JP2016113095A - Railway vehicle truck having synchronizer, and railway vehicle having synchronizer - Google Patents

Railway vehicle truck having synchronizer, and railway vehicle having synchronizer Download PDF

Info

Publication number
JP2016113095A
JP2016113095A JP2014255255A JP2014255255A JP2016113095A JP 2016113095 A JP2016113095 A JP 2016113095A JP 2014255255 A JP2014255255 A JP 2014255255A JP 2014255255 A JP2014255255 A JP 2014255255A JP 2016113095 A JP2016113095 A JP 2016113095A
Authority
JP
Japan
Prior art keywords
wheel
railway vehicle
electric motor
force
bogie
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014255255A
Other languages
Japanese (ja)
Inventor
猛 石田
Takeshi Ishida
猛 石田
剛 立石
Go Tateishi
剛 立石
秀明 江崎
Hideaki Ezaki
秀明 江崎
聡一郎 阪東
Soichiro Bando
聡一郎 阪東
杉山 修一
Shuichi Sugiyama
修一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2014255255A priority Critical patent/JP2016113095A/en
Publication of JP2016113095A publication Critical patent/JP2016113095A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a railroad vehicle truck capable of being applied to not only an electric motor car but also a trailer having no power source without any necessity for an active control and having both a restoration effect to a track center equivalent to that of the conventional integrated wheel track and sharp passage performance equivalent to that of the conventional independent wheel truck, and a railroad vehicle.SOLUTION: A truck constituted by constructing one set of wheel systems by two sets of individually rotatable wheels and an assembly mechanism and by connecting two sets of wheel systems in engagement with one set of truck frames, comprises: an electric motor connected to each wheel through a drive mechanism; and a synchronizer composed of electric power lines for connecting the individual phases of the front and rear electric motors individually on the left side and the right side.SELECTED DRAWING: Figure 1

Description

本願発明は、同期装置をもつ鉄道車両用台車と、同期装置を備えた鉄道車両とに関する。   The present invention relates to a railway vehicle carriage having a synchronization device and a railway vehicle provided with the synchronization device.

左右の車輪を車軸で一体化した通常の輪軸、いわゆる一体型輪軸を用いた鉄道車両に対し、輪軸を左右に分離して各々を個別に回転可能とした鉄道車両が知られている。   In contrast to a railway vehicle using a normal wheel shaft in which left and right wheels are integrated with an axle, that is, a so-called integrated wheel shaft, a rail vehicle is known in which the wheel shaft is separated into left and right and each can be rotated individually.

一体型輪軸を用いた台車は、直線区間において左または右への偏り走行を抑止する公知の車輪踏面勾配効果によって、回転走行する輪軸を常に軌道中心側へ復元し、安定した走行を維持する機能をもっている。   The bogie that uses an integrated wheel axle is a function that maintains a stable running by always restoring the rotating wheel axle to the track center side by a known wheel tread gradient effect that suppresses left or right running in a straight section. Have

また一体型輪軸を用いた台車は、曲線区間において輪軸が軌道中心から外軌側に移動することで左右車輪のレールとの接触点で車輪径差を生じさせて走行する、いわゆる円錐転がり効果による曲線に応じた滑らかな走行が可能となる。   In addition, the bogie using the integrated wheel shaft is driven by the so-called conical rolling effect, in which the wheel shaft moves from the center of the track to the outer track side in a curved section, causing a wheel diameter difference at the contact point with the rails of the left and right wheels. Smooth running according to the curve becomes possible.

ただし、この機能は限定的で、軌道の曲率半径が小さい急曲線では左右の車輪系の比が左右の軌道長の比を吸収できないため、台車は軌道中心に戻ることができず、軌道に対して大きな相対角度(アタック角)を有することになる。このアタック角による横クリープ力と、フランジ反力とにより、車輪のフランジとレールとが強く押圧し合って、レールと車輪の双方に好ましくない摩耗が促進される。このため、軌道を建設する際、好適な曲線諸元の選定に制約が生じて、軌道設計の自由度が低下し、特に市街地での建設費用もしくは維持費用が高騰する不都合が生じる。   However, this function is limited, and on a sharp curve with a small radius of curvature of the track, the ratio of the left and right wheel systems cannot absorb the ratio of the left and right track length, so the carriage cannot return to the track center and And has a large relative angle (attack angle). The lateral creep force by the attack angle and the flange reaction force cause the wheel flange and the rail to strongly press each other, and undesirable wear is promoted on both the rail and the wheel. For this reason, when constructing a track, there are restrictions on the selection of suitable curve specifications, the degree of freedom in track design is reduced, and inconvenience that construction costs or maintenance costs particularly in urban areas increase.

一方、輪軸を左右に分離して各々を個別に回転可能とした独立回転構造の台車は、左右の車輪回転数が個別に変化するので、軌道の曲率半径を一体型輪軸とした場合よりも小さく選定できるが、一体型輪軸の車輪踏面勾配効果による軌道中心への復元力が作用しないため、常に軌道中心へ復元させる制御が別途必要となる。   On the other hand, a cart with an independent rotation structure that separates the wheel shaft into left and right parts and can rotate each separately changes the rotational speed of the left and right wheels individually, so the radius of curvature of the track is smaller than when the integrated wheel shaft is used. Although it can be selected, the restoring force to the center of the track due to the wheel tread gradient effect of the integrated wheel shaft does not act, so a separate control to always restore to the center of the track is required.

このような課題に対し、各車輪に設けた電動機の回転速度を個別かつ能動的に制御する技術の例が下記特許文献1で提案されている。   The following patent document 1 proposes an example of a technique for individually and actively controlling the rotational speed of the electric motor provided on each wheel for such a problem.

