JP2016111698A - Numerical value discrimination circuit for multivalued logical circuit based on principle of hooji algebra - Google Patents
Numerical value discrimination circuit for multivalued logical circuit based on principle of hooji algebra Download PDFInfo
- Publication number
- JP2016111698A JP2016111698A JP2015230146A JP2015230146A JP2016111698A JP 2016111698 A JP2016111698 A JP 2016111698A JP 2015230146 A JP2015230146 A JP 2015230146A JP 2015230146 A JP2015230146 A JP 2015230146A JP 2016111698 A JP2016111698 A JP 2016111698A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- value
- potential
- input
- logic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Logic Circuits (AREA)
Abstract
Description
■■■ Title of the invention ■■■
●Circuit for discriminating one of numerical−values which are used in multivalue−logic−circuits on the basis of the principles of “Hooji algebra”.
■■■ Title of the Invention ■■■
● Circuit for discriminating one of numeric-values who were used in multiple-logic-circuits on the basis of the principles of the principles of the principles.
■■■ 要 約 ■■■
■■ 課 題 ■■
日本生まれの多値論理、フージ代数(Hooji algebra)の原則に基づく多値論理回路の入力部で発生するオーバーシュート等の電圧振動を●低損失で抑制。
□□□ Abstract □□□
□□ Problem to be solved □□
To suppress it with low power−loss,voltage−oscillations such as overshooting etc. to appear in input−side of multivalue−logic−circuits on the basis of the principles of “Hooji algebra” which is a multivalue−logic(−system) born in Japan.
■■■ Summary ■■■
■■ Issues ■■
Voltage fluctuations such as overshoot that occur at the input of multi-valued logic circuits based on the principle of multi-valued logic and Houji algebra born in Japan are suppressed with low loss.
□□□ Abstract □□□
□□ Problem to be dissolved □□
To suppress it with low power-loss, voltage-oscillations as overshutting etc. to appear in input-side of multivalue-logic-circuits on the basis of the principals of “Hooji algebra” which isa multibile.
■■ 解決手段 ■■
例:「その出力開放時その出力電位をその回路の所定定電位にプル・アップ又はダウンするプル抵抗を接続した、多値EVEN回路又は多値NOT回路」と多値NOR回路の二段接続回路が複数並列接続された多値論理完全回路において、後段回路ごとに各入力電位を「その前段回路の出力用特定定電位と前記所定定電位のうち、低い方を低電位側、高い方を高電位側にして」各定電位にクランプするクランプダイオードを1つずつ接続する。但し、VCm=Vm+1又はVm−1で、m=0、1、2、……、8又は9である。
□□ Means for solving □□
□ For example,a circuit showed in fig.10.
There’s a multivalue−logic−‘completeness of completeness’−circuit comprising many two−stage−connection−circuits to be connected parallel one another.
The rear−stage circuit of each two−stage−connection−circuit is a multivalue−NOR(−logic)−circuit with two input−terminals.
Each input−terminal is connected with the output−terminal of a multivalue−‘NOT or EVEN’(−logic)−circuit.
With regard to each multivalue−EVEN−circuit,a pull−resistor is connected with its output−terminal in order to pull up−or−down its output−electric−potential to its fixed constant−electric−potential when its output is open’.
With regard to each multivalue−NOT−circuit too,it’s same.
In the multivalue−logic−‘completeness of completeness’−circuit,two clamp−diodes are connected with each of two input−parts of each multivalue−NOR−circuit so as to clamp each input−electric−potential to the two peculiar constant−electric−potentials prepared for its input−part as follows.
The lower one of the two peculiar electric−potentials is low−side of both ‘the above−mentioned fixed constant−electric−potential’ and ‘a specific constant−electric−potential for its front−stage−circuit to output’.And the higher another is high−side of both.
But VCm=Vm+1 or VCm=Vm−1(m=0、1、2、……、8or9).
■■ Solution ■■
Example: “Multi-level EVEN circuit or multi-level NOT circuit with a pull resistor that pulls up or down the output potential to a predetermined constant potential of the circuit when the output is open” and a multi-level NOR circuit two-stage connection circuit In a multi-valued logic complete circuit in which a plurality of circuits are connected in parallel, each input potential is set to “each of the specified constant potential for output of the preceding circuit and the predetermined constant potential, the lower one being the lower potential side and the higher one being the higher one. Connect one clamp diode to each constant potential “on the potential side”. However, V Cm = V m + 1 or V m−1 and m = 0, 1, 2,..., 8 or 9.
