に、当該時間内に入力された加速度データの平均値を算出する。平均値演算部164は、この平均値の算出処理を繰返し実行し、処理結果を都度、位相推定部170及び位相推定部180に出力する。
S12:
標準偏差演算部162は、S10で算出した標準偏差値が予め定められた閾値よりも小さいか否かを判定する。例えば、X軸方向の値の標準偏差値をσ、Y軸方向の値の標準偏差値をσ、X軸方向の値にかかる閾値をTH1、Y軸方向の値にかかる閾値をTH2とすると、上記判定は式(11)により実施できる。式(11)において“YES”と判定されたならば、位相推定部170がS13の処理を実行する。
Figure 2016120271
S13:
位相推定部170には、平均値演算部164が算出する平均値が一定時間毎に入力される。また、標準偏差演算部162からは標準偏差値が閾値より小さいことを示す通知が随時入力される。位相推定部170は、上記通知が入力された際、同じタイミングで入力した平均値をレジスタに保存する。位相推定部170は、平均値が所定数蓄積されるまで、上述の保存処理を繰返す。
なお、平均値の蓄積回数は任意に設定可能であるが、蓄積回数が増加するほど位相推定の精度は高まる。
S14:
位相推定部170は、レジスタに所定数蓄積された平均値に対し、バイアス補正及び位相推定を行う。
ここで処理内容の説明のため、図18に、S13で保存された平均値をXY座標上にプロットした例を示す。これらの平均値の近似直線とY軸との交点と、原点と、の距離をバイアス(bias)という。バイアス補正とは、この交点を原点と一致させる操作をいう。また、近似直線と直線y=biasとのなす角φ’を位相という。位相補正とは、位相φ’を0に補正する操作をいう。
本実施の形態では、以下の手法により簡易的にバイアスを算出する。位相推定部170は、Y軸近傍にある平均値を抽出し、これらの平均値のY座標の平均を求めて、これをバイアスとみなす。この計算を式(12)に示す。ここでTH3はY軸の近傍の範囲を定義する閾値、μ(i)は各平均値のX座標、μy(i)は各平均値のY座標である。また、μy2(i)はバイアス補正後の各平均値のY座標である。
Figure 2016120271
また、本実施の形態では、以下の手法により簡易的に位相を算出する。まず、位相推定部170は、バイアス補正された平均値のうち、X座標が負側にある平均値の平均座標を求める。この計算を式(13)に示す。そして位相推定部170は、この平均座標と原点とのなす角φを求める。この計算を式(14)に示す。
Figure 2016120271

同様に、位相推定部170は、バイアス補正された平均値のうち、X座標が正側にある平均値の平均座標を求める。この計算を式(15)に示す。そして位相推定部170は、この平均座標と原点とのなす角φを求める。この計算を式(16)に示す。
Figure 2016120271
最後に、位相推定部170はφ及びφを平均化し、これを位相φ’とみなす。この計算を式(7)に示す。
Figure 2016120271
S15:
位相推定部180は、S14において算出された位相φ’を用いて、バイアス補正された各平均値に対し位相補正を行う。この計算を式(18)に示す。また、図19に、S15で位相補正された平均値をXY座標にプロットした例を示す。
Figure 2016120271
好ましくは、位相補正装置150は、S10乃至S15にかかる一連の処理を、加速度データの計測期間中にわたり、例えば一定周期で、繰返し実施する。
本実施の形態によれば、位相推定部170が、加速度センサの装着位置及び方向のずれを位相として推定する。また、位相推定部180が、推定された位相を補正する。これにより、加速度センサのキャリブレーションを行うことなく、加速度データの統計処理のみによって、個体毎及び時間経過に従って発生し得る加速度センサの装着位置及び方向のずれを補正し、常にほぼ同じ位相の加速度データを得ることができる。したがって、行動識別を行うための閾値や機械学習パラメータを一度求めれば、他の個体で得られた加速度データや、長時間にわたる測定により位相ずれが生じた加速度データであっても、同じ閾値や機械学習パラメータを共有できるようになる。
また、本実施の形態においては、位相推定部170は、上述の簡易的な手法によりバイアスの推定、位相の推定を行う。また、加速度データの一定時間毎の平均値を用いて、一連の位相補正処理が行われる。これにより、処理負荷を抑制し、高速な位相補正処理を実現できる。
<実施の形態9>
実施の形態9は、位相補正装置150を含む行動識別装置200に関する。まず、図22を用いて、実施の形態9にかかる位相補正装置150の構成について説明する。
