JP2016115821A5 - - Google Patents

Download PDF

Info

Publication number
JP2016115821A5
JP2016115821A5 JP2014253611A JP2014253611A JP2016115821A5 JP 2016115821 A5 JP2016115821 A5 JP 2016115821A5 JP 2014253611 A JP2014253611 A JP 2014253611A JP 2014253611 A JP2014253611 A JP 2014253611A JP 2016115821 A5 JP2016115821 A5 JP 2016115821A5
Authority
JP
Japan
Prior art keywords
copper
plate
copper plate
oriented
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014253611A
Other languages
Japanese (ja)
Other versions
JP6415297B2 (en
JP2016115821A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2014253611A priority Critical patent/JP6415297B2/en
Priority claimed from JP2014253611A external-priority patent/JP6415297B2/en
Publication of JP2016115821A publication Critical patent/JP2016115821A/en
Publication of JP2016115821A5 publication Critical patent/JP2016115821A5/ja
Application granted granted Critical
Publication of JP6415297B2 publication Critical patent/JP6415297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

更に、直接接合法で作製した銅張セラミックス回路基板の場合、ろう付で接合した回路基板のようにAg−Cu−Ti層のような金属ろう接合層が存在しない。これらの層は 熱応力の緩衝層としての働きが期待できる。また、ポリイミドと銅箔を張り合わせた可撓性銅張積層回路基板では銅の上に電気めっき等によって銅の凹凸を設ける粗化処理がおこなわれ、界面での機械的、熱的性質の急峻な変化を緩和し、アンカー効果による接合強度の向上が図られている。これに対して直接接合法で接合された銅張セラミックス回路基板では、銅板とセラミックス板が直接、あるいはごく薄い銅酸化物層を介して接合される。したがって、セラミックスと銅との界面での熱伝導、すなわち放熱性では優れているが、接合界面での応力の緩和をするためには、使用するセラミックス板、あるいは銅板で何らかの措置を講じる必要があった。 Further, when the copper-clad ceramic circuit substrate manufactured in direct bonding method, brazing metal bonding layer, such as A g-Cu-Ti layer as the circuit board joined by brazing is not present. These layers can be expected to act as thermal stress buffer layers. In addition, a flexible copper-clad laminated circuit board in which polyimide and copper foil are laminated is subjected to a roughening process in which copper irregularities are formed on the copper by electroplating, etc., and the mechanical and thermal properties at the interface are steep. The change is mitigated and the joint strength is improved by the anchor effect. On the other hand, in the copper-clad ceramic circuit board bonded by the direct bonding method, the copper plate and the ceramic plate are bonded directly or via a very thin copper oxide layer. Therefore, although heat conduction at the interface between ceramic and copper, that is, heat dissipation, is excellent, it is necessary to take some measures on the ceramic plate or copper plate to be used in order to relieve stress at the bonding interface. It was.

また、本発明の銅張セラミックス回路基板上の銅板は、銅板面内で力学的な異方性を有するので、銅張セラミックス回路基板界面において最も大きな応力発生する方向と銅板の面内方向で軟質にふるまう方向を合わせることで、更に信頼性の高い銅張セラミックス回路基板が得られる。一般的に接合面における最大応力は銅回路の角部の対角線方向になることから、この方向と銅板の面内方向で軟質にふるまう方向を合わせることで高い効果が得られる。 In addition, since the copper plate on the copper-clad ceramic circuit board of the present invention has mechanical anisotropy in the copper plate surface, the direction in which the largest stress is generated at the interface of the copper-clad ceramic circuit substrate and the in-plane direction of the copper plate. A more reliable copper-clad ceramic circuit board can be obtained by matching the direction in which it behaves softly. In general, the maximum stress at the joint surface is in the diagonal direction of the corner of the copper circuit, so that a high effect can be obtained by matching the direction in which this direction and the in-plane direction of the copper plate behave softly.

