JP2016113515A - Rubber composition and pneumatic tire for heavy load vehicle - Google Patents

Rubber composition and pneumatic tire for heavy load vehicle Download PDF

Info

Publication number
JP2016113515A
JP2016113515A JP2014251852A JP2014251852A JP2016113515A JP 2016113515 A JP2016113515 A JP 2016113515A JP 2014251852 A JP2014251852 A JP 2014251852A JP 2014251852 A JP2014251852 A JP 2014251852A JP 2016113515 A JP2016113515 A JP 2016113515A
Authority
JP
Japan
Prior art keywords
mass
silica
rubber
rubber composition
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014251852A
Other languages
Japanese (ja)
Inventor
綾子 釜堀
Ayako KAMAHORI
綾子 釜堀
新 築島
Shin Chikushima
新 築島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2014251852A priority Critical patent/JP2016113515A/en
Publication of JP2016113515A publication Critical patent/JP2016113515A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To overcome a problem that processability is deteriorated by aggregation of silica when blending silica with a tire for heavy load vehicles, a problem that impurities contained in a natural rubber NR inhibit a reaction of a silane coupling agent when the NR is used as a rubber component for the tire for the heavy load vehicles, a problem that a metal ion contained in a processing assistant cuts a molecular chain and reduces breaking strength and problem that viscosity of a rubber composition containing the NR increases with time.SOLUTION: The above described problem is solved by a rubber composition containing 100 pts.mass of a diene rubber mainly containing natural rubber, 30 pts.mass of more of silica having nitrogen adsorption specific surface area of 50 m/g, a silane coupling agent of 1 to 20 mass% based on the mass of the silica and glycerol monoester of stearic acid of 1 to 20 mass% based on the mass of the silica.SELECTED DRAWING: None

Description

本発明は、ゴム組成物およびそれを用いた重荷重車両用空気入りタイヤに関するものであり、詳しくは、加工性および転がり抵抗性を改善し、天然ゴムを配合した場合であっても、シリカの分散性を高めるとともに、他の配合剤由来の金属イオンによる天然ゴムのしゃっ解効果を抑制し、破断特性の低下を防止し、なおかつ組成物保管後の粘度増加をも抑制し得るゴム組成物およびそれを用いた重荷重車両用空気入りタイヤに関するものである。   The present invention relates to a rubber composition and a pneumatic tire for heavy-duty vehicles using the rubber composition. More specifically, the present invention improves processability and rolling resistance, and even when natural rubber is compounded, A rubber composition that enhances dispersibility, suppresses the crushing effect of natural rubber due to metal ions derived from other compounding agents, prevents a decrease in breaking characteristics, and can also suppress an increase in viscosity after storage of the composition. And a pneumatic tire for heavy-duty vehicles using the same.

乗用車用タイヤにおける低転がり抵抗性や湿潤路面での制駆動性を高めるために、タイヤにシリカを配合する手法が知られている。
一方、重荷重車両用タイヤにおいても、近年の環境意識の高まりに伴い、低転がり抵抗性が求められ、シリカの配合が検討されている。
しかしシリカは、その粒子表面に存在するシラノール基による水素結合の形成のために凝集する傾向を有し、混練時にゴム組成物のムーニー粘度を上昇させ、加工性を悪化させるという問題点がある。
また、重荷重車両用タイヤのゴム成分としては、主に天然ゴムが用いられている。しかし、天然ゴムに含まれる不純物が、シランカップリング剤の反応を阻害するため、シリカの分散性が確保できないという問題点がある。なおシリカの分散剤としてステアリン酸亜鉛等の加工助剤を使用すると、分散性は確保できるものの、金属イオンによる天然ゴムのしゃっ解効果によって天然ゴムの分子鎖が切断され、破断強度の低下が顕著であるという問題点もある。さらに天然ゴムを含む重荷重車用タイヤのゴム組成物は、保管時間の経過とともにその粘度が増大し、加工性が悪化するという問題点もあった。
In order to improve low rolling resistance and braking / driving performance on a wet road surface in a passenger car tire, a technique of blending silica into the tire is known.
On the other hand, with regard to heavy-duty vehicle tires, with the recent increase in environmental consciousness, low rolling resistance is required, and silica compounding has been studied.
However, silica has a tendency to agglomerate due to the formation of hydrogen bonds due to silanol groups present on the particle surface, and has the problem of increasing the Mooney viscosity of the rubber composition during kneading and degrading processability.
Natural rubber is mainly used as the rubber component of heavy-duty vehicle tires. However, since impurities contained in natural rubber inhibit the reaction of the silane coupling agent, there is a problem that the dispersibility of silica cannot be ensured. If a processing aid such as zinc stearate is used as a silica dispersant, the dispersibility can be ensured, but the natural rubber molecular chain is broken by the effect of metal ions by the metal ions, resulting in a decrease in breaking strength. There is also a problem that it is remarkable. Furthermore, the rubber composition for heavy-duty vehicle tires containing natural rubber has a problem that its viscosity increases with the passage of storage time, and the processability deteriorates.

