JP2016116484A - Cultivation method using solid culture medium - Google Patents

Cultivation method using solid culture medium Download PDF

Info

Publication number
JP2016116484A
JP2016116484A JP2014258312A JP2014258312A JP2016116484A JP 2016116484 A JP2016116484 A JP 2016116484A JP 2014258312 A JP2014258312 A JP 2014258312A JP 2014258312 A JP2014258312 A JP 2014258312A JP 2016116484 A JP2016116484 A JP 2016116484A
Authority
JP
Japan
Prior art keywords
amount
irrigation
solar radiation
soil moisture
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014258312A
Other languages
Japanese (ja)
Inventor
角田 真一
Shinichi Tsunoda
真一 角田
植田 直人
Naoto Ueda
直人 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMIRIN NOSAN KOGYO KK
Sumitomo Forestry Co Ltd
Original Assignee
SUMIRIN NOSAN KOGYO KK
Sumitomo Forestry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMIRIN NOSAN KOGYO KK, Sumitomo Forestry Co Ltd filed Critical SUMIRIN NOSAN KOGYO KK
Priority to JP2014258312A priority Critical patent/JP2016116484A/en
Publication of JP2016116484A publication Critical patent/JP2016116484A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of watering plants by a watering amount preferable for the growth of plants, as a cultivation method of plants using solid culture medium.SOLUTION: A cultivation method of plants using solid culture medium which restricts a root zone includes: (a) a process of setting a watering amount per solar radiation amount; (b) a process of setting an upper limit value and a lower limit value of soil moisture content of the solid culture medium; (c) a process of measuring soil moisture content of the culture medium, comparing the soil moisture content with the set upper limit value and lower limit value, and adjusting the watering amount; and (d) a process of giving water of a watering amount per solar radiation amount which is adjusted by the process (c) to the solid culture medium when solar radiation reaches a preset solar radiation amount.SELECTED DRAWING: Figure 1

Description

本発明は固形培地を用いた新規な植物の栽培方法に関する。   The present invention relates to a novel plant cultivation method using a solid medium.

袋培地のような固形培地を用いる植物の栽培方法はすでに知られている。この栽培方法のメリットとして、廃液を回収する設備を付けずに低コストで設置ができることが挙げられる一方、培地からの余剰な廃液を少なくするための灌水制御が必要となるといったデメリットがある。
例えば特許文献1及び2には、袋培地を用いた養液栽培における自動潅水制御技術として、テンシオメーターにより測定した水分ポテンシャル(pF値)を指標とした潅水制御による方法が記載されている。
また、特許文献3には、日射量と植物の吸水量との相関関係を利用した潅水制御について報告されている。
Plant cultivation methods using a solid medium such as a bag medium are already known. An advantage of this cultivation method is that it can be installed at low cost without a facility for collecting the waste liquid, but has a demerit that irrigation control is required to reduce excess waste liquid from the culture medium.
For example, Patent Documents 1 and 2 describe a method of irrigation control using a water potential (pF value) measured by a tensiometer as an index as an automatic irrigation control technique in hydroponics using a bag culture medium.
Patent Document 3 reports irrigation control using the correlation between the amount of solar radiation and the amount of water absorbed by plants.

特開2006−197871号公報JP 2006-197871 A 特開2003−092924号公報JP 2003-092924 A 特開2004−008067号公報Japanese Patent Laid-Open No. 2004-008067

固形培地で植物を生育させるためには、植物の吸水量と培地中の水分量(潅水量の影響を受ける)が重要な因子である。植物の生育の段階が進み葉面積が増えることで蒸散量が増えて吸水量が増えるため、都度潅水量を増やす必要がある。また、植物の摘葉や摘心などの管理作業で葉面積が減ることで蒸散量が減り吸水量が減るため、都度潅水量を減らす必要がある。潅水量が不足すると培地が乾燥状態となってしまう一方、必要以上の量による潅水がなされると培地が過湿状態になる。このような培地の乾燥状態及び過湿状態は、共に植物の生育に悪影響を与える。
例えば特許文献3に記載の方法においては、植物の生育段階の進行に応じて潅水量を増やす必要があることが示されるに留まるばかりでなく、培地外への廃液を極力少なくする栽培方法であるため、以下のような問題点もある:
・植物の吸水量が潅水量を上回ると廃液がなくなり、培地内の水分状態の把握が難しくなる。
・場合によっては極端な水分ストレスを引き起こすリスクがある。
・逆に日射量当たりの潅水量を増やしすぎると培地内が過湿となり、植物の生育に支障が来たされる。
・栽培管理者が給液管理するために植物の状態や培地内水分の状態を把握するために手間がかかる。
なお、特許文献1及び2に開示されているテンシオメーターには、土壌の物理性やセンサーとなる素焼き表面と土壌との接触程度に起因する測定値のバラツキが生じやすいという問題があるため、pF値を唯一の潅水制御の指標として利用することは望ましくない。
In order to grow a plant on a solid medium, the amount of water absorbed by the plant and the amount of water in the medium (which is affected by the amount of irrigation) are important factors. As the stage of plant growth progresses and the leaf area increases, the amount of transpiration increases and the amount of water absorption increases, so it is necessary to increase the amount of irrigation each time. In addition, the amount of irrigation needs to be reduced each time because the transpiration amount and the water absorption amount are reduced by reducing the leaf area in the management work such as the defoliation and pinching of plants. If the amount of irrigation is insufficient, the medium becomes dry. On the other hand, if the irrigation is performed more than necessary, the medium becomes excessively humid. Both the dry state and the overhumid state of the medium adversely affect the growth of the plant.
For example, the method described in Patent Document 3 is a cultivation method that not only shows that it is necessary to increase the irrigation amount according to the progress of the growth stage of the plant, but also reduces the waste liquid outside the medium as much as possible. Therefore, there are the following problems:
・ If the amount of water absorbed by the plant exceeds the amount of irrigation, the waste liquid will disappear and it will be difficult to grasp the water state in the medium.
・ There is a risk of causing extreme water stress in some cases.
・ On the contrary, if the amount of irrigation per solar radiation is increased too much, the inside of the medium will be over-humidified, which will hinder plant growth.
-It takes time and effort for the cultivation manager to grasp the state of plants and the state of moisture in the medium in order to manage liquid supply.
In addition, the tensiometer disclosed in Patent Documents 1 and 2 has a problem that variation in measured values is likely to occur due to the physical properties of the soil and the degree of contact between the unglazed surface serving as a sensor and the soil. It is not desirable to use the pF value as the only irrigation control index.

