JP2016112865A - Mold for tire vulcanization - Google Patents

Mold for tire vulcanization Download PDF

Info

Publication number
JP2016112865A
JP2016112865A JP2014255900A JP2014255900A JP2016112865A JP 2016112865 A JP2016112865 A JP 2016112865A JP 2014255900 A JP2014255900 A JP 2014255900A JP 2014255900 A JP2014255900 A JP 2014255900A JP 2016112865 A JP2016112865 A JP 2016112865A
Authority
JP
Japan
Prior art keywords
mold
tire
abutting
segment
butted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014255900A
Other languages
Japanese (ja)
Other versions
JP6434801B2 (en
Inventor
田中 尚
Takashi Tanaka
尚 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2014255900A priority Critical patent/JP6434801B2/en
Publication of JP2016112865A publication Critical patent/JP2016112865A/en
Application granted granted Critical
Publication of JP6434801B2 publication Critical patent/JP6434801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a tire manufacturing method to uniformize contact pressure between a side mold and a segment during vulcanization and to improve the durability of the segment.SOLUTION: Vulcanization molding of a tire is performed in a mold-closed state in which a first abutting portion of the radially outer end of a side mold 2 and a second abutting portion of the radially inner end of a segment 3 are abutted each other. The first abutting portion includes a first abutting face 20 forming a cylindrical face concentric with a tire axis, and the second abutting face includes a second abutting face 22 forming a part of the cylindrical face concentric with the tire axis. A radius R1a at a reference temperature on the first abutting face 20 is larger than a radius R2a at the reference temperature on the second abutting face 22.SELECTED DRAWING: Figure 4

Description

本発明は、セグメントの耐久性を向上させたタイヤ加硫用金型に関する。   The present invention relates to a tire vulcanization mold with improved segment durability.

図5(A)、(B)に示すように、タイヤ加硫用金型aは、タイヤ軸方向両側に配されるサイドウォール形成用の一対のサイドモールドbと、環状に配置される複数のセグメントc1からなるトレッド形成用のトレッドモールドcとを具える。そして、各前記サイドモールドbの半径方向外端の第1の突合わせ面sbと、前記セグメントc1のタイヤ軸方向両側かつ半径方向内端の第2の突合わせ面scとを互いに突き合わせた金型閉状態Yにてタイヤの加硫成形が行われる(特許文献1参照。)。   As shown in FIGS. 5A and 5B, a tire vulcanization mold a includes a pair of side molds b for forming sidewalls arranged on both sides in the tire axial direction, and a plurality of annularly arranged molds. A tread mold c for forming a tread composed of a segment c1. Then, a mold in which the first butting surface sb at the radially outer end of each side mold b and the second butting surfaces sc at both sides in the tire axial direction and the radially inner end of the segment c1 are butted together. In the closed state Y, the tire is vulcanized (see Patent Document 1).

このとき、図6に示すように、従来の第1、第2の突合わせ面sb、scは、常温時において互いに同径をなすように形成されている。   At this time, as shown in FIG. 6, the conventional first and second butted surfaces sb and sc are formed to have the same diameter at room temperature.

他方、タイヤ加硫用金型aにおいて、サイドモールドbは、マーキング等のデザイン加工が施されるため、ショットブラスト等の金型クリーニングによってもデザインが摩滅しないように、硬質の鉄系金属(例えばSS400)にて形成される。これに対してセグメントc1は、鋳造・切削等の金型製作工程での加工性を考慮して軟質のアルミ系金属(例えばAC4)にて形成されている。   On the other hand, in the tire vulcanization mold a, since the side mold b is subjected to design processing such as marking, a hard iron-based metal (for example, so as not to be worn out by mold cleaning such as shot blasting) SS400). On the other hand, the segment c1 is formed of a soft aluminum-based metal (for example, AC4) in consideration of workability in a mold manufacturing process such as casting / cutting.