なおシリカ配合ゴム組成物の加工性を高める従来技術として、例えば下記特許文献1には、添加剤として脂肪酸およびトリメチロールプロパンをゴムに添加する技術が開示されている。しかしながら従来技術ではいずれも、天然ゴムを配合するゴム組成物における前記問題点をすべて解決することができなかった。   As a conventional technique for improving the processability of a silica-containing rubber composition, for example, Patent Document 1 below discloses a technique of adding a fatty acid and trimethylolpropane as additives to rubber. However, none of the conventional techniques can solve all of the above problems in the rubber composition containing natural rubber.

特開2006−52407号公報JP 2006-52407 A

したがって本発明の目的は、加工性および転がり抵抗性を改善し、天然ゴムを配合した場合であっても、シリカの分散性を高めるとともに、他の配合剤由来の金属イオンによる天然ゴムのしゃっ解効果を抑制し、破断特性の低下を防止し、なおかつ組成物保管後の粘度増加をも抑制し得るゴム組成物およびそれを用いた重荷重車両用空気入りタイヤを提供することにある。   Accordingly, it is an object of the present invention to improve the processability and rolling resistance, increase the dispersibility of silica even when natural rubber is blended, and to block natural rubber by metal ions derived from other compounding agents. An object of the present invention is to provide a rubber composition capable of suppressing the solution effect, preventing a decrease in breaking characteristics, and also suppressing an increase in viscosity after storage of the composition, and a pneumatic tire for heavy-duty vehicles using the rubber composition.

本発明者らは鋭意研究を重ねた結果、天然ゴムを含むジエン系ゴムに対し、特定の比表面積を有するシリカ、シランカップリング剤および特定のグリセリンモノ脂肪酸エステルを特定量でもって配合することにより、上記課題を解決できることを見出し、本発明を完成することができた。
すなわち本発明は以下の通りである。
As a result of intensive studies, the inventors have formulated silica having a specific surface area, a silane coupling agent, and a specific glycerin monofatty acid ester in a specific amount with respect to a diene rubber including natural rubber. The present inventors have found that the above problems can be solved and have completed the present invention.
That is, the present invention is as follows.

1.天然ゴムを70質量部以上含むジエン系ゴム100質量部に対し、窒素吸着比表面積(NSA)が50m/g以上のシリカを30質量部以上、シランカップリング剤を前記シリカの質量に対し1〜20質量%および炭素数8〜24の脂肪酸を由来とするグリセリンモノ脂肪酸エステルを前記シリカの質量に対し1〜20質量%配合してなることを特徴とするゴム組成物。
2.前記1に記載のゴム組成物をトレッドに使用した重荷重車両用空気入りタイヤ。
1. With respect to 100 parts by mass of diene rubber containing 70 parts by mass or more of natural rubber, 30 parts by mass or more of silica having a nitrogen adsorption specific surface area (N 2 SA) of 50 m 2 / g or more, and a silane coupling agent as the mass of the silica. A rubber composition comprising 1 to 20% by mass of glycerin monofatty acid ester derived from 1 to 20% by mass and a fatty acid having 8 to 24 carbon atoms based on the mass of the silica.
2. A pneumatic tire for heavy-duty vehicles, wherein the rubber composition according to 1 is used for a tread.

本発明によれば、天然ゴムを含むジエン系ゴムに対し、特定の比表面積を有するシリカ、シランカップリング剤および特定のグリセリンモノ脂肪酸エステルを特定量でもって配合したので、加工性および転がり抵抗性を改善し、天然ゴムを配合した場合であっても、シリカの分散性を高めるとともに、他の配合剤由来の金属イオンによる天然ゴムのしゃっ解効果を抑制し、破断特性の低下を防止し、なおかつ組成物保管後の粘度増加をも抑制し得るゴム組成物およびそれを用いた重荷重車両用空気入りタイヤを提供することができる。   According to the present invention, since silica having a specific surface area, a silane coupling agent, and a specific glycerin monofatty acid ester are blended with a specific amount with respect to a diene rubber including natural rubber, processability and rolling resistance Even when natural rubber is blended, the dispersibility of silica is enhanced, and the effect of crushing natural rubber due to metal ions derived from other compounding agents is suppressed, thereby preventing the degradation of breaking properties. Moreover, it is possible to provide a rubber composition capable of suppressing an increase in viscosity after storage of the composition and a pneumatic tire for heavy-duty vehicles using the rubber composition.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

(ジエン系ゴム)
本発明で使用されるジエン系ゴムは、天然ゴム(NR)を70質量部以上、好ましくは80質量部以上含むことを特徴とする。
なお、ゴム組成物に配合することができる任意のジエン系ゴムを併用することもでき、例えば、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン−ブタジエン共重合体ゴム(SBR)、アクリロニトリル−ブタジエン共重合体ゴム(NBR)、エチレン−プロピレン−ジエンターポリマー(EPDM)等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。また、その分子量やミクロ構造はとくに制限されず、アミン、アミド、シリル、アルコキシシリル、カルボキシル、ヒドロキシル基等で末端変性されていても、エポキシ化されていてもよい。
(Diene rubber)
The diene rubber used in the present invention is characterized by containing 70 parts by mass or more, preferably 80 parts by mass or more of natural rubber (NR).
Any diene rubber that can be blended in the rubber composition can be used in combination, for example, isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), acrylonitrile- Examples thereof include butadiene copolymer rubber (NBR) and ethylene-propylene-diene terpolymer (EPDM). These may be used alone or in combination of two or more. The molecular weight and microstructure are not particularly limited, and may be terminally modified with an amine, amide, silyl, alkoxysilyl, carboxyl, hydroxyl group or the like, or may be epoxidized.

