JP2016119087A - Reliability optimization method of plate and shell structure with reinforcement rib in consideration of pluralistic uncertainty - Google Patents

Reliability optimization method of plate and shell structure with reinforcement rib in consideration of pluralistic uncertainty Download PDF

Info

Publication number
JP2016119087A
JP2016119087A JP2015243741A JP2015243741A JP2016119087A JP 2016119087 A JP2016119087 A JP 2016119087A JP 2015243741 A JP2015243741 A JP 2015243741A JP 2015243741 A JP2015243741 A JP 2015243741A JP 2016119087 A JP2016119087 A JP 2016119087A
Authority
JP
Japan
Prior art keywords
reliability
shell structure
reinforcing ribs
optimization
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015243741A
Other languages
Japanese (ja)
Other versions
JP6055070B2 (en
Inventor
鵬 ▲ハオ▼
鵬 ▲ハオ▼
Peng Hao
博 王
Bo Wang
博 王
増 孟
Zeng Meng
増 孟
剛 李
Go Ri
剛 李
明法 任
Mingfa Ren
明法 任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Publication of JP2016119087A publication Critical patent/JP2016119087A/en
Application granted granted Critical
Publication of JP6055070B2 publication Critical patent/JP6055070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a reliability optimization method of plate and shell structure with a reinforcement rib in consideration of pluralistic uncertainty.SOLUTION: The reliability optimization method of plate and shell structure with a reinforcement rib in consideration of pluralistic uncertainty includes: performing reliability optimization of plate and shell structure with a reinforcement rib using an equivalent rigidity model; verifying each elite individual of a candidate solution set by means of finite element analysis, in which a single point perturbation weight method is used, a defect element is taken into consideration, nonlinear post-buckling analysis is performed with respect to plate and shell structure with a reinforcement rib having a defect, and an elite individual satisfying a reliability constraint condition is selected; and performing reliability optimization with respect to the plate and shell structure with a reinforcement rib using a finite element model. Efficiency of reliability optimization of plate and shell structure with a reinforcement rib is significantly increased and a calculation cost is reduced.SELECTED DRAWING: Figure 1

Description

本発明は最適設計の技術分野に関し、特に多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法に関する。   The present invention relates to the technical field of optimum design, and more particularly, to a method for optimizing the reliability of a plate shell structure with reinforcing ribs considering multidimensional uncertainty.

21世紀以来、アメリカ、ロシアおよび欧州連合などの各宇宙大国は、いずれも相応する深宇宙探査計画を提示している。我が国の《国家中長期科学技術発展計画綱要(2006〜2020年)》も将来の宇宙ステーション建設および有人月面着陸などの任務の必要性を明確にしているが、これには、推力が大きい大型の運搬ロケットを発展させる必要があり、我が国の経済、社会および国家安全に対して極めて重大な意義を有する。運搬ロケットの有効搭載量および発射効率の飛躍的な向上により、薄壁化および軽量化はすでにロケットの鍵となる耐力部品設計における趨勢となっており、ロケットの薄壁構造の極端な軸圧縮での使用状態も引き起こしている。将来、運搬ロケット中の薄壁部材の径厚比(ロケット体の直径を等価厚で割る)は顕著に増大し、客観的に各種初期欠陥の不確定性の増強、すなわち欠陥の形式の多様化(幾何学的欠陥、製造および組立の公差、荷重および境界条件の欠陥、残留応力などを含む)、ランダム性の増強(産生部位、分布形態が明確でない)が引き起こされ、さらに多元的確定性間のカップリング効果が大きくなる、伝搬法則がはっきりとしないことにより、構造の耐荷力性能の分散度が深刻化する。ランダム変数の次元が多すぎるため、多元的不確定性下の軸圧縮薄壁構造の耐荷力性能に対する解析および最適化は、すでに現在直面する挑戦的な難題となっている。   Since the 21st century, space powers such as the United States, Russia and the European Union have all offered corresponding deep space exploration plans. Japan's “Summary of National Medium and Long-Term Science and Technology Development Plan (2006-2020)” also clarifies the necessity of future missions such as the construction of a space station and landing on the manned lunar surface. Need to develop a transport rocket, which is extremely important for our economy, society and national security. Due to dramatic improvements in the effective loading capacity and launch efficiency of transport rockets, thinner walls and lighter weight have already become a trend in bearing component design, which is the key to rockets. The state of use is also causing. In the future, the diameter-thickness ratio of the thin-wall members in the transport rocket (dividing the rocket body diameter by the equivalent thickness) will increase significantly, objectively increasing the uncertainty of various initial defects, that is, diversifying the types of defects. (Including geometrical defects, manufacturing and assembly tolerances, load and boundary condition defects, residual stresses, etc.), increased randomness (production site, unclear distribution), and between multiple determinism As the coupling effect increases and the propagation law is not clear, the degree of dispersion of the load bearing performance of the structure becomes serious. Because there are too many dimensions of random variables, analysis and optimization for the load bearing performance of axially compressed thin-walled structures under multi-dimensional uncertainty has already become a challenging challenge facing.

現在のところ、補強リブ付き円筒殻構造の耐荷力の数値予測は、多くが等価剛性モデルまたは高精度な有限要素モデルに基づいている。初期の研究では、計算能力の制約により、計算効率が比較的高い等価剛性モデルがよく採用される。すなわち、周期性を有するワッフル型補強リブ付き円筒殻を異方性または等方性の殻と等価にし、その後、板殻理論を利用してその座屈荷重を求める。等価剛性モデルは計算効率が極めて高いが、各種非線形要素の影響を考慮することができず、保守的に偏ったまたは危険に偏った構造設計が得られやすい。軸圧縮下の補強リブ付き円筒殻について、段階的に荷重が負荷された構造は線形座屈−非線形後座屈−圧砕破壊の挙動を示す可能性があり、高精度な有限要素モデルは解析過程における材料非線形、幾何非線形、および各種欠陥がもたらす非線形要素を考慮することができ、なおかつ境界条件、荷重負荷方式、構造的開口、リブの形などのモデルの細部を正確に再現することができる。しかし高精度な有限要素モデルは計算効率が極めて低いことがよくあり、これにより、補強リブ付き板殻構造の信頼性最適設計における計算コストが比較的大きくなり、さらには最適化の失敗が容易に引き起こされる。   At present, the numerical prediction of the load bearing capacity of a cylindrical shell structure with reinforcing ribs is mostly based on an equivalent stiffness model or a highly accurate finite element model. Early studies often employ equivalent stiffness models with relatively high computational efficiency due to computational limitations. That is, a cylindrical shell with a waffle-type reinforcing rib having periodicity is made equivalent to an anisotropic or isotropic shell, and then its buckling load is obtained using plate shell theory. Although the equivalent stiffness model has extremely high calculation efficiency, the influence of various nonlinear elements cannot be taken into consideration, and a structural design that is conservatively or dangerously biased is likely to be obtained. For cylindrical shells with reinforced ribs under axial compression, the structure loaded in stages may exhibit linear buckling-nonlinear post-buckling-crush fracture behavior. Material nonlinearity, geometrical nonlinearity, and nonlinear factors caused by various defects can be taken into account, and details of the model such as boundary conditions, loading method, structural opening, and rib shape can be accurately reproduced. However, high-accuracy finite element models often have extremely low computational efficiency, which increases the computational cost of reliability-optimized design of reinforced ribbed shell structures, and facilitates optimization failures. Is caused.

既存の補強リブ付き板殻構造に対する従来の信頼性最適化方法は、遷移有限要素解析によく依存しており、最適化の過程で、高精度な有限要素解析を数回使用する必要があり、たとえ大域的代用モデルの最適化技術を採用しても、その最適化効率は非常に低下する。該分野はすでに多くの業務が展開されているが、高効率の補強リブ付き板殻構造の信頼性最適化方法は依然として示されていない。   The conventional reliability optimization method for the existing shell structure with reinforcing ribs relies heavily on transition finite element analysis, and it is necessary to use high-precision finite element analysis several times during the optimization process. Even if the global substitution model optimization technique is adopted, the optimization efficiency is greatly reduced. Although many fields have already been developed in this field, a method for optimizing the reliability of a highly efficient plate shell structure with reinforcing ribs has not yet been shown.

本発明は、既存技術の補強リブ付き板殻構造の信頼性最適設計における計算コストが比較的大きく、最適化効率が比較的低い技術的問題を主に解決し、多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法を提示し、補強リブ付き板殻構造の信頼性最適設計の計算効率を向上させ、計算コストを低下させる目的を達成する。   The present invention mainly solves the technical problem of relatively high calculation cost and relatively low optimization efficiency in the reliability-optimized design of the plate structure with reinforcing ribs of the existing technology, and considers multidimensional uncertainty. This paper presents a method for optimizing the reliability of a plate shell structure with reinforcing ribs, and achieves the purpose of improving the calculation efficiency of the optimum reliability design of the plate shell structure with reinforcing ribs and reducing the calculation cost.