行動識別装置200は、加速度センサが出力する加速度データを受信し、位相補正された加速度データを用いて、対象物の行動を識別する処理を行う。行動識別装置200は、典型的にはPC(パーソナルコンピュータ)やサーバコンピュータ、マイクロコントローラ等の情報処理装置であり、記憶装置に格納されたプログラムに基づいて所定の処理を実行することにより、位相補正装置150、識別学習部210、識別処理部220、パラメータ格納部230、第2識別処理部240、閾値格納部250、クラス分離部260、識別判定部270を論理的に実現する。
なお、本実施の形態では行動識別装置200を位相補正装置150と一体に実現されるものとして例示するが、行動識別装置200と位相補正装置150とは別個の装置であっても良い。この場合、行動識別装置200は、位相補正装置150において位相補正された加速度データを入力して行動識別処理を行う。
位相補正装置150は、加速度センサが生成する加速度データを入力して、実施の形態8で示した手順により位相補正処理を行う。
識別学習部210は、位相補正された加速度データを用いて学習を行うことにより、行動種別を識別する識別器としての識別処理部220を作成する。典型的には、識別学習部210及び識別処理部220はSVM(Support Vector Machine)により実現される。なお、識別学習部210及び識別処理部220は、他の公知の学習及び識別機構により代替し得ることは勿論である。
パラメータ格納部230は、識別処理部220(本実施の形態においてはSVM)を動作させるためのパラメータを格納する記憶領域である。なお、SVM等の識別器を動作させる際に用い得る具体的なパラメータについては、公知であるためここでは詳細な説明を省略する。
クラス分離部260は、加速度データの平均値を、識別処理部220が識別した行動種別(クラス)毎に分類して保持する。
第2識別処理部240は、識別学習部210及び識別処理部220とは別の手法により、加速度データの行動種別を識別する処理を行う。本実施の形態では、時間軸相互相関特性を利用して、加速度データのうち特定の行動種別に関連するものを抽出する処理を行う。
閾値格納部250は、第2識別処理部240による行動識別処理に用いられる閾値を格納する。すなわち、第2識別処理部240は、閾値格納部250に格納されている閾値を用いて、行動識別を実施する。
識別判定部270は、クラス分離部260に格納された行動識別結果、及び第2識別処理部240が出力する行動識別結果を統合して、高精度な行動識別を行い、識別結果を出力する。
続いて、図23のフローチャートを用いて、行動識別装置200の動作について説明する。
S30:
位相補正装置150は、加速度センサから加速度データが入力され、加速度データの平均値に対して、位相推定処理及び位相補正処理を行う。本実施の形態では、加速度センサから入力される全ての加速度データの一定時間毎の平均値に対して、位相補正処理を実施する。
図20に、位相補正装置150による位相補正前の全ての加速度データの平均値をXY座標上にプロットした様子を示す。実施の形態8でも説明したように、図20においてもバイアス及び位相が発生している。このようなバイアス及び位相は、通常、対象物の個体毎に異なり、また加速度センサを装着する位置によっても異なる値を示す。したがって、ある個体において取得した加速度データにより行動識別用パラメータを求めても、別の個体で取得した加速度データによる行動識別には、先のパラメータを適用することができない。例えば、図20のサンプルには、クラスA、B、Cの3つの行動種別に属する加速度データが含まれている。このとき、これらの3つのクラスを識別する際には、クラスAとB、及びクラスBとCを識別するためのパラメータをそれぞれ求める必要がある。そして、これらのパラメータの特定を、個体毎、測定回ごとに実施しなければならない。
一方、図21は、位相補正装置150による位相補正後の全ての加速度データの平均値をXY座標上にプロットしたものである。これらの位相補正された加速度データを用いて、一度行動識別用パラメータを求めれば、個体毎、識別回毎に位相ずれが発生したとしても、先のパラメータをそのまま適用して行動識別処理を行うことができる。
位相補正装置150は、位相補正処理後の加速度データの平均値を、識別学習部210又は識別処理部220に出力する。以降の処理が識別器の作成、すなわち学習処理(S31)である場合は、識別学習部210に対し出力する。一方、識別器が既に作成されており行動識別処理(S36)を実施する場合には識別処理部220に対し出力する。
<学習処理>
S31:
識別学習部210は、位相補正処理後の加速度データの平均値をSVMに入力する。これにより、SVMは、入力された平均値を行動種別毎に分離する最適な境界を示すパラメータを生成する。
ここで、SVMは2つのクラスを識別する識別器である。したがって、3クラス以上の行動種別を識別させる場合には、2クラスを識別する識別器を複数組み合わせる必要がある。例えば、クラスA、B、Cの3クラスを識別するためには、クラスAとBとを識別する識別器1、クラスBとCとを識別する識別器2を作成する。すなわち、識別器の作成処理を2回実施する。
S32:
識別学習部210は、S31で作成した識別器にかかるパラメータをパラメータ格納部230に格納する。なお、S31において識別器を複数作成した場合は、それぞれの識別器にかかるパラメータをそれぞれ格納する。
<行動識別処理>
S33:
第2識別処理部240は、加速度センサから加速度データが入力され、識別精度を向上させるために用い得る所定の特徴量を抽出する。また、その特徴量を用いて行動識別処理を行う。
例えば、加速度データがクラスBに属することだけを特定できる特徴量が存在するならば、第2識別処理部240はこれを抽出できる。この場合、後段の処理において、識別処理部220の識別結果と、第2識別処理部240の識別結果との論理積をとれば、クラスBに関しては、いずれか一方のみの識別処理部を用いた場合に比べ、より高精度な行動識別が可能となる。
したがって、ここで抽出する特徴量は、識別処理部220が用いるものとは異なるものであることが好ましい。例えば、発明者は、対象物が歩行動作を行っている場合、加速度データの時間軸相互相関特性に特徴が生じることを発見した。具体的には、まず歩行動作の特徴を有する周期データ(例えば、数HzのSIN波形)を任意に生成する。次に、第2識別処理部240が、上記周期データと加速度データとの相互相関値を求める。ここで、第2識別処理部240は、相互相関値が所定の閾値を超えたならば、それらの加速度データを歩行動作を示すものと判断する。なお、検出精度を上げるため、相互相関値が閾値を超える回数が所定回数以上である場合に、行動を検出することとしても良い。
S34:
第2識別処理部240は、S33で抽出した特徴量によって行動種別を識別するために必要な閾値を、閾値格納部250に格納する。
S35:
第2識別処理部240は、S33で抽出した特徴量と、閾値格納部250に格納した閾値を用いて、行動識別処理を実施する。
S36:
識別処理部220は、位相補正処理後の加速度データの平均値を、SVMに入力する。これにより、SVMは、入力された平均値が属する行動種別すなわちクラスを識別し、識別結果をクラス分離部260に出力する。
なお、3クラス以上の行動種別を識別させる場合には、2クラスを識別する識別器を複数組み合わせる必要がある。例えば、クラスA、B、Cの3クラスを識別するためには、クラスAとBとを識別する識別器1、クラスBとCとを識別する識別器2を用いて、2回の行動識別処理を実施する。
S37:
クラス分離部260は、S36におけるクラス識別結果を保持する。
S38:
識別判定部270は、クラス分離部260に保持された行動識別結果と、第2識別処理部240による行動識別結果とを統合して、最終的な行動識別処理を行う。
例えば、クラス分離部260は、S36において、クラスA、B、Cの3クラスのうちいずれのクラスが識別されたかを保持し、第2識別処理部240は、S35において、クラスBが識別されたか否かを保持しているものとする。この場合、識別判定部270は、クラス分離部260において保持されている識別結果と、第2識別処理部240に保持されている識別結果と、の論理積を計算する。これにより、クラス分離部260及び第2識別処理部240の双方がクラスBという判定結果を有する場合にのみ、識別判定部270は最終的な識別結果をクラスBと判定する。そのため、クラスBについては、いずれか一方の識別子のみを用いる場合に比べ、より高精度な行動識別を実現できる。換言すれば、識別判定部270は、SVMによる識別結果を、第2識別処理部240の識別結果によりフィルタリングできる。
なお、第2識別処理部240により行動識別が行われないクラスについては、クラス分離部260に格納された識別結果をそのまま出力すればよい。
本実施の形態においては、位相補正装置150が加速度データの平均値の位相補正処理を行い、位相補正処理後の平均値を用いて識別学習部210及び識別処理部220が行動識別処理を行う。これにより、一旦求めたクラス識別用パラメータを、他の個体及び測定回に適応可能となるため、行動識別処理の効率を向上させることができる。
また、本実施の形態においては、識別判定部270が、識別処理部220により識別され、クラス分離部260に保持された識別結果と、第2識別処理部240による識別結果を統合し、最終的な識別結果を出力する。これにより、高精度な行動識別を実現することができる。
<実施の形態10>
実施の形態10は、実施の形態9の識別学習部210及び識別処理部220において、学習及び識別処理の効率を向上させる点に特徴を有するものである。
図21及び図24を用いて、実施の形態10にかかる処理の概要について説明する。まず、図21に示す分布の加速度データの平均値を、識別学習部210及び識別処理部220に入力して学習及び識別処理を実施する場合を考える。この例においては、クラスAの分布範囲が広く、クラスの範囲を画定するSV(サポートベクタ)の数が多くなる可能性がある。この場合、学習させるサンプルの数によっては、学習精度が落ちる可能性がある。