(シリカ)
本発明で使用するシリカは、窒素吸着比表面積(NSA)が50m/g以上である必要がある。窒素吸着比表面積(NSA)が50m/g未満であると、耐摩耗性に劣り好ましくない。なお、本発明の効果が向上するという観点から、シリカの窒素吸着比表面積(NSA)は、100〜200m/gであることが好ましい。
なお窒素吸着比表面積(NSA)は、JIS K6217−2に準拠して求めるものとする。
(silica)
The silica used in the present invention needs to have a nitrogen adsorption specific surface area (N 2 SA) of 50 m 2 / g or more. When the nitrogen adsorption specific surface area (N 2 SA) is less than 50 m 2 / g, the wear resistance is inferior, which is not preferable. Incidentally, from the viewpoint of improving the effect of the present invention, the nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 100 to 200 m 2 / g.
The nitrogen adsorption specific surface area (N 2 SA) is determined according to JIS K6217-2.

(シランカップリング剤)
本発明で使用されるシランカップリング剤は、とくに制限されないが、含硫黄シランカップリング剤が好ましく、例えば3−オクタノイルチオプロピルトリエトキシシラン、3−プロピオニルチオプロピルトリメトキシシラン、ビス−(3−ビストリエトキシシリルプロピル)−テトラスルフィド、ビス−(3−ビストリエトキシシリルプロピル)−ジスルフィド、3−メルカプトプロピルトリメトキシシラン等が挙げられる。
(Silane coupling agent)
The silane coupling agent used in the present invention is not particularly limited, but a sulfur-containing silane coupling agent is preferable. For example, 3-octanoylthiopropyltriethoxysilane, 3-propionylthiopropyltrimethoxysilane, bis- (3 -Bistriethoxysilylpropyl) -tetrasulfide, bis- (3-bistriethoxysilylpropyl) -disulfide, 3-mercaptopropyltrimethoxysilane and the like.

(グリセリンモノ脂肪酸エステル)
本発明で使用されるグリセリンモノ脂肪酸エステルは、炭素数8〜24の脂肪酸を由来とするモノグリセリドである。
脂肪酸としては、具体的には、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、アラキジン酸、ベヘン酸、リグノセリン酸等の直鎖脂肪酸類が挙げられる。
グリセリンモノ脂肪酸エステルは、一種類を使用してもよいし、2種以上を併用してもよい。
本発明の効果が向上するという観点から、前記脂肪酸は、ステアリン酸、オレイン酸が好ましい。
本発明で使用されるグリセリンモノ脂肪酸エステルは、グリセリン由来の2つの−OH基がシリカ表面のシラノール基に吸着すると同時に、脂肪酸由来の炭素鎖が疎水化部位として作用し、ゴム組成物の粘度を低下させるとともに、ゴムに対するシリカの分散性に寄与する。その結果、シリカの分散状態が安定化し、保管時におけるシリカの凝集による粘度増加を抑制できる。したがって、シリカの分散剤としてステアリン酸亜鉛等の加工助剤の使用量をゼロに、あるいは相当量減少させることができ、金属イオンによる天然ゴムのしゃっ解効果を抑制し、破断特性の低下を防止することができる。
(Glycerin mono fatty acid ester)
The glycerin monofatty acid ester used in the present invention is a monoglyceride derived from a fatty acid having 8 to 24 carbon atoms.
Specific examples of fatty acids include caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, oleic acid, arachidic acid, behenic acid, lignoceric acid, etc. And chain fatty acids.
One type of glycerol mono fatty acid ester may be used, or two or more types may be used in combination.
From the viewpoint of improving the effect of the present invention, the fatty acid is preferably stearic acid or oleic acid.
In the glycerin monofatty acid ester used in the present invention, two -OH groups derived from glycerin are adsorbed on silanol groups on the silica surface, and at the same time, the carbon chain derived from fatty acid acts as a hydrophobization site, thereby reducing the viscosity of the rubber composition. In addition to lowering, it contributes to the dispersibility of silica in rubber. As a result, the dispersion state of silica is stabilized, and an increase in viscosity due to aggregation of silica during storage can be suppressed. Therefore, the amount of processing aids such as zinc stearate as a silica dispersant can be reduced to zero or a considerable amount, suppressing the crushing effect of natural rubber by metal ions, and reducing the breaking properties. Can be prevented.