また、結晶学的な方位関係で、降伏応力が高い方位が少なくなるので、銅板12板面内あらゆる方向に軟質にふるまう。以下、具体的に説明する。
図2は、銅を始めとする面心立方金属の方位を表す単位ステレオ三角形上にシュミット因子を等高線で表示したものである(非特許文献1参照)。
本発明の銅張セラミックス回路基板10上の銅板12は、単位格子を構成する[100]、[010]、[001](総称して<100>と表記される)の3軸が揃った単結晶に近い材料であり、一つの100主方位が銅板12の法線方向を向いていることから、銅板12の面内の方位は、図2で示されるステレオ三角形の100と110を結ぶ線上で示される方位のいずれかになる。一般的な圧延で作製した銅の場合、圧延方向、すなわち板面内で通常長手方向に<111>が配向し易いが、<111>方向に変形を加えたときのシュミット因子は約0.272であり、その値が小さく、降伏に高い応力が必要な方位である。一方、本発明の銅張セラミックス回路基板10上の銅板12における面内方向における一次すべり系のシュミット因子の最小値は約0.408であり、面内方向の降伏応力は<111>方向に変形を加えたときに比較して小さくなる。なお、一次すべり系とは、複数のすべり系のうち最も容易にすべり変形がおきる系、すなわちシュミット因子が最大になる系をいう。
In addition, because of the crystallographic orientation relationship, the orientation with high yield stress is reduced, so that it behaves softly in all directions within the copper plate 12 plane. This will be specifically described below.
FIG. 2 shows a Schmid factor displayed by contour lines on a unit stereo triangle representing the orientation of a face-centered cubic metal such as copper (see Non-Patent Document 1).
The copper plate 12 on the copper-clad ceramic circuit board 10 of the present invention has a single axis with three axes [100], [010], and [001] (collectively denoted as <100>) constituting a unit cell. Since it is a material close to a crystal and one < 100 > main orientation faces the normal direction of the copper plate 12, the in-plane orientation of the copper plate 12 connects the stereo triangles 100 and 110 shown in FIG. One of the orientations shown on the line. In the case of copper produced by general rolling, <111> tends to be oriented in the rolling direction, that is, the normal longitudinal direction in the plate surface, but the Schmid factor when deformed in the <111> direction is about 0.272. The value is small and the direction requires high stress for yielding. On the other hand, the minimum value of the Schmid factor of the primary slip system in the in-plane direction of the copper plate 12 on the copper-clad ceramic circuit board 10 of the present invention is about 0.408, and the yield stress in the in-plane direction is deformed in the <111> direction. It becomes smaller compared to when adding. The primary slip system is a system in which slip deformation occurs most easily among a plurality of slip systems, that is, a system in which the Schmid factor is maximized.

ラミックス板11と銅板12の接合方法としては、TiやZrの活性化金属を含む銅より融点の低い例えばAg−Cu合金のような金属ろう材をセラミックス板11と銅板12の間に挟んで液相接合する活性金属法や、セラミックス板11と銅板12の面同士を対向、接触させて、1050℃以上の温度で界面にCu−CuO共晶体を生成せしめ、その後冷却することによって接合する直接接合法がある。いずれの場合でも、銅張セラミックス回路基板10の製造工程では、銅とセラミックスの接合工程で非常に高い温度が必要であるから、銅板12の最終再結晶熱処理は接合工程で同時に行うことができる。本発明の銅張セラミックス回路基板10の作製で想定している比較的純度の高い銅板12では400℃以下、無酸素銅板であれば200℃以下で再結晶するため、最終再結晶熱処理前の銅板12をセラミックス板11に対向、接触させておくことで、高温で接合が形成される時には、銅板12も所定の組織が形成されている。 As the bonding method of the ceramics plate 11 and the copper plate 12, sandwiching the metal brazing material such as Ti and Zr activated metal lower e.g. Ag-Cu alloy having a melting point of copper containing between ceramic plate 11 and the copper plate 12 By the active metal method in which liquid phase bonding is performed, or by causing the surfaces of the ceramic plate 11 and the copper plate 12 to face and contact each other to form a Cu—Cu 2 O eutectic at the interface at a temperature of 1050 ° C. or higher, and then cooling. There is a direct joining method to join. In any case, since the manufacturing process of the copper-clad ceramic circuit board 10 requires a very high temperature in the copper-ceramic bonding process, the final recrystallization heat treatment of the copper plate 12 can be performed simultaneously in the bonding process. Since the copper plate 12 of relatively high purity assumed in the production of the copper-clad ceramic circuit board 10 of the present invention is recrystallized at 400 ° C. or lower and the oxygen-free copper plate at 200 ° C. or lower, the copper plate before the final recrystallization heat treatment When the bond is formed at a high temperature by facing and contacting the ceramic plate 12 with the ceramic plate 11, the copper plate 12 also has a predetermined structure.