□□ Means for solving □□
□ For example, a circuit showered in fig. 10.
There's a multivalue-logic-'completeness of completeness'- circuit compiling, many two-stage-connections-to-connected parallel.
The rear-stage circuit of each two-stage-connection-circuit is a multivalue-NOR (-logic) -circuit with two-input-terminals.
Each input-terminal is connected with the output-terminal of a multivalue-'NOT or EVEN '(-logic) -circuit.
With regard to each multivalue-EVEN-circuit, a pull-resistor is connected with its output-terminal in order to pull up-or-down its output-electric-potential to its fixed constant-electric-potential when its output is open ' .
With Regard to Each multivalue-NOT-circuit too, it's same.
In the multivalue-logic-'completeness of completeness'-circuit, two clamp-diodes are connected with each of two input-parts of each multivalue-NOR-circuit so as to clamp each input-electric-potential to the two peculiar constant- electric-potentials prepared for inputs input-part as follow.
The lower one of the two peculiar electric-potentials is low-side of both 'the above-mentioned fixed constant-electric-potential' and 'a specific constant-electric-potential for its front-stage-circuit to output'. And the high another is high-side of both.
But V Cm = V m + 1 or V Cm = V m-1 (m = 0, 1, 2,..., 8 or 9).
これで各後段回路の各入力電圧振動を抑制する際に生じる損失を低減できる。この多値論理完全回路では前記2〜3種類の基本多値論理回路が完全系を成す。
***
By the construction,it’s possible to suppress each input−voltage−oscillation of each multivalue−NOR−circuit with low power−loss.
The above−mentioned two−or−three kinds of the basic multivalue−logic−circuits construct a complete system in this multivalue−logic−‘completeness of completeness’−circuit.
As a result, it is possible to reduce a loss that occurs when suppressing each input voltage oscillation of each subsequent circuit. In this multi-valued logic complete circuit, the above two to three basic multi-valued logic circuits form a complete system.
***
By the construction, it's possible to suppress each input input-voltage-oscillation of each multi-value-NOR-circuit with low power-loss.
The above-mentioned two-or-three kind of the basic multivalue-logic-circuits structure a complete system-this-complex-logistic-logistic-logistic-logistic-logistic-logistic-logistic- logistic
■■ 選択図 ■■
図10
□□ Chosen drawing □□
Fig.10.
■■ Selection diagram ■■
FIG.
□□ Chosen drawing □□
FIG. 10.
■■■ 技 術 分 野 ■■■
本発明は、前段回路の出力電位信号(又は出力電圧信号)が変化する時に自分の入力側で発生するオーバーシューティングやアンダーシューティング等の邪魔な電位振動(又は電圧振動)を従来より●低電力損失で抑制する機能を持つ「フージ代数の原則に基づく多値論理回路用の数値判別回路」に関する。
■■■ Technology Field ■■■
In the present invention, disturbing potential oscillations (or voltage oscillations) such as overshooting and undershooting that occur on the input side of the input circuit when the output potential signal (or output voltage signal) of the preceding circuit changes are lower than in the past. The “numerical value discriminating circuit for a multi-value logic circuit based on the principle of the Fuji algebra” having the function of suppressing the above.
●なお、まだ広く知られていない『フージ代数(Hooji algebra)』の原則と「フージ代数の原則に基づく各種の多値論理回路」の技術、及び、「特許文献16、17の『同期ラッチング機能を持つ多値論理手段と多値ハザード除去手段』」の技術等を本発明の説明において技術常識と同様に扱うことができる様に、念の為それらの原則と技術などを段落番号[0054〜0121]、段落番号[0122〜0249]において本発明者はそれぞれ詳しく説明する。
その中で特に「フージ代数の原則に基づく多値論理完全回路」に関して段落番号[0088〜0108、0111〜0121]において本発明者は詳細に説明するが、それに関しては既に下記特許文献14、16〜18で開示されている。但し、「フージ代数(Hooji algebra)」という名前の使用は特許文献14からである。
Among them, the present inventor will explain in detail in paragraph numbers [0088 to 0108, 0111 to 0121] regarding “multi-valued logic complete circuit based on the principle of Fuji algebra”. -18. However, the use of the name “Hooji algebra” is from US Pat.