本発明は、多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法を提供する。前記方法は
等価剛性モデルを利用して、補強リブ付き板殻構造の信頼性最適化を行うステップ100と、
候補解集合の各エリート個体に対して有限要素解析による検証を行い、単一点摂動荷重方法を利用する、欠陥要素を考慮する、欠陥を含む補強リブ付き板殻構造に対して非線形後座屈解析を行う、信頼性制約条件を満たすエリート個体を選別する、ことを含み、このうち、前記欠陥要素が幾何的欠陥、応力的欠陥、および荷重的欠陥を含むステップ200と、
有限要素モデルを利用し、補強リブ付き板殻構造に対して信頼性最適化を行うステップ300と、を含み、
ステップ100は以下のサブステップ、すなわち
大域的最適化方法を利用し、均質化理論に基づく補強リブ付き板殻構造の等価剛性モデルを構築し、外板厚さ、リブ厚さ、リブ高さ、軸方向リブの数、円周方向リブの数および層角度の1つまたはその組合せを設計変数とし、補強リブ付き板殻構造の軸圧縮強度の信頼性を制約条件とし、構造の重量および/または構造の製造コストを最適化目標とするステップ101と、
不確定要素を考慮し、構築した等価剛性モデルを利用して補強リブ付き板殻構造に対して信頼性最適化を行い、一定の混雑度を有するいくつかのエリート個体が得られ、候補解集合が形成され、このうち、前記不確定要素は材料性能のばらつき、幾何寸法の公差および層角度のばらつきを含むステップ102と、を含み、
ステップ300は以下のサブステップ、すなわち
不確定要素を考慮すると同時に、欠陥要素は単一点摂動荷重方法を採用して包絡し、このうち、前記欠陥要素は幾何的欠陥、応力的欠陥、荷重的欠陥を含むステップ301と、
エリート個体のn倍の標準偏差区間内でサンプリング試験を行い、さらにn倍の標準偏差区間内における補強リブ付き板殻構造の代用モデルを構築し、前記代用モデルは外板厚さ、リブ厚さ、リブ高さ、軸方向リブの数、円周方向リブの数、および層角度の1つまたはその組合せを設計変数とし、補強リブ付き板殻構造の軸圧縮強度の信頼性を制約条件とし、構造の重量および/または構造の製造コストを最適化目標とするステップ302と、
構築した前記代用モデルを利用し、構造の重量および/または構造の製造コストに対して最適化を行うことにより、補強リブ付き板殻構造の信頼性に対して最適化を行い、信頼性制約条件を満たす最適設計が得られるステップ303と、を含む。
The present invention provides a method for optimizing the reliability of a plate shell structure with reinforcing ribs in consideration of multidimensional uncertainty. The method uses an equivalent stiffness model to optimize the reliability of the reinforced ribbed shell structure 100;
Each elite individual in the candidate solution set is verified by finite element analysis, and a single point perturbation loading method is used. Selecting elite individuals that satisfy a reliability constraint condition, wherein the defect element includes a geometric defect, a stress defect, and a load defect;
Using a finite element model to perform reliability optimization on the reinforced ribbed shell structure,
Step 100 uses the following sub-steps, that is, a global optimization method, to build an equivalent stiffness model of a reinforced ribbed shell structure based on the homogenization theory, and the outer plate thickness, rib thickness, rib height, The design variable is one or a combination of the number of axial ribs, the number of circumferential ribs and the layer angle, and the reliability of the axial compressive strength of the plate shell structure with reinforcing ribs as a constraint, and the weight of the structure and / or Step 101, where the manufacturing cost of the structure is the optimization goal;
Considering uncertain factors, using the equivalent stiffness model that was constructed, reliability optimization was performed on the plate shell structure with reinforced ribs, and several elite individuals with a certain degree of congestion were obtained. Wherein the uncertainties include step 102 including material performance variations, geometric dimension tolerances and layer angle variations,
Step 300 considers the following sub-steps, ie, uncertain elements, while the defective elements are encapsulated using a single point perturbation loading method, of which the defective elements are geometric defects, stress defects, load defects. Including step 301;
Sampling tests are performed within the standard deviation interval of n times the elite individual, and a substitute model of the shell structure with reinforcing ribs is built within the standard deviation interval of n times. The substitute model is the thickness of the outer plate and the rib thickness. One or a combination of the rib height, the number of axial ribs, the number of circumferential ribs, and the layer angle is a design variable, and the reliability of the axial compressive strength of the plate shell structure with reinforcing ribs is a constraint. Step 302 with an optimization goal of structure weight and / or structure manufacturing cost;
Optimize the reliability of the shell structure with reinforcing ribs by optimizing the weight of the structure and / or the manufacturing cost of the structure using the constructed substitute model, and the reliability constraint condition And an optimum design satisfying step 303 is obtained.

好ましくは、前記大域的最適化方法は、粒子群最適化、遺伝的アルゴリズム、焼きなまし法、蟻コロニー最適化、タブーサーチ、または免疫アルゴリズムを含む。   Preferably, the global optimization method includes particle swarm optimization, genetic algorithm, annealing method, ant colony optimization, tabu search, or immune algorithm.

好ましくは、前記n倍の標準偏差区間は6倍の標準偏差区間である。   Preferably, the n times standard deviation interval is a 6 times standard deviation interval.

好ましくは、前記補強リブ付き板殻構造は平面補強リブ付き板、補強リブ付き円筒殻、または補強リブ付き扁平殻を含む。   Preferably, the plate shell structure with reinforcing ribs includes a plate with flat reinforcing ribs, a cylindrical shell with reinforcing ribs, or a flat shell with reinforcing ribs.

好ましくは、前記サンプリング試験はラテンハイパーキューブ法または直交配列法を含む。   Preferably, the sampling test includes a Latin hypercube method or an orthogonal array method.

本発明で提供する多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法は、既存の補強リブ付き板殻構造の従来の信頼性最適化方法の効率が低い欠点に対して、等価剛性モデルおよび有限要素モデルのそれぞれの解析の利点を総合的に利用し、異なる最適化段階に異なる解析モデルを導入する。等価剛性モデルは計算効率が高いため、第1段階の最適化で等価剛性モデルを利用して、設計空間を高効率で縮小することができ、一定の混雑度を有するいくつかのエリート個体が得られ、候補解集合が形成される。さらに有限要素解析により検証して、欠陥要素を考慮した後、依然として耐荷力の信頼性制約を満たすエリート個体を選別することができ、補強リブ付き板殻の等価剛性モデルが欠陥の影響を考慮することができない弊害を補う。第2段階の最適化で有限要素モデル構造の局所的代用モデルを利用して、信頼性制約を満たす最適設計を保証することができ、設計空間を高効率で縮小する。これにより、補強リブ付き板殻構造の信頼性最適化の効率を大幅に向上させ、計算コストを低下させる。本発明は、わが国の運搬ロケットの設計など航空宇宙分野における補強リブ付き板殻構造の主要な信頼性最適化方法の1つとなる可能性がある。   The reliability optimization method for a plate shell structure with reinforcing ribs taking into account the multi-dimensional uncertainty provided in the present invention is a disadvantage that the efficiency of the conventional reliability optimization method for a plate shell structure with reinforcing ribs is low. Thus, the analysis advantage of each of the equivalent stiffness model and the finite element model is comprehensively utilized, and different analysis models are introduced at different optimization stages. Since the equivalent stiffness model is computationally efficient, the design space can be reduced with high efficiency by using the equivalent stiffness model in the first stage optimization, and several elite individuals with a certain degree of congestion can be obtained. And a candidate solution set is formed. Furthermore, after verifying by finite element analysis and considering defect elements, it is possible to select elite individuals that still satisfy the load bearing reliability constraint, and the equivalent stiffness model of the plate shell with reinforcing ribs considers the effects of defects Compensate for evil that cannot be done. By using the local substitute model of the finite element model structure in the second stage optimization, an optimal design satisfying the reliability constraint can be guaranteed, and the design space can be reduced with high efficiency. Thereby, the efficiency of the reliability optimization of the plate shell structure with the reinforcing rib is greatly improved, and the calculation cost is reduced. The present invention may be one of the main reliability optimization methods for the plate-shell structure with reinforcing ribs in the aerospace field such as the design of a Japanese transportation rocket.