しかしタイヤ加硫用金型aは、加硫時、例えば160〜190℃の加硫温度まで加熱される。そのため、サイドモールドb(鉄系金属)とセグメントc1(アルミ系金属)との熱膨張率の違いにより、第1、第2の突合わせ面sb、scの半径rb、rcは、常温時に同じであっても、加硫温度時には、図7(A)に誇張して示すように、第2の突合わせ面scの半径rc1が、第1の突合わせ面sbの半径rb1よりも大となる。   However, the tire vulcanization mold a is heated to a vulcanization temperature of, for example, 160 to 190 ° C. during vulcanization. Therefore, due to the difference in thermal expansion coefficient between the side mold b (iron-based metal) and the segment c1 (aluminum-based metal), the radii rb and rc of the first and second butted surfaces sb and sc are the same at room temperature. Even at the vulcanization temperature, as exaggeratedly shown in FIG. 7A, the radius rc1 of the second abutting surface sc is larger than the radius rb1 of the first abutting surface sb.

その結果、図7(B)に誇張して示すように、加硫温度時の金型閉状態Yにおいて、前記半径差に起因して、第1、第2の突合わせ面sb、sc間の接触圧が不均一となる。そして、接触圧の高い部位Qを起点としてセグメントc1が変形するなど、セグメントc1の耐久性が低下するという問題が生じる。   As a result, as exaggeratedly shown in FIG. 7 (B), in the mold closed state Y at the vulcanization temperature, the first and second butted surfaces sb and sc are caused by the difference in radius. Contact pressure is uneven. And the problem that the durability of the segment c1 falls, such as the segment c1 deform | transforming from the site | part Q with a high contact pressure arises.

特開2013−144414号公報JP2013-144414A

そこで発明は、第1の突合わせ面の常温での半径を、第2の突合わせ面の常温での半径よりも大とすることを基本として、加硫時の突合わせ面間の接触圧の不均一を緩和でき、セグメントの耐久性を向上しうるタイヤ加硫用金型を提供することを課題としている。   Therefore, the invention is based on the principle that the radius of the first butted surface at room temperature is larger than the radius of the second butted surface at room temperature, and the contact pressure between the butted surfaces during vulcanization is reduced. It is an object to provide a tire vulcanization mold that can alleviate unevenness and improve the durability of a segment.

本発明は、鉄系金属からなりかつタイヤ軸方向両側に配されるサイドウォール形成用の一対のサイドモールドと、アルミ系金属からなりかつ環状に配置される複数のセグメントからなるトレッド形成用のトレッドモールドとを具え、
各前記サイドモールドの半径方向外端の第1の突合わせ部と、前記セグメントのタイヤ軸方向両側かつ半径方向内端の第2の突合わせ部とを互いに突き合わせた金型閉状態にてタイヤの加硫成形を行うタイヤ加硫用金型であって、
前記第1の突合わせ部は、タイヤ軸心と同心な円筒面をなす第1の突合わせ面を具え、かつ第2の突合わせ部は、タイヤ軸心と同心な円筒面の一部をなしかつ前記第1の突合わせ面に突き合わされる第2の突合わせ面を具えるとともに、
前記第1の突合わせ面の常温である基準温度Taにおける半径R1aは、前記第2の突合わせ面の基準温度Taにおける半径R2aよりも大であることを特徴としている。
The present invention relates to a tread for forming a tread comprising a pair of side molds for forming sidewalls made of iron-based metal and disposed on both sides in the tire axial direction, and a plurality of segments made of aluminum-based metal and arranged in an annular shape. With a mold,
In a closed state of the tire, the first butted portion at the radially outer end of each side mold and the second butted portion at both sides in the tire axial direction and radially inner end of the segment are butted against each other. A tire vulcanization mold for performing vulcanization molding,
The first abutting portion includes a first abutting surface that forms a cylindrical surface concentric with the tire axis, and the second abutting portion forms a part of a cylindrical surface concentric with the tire axis. And having a second abutting surface to be abutted against the first abutting surface,
A radius R1a at a reference temperature Ta, which is normal temperature, of the first abutting surface is larger than a radius R2a at a reference temperature Ta of the second abutting surface.