例えば単純化して言うと、後述(段落番号[0142]。)する様に「前段の多値論理回路の出力端子とその後段の多値論理回路の入力端子の間を繋ぐ導線に存在する漂遊インダクタンス」と「その後段回路入力部の数値判別回路の入力静電容量(例:入力MOS・FETのゲート・ソース間静電容量。)」が直列共振回路を形成している場合、その前段回路の出力電位(又は出力電圧)が変化する度(たび)にオーバーシューティングやアンダーシューティング等の不必要な電位振動(又は電圧振動)が発生してしまう。
これらの不要振動は、その後述(段落番号[0141〜0143]。)の通り多値ハザードの発生原因になってしまうが、さらに「その後段回路中の数値判別回路がその判別すべき数値を確定するのを遅らせる原因」になってしまう。なぜなら、これら不要振動が早くても「その数値判別回路の各所定の数値判別しきい値範囲内に収(おさ)まるまで」その入力数値が確定しない、からである。
その結果、その後段回路が同期型の場合、その後段回路は早くてもその数値確定までその入力数値を取り入れて次の回路動作を行うことができない。一方、その後段回路が非同期型の場合、早くても「その数値確定後に加えてその後段回路の出力信号が安定するまで」その後段回路の出力信号を信頼できるデータ又は情報として活用することはできない。どちらにしても、それらの不要振動がその信号伝達遅れを引き起こしてしまう。
その信号伝達が遅れない様に下記・特許文献20ではその数値判別回路の入力側で発生するオーバーシューティングやアンダーシューティング等の電位振動(又は電圧振動)をクランプ・ダイオードを使って抑制している。
しかしながら、その電位振動(又は電圧振動)のクランプ動作に伴って電力損失が発生してしまう。できることなら、その電力損失を少しでも減らしたい。
従って、「フージ代数の原則に基づく多値論理回路」用の数値判別回路の入力側で発生するオーバーシューティングやアンダーシューティング等の電位振動(又は電圧振動)を抑制する際に生じる電力損失をできるだけ減らすことが望まれる。 ( 課 題 )
These unnecessary vibrations cause the occurrence of multi-value hazards as described later (paragraph numbers [0141 to 0143]). Furthermore, “the numerical value determination circuit in the subsequent circuit determines the numerical value to be determined. Will be the cause of delaying. This is because even if these unnecessary vibrations are early, the input numerical value is not fixed “until it falls within each predetermined numerical value determination threshold value range of the numerical value determination circuit”.
As a result, when the succeeding stage circuit is a synchronous type, the succeeding stage circuit cannot take the input numerical value and perform the next circuit operation until the numerical value is determined at the earliest. On the other hand, when the subsequent stage circuit is asynchronous, the output signal of the subsequent stage circuit cannot be used as reliable data or information as long as “after the numerical value is determined and until the output signal of the subsequent stage circuit is stabilized” at the earliest. . In any case, these unnecessary vibrations cause the signal transmission delay.
In order to prevent the signal transmission from being delayed, in Patent Document 20 below, potential oscillation (or voltage oscillation) such as overshooting or undershooting that occurs on the input side of the numerical discrimination circuit is suppressed using a clamp diode.
However, power loss occurs with the clamping operation of the potential oscillation (or voltage oscillation). I want to reduce the power loss as much as possible.