特開平8−268277号公報JP-A-8-268277

しかしながら、上記特許文献1では、軌道が直線区間か曲線区間かに拘わらず、常時能動的な制御が必要となる。また、走行中は常に左右車輪の回転速度を協調制御する必要があり、電動機への電力供給を断つ惰行運転ができず、走行中の電力消費が増える。さらに、電源の喪失となる停電時は能動制御を行えず、異常時の安全対策を必要とする。   However, in Patent Document 1, active control is always required regardless of whether the trajectory is a straight section or a curved section. Further, it is necessary to always coordinately control the rotation speeds of the left and right wheels during traveling, and coasting operation that cuts off the power supply to the motor cannot be performed, resulting in increased power consumption during traveling. Furthermore, active control cannot be performed in the event of a power failure resulting in a loss of power, and safety measures are required in the event of an abnormality.

本願発明は上記課題の総てを解決するもので、能動的な制御を要することなく、電動車のみならず、動力源を持たない付随車に対しても適用可能であって、従来の一体型輪軸台車と同等の軌道中心への復元効果と、従来の独立車輪台車と同等の急曲線通過性能を兼ね備えた鉄道車両用台車、および鉄道車両を提供することを目的としている。   The present invention solves all the above-mentioned problems, and can be applied not only to an electric vehicle but also to an accompanying vehicle having no power source without requiring active control. An object of the present invention is to provide a railcar bogie and a railcar that have the effect of restoring to the center of the track equivalent to that of a wheeled bogie and the sharp curve passing performance equivalent to that of a conventional independent wheel bogie.

本発明のある態様に係る鉄道車両用台車は、個別回転可能な車輪2組と組付機構とで1組の輪軸系を構成し、1組の台車枠に2組の輪軸系を係合連結して成る鉄道車両用台車であって、各車輪に駆動機構を介して接続される電動機と、左側、右側のそれぞれにおいて、前後の電動機の各相どうしを接続する電力線から成る同期装置を有することを特徴とする鉄道車両用台車である。   In a railway vehicle bogie according to an aspect of the present invention, two sets of individually rotatable wheels and an assembling mechanism constitute one set of wheel shaft systems, and two sets of wheel shaft systems are engaged and connected to one set of bogie frames. A railcar carriage comprising a motor connected to each wheel via a drive mechanism and a synchronizer comprising a power line connecting the front and rear motor phases on each of the left and right sides. This is a railcar bogie characterized by the following.

この鉄道車両用台車は、個別回転可能な車輪を有するので、独立車輪台車としての急曲線通過性能を有している。さらに、前後の電動機の各相どうしを接続することで、同期化力の作用によって、接続された電動機の回転数が等しく保たれるため、一体型輪軸と同等の軌道中心への復元効果を有する。さらに、動力源をもつ必要がないため、付随車に対しても適用可能である。   Since this railway vehicle carriage has wheels that can be individually rotated, it has a sharp curve passing performance as an independent wheel carriage. Furthermore, since the rotation speeds of the connected motors are kept equal by the action of the synchronization force by connecting the phases of the front and rear motors, there is a restoring effect to the track center equivalent to the integrated wheel shaft. . Furthermore, since it is not necessary to have a power source, it is applicable also to an accompanying vehicle.

この鉄道車両用台車では、電動機は、ダンパ巻線を有する同期電動機としてもよい。これにより、同期化力の効果が高まる。   In this railway vehicle carriage, the electric motor may be a synchronous motor having a damper winding. This increases the effect of the synchronization force.

この鉄道車両用台車では、電動機は、回転子と固定子との隙間が1ミリメートルを越えない誘導電動機としてもよい。これにより、同期化力の効果が高まる。   In this railway vehicle carriage, the electric motor may be an induction motor in which the gap between the rotor and the stator does not exceed 1 mm. This increases the effect of the synchronization force.

本発明のある態様に係る鉄道車両は、個別回転可能な車輪2組と組付機構とで1組の輪軸系を構成し、1組の台車枠に2組の輪軸系を係合連結し、各車輪に駆動機構を介して接続される電動機と、左側、右側のそれぞれにおいて、前後の電動機の各相どうしを接続する電力線から成る同期装置を有することを特徴とする台車を1式以上もつ鉄道車両である。   A railway vehicle according to an aspect of the present invention includes two sets of individually rotatable wheels and an assembly mechanism that form one set of axle systems, and two sets of axle systems are engaged and connected to one set of bogie frames. A railway having one or more carriages characterized by having an electric motor connected to each wheel via a drive mechanism, and a synchronization device comprising power lines connecting the respective phases of the front and rear electric motors on each of the left and right sides It is a vehicle.

この鉄道車両では、個別回転可能な車輪を有するので、独立車輪台車としての急曲線通過性能を有している。さらに、前後の電動機の各相どうしを接続することで、同期化力の作用により、接続された電動機に対する車輪の回転数が等しく保たれるため、一体型輪軸と同等の軌道中心への復元効果を有する。さらに、動力源をもつ必要がないため、この鉄道車両を付随車とすることができる。   Since this railway vehicle has wheels that can be individually rotated, it has a sharp curve passing performance as an independent wheel bogie. Furthermore, by connecting the phases of the front and rear motors, the rotation speed of the wheels with respect to the connected motors is kept equal by the action of the synchronization force, so the effect of restoring to the center of the track equivalent to the integrated wheel shaft is achieved. Have Furthermore, since it is not necessary to have a power source, this railway vehicle can be an accompanying vehicle.

さらに、この鉄道車両では、前記電動機に電力を供給する設備と、電力変換器とを有してもよい。   Furthermore, this railway vehicle may include a facility for supplying power to the electric motor and a power converter.