本発明の銅張セラミックス回路基板上の銅板は、銅板面内で力学的な異方性を有するので、セラミックス回路基板界面において最も大きな応力発生する方向と銅板の面内方向で軟質にふるまう方向を合わせることで、更に信頼性の高い銅張セラミックス回路基板が得られる。一般的に接合面における最大応力は銅回路の角部の対角線方向になることから、この方向と銅板の面内方向で軟質にふるまう方向を合わせることで高い効果が得られる。 Since the copper plate on the copper-clad ceramic circuit board of the present invention has mechanical anisotropy in the copper plate surface, the direction in which the greatest stress is generated at the interface of the ceramic circuit substrate and the direction in which the copper plate softly behaves in the in-plane direction of the copper plate. By combining the above, a more reliable copper-clad ceramic circuit board can be obtained. In general, the maximum stress at the joint surface is in the diagonal direction of the corner of the copper circuit, so that a high effect can be obtained by matching the direction in which this direction and the in-plane direction of the copper plate behave softly.

図6に示す寸法の銅張セラミックス回路基板を作製して、本発明の更なる効果を調べた。図中の寸法数値の単位はmmである。セラミックス板はサイズが40mm×10mm×0.25mm厚の市販の純度96%のアルミナ板を使用した。
実施例における銅板Aの切り出し方向を変えてその効果を調べた。銅板回路コーナー部を形成する互いに90°の角度をなす2辺と45°を成す直線に対する圧延方向の角度(α)を様々に変えて銅張セラミックス回路基板を作製し、その角度の効果を調べた。比較のために銅板Bを接合した銅張セラミックス回路基板も作製した。
冷間加工後の板厚0.2mmの銅板Aを圧延方向に対して様々な角度をつけて40mm×10mmに切断した後、200℃で1時間熱処理して表面を酸化させた後、同じ種類の2枚の銅板でアルミナ板を挟んで、接合熱処理を行った。また、銅板Bは、圧延方向と10mmの長さの辺の角度を45°、0°にした2種類の銅板を切り出し、接合用銅板とした。
接合熱処理は、窒素ガスと乾燥空気の流量を制御できる電気炉で行った。始め酸素分圧を200ppmに調整した窒素ガスを通気させながら1070℃まで昇温し、1時間保定した後、0.5℃/分で1020℃まで降温し、その後炉冷却した。途中、1050℃で乾燥空気を遮断し、100%窒素中で熱処理した。作製した接合体は、酸によるエッチング処理によって図6に示すような銅張セラミックス回路基板試料とした。
銅板A、銅板Bについて、同じ切断角度条件の銅張セラミックス回路基板試料をそれぞれ30枚づつ作製し、銅板組織、接合信頼性の評価を行った。
A copper-clad ceramic circuit board having the dimensions shown in FIG. The unit of the numerical value in the figure is mm. As the ceramic plate, a commercially available alumina plate having a size of 40 mm × 10 mm × 0.25 mm and having a purity of 96% was used.
The effect was investigated by changing the cutting direction of the copper plate A in the examples . Angle in the rolling direction with respect to the straight line forming the two sides and 45 ° an angle of one another 90 ° to form a copper plate circuit corner portion (alpha) variously changed to prepare a copper-clad ceramic circuit board, the effect of the angle Examined. For comparison, a copper-clad ceramic circuit board joined with a copper plate B was also produced.
After the cold-worked copper plate A having a thickness of 0.2 mm is cut into 40 mm × 10 mm at various angles with respect to the rolling direction, the surface is oxidized by heat treatment at 200 ° C. for 1 hour, and then the same type These two copper plates were sandwiched between alumina plates and subjected to bonding heat treatment. Moreover, the copper plate B cut out the two types of copper plates which made the angle of the side of a rolling direction and the length of 10 mm 45 degrees and 0 degrees, and was set as the copper plate for joining.
The bonding heat treatment was performed in an electric furnace capable of controlling the flow rates of nitrogen gas and dry air. First, the temperature was raised to 1070 ° C. while a nitrogen gas whose oxygen partial pressure was adjusted to 200 ppm was passed, maintained for 1 hour, then lowered to 1020 ° C. at 0.5 ° C./min, and then cooled in the furnace. In the middle, dry air was shut off at 1050 ° C. and heat treatment was performed in 100% nitrogen. The produced joined body was made into a copper-clad ceramic circuit board sample as shown in FIG. 6 by etching with acid.
About the copper plate A and the copper plate B, the copper-clad ceramic circuit board sample of the same cutting angle conditions was produced 30 sheets each, and the copper plate structure | tissue and joining reliability were evaluated.