また、潅水量を植物の生育に応じて、機械的あるいは人為的に増加させることは作業として不可能ではない。しかしながら、最適な潅水量は植物の生育の段階のみならず、温度・湿度、日長、季節や天候といった環境要因、あるいは栽培が行われる場所・地域によっても変動するため、最適な潅水量を細かく設定し、当該量に対応する量の潅水を確実に行うことは、実質的に不可能である。
さらに、植物の外観が必要な潅水量を反映しない場合もある。例えば植物が萎れている場合、潅水が不足している場合もあれば、反対に潅水量が多すぎる場合もあり、一概に判断はできない。
このように培地の乾燥状態及び過湿状態が植物の生育に悪影響を与えることは知られているが、制御するために考慮するべき要因の数が多いことや判断の困難さのため、植物の生育に好適な潅水量を設定することは、これまで実現されていなかった。
In addition, it is not impossible as a work to increase the irrigation amount mechanically or artificially according to the growth of the plant. However, the optimal amount of irrigation varies depending not only on the stage of plant growth, but also on environmental factors such as temperature / humidity, day length, season and weather, or the location / region where cultivation is carried out. It is virtually impossible to set and ensure irrigation of an amount corresponding to the amount.
In addition, the appearance of the plant may not reflect the required irrigation volume. For example, when plants are wilted, irrigation may be insufficient, or on the contrary, there may be too much irrigation.
Thus, it is known that the dry state and overhumidity of the medium adversely affect the growth of the plant, but due to the large number of factors to be considered for control and the difficulty of judgment, Until now, setting a suitable amount of irrigation for growth has not been realized.

本発明は、固形培地を用いる植物の栽培方法として、植物の生育に好適な潅水量により潅水を行うことができる方法を提供することを目的とする。   An object of the present invention is to provide a method for performing irrigation with a irrigation amount suitable for plant growth as a plant cultivation method using a solid medium.

上記課題に鑑み本発明者らは、植物の吸水量に対する影響が大きい指標を考慮することにより潅水量の制御を確実に行うことができる方法を鋭意探索したところ、ある指標により植物の吸水量を把握できる可能性があることを見出し、さらに研究を進めた結果本発明を完成するに至った。
すなわち本発明は、少なくとも以下の発明に関する:
[1] 根域を制限する固形培地を用いる植物の栽培方法であって、
(a)日射量当りの潅水量を設定する工程、
(b)前記固形培地の土壌水分量の上限値及び下限値を設定する工程、
(c)培地の土壌水分量を測定し、該土壌水分量と前記設定された上限値及び下限値とを比較し、
(i)土壌水分量が前記設定された上限値を越えている場合には前記日射量当りの潅水量を減らすこと、
(ii)土壌水分量が前記設定された下限値を下回っている場合には前記日射量当りの潅水量を増やすこと、及び
(iii)土壌水分量が前記設定された下限値以上であり前記設定された上限値以下である場合には前記日射量当りの潅水量を増減しないことにより、前記潅水量を調節する工程、ならびに
(d)予め設定された日射量に日射が達したときに、工程(c)により調節された日射量当りの潅水量の水を前記固形培地に与える工程、
を含む前記栽培方法。
[2] 水分ストレスをかけずに栽培できるように、下限値を高めに設定することをさらに含む前記[1]に記載の方法。
[3]水分ストレスをかけて栽培できるように、下限値を低めに設定することをさらに含む前記[1]又は前記[2]に記載の方法。
[4]培地が浄水場発生土及びやし殻を含む、前記[1]〜[3]のいずれかに記載の方法。
[5]浄水場発生土とやし殻の重量比が1:0.8〜1.2である前記[4]に記載の方法。
[6](b)前記固形培地の土壌水分量の上限値及び下限値を設定する工程の前にpF値の上限値及び下限値を設定し、培地の土壌のpF値と土壌水分量との相関から前記設定されたpF値の上限値及び下限値を土壌水分量の上限値及び下限値に換算する工程をさらに含む、前記[1]〜[5]のいずれかに記載方法。
[7] 土壌水分センサー及び日射センサーを具備する給液制御機により、土壌水分量及び日射量を測定し、該測定値により潅水量を制御する、前記[1]〜[6]のいずれかに記載方法。
[8]土壌水分センサー及び日射センサーを具備し、該土壌水分センサー及び日射センサーのそれぞれにより土壌水分量及び日射量を測定し、該測定値により潅水量を制御する、植物の栽培に用いられる給液制御機。
In view of the above-mentioned problems, the present inventors diligently searched for a method that can reliably control the irrigation amount by considering an index that has a large influence on the water absorption amount of the plant. As a result of finding that there is a possibility of grasping and further researching, the present invention has been completed.
That is, the present invention relates to at least the following inventions:
[1] A method for cultivating a plant using a solid medium that limits the root area,
(A) a step of setting the irrigation amount per solar radiation amount;
(B) a step of setting an upper limit value and a lower limit value of the soil moisture content of the solid medium;
(C) Measure the soil water content of the medium, compare the soil water content with the set upper and lower limits,
(I) If the soil moisture content exceeds the set upper limit, reduce the irrigation amount per solar radiation;
(Ii) If the soil moisture content is below the set lower limit value, increase the irrigation amount per solar radiation amount; and (iii) the soil moisture content is not less than the set lower limit value and the setting A step of adjusting the amount of irrigation by not increasing or decreasing the amount of irrigation per day when the amount of irrigation is below the upper limit, and (d) when the amount of solar radiation reaches a preset amount of irradiation. Providing the solid medium with an amount of water per irradiance adjusted by (c);
The said cultivation method containing.
[2] The method according to [1], further comprising setting the lower limit value higher so that the plant can be cultivated without applying water stress.
[3] The method according to [1] or [2], further including setting a lower limit value so as to allow cultivation under moisture stress.
[4] The method according to any one of the above [1] to [3], wherein the culture medium comprises water purification plant generated soil and coconut shells.
[5] The method according to [4] above, wherein the weight ratio between the water purification plant-generated soil and the coconut shell is 1: 0.8 to 1.2.
[6] (b) An upper limit value and a lower limit value of the pF value are set before the step of setting the upper limit value and the lower limit value of the soil water content of the solid medium, and the pF value of the medium soil and the soil water content The method according to any one of [1] to [5], further including a step of converting the set upper limit value and lower limit value of the pF value into an upper limit value and a lower limit value of soil moisture content from the correlation.
[7] In any one of [1] to [6], the soil water amount and the solar radiation amount are measured by a liquid supply controller including a soil moisture sensor and a solar radiation sensor, and the irrigation amount is controlled by the measured value. Description method.
[8] Supply for use in plant cultivation, comprising a soil moisture sensor and a solar radiation sensor, measuring soil moisture and solar radiation by the soil moisture sensor and solar radiation sensor, respectively, and controlling the irrigation amount by the measured value Liquid control machine.