これにより、この鉄道車両を動力車とすることができる。   Thereby, this railway vehicle can be used as a power vehicle.

本願発明は上記のように構成され、能動的な制御を要することなく、電動車のみならず、動力源を持たない付随車に対しても適用可能であって、従来の一体型輪軸台車と同等の軌道中心への復元効果と、従来の独立車輪台車と同等の急曲線通過性能を兼ね備えた鉄道車両用台車、および鉄道車両を提供することができるという効果を奏する。   The present invention is configured as described above, and can be applied not only to an electric vehicle but also to an accompanying vehicle having no power source without requiring active control, and is equivalent to a conventional integrated wheelset truck. There is an effect that it is possible to provide a railway vehicle carriage and a railway vehicle that have both a restoration effect to the center of the track and a sharp curve passing performance equivalent to that of a conventional independent wheel carriage.

本発明の実施の形態1に係る台車の例を示す図である。It is a figure which shows the example of the trolley | bogie which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電力線前後接続の例を示す図である。It is a figure which shows the example of the power line front-back connection which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る台車の挙動を示す図である。It is a figure which shows the behavior of the trolley | bogie which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る同期装置を備えた車両の例を示す図である。It is a figure which shows the example of the vehicle provided with the synchronizer which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る同期装置を備えた車両の例を示す図である。It is a figure which shows the example of the vehicle provided with the synchronizing device which concerns on Embodiment 3 of this invention. 本発明の実施の形態2に係る電力線前後接続の例を示す図である。It is a figure which shows the example of the power line front-back connection which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る電力線前後接続の例を示す図である。It is a figure which shows the example of the power line front-back connection which concerns on Embodiment 3 of this invention. 本発明の実施の形態1に係る台車の挙動模擬解析結果の例を示す図である。It is a figure which shows the example of the behavior simulation analysis result of the trolley | bogie which concerns on Embodiment 1 of this invention. 従来技術の一体型輪軸台車の挙動を示す図である。It is a figure which shows the behavior of the integrated wheel-shaft trolley | bogie of a prior art. 従来技術の独立車輪台車の挙動を示す図である。It is a figure which shows the behavior of the independent wheel trolley | bogie of a prior art.

以下、本願発明の実施形態を図面で説明するが、全図を通じて同じ要素には同一の参照符号を付し、重複説明を避けている。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same elements throughout the drawings to avoid redundant description.

また各図面における前後・左右の定義は次のとおりである。   The front / rear / left / right definitions in each drawing are as follows.

図1は、左側が前(F)で右側が後(R)、平面図の上側が右で下側が左である。   In FIG. 1, the left side is front (F), the right side is rear (R), the upper side of the plan view is right, and the lower side is left.

図2、図3、図6、図7、図9および図10は、上側が前(F)で下側が後(R)、左右は図の通りである。   2, 3, 6, 7, 9, and 10, the upper side is front (F), the lower side is rear (R), and the left and right are as illustrated.

図4および図5は、左側が前(F)で右側が後(R)である。   4 and 5, the left side is front (F) and the right side is rear (R).

(実施の形態1)
図1および図2は、実施の形態1に係る同期装置をもつ鉄道車両用台車の構成例を示す図である。
(Embodiment 1)
1 and 2 are diagrams illustrating a configuration example of a railcar bogie having the synchronization device according to the first embodiment.

図1(a)に示すように、先ず、左右個別に回転可能な2組の車輪3(3FL,3FR,または3RL,3RR)と1組の組付機構4(4Fまたは4R)とで、1組の輪軸系5(5Fまたは5R)を構成し、この輪軸系5を前後2組分用意する。   As shown in FIG. 1 (a), first, two sets of wheels 3 (3FL, 3FR, or 3RL, 3RR) that can be rotated individually on the left and right sides and one set of assembly mechanism 4 (4F or 4R) A set of wheel shaft systems 5 (5F or 5R) is configured, and two sets of front and rear wheel systems 5 are prepared.

組付機構4(4F,4R)は、左右の側部が歯車箱を兼ねており、その間の軸部は捩り棒軸(トーションバー)となっている。歯車箱には、歯車で構成する図示していない駆動機構が収められており、これを介して、車輪3、電動機M、およびブレーキディスク11が組付機構4に対して回転自在に接続される。台車枠Bと前部および後部の輪軸系5F,5Rとは、各々組付機構4の捩り棒軸を介して係合連結する。   In the assembly mechanism 4 (4F, 4R), the left and right side portions also serve as a gear box, and the shaft portion therebetween is a torsion bar shaft (torsion bar). The gear box houses a drive mechanism (not shown) composed of gears, through which the wheel 3, the electric motor M, and the brake disk 11 are rotatably connected to the assembly mechanism 4. . The carriage frame B and the front and rear wheel shaft systems 5F and 5R are engaged and connected via the torsion bar shaft of the assembling mechanism 4, respectively.

以上の構成により、台車2は軌道の平面性偏倚に対応することができる。   With the above configuration, the carriage 2 can cope with the flatness deviation of the track.