Claims (7)

セラミックス板の片面又は両面に銅板が接合されており、かつ前記銅板の少なくとも一部銅回路を備えている銅張セラミックス回路基板において、
前記銅回路を備えている前記銅板は、結晶軸<100>を主方位とし、かつ銅の結晶軸<100>が前記銅板の法線方向に方位差15°以内でありかつ前記銅板の面内特定方向に15°以内である<100>優先配向領域の面積率が80%以上100%以下の配向銅板であることを特徴とする銅張セラミックス回路基板。
Piece Menmata ceramic plate is joined copper plate on both sides, and at least a portion of the copper plate in a copper-clad ceramic circuit board comprises a copper circuit,
The copper plate provided with the copper circuit has a crystal axis <100> as a main orientation, a copper crystal axis <100> having an orientation difference within 15 ° in the normal direction of the copper plate, and an in-plane of the copper plate A copper-clad ceramic circuit board characterized by being an oriented copper plate in which the area ratio of the <100> preferentially oriented region that is within 15 ° in a specific direction is 80% or more and 100% or less.
前記銅回路の少なくとも1のコーナー部において、前記コーナー部を形成する2つの辺の二等分線方向に対して、前記配向銅板の面内の特定方向が、5°以上45°以下であることを特徴とする請求項1記載の銅張セラミックス回路基板。 In at least one corner portion of the copper circuit, a specific direction in a plane of the oriented copper plate is 5 ° or more and 45 ° or less with respect to a bisector direction of two sides forming the corner portion. The copper-clad ceramic circuit board according to claim 1. 前記配向銅板を板面法線方向から面積0.32mmの視野で、かつ重複しない16視野以上観察した時、前記<100>優先配向領域に囲まれた、面積平均径が前記配向銅板の板厚以下の島状結晶粒の結晶粒界と双相境界を除く方位差15°以上の傾角を有する結晶粒界が存在する視野が0%以上50%以下であることを特徴とする請求項1又は請求項2に記載の銅張セラミックス回路基板。 When the oriented copper plate is observed from the normal direction of the plate surface with an area of 0.32 mm 2 and more than 16 non-overlapping fields of view , the area average diameter surrounded by the <100> preferred orientation region is the plate of the oriented copper plate. the thickness and following island crystals grains of grain boundaries, except for bi-phase boundary, and wherein the field of view grain boundaries exist with inclination of more than misorientation 15 ° is 50% or less than 0% claims claim 1 or a copper-clad ceramic circuit board according to claim 2. 前記銅張セラミックス回路基板の接合界面は、前記配向銅板の(100)が、直接又は厚さ1μm以下のCuThe bonding interface of the copper-clad ceramic circuit board is such that (100) of the oriented copper plate is Cu directly or with a thickness of 1 μm or less. 2 O相を介して、前記セラミックス板を構成する酸化物に接合されている部分を有していることを特徴とする請求項1乃至請求項3のいずれか1項に記載の銅張セラミックス回路基板。The copper-clad ceramic circuit board according to any one of claims 1 to 3, further comprising a portion bonded to an oxide constituting the ceramic plate via an O phase. . 請求項1乃至請求項4のいずれか1項に記載の銅張セラミックス回路基板を搭載してなる電子機器。An electronic device comprising the copper-clad ceramic circuit board according to any one of claims 1 to 4. 結晶軸<100>を主方位とし、かつ銅の結晶軸<100>が銅板の法線方向に方位差15°以内でありかつ前記銅板の面内特定方向に15°以内である<100>優先配向領域の面積率が80%以上100%以下である配向銅板を、セラミックス板の片面又は両面に接合した後に、前記配向銅板にエッチング処理により銅回路を形成することを特徴とする銅張セラミックス回路基板の製造方法。