(ゴム組成物の配合割合)
本発明のゴム組成物は、ジエン系ゴム100質量部に対し、窒素吸着比表面積(NSA)が50m/g以上のシリカを30質量部以上、シランカップリング剤を前記シリカの質量に対し1〜20質量%および炭素数8〜24の脂肪酸を由来とするグリセリンモノ脂肪酸エステルを前記シリカの質量に対し1〜20質量%配合してなることを特徴とする。
シリカの配合量が30質量部未満であると、低転がり抵抗性を向上することができない。
シランカップリング剤の配合量がシリカの質量に対し1質量%未満であると、配合量が少な過ぎて本発明の効果を奏することができない。逆に20質量%を超えると加工性および破断伸びが悪化する。
グリセリンモノ脂肪酸エステルの配合量がシリカの質量に対し1質量%未満であると、配合量が少な過ぎて本発明の効果を奏することができない。逆に20質量%を超えると可塑効果によって破断特性が悪化する。
(Rubber composition ratio)
In the rubber composition of the present invention, 30 parts by mass or more of silica having a nitrogen adsorption specific surface area (N 2 SA) of 50 m 2 / g or more, and a silane coupling agent to the mass of the silica with respect to 100 parts by mass of the diene rubber. On the other hand, 1-20 mass% and the glycerol mono fatty acid ester derived from a C8-24 fatty acid are mix | blended 1-20 mass% with respect to the mass of the said silica, It is characterized by the above-mentioned.
When the blending amount of silica is less than 30 parts by mass, the low rolling resistance cannot be improved.
When the blending amount of the silane coupling agent is less than 1% by mass with respect to the mass of silica, the blending amount is too small to achieve the effects of the present invention. Conversely, when it exceeds 20 mass%, workability and elongation at break deteriorate.
When the blending amount of the glycerin monofatty acid ester is less than 1% by mass with respect to the mass of silica, the blending amount is too small to achieve the effects of the present invention. On the other hand, if it exceeds 20% by mass, the breaking properties are deteriorated by the plastic effect.

また、本発明のゴム組成物において、シリカの配合量は、ジエン系ゴム100質量部に対し、30〜100質量部であることが好ましい。
シランカップリング剤の配合量は、シリカの質量に対し5〜15質量%であることが好ましい。
グリセリンモノ脂肪酸エステルの配合量は、シリカの質量に対し5〜15質量%であることが好ましい。
In the rubber composition of the present invention, the amount of silica is preferably 30 to 100 parts by mass with respect to 100 parts by mass of the diene rubber.
It is preferable that the compounding quantity of a silane coupling agent is 5-15 mass% with respect to the mass of a silica.
It is preferable that the compounding quantity of glycerol mono fatty acid ester is 5-15 mass% with respect to the mass of a silica.

(その他成分)
本発明におけるゴム組成物には、前記した成分に加えて、加硫又は架橋剤;加硫又は架橋促進剤;酸化亜鉛、カーボンブラック、クレー、タルク、炭酸カルシウムのような各種充填剤;老化防止剤;可塑剤などのゴム組成物に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量も、本発明の目的に反しない限り、従来の一般的な配合量とすることができる。
(Other ingredients)
In the rubber composition of the present invention, in addition to the above-described components, a vulcanization or crosslinking agent; a vulcanization or crosslinking accelerator; various fillers such as zinc oxide, carbon black, clay, talc, calcium carbonate; Various additives generally blended in rubber compositions such as plasticizers can be blended, and these additives are kneaded by a general method to form a composition for vulcanization or crosslinking. Can be used. The blending amounts of these additives can be set to conventional general blending amounts as long as the object of the present invention is not violated.

また本発明のゴム組成物は従来の空気入りタイヤの製造方法に従って空気入りタイヤを製造するのに適しており、とくに重荷重車両用のトレッドに適用するのがよい。   The rubber composition of the present invention is suitable for producing a pneumatic tire in accordance with a conventional method for producing a pneumatic tire, and is particularly preferably applied to a tread for a heavy-duty vehicle.

以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example further demonstrate this invention, this invention is not restrict | limited to the following example.

標準例1、実施例1〜17および比較例1〜11
サンプルの調製
表1に示す配合(質量部)において、加硫促進剤と硫黄を除く成分を1.7リットルの密閉式バンバリーミキサーで5分間混練し、ゴムをミキサー外に放出して室温冷却した。次いで、該ゴムを同ミキサーに再度入れ、加硫促進剤および硫黄を加えてさらに混練し、ゴム組成物を得た。次に得られたゴム組成物を所定の金型中で160℃、20分間プレス加硫して加硫ゴム試験片を得、以下に示す試験法で未加硫のゴム組成物および加硫ゴム試験片の物性を測定した。
Standard Example 1, Examples 1-17 and Comparative Examples 1-11
Preparation of Sample In the formulation (parts by mass) shown in Table 1, the components other than the vulcanization accelerator and sulfur were kneaded for 5 minutes with a 1.7 liter closed Banbury mixer, and the rubber was discharged out of the mixer and cooled to room temperature. . Next, the rubber was put in the mixer again, and a vulcanization accelerator and sulfur were added and further kneaded to obtain a rubber composition. Next, the obtained rubber composition was press vulcanized in a predetermined mold at 160 ° C. for 20 minutes to obtain a vulcanized rubber test piece, and an unvulcanized rubber composition and vulcanized rubber were tested by the following test method The physical properties of the test piece were measured.