次に、図1(b)の側面図では、中央上部2箇所には空気ばね12が位置し、中央下部4箇所にはコイルばね13が組込まれて、各々が台車枠Bによって、相互に支持構成されている。中央上部2箇所の空気ばね12の上には車体1が載り、中央下部4箇所のコイルばね13は、上部の輪軸系5と下部の組付機構4との間に挟まれている。左右の各車輪が受ける個別の上下動は、輪軸系5の前記捩り棒軸によってコイルばね13に作用して、左右個別に緩衝効果を発揮する。車輪中心とコイルばね中心は、前記捩り棒軸に対して前後等距離、またはそれに近い間隔に設定する。以上の構成によって、車輪上にコイルばねが位置する公知の台車と等価な緩衝効果を獲得できる。   Next, in the side view of FIG. 1 (b), air springs 12 are located at two places in the central upper part, and coil springs 13 are incorporated at four places in the middle lower part, which are mutually supported by a carriage frame B. It is configured. The vehicle body 1 is placed on the two air springs 12 at the center upper part, and the coil springs 13 at the center lower part 4 are sandwiched between the upper wheel shaft system 5 and the lower assembly mechanism 4. Individual vertical movements received by the left and right wheels act on the coil springs 13 by the torsional bar shafts of the wheel system 5 to exert a buffering effect on the left and right sides individually. The center of the wheel and the center of the coil spring are set to be equidistant in the front-rear direction or close to the torsion bar shaft. With the above configuration, it is possible to obtain a buffering effect equivalent to a known cart in which a coil spring is located on the wheel.

台車の左側、右側のそれぞれにおいて、前後の電動機の各相どうしは電力線Pで接続されている。同期装置Sは、前後各1台の電動機Mと電力線Pから成る。すなわち、この台車は左右に各1台の同期装置Sを有する。   In each of the left and right sides of the carriage, the phases of the front and rear motors are connected by a power line P. The synchronizer S is composed of one motor M and a power line P before and after. That is, this cart has one synchronization device S on each side.

各電動機Mは、ダンパ巻線を有する同期電動機、あるいは回転子と固定子との隙間が1ミリメートルを超えない誘導電動機の何れでも選択できる。   Each motor M can be selected from either a synchronous motor having a damper winding or an induction motor in which the gap between the rotor and the stator does not exceed 1 millimeter.

同期電動機を適用する場合、電動機Mの回転子は薄厚珪素鋼板を重ね合わせて形成し、回転子の円筒表面に近い部分には永久磁石を複数埋め込んで回転子を構成してもよい。回転子の表面にはよく知られたダンパ巻線を設けてもよい。このとき、回転磁界に対して回転子が遅れると、両者の速度差で鎖交磁束を生じ、ダンパ巻線に速度差を解消する誘導電流が流れて、回転子の速度変化を抑制する同期化力が発生する。したがって、複数の同期電動機のそれぞれの相間を電力線で結んで電流経路を設けると、当該車輪間に回転数差が生じたとき、直ちに両者間で電力授受がなされ、同期化力の効果により、高回転側には減速トルク、低回転側には加速トルクが作用して、電気的に接続した電動機M間の回転速度差が解消する。なお、誘導電動機に対しても上記と同様の効果を付与させることは可能であるが、当該電動機を励磁するための手段を別途設ける必要がある。   When the synchronous motor is applied, the rotor of the motor M may be formed by superposing thin silicon steel plates, and a plurality of permanent magnets may be embedded in a portion close to the cylindrical surface of the rotor to constitute the rotor. A well-known damper winding may be provided on the surface of the rotor. At this time, if the rotor is delayed with respect to the rotating magnetic field, a linkage flux is generated due to the speed difference between the two, and an induction current flows to the damper winding to eliminate the speed difference, thereby synchronizing the speed change of the rotor. Force is generated. Therefore, when a current path is provided by connecting the phases of a plurality of synchronous motors with a power line, when a rotational speed difference occurs between the wheels, power is immediately exchanged between the two. A deceleration torque acts on the rotation side and an acceleration torque acts on the low rotation side, and the difference in rotational speed between the electrically connected motors M is eliminated. Although it is possible to give the same effect to the induction motor, it is necessary to provide a means for exciting the motor.

このように、本実施形態においては、左側、右側のそれぞれにおいて、前後の電動機の各相どうしを電力線で接続することにより、電力変換器の有無とは無関係に同期化力を作用させるものであり、台車を駆動する必要がなければ電力変換器は不要である。   As described above, in this embodiment, the synchronization force is applied regardless of the presence or absence of the power converter by connecting the phases of the front and rear motors with the power line in each of the left side and the right side. If it is not necessary to drive the carriage, a power converter is not necessary.

次に、同期化力の効果を、図3、図9および図10を用いて説明する。   Next, the effect of the synchronization force will be described with reference to FIG. 3, FIG. 9, and FIG.

図9は、従来技術の一体型輪軸を持つ台車である。   FIG. 9 shows a cart having an integrated wheel shaft according to the prior art.

図10は、従来技術の独立車輪台車である。   FIG. 10 is a prior art independent wheel carriage.

図3は、本願発明の同期装置を持つ鉄道車両用台車である。   FIG. 3 shows a railway vehicle carriage having the synchronization device of the present invention.

各図において、(a)は直線軌道を走行する状態、(b)は高速鉄道で用いられるような緩曲線を走行する状態、(c)は市街鉄道で用いられるような急曲線を走行する状態である。   In each figure, (a) is a state of traveling on a straight track, (b) is a state of traveling on a gentle curve as used in a high-speed rail, and (c) is a state of traveling on a sharp curve as used on a city rail. It is.

いずれも軌道に対して、軌道不整等の外乱をきっかけにアタック角を有している状況を示している。この場合、踏面勾配の効果によって、前軸右側と後軸左側の車輪半径は大きくなり、前軸左側と後軸右側の車輪半径は小さくなる。   Both show the situation that the attack angle is given to the trajectory triggered by disturbance such as irregular trajectory. In this case, due to the effect of the tread surface gradient, the wheel radii on the right side of the front shaft and the left side of the rear shaft are increased, and the wheel radii on the left side of the front shaft and the right side of the rear shaft are decreased.