本発明に係る前記タイヤ加硫用金型では、前記サイドモールドの熱膨張係数をα1、前記セグメントの熱膨張係数をα2、前記基準温度Taから加硫温度Tbまでの上昇温度をΔTとするとき、
前記半径R1a、R2aは、下記式(1)を充足することが好ましい。
0.998≦{R2a×(1+α2×ΔT)}/{R1a×(1+α1×ΔT)}≦1.002 −−−(1)
In the tire vulcanization mold according to the present invention, when the thermal expansion coefficient of the side mold is α1, the thermal expansion coefficient of the segment is α2, and the rising temperature from the reference temperature Ta to the vulcanization temperature Tb is ΔT. ,
The radii R1a and R2a preferably satisfy the following formula (1).
0.998 ≦ {R2a × (1 + α2 × ΔT)} / {R1a × (1 + α1 × ΔT)} ≦ 1.002 (1)

本発明は叙上の如く、常温時において、第1の突合わせ面の半径を、第2の突合わせ面の半径よりも大に設定している。そのため、加硫温度時においては、第1の突合わせ面と第2の突合わせ面との半径差を減じることが可能になる。   In the present invention, as described above, the radius of the first butting surface is set larger than the radius of the second butting surface at normal temperature. Therefore, at the vulcanization temperature, it is possible to reduce the radial difference between the first butted surface and the second butted surface.

これにより、加硫温度時において、第1の突合わせ面と第2の突合わせ面との接触面積が増加する。その結果、第1、第2の突合わせ面間の接触圧の不均一を緩和でき、セグメントの耐久性を向上させることができる。   This increases the contact area between the first butted surface and the second butted surface at the vulcanization temperature. As a result, nonuniform contact pressure between the first and second butted surfaces can be alleviated, and the durability of the segment can be improved.

(A)、(B)は本発明のタイヤ加硫用金型の作動状態を示す断面図である。(A), (B) is sectional drawing which shows the operating state of the metal mold | die for tire vulcanization | cure of this invention. その一部を示す斜視図である。It is a perspective view which shows the part. サイドモールド及びセグメントを概念的に示す部分斜視図である。It is a fragmentary perspective view which shows a side mold and a segment notionally. (A)は基準温度(常温)時における第1、第2の突合わせ面の突き合わせ状態を示す断面図、(B)は加硫温度時における第1、第2の突合わせ面の突き合わせ状態を示す断面図である。(A) is sectional drawing which shows the butt | matching state of the 1st, 2nd butt | matching surface in reference temperature (normal temperature), (B) is the butt | matching state of the 1st, 2nd butt | matching surface in vulcanization temperature. It is sectional drawing shown. (A)、(B)は従来のタイヤ加硫用金型を示す断面図である。(A), (B) is sectional drawing which shows the conventional metal mold | die for tire vulcanization. 従来の突合わせ面を示す断面図である。It is sectional drawing which shows the conventional butt surface. (A)、(B)は従来の突合わせ面による問題点を示す断面図である。(A), (B) is sectional drawing which shows the problem by the conventional butt | matching surface.

以下、本発明の実施の形態について、詳細に説明する。
図1に示すように、本実施形態のタイヤ加硫用金型1は、タイヤ軸方向両側に配されるサイドウォール形成用の一対のサイドモールド2と、環状に配置される複数(n個)のセグメント3からなるトレッド形成用のトレッドモールド4とを具える。
Hereinafter, embodiments of the present invention will be described in detail.
As shown in FIG. 1, a tire vulcanization mold 1 according to this embodiment includes a pair of side molds 2 for forming sidewalls disposed on both sides in the tire axial direction, and a plurality (n) of annularly disposed side molds. And a tread mold 4 for forming a tread composed of the segments 3.

タイヤ加硫用金型1では、各前記サイドモールド2の半径方向外端の第1の突合わせ部5と、各前記セグメント3のタイヤ軸方向両側かつ半径方向内端の第2の突合わせ部6とを互いに突き合わせた金型閉状態YにてタイヤTの加硫成形が行われる。   In the tire vulcanizing mold 1, the first butted portions 5 at the radially outer ends of the side molds 2, and the second butted portions at both sides in the tire axial direction and radially inner ends of the segments 3. The tire T is vulcanized and molded in the mold closed state Y where the tires 6 and 6 are butted together.