本発明の方法は、日射量を測定し、日射に合わせた自動潅水を行うことと土壌水分量の測定を組み合わせたシステムにより、植物の吸水量の変動を視認する指標としての土壌水分量を目安に、日射量当りの潅水量を制御することに基礎を置くものである。日射量と植物の吸水量には高い相関関係があるため、日射量を指標とする日射比例式潅水制御を主な制御とすることで植物の生育に好適な潅水を行う。そして、植物体の生育段階の進行および管理作業などにより変動する植物の吸水量について、土壌水分量を測定することで視認し、日射量当りの潅水量を制御することにより、より好適な植物の生育条件を実現することが可能であることを本発明者らは見出したのである。
なお日射比例式潅水制御とは、日射量に比例して潅水量を増減させる、通常の潅水量を管理する方式である。
本発明の方法は、栽培する植物、作型にかかわらず最適な潅水管理を可能にするといった効果を奏する。
本発明の方法のうち前記下限値を低め又は高めに設定する工程を更に含む方法によれば、高収量又は高品質の植物を得ることができる。
The method of the present invention measures the amount of solar radiation, and by using a system that combines automatic irrigation in accordance with solar radiation and the measurement of soil moisture content, the soil moisture content as an index for visually observing fluctuations in water absorption by plants Moreover, it is based on controlling the amount of irrigation per solar radiation. Since there is a high correlation between the amount of solar radiation and the amount of water absorbed by plants, irrigation suitable for plant growth is performed by using the solar radiation proportional irrigation control with the amount of solar radiation as an index. Then, the water absorption amount of the plant that fluctuates due to the progress of the growth stage of the plant body and the management work is visually recognized by measuring the soil moisture content, and by controlling the irrigation amount per solar radiation amount, more suitable plant The present inventors have found that the growth conditions can be realized.
The solar radiation proportional irrigation control is a method for managing a normal irrigation amount that increases or decreases the irrigation amount in proportion to the solar radiation amount.
The method of the present invention has the effect of enabling optimal irrigation management regardless of the plant and cropping type to be cultivated.
According to the method further including the step of setting the lower limit value lower or higher in the method of the present invention, a high-yield or high-quality plant can be obtained.

本発明の方法の一態様を示す図である。It is a figure which shows the one aspect | mode of the method of this invention. 本発明の方法を実施するための装置の例を示す図である。FIG. 2 shows an example of an apparatus for carrying out the method of the present invention.

本発明は、上記のとおり、
根域を制限する固形培地を用いる植物の栽培方法であって、
(a)日射量当りの潅水量を設定する工程、
(b)前記固形培地の土壌水分量の上限値及び下限値を設定する工程、
(c)培地の土壌水分量を測定し、該土壌水分量と前記設定された上限値及び下限値とを比較し、
(i)土壌水分量が前記設定された上限値を越えている場合には前記日射量当りの潅水量を減らすこと、
(ii)土壌水分量が前記設定された下限値を下回っている場合には前記日射量当りの潅水量を増やすこと、及び
(iii)土壌水分量が前記設定された下限値以上であり前記設定された上限値以下である場合には前記日射量当りの潅水量を増減しないこと
により、前記潅水量を調節する工程、ならびに
(d)予め設定された日射量に日射が達したときに、工程(c)により調節された日射量当りの潅水量の水を前記固形培地に与える工程、
を含む前記栽培方法に関する。
As described above, the present invention
A method for cultivating a plant using a solid medium that limits the root area,
(A) a step of setting the irrigation amount per solar radiation amount;
(B) a step of setting an upper limit value and a lower limit value of the soil moisture content of the solid medium;
(C) Measure the soil water content of the medium, compare the soil water content with the set upper and lower limits,
(I) If the soil moisture content exceeds the set upper limit, reduce the irrigation amount per solar radiation;
(Ii) If the soil moisture content is below the set lower limit value, increase the irrigation amount per solar radiation amount; and (iii) the soil moisture content is not less than the set lower limit value and the setting A step of adjusting the amount of irrigation by not increasing or decreasing the amount of irrigation per day when the amount of irrigation is below the upper limit, and (d) when the amount of solar radiation reaches a preset amount of irradiation. Providing the solid medium with an amount of water per irradiance adjusted by (c);
It is related with the said cultivation method containing.

本発明における根域を制限する固形培地耕とは、各植物個体が植え付けられている培地が容器等により仕切られ、植物の根域が制限されている固形培地である。かかる固形培地にはポット中の培地や袋培地が典型的である。   In the present invention, solid medium cultivation that restricts the root area is a solid medium in which the medium in which each plant individual is planted is partitioned by a container or the like and the root area of the plant is limited. The solid medium is typically a medium in a pot or a bag medium.

工程(a)、すなわち日射量当りの潅水量を設定する工程は、日射量を測定し、測定された日射量を基に日射量に合わせた自動潅水を行うために必要な工程である。典型的には、日射量当りの潅水量は0〜100ml/MJである。
日射量の測定には日射センサーを用いてよい。日射センサーを用いることにより、より正確な日射量の測定が可能になり、日射量に応じた自動潅水制御も可能になる。
日射量当りの潅水量は、本技術分野における技術常識に鑑み株当りの量で表すことができる。本明細書において日射量当りの潅水量は「ml/MJ」の単位で表記されるところ、とくに断りがない限り当該潅水量は株当りの量を意味する。
The step (a), that is, the step of setting the irrigation amount per solar radiation amount is a step necessary for measuring the solar radiation amount and performing automatic watering according to the solar radiation amount based on the measured solar radiation amount. Typically, the amount of irrigation per solar radiation is 0 to 100 ml / MJ.
A solar sensor may be used to measure the amount of solar radiation. By using the solar radiation sensor, it is possible to measure the solar radiation amount more accurately, and automatic irrigation control according to the solar radiation amount is also possible.
The amount of irrigation per solar radiation can be expressed as the amount per strain in view of the common general knowledge in this technical field. In this specification, the amount of irrigation per solar radiation is expressed in units of “ml / MJ”. Unless otherwise specified, the amount of irrigation means the amount per strain.

工程(b)、すなわち前記固形培地の土壌水分量の上限値及び下限値を設定する工程における前記上限値及び下限値は、前記設定された日射量当りの潅水量を増減して調節するための、続く工程(c)を行うために必要な値である。
用いられる培地により設定する土壌水分量は異なるため、pF値との相関により設定値を決定することは好ましい。pF値の設定には土壌pF測定器のような機材を用いることができる。
植物が正常に生育する土壌水分量は培地の種類により変動する一方、pFについては一般にpF1.8〜3.0程度である。pFについてのかかる範囲を、用いられる培地について換算して土壌水分量の上限値と下限値を決定することができる。
ある培地においてはpF1.8〜3.0は土壌水分量として12〜40%に相当する。
The upper and lower limits in the step (b), that is, the step of setting the upper limit and lower limit of the soil moisture content of the solid medium are for adjusting the amount of irrigation per the amount of solar radiation set. , A value necessary for performing the subsequent step (c).
Since the amount of soil moisture set varies depending on the medium used, it is preferable to determine the set value based on the correlation with the pF value. Equipment such as a soil pF measuring instrument can be used to set the pF value.
While the amount of soil moisture at which plants normally grow varies depending on the type of medium, pF is generally about pF 1.8 to 3.0. Such a range for pF can be converted for the medium used to determine the upper and lower limits of soil moisture.
In a certain medium, pF1.8-3.0 corresponds to 12-40% as soil water content.