このとき、車輪には、縦クリープ力101、横クリープ力102、フランジ反力103、同期化力104が作用する。   At this time, longitudinal creep force 101, lateral creep force 102, flange reaction force 103, and synchronization force 104 act on the wheel.

縦クリープ力101について、図9を用いて説明する。これは車輪/軌道接触面において、車輪と軌道とのすべりによって生じる摩擦力である。図9(a)の前軸では、左右の車輪の回転数は軸によって拘束され、踏面勾配の効果によって右車輪の半径は標準値より大きく、左車輪の半径は標準値より小さくなるから、縦クリープ力101は右車輪では前向き、左車輪では後向きに生じる。これは図9(b)の緩曲線でも同じである。一方で、図9(c)の急曲線においては、左右のレール長の差が大きく、これを踏面勾配で吸収できなくなるため、縦クリープ力101は逆方向に作用する。また、図10、図3に示す独立車輪においては、輪軸の左右変位が生じても、車輪半径が増大すれば回転数が減少し、車輪半径が減少すれば回転数が増大することができるので、縦クリープ力101はほぼ作用しない。   The longitudinal creep force 101 will be described with reference to FIG. This is a frictional force generated by the slip between the wheel and the track at the wheel / track contact surface. In the front shaft in FIG. 9 (a), the rotation speeds of the left and right wheels are constrained by the shaft, and the radius of the right wheel is larger than the standard value and the radius of the left wheel is smaller than the standard value due to the effect of the tread surface gradient. The creep force 101 occurs forward on the right wheel and backward on the left wheel. This is the same for the gentle curve in FIG. On the other hand, in the sharp curve of FIG. 9C, the difference between the left and right rail lengths is large, and this cannot be absorbed by the tread gradient, so the longitudinal creep force 101 acts in the opposite direction. Further, in the independent wheels shown in FIGS. 10 and 3, even if the wheel shaft is displaced laterally, the rotational speed can be decreased if the wheel radius is increased, and the rotational speed can be increased if the wheel radius is decreased. The longitudinal creep force 101 hardly acts.

横クリープ力102は、アタック角によって生じる摩擦力であり、その原理はタイヤ工学で言うところの横力と同じであって、アタック角を増大させる方向に作用する。これは台車が一体型輪軸を備える場合でも、独立車輪を備える場合でも発生する。   The lateral creep force 102 is a frictional force generated by the attack angle, and its principle is the same as the lateral force in terms of tire engineering, and acts in the direction of increasing the attack angle. This occurs whether the carriage has an integral wheel shaft or an independent wheel.

フランジ反力103は、車輪/軌道接触面に作用する法線力の水平成分である。踏面接触時には接触面はほぼ水平であるためフランジ反力103は小さいが、フランジ接触に至ると接触面はフランジ角に沿って大きく傾くため、フランジ反力103は大きくなる。   The flange reaction force 103 is a horizontal component of a normal force acting on the wheel / track contact surface. At the time of contact with the tread, the contact surface is almost horizontal and the flange reaction force 103 is small. However, when the flange contact is reached, the contact surface is greatly inclined along the flange angle, so the flange reaction force 103 increases.

同期化力104について、図3を用いて説明する。図3(a)の右車輪では、踏面勾配の効果によって前車輪の半径は標準値より大きく、後車輪の半径は標準値より小さいから、同期化力104は、右車輪では前向き、左車輪では後向きに生じる。これは、図9(a)における縦クリープ力と同じである。図3(b)および図3(c)における同期化力は図3(a)と同じ方向であり、曲線半径によって変わることはない。   The synchronization force 104 will be described with reference to FIG. In the right wheel of FIG. 3 (a), the radius of the front wheel is larger than the standard value and the radius of the rear wheel is smaller than the standard value due to the effect of the tread surface gradient. It occurs backwards. This is the same as the longitudinal creep force in FIG. The synchronization force in FIGS. 3B and 3C is in the same direction as in FIG. 3A and does not change depending on the curve radius.

これら車輪とレール間の作用力は摩耗を誘引するため、これを低減しつつ、直線での復元性能と、急曲線の通過性能を両立することが求められる。   Since the acting force between these wheels and the rail induces wear, it is required to reduce both of this and to achieve both a straight line restoration performance and a sharp curve passing performance.

ここで、図9を用いて、従来技術の一体型輪軸台車の挙動を説明する。図9(a)および図9(b)においては、縦クリープ力101が輪軸を中立位置に復元させる方向のヨーモーメント111を発生させる。横クリープ力102は、輪軸をさらに左右に偏倚させる方向に働くが、輪軸はヨーモーメント111の働きによって中立位置に戻る方向を向くので、結果的にフランジ当たりは抑止される。一方、図9(c)においては、縦クリープ力101が中立位置に復元させるのとは逆方向のヨーモーメント111を発生させるとともに、横クリープ力102が、輪軸をさらに左右に偏倚させる方向に働くため、必ずフランジ当たりに至り、車輪の軌道からの逸脱はフランジ反力103でのみ抑止される。このため、車輪/軌道接触面の作用力は極めて大きく、摩耗が急速に進展する。   Here, with reference to FIG. 9, the behavior of the conventional integrated wheel axle truck will be described. 9 (a) and 9 (b), the vertical creep force 101 generates a yaw moment 111 in a direction that restores the wheel shaft to the neutral position. The lateral creep force 102 acts in a direction that further biases the wheel shaft to the left and right, but the wheel shaft turns in the direction returning to the neutral position by the action of the yaw moment 111, and as a result, the contact with the flange is suppressed. On the other hand, in FIG. 9C, a yaw moment 111 is generated in the opposite direction to that in which the longitudinal creep force 101 is restored to the neutral position, and the lateral creep force 102 acts in a direction that further biases the wheel shaft to the left and right. Therefore, it always reaches the flange contact, and the deviation from the wheel track is suppressed only by the flange reaction force 103. For this reason, the acting force of the wheel / track contact surface is extremely large and the wear progresses rapidly.