ムーニー粘度:上記ゴム組成物を用い、JIS K6300に従い、100℃における未加硫ゴムの粘度を測定した。結果は標準例1の値を100として指数表示した。この値が低いほど粘度が低く、加工性が良好であることを示す。なお、ゴム組成物を調製後、室温で1週間保管した後、これを用いてムーニー粘度を測定し、上記の混合直後の未加硫ゴムのムーニー粘度との差を求め、これをムーニー粘度増加量とした。結果は標準例1の値を100として指数表示した。この値が低いほど粘度の安定性に優れることを示す。
ペイン効果:未加硫の組成物を用いてASTM P6204に準拠してRPA2000においてG’(0.56%歪)を測定した。結果は、標準例1の値を100として指数表示した。この値が低いほどシリカの分散性が高いことを意味する。
tanδ(60℃):JIS K6394に準拠して60℃で試験した。結果は、標準例1の値を100として指数で示した。指数が小さいほど、低発熱性であり、低転がり抵抗性であることを示す。
破断強度:JIS K 6251に従い、室温で試験した。結果は標準例1の値を100として指数表示した。この値が高いほど、補強性に優れることを示す。
破断伸び:JIS K 6251に従い、室温で試験した。結果は標準例1の値を100として指数表示した。この値が高いほど、破断伸びに優れることを示す。
結果を表1に併せて示す。
Mooney viscosity: The viscosity of unvulcanized rubber at 100 ° C. was measured according to JIS K6300 using the rubber composition. The results were expressed as an index with the value of standard example 1 being 100. The lower this value, the lower the viscosity and the better the workability. In addition, after preparing the rubber composition and storing it at room temperature for 1 week, the Mooney viscosity was measured using this, and the difference from the Mooney viscosity of the unvulcanized rubber immediately after the mixing was obtained, and this was used to increase the Mooney viscosity. The amount. The results were expressed as an index with the value of standard example 1 being 100. It shows that it is excellent in stability of a viscosity, so that this value is low.
Pain effect: G ′ (0.56% strain) was measured in RPA2000 according to ASTM P6204 using the unvulcanized composition. The results are shown as an index with the value of standard example 1 being 100. The lower this value, the higher the dispersibility of the silica.
tan δ (60 ° C.): Tested at 60 ° C. according to JIS K6394. The results are shown as an index with the value of Standard Example 1 being 100. The smaller the index, the lower the heat build-up and the lower the rolling resistance.
Breaking strength: Tested at room temperature according to JIS K 6251. The results were expressed as an index with the value of standard example 1 being 100. It shows that it is excellent in reinforcement property, so that this value is high.
Elongation at break: tested at room temperature according to JIS K 6251. The results were expressed as an index with the value of standard example 1 being 100. It shows that it is excellent in elongation at break, so that this value is high.
The results are also shown in Table 1.