土壌水分量の上限値及び下限値は植物の種類や栽培における主たる目的(収量増や品質の改変等)に応じて変えてよいところ、例えばトマトにおいては、上限値としては約11%〜約24%であり、下限値としては約8%〜約17%とし、これらを組み合わせてよい。
上限値と下限値の差、すなわち許容される土壌水分量の範囲も限定されず、約3%〜約7%であってよい。
なお本明細書における「%」の表記は、とくに断りがない限り体積パーセントを表す。
The upper limit and lower limit of the soil moisture content may be changed according to the type of plant and the main purpose of cultivation (yield increase, quality modification, etc.). For example, in tomato, the upper limit is about 11% to about 24. The lower limit is about 8% to about 17%, and these may be combined.
The difference between the upper limit value and the lower limit value, that is, the allowable range of soil moisture content is not limited, and may be about 3% to about 7%.
In this specification, “%” represents volume percent unless otherwise specified.

工程(c)、すなわち培地の土壌水分量を測定し、該土壌水分量と前記設定された上限値及び下限値とを比較し、
(i)土壌水分量が前記設定された上限値を越えている場合には前記日射量当りの潅水量を減らすこと、
(ii)土壌水分量が前記設定された下限値を下回っている場合には前記日射量当りの潅水量を増やすこと、及び
(iii)土壌水分量が前記設定された下限値以上であり前記設定された上限値以下である場合には前記日射量当りの潅水量を増減しないこと
により、前記潅水量を調節する工程は、土壌水分量を目安に日射量当りの潅水量を制御するために必要な工程である。
Step (c), that is, measuring the soil moisture content of the medium, comparing the soil moisture content and the set upper limit value and lower limit value,
(I) If the soil moisture content exceeds the set upper limit, reduce the irrigation amount per solar radiation;
(Ii) If the soil moisture content is below the set lower limit value, increase the irrigation amount per solar radiation amount; and (iii) the soil moisture content is not less than the set lower limit value and the setting The step of adjusting the amount of irrigation by not increasing or decreasing the amount of irrigation per day when the amount is less than the upper limit is required to control the amount of irrigation per day using the amount of soil moisture as a guide. It is a difficult process.

本工程において、潅水量は以下のように制御される:
(1)土壌水分量が下限値以上かつ上限値未満の場合は、日射量が一定値に達したら自動潅水を行う。
(2)土壌水分量が上限値以上の場合、日射量当りの潅水量設定値を減らす(場合により日射量当りの自動潅水を止めてもよい。)。
(3)土壌水分量が下限値未満の場合、日射量当りの潅水量設定値を増やす。
また工程(c)において、下限値を高めあるいは低めに設定することにより、より高い収量あるいはより糖度の高い収穫物の栽培が可能になる。すなわち、下限値を高めに設定することにより(高水分管理)水分ストレスをかけずに栽培でき、収量を高めることができ、一方下限値を低めに設定し(低水分管理)水分ストレスをかけて栽培することにより、収穫物(果実)の糖度が高くなる。このように本発明の方法によれば、収量又は収穫物の質のコントロールも可能である。よってかかる観点により本発明を用いて達成される目的とそのための方策は、下記表1のようにまとめることができる:
In this process, the amount of irrigation is controlled as follows:
(1) When the amount of soil moisture is not less than the lower limit and less than the upper limit, automatic watering is performed when the amount of solar radiation reaches a certain value.
(2) When the soil moisture content is equal to or higher than the upper limit value, the irrigation amount setting value per solar radiation amount is reduced (in some cases, automatic irrigation per solar radiation amount may be stopped).
(3) If the soil moisture content is less than the lower limit, increase the irrigation amount set value per solar radiation.
Further, in the step (c), by setting the lower limit value to be higher or lower, it becomes possible to cultivate a crop with a higher yield or a higher sugar content. That is, by setting the lower limit value higher (high moisture management), you can grow without applying water stress and increase the yield, while setting the lower limit value lower (low moisture management) and applying water stress Cultivation increases the sugar content of the harvest (fruit). Thus, according to the method of the present invention, it is possible to control the yield or quality of the harvest. Thus, the objectives achieved by using the present invention from this viewpoint and the strategies therefor can be summarized as shown in Table 1 below:

上記したある培地においてはpF1.8〜3.0は土壌水分量として12〜40%に相当するところ、この場合の低水分管理及び高水分管理における土壌水分量は、それぞれ7〜12%及び12〜40%となる。高水分管理においてさらに土壌水分量を12〜23%とすることは、肥料や水のロスを低減できるため好ましい。   In a certain medium described above, pF1.8 to 3.0 corresponds to 12 to 40% as the soil moisture content. In this case, the soil moisture content in the low moisture management and the high moisture management is 7 to 12% and 12 respectively. ~ 40%. In high moisture management, it is preferable that the soil moisture content be 12 to 23% because loss of fertilizer and water can be reduced.

高水分管理及び低水分管理における土壌水分量は植物の種類により変えてよいところ、例えばある培地を用いたトマトの栽培においては、下限値をそれぞれ約15%及び約10%とし、許容される土壌水分量の範囲は約15〜約20%及び約10〜約15%とすることは好ましい。また粉場合の土壌水分量とpF値との関係として、土壌水分量15〜20%はpF2.5〜2.8程度に、10〜15%はpF2.8〜3.2程度に、それぞれ相当する。   The amount of soil moisture in high moisture management and low moisture management may vary depending on the type of plant. For example, in the cultivation of tomatoes using a certain medium, the lower limit values are about 15% and about 10%, respectively, and acceptable soil. It is preferred that the water content ranges from about 15 to about 20% and from about 10 to about 15%. As the relationship between the soil water content and the pF value in the case of powder, the soil water content of 15-20% corresponds to about pF 2.5-2.8, and 10-15% corresponds to about pF 2.8-3.2, respectively. To do.