前記サイドモールド2は、タイヤTのサイドウォールを成形するサイドウォール成形面2Sを具え、トレッドモールド4は、タイヤTのトレッドを成形するトレッド成形面4Sを具える。なお従来と同様、サイドモールド2は鉄系金属から形成され、またトレッドモールド4はアルミ系金属から形成される。鉄系金属として、例えば純鉄、鋼、ステンレスなどが挙げられる。またアルミ系金属として、例えば純アルミ、アルミ合金(例えばAl-Cu系合金、Al-Mn系合金、Al-Mg系合金、Al-Zn系合金等)が挙げられる。   The side mold 2 includes a sidewall molding surface 2S that molds the sidewall of the tire T, and the tread mold 4 includes a tread molding surface 4S that molds the tread of the tire T. As in the prior art, the side mold 2 is formed from an iron-based metal, and the tread mold 4 is formed from an aluminum-based metal. Examples of the iron-based metal include pure iron, steel, and stainless steel. Examples of the aluminum-based metal include pure aluminum and aluminum alloys (for example, Al—Cu alloy, Al—Mn alloy, Al—Mg alloy, Al—Zn alloy, etc.).

図中において、符号10Uは、上のサイドモールド2を取付ける昇降可能な上部プレートであって、例えばヒータ内蔵の上のプラテン板11U、又はこの上のプラテン板11Uを固定するプレス機の昇降台12等に、例えばシリンダなどの周知の昇降手段(図示しない)を介して昇降自在に支持される。   In the figure, reference numeral 10U denotes an upper plate that can be moved up and down to which the upper side mold 2 is mounted. For example, an upper platen plate 11U with a built-in heater, or a lifting platform 12 of a press machine that fixes the upper platen plate 11U. For example, it is supported so as to be movable up and down via known lifting means (not shown) such as a cylinder.

又符号10Lは、下のサイドモールド2を支持する下部プレートであって、例えばプレス台(図示しない)に固定の下のプラテン板11Lに取付けられる。又符号13は、各1個のセグメント3が交換自在に取付くトレッドセクターである。このトレッドセクター13は、環状のアクチェータ14の下降に伴い、セグメント3とともに半径方向内方に移動し、前記第1、第2の突合わせ部5、6が互いに突き合わされることにより金型閉状態Yとなる。   Reference numeral 10L denotes a lower plate that supports the lower side mold 2, and is attached to the lower platen plate 11L fixed to, for example, a press stand (not shown). Reference numeral 13 denotes a tread sector in which each one segment 3 is exchangeably attached. The tread sector 13 moves inward in the radial direction together with the segment 3 as the annular actuator 14 descends, and the first and second abutting portions 5 and 6 abut against each other to close the mold. Y.

図3は、サイドモールド2の一部、及びセグメント3の一部が示される斜視図であり、第1、第2の突合わせ部5、6が明瞭に示されるように、サイドモールド2とセグメント3とは視点の位置を違えて図示される。同図に示されるように、前記第1の突合わせ部5は、タイヤ軸心と同心な円筒面をなす第1の突合わせ面20を具える。この第1の突合わせ面20は、そのタイヤ軸方向内縁20eにて、前記サイドウォール成形面2Sと接続する。   FIG. 3 is a perspective view showing a part of the side mold 2 and a part of the segment 3, so that the first and second butting portions 5 and 6 are clearly shown. 3 is illustrated with a different viewpoint position. As shown in the figure, the first abutting portion 5 includes a first abutting surface 20 that forms a cylindrical surface concentric with the tire axis. The first butting surface 20 is connected to the sidewall molding surface 2S at the tire axial direction inner edge 20e.