本発明の実施例で提供する多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法の実現フローチャートである。It is an implementation | achievement flowchart of the reliability optimization method of the plate-shell structure with a reinforcement rib which considered the multidimensional uncertainty provided in the Example of this invention. 各型の補強リブ付き板殻構造の概要図である。It is a schematic diagram of the board shell structure with a reinforcement rib of each type. 各型の補強リブ付き板殻構造の概要図である。It is a schematic diagram of the board shell structure with a reinforcement rib of each type. 各型の補強リブ付き板殻構造の概要図である。It is a schematic diagram of the board shell structure with a reinforcement rib of each type. 各型の補強リブ付き板殻構造の概要図である。It is a schematic diagram of the board shell structure with a reinforcement rib of each type. 本発明の実施例で提供する多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法における単一点摂動荷重の概要図である。It is a schematic diagram of the single point perturbation load in the reliability optimization method of the plate shell structure with a reinforced rib in consideration of the multiple uncertainty provided in the embodiment of the present invention. 補強リブ付き円筒殻構造の概要図である。It is a schematic diagram of a cylindrical shell structure with a reinforcing rib. 本発明の実施例で提供する補強リブ付き円筒殻に対する第1段階の最適化の繰り返し曲線である。2 is a first-stage optimization iteration curve for a cylindrical shell with reinforcing ribs provided in an embodiment of the present invention. 本発明の実施例で提供する補強リブ付き円筒殻に対する第2段階の最適化の繰り返し曲線である。FIG. 5 is a second-stage optimization iteration curve for a cylindrical shell with reinforcing ribs provided in an embodiment of the present invention. 既存技術の補強リブ付き円筒殻に対する信頼性最適化の繰り返し曲線である。It is a repeat curve of reliability optimization for a cylindrical shell with reinforcing ribs of existing technology.

本発明で解決する技術的問題、採用する技術案、および達成する技術的効果をより明確にするため、以下に図および実施例を組み合わせて、本発明についてさらに詳細に説明する。ここで記載する具体的実施例は本発明の説明に用いたに過ぎず、本発明を限定するものではないことを理解することができる。他に、記載を便利にするため、図中には本発明と関係する部分を示したのみで、すべての内容でないことを説明する必要がある。   In order to clarify the technical problem to be solved by the present invention, the technical solution to be adopted, and the technical effect to be achieved, the present invention will be described in more detail below in combination with the drawings and examples. It will be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention. In addition, for the convenience of description, it is necessary to explain that only the parts related to the present invention are shown in the figure, but not all the contents.

図1は、本発明の実施例で提供する多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法の実現フローチャートである。図1に示すように、本発明の実施例で提供する多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法は、
等価剛性モデルを利用して補強リブ付き板殻構造の信頼性最適化を行うステップ100を含み、これは以下のサブステップ、すなわち
大域的最適化方法を利用し、均質化理論に基づく補強リブ付き板殻構造の等価剛性モデルを構築し、外板厚さ、リブ厚さ、リブ高さ、軸方向リブの数、円周方向リブの数および層角度の1つまたはその組合せを設計変数とし、補強リブ付き板殻構造の軸圧縮強度の信頼性を制約条件とし、構造の重量および/または構造の製造コストを最適化目標とするステップ101を含む。
FIG. 1 is a flowchart for realizing a reliability optimization method for a plate shell structure with reinforcing ribs considering multidimensional uncertainty provided in an embodiment of the present invention. As shown in FIG. 1, the reliability optimization method for a plate shell structure with reinforcing ribs considering multidimensional uncertainty provided in the embodiment of the present invention is as follows.
It includes the step 100 of optimizing the reliability of the reinforced ribbed shell structure using an equivalent stiffness model, which uses the following sub-steps, ie global optimization methods, with reinforced ribs based on homogenization theory An equivalent stiffness model of the plate shell structure is constructed, and one or a combination of the outer plate thickness, rib thickness, rib height, number of axial ribs, number of circumferential ribs and layer angle is set as a design variable, The step 101 includes the reliability of the axial compressive strength of the plate shell structure with the reinforcing rib as a constraint, and the optimization target is the weight of the structure and / or the manufacturing cost of the structure.

具体的に、本発明の実施例で提供する方法の最適化の例示として、以下のように表すことができる。
設計変数:d=[ts,tr,h,Na,Nc
目標関数:W
制約条件:pf(P<Pt)≦pt f
式中、tsは外板厚さ、trはリブ厚さ、hはリブ高さ、Naは軸方向リブの数、Ncは円周方向リブの数、Wは構造の重量、Pは構造の座屈荷重または圧砕荷重、Ptは構造の設計荷重、pfは破壊確率、pt fは所定の破壊確率である。具体的に、破壊確率は信頼性解析により得ることができ、各回の最適化の繰り返しのいずれにも内層に信頼性解析を組み込んだ。所定の破壊確率は、構造の実際の使用における安全性の要求に基づいて選択することができ、例えば航空宇宙構造の信頼性の要求は高く、その破壊確率は一般的に0.001、信頼性=1.0−破壊確率、または信頼性+破壊確率=1.0が選択される。補強リブ付き板殻構造の信頼性最適化の分野において、外板厚さ、リブ厚さ、リブ高さ、軸方向リブの数、円周方向リブの数、および層角度は、補強リブ付き板殻構造の軸圧縮強度に影響を及ぼす主な要素であり、通常、補強リブ付き板殻の軸圧縮強度を評価することにより、補強リブ付き板殻構造の信頼性を評価する。そのため、本発明で提供する等価剛性モデルは、補強リブ付き板殻構造の軸圧縮強度の信頼性を信頼性制約条件とし(例えば、軸圧縮強度の信頼性がある値より小さい確率は、一定の百分率より低くすることができない)、構造の重量および/または製造コストを最適化目標とする。補強リブ付き板殻構造の軸圧縮強度は2つの指標、座屈荷重および圧砕荷重で表すことができる。座屈荷重は線形座屈解析により得られ、解析過程は各種の非線形要素を考慮することができず、解を求めるのに繰り返しを必要とせず、解析効率は高いが、構造の軸圧縮強度の概算に過ぎない。圧砕荷重は非線形後座屈解析により得られ、各種非線形要素を正確に考慮することができるが、解析効率が比較的低い。しかし構造の軸圧縮強度を正確に表す。
Specifically, as an example of optimization of the method provided in the embodiment of the present invention, it can be expressed as follows.
Design variable: d = [t s , tr , h, N a , N c ]
Target function: W
Constraint: p f (P <P t ) ≦ p t f
Wherein, t s is the outer plate thickness, t r is the rib thickness, h is the rib height, N a is the number of axial ribs, N c is the number of circumferential ribs, W is the weight of the structure, P the buckling load or crushing loads structure, the P t is the design load, p f of structural failure probability is p t f is a predetermined breaking probability. Specifically, the failure probability can be obtained by reliability analysis, and reliability analysis is incorporated into the inner layer in every iteration of optimization. The predetermined failure probability can be selected based on the safety requirements in the actual use of the structure, for example, the reliability requirement for aerospace structures is high, the failure probability is generally 0.001, reliability = 1.0-destruction probability, or reliability + destruction probability = 1.0 is selected. In the field of optimizing the reliability of the plate shell structure with reinforcing ribs, the thickness of the outer plate, the rib thickness, the rib height, the number of axial ribs, the number of circumferential ribs, and the layer angle are: This is a main factor that affects the axial compressive strength of the shell structure. Usually, the reliability of the plate shell structure with reinforcing ribs is evaluated by evaluating the axial compressive strength of the plate shell with reinforcing ribs. Therefore, the equivalent stiffness model provided in the present invention uses the reliability of the axial compression strength of the plate shell structure with the reinforcing rib as a reliability constraint condition (for example, the probability that the reliability of the axial compression strength is smaller than a certain value is constant) The optimization target is the weight of the structure and / or the manufacturing cost. The axial compressive strength of the plate shell structure with the reinforcing rib can be expressed by two indexes, a buckling load and a crushing load. The buckling load is obtained by linear buckling analysis, the analysis process cannot take into account various nonlinear elements, does not require repetition to find the solution, the analysis efficiency is high, but the axial compressive strength of the structure It is only an estimate. The crushing load is obtained by nonlinear post-buckling analysis, and various nonlinear elements can be accurately taken into account, but the analysis efficiency is relatively low. However, it accurately represents the axial compressive strength of the structure.

なおかつ、本発明は均質化理論に基づいて補強リブ付き板殻構造の等価剛性モデルを構築する。均質化理論はマクロ構造を構成するユニットセルから着手し、仮にユニットセルが空間周期性を有すると、ユニットセルに対する構造解析により、元の構造のマクロ力学特性と等価の均質材料が得られる。本発明は均質化原理に基づき、空間周期性を有するリブを直交異方性/等方性の板殻と等価にし、リブ付き板殻の座屈解析効率を高めた。均質化原理に基づいて得られた等価剛性モデルは、その直観的で簡潔な解を求める過程により、常に工学業界で好まれており、ロケット体の補強リブ付き板殻構造の初期設計およびパラメータの先行的研究で常用されている。   In addition, the present invention constructs an equivalent stiffness model of a plate shell structure with reinforcing ribs based on a homogenization theory. The homogenization theory starts from the unit cells constituting the macro structure. If the unit cells have a spatial periodicity, a homogeneous material equivalent to the macromechanical characteristics of the original structure can be obtained by structural analysis of the unit cells. Based on the homogenization principle, the present invention makes the rib having spatial periodicity equivalent to the orthotropic / isotropic plate shell, and improves the buckling analysis efficiency of the ribbed plate shell. The equivalent stiffness model obtained based on the homogenization principle is always preferred by the engineering industry due to its intuitive and concise solution process, and the initial design and parameters Commonly used in previous studies.