そこで、本実施の形態においては、加速度データの平均値の縦軸側の値(Y軸方向の値)について、絶対値をとる処理を加える。このような処理を行った後の加速度データの平均値の分布を、図24に示す。図24では、図21に比べて、サンプルの分布範囲がほぼ半分に削減されていることが分かる。これにより、クラスの範囲を画定するSVの数が減少する。加えて、クラスの分布範囲内に存在するサンプル数、すなわちサンプルの密度は約2倍に増加する。
実施の形態10にかかる行動識別装置200は、位相補正装置150が、位相補正後の加速度データの平均値を出力する点に特徴を有する。その他の構成は、実施の形態9と同様であるため説明を省略する。
続いて、再度図23のフローチャートを用いて、実施の形態10における行動識別装置200の動作について説明する。なお、ここでは主に実施の形態9と異なる動作についてのみ説明することとし、その他の動作については説明を省略する。
S30:
位相補正装置150は、加速度センサから加速度データを入力し、加速度データの平均値に対して、位相推定処理及び位相補正処理を行う。また、位相補正装置150の位相推定部180は、位相補正後の加速度データの平均値について、所定の軸方向の値を、その値の絶対値により更新する。
ここで、上記所定の軸は、想定される加速度データの平均値の分布状況に基づいて決定することができる。例えば、図21のように、加速度データの平均値がほぼX軸に対象に分布している場合は、他方のY軸方向の値について絶対値をとることで、本実施の形態による効果を最大現に享受することができる。
位相補正装置150は、上記更新後の加速度データの平均値を、識別学習部210又は識別処理部220に出力する。以降、実施例2と同様にS31乃至S38にかかる処理を実施する。なお、S33乃至S35にかかる識別処理においては、上記平均値を用いることを要しない。
本実施の形態においては、位相推定部180が、加速度データの平均値について、所定の軸方向の値の絶対値をとる処理を行う。これにより、クラスの分布範囲内のサンプル数が増加するので、学習精度が向上する。また、識別用サポートベクタ長が短くなるので、識別処理時の演算量を削減できる。
<実施の形態11>
実施の形態11は、行動識別装置200を含む行動識別システム300の一例を示すものである。図25に、行動識別システム300の構成例を示す。
送信部310は、被試験体に取り付けて使用され、発生する加速度を計測し、計測値を示す加速度データを出力する処理を行う。送信部310は、加速度センサ311、典型的には加速度センサ、加速度センサの出力信号から加速度データを生成及び出力するMCU(Micro Control Unit)313、MCU313が出力する加速度データを変調処理して無線送信するRF装置部312を有する。RF装置部312は、好ましくはBluetooth(登録商標)等の低電力のFSK変調装置である。なお、RF装置部312においてその他変調方式(SubGHz、Zigbee(登録商標)、WiFi等)を利用可能であることは勿論である。
受信部320は、送信部310が出力する加速度データを受信し、加速度データの統計処理を行って、加速度センサの取付誤差を修正する処理を行う。受信部320は、典型的にはPC(パーソナルコンピュータ)やサーバコンピュータ、マイクロコントローラ等の情報処理装置である。受信部320は、RF装置部312が送信した加速度データを受信して復調するRF装置部322、RF装置部322が復調した加速度データを加工するMCU323、MCU323が出力する加速度データを入力し行動識別処理を行う行動識別装置200を有する。
さらに、行動識別システム300は、行動識別装置200による識別結果を視認可能に表示する表示部330を備えても良い。
<実施の形態12>
実施の形態12は、行動識別装置200を含むマイクロコントローラ400の一例を示すものである。図26に、マイクロコントローラ400の構成例を示す。
マイクロコントローラ400は、行動識別装置200、SEL410、レジスタ設定部420を含む。
SEL410は、外部からの入力データを選択するとともに、入力データの転送先を決定するためのセレクタである。
レジスタ設定部420は、外部制御に応じて、行動識別装置200を学習モード又は識別モードに切替える制御を行う。例えば、レジスタの値が0に設定された場合には学習モード、1に設定された場合には識別モードとなる。
レジスタ設定部420は、レジスタが0すなわち学習モードに設定された場合、SEL410を制御して、入力データとして学習用データを選択する。また、レジスタ設定部420は、識別学習部210を動作状態、識別処理部220を休止状態とする。
その後、位相補正装置150の標準偏差演算部162及び平均値演算部164、及び第2識別処理部240が動作を開始し、入力データの特徴量を求める。ついで、位相補正装置150で位相補正処理された入力データが、識別学習部210に入力される。識別学習部210は、行動識別用パラメータを求めてパラメータ格納部230に格納する。なお、識別用パラメータは、レジスタ設定部420を介して外部から直接設定可能な構成としても良い。