Figure 2016113515
Figure 2016113515

Figure 2016113515
Figure 2016113515

Figure 2016113515
Figure 2016113515

*1−1:NR(RSS No.3)
*1−2:SBR(日本ゼオン(株)製Nipol 1502)
*1−3:BR(日本ゼオン(株)製Nipol BR1220)
*2−1:シリカ(Solvay社製Zeosil 1165MP、窒素吸着比表面積(NSA)=165m/g)
*2−2:シリカ(Evonik Degussa社製Ultrasil VN3GR、窒素吸着比表面積(NSA)=175m/g)
*2−3:シリカ(Solvay社製ZeosilPremium 200MP、窒素吸着比表面積(NSA)=200m/g)
*2−4:シリカ(PPG社製Hi-SilEZ200G、窒素吸着比表面積(NSA)=300m/g)
*2−5:シリカ(Solvay社製Zeosil 1085GR、窒素吸着比表面積(NSA)=80m/g)
*3:カーボンブラック(キャボットジャパン(株)製ショウブラックN339、窒素吸着比表面積(NSA)=90m/g)
*4:シランカップリング剤(エボニックデグッサジャパン(株)製Si69、ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
*5:酸化亜鉛(正同化学工業(株)製酸化亜鉛3種)
*6:ステアリン酸(日油(株)製ステアリン酸YR)
*7:老化防止剤(Solutia Europe社製Santoflex 6PPD)
*8−1:脂肪酸金属塩−1(ステアリン酸亜鉛)
*8−2:脂肪酸金属塩−2(ステアリン酸カルシウム)
*8−3:脂肪酸金属塩−3(ステアリン酸カリウム)
*8−4:脂肪酸金属塩−4(ステアリン酸コバルト)
*8−5:脂肪酸金属塩−5(ステアリン酸鉄)
*9−1:グリセリンモノ脂肪酸エステル−1(シグマアルドリッチ製モノステアリン酸グリセロール)
*9−2:グリセリンモノ脂肪酸エステル−2(モノステアリン酸グリセロール)
*9−3:グリセリンモノ脂肪酸エステル−3(シグマアルドリッチ製モノステアリン酸グリセロール)
*10−1:比較脂肪酸エステル−1(シグマアルドリッチ製グリセリン)
*10−2:比較脂肪酸エステル−2(モノ酪酸グリセロール)
*11:硫黄(軽井沢精錬所社製油処理イオウ)
*12:加硫促進剤−1(大内新興化学工業(株)製ノクセラーCZ−G)
*13:加硫促進剤−2(Flexsys社製Perkacit DPG)
* 1-1: NR (RSS No.3)
* 1-2: SBR (Nipol 1502 manufactured by Nippon Zeon Co., Ltd.)
* 1-3: BR (Nipol BR1220 manufactured by Nippon Zeon Co., Ltd.)
* 2-1: Silica (Zeosil 1165MP manufactured by Solvay, Nitrogen adsorption specific surface area (N 2 SA) = 165 m 2 / g)
* 2-2: Silica (Ultrasil VN3GR manufactured by Evonik Degussa, Nitrogen adsorption specific surface area (N 2 SA) = 175 m 2 / g)
* 2-3: Silica (Zeosil Premium 200MP manufactured by Solvay, Nitrogen adsorption specific surface area (N 2 SA) = 200 m 2 / g)
* 2-4: Silica (Hi-SilEZ200G manufactured by PPG, Nitrogen adsorption specific surface area (N 2 SA) = 300 m 2 / g)
* 2-5: Silica (Zeosil 1085GR manufactured by Solvay, Nitrogen adsorption specific surface area (N 2 SA) = 80 m 2 / g)
* 3: Carbon black (show black N339 manufactured by Cabot Japan Co., Ltd., nitrogen adsorption specific surface area (N 2 SA) = 90 m 2 / g)
* 4: Silane coupling agent (Si69, bis (3-triethoxysilylpropyl) tetrasulfide manufactured by Evonik Degussa Japan Co., Ltd.)
* 5: Zinc oxide (3 types of zinc oxide manufactured by Shodo Chemical Industry Co., Ltd.)
* 6: Stearic acid (Stearic acid YR manufactured by NOF Corporation)
* 7: Anti-aging agent (Santoflex 6PPD manufactured by Solutia Europe)
* 8-1: Fatty acid metal salt-1 (zinc stearate)
* 8-2: Fatty acid metal salt-2 (calcium stearate)
* 8-3: Fatty acid metal salt-3 (potassium stearate)
* 8-4: Fatty acid metal salt-4 (cobalt stearate)
* 8-5: Fatty acid metal salt-5 (iron stearate)
* 9-1: Glycerin monofatty acid ester-1 (glycerol monostearate manufactured by Sigma-Aldrich)
* 9-2: Glycerin mono fatty acid ester-2 (glycerol monostearate)
* 9-3: Glycerin mono fatty acid ester-3 (glycerol monostearate manufactured by Sigma-Aldrich)
* 10-1: Comparative fatty acid ester-1 (glycerin produced by Sigma-Aldrich)
* 10-2: Comparative fatty acid ester-2 (glycerol monobutyrate)
* 11: Sulfur (Karuizawa Smelter Refinery sulfur)
* 12: Vulcanization accelerator-1 (Noxeller CZ-G manufactured by Ouchi Shinsei Chemical Co., Ltd.)
* 13: Vulcanization accelerator-2 (Perkacit DPG manufactured by Flexsys)

上記の表1の結果から明らかなように、実施例では、天然ゴムを含むジエン系ゴムに対し、特定の比表面積を有するシリカ、シランカップリング剤および特定のグリセリンモノ脂肪酸エステルを特定量でもって配合したので、標準例1に比べて、加工性および転がり抵抗性が改善され、シリカの分散性が高まり、また、天然ゴムのしゃっ解効果が生じないため、破断特性が向上し、なおかつムーニー粘度増加量も抑制されていることが分かる。
標準例1と比較例1〜5とを比較すると、同じ配合処方において、比較例1〜5では脂肪酸金属塩からなる加工助剤を配合しているため、加工性やシリカの分散性は向上するが、金属イオンによる天然ゴムのしゃっ解効果により、破断特性が悪化している。また組成物保管後の粘度増加も見られた。
比較例6は、グリセリンモノ脂肪酸エステルの替わりにグリセリンを使用した例であるので、シリカの分散性が向上せず、加工性およびムーニー粘度増加量が悪化し、また低転がり抵抗性も得られていない。
比較例7は、グリセリンモノ脂肪酸エステルの替わりにモノ酪酸グリセロールを使用した例であるので、加工性、ムーニー粘度増加量、破断強度が悪化した。
比較例8は、グリセリンモノ脂肪酸エステルの配合量が本発明で規定する上限を超えているので、破断強度が悪化した。
比較例9および10は、天然ゴムの配合量が本発明で規定する下限未満であるので、破断強度および/または破断伸びが悪化した。
比較例11は、シリカの配合量が本発明で規定する下限未満であるので、破断強度、破断伸びが悪化した。
As is clear from the results of Table 1 above, in the examples, silica having a specific surface area, a silane coupling agent, and a specific glycerin monofatty acid ester are used in a specific amount with respect to a diene rubber including natural rubber. As a result of blending, processability and rolling resistance are improved, silica dispersibility is increased, and the natural rubber crushing effect does not occur, resulting in improved fracture characteristics and Mooney. It can be seen that the increase in viscosity is also suppressed.
Comparing Standard Example 1 and Comparative Examples 1 to 5, in the same formulation, since Comparative Examples 1 to 5 are blended with processing aids composed of fatty acid metal salts, processability and silica dispersibility are improved. However, the breaking characteristics are deteriorated due to the crushing effect of natural rubber by metal ions. An increase in viscosity after storage of the composition was also observed.
Comparative Example 6 is an example in which glycerin is used instead of glycerin monofatty acid ester, so that dispersibility of silica is not improved, processability and Mooney viscosity increase are deteriorated, and low rolling resistance is also obtained. Absent.
Since Comparative Example 7 was an example using glycerol monobutyrate instead of glycerin monofatty acid ester, processability, Mooney viscosity increase amount, and breaking strength were deteriorated.
In Comparative Example 8, the breaking strength deteriorated because the blending amount of glycerin monofatty acid ester exceeded the upper limit defined in the present invention.
In Comparative Examples 9 and 10, the blending amount of natural rubber was less than the lower limit specified in the present invention, so the breaking strength and / or breaking elongation deteriorated.
In Comparative Example 11, since the compounding amount of silica was less than the lower limit specified in the present invention, the breaking strength and breaking elongation were deteriorated.