このうち、粒子群最適化は近年発展している新しい大域的最適化方法であり、これもランダム解を出発点とし、最適解を繰り返し探索することにより、適応度から解の品質を評価する。このようなアルゴリズムは、その実現が容易である、精度が高い、収束が速いなどの利点により学術界で重視されており、なおかつ実際の問題の解決において、その優位性が示された。本発明は該方法を採用し、大域的最適解を高効率で探索することができる。   Among these, particle swarm optimization is a new global optimization method that has been developed in recent years. This also uses a random solution as a starting point, and repeatedly searches for an optimal solution to evaluate the quality of the solution from the fitness. Such an algorithm has been emphasized in the academic world due to advantages such as easy implementation, high accuracy, and rapid convergence, and has shown its superiority in solving actual problems. The present invention employs this method, and can search a global optimum solution with high efficiency.

このうち、図2a〜dは、各型の補強リブ付き板殻構造の概要図である。図2aは直立正三角形の補強リブ付き板殻の構造概要図であり、図2bは垂直正三角形の補強リブ付き板殻の構造概要図であり、図2cは直立直交補強リブ付き板殻の構造概要図であり、図2dは任意の角度の補強リブ付き板殻の構造概要図である。図2a〜dを参照されたい。本発明で提供する多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法は、平面補強リブ付き板、補強リブ付き円筒殻、補強リブ付き扁平殻などの補強リブ付き板殻に対して信頼性最適化を実施することができる。   Among these, FIG. 2 a-d is a schematic diagram of the plate shell structure with a reinforcement rib of each type. 2a is a schematic diagram of the structure of a plate shell with reinforcing ribs of upright equilateral triangle, FIG. 2b is a schematic diagram of the structure of a plate shell with reinforcing ribs of a vertical equilateral triangle, and FIG. 2c is a structure of a plate shell with upright orthogonal reinforcing ribs. FIG. 2d is a schematic structural view of a plate shell with reinforcing ribs having an arbitrary angle. See Figures 2a-d. The method of optimizing the reliability of the plate shell structure with reinforcing ribs considering multidimensional uncertainty provided by the present invention is a plate with reinforcing ribs such as a plate with flat reinforcing ribs, a cylindrical shell with reinforcing ribs, and a flat shell with reinforcing ribs. Reliability optimization can be performed on the shell.

ステップ102:不確定要素を考慮し、構築した等価剛性モデルを利用して補強リブ付き板殻構造に対して信頼性最適化を行い、一定の混雑度を有するいくつかのエリート個体が得られ、候補解集合が形成される。   Step 102: Considering uncertain factors, using the constructed equivalent stiffness model, the reliability optimization is performed on the plate structure with the reinforcing rib, and several elite individuals having a certain degree of congestion are obtained, A candidate solution set is formed.

本ステップにおける補強リブ付き板殻構造に対して信頼性最適化を行う制約条件は、具体的に座屈荷重の破壊確率が所定値より大きいことである。このうち、前記不確定要素は、材料性能のばらつき、幾何寸法の公差、および層角度のばらつきを含む。具体的に、材料性能のばらつきは引っ張り試験および統計により得られ、幾何寸法の公差はノギスまたは光学的測定および統計により得られ、層角度のばらつきは分度器による測定および統計により得られる。不確定要素は統計データに基づいて、不確定要素のランダム分布の型、例えば正規分布、対数正規分布、一様分布、ワイブル分布などを決めることができ、異なる分布の型の不確定要素は、制約条件および最適化目標に対して異なる影響が生じる。   The constraint condition for optimizing the reliability of the plate shell structure with reinforcing ribs in this step is that the buckling load failure probability is specifically greater than a predetermined value. Of these, the uncertainties include material performance variations, geometric dimension tolerances, and layer angle variations. Specifically, material performance variations are obtained by tensile testing and statistics, geometric dimension tolerances are obtained by calipers or optical measurements and statistics, and layer angle variations are obtained by protractor measurements and statistics. Uncertainty can determine the type of random distribution of uncertainties, for example, normal distribution, lognormal distribution, uniform distribution, Weibull distribution, etc. based on statistical data. Different impacts on constraints and optimization goals.

前記エリート個体は制約条件を満たすことを指し、さらに最適化目標は最適解または最適解に近い個体である。なおかつ形成された候補解集合は、一定変数の混雑距離を有するエリート個体からなり、候補解集合を設けることにより、エリート個体の多様性を最大限に豊富にすることができ、欠陥の作用を考慮した後、依然として耐荷力の信頼性制約を満たす。このうち、混雑度は変数間の相対距離を指し、一般的にユークリッド距離で示される。ユークリッド距離が大きいほど、変数の混雑度は小さくなる。   The elite individual indicates that the constraint condition is satisfied, and the optimization target is an optimal solution or an individual close to the optimal solution. In addition, the candidate solution set is made up of elite individuals with a constant congestion distance. By providing candidate solution sets, the diversity of elite individuals can be maximized and the effects of defects can be considered. After that, it still satisfies the load bearing reliability constraints. Of these, the degree of congestion refers to the relative distance between variables, and is generally indicated by the Euclidean distance. The greater the Euclidean distance, the smaller the variable congestion.

ステップ200:候補解集合の各エリート個体に対して有限要素解析による検証を行い、単一点摂動荷重方法を利用する、欠陥要素を考慮する、欠陥を含む補強リブ付き板殻構造に対して非線形後座屈解析を行う、信頼性制約条件を満たすエリート個体を選別する、ことを含む。   Step 200: Validate each elite individual in the candidate solution set by finite element analysis, use a single point perturbation loading method, consider the defect element, and post-linearize the reinforced ribbed shell structure including the defect Including performing buckling analysis and selecting elite individuals that satisfy the reliability constraint condition.

このうち、前記欠陥要素は幾何的欠陥、応力的欠陥、および荷重的欠陥を含む。幾何的欠陥、応力的欠陥および荷重的欠陥は、3次元測定器で測定して得られる。なおかつ、本ステップにおける信頼性制約条件は、圧砕荷重の破壊確率が所定値より大きいことである。   Among these, the defect element includes a geometric defect, a stress defect, and a load defect. Geometric defects, stress defects and load defects are obtained by measuring with a three-dimensional measuring instrument. In addition, the reliability constraint condition in this step is that the fracture probability of the crushing load is larger than a predetermined value.

単一点摂動荷重方法は、2008年欧州連合の学者が提示した方法であり、各種ランダム欠陥(不確定要素でもある)の薄壁構造の軸圧縮強度に対する減少の影響を包絡する。殻体中部の外板部分に単一点摂動荷重を負荷することにより、実験結果と十分類似する座屈の不安定波形および耐荷力(座屈荷重および圧砕荷重)を引き起こすことができる。該方法は合理的な等価欠陥であると考えられる。図3は、本発明の実施例で提供する多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法における単一点摂動荷重の概要図である。図3を参照されたい。単一点摂動荷重方法を採用して欠陥要素を導入する。すなわち殻体中部の外板に標準的な集中させた力を負荷して、これを摂動荷重とし、さらに計算で得られた節点座標の変位ベクトルを完全な構造にマッピングし、欠陥を含む補強リブ付き板殻モデルを形成し、欠陥を含む補強リブ付き板殻モデルに対して非線形後座屈解析を行う。有限要素解析により検証して、欠陥要素を考慮した後、依然として耐荷力の信頼性制約を満たすエリート個体を選別することができ、補強リブ付き板殻の等価剛性モデルが欠陥の影響を考慮することができない弊害を補う。   The single point perturbation loading method is a method presented by scholars of the European Union in 2008 and envelops the effect of the reduction of various random defects (which are also uncertainties) on the axial compressive strength of thin-walled structures. By applying a single point perturbation load to the outer shell part in the middle of the shell, it is possible to cause an unstable waveform of buckling and a load bearing capacity (buckling load and crushing load) that are sufficiently similar to the experimental results. The method is considered a reasonable equivalent defect. FIG. 3 is a schematic diagram of a single-point perturbation load in the reliability optimization method for a plate shell structure with reinforcing ribs considering multidimensional uncertainty provided in the embodiment of the present invention. Please refer to FIG. A single point perturbation loading method is adopted to introduce defect elements. In other words, a standard concentrated force is applied to the outer shell in the middle of the shell, and this is used as a perturbation load. Further, the displacement vector of the nodal coordinates obtained by calculation is mapped to a complete structure, and the reinforcing ribs containing defects A plate shell model with a rib is formed, and nonlinear post-buckling analysis is performed on the plate shell model with a reinforcing rib including defects. After verifying by finite element analysis and considering defect elements, it is possible to select elite individuals that still satisfy the load bearing reliability constraint, and the equivalent stiffness model of the reinforced ribbed shell considers the effects of defects Compensate for the evils that cannot be done.