並行して、第2識別処理部240が、識別用閾値を閾値格納部250に格納する。識別用閾値についても、レジスタ設定部420を介して外部から直接設定可能な構成としても良い。
一方、レジスタ設定部420は、レジスタが1すなわち識別モードに設定された場合、SEL410を制御して、入力データとして識別用データを選択する。また、レジスタ設定部420は、識別学習部210を休止状態、識別処理部220を動作状態とする。
その後、位相補正装置150の標準偏差演算部162及び平均値演算部164、及び第2識別処理部240が動作を開始し、入力データの特徴量を求める。次に、位相補正装置150で位相補正処理された入力データが、識別処理部220に入力される。
識別処理部220は、パラメータ格納部230に格納された識別用パラメータを用いて、行動識別処理を行う。並行して、第2識別処理部240は、閾値格納部250に格納された識別用閾値を用いて、行動識別処理を行う。
最後に、クラス分離部260がクラス分離を行い、識別判定部270が最終的な行動識別判定を行って処理を終了する。
<その他の実施の形態>
なお、本実施形態は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、実施の形態8では、標準偏差値が閾値以下である加速度データの集団を用いて位相推定し、同じ加速度データの集団に対して位相補正を行う例を示した。しかし、上記位相推定結果を用いて、標準偏差値が閾値以下でないものも含む加速度データの集団に対して位相補正を行っても構わない。
また、実施の形態9では、第2識別処理部240の識別結果を用い、識別判定部270が高精度な行動識別を行う例を示した。しかしながら、行動識別装置200は必ずしもこれらの構成を備える必要はなく、単にクラス分離部260に格納される識別結果を出力する構成であっても良い。
また、上述の実施の形態では、加速度データの一定時間あたりの平均値を用いて一連の処理を行う例を示したが、本実施形態はこれに限定されず、他の代表値を用いて同様の処理を実行しても良い。なお、代表値でなく加速度データをそのまま位相補正、学習、識別の各処理の対象とすることも可能であるが、この場合、処理負荷の増大、学習及び識別精度が低下を招く可能性がある。
また、上述の実施の形態では、実施形態を主にハードウェアにより構成されるものとして説明したが、これに限定されるものではなく、任意の処理部を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより論理的に実現することも可能である。この場合、コンピュータプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non−transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD−ROM(Read Only Memory)、CD−R、CD−R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
また、上記した実施の形態1〜12等の各構成は、適宜組み合わせて用いることができる。
上記実施の形態の一部または全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
複数の加速度データを入力する入力部と、
前記加速度データに基づく第1の加速度値の分布と、予め定義された第2の加速度値の分布と、を比較することにより前記第1の加速度値を補正する解析部と、を有する
計測装置。
(付記2)
前記解析部は、
前記第1の加速度値の分布を近似する直線の傾きと、前記第2の加速度値の分布を近似する直線の傾きと、のずれに応じて前記第1の加速度値を補正する
付記1記載の計測装置。
(付記3)
前記解析部はさらに、
前記第1の加速度値の分布を近似する円弧の中心と、前記第2の加速度値の分布を近似する円弧の中心と、のずれに応じて前記第1の加速度値を補正する
付記1又は2記載の計測装置。
(付記4)
前記第1の加速度値は、所定時間毎の前記加速度データの平均値である
付記1乃至3いずれか1つに記載の計測装置。
(付記5)
前記解析部は、
前記加速度データにかかる決定係数の変化量に基づき、前記加速度データの取得又は前記第1の加速度値の補正を停止する
付記1乃至4いずれか1つに記載の計測装置。
(付記6)
前記解析部は、前記第1の加速度値の分布又は前記第2の加速度値の分布の少なくともいずれか一方を示すグラフを生成及び表示する
付記1乃至5いずれか1つに記載の計測装置。
(付記7)
前記解析部は、所定のデータ有効領域内に分布する前記第1の加速度値を対象として、前記直線への近似を行う
付記2乃至6いずれか1つに記載の計測装置。