又第2の突き合わせ部6は、タイヤ軸心と同心な円筒面の一部をなす第2の突合わせ面22を具え、各第2の突合わせ面22が協働して前記円筒面を構成する。また第2の突合わせ面22は、金型閉状態Yにおいて、第1の突合わせ面20に突き合わされる。なお第2の突合わせ面22は、そのタイヤ軸方向内縁22eにて、前記トレッド成形面4Sと接続する。   The second abutting portion 6 includes a second abutting surface 22 that forms a part of a cylindrical surface concentric with the tire axis, and the second abutting surfaces 22 cooperate to form the cylindrical surface. To do. The second butting surface 22 is butted against the first butting surface 20 in the mold closed state Y. The second butting surface 22 is connected to the tread molding surface 4S at the tire axial direction inner edge 22e.

そして図4(A)に誇張して示すように、常温である基準温度Taにおいて、第1の突合わせ面20の半径R1aは、前記第2の突合わせ面22の半径R2aよりも大に設定されている。なお基準温度Taとして、25℃が採用される。   4A, the radius R1a of the first abutting surface 20 is set to be larger than the radius R2a of the second abutting surface 22 at a reference temperature Ta that is normal temperature. Has been. In addition, 25 degreeC is employ | adopted as reference temperature Ta.

この基準温度Ta時(常温時)において、第1、第2の突合わせ面20、22を突き合わせた時(即ち、金型閉状態Yの時)には、同図に示されるように、R1a>R2a であることにより、第2の突合わせ面22は、その周方向両端側の接触圧が、周方向中央側の接触圧よりも大となる。即ち、接触圧は不均一化する。しかしこの段階では、金型温度が低く熱膨張していないため、サイドモールド2とセグメント3との間の締め付け力自体小さい。即ち、接触圧の差自体小となるため、セグメント3の耐久性は維持される。なお基準温度Ta時における金型閉状態Yにおいては、周方向で隣り合うセグメント3の周方向端面間には、熱膨張を想定した間隙G1が予め形成される。   At the reference temperature Ta (at room temperature), when the first and second butting surfaces 20 and 22 are butted (that is, when the mold is in the closed state Y), as shown in FIG. Since> R2a, the contact pressure on both ends in the circumferential direction of the second butting surface 22 is larger than the contact pressure on the center in the circumferential direction. That is, the contact pressure becomes non-uniform. However, at this stage, since the mold temperature is low and not thermally expanded, the clamping force between the side mold 2 and the segment 3 is small. That is, since the difference in contact pressure itself is small, the durability of the segment 3 is maintained. In the mold closed state Y at the reference temperature Ta, a gap G1 that assumes thermal expansion is formed in advance between the circumferential end surfaces of the segments 3 adjacent in the circumferential direction.

これに対して、図4(B)に誇張して示すように、加硫温度Tb時においては、サイドモールド2とセグメント3とが大きく熱膨張する。このとき、サイドモールド2(鉄系金属)とセグメント3(アルミ系金属)との熱膨張率の違いにより、第2の突合わせ面22の半径の増加率量Δr2は、第1の突合わせ面20の半径の増加率量Δr1よりも大となる。従って前述の如く、R1a>R2a と設定することで、加硫温度Tb時における第2の突合わせ面22の半径R2bと第1の突合わせ面20の半径R1bとの差|R2b−R1b|を減じることが可能になる。   On the other hand, as exaggeratedly shown in FIG. 4B, at the vulcanization temperature Tb, the side mold 2 and the segment 3 greatly expand. At this time, due to the difference in coefficient of thermal expansion between the side mold 2 (iron-based metal) and the segment 3 (aluminum-based metal), the increase rate Δr2 of the radius of the second butting surface 22 is the first butting surface It becomes larger than the increase rate amount Δr1 of the radius of 20. Therefore, as described above, by setting R1a> R2a, the difference | R2b−R1b | between the radius R2b of the second butted surface 22 and the radius R1b of the first butted surface 20 at the vulcanization temperature Tb is set. It becomes possible to reduce.

これにより、加硫温度Tb時において、第1の突合わせ面20と第2の突合わせ面22との接触面積が増加する。その結果、第1、第2の突合わせ面20、22間の接触圧の不均一を緩和でき、セグメントの耐久性を向上させることができる。   Thereby, the contact area of the 1st butt | matching surface 20 and the 2nd butt | matching surface 22 increases at the vulcanization temperature Tb. As a result, nonuniform contact pressure between the first and second butting surfaces 20 and 22 can be alleviated, and the durability of the segment can be improved.