以上は、本発明の第1段階の最適化過程である。等価剛性モデルは計算効率が高いため、第1段階の最適化で等価剛性モデルを利用し、設計空間を高効率で縮小することができ、一定の混雑度を有するいくつかのエリート個体が得られ、候補解集合が形成される。有限要素解析により検証して、欠陥要素を考慮した後、依然として耐荷力の信頼性制約を満たすエリート個体を選別することができ、補強リブ付き板殻の等価剛性モデルが欠陥の影響を考慮することができない弊害を補う。   The above is the first stage optimization process of the present invention. Since the equivalent stiffness model is computationally efficient, the design space can be reduced with high efficiency by using the equivalent stiffness model in the first stage optimization, and several elite individuals with a certain degree of congestion can be obtained. A candidate solution set is formed. After verifying by finite element analysis and considering defect elements, it is possible to select elite individuals that still satisfy the load bearing reliability constraint, and the equivalent stiffness model of the reinforced ribbed shell considers the effects of defects Compensate for the evils that cannot be done.

ステップ300:有限要素モデルを利用して補強リブ付き板殻構造に対して信頼性最適化を行う。以下のサブステップを含む。
図3を参照されたい。ステップ301、不確定要素を考慮すると同時に、欠陥要素は単一点摂動荷重方法を採用して包絡する。
Step 300: Reliability optimization is performed on a plate shell structure with a reinforcing rib using a finite element model. Includes the following substeps:
Please refer to FIG. Step 301, taking into account the uncertainties, and at the same time, the defective elements are enveloped using a single point perturbation loading method.

このうち、前記欠陥要素は幾何的欠陥、応力的欠陥および荷重的欠陥を含む。包絡とは、相対的に小さい1つの値(軸圧縮強度)を用いて1組の比較的大きい値を包絡することであり、設計は安全な方に傾く。   Among these, the defect element includes a geometric defect, a stress defect, and a load defect. Envelope is to enclose a set of relatively large values using one relatively small value (axial compressive strength), and the design tends to be safer.

ステップ302、エリート個体のn倍の標準偏差区間内でサンプリング試験を行い、さらにn倍の標準偏差区間内における補強リブ付き板殻構造の代用モデルを構築する。前記代用モデルは外板厚さ、リブ厚さ、リブ高さ、軸方向リブの数、円周方向リブの数、および層角度の1つまたはその組合せを設計変数とし、補強リブ付き板殻構造の軸圧縮強度の信頼性を制約条件とし、構造の重量および/または構造の製造コストを最適化目標とする。   Step 302: A sampling test is performed within the standard deviation interval of n times the elite individual, and a substitute model of a plate shell structure with reinforcing ribs within the standard deviation interval of n times is constructed. The substitute model has a plate shell structure with reinforcing ribs, using one or a combination of outer plate thickness, rib thickness, rib height, number of axial ribs, number of circumferential ribs, and layer angle as a design variable. The reliability of the axial compression strength of the structure is set as a constraint, and the weight of the structure and / or the manufacturing cost of the structure is set as an optimization target.

現在、サンプリング試験の設計方法には多くの種類があり、本発明で提供する前記サンプリング試験の方法は、ラテンハイパーキューブ法または直交配列法を含む。基本原則はサンプリング点を可能な限り設計空間内に均等に分布させて、より多くの設計空間の情報を得ることである。このうち、工業設計の業界では6倍の標準偏差区間を製品品質の制御基準として幅広く採用しており、すなわち製品100万個ごとに、3、4個の製品が不合格である。このときの設計空間は、すでに最初の大きな設計空間から、エリート個体の周囲6倍の標準偏差区間に縮小されている。6倍の標準偏差区間は以下のように表すことができる。   Currently, there are many types of sampling test design methods, and the sampling test methods provided in the present invention include a Latin hypercube method or an orthogonal array method. The basic principle is to obtain more design space information by distributing sampling points as evenly as possible in the design space. Among these, in the industrial design industry, a standard deviation interval of 6 times is widely adopted as a control standard for product quality, that is, 3 or 4 products are rejected for every 1 million products. The design space at this time has already been reduced from the first large design space to a standard deviation section that is six times the circumference of the elite individual. A standard deviation interval of 6 times can be expressed as follows.

ステップ303、構築した前記代用モデルを利用し、構造の重量および/または構造の製造コストに対して最適化を行うことにより、補強リブ付き板殻構造の信頼性に対して最適化を行い、信頼性制約条件を満たす最適設計が得られる。   Step 303, using the constructed substitute model, and optimizing the reliability of the plate shell structure with reinforcing ribs by optimizing the weight of the structure and / or the manufacturing cost of the structure. The optimal design that satisfies the reliability constraint is obtained.

このうち、信頼性制約条件は、圧砕荷重の破壊確率が所定値より大きいことである。   Among these, the reliability constraint condition is that the fracture probability of the crushing load is larger than a predetermined value.

ステップ300は第2段階の最適化であり、第2段階の最適化で、有限要素モデル構造の局所的代用モデルを利用して局所的最適化を行い、信頼性制約を満たす最適設計を保証することができる。さらに、補強リブ付き板殻構造の信頼性最適化の効率を大幅に向上させ、計算コストを低下させる。   Step 300 is the second-stage optimization, and the second-stage optimization performs local optimization using a local substitute model of the finite element model structure to guarantee an optimal design satisfying the reliability constraint. be able to. Furthermore, the efficiency of optimizing the reliability of the plate shell structure with reinforcing ribs is greatly improved, and the calculation cost is reduced.

本発明で提供する方法は、耐荷力の信頼性制約を満たす補強リブ付き板殻の最適設計を高効率で探索することができ、従来の信頼性最適化方法より極めて高い効率が得られる。   The method provided by the present invention can search for the optimum design of the plate shell with the reinforcing rib satisfying the reliability constraint of the load bearing capacity with high efficiency, and can obtain much higher efficiency than the conventional reliability optimization method.

以下に、実例の形式により本実施例で提供する案について説明を行う。
例示的に、図4は補強リブ付き円筒殻構造の概要図である。図4を参照されたい。直立直交補強リブ付き円筒殻の半径R=1500mm、長さL=2000mm、外板厚さts=4.0mm、リブ厚さtr=9.0mm、リブ高さh=15.00mm、軸方向リブの数Na=90、円周方向リブの数Nc=25を考慮する。構造材料はアルミニウム合金(弾性率E=70GPa、ポアソン比υ=0.33、降伏応力σs=410MPa、極限応力σb=480MPa、延伸率0.07、密度ρ=2.7E−6kg/mm3)を採用する。初期設計の構造重量は354.6kgであり、等価剛性モデルの予測に基づく構造の座屈荷重は12747kNであり、有限要素モデルの予測に基づく構造の圧砕荷重は16853kNであり、単一点摂動荷重が30kNであると考慮するとき、構造の圧砕荷重は12018kNである。弾性率およびポアソン比は正規分布のランダム変数であると考えられ、変異係数は0.03である。外板厚さ、リブ厚さ、リブ高さも正規分布のランダム変数と考えられ、標準偏差は0.05である。
Below, the plan provided in the present embodiment will be described in the form of an example.
Illustratively, FIG. 4 is a schematic view of a cylindrical shell structure with reinforcing ribs. Please refer to FIG. Radius R = 1500 mm upstanding orthogonal reinforcing ribbed cylindrical shell, a length L = 2000 mm, the outer plate thickness t s = 4.0 mm, rib thickness t r = 9.0 mm, the rib height h = 15.00mm, shaft Consider the number of directional ribs N a = 90 and the number of circumferential ribs N c = 25. The structural material is an aluminum alloy (elastic modulus E = 70 GPa, Poisson's ratio υ = 0.33, yield stress σ s = 410 MPa, ultimate stress σ b = 480 MPa, stretch ratio 0.07, density ρ = 2.7E-6 kg / mm 3 ) Adopt. The structural weight of the initial design is 354.6 kg, the buckling load of the structure based on the prediction of the equivalent stiffness model is 12747 kN, the crushing load of the structure based on the prediction of the finite element model is 16853 kN, and the single point perturbation load is When considering that it is 30 kN, the crushing load of the structure is 1,018 kN. The elastic modulus and Poisson's ratio are considered to be normally distributed random variables, and the variation coefficient is 0.03. Outer plate thickness, rib thickness, and rib height are also considered to be normally distributed random variables with a standard deviation of 0.05.

第1段階の最適化では、等価剛性モデルに基づいて補強リブ付き円筒殻の信頼性最適化を実施する。材料性能、幾何寸法などの不確定要素を考慮するのみであり、最適化目標は構造重量を最小化すること、信頼性制約は破壊確率が0.001より大きいことである。粒子群最適化を採用して大域的最適化を行い、さらに内層の信頼性情報を求める。最適化の繰り返し曲線を図5に示す。最後に一定の混雑度を有する20個のエリート個体が得られ、候補解集合が形成される。   In the first stage of optimization, the reliability of the cylindrical shell with reinforcing ribs is optimized based on the equivalent stiffness model. It only considers uncertain factors such as material performance and geometric dimensions, the optimization goal is to minimize the structure weight, and the reliability constraint is that the failure probability is greater than 0.001. Use particle swarm optimization to perform global optimization, and further obtain inner layer reliability information. An optimization iteration curve is shown in FIG. Finally, 20 elite individuals having a certain degree of congestion are obtained, and a candidate solution set is formed.