(付記8)
前記入力部はさらに、前記加速度データを複数のグループに分類する入力を受け付け、
前記解析部は、前記グループそれぞれにおいて、前記グループに分類された前記加速度データの平均値と、前記グループごとに予め定められた基準点と、のずれに応じて前記第1の加速度値を補正する
付記1記載の計測装置。
(付記9)
前記解析部は、
複数の角度θそれぞれについて、前記加速度データを角度θだけ回転させた加速度データの平均値と、予め定められた基準値と、の差分を計算し、
前記差分が最小となるθを用いて前記第1の加速度値を補正する
付記1記載の計測装置。
(付記10)
前記入力部は、所定の時間間隔で、前記加速度データを繰り返し入力する
付記1乃至9いずれか1つに記載の計測装置。
(付記11)
被試験体に取り付けられて加速度データを出力するセンサモジュールと、
前記センサモジュールから前記加速度データを取得する計測装置と、を有し、
前記計測装置は、
複数の前記加速度データを入力する入力部と、
前記加速度データに基づく第1の加速度値の分布と、予め定義された第2の加速度値の分布と、を比較することにより前記第1の加速度値を補正する解析部と、を有する
計測システム。
(付記12)
前記計測装置は、複数の前記センサモジュールから前記加速度データを取得し、
前記解析部は、それぞれの前記センサモジュールから取得した前記加速度データを用いて、前記第1の加速度値を補正する
付記11記載の計測システム。
(付記13)
複数の加速度データを入力する入力ステップと、
前記加速度データに基づく第1の加速度値の分布と、予め定義された第2の加速度値の分布と、を比較することにより前記第1の加速度値を補正する解析ステップと、を有する
計測方法。
(付記14)
コンピュータに、付記13記載の方法を実行させるためのプログラム。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は既に述べた実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能であることはいうまでもない。
100 計測システム
110 計測装置
111 入力部
112 解析部
113 分類部
120 センサモジュール
150 位相補正装置
160 特徴量推定部
162 標準偏差演算部
164 平均値演算部
170 位相推定部
180 位相補正部
200 行動識別装置
210 識別学習部
220 識別処理部
230 パラメータ格納部
240 第2識別処理部
250 閾値格納部
260 クラス分離部
270 識別判定部
300 行動識別システム
310 送信部
311 加速度センサ
312 RF装置部
313 MCU
322 RF装置部
323 MCU
320 受信部
330 表示部
400 マイクロコントローラ
410 SEL
420 レジスタ設定部

Claims (11)

  1. 複数の加速度データが入力され、前記複数の加速度データの所定時間毎の標準偏差を求める標準偏差演算部と、
    前記複数の加速度データが入力され、前記加速度データの前記所定時間毎の代表値を求める代表値演算部と、
    前記標準偏差が所定の閾値より小さいときの前記代表値を用いて、第1の座標軸及び第2の座標軸を有する空間における前記代表値の位相を推定する位相推定部と、
    前記推定された位相を用いて、前記代表値を位相補正する位相補正部と、を有する
    位相補正装置。
  2. 前記位相推定部は、
    前記第1の座標軸の負側の前記代表値の平均に基づき、第1の位相を算出する処理と、
    前記第1の座標軸の正側の前記代表値の平均に基づき、第2の位相を算出する処理と、
    前記第1の位相及び前記第2の位相に基づき、前記位相を推定する処理と、のうち少なくともいずれか1つの処理を実行する
    請求項1記載の位相補正装置。
  3. 前記位相推定部はさらに、
    前記第2の座標軸近傍の前記代表値の平均に基づき、バイアスを算出し、
    前記バイアスと、前記第1の座標軸の負側の前記代表値の平均と、に基づき、前記第1の位相を算出し、
    前記バイアスと、前記第1の座標軸の正側の前記代表値の平均と、に基づき、前記第2の位相を算出する
    請求項2記載の位相補正装置。
  4. 前記代表値は平均値である
    請求項1乃至3いずれか1項記載の位相補正装置。
  5. 前記位相補正部は、前記代表値のうち、前記第2の座標軸にかかる座標値の絶対値により、前記第2の座標軸にかかる座標値を更新する
    請求項1乃至4いずれか1項記載の位相補正装置。
  6. 請求項1乃至5いずれか1項記載の位相補正装置と、
    前記位相補正装置が位相補正した前記代表値を用いて、機械学習を行う識別学習部と、
    前記位相補正装置が位相補正した前記代表値を用いて、行動識別を行う識別処理部と、を有する
    行動識別装置。