次に、図10を用いて、従来技術の独立車輪台車の挙動を説明する。図10(a)、図10(b)および図10(c)においては、縦クリープ力101が作用せず、横クリープ力102が、輪軸をさらに左右に偏倚させる方向に働くため、中立位置に復元させる能力をもたない。そのため、フランジ当たりに至り、フランジ反力103で車輪の逸脱が防止される。車輪/軌道接触面の作用力は図9(c)の場合よりは大幅に小さいが、常時小さな横クリープ力が作用するため、摩耗が早期に進展する。   Next, the behavior of a conventional independent wheel bogie will be described with reference to FIG. 10 (a), 10 (b), and 10 (c), the vertical creep force 101 does not act and the lateral creep force 102 acts in a direction that further biases the wheel shaft to the left and right. No ability to restore. Therefore, the flange hits and the wheel reaction force 103 prevents the wheel from deviating. Although the acting force of the wheel / track contact surface is significantly smaller than that in the case of FIG. 9 (c), the wear progresses early because a small lateral creep force always acts.

次に、図3を用いて、本願の同期装置をもつ鉄道車両用台車の挙動を説明する。図3(a)、図3(b)および図3(c)においては、同期化力104が輪軸を中立位置に復元させる方向のヨーモーメント114を発生させる。横クリープ力102は、輪軸をさらに左右に偏倚させる方向に働くが、輪軸はヨーモーメント114の働きによって中立位置に戻る方向を向くので、結果的にフランジ当たりは抑止される。したがって、従来技術の一体型輪軸台車、従来技術の独立車輪台車のいずれとも異なり、直線から急曲線までの全ての軌道において輪軸を中立位置に復元させることができ、かつ曲線をスムースに通過することができる。   Next, with reference to FIG. 3, the behavior of the railway vehicle carriage having the synchronization device of the present application will be described. In FIGS. 3 (a), 3 (b) and 3 (c), the synchronizing force 104 generates a yaw moment 114 in a direction that restores the wheelset to the neutral position. The lateral creep force 102 acts in a direction that further biases the wheel shaft to the left and right, but the wheel shaft turns in the direction returning to the neutral position by the action of the yaw moment 114, and as a result, the contact with the flange is suppressed. Therefore, unlike both the conventional integrated wheel bogie and the prior art independent wheel bogie, the wheel shaft can be restored to the neutral position on all tracks from straight to sharp curves, and the curve passes smoothly. Can do.

本願発明の効果を示すため、図8に、一波長の通り狂いを設定した直線軌道を走行した場合のシミュレーション結果を示す。シミュレーション条件は、直線軌道、40km/hの走行であり、電力線は前後の電動機を接続する。電力変換装置は接続されておらず、能動的な制御も行われていない。
図中のグラフ(a)は軌道通り狂いを表す。ここでは、正弦波状の通り狂いを進行方向左側に設定し、台車に外乱を与えている。グラフ(b)は台車枠の変位を表し、軌道狂いに対して、台車枠が遅れて追従し、やがて同期化力の効果により中立位置に復元することが示されている。グラフ(c)は台車枠のヨー角を表しており、最初は左に、揺れ戻しで右に振れ、やがて同期化力の効果により減衰することが示されている。グラフ(d)はモータの一次電流を、グラフ(e)および(f)は電力を表し、前後接続された電力線を介して電流がやり取りされ、同期化力が発生していることが示されている。
In order to show the effect of this invention, the simulation result at the time of driving | running | working on the linear track | orbit which set the deviation as one wavelength in FIG. 8 is shown. The simulation condition is a straight track, traveling at 40 km / h, and the power line connects the front and rear motors. The power converter is not connected and is not actively controlled.
The graph (a) in the figure represents a trajectory error. Here, a sine wave-like street deviation is set on the left side in the traveling direction, and a disturbance is given to the carriage. Graph (b) represents the displacement of the bogie frame, and it is shown that the bogie frame follows the trajectory error with a delay, and is eventually restored to the neutral position by the effect of the synchronizing force. Graph (c) represents the yaw angle of the bogie frame, and it is shown that it initially swings to the left, swings back to the right, and eventually decays due to the effect of the synchronizing force. Graph (d) shows the primary current of the motor, graphs (e) and (f) show the power, and it is shown that the current is exchanged through the power lines connected in the front and rear, and that the synchronizing force is generated. Yes.

以上より、上記構成によれば、個別回転可能な車輪を有するので、独立車輪台車としての急曲線通過性能を有している。さらに、前後の電動機の各相どうしを接続することで、同期化力の作用により、接続された電動機間で車輪の回転数が等しく保たれるため、一体型輪軸と同等の軌道中心への復元効果を有する。さらに、動力源をもつ必要がないため、付随車に対しても適用可能である。   As mentioned above, according to the said structure, since it has the wheel which can be rotated separately, it has the sharp curve passage performance as an independent wheel trolley | bogie. Furthermore, by connecting the phases of the front and rear motors, the rotation speed of the wheels is kept equal between the connected motors due to the action of the synchronizing force, so that restoration to the center of the track equivalent to the integrated wheel shaft is possible. Has an effect. Furthermore, since it is not necessary to have a power source, it is applicable also to an accompanying vehicle.