候補解集合の各エリート個体に対して非線形有限要素解析による検証を行い、単一点摂動荷重が30kNである欠陥状態を考慮して、信頼性制約条件を満たすエリート個体を選別する。その構造の重量は285.6kg、圧砕荷重は12018kNであり、モンテカルロシミュレーションによりその破壊確率を0.016と得ることができる。該設計を第2段階の最適化の初期設計とする。   Each elite individual in the candidate solution set is verified by nonlinear finite element analysis, and an elite individual satisfying the reliability constraint condition is selected in consideration of a defect state in which the single point perturbation load is 30 kN. The weight of the structure is 285.6 kg, the crushing load is 1,018 kN, and the failure probability can be obtained as 0.016 by Monte Carlo simulation. This design is the initial design for the second stage optimization.

第2段階の最適化では、有限要素モデルに基づいて補強リブ付き円筒殻の信頼性最適化を実施する。材料性能、幾何寸法などの不確定要素を考慮すると同時に、単一点摂動荷重が30kNである欠陥状態を考慮する。まず第2段階の最適化の初期設計における設計変数である6倍の標準偏差区間内で直交配列法を採用して32個サンプリングし、さらに局所的Kriging代用モデルを構築する。続いて粒子群最適化を採用して代用モデルに基づく補強リブ付き円筒殻の信頼性最適化を行う。最適化の繰り返し曲線を図6に示す。最後に指定の信頼性制約を満たす最適設計が得られる。最適設計の構造重量は291.4kgであり、単一点摂動荷重が30kNであることを考慮するときの圧砕荷重は13108kNであり、モンテカルロシミュレーションによりその破壊確率を0.001と得ることができる。破壊確率はすなわち信頼性の特性評価方法である。本実施例について、信頼性制約は破壊確率が0.001を超えないことであり、最適設計は該制約を満たす。対比として、既存技術に基づいて補強リブ付き円筒殻の信頼性最適化を実施する。すなわち直接代用モデル最適化方法を採用し、すべての設計域内で最適ラテンハイパーキューブ法に基づき150個サンプリングし、さらにKriging代用モデルを構築する。続けて粒子群最適化を採用して、代用モデルに基づく補強リブ付き円筒殻の信頼性最適化を行う。最適化の繰り返し曲線を図7に示す。最適設計の構造重量は305.6kgであり、単一点摂動荷重が30kNであることを考慮したときの圧砕荷重は13555kNであり、モンテカルロシミュレーションによりその破壊確率を0.001と得ることができる。非線形後座屈解析の使用回数から見ると、本発明の技術案は56回使用する必要があり、既存技術は154回使用する必要がある。比較から、本発明の技術案は比較的少ない計算コストでより多くの構造重量の減少を実現することができ、最適化効率が既存技術より大幅に上昇することがわかる。   In the second stage optimization, the reliability optimization of the cylindrical shell with the reinforcing rib is performed based on the finite element model. In addition to considering uncertain factors such as material performance and geometric dimensions, a defect state with a single point perturbation load of 30 kN is considered. First, 32 samples are sampled by adopting the orthogonal arrangement method within the standard deviation section of 6 times which is a design variable in the initial design of the second stage optimization, and a local Kriging substitution model is constructed. Subsequently, particle group optimization is adopted to optimize the reliability of the cylindrical shell with reinforcing ribs based on the substitute model. The optimization iteration curve is shown in FIG. Finally, an optimal design that satisfies the specified reliability constraints is obtained. The structure weight of the optimum design is 291.4 kg, the crushing load when considering that the single point perturbation load is 30 kN is 13108 kN, and the failure probability can be obtained as 0.001 by Monte Carlo simulation. Failure probability is a reliability characterization method. For this embodiment, the reliability constraint is that the failure probability does not exceed 0.001, and the optimum design satisfies the constraint. In contrast, the reliability of cylindrical shells with reinforcing ribs is optimized based on existing technology. That is, the direct substitution model optimization method is adopted, 150 samples are sampled in the entire design area based on the optimum Latin hypercube method, and a Kriging substitution model is constructed. Next, particle group optimization is adopted to optimize the reliability of the cylindrical shell with reinforcing ribs based on the substitute model. An optimization iteration curve is shown in FIG. The structural weight of the optimum design is 305.6 kg, the crushing load when considering that the single point perturbation load is 30 kN is 13555 kN, and the failure probability can be obtained as 0.001 by Monte Carlo simulation. From the viewpoint of the number of times of nonlinear post buckling analysis, the technical solution of the present invention needs to be used 56 times, and the existing technology needs to be used 154 times. From the comparison, it can be seen that the technical solution of the present invention can realize more reduction of the structural weight with relatively low calculation cost, and the optimization efficiency is greatly increased over the existing technology.

本実施例で提供する多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法は、既存の補強リブ付き板殻構造の従来の信頼性最適化方法の効率が低い欠点に対して、等価剛性モデルおよび有限要素モデルのそれぞれの解析の利点を総合的に利用し、異なる最適化段階に異なる解析モデルを導入する。等価剛性モデルは計算効率が高いため、第1段階の最適化で等価剛性モデルを利用して、設計空間を高効率で縮小することができ、一定の混雑度を有するいくつかのエリート個体が得られ、候補解集合が形成される。さらに有限要素解析により検証して、欠陥要素を考慮した後、依然として耐荷力の信頼性制約を満たすエリート個体を選別することができ、補強リブ付き板殻の等価剛性モデルが欠陥の影響を考慮することができない弊害を補う。第2段階の最適化で有限要素モデル構造の局所的代用モデルを利用して、信頼性制約を満たす最適設計を保証することができ、設計空間を高効率で縮小する。これにより、補強リブ付き板殻構造の信頼性最適化の効率を大幅に向上させ、計算コストを低下させる。本発明は、わが国の運搬ロケットの設計など航空宇宙分野における補強リブ付き板殻構造の主要な信頼性最適化方法の1つになる可能性がある。   The reliability optimization method of the plate shell structure with reinforcing ribs considering the multi-dimensional uncertainty provided in this embodiment is a disadvantage that the efficiency of the conventional reliability optimization method of the plate shell structure with reinforcing ribs is low. On the other hand, the analysis advantages of the equivalent stiffness model and the finite element model are comprehensively used, and different analysis models are introduced at different optimization stages. Since the equivalent stiffness model is computationally efficient, the design space can be reduced with high efficiency by using the equivalent stiffness model in the first stage optimization, and several elite individuals with a certain degree of congestion can be obtained. And a candidate solution set is formed. Furthermore, after verifying by finite element analysis and considering defect elements, it is possible to select elite individuals that still satisfy the load bearing reliability constraint, and the equivalent stiffness model of the plate shell with reinforcing ribs considers the effects of defects Compensate for evil that cannot be done. By using the local substitute model of the finite element model structure in the second stage optimization, an optimal design satisfying the reliability constraint can be guaranteed, and the design space can be reduced with high efficiency. Thereby, the efficiency of the reliability optimization of the plate shell structure with the reinforcing rib is greatly improved, and the calculation cost is reduced. The present invention may be one of the main reliability optimization methods for the plate-shell structure with reinforcing ribs in the aerospace field, such as the design of a Japanese transportation rocket.

最後に説明すべきこととして、以上の各実施例は本発明の技術案の説明に用いたに過ぎず、これを制限するものではない。前記各実施例を参照して本発明について詳細な説明を行ったが、前記各実施例に記載の技術案に対して補正を行うか、またはこのうちの部分的もしくはすべての技術的特徴に対して同等の置換を行っても、相応する技術案の本質は、本発明の各実施例における技術案の範囲から逸脱しないことを当業者は理解しなければならない。   Finally, it should be explained that the above embodiments are merely used for explaining the technical solution of the present invention, and are not intended to limit the present invention. Although the present invention has been described in detail with reference to each of the above embodiments, the technical solution described in each of the above embodiments is corrected, or some or all of the technical features thereof are corrected. Those skilled in the art should understand that even if equivalent substitutions are made, the essence of the corresponding technical solutions does not depart from the scope of the technical solutions in the embodiments of the present invention.