ここで、セグメント3の耐久性の向上効果を高く発揮させるためには、前記半径R1a、R2aが下記式(1)を充足することが好ましい。式(1)において、α1はサイドモールド2の熱膨張係数、α2はセグメント3の熱膨張係数、ΔTは基準温度Taから加硫温度Tbまでの上昇温度を示す。
0.998≦{R2a×(1+α2×ΔT)}/{R1a×(1+α1×ΔT)}≦1.002 −−−(1)
Here, in order to exhibit the effect of improving the durability of the segment 3 highly, it is preferable that the radii R1a and R2a satisfy the following formula (1). In the formula (1), α1 represents the thermal expansion coefficient of the side mold 2, α2 represents the thermal expansion coefficient of the segment 3, and ΔT represents the temperature rise from the reference temperature Ta to the vulcanization temperature Tb.
0.998 ≦ {R2a × (1 + α2 × ΔT)} / {R1a × (1 + α1 × ΔT)} ≦ 1.002 (1)

式中の{R2a×(1+α2×ΔT)}は、加硫温度Tb時における第2の突合わせ面22の半径R2bに相当する。また{R1a×(1+α1×ΔT)}は、加硫温度Tb時における第1の突合わせ面10の半径R1bに相当する。従って、前記式(1)により、加硫温度Tb時における第2の突合わせ面22の半径R2bと第1の突合わせ面20の半径R1bとの差|R2b−R1b|を0に近づけることができる。{R2a×(1+α2×ΔT)}/{R1a×(1+α1×ΔT)}が0.998を下回る、或いは1.002を上回る場合には、差|R2b−R1b|が大きくなって、前記耐久性の向上効果を高く発揮することが難しくなる。なお上昇温度ΔTとして160℃が採用される。   {R2a × (1 + α2 × ΔT)} in the equation corresponds to the radius R2b of the second butting surface 22 at the vulcanization temperature Tb. {R1a × (1 + α1 × ΔT)} corresponds to the radius R1b of the first butt surface 10 at the vulcanization temperature Tb. Therefore, according to the equation (1), the difference | R2b−R1b | between the radius R2b of the second butting surface 22 and the radius R1b of the first butting surface 20 at the vulcanization temperature Tb can be made close to zero. it can. When {R2a × (1 + α2 × ΔT)} / {R1a × (1 + α1 × ΔT)} is less than 0.998 or greater than 1.002, the difference | R2b−R1b | It is difficult to achieve a high improvement effect. In addition, 160 degreeC is employ | adopted as raise temperature (DELTA) T.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

図1に示す構造のタイヤ加硫用金型を表1の仕様に基づいて試作し、セグメントにおける耐久性についてテストした。金型は、タイヤサイズ195/65R15の乗用車用タイヤの金型であり、各金型とも、突合わせ面の半径のみ相違し、それ以外は実質的に同仕様である。表1では、
F={R2a×(1+α2×ΔT)}/{R1a×(1+α1×ΔT)}
としてFの値を変化させている。
A tire vulcanization mold having the structure shown in FIG. 1 was prototyped based on the specifications shown in Table 1 and tested for durability in the segments. The mold is a tire size of a tire for a passenger car having a tire size of 195 / 65R15, and each mold is different only in the radius of the abutting surface, and the other specifications are substantially the same. In Table 1,
F = {R2a × (1 + α2 × ΔT)} / {R1a × (1 + α1 × ΔT)}
The value of F is changed.