  7. 前記加速度データの特徴量を用いて、機械学習に依らない行動識別を行う第2識別処理部と、
    前記識別処理部及び前記第2識別処理部による行動識別結果を統合する識別判定部と、をさらに有する
    請求項6記載の行動識別装置。
  8. 請求項6又は7記載の行動識別装置と、
    対象物に取り付けられて前記加速度データを出力する加速度センサを含む送信部と、を有する
    行動識別システム。
  9. 請求項6又は7記載の行動識別装置と、
    外部制御に応じて、前記識別学習部又は前記識別処理部のいずれか一方を動作状態に設定するレジスタ設定部と、を有する
    マイクロコントローラ。
  10. 複数の加速度データが入力され、前記複数の加速度データの所定時間毎の標準偏差を求める標準偏差演算ステップと、
    前記複数の加速度データが入力され、前記加速度データの前記所定時間毎の代表値を求める代表値演算ステップと、
    前記標準偏差が所定の閾値より小さいときの前記代表値を用いて、第1の座標軸及び第2の座標軸を有する空間における前記代表値の位相を推定する位相推定ステップと、
    前記推定された位相を用いて、前記代表値を位相補正する位相補正ステップと、を有する
    位相補正方法。
  11. コンピュータに、請求項10記載の位相補正方法を実行させるためのプログラム。
JP2015154753A 2014-11-17 2015-08-05 位相補正装置、行動識別装置、行動識別システム、マイクロコントローラ、位相補正方法、及びプログラム Pending JP2016120271A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/942,122 US10139428B2 (en) 2014-11-17 2015-11-16 Phase correction device, action identification device, action identification system, microcontroller, phase correction method, and program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014232807 2014-11-17
JP2014232807 2014-11-17
JP2014264297 2014-12-26
JP2014264297 2014-12-26

Publications (1)

Publication Number Publication Date
JP2016120271A true JP2016120271A (ja) 2016-07-07

Family

ID=56327839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015154753A Pending JP2016120271A (ja) 2014-11-17 2015-08-05 位相補正装置、行動識別装置、行動識別システム、マイクロコントローラ、位相補正方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP2016120271A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018000871A (ja) * 2016-07-08 2018-01-11 国立大学法人岩手大学 生体の動作識別システム及び生体の動作識別方法
JPWO2018092219A1 (ja) * 2016-11-16 2019-06-24 富士通株式会社 情報処理システム、情報処理装置、情報処理方法および情報処理プログラム
JP2019103442A (ja) * 2017-12-12 2019-06-27 Nttテクノクロス株式会社 特定装置、特定方法、及びプログラム
JP2020018276A (ja) * 2018-08-03 2020-02-06 学校法人麻布獣医学園 動物個体間の親和度を推定する方法およびシステム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018000871A (ja) * 2016-07-08 2018-01-11 国立大学法人岩手大学 生体の動作識別システム及び生体の動作識別方法
JPWO2018092219A1 (ja) * 2016-11-16 2019-06-24 富士通株式会社 情報処理システム、情報処理装置、情報処理方法および情報処理プログラム
JP2019103442A (ja) * 2017-12-12 2019-06-27 Nttテクノクロス株式会社 特定装置、特定方法、及びプログラム
JP7040930B2 (ja) 2017-12-12 2022-03-23 Nttテクノクロス株式会社 特定装置、特定方法、及びプログラム