Claims (5)

多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法であって、前記方法が
等価剛性モデルを利用して、補強リブ付き板殻構造の信頼性最適化を行うステップ100と、
候補解集合の各エリート個体に対して有限要素解析による検証を行い、単一点摂動荷重方法を利用する、欠陥要素を考慮する、欠陥を含む補強リブ付き板殻構造に対して非線形後座屈解析を行う、信頼性制約条件を満たすエリート個体を選別する、ことを含み、このうち、前記欠陥要素が幾何的欠陥、応力的欠陥、および荷重的欠陥を含むステップ200と、
有限要素モデルを利用して、補強リブ付き板殻構造に対して信頼性最適化を行うステップ300と、を含み、
ステップ100は以下のサブステップ、すなわち
大域的最適化方法を利用し、均質化理論に基づく補強リブ付き板殻構造の等価剛性モデルを構築し、外板厚さ、リブ厚さ、リブ高さ、軸方向リブの数、円周方向リブの数、および層角度の1つまたはその組合せを設計変数とし、補強リブ付き板殻構造の軸圧縮強度の信頼性を制約条件とし、構造の重量および/または構造の製造コストを最適化目標とするステップ101と、
不確定要素を考慮し、構築した等価剛性モデルを利用して補強リブ付き板殻構造に対して信頼性最適化を行い、一定の混雑度を有するいくつかのエリート個体が得られ、候補解集合が形成され、このうち、前記不確定要素が材料性能のばらつき、幾何寸法の公差、および層角度のばらつきを含むステップ102と、を含み、
ステップ300は以下のサブステップ、すなわち
不確定要素を考慮すると同時に、欠陥要素は単一点摂動荷重方法を採用して包絡し、このうち、前記欠陥要素が幾何的欠陥、応力的欠陥および荷重的欠陥を含むステップ301と、
エリート個体のn倍の標準偏差区間内でサンプリング試験を行い、さらにn倍の標準偏差区間内における補強リブ付き板殻構造の代用モデルを構築し、前記代用モデルは外板厚さ、リブ厚さ、リブ高さ、軸方向リブの数、円周方向リブの数、および層角度の1つまたはその組合せを設計変数とし、補強リブ付き板殻構造の軸圧縮強度の信頼性を制約条件とし、構造の重量および/または構造の製造コストを最適化目標とするステップ302と、
構築した前記代用モデルを利用し、構造の重量および/または構造の製造コストに対して最適化を行うことにより、補強リブ付き板殻構造の信頼性に対して最適化を行い、信頼性制約条件を満たす最適設計が得られるステップ303と、を含むことを特徴とする方法。
A method for optimizing the reliability of a plate shell structure with reinforcing ribs considering multidimensional uncertainty, wherein the method optimizes the reliability of the plate shell structure with reinforcing ribs using an equivalent stiffness model 100. When,
Each elite individual in the candidate solution set is verified by finite element analysis, and a single point perturbation loading method is used. Selecting elite individuals that satisfy a reliability constraint condition, wherein the defect element includes a geometric defect, a stress defect, and a load defect;
Using a finite element model to perform reliability optimization on the reinforced ribbed shell structure,
Step 100 uses the following sub-steps, that is, a global optimization method, to build an equivalent stiffness model of a reinforced ribbed shell structure based on the homogenization theory, and the outer plate thickness, rib thickness, rib height, One or a combination of the number of axial ribs, the number of circumferential ribs, and the layer angle is a design variable, and the reliability of the axial compression strength of the plate shell structure with reinforcing ribs is a constraint, and the weight of the structure and / or Or step 101, where the manufacturing cost of the structure is the optimization goal,
Considering uncertain factors, using the equivalent stiffness model that was constructed, reliability optimization was performed on the plate shell structure with reinforced ribs, and several elite individuals with a certain degree of congestion were obtained. Wherein the uncertainties include material performance variations, geometric dimension tolerances, and layer angle variations, and
Step 300 considers the following sub-steps, ie, uncertain elements, while the defective elements are encapsulated using a single point perturbation loading method, of which the defective elements are geometric defects, stress defects and load defects. Including step 301;
Sampling tests are performed within the standard deviation interval of n times the elite individual, and a substitute model of the shell structure with reinforcing ribs is built within the standard deviation interval of n times. The substitute model is the thickness of the outer plate and the rib thickness. One or a combination of the rib height, the number of axial ribs, the number of circumferential ribs, and the layer angle is a design variable, and the reliability of the axial compressive strength of the plate shell structure with reinforcing ribs is a constraint. Step 302 with an optimization goal of structure weight and / or structure manufacturing cost;
Optimize the reliability of the shell structure with reinforcing ribs by optimizing the weight of the structure and / or the manufacturing cost of the structure using the constructed substitute model, and the reliability constraint condition And a step 303 for obtaining an optimal design satisfying
前記大域的最適化方法が粒子群最適化、遺伝的アルゴリズム、焼きなまし法、蟻コロニー最適化、タブーサーチ、または免疫アルゴリズムを含むことを特徴とする、請求項1に記載の多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法。   The multi-dimensional uncertainty of claim 1, wherein the global optimization method comprises particle swarm optimization, genetic algorithm, annealing method, ant colony optimization, tabu search, or immune algorithm. Reliability optimization method for plate shell structure with reinforcing ribs in consideration. 前記n倍の標準偏差区間が6倍の標準偏差区間であることを特徴とする、請求項1に記載の多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法。   The method for optimizing the reliability of a plate shell structure with reinforcing ribs according to claim 1, wherein the n-th standard deviation section is a six-fold standard deviation section. 前記補強リブ付き板殻構造が平面補強リブ付き板、補強リブ付き円筒殻、または補強リブ付き扁平殻を含むことを特徴とする、請求項1に記載の多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法。   The reinforcing rib considering multidimensional uncertainty according to claim 1, wherein the plate shell structure with reinforcing ribs includes a plate with flat reinforcing ribs, a cylindrical shell with reinforcing ribs, or a flat shell with reinforcing ribs. Method for optimizing the reliability of plate shell structures. 前記サンプリング試験がラテンハイパーキューブ法または直交配列法を含むことを特徴とする、請求項1に記載の多元的不確定性を考慮した補強リブ付き板殻構造の信頼性最適化方法。   The method of optimizing the reliability of a plate shell structure with reinforcing ribs according to claim 1, wherein the sampling test includes a Latin hypercube method or an orthogonal array method.
JP2015243741A 2014-12-18 2015-12-15 Reliability optimization method for plate structure with reinforced ribs considering multidimensional uncertainty Active JP6055070B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410795907.1 2014-12-18
CN201410795907.1A CN104484531B (en) 2014-12-18 2014-12-18 Stiffened plate shell structure reliability optimization method with multisource uncertainty being considered

Publications (2)

Publication Number Publication Date
JP2016119087A true JP2016119087A (en) 2016-06-30
JP6055070B2 JP6055070B2 (en) 2016-12-27

Family

ID=52759072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015243741A Active JP6055070B2 (en) 2014-12-18 2015-12-15 Reliability optimization method for plate structure with reinforced ribs considering multidimensional uncertainty

Country Status (2)

Country Link
JP (1) JP6055070B2 (en)
CN (1) CN104484531B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108804773A (en) * 2018-05-22 2018-11-13 南通大学 Using box machine tool beam optimum design method in the compound case of more reinforcing plate structures
CN109063234A (en) * 2018-06-15 2018-12-21 浙江大学 A kind of probabilistic high-speed blanking press force application part reliability design approach of consideration polymorphic type
CN109344524A (en) * 2018-10-18 2019-02-15 燕山大学 A kind of thin-slab structure reinforced bag sand well optimization method
CN109408939A (en) * 2018-10-18 2019-03-01 燕山大学 A kind of improved method for the thin-slab structure reinforced bag sand well optimization taking into account stress and displacement constraint
CN109766637A (en) * 2019-01-12 2019-05-17 太原科技大学 Bridge crane structural optimization based on reliability method based on Krigng agent model
CN112765855A (en) * 2021-01-22 2021-05-07 西安电子科技大学 Radiation rib equivalent method and system for cube star expandable umbrella-shaped antenna and application
CN113191053A (en) * 2021-04-30 2021-07-30 西安交通大学 Dot matrix cell differentiated configuration design method for high bearing performance
CN113642096A (en) * 2021-06-25 2021-11-12 上海宇航系统工程研究所 Rapid analysis method for bearing capacity of grid reinforced structure
CN113779842A (en) * 2021-09-15 2021-12-10 哈尔滨理工大学 Reinforcing rib structure layout optimization design method based on genetic algorithm
CN113849906A (en) * 2021-08-31 2021-12-28 上海宇航系统工程研究所 Cylindrical storage tank strength design method based on carrier rocket internal pressure effect
CN113987689A (en) * 2021-11-10 2022-01-28 中航沈飞民用飞机有限责任公司 Composite material grid reinforced pressure frame comprehensive optimization design method based on shape modification
CN116796915A (en) * 2023-04-18 2023-09-22 中南大学 Proxy model method for intelligent railway route selection