また潅水量の増減の割合(量)は限定されず、土壌水分量をモニタリングしながら決定すればよい。
定植時に固形培地から廃液が出るまで手動で潅水した場合、定植直後からの一定期間においては日射量当たりの潅水を行わなくてもよく(すなわち潅水量は0ml/MJ)、この場合、定植時において培地が保持できない量の水を与えられるため、通常土壌水分量は40%以上であり、pF1.8以下になる。
植物の生育ステージに応じて日射量当たりの潅水量を増やしていくことは好ましい。日射量当たりの潅水量を増やす割合(量)は、典型的には一回当り約5〜約40ml/MJである。例えば、土壌水分量の測定値に基づき、移植後約1〜3週間後に潅水量を約8〜約16ml/MJ増やし、その後は適宜日射量当たりの潅水量を増やしていく。
日射量当たりの潅水量の増加量は、測定された土壌水分量に応じて適切な増加量を判断して変動させてよく、例えば約5〜約10ml/MJ刻み、約12〜約16ml/MJ刻み又は約33ml/MJ刻みで増やしてよい。
日射比例式給液制御機を用いる場合、日射量当たりの潅水量は手動で変更して当該潅水量を設定してよい。
Moreover, the rate (amount) of increase / decrease in the amount of irrigation is not limited, and may be determined while monitoring the soil moisture content.
When manually irrigating until the waste liquid comes out from the solid medium at the time of planting, it is not necessary to perform irrigation per day for a certain period immediately after planting (that is, the irrigation amount is 0 ml / MJ). Since the amount of water that the medium cannot hold is given, the soil water content is usually 40% or more and pF1.8 or less.
It is preferable to increase the amount of irrigation per solar radiation depending on the growth stage of the plant. The rate (amount) of increasing the amount of irrigation per solar radiation is typically about 5 to about 40 ml / MJ per time. For example, the irrigation amount is increased by about 8 to about 16 ml / MJ about 1 to 3 weeks after transplanting based on the measured value of the soil moisture content, and thereafter the irrigation amount per solar irradiation amount is appropriately increased.
The amount of increase in irrigation amount per day of solar radiation may be varied by determining an appropriate amount of increase according to the measured soil water content, for example, in increments of about 5 to about 10 ml / MJ, about 12 to about 16 ml / MJ. It may be increased in increments of about 33 ml / MJ.
When using the solar radiation proportional liquid supply controller, the irrigation amount per solar radiation amount may be manually changed to set the irrigation amount.

土壌水分量の測定には、誘電率型土壌水分センサーのような機材を用いることは好ましい。このような機材により、培地の辺縁部周辺だけでなく、より深奥部の土壌水分量を測定することは好ましい。   For measurement of the soil moisture content, it is preferable to use equipment such as a dielectric constant type soil moisture sensor. With such equipment, it is preferable to measure the soil moisture content not only in the periphery of the culture medium but also in the deeper part.

工程(d)、すなわち予め設定された日射量に日射が達したときに、工程(c)により調節された日射量当りの潅水量の水を前記固形培地に与える工程は、所定の潅水量の水を実際に潅水する工程である。かかる潅水には、自動潅水装置が好適に用いられる。
本発明の方法においては、工程(d)が一作の間に2回以上行われ、同工程は自動管理により、あらかじめ規定されたスケジュールに従って行われる。
潅水を開始する日及び間隔は適宜決定してよく、例えば開始は植物を定植してから1週間後、間隔は日射量が1MJ増加する毎にである。
また、日射量当りの潅水量の調節を開始する日及び間隔は適宜決定してよく、当該調節を開始する日は、例えば植物を定植してから1週間後であり、間隔は1週間毎である。
In the step (d), that is, when the solar radiation reaches a preset amount of solar radiation, the step of supplying the solid medium with the amount of water per unit of solar radiation adjusted in the step (c) includes the step of: It is a process of actually irrigating water. For such irrigation, an automatic irrigation apparatus is preferably used.
In the method of the present invention, the step (d) is performed twice or more in one work, and the step is performed according to a predetermined schedule by automatic management.
The date and interval at which irrigation is started may be appropriately determined. For example, the start is one week after planting the plant, and the interval is every 1 MJ increase in solar radiation.
In addition, the date and interval for starting the adjustment of the irrigation amount per solar radiation amount may be appropriately determined. The date for starting the adjustment is, for example, one week after planting, and the interval is set every week. is there.

本発明の方法を適用し得る植物の種類は限定されず、トマト、ナス、キュウリ、イチゴ、メロンといった果菜類、コマツナ、ホウレンソウ、キャベツ、レタスといった葉菜類、ダイコン、ニンジン、ジャガイモ、サツマイモといった根菜類、ミカン、ブドウ、イチジク、ブルーベリーといった果樹が挙げられる。
本発明の方法を適用し得る培地の種類も限定されず、浄水場発生土とやし殻を含むものロックウール、パーライト、砂、れきなどが挙げられる。本発明の方法における培地として浄水場発生土とやし殻を含むものは好ましく、浄水場発生土とやし殻からなる本発明の方法における培地はより好ましい。また、浄水場発生土とやし殻の重量比が1:0.8〜1.2であるものは一層好ましく、同重量比が1:1であるものは一層より好ましい。
The types of plants to which the method of the present invention can be applied are not limited, fruit vegetables such as tomato, eggplant, cucumber, strawberry and melon, leaf vegetables such as komatsuna, spinach, cabbage and lettuce, root vegetables such as radish, carrot, potato and sweet potato, Fruit trees such as mandarin oranges, grapes, figs and blueberries.
The kind of culture medium to which the method of the present invention can be applied is not limited, and examples include rock wool, pearlite, sand, rubble and the like including water purification plant generated soil and coconut shells. As the medium in the method of the present invention, a medium containing water purification plant generated soil and coconut husk is preferable, and the medium in the method of the present invention consisting of water purification plant generated soil and coconut husk is more preferable. Moreover, the thing whose weight ratio of water treatment plant generation soil and palm husk is 1: 0.8-1.2 is still more preferable, and the thing whose weight ratio is 1: 1 is still more preferable.

本発明の方法は、例えば土壌水分センサー1及び日射センサー3を用いて好適に実施される。該土壌水分センサー1及び日射センサー3のそれぞれにより土壌水分量及び日射量を測定し、該測定値により潅水量を制御する(図1)。
日射センサー3は日射比例式給液制御機2に接続され、日射センサー3により測定される日射量の測定値に応じて、給液配管5に設けられた電磁弁4の開閉を行い、植物体7が植えつけられた培地に給液すなわち潅水を行う。土壌水分センサー1は土壌水分記録計2’に接続され、土壌水分量をモニタリングしながら、日射量あたりの潅水量を変更するために用いられる(図1)。給液の割合(速度)は限定されないところ、例えば2L/hである。ドリッパー6を給液配管5に設け、給液の割合(速度)を調節してよい。
本発明により、土壌水分センサー1及び日射センサー3を具備し、該土壌水分センサー1及び日射センサー3のそれぞれにより土壌水分量及び日射量を測定し、該測定値により潅水量を制御する、植物の栽培に用いられる給液制御機8も提供される(図2)。
The method of the present invention is suitably implemented using, for example, the soil moisture sensor 1 and the solar radiation sensor 3. The soil moisture sensor 1 and the solar radiation sensor 3 measure the soil moisture content and the solar radiation amount, respectively, and the irrigation amount is controlled by the measured values (FIG. 1).
The solar radiation sensor 3 is connected to the solar radiation proportional liquid supply controller 2, and opens and closes the electromagnetic valve 4 provided in the liquid supply pipe 5 according to the measured value of the solar radiation amount measured by the solar radiation sensor 3. The medium in which 7 is planted is supplied or irrigated. The soil moisture sensor 1 is connected to a soil moisture recorder 2 'and is used to change the irrigation amount per solar radiation while monitoring the soil moisture amount (FIG. 1). The ratio (speed) of liquid supply is not limited, and is, for example, 2 L / h. A dripper 6 may be provided in the liquid supply pipe 5 to adjust the ratio (speed) of the liquid supply.
According to the present invention, a soil moisture sensor 1 and a solar radiation sensor 3 are provided, the soil moisture sensor 1 and the solar radiation sensor 3 measure the soil moisture content and the solar radiation amount, respectively, and the irrigation amount is controlled by the measured values. A liquid supply controller 8 used for cultivation is also provided (FIG. 2).