The crystal axis <100> is the main orientation, and the copper crystal axis <100> has an orientation difference within 15 ° in the normal direction of the copper plate and within 15 ° in the in-plane specific direction of the copper plate. A copper-clad ceramic circuit, wherein an oriented copper plate having an area ratio of an oriented region of 80% or more and 100% or less is bonded to one or both sides of a ceramic plate, and then a copper circuit is formed on the oriented copper plate by etching A method for manufacturing a substrate. 酸素を含有しているガス中において、かつセラミックス板の片面又は両面に銅板の銅板面を対向させて接触させた状態で、かつ1065℃から1083℃の範囲内にまで温度を上昇させることで、前記銅板を配向銅板に変換するとともに、前記銅板と前記セラミックス板との界面にCu−CuIn a gas containing oxygen and with the copper plate surface of the copper plate facing and contacting one or both surfaces of the ceramic plate, and by raising the temperature to within the range of 1065 ° C. to 1083 ° C., The copper plate is converted into an oriented copper plate, and Cu-Cu is formed at the interface between the copper plate and the ceramic plate. 2 O共晶体を生成させる熱処理工程と、A heat treatment step for producing an O eutectic;
熱処理済の前記セラミックス板と前記配向銅板とを冷却してこれらを接合させる接合工程と、A bonding step of cooling and bonding the heat-treated ceramic plate and the oriented copper plate;
前記配向銅板にエッチング処理により銅回路を形成する銅回路形成工程と、を備え、A copper circuit forming step of forming a copper circuit by etching treatment on the oriented copper plate,
前記セラミックス板は、ケイ素、マグネシウム、希土類元素から選択される少なくとも1の成分を5質量%以下含有している窒化ケイ素又は窒化アルミニウムからなる窒化物セラミックス、又は、酸化物セラミックスであり、The ceramic plate is a nitride ceramic made of silicon nitride or aluminum nitride containing 5% by mass or less of at least one component selected from silicon, magnesium, and a rare earth element, or an oxide ceramic.
前記配向銅板は、結晶軸<100>を主方位とし、かつ銅の結晶軸<100>が前記銅板の法線方向に方位差15°以内でありかつ前記銅板の面内特定方向に15°以内である<100>優先配向領域の面積率が80%以上100%以下であることを特徴とする銅張セラミックス回路基板の製造方法。The oriented copper plate has a crystal axis <100> as a main orientation, and the copper crystal axis <100> has an orientation difference within 15 ° in the normal direction of the copper plate and within 15 ° in a specific direction within the plane of the copper plate. <100> The method for producing a copper-clad ceramic circuit board, wherein the area ratio of the preferentially oriented region is 80% or more and 100% or less.
JP2014253611A 2014-12-16 2014-12-16 Copper-clad ceramic circuit board, electronic device equipped with the same, and copper-clad ceramic circuit board manufacturing method Active JP6415297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014253611A JP6415297B2 (en) 2014-12-16 2014-12-16 Copper-clad ceramic circuit board, electronic device equipped with the same, and copper-clad ceramic circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014253611A JP6415297B2 (en) 2014-12-16 2014-12-16 Copper-clad ceramic circuit board, electronic device equipped with the same, and copper-clad ceramic circuit board manufacturing method

Publications (3)