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104866673B (en) * 2015-05-28 2017-07-11 大连理工大学 A kind of axle presses the Cutout reinforcement method of reinforcement post shell
CN104965976B (en) * 2015-06-12 2018-02-27 北京京东尚科信息技术有限公司 A kind of methods of sampling and device
CN105205268B (en) * 2015-09-23 2018-05-22 沈阳工业大学 Complicated electrical equipment optimization method based on space cutting techniques
CN107330131B (en) * 2016-04-29 2020-10-20 南京理工大学 Mechanical part structure dimension parameter and interval optimization method of dimension tolerance thereof
CN106777741B (en) * 2016-12-28 2019-12-06 大连理工大学 calculation method for accurately analyzing internal pressure intensity of grid reinforced cylindrical shell
CN107271267A (en) * 2017-06-01 2017-10-20 哈尔滨工程大学 Surrounding just consolidates stiffened panel axial compression test mechanism
CN107219068B (en) * 2017-06-13 2020-05-22 哈尔滨工程大学 Add muscle column shell structure axial compression test device
CN107220461B (en) * 2017-06-26 2019-10-11 大连理工大学 A kind of variation rigidity composite panel shell structure effectively optimizing method
CN107704657B (en) * 2017-09-06 2021-05-07 北京航空航天大学 Method for calculating buckling deformation of plate parts caused by residual stress release
CN109241686A (en) * 2018-11-02 2019-01-18 中国航空工业集团公司西安飞机设计研究所 A kind of pull rod parameter optimization method for installing aircraft airborne equipment
CN110096772B (en) * 2019-04-17 2022-10-25 大连理工大学 Method for establishing shape and position deviation feature library for aerospace thin shell structure
CN112926147B (en) * 2021-01-27 2023-11-03 合肥工业大学 Posterior optimization design method for reinforced column shell containing defects
CN113127981B (en) * 2021-05-06 2024-05-03 大连理工大学 Thin-wall cylinder shell structure reduction factor prediction method considering form and position tolerance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297118A (en) * 2000-04-14 2001-10-26 Hitachi Ltd Method and device for optimizing structure
JP2003347301A (en) * 2002-05-29 2003-12-05 Fujitsu Ltd Method for structural analysis and method for structural design using homogenizing method
JP2013200721A (en) * 2012-03-26 2013-10-03 Yokohama Rubber Co Ltd:The Design method of golf club head and golf head

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7740450B2 (en) * 2005-11-23 2010-06-22 General Electric Company Lightweight hub for rotors
CN102740184B (en) * 2011-12-20 2014-07-16 西北工业大学 Method for determining mechanical admittance of reinforcing plate housing by frequency ranges
CN103870613A (en) * 2012-12-10 2014-06-18 中国飞机强度研究所 Calculation method of bearing capacity of reinforced wall plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297118A (en) * 2000-04-14 2001-10-26 Hitachi Ltd Method and device for optimizing structure
JP2003347301A (en) * 2002-05-29 2003-12-05 Fujitsu Ltd Method for structural analysis and method for structural design using homogenizing method
JP2013200721A (en) * 2012-03-26 2013-10-03 Yokohama Rubber Co Ltd:The Design method of golf club head and golf head

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016043646; 山崎光悦 外1名: '近似法による補強リブ付板殻構造最小重量設計法の効率化' 日本機械学会論文集(A編) 第58巻,第545号, 1992, pp.118-123, 社団法人日本機械学会 *
JPN6016043649; HAO, P. et al.: 'Worst Multiple Perturbation Load Approach of stiffened shells with and without cutouts for improved' Thin-Walled Structures Vol. 82, 201409, pp. 321 - 330, Elsevier *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108804773B (en) * 2018-05-22 2023-08-15 南通大学 Box-in-box type machine tool beam optimal design method adopting multi-rib plate structure for compounding
CN108804773A (en) * 2018-05-22 2018-11-13 南通大学 Using box machine tool beam optimum design method in the compound case of more reinforcing plate structures
CN109063234A (en) * 2018-06-15 2018-12-21 浙江大学 A kind of probabilistic high-speed blanking press force application part reliability design approach of consideration polymorphic type
CN109408939A (en) * 2018-10-18 2019-03-01 燕山大学 A kind of improved method for the thin-slab structure reinforced bag sand well optimization taking into account stress and displacement constraint
CN109344524B (en) * 2018-10-18 2022-12-09 燕山大学 Method for optimizing distribution of reinforcing ribs of thin plate structure
CN109344524A (en) * 2018-10-18 2019-02-15 燕山大学 A kind of thin-slab structure reinforced bag sand well optimization method
CN109408939B (en) * 2018-10-18 2022-11-29 燕山大学 Improvement method for optimizing distribution of reinforcing ribs of sheet structure considering both stress and displacement constraints
CN109766637A (en) * 2019-01-12 2019-05-17 太原科技大学 Bridge crane structural optimization based on reliability method based on Krigng agent model
CN109766637B (en) * 2019-01-12 2022-06-10 太原科技大学 Bridge crane structure reliability optimization method based on Krigng agent model
CN112765855A (en) * 2021-01-22 2021-05-07 西安电子科技大学 Radiation rib equivalent method and system for cube star expandable umbrella-shaped antenna and application
CN112765855B (en) * 2021-01-22 2024-05-24 西安电子科技大学 Radiating rib equivalent method, system and application for cube star deployable umbrella antenna
CN113191053A (en) * 2021-04-30 2021-07-30 西安交通大学 Dot matrix cell differentiated configuration design method for high bearing performance
CN113191053B (en) * 2021-04-30 2022-12-23 西安交通大学 Dot matrix cell differentiated configuration design method for high bearing performance
CN113642096B (en) * 2021-06-25 2023-07-14 上海宇航系统工程研究所 Rapid analysis method for bearing capacity of grid reinforcement structure
CN113642096A (en) * 2021-06-25 2021-11-12 上海宇航系统工程研究所 Rapid analysis method for bearing capacity of grid reinforced structure
CN113849906A (en) * 2021-08-31 2021-12-28 上海宇航系统工程研究所 Cylindrical storage tank strength design method based on carrier rocket internal pressure effect
CN113849906B (en) * 2021-08-31 2024-05-31 上海宇航系统工程研究所 Cylindrical storage tank strength design method based on internal pressure effect of carrier rocket
CN113779842A (en) * 2021-09-15 2021-12-10 哈尔滨理工大学 Reinforcing rib structure layout optimization design method based on genetic algorithm
CN113987689A (en) * 2021-11-10 2022-01-28 中航沈飞民用飞机有限责任公司 Composite material grid reinforced pressure frame comprehensive optimization design method based on shape modification
CN116796915A (en) * 2023-04-18 2023-09-22 中南大学 Proxy model method for intelligent railway route selection
CN116796915B (en) * 2023-04-18 2024-01-12 中南大学 Proxy model method for intelligent railway route selection

Also Published As

Publication number Publication date
CN104484531B (en) 2017-05-24
JP6055070B2 (en) 2016-12-27
CN104484531A (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP6055070B2 (en) Reliability optimization method for plate structure with reinforced ribs considering multidimensional uncertainty
JP6235060B2 (en) Opening reinforcement design method in cylindrical shell with axial pressure reinforcement rib
Mueller et al. Energy absorption properties of periodic and stochastic 3D lattice materials
Chen et al. Theoretical analysis and crashworthiness optimization of hybrid multi-cell structures
Chen et al. Elastic buckling and static bending of shear deformable functionally graded porous beam
Shen et al. Simple cubic three‐dimensional auxetic metamaterials
Hao et al. Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors
Qi et al. Multi-scale characterization of novel re-entrant circular auxetic honeycombs under quasi-static crushing
EP2983099A1 (en) Method for determining reduction factor of bearing capacity of axial load cylindrical shell structure
Liu et al. Micromechanical damage modeling and multiscale progressive failure analysis of composite pressure vessel
Zhu et al. Energy absorption of diamond lattice cylindrical shells under axial compression loading
Lisbôa et al. FEM updating for damage modeling of composite cylinders under radial compression considering the winding pattern
CN107491624A (en) A kind of method using the equivalent bolted joint dynamic characteristic of virtual materials
Yong et al. On the application of genetic algorithms for optimising composites against impact loading
Wang et al. Generatrix shape optimization of stiffened shells for low imperfection sensitivity
Zhou et al. Crashworthiness and optimization of bionic sandwich cores under out-of-plane compression
Gao et al. Crushing and theoretical analysis of multi-cell tube filled with auxetic structure under axial impact loading
Swiler et al. Calibration of a fuel relocation model in BISON
Ma et al. Optimization design in perforated AL-CFRP hybrid tubes under axial quasi-static loading
Soydas et al. Free vibration characteristics of a 3d mixed formulation beam element with force-based consistent mass matrix
Ge et al. A three-dimensional progressive failure analysis of filament-wound composite pressure vessels with void defects
Wei et al. In-plane compression behavior of a novel 3D auxetic honeycomb
Li et al. Modeling and Analysis of a Large‐Scale Double‐Level Guyed Mast for Membrane Antennas
Hu et al. An explicit crack-tip element for stationary dynamic cracks
Yang et al. Prediction method of impact deformation mode based on multimodal fusion with point cloud sequences: applied to thin-walled structures

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161201

R150 Certificate of patent or registration of utility model

Ref document number: 6055070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250