(実施の形態2)
図4および図6は、実施の形態2に係る同期装置を備えた鉄道車両(付随車)の構成例を示す図である。図4に示すように、車両はその車体1の下に、レール9上を移動する個別に回転可能な4つの車輪3を有する2式の台車2F,2Rを有し、各台車2F,2Rには同期装置Sを備える。
(Embodiment 2)
4 and 6 are diagrams illustrating a configuration example of a railway vehicle (accompanying vehicle) including the synchronization device according to the second embodiment. As shown in FIG. 4, the vehicle has two types of carriages 2F and 2R having four individually rotatable wheels 3 moving on a rail 9 below the vehicle body 1, and each carriage 2F and 2R has a Comprises a synchronization device S.

車両は自走しない付随車であるが、電動機Mを備えている。
左右それぞれ、前後の電動機Mを電力線Pで接続し、左右各1組の同期装置Sを構成する。
The vehicle is an accompanying vehicle that does not run on its own, but has an electric motor M.
Each of the left and right motors M is connected by a power line P to configure a pair of left and right synchronizers S.

図6は前記車両の床下平面図で、同期装置Sの接続関係を示す。図には各車輪3と対応する電動機Mの配置を示す。加えて各電動機Mが電力線Pで接続された状態を示す。具体的には、電動機M1と電動機M3との間が電力線PRで接続され、電動機M2と電動機M4との間が電力線PLで接続されている。なお、駆動しない車両のため、当該電動機M間以外に電力授受はない。   FIG. 6 is a plan view of the vehicle below the floor, showing the connection relationship of the synchronization device S. FIG. In the figure, the arrangement of the motor M corresponding to each wheel 3 is shown. In addition, a state in which each electric motor M is connected by a power line P is shown. Specifically, the electric motor M1 and the electric motor M3 are connected by the power line PR, and the electric motor M2 and the electric motor M4 are connected by the electric power line PL. Since the vehicle is not driven, there is no power transfer other than between the motors M.

上記構成によれば、個別回転可能な車輪を有するので、独立車輪台車としての急曲線通過性能を有している。さらに、前後の電動機の各相どうしを接続することで、同期化力の作用により、接続された電動機間で車輪の回転数が等しく保たれるため、一体型輪軸と同等の軌道中心への復元効果を有する。さらに、動力源をもつ必要がないため、鉄道車両は、付随車とすることができる。   According to the said structure, since it has the wheel which can rotate separately, it has the sharp curve passage performance as an independent wheel trolley | bogie. Furthermore, by connecting the phases of the front and rear motors, the rotation speed of the wheels is kept equal between the connected motors due to the action of the synchronizing force, so that restoration to the center of the track equivalent to the integrated wheel shaft is possible. Has an effect. Furthermore, since it is not necessary to have a power source, the railway vehicle can be an accompanying vehicle.

(実施の形態3)
図5および図7は、実施の形態3に係る同期装置を備えた鉄道車両(電動車)の構成例を示す図である。車両1はその車体の下に、レール9上を移動する個別に回転可能な4つの車輪3を有する2式の台車2F,2Rを有し、各台車2F,2Rには同期装置Sを備える。
(Embodiment 3)
5 and 7 are diagrams illustrating a configuration example of a railway vehicle (electric vehicle) including the synchronization device according to the third embodiment. The vehicle 1 has two types of carriages 2F and 2R having four individually rotatable wheels 3 that move on rails 9 below the vehicle body, and each carriage 2F and 2R includes a synchronization device S.

さらに、左右2組の電力線PL,PRのそれぞれは電力変換器6F(L),6F(R)または6R(L),6R(R)に接続され、その反対側は電源側に共通接続される。
電力変換器6F(L)と6F(R)は制御器7Fによって制御され、電力変換器6R(L)と6R(R)は制御器7Rによって制御される。制御器7F,7Rは、それぞれ、電力線Pに流れる電流を、図示しない電流検出器で検出し、検出された電流に基づいて制御する。
Further, each of the two sets of left and right power lines PL and PR is connected to power converters 6F (L) and 6F (R) or 6R (L) and 6R (R), and the opposite side is commonly connected to the power supply side. .
The power converters 6F (L) and 6F (R) are controlled by the controller 7F, and the power converters 6R (L) and 6R (R) are controlled by the controller 7R. The controllers 7F and 7R each detect a current flowing through the power line P with a current detector (not shown), and control based on the detected current.

上記構成によれば、個別回転可能な車輪を有するので、独立車輪台車としての急曲線通過性能を有している。さらに、前後の電動機の各相どうしを接続することで、同期化力の作用により、接続された電動機間で車輪の回転数が等しく保たれるため、一体型輪軸と同等の軌道中心への復元効果を有する。また、鉄道車両は、動力車とすることができる。   According to the said structure, since it has the wheel which can rotate separately, it has the sharp curve passage performance as an independent wheel trolley | bogie. Furthermore, by connecting the phases of the front and rear motors, the rotation speed of the wheels is kept equal between the connected motors due to the action of the synchronizing force, so that restoration to the center of the track equivalent to the integrated wheel shaft is possible. Has an effect. Further, the railway vehicle can be a powered vehicle.

本発明の同期装置をもつ鉄道車両用台車および同期装置を備えた鉄道車両は、運行の安全性を向上させ、電力消費を抑えつつ、走行性の維持安定を図ることのできる鉄道車両用台車および鉄道車両として有用である。   A railway vehicle carriage having the synchronization device of the present invention and a railway vehicle equipped with the synchronization device improve the safety of operation, reduce power consumption, and maintain the running stability of the railway vehicle carriage and It is useful as a railway vehicle.