Therefore, the power loss that occurs when suppressing potential oscillation (or voltage oscillation) such as overshooting or undershooting that occurs on the input side of the numerical discriminating circuit for the “multi-valued logic circuit based on the principle of Fuji algebra” is reduced as much as possible. It is hoped that. ( Task )
なお、それらのオーバーシューティングやアンダーシューティング等の「◆減衰振動」を無くす為にその後段回路の入力信号を「◆過減衰」又は「◆臨界減衰」にすると、その入力信号の立上りや立下りが遅くなるので、その信号伝達も遅くなってしまう上に電力損失が大きいので、実用的ではない。
また、従来の数値判別回路には例えば以下の様なものが有る。
*「図22の回路中のほぼ左3分の1部分」
*「図25の回路中の両パワーMOS・FET以外の部分」
*「図26の回路中のほぼ左半分部分」
*「図28の回路中の左半分部分」
*「図30の回路中のほぼ左半分部分」
*「図35の回路中のトランジスタ1と抵抗21の直列回路部分」
*「図36の回路中のトランジスタ2、17、ダイオード35及び抵抗20、21の接続体部分」
*「図37の回路中のトランジスタ1、2、17、ダイオード35及び抵抗20、21の接続体部分」
*「図39の回路中のトランジスタ31〜33、ダイオード34、35及び抵抗20、21、62、67の接続体部分」
*「図46の回路中のトランジスタ1、2、17及び抵抗20、21、62の接続体部分」
*「図47の回路中のトランジスタ31a〜33a、31b〜33b、ダイオード34、35a、35b及び抵抗20a、20b、21、62、67の接続体部分」
*「図48の回路中のトランジスタ31a〜32a、31b〜32b、33、ダイオード34、35、68a、68b及び抵抗20、21、62、67の接続体部分」
*「図49の回路中のトランジスタ1a〜1c、2a〜2cと抵抗20、21、62の接続体部分」
*「図50の回路中のトランジスタ31a〜33a、31b〜33b等、ダイオード34、35及び抵抗20a、20b、21、62、67の接続体部分」
*「図51の回路中のトランジスタ1a〜1c、2a〜2c、17a〜17c、図中ダイオード3つ及び抵抗20a〜20c、21、62の接続体部分」
*「図52の回路中のトランジスタ1、2、17と抵抗20、21、62の接続体部分」
*「特開2004−032702の図15中の両電源線V(m−1)・V(m+1)間に直列接続された4個のNMOS・FETと2個の抵抗の直列接続体」
*「特開2004−032702の図16中の両電源線V(m−1)・V(m+1)間に直列接続された2個の抵抗と4個のPMOS・FETの直列接続体」
*「特開2004−032702の図17、図18の各回路」
*「特開2004−032702の図19中の両電源線V(m−1)・V(m+1)間に直列接続された『4個のNMOS・FETの並列回路』と3個の抵抗の直列接続体」
*「特開2004−032702の図20中の両電源線V(m−1)・V(m+1)間に直列接続された3個の抵抗と『4個のPMOS・FETの並列回路』の直列接続体」
Further, for example, the following numerical value discrimination circuits include the following.
* “Almost left third part in the circuit of FIG. 22”
* "Parts other than both power MOS FETs in the circuit of Fig. 25"
* “Almost left half of the circuit in FIG. 26”
* “Left half of the circuit in FIG. 28”
* “Almost left half of the circuit in FIG. 30”
* "Series circuit portion of transistor 1 and resistor 21 in the circuit of FIG. 35"
* "Connector part of transistors 2 and 17, diode 35 and resistors 20 and 21 in the circuit of FIG. 36"
* "Connector part of transistors 1, 2 and 17, diode 35 and resistors 20 and 21 in the circuit of FIG. 37"
* "Connector part of transistors 31 to 33, diodes 34 and 35 and resistors 20, 21, 62 and 67 in the circuit of FIG. 39"
* "Connector part of transistors 1, 2, 17 and resistors 20, 21, 62 in the circuit of FIG. 46"
* "Connector part of transistors 31a to 33a, 31b to 33b, diodes 34, 35a, 35b and resistors 20a, 20b, 21, 62, 67 in the circuit of FIG. 47"
* "Connector part of transistors 31a to 32a, 31b to 32b, 33, diodes 34, 35, 68a, 68b and resistors 20, 21, 62, 67 in the circuit of FIG. 48"
* "Connector portion of transistors 1a to 1c, 2a to 2c and resistors 20, 21, 62 in the circuit of FIG. 49"
* "Connector portion of transistors 31a to 33a, 31b to 33b, diodes 34 and 35, and resistors 20a, 20b, 21, 62, and 67 in the circuit of FIG. 50"
* "Connectors of transistors 1a to 1c, 2a to 2c, 17a to 17c, three diodes and resistors 20a to 20c, 21, 62 in the circuit of FIG. 51"
* "Connector part of transistors 1, 2, 17 and resistors 20, 21, 62 in the circuit of FIG. 52"
* "A series connection of four NMOS FETs and two resistors connected in series between the power supply lines V (m-1) and V (m + 1) in FIG. 15 of JP2004-032702"