本発明について、実施例を参照しながらさらに説明する。本発明は、いかなる意味においても当該実施例に限定されるものではない。   The present invention will be further described with reference to examples. The present invention is not limited to the examples in any way.

(実施例1)
[目的]
本発明の栽培方法の効果を検証する。
Example 1
[the purpose]
The effect of the cultivation method of the present invention is verified.

[材料と方法]
使用する培地のpF値と土壌水分との相関を多容量土壌pF測定器(大起理化工業製)および土壌水分センサーを用いて求めた後、土壌水分センサーを設置した培地にて、土壌水分を測定しながらトマトを栽培した。栽培試験区は表2のとおりであった。
[Materials and methods]
After determining the correlation between the pF value of the medium to be used and the soil moisture using a multi-capacity soil pF measuring device (manufactured by Daikai Chemical Co., Ltd.) and a soil moisture sensor, Tomato was grown while measuring. The cultivation test areas were as shown in Table 2.

試験の概要は以下のとおりであった。
1.試験期間
2013年7月30日〜12月24日
播種日:7月30日 定植日:9月10日 終了日:12月24日
2.試験場所
茨城県つくば市のハウス内
3.供試資材
・大玉トマト「桃太郎ヨーク」(タキイ種苗製)
・20L袋培地(スミリン農産工業製)
・土壌水分センサー5TE(デカゴン製)
・データロガーEm50(デカゴン製)
・日射比例式給液制御機(メーコー精機製)
・液肥混入機(三秀工業製)
・大塚ハウスA処方液肥(大塚アグリテクノ製)
4.トマト栽培方法
・「桃太郎ヨーク」を3.5寸ポットにて育苗した。
・20L袋培地に4株ずつ定植し、各試験区11袋で反復栽培を行った。
・株間が30cmとなるように、左右振り分け誘引した。条間は1.8mであった。
・10a当たりの植え付け本数は約2,600株であった。
・3段摘心栽培を行い、1段当たり5果となるように摘果した。
・袋培地に土壌水分センサーを埋め込み、データロガーで土壌水分データを集積した。
・潅水は日射比例式給液制御機により、日射量に応じて設定された潅水量をベースとして、土壌水分量をモニタリングしながら潅水量を適宜変更して行った。
より具体的には、日射量当たりの潅水量は、(A)約8ml/MJ刻みで8,16,24,33ml/MJ、(B)約16ml/MJ刻みで50,66ml/MJ、又は(C)約33ml/MJ刻みで100,133ml/MJ〜と、測定された土壌水分量に応じて適切な増加量を判断し、日射比例式給液制御機における設定を手動で変更して潅水量を調節した。
なお、定植直後からの一定期間(1週間)においては日射量当たりの潅水を行わず(すなわち潅水量は0ml/MJ)、定植時に固形培地から廃液が出るまで手動で潅水した(表3中の9月10日に対応)。この時点において、培地が保持できない量の水を与えたため、土壌水分量は40%以上であり、pF1.8以下になっている。
その後、定植約1週間後に日射量当たりの潅水量を8ml/MJにした(表3中の9月17日に対応。)
さらに9月24日に土壌水分量を測定した結果、低水分試験区は7〜12%に収まっていたので潅水量を変えなかった。高水分試験区については、土壌水分量は設定された下限値である16%を下回っていたため、潅水量を増やした。
その後も同様な操作により、土壌水分量を適切に管理するために適宜潅水量を変更した。
・施肥は液肥混入機を用い、大塚ハウスA処方1/2単位となるように液肥を希釈し施した。
・トマトの生育による土壌水分量の変動に伴い、土壌水分設定値の範囲内に収まるように、日射量当たりの潅水量を0〜100ml/MJの範囲で増減させて調節した。潅水量の増減の目安は、本技術分野における通常の方式に準じて行った。
なお土壌水分量の測定は定植2週間後に開始し、3日〜約1ヶ月おきに行った。
The outline of the test was as follows.
1. Test period July 30-December 24, 2013 Sowing date: July 30 Planting date: September 10 End date: December 24 Test place Inside a house in Tsukuba City, Ibaraki Prefecture 3. Test material, large tomato "Momotaro York" (Takii seedling)
・ 20L bag culture medium (Sumirin Agricultural Products)
・ Soil moisture sensor 5TE (made by Decagon)
・ Data logger Em50 (made by Decagon)
・ Solar radiation proportional liquid supply control machine (made by Meiko Seiki)
・ Liquid fertilizer mixing machine (manufactured by Sanshu Industry)
・ Otsuka House A prescription liquid fertilizer (Otsuka Agritechno)
4). Tomato cultivation method “Momotaro York” was grown in a 3.5 inch pot.
-4 strains were planted in 20L bag culture medium, and repeated cultivation was performed in 11 bags in each test area.
-Invited left and right distribution so that the distance between the stocks was 30 cm. The interval was 1.8m.
-The planting number per 10a was about 2,600.
-Three-stage pinching cultivation was performed, and fruit was picked so that there were 5 fruits per stage.
-A soil moisture sensor was embedded in the bag medium, and soil moisture data was collected using a data logger.
-Irrigation was performed by appropriately changing the irrigation amount while monitoring the soil moisture content, based on the irrigation amount set according to the solar radiation amount, with a solar proportional liquid supply controller.
More specifically, the irrigation amount per insolation amount is (A) 8, 16, 24, 33 ml / MJ at about 8 ml / MJ, (B) 50, 66 ml / MJ at about 16 ml / MJ, or ( C) 100, 133 ml / MJ ~ in about 33 ml / MJ increments, determine the appropriate amount of increase according to the measured soil water content, manually change the setting in the solar radiation proportional liquid supply controller, irrigation amount Adjusted.
In addition, irrigation per day was not performed for a certain period (one week) immediately after planting (that is, the irrigation amount was 0 ml / MJ), and irrigation was manually performed until the waste liquid came out from the solid medium at the time of planting (in Table 3). (September 10) At this time, the amount of water that the culture medium cannot hold was given, so the soil moisture content was 40% or more and pF1.8 or less.
Thereafter, the irrigation amount per day of solar radiation was set to 8 ml / MJ about one week after planting (corresponding to September 17 in Table 3).
Furthermore, as a result of measuring the soil water content on September 24, the low water test area was within 7 to 12%, so the irrigation amount was not changed. In the high moisture test section, the amount of irrigation was increased because the soil moisture content was below the set lower limit of 16%.
Thereafter, the irrigation amount was appropriately changed in order to appropriately manage the soil moisture content by the same operation.
-The fertilizer was applied by diluting the liquid fertilizer using a liquid fertilizer mixing machine so as to be 1/2 unit of Otsuka House A prescription.
-As the soil moisture content changed due to the growth of tomatoes, the amount of irrigation per day was adjusted by increasing / decreasing the amount within the range of 0-100 ml / MJ so as to be within the range of the soil moisture setting value. The standard of increase / decrease in the amount of irrigation was performed in accordance with a normal method in this technical field.
The soil moisture content was measured 2 weeks after planting and was carried out every 3 days to about every other month.