Publication Number Publication Date
JP2016115821A JP2016115821A (en) 2016-06-23
JP2016115821A5 true JP2016115821A5 (en) 2018-03-22
JP6415297B2 JP6415297B2 (en) 2018-10-31

Family

ID=56142284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014253611A Active JP6415297B2 (en) 2014-12-16 2014-12-16 Copper-clad ceramic circuit board, electronic device equipped with the same, and copper-clad ceramic circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP6415297B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220009842A1 (en) * 2018-11-22 2022-01-13 Denka Company Limited Ceramic-copper composite, method of producing ceramic-copper composite, ceramic circuit board, and power module
JP7212700B2 (en) * 2018-12-28 2023-01-25 デンカ株式会社 CERAMIC-COPPER COMPOSITE, CERAMIC CIRCUIT BOARD, POWER MODULE, AND CERAMIC-COPPER COMPOSITE MANUFACTURING METHOD
EP3922391B1 (en) * 2019-02-04 2023-09-20 Mitsubishi Materials Corporation Production method for copper/ceramic joined body, production method for insulated circuit board, copper/ceramic joined body, and insulated circuit board
CN117457504B (en) * 2023-12-22 2024-03-08 成都万士达瓷业有限公司 Production method for copper-clad ceramic packaging surface

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211856B2 (en) * 1994-11-02 2001-09-25 電気化学工業株式会社 Circuit board
JP2002043481A (en) * 2000-07-19 2002-02-08 Sumitomo Metal Ind Ltd Ceramic module and its manufacturing method
JP4763068B2 (en) * 2008-06-30 2011-08-31 新日鐵化学株式会社 Flexible circuit board, manufacturing method thereof, and bent portion structure of flexible circuit board
JP2013055264A (en) * 2011-09-05 2013-03-21 Toshiba Corp Manufacturing method of ceramic copper circuit board
JP6425404B2 (en) * 2014-04-16 2018-11-21 株式会社Shカッパープロダクツ Copper alloy material for ceramic wiring substrate, ceramic wiring substrate, and method of manufacturing ceramic wiring substrate

Similar Documents

Publication Publication Date Title
JP5598522B2 (en) Circuit board, semiconductor module using the same, and circuit board manufacturing method
EP3057125B1 (en) Substrate for heat sink-equipped power module, and production method for same
TWI646638B (en) Power module substrate and substrate with heat sink power module and heat sink power module
JP2016115821A5 (en)
WO2018155014A1 (en) Insulated heat dissipating board
TW201626513A (en) Substrate unit for power modules, and power module
JP6115900B2 (en) Heat spreader
TW200917434A (en) Die exhibiting an effective coefficient of thermal expansion equivalent to a substrate mounted thereon, and processes of making same
TWI661516B (en) Bonded body, power module substrate with heat sink, heat sink, method of producing bonded body, method of producing power module substrate with heat sink and method of producing heat sink
JP2019515852A (en) Copper-ceramic composite material
TW201841310A (en) Manufacturing method of insulated circuit substrate with heat sink
JP6415297B2 (en) Copper-clad ceramic circuit board, electronic device equipped with the same, and copper-clad ceramic circuit board manufacturing method
JP6440903B2 (en) Semiconductor device and manufacturing method thereof
JP6829261B2 (en) Copper-ceramic composite
JP6149654B2 (en) Power module substrate manufacturing method
JP2019511993A (en) Copper-ceramic composite material
JP6020256B2 (en) Manufacturing method of power module substrate with heat sink
JP5614127B2 (en) Power module substrate and manufacturing method thereof
JP6375086B1 (en) Insulated heat dissipation board
JP2011210745A (en) Substrate for power module, and method of manufacturing the same
JP6805743B2 (en) Insulated substrate
JP6756189B2 (en) Manufacturing method for power module board with heat sink and power module board with heat sink
JP2002201072A (en) AlN SINTERED COMPACT AND AlN CIRCUIT SUBSTRATE USING IT
JP6264129B2 (en) Power module substrate and manufacturing method thereof
JP6973218B2 (en) How to manufacture a board for a power module with a heat sink