* "A series connection of two resistors and four PMOS FETs connected in series between both power supply lines V (m-1) and V (m + 1) in FIG. 16 of JP2004-032702"
* “Each circuit of FIG. 17 and FIG. 18 of JP2004-032702”
* "" Parallel circuit of four NMOS FETs "connected in series between both power supply lines V (m-1) and V (m + 1) in Fig. 19 of JP 2004-032702 and a series of three resistors Connected body "
* "Three resistors connected in series between both power supply lines V (m-1) and V (m + 1) in FIG. 20 of Japanese Patent Application Laid-Open No. 2004-032702 and a series of" a parallel circuit of four PMOS FETs ". Connected body "
「フージ代数の原則に基づく多値論理回路」用の数値判別回路の入力側で発生するオーバーシューティングやアンダーシューティング等の電位振動(又は電圧振動)を抑制する際に生じる電力損失をできるだけ減らすことが望まれる。 To reduce power loss as much as possible when suppressing potential oscillation (or voltage oscillation) such as overshooting and undershooting that occur on the input side of the numerical discriminating circuit for the "multi-valued logic circuit based on the principle of Fuji algebra" desired.
3又は3以上の所定の複数をNで表わし、所定の自然数をSで表わしたときに、
「『第1定電位から第N定電位まで番号順にこれらの定電位が高くなって行くか、又は、低くなって行くN個の定電位』を供給し、その各定電位と0〜(N−1)の各整数がその第1定電位とその整数0から順々に1対1ずつ対応すると定義された第1定電位供給手段〜第N定電位供給手段」と、
「S個の入力電位信号の入口となる第1の入口手段〜第Sの入口手段」と、
「『S=1の場合は1つの前記入力電位信号に対応する入力整数、S≧2の場合は[S個の前記入力電位信号のそれぞれと1対1ずつ対応するS個の入力整数のすべて]か[S個の前記入力電位信号のそれぞれと1対1ずつ対応するS個の入力整数のうち、少なくとも1つ]』が『[整数0〜(N−1)の中であらかじめ決められた1つの入力用特定整数と等しいかそうでないか]、[整数0〜(N−2)の中であらかじめ決められた1つの入力用特定整数より大きいかそうでないか]、[整数1〜(N−1)の中であらかじめ決められた1つの入力用特定整数より小さいかそうでないか]、[整数0〜(N−1)の中であらかじめ決められた、その差が少なくとも2である2つの入力用特定整数の間に有るかそうでないか]のいずれか1つ』について、それに適用する『下記(段落番号[0015〜0016]中の)2つ又は4つのしきい値電位』に基づいて肯定か否定かを判別し、その判別結果を判別結果信号として出力する数値判別手段」を有し、
その第1〜第Sの入口手段のうち、少なくとも1つに「その出力定常時に出力する出力電位が高電位側と低電位側の2種類だけであり、前記数値判別手段がその一方の出力電位を前記肯定と判別する一方、その他方の出力電位を前記否定と判別する前段回路」が接続されている場合に、
「その前段回路が接続されている前記入口手段が1つならそこから内側に、複数個ならその入口手段ごとにそこから内側に」その入力電位信号を「前記N個の定電位のうち、その高電位側出力電位に一番近い高電位側定電位」と「前記N個の定電位のうち、その低電位側出力電位に一番近い低電位側定電位」それぞれにクランプする「電位クランプ・ダイオード又は電位クランプ手段」を1つずつ接続した「フージ代数の原則に基づく多値論理回路用の数値判別回路」において、
前記高電位側定電位と前記低電位側定電位のうち、一方を「他方と同じにすることなく」自由に選択できるときに前記高電位側定電位と前記低電位側定電位の関係が前記N個の定電位の中で隣り同士となる様に設定した「フージ代数の原則に基づく多値論理回路用の数値判別回路」である。
ただし、前述した「1つの入力用特定整数より小さい」という意味にはその1つの入力用特定整数は含まれないし、前述した「1つの入力用特定整数より大きい」という意味にはその1つの入力用特定整数は含まれないし、前述した「2つの入力用特定整数の間に有る」という意味にはその2つの入力用特定整数は含まれない。
When a predetermined plural number of 3 or 3 is represented by N and a predetermined natural number is represented by S,
“N constant potentials that increase or decrease in numerical order from the first constant potential to the Nth constant potential” are supplied, and each constant potential and 0 to (N -1), the first constant potential supply means to the Nth constant potential supply means defined as one-to-one correspondence with the first constant potential in order from the integer 0, "
“First to Sth Inlet Means for Incoming S Input Potential Signals”,