Claims (2)

天然ゴムを70質量部以上含むジエン系ゴム100質量部に対し、窒素吸着比表面積(NSA)が50m/g以上のシリカを30質量部以上、シランカップリング剤を前記シリカの質量に対し1〜20質量%および炭素数8〜24の脂肪酸を由来とするグリセリンモノ脂肪酸エステルを前記シリカの質量に対し1〜20質量%配合してなることを特徴とするゴム組成物。 With respect to 100 parts by mass of diene rubber containing 70 parts by mass or more of natural rubber, 30 parts by mass or more of silica having a nitrogen adsorption specific surface area (N 2 SA) of 50 m 2 / g or more, and a silane coupling agent as the mass of the silica. A rubber composition comprising 1 to 20% by mass of glycerin monofatty acid ester derived from 1 to 20% by mass and a fatty acid having 8 to 24 carbon atoms based on the mass of the silica. 請求項1に記載のゴム組成物をトレッドに使用した重荷重車両用空気入りタイヤ。   A pneumatic tire for heavy-duty vehicles using the rubber composition according to claim 1 for a tread.
JP2014251852A 2014-12-12 2014-12-12 Rubber composition and pneumatic tire for heavy load vehicle Pending JP2016113515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014251852A JP2016113515A (en) 2014-12-12 2014-12-12 Rubber composition and pneumatic tire for heavy load vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014251852A JP2016113515A (en) 2014-12-12 2014-12-12 Rubber composition and pneumatic tire for heavy load vehicle

Publications (1)

Publication Number Publication Date
JP2016113515A true JP2016113515A (en) 2016-06-23

Family

ID=56140990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014251852A Pending JP2016113515A (en) 2014-12-12 2014-12-12 Rubber composition and pneumatic tire for heavy load vehicle

Country Status (1)