サイドモールドは、鉄系金属(SS400)からなり、その熱膨張係数α1は1.15×10−5(単位/K)、セグメントはアルミ系金属(AC4)からなり、その熱膨張係数α2は2.24×10−5(単位/K)である。また各金型とも、第1の突合わせ面の基準温度Taにおける半径R1aは298mmで同一であり、第2の突合わせ面の半径R2aのみ変化させることにより、下記式(2)のFの値を相違させている。なお、前記基準温度Taは25℃であり、加硫温度Tbは185℃(即ち、上昇温度ΔT=160℃)である。 The side mold is made of iron-based metal (SS400), its thermal expansion coefficient α1 is 1.15 × 10 −5 (unit / K), the segment is made of aluminum-based metal (AC4), and its thermal expansion coefficient α2 is 2. 24 × 10 −5 (unit / K). In each mold, the radius R1a at the reference temperature Ta of the first abutting surface is the same at 298 mm, and by changing only the radius R2a of the second abutting surface, the value of F in the following equation (2) Are different. The reference temperature Ta is 25 ° C., and the vulcanization temperature Tb is 185 ° C. (that is, the rising temperature ΔT = 160 ° C.).

耐久性は、各金型において、タイヤを1000本加硫するごとに、セグメントの突合わせ面の形状を測定し、CAD3次元モデルと比較した。そして、各セグメントについて、それぞれ突合わせ面の変形(変位量)が最も大きかった箇所を測定し、その変形の平均値によって評価した。数値が小さい方が変形が少なく、セグメントの耐久性に優れている。   Durability was determined by measuring the shape of the butt surfaces of the segments each time 1000 tires were vulcanized in each mold and comparing with the CAD three-dimensional model. And about each segment, the location where the deformation | transformation (displacement amount) of the butt | matching surface was the largest was measured, and it evaluated by the average value of the deformation | transformation. Smaller numbers result in less deformation and better segment durability.

Figure 2016112865
Figure 2016112865

1 タイヤ加硫用金型
2 サイドモールド
3 セグメント
4 トレッドモールド
5 第1の突合わせ部
6 第2の突合わせ部
20 第1の突合わせ面
22 第2の突合わせ面
Y 金型閉状態
1 Tire vulcanization mold 2 Side mold 3 Segment 4 Tread mold 5 First butting section 6 Second butting section 20 First butting surface 22 Second butting surface Y Mold closed state

Claims (2)

鉄系金属からなりかつタイヤ軸方向両側に配されるサイドウォール形成用の一対のサイドモールドと、アルミ系金属からなりかつ環状に配置される複数のセグメントからなるトレッド形成用のトレッドモールドとを具え、
各前記サイドモールドの半径方向外端の第1の突合わせ部と、前記セグメントのタイヤ軸方向両側かつ半径方向内端の第2の突合わせ部とを互いに突き合わせた金型閉状態にてタイヤの加硫成形を行うタイヤ加硫用金型であって、
前記第1の突合わせ部は、タイヤ軸心と同心な円筒面をなす第1の突合わせ面を具え、かつ第2の突合わせ部は、タイヤ軸心と同心な円筒面の一部をなしかつ前記第1の突合わせ面に突き合わされる第2の突合わせ面を具えるとともに、
前記第1の突合わせ面の常温である基準温度Taにおける半径R1aは、前記第2の突合わせ面の基準温度Taにおける半径R2aよりも大であることを特徴とするタイヤ加硫用金型。
A pair of side molds for forming sidewalls made of an iron-based metal and disposed on both sides in the tire axial direction, and a tread mold for forming a tread made of an aluminum-based metal and having a plurality of segments arranged in an annular shape. ,
In a closed state of the tire, the first butted portion at the radially outer end of each side mold and the second butted portion at both sides in the tire axial direction and radially inner end of the segment are butted against each other. A tire vulcanization mold for performing vulcanization molding,
The first abutting portion includes a first abutting surface that forms a cylindrical surface concentric with the tire axis, and the second abutting portion forms a part of a cylindrical surface concentric with the tire axis. And having a second abutting surface to be abutted against the first abutting surface,
A tire vulcanization mold, wherein a radius R1a at a reference temperature Ta, which is normal temperature, of the first butted surface is larger than a radius R2a at a reference temperature Ta of the second butted surface.
前記サイドモールドの熱膨張係数をα1、前記セグメントの熱膨張係数をα2、前記基準温度Taから加硫温度Tbまでの上昇温度をΔTとするとき、前記半径R1a、R2aは、下記式(1)を充足することを特徴とする請求項1記載のタイヤ加硫用金型。
0.998≦{R2a×(1+α2×ΔT)}/{R1a×(1+α1×ΔT)}≦1.002 −−−(1)
When the thermal expansion coefficient of the side mold is α1, the thermal expansion coefficient of the segment is α2, and the rising temperature from the reference temperature Ta to the vulcanization temperature Tb is ΔT, the radii R1a and R2a are expressed by the following formula (1): The tire vulcanization mold according to claim 1, wherein:
0.998 ≦ {R2a × (1 + α2 × ΔT)} / {R1a × (1 + α1 × ΔT)} ≦ 1.002 (1)
JP2014255900A 2014-12-18 2014-12-18 Tire vulcanization mold Active JP6434801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014255900A JP6434801B2 (en) 2014-12-18 2014-12-18 Tire vulcanization mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014255900A JP6434801B2 (en) 2014-12-18 2014-12-18 Tire vulcanization mold