JP2020018276A (ja) * 2018-08-03 2020-02-06 学校法人麻布獣医学園 動物個体間の親和度を推定する方法およびシステム
JP7187007B2 (ja) 2018-08-03 2022-12-12 学校法人麻布獣医学園 動物個体間の親和度を推定する方法およびシステム

Similar Documents

Publication Publication Date Title
Skog et al. Zero-velocity detection—An algorithm evaluation
US20140288878A1 (en) Identification of motion characteristics to determine activity
US9175962B2 (en) Pedestrian observation system, recording medium, and estimation of direction of travel
US20140288876A1 (en) Dynamic control of sampling rate of motion to modify power consumption
USRE49812E1 (en) Electronic apparatus, angular velocity acquisition method and storage medium for the same
JP2016120271A (ja) 位相補正装置、行動識別装置、行動識別システム、マイクロコントローラ、位相補正方法、及びプログラム
US20160061582A1 (en) Scale estimating method using smart device and gravity data
US20140288875A1 (en) Methods and architecture for determining activity and activity types from sensed motion signals
US11086124B2 (en) Detecting velocity state of a device
US20140288877A1 (en) Intermediate motion signal extraction to determine activity
US20140081182A1 (en) Method and apparatus for determining at least one predetermined movement of at least one part of a body of a living being
WO2014145122A2 (en) Identification of motion characteristics to determine activity
US20140288870A1 (en) Inline calibration of motion sensor
JP2014149211A (ja) オフセット推定装置及びプログラム
Marron et al. Multi sensor system for pedestrian tracking and activity recognition in indoor environments
US10393824B2 (en) Techniques for magnetometer calibration using selected measurements over time
US10139428B2 (en) Phase correction device, action identification device, action identification system, microcontroller, phase correction method, and program
KR101609813B1 (ko) 스마트폰 환경에서 보행 수 검출 장치 및 방법
JP6848571B2 (ja) 姿勢算出装置、姿勢計測システム、及び姿勢算出方法
US20170257828A1 (en) Location information transmission apparatus
CN113728395B (zh) 用于评估矢量数据的方法、便携式设备和系统
CN105982658B (zh) 生理信息侦测方法及装置
JP6511157B2 (ja) 歩数計測装置及び歩数計測プログラム
Florentino-Liano et al. Long term human activity recognition with automatic orientation estimation
US20230240548A1 (en) Heart Rate Detection Method, Device, and Program