Country Link
JP (1) JP2016113515A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018002873A (en) * 2016-07-01 2018-01-11 横浜ゴム株式会社 Rubber composition for coating a tire steel cord
KR101884425B1 (en) 2017-07-25 2018-08-06 한국생산기술연구원 Dispensing agent and Rubber Composition Comprising the Same
CN109777154A (en) * 2019-02-01 2019-05-21 彤程化学(中国)有限公司 A kind of response type white carbon black functional additive and its preparation method and application based on vegetable fatty acids
DE102019200883A1 (en) 2018-01-31 2019-08-01 Toyo Tire Corporation Rubber composition for tires and pneumatic tires
JP2019131697A (en) * 2018-01-31 2019-08-08 Toyo Tire株式会社 Rubber composition for tires, and pneumatic tire
JP2019131698A (en) * 2018-01-31 2019-08-08 Toyo Tire株式会社 Rubber composition for tires, and pneumatic tire
WO2020250824A1 (en) 2019-06-10 2020-12-17 Jxtgエネルギー株式会社 Silane coupling agent composition containing silane compound and protein denaturing agent, and rubber composition containing said composition
WO2020250822A1 (en) 2019-06-10 2020-12-17 Jxtgエネルギー株式会社 Silane coupling agent composition containing silane compound and protein denaturing agent, and rubber composition containing said composition
WO2021124811A1 (en) * 2019-12-18 2021-06-24 株式会社ブリヂストン Rubber composition and tire
WO2021256292A1 (en) 2020-06-18 2021-12-23 Eneos株式会社 Silane coupling agent composition and rubber composition comprising same
WO2021256296A1 (en) 2020-06-18 2021-12-23 Eneos株式会社 Silane coupling agent composition, and rubber composition comprising same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018002873A (en) * 2016-07-01 2018-01-11 横浜ゴム株式会社 Rubber composition for coating a tire steel cord
KR101884425B1 (en) 2017-07-25 2018-08-06 한국생산기술연구원 Dispensing agent and Rubber Composition Comprising the Same
JP6997645B2 (en) 2018-01-31 2022-01-17 Toyo Tire株式会社 Rubber composition for tires and pneumatic tires
JP6997643B2 (en) 2018-01-31 2022-01-17 Toyo Tire株式会社 Rubber composition for tires and pneumatic tires
JP2019131697A (en) * 2018-01-31 2019-08-08 Toyo Tire株式会社 Rubber composition for tires, and pneumatic tire
JP2019131696A (en) * 2018-01-31 2019-08-08 Toyo Tire株式会社 Rubber composition for tires, and pneumatic tire
JP2019131698A (en) * 2018-01-31 2019-08-08 Toyo Tire株式会社 Rubber composition for tires, and pneumatic tire
US10526474B2 (en) 2018-01-31 2020-01-07 Toyo Tire Corporation Rubber composition for tire and pneumatic tire
DE102019200883B4 (en) 2018-01-31 2023-03-30 Toyo Tire Corporation Rubber composition for a tire, use of the rubber composition and vulcanized product, particularly a pneumatic tire
DE102019200883A1 (en) 2018-01-31 2019-08-01 Toyo Tire Corporation Rubber composition for tires and pneumatic tires
JP6997644B2 (en) 2018-01-31 2022-01-17 Toyo Tire株式会社 Rubber composition for tires and pneumatic tires
CN109777154A (en) * 2019-02-01 2019-05-21 彤程化学(中国)有限公司 A kind of response type white carbon black functional additive and its preparation method and application based on vegetable fatty acids
WO2020250822A1 (en) 2019-06-10 2020-12-17 Jxtgエネルギー株式会社 Silane coupling agent composition containing silane compound and protein denaturing agent, and rubber composition containing said composition
KR20220007682A (en) 2019-06-10 2022-01-18 에네오스 가부시키가이샤 A silane coupling agent composition comprising a silane compound and a protein denaturant, and a rubber composition comprising the same
KR20220007163A (en) 2019-06-10 2022-01-18 에네오스 가부시키가이샤 A silane coupling agent composition comprising a silane compound and a protein denaturant, and a rubber composition comprising the same
WO2020250824A1 (en) 2019-06-10 2020-12-17 Jxtgエネルギー株式会社 Silane coupling agent composition containing silane compound and protein denaturing agent, and rubber composition containing said composition
US12024615B2 (en) 2019-06-10 2024-07-02 Eneos Corporation Silane coupling agent composition comprising silane compound and protein modifying agent, and rubber composition comprising the same
WO2021124811A1 (en) * 2019-12-18 2021-06-24 株式会社ブリヂストン Rubber composition and tire
WO2021256296A1 (en) 2020-06-18 2021-12-23 Eneos株式会社 Silane coupling agent composition, and rubber composition comprising same
WO2021256292A1 (en) 2020-06-18 2021-12-23 Eneos株式会社 Silane coupling agent composition and rubber composition comprising same
KR20230012579A (en) 2020-06-18 2023-01-26 에네오스 가부시키가이샤 Silane coupling agent composition and rubber composition containing the same

Similar Documents

Publication Publication Date Title
JP2016113515A (en) Rubber composition and pneumatic tire for heavy load vehicle
US10647833B2 (en) Rubber composition and pneumatic tire using same
JP6281632B2 (en) Rubber composition and pneumatic tire using the same
JP2011105789A (en) Rubber composition for studless tire and studless tire
JP6164260B2 (en) Rubber composition and pneumatic tire using the same
EP3569656B1 (en) Wax, rubber composition, and pneumatic tire
EP3760669B1 (en) Rubber composition and pneumatic tire obtained using same
JP2014210829A (en) Rubber composition and pneumatic tire using the same
JP2013177520A (en) Rubber composition for tire and pneumatic tire using the composition
JP2014034646A (en) Rubber composition for tire and pneumatic tire using the same
JP6015308B2 (en) Rubber composition and pneumatic tire using the same
JP6160661B2 (en) Rubber composition and pneumatic tire using the same
JP7009947B2 (en) Rubber composition for tires and pneumatic tires
JP6164261B2 (en) Rubber composition and pneumatic tire using the same
JP6511791B2 (en) Rubber composition and pneumatic tire using the same
JP7360081B2 (en) Rubber composition for heavy duty tires
CN111770959B (en) Rubber composition and pneumatic tire using same
WO2018079312A1 (en) Rubber composition for tire, and pneumatic tire
JP4983206B2 (en) Rubber composition
JP2019131735A (en) Rubber composition, and pneumatic tire using the same
JP2020094149A (en) Rubber additive, rubber additive composition, tire rubber composition, tire crosslinked rubber composition, and tire rubber product, and tire
JP2020111701A (en) Rubber composition and tire for motor cycle using the same
JP2012111962A (en) Rubber composition for studless tire and studless tire
JP2020111688A (en) Rubber composition and pneumatic tire using the same
JP2009057514A (en) Rubber composition