Publications (2)

Publication Number Publication Date
JP2016112865A true JP2016112865A (en) 2016-06-23
JP6434801B2 JP6434801B2 (en) 2018-12-05

Family

ID=56140606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014255900A Active JP6434801B2 (en) 2014-12-18 2014-12-18 Tire vulcanization mold

Country Status (1)

Country Link
JP (1) JP6434801B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7009985B2 (en) 2017-12-27 2022-02-10 住友ゴム工業株式会社 Tire mold

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010076344A (en) * 2008-09-29 2010-04-08 Sumitomo Rubber Ind Ltd Mold for tire
JP2013144414A (en) * 2012-01-16 2013-07-25 Sumitomo Rubber Ind Ltd Tire mold
JP2015136835A (en) * 2014-01-21 2015-07-30 住友ゴム工業株式会社 Tire vulcanization mold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010076344A (en) * 2008-09-29 2010-04-08 Sumitomo Rubber Ind Ltd Mold for tire
JP2013144414A (en) * 2012-01-16 2013-07-25 Sumitomo Rubber Ind Ltd Tire mold
JP2015136835A (en) * 2014-01-21 2015-07-30 住友ゴム工業株式会社 Tire vulcanization mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7009985B2 (en) 2017-12-27 2022-02-10 住友ゴム工業株式会社 Tire mold

Also Published As

Publication number Publication date
JP6434801B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6701349B2 (en) Tire vulcanizing mold, tire vulcanizing apparatus, and tire manufacturing method
JP6235916B2 (en) Tire vulcanization mold
JP4709883B2 (en) Mold for tire
JP6434801B2 (en) Tire vulcanization mold
WO2018029726A1 (en) Tire vulcanization device
JP6235915B2 (en) Tire vulcanization mold
JP6738426B2 (en) Tire vulcanizing mold, tire vulcanizing apparatus, and tire manufacturing method
WO2022269940A1 (en) Tire molding die and tire production method
WO2022269939A1 (en) Tire molding die and tire production method
JP6641799B2 (en) Tire mold
JP6605737B2 (en) Tire vulcanizing apparatus and tire manufacturing method
JP6475549B2 (en) Tire vulcanization mold
EP3115167B1 (en) Rigid core for tire formation and tire production method using the same
JP6701350B2 (en) Tire vulcanizing mold, tire vulcanizing apparatus, and tire manufacturing method
JP5786465B2 (en) Tire manufacturing apparatus and tire vulcanization molding bladder used therefor
JP2007050596A (en) Tire vulcanizing/molding mold and vulcanizing/molding method
JP2010000715A (en) Tire vulcanizing device
JP2013173305A (en) Tire vulcanizing mold
JP2020082511A (en) Tire vulcanization mold
JP6738427B2 (en) Tire vulcanizing mold, tire vulcanizing apparatus, and tire manufacturing method
CN109986817B (en) Tire mold and tire manufacturing method
JP2021091150A (en) Tire vulcanization die and tire production method
JP2023095546A (en) Metallic mold for manufacturing tire
JP2018047582A (en) Tire vulcanizing device
JP2021091130A (en) Tire vulcanization mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181109

R150 Certificate of patent or registration of utility model

Ref document number: 6434801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250