1 車両
2 台車
3 車輪
4 組付機構
5輪軸系
6 電力変換器
7 制御部
9 レール
11 ブレーキディスク
12 空気ばね
13 コイルばね
101 縦クリープ力
102 横クリープ力
103 フランジ反力
104 同期化力
111 縦クリープ力によるヨーモーメント
114 同期化力によるヨーモーメント
B 台車枠
M 電動機
P 電力線
S 同期装置
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Carriage 3 Wheel 4 Assembly mechanism 5 wheel shaft system 6 Power converter 7 Control part 9 Rail 11 Brake disk 12 Air spring 13 Coil spring 101 Vertical creep force 102 Lateral creep force 103 Flange reaction force 104 Synchronizing force 111 Vertical creep Yaw moment due to force 114 Yaw moment due to synchronization force B Bogie frame M Electric motor P Power line S Synchronizer

Claims (5)

個別回転可能な車輪2組と組付機構とで1組の輪軸系を構成し、
1組の台車枠に2組の輪軸系を係合連結して成る鉄道車両用台車であって、
各車輪に駆動機構を介して接続される電動機と、
左側、右側のそれぞれにおいて、前後の電動機の各相どうしを接続する電力線から成る同期装置を有することを特徴とする鉄道車両用台車。
A pair of individually rotatable wheels and an assembly mechanism constitute one set of wheel system,
A carriage for a railway vehicle comprising two sets of wheel axles engaged and connected to one set of carriage frame,
An electric motor connected to each wheel via a drive mechanism;
A railcar bogie characterized by having a synchronizer comprising power lines connecting the front and rear motors to each other on the left and right sides.
電動機は、ダンパ巻線を有する同期電動機とした
請求項1に記載の鉄道車両用台車。
The bogie for railway vehicles according to claim 1, wherein the electric motor is a synchronous motor having a damper winding.
電動機は、回転子と固定子との隙間が1ミリメートルを越えない誘導電動機とした
請求項1又は2の何れか一項に記載の鉄道車両用台車。
The railway vehicle carriage according to any one of claims 1 and 2, wherein the electric motor is an induction motor in which a gap between the rotor and the stator does not exceed 1 millimeter.
個別回転可能な車輪2組と組付機構とで1組の輪軸系を構成し、
1組の台車枠に2組の輪軸系を係合連結し、
各車輪に駆動機構を介して接続される電動機と、
左側、右側のそれぞれにおいて、前後の電動機の各相どうしを接続する電力線から成る同期装置を有することを特徴とする鉄道車両用台車を
1式以上もつ鉄道車両。
A pair of individually rotatable wheels and an assembly mechanism constitute one set of wheel system,
Engage and connect two sets of axle systems to one set of bogie frames,
An electric motor connected to each wheel via a drive mechanism;
A railway vehicle having at least one set of railcar carriages, characterized in that each of the left and right sides has a synchronizer comprising power lines connecting the front and rear motors.
前記電動機に電力を供給する設備と、
電力変換器とを有することを特徴とする、請求項4に記載の鉄道車両。
Facilities for supplying power to the motor;
The railway vehicle according to claim 4, further comprising a power converter.
JP2014255255A 2014-12-17 2014-12-17 Railway vehicle truck having synchronizer, and railway vehicle having synchronizer Pending JP2016113095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014255255A JP2016113095A (en) 2014-12-17 2014-12-17 Railway vehicle truck having synchronizer, and railway vehicle having synchronizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014255255A JP2016113095A (en) 2014-12-17 2014-12-17 Railway vehicle truck having synchronizer, and railway vehicle having synchronizer

Publications (1)

Publication Number Publication Date
JP2016113095A true JP2016113095A (en) 2016-06-23

Family

ID=56140644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014255255A Pending JP2016113095A (en) 2014-12-17 2014-12-17 Railway vehicle truck having synchronizer, and railway vehicle having synchronizer

Country Status (1)

Country Link
JP (1) JP2016113095A (en)

Similar Documents

Publication Publication Date Title
US9616770B2 (en) Electric vehicle drive apparatus, method of driving an electric vehicle, and program
KR100916594B1 (en) The steering bogie for railway vehicle with leverage
JP2014172437A (en) Steering truck of parallel cardan driving system
TWI466791B (en) Railway vehicle trolley steering method and device and railway vehicle trolley
CA2668966A1 (en) Railway truck
JP2012530638A5 (en)
JP2009173225A (en) Wheel unit, truck, railroad vehicle, and railroad system
CN103895657B (en) 100% low floor vehicle mechanism of independent wheel manifold type driving means
CN203094064U (en) 100% low floor vehicle independent wheel coupling driving device
JP6097494B2 (en) Electric vehicle drive system
JP4448620B2 (en) Control device for variable power vehicle between gauges
JP2016113095A (en) Railway vehicle truck having synchronizer, and railway vehicle having synchronizer
CN104760599B (en) Self-driving type bogie structure rail vehicle
CN110435697A (en) A kind of spider gear control radial steering
CN203753137U (en) Self-driven bogie structure rail car
JP2003276600A (en) Truck steering type rolling stock
JP6186089B2 (en) Steering cart for railway vehicles
JP2001048008A (en) Carriage for guide track type vehicle and method of setting arranging guide wheel used in this carriage
JP2005261095A (en) Railway vehicle control method
KR101329001B1 (en) Independence rotating wheels suspension apparatus for low-floor vehicle
JP5267857B2 (en) Three-axle steering carriage for railway vehicles and railway vehicles
EP1063143A1 (en) Single axle and independent wheels bogie for a railway vehicle
JP2006254661A (en) Railway vehicle system
JP5013634B2 (en) Independent wheel bogie for railway vehicles and its control method
CN110155112A (en) Single-track running device and single-track vehicle