[結果]
1.潅水量の調節・推移
各試験区における潅水量の推移を表3に示した。9月24日以降、低水分試験区においては高水分試験区と比較して、日射量当たりの潅水量は少ない量に調節された(表3)。
[result]
1. Adjustment and transition of irrigation amount The transition of irrigation amount in each test section is shown in Table 3. Since September 24, the amount of irrigation per solar radiation was adjusted to be lower in the low moisture test group than in the high moisture test group (Table 3).

2.土壌水分量の推移
土壌水分量が各試験区に設定した値の範囲を下回った場合は潅水量を増やした。
10月29日以降の土壌水分量の値は、各試験区共に設定した値の範囲で推移した(表4)。
2. Change in soil moisture The irrigation amount was increased when the soil moisture was below the range of values set for each test section.
The value of soil moisture after October 29 changed within the range of values set in each test section (Table 4).

3.植物体の生育
・低水分試験区においては、水分ストレスがかかることにより、茎径が細く葉長が短くなった(表5)。
3. In the growth / low moisture test section of the plant body, due to water stress, the stem diameter was narrow and the leaf length was shortened (Table 5).

4.果実品質と収量
・低水分試験区においてはトマトの糖度がより高く、高糖度トマトを生産できることが確認された(表6)。
・高水分試験においては、収量がより高く、かつ糖度約6%の食味も良好なトマトを生産できることが確認された。
4). In the fruit quality and yield / low moisture test section, it was confirmed that the tomato has a higher sugar content and can produce a high sugar content tomato (Table 6).
In the high moisture test, it was confirmed that tomatoes with higher yield and good taste with a sugar content of about 6% can be produced.

[考察]
以上の結果から、本発明の栽培方法によれば、従来のような高度で煩雑な潅水管理を行うことなく高糖度トマトを生産できることが確認された。また本発明によれば、十分な糖度のトマトをより高い収量で生産できることも明らかになった。
したがって、本発明の方法は、作物の質・量の容易かつ確実なコントロールを可能ならしめる顕著な効果を奏するものである。すなわち本発明の方法は、高糖度トマトを生産するための、一部の篤農家の経験と勘に基づくこまめな潅水管理が必要な従来の方法とは著しい対照をなすものである。
[Discussion]
From the above results, according to the cultivation method of the present invention, it was confirmed that a high sugar content tomato can be produced without performing conventional and complicated watering management. Moreover, according to this invention, it became clear that tomato of sufficient sugar content can be produced with a higher yield.
Therefore, the method of the present invention has a remarkable effect that enables easy and reliable control of the quality and quantity of crops. In other words, the method of the present invention is in sharp contrast to conventional methods that require frequent irrigation management based on the experience and intuition of some serious farmers to produce high sugar content tomatoes.

本発明によれば、固形培地を用いる植物の栽培方法として、植物の生育に好適な潅水量により潅水を行うことができる栽培方法が提供される。
したがって、本発明は、植物や花卉類の生産業及び関連産業の発展に寄与するところ大である。
ADVANTAGE OF THE INVENTION According to this invention, the cultivation method which can perform irrigation by the amount of irrigation suitable for plant growth as a cultivation method of the plant using a solid medium is provided.
Therefore, the present invention greatly contributes to the development of plants and flower production industries and related industries.

1:土壌水分センサー
2:日射比例式給液制御機
2’: 土壌水分記録計
3:日射センサー
4:電磁弁
5:給液配管
6:ドリッパー
7:植物体
8:給液制御機
1: Soil moisture sensor 2: Solar radiation proportional liquid supply controller 2 ': Soil moisture recorder 3: Solar radiation sensor 4: Solenoid valve 5: Liquid supply pipe 6: Dripper 7: Plant 8: Liquid supply controller

Claims (8)

根域を制限する固形培地を用いる植物の栽培方法であって、
(a)日射量当りの潅水量を設定する工程、
(b)前記固形培地の土壌水分量の上限値及び下限値を設定する工程、
(c)培地の土壌水分量を測定し、該土壌水分量と前記設定された上限値及び下限値とを比較し、
(i)土壌水分量が前記設定された上限値を越えている場合には前記日射量当りの潅水量を減らすこと、
(ii)土壌水分量が前記設定された下限値を下回っている場合には前記日射量当りの潅水量を増やすこと、及び
(iii)土壌水分量が前記設定された下限値以上であり前記設定された上限値以下である場合には前記日射量当りの潅水量を増減しないこと
により、前記潅水量を調節する工程、ならびに
(d)予め設定された日射量に日射が達したときに、工程(c)により調節された日射量当りの潅水量の水を前記固形培地に与える工程、
を含む前記栽培方法。
A method for cultivating a plant using a solid medium that limits the root area,
(A) a step of setting the irrigation amount per solar radiation amount;
(B) a step of setting an upper limit value and a lower limit value of the soil moisture content of the solid medium;
(C) Measure the soil water content of the medium, compare the soil water content with the set upper and lower limits,
(I) If the soil moisture content exceeds the set upper limit, reduce the irrigation amount per solar radiation;
(Ii) If the soil moisture content is below the set lower limit value, increase the irrigation amount per solar radiation amount; and (iii) the soil moisture content is not less than the set lower limit value and the setting A step of adjusting the amount of irrigation by not increasing or decreasing the amount of irrigation per day when the amount of irrigation is below the upper limit, and (d) when the amount of solar radiation reaches a preset amount of irradiation. Providing the solid medium with an amount of water per irradiance adjusted by (c);
The said cultivation method containing.
水分ストレスをかけずに栽培できるように、下限値を高めに設定することをさらに含む請求項1に記載の方法。   The method according to claim 1, further comprising setting the lower limit value higher so that the plant can be cultivated without applying water stress. 水分ストレスをかけて栽培できるように、下限値を低めに設定することをさらに含む請求項1又は2に記載の方法。   The method according to claim 1 or 2, further comprising setting the lower limit value lower so that cultivation can be performed with moisture stress. 培地が浄水場発生土及びやし殻を含む、請求項1〜3のいずれかに記載の方法。   The method in any one of Claims 1-3 in which a culture medium contains a water purification plant generation soil and a coconut shell. 浄水場発生土とやし殻の重量比が1:0.8〜1.2である請求項4に記載の方法。   The method according to claim 4, wherein the weight ratio of water purification plant-generated soil to palm shell is 1: 0.8 to 1.2. (b)前記固形培地の土壌水分量の上限値及び下限値を設定する工程の前にpF値の上限値及び下限値を設定し、培地の土壌のpF値と土壌水分量との相関から前記設定されたpF値の上限値及び下限値を土壌水分量の上限値及び下限値に換算する工程をさらに含む、請求項1〜5のいずれかに記載方法。   (B) The upper limit value and lower limit value of the pF value are set before the step of setting the upper limit value and the lower limit value of the soil moisture content of the solid medium, and the correlation between the pF value of the soil of the medium and the soil moisture content is as described above. The method in any one of Claims 1-5 which further includes the process of converting the set upper limit and lower limit of pF value into the upper limit and lower limit of soil moisture content. 土壌水分センサー及び日射センサーを具備する給液制御機により、土壌水分量及び日射量を測定し、該測定値により潅水量を制御する、請求項1〜6のいずれかに記載方法。   The method according to any one of claims 1 to 6, wherein a soil water amount and a solar radiation amount are measured by a liquid supply controller equipped with a soil moisture sensor and a solar radiation sensor, and the irrigation amount is controlled by the measured value. 土壌水分センサー及び日射センサーを具備し、該土壌水分センサー及び日射センサーのそれぞれにより土壌水分量及び日射量を測定し、該測定値により潅水量を制御する、植物の栽培に用いられる給液制御機。   A liquid supply controller used for plant cultivation, comprising a soil moisture sensor and a solar radiation sensor, measuring soil moisture and solar radiation by each of the soil moisture sensor and solar radiation sensor, and controlling the irrigation amount by the measured value .
JP2014258312A 2014-12-22 2014-12-22 Cultivation method using solid culture medium Pending JP2016116484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014258312A JP2016116484A (en) 2014-12-22 2014-12-22 Cultivation method using solid culture medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014258312A JP2016116484A (en) 2014-12-22 2014-12-22 Cultivation method using solid culture medium

Publications (1)

Publication Number Publication Date
JP2016116484A true JP2016116484A (en) 2016-06-30

Family

ID=56242517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014258312A Pending JP2016116484A (en) 2014-12-22 2014-12-22 Cultivation method using solid culture medium

Country Status (1)

Country Link
JP (1) JP2016116484A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189639A (en) * 1992-02-10 1994-07-12 Yanmar Agricult Equip Co Ltd Sprinkle-controlling apparatus for raising seedling machine
JP2001186824A (en) * 2000-01-05 2001-07-10 Kohshin Rubber Co Ltd Method for controlling application of water and fertilizer for soil hydroponics and device therefor
JP2002330641A (en) * 2001-05-07 2002-11-19 Matsushita Refrig Co Ltd Soil environment control system
JP2003092924A (en) * 2001-09-21 2003-04-02 Sumitomo Forestry Co Ltd Method for cultivating plant by hydroponics
JP2011092152A (en) * 2009-11-02 2011-05-12 Shimane Prefecture Watering apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189639A (en) * 1992-02-10 1994-07-12 Yanmar Agricult Equip Co Ltd Sprinkle-controlling apparatus for raising seedling machine
JP2001186824A (en) * 2000-01-05 2001-07-10 Kohshin Rubber Co Ltd Method for controlling application of water and fertilizer for soil hydroponics and device therefor
JP2002330641A (en) * 2001-05-07 2002-11-19 Matsushita Refrig Co Ltd Soil environment control system
JP2003092924A (en) * 2001-09-21 2003-04-02 Sumitomo Forestry Co Ltd Method for cultivating plant by hydroponics
JP2011092152A (en) * 2009-11-02 2011-05-12 Shimane Prefecture Watering apparatus

Similar Documents

Publication Publication Date Title
Muñoz-Carpena et al. Field comparison of tensiometer and granular matrix sensor automatic drip irrigation on tomato
US10188051B2 (en) Method for controlling irrigation
JP4982823B2 (en) Water management method in fruit cultivation
Coolong et al. Evaluation of irrigation threshold and duration for tomato grown in a silt loam soil
JP6751626B2 (en) How to grow cuttings of forest trees
JP2016116484A (en) Cultivation method using solid culture medium
Fuentes et al. Yield production and water use efficiency under furrow and drip irrigation systems for watermelon in South Texas
JP2005204662A (en) Method for hilling type rhizosphere controlling cultivation of fruit tree
Shirgure Effect of pulse irrigation scheduling with hybrid station controller on fruit yield and quality of Nagpur mandarin (Citrus reticulate Blanco).
JP6757025B1 (en) Irrigation fertilization system and citrus cultivation method using it
CN104351002A (en) Water and fertilizer management method for rubber tree container seedling
RU2359447C2 (en) Method of under glass growing of seedling suitable for mechanised planting in open soil
Akin et al. Water use of walnut trees under different irrigation regimes
Egea et al. Optimization of an automatic irrigation system for precision irrigation of blueberries grown in sandy soil
Akmal et al. The Relationship between Transpiration and Calcium Fertilization on Mangosteen (Garcinia mangostana L.) Seedlings
Korotkov et al. Influence of planting time and types of the planting material on the survivability and productivity of common hop (Humulus lupulus L.)
Sagar et al. Effect of Different Plant Densities and Mulches on Growth and Yield of Mango (Mangifera indica L.) cv. Alphonso
Nirala et al. Fertigation effect on carnation under polyhouse in North Bihar Agro-Climatic Conditions
Ray et al. Design and Development of Automatic Universal Chain Type Vegetable Transplanter
JP2014236691A (en) Crop growth system
Treder et al. Studies on the effect of growing medium and monopotassium phosphate on rooting and quality of strawberry potted plantlets
Ahmad et al. A study on the growth of Gorontalo local upland rice Ponda merah accession against drouhgt and shade stresses
Lepaja et al. Vegetative and fruiting response of'Polka'raspberry plants to partial rootzone drying (PRD), mulching, and their combinations
Sefo et al. Growth parameters of tomato transplants cultivated by the floating containers technology.
Kim et al. Evaluation of Irrigation System by Balance and Integrated Solar Radiation on Fruit Quality of Muskmelon in a Closed Perlite Culture System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181109