““ When S = 1, an input integer corresponding to one of the input potential signals, and when S ≧ 2, [all of the S input integers corresponding one-to-one with each of the S input potential signals. ] Or [At least one of S input integers corresponding one-to-one with each of the S input potential signals] ”is determined in advance in [integer 0 to (N−1)]. It is equal to or not equal to one input specific integer], [is greater than one input specific integer predetermined in integer 0 to (N−2)], or [integer 1 to (N -1) smaller than or not one input specific integer predetermined in advance], [two predetermined in integer 0 to (N-1), the difference of which is at least 2 Any one of the input integers or not] Is determined based on “two or four threshold potentials (in paragraphs [0015 to 0016] below)” applied to it, and a numerical value for outputting the determination result as a determination result signal Having a "discriminating means"
At least one of the first to S-th inlet means indicates that “the output potential to be output at the time of steady output is only two types of the high potential side and the low potential side, and the numerical discrimination means has one of the output potentials. Is connected to a pre-stage circuit that determines that the other output potential is determined to be negative.
"If the number of the inlet means connected to the preceding circuit is one, the inside thereof, and if there are a plurality of the inlet means, the inside of the inlet means from the inside." High potential side constant potential closest to the high potential side output potential ”and“ Low potential side constant potential closest to the low potential side output potential among the N constant potentials ” In “a numerical discriminating circuit for a multi-value logic circuit based on the principle of the Fuji algebra” in which “diodes or potential clamping means” are connected one by one,
When one of the high potential side constant potential and the low potential side constant potential can be freely selected “without making it the same as the other”, the relationship between the high potential side constant potential and the low potential side constant potential is This is a “numerical value discriminating circuit for a multi-valued logic circuit based on the principle of the Fuji algebra” set to be adjacent to each other among N constant potentials.
However, the meaning of “less than one input specific integer” does not include the one input specific integer, and the meaning of “greater than one input specific integer” means that one input. The specific integer for use is not included, and the meaning of “between two input specific integers” does not include the two input specific integers.
■■ その2つ又は4つのしきい値電位 ■■
■(1)その第1定電位から第N定電位まで番号順にこれらの定電位が高くなって行く場合で、さらに、
●a)「等しいかそうでないか」の場合:
*「等しいか」では「『前記入力用特定整数に対応する入力用特定定電位』を基準にしてあらかじめ決められたプラス側しきい値電位とマイナス側しきい値電位」。ただし、前記入力用特定整数が0のときは前記プラス側しきい値電位だけで、前記入力用特定整数が(N−1)のときは前記マイナス側しきい値電位だけである。
*「そうでないか」では「その第1定電位〜第N定電位のうち、前記入力用特定定電位より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」と「その第1定電位〜第N定電位のうち、前記入力用特定定電位より1つ下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。ただし、前記入力用特定整数が0のときは前記マイナス側しきい値電位だけで、前記入力用特定整数が(N−1)のときは前記プラス側しきい値電位だけである。
●b)「大きいかそうでないか」の場合:
*「大きいか」では「その第1定電位〜第N定電位のうち、『前記入力用特定整数に対応する入力用特定定電位』より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
*「そうでないか」では「前記入力用特定定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
●c)「小さいかそうでないか」の場合:
*「小さいか」では「その第1定電位〜第N定電位のうち、『前記入力用特定整数に対応する入力用特定定電位』より1つ下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
*「そうでないか」では「前記入力用特定定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
●d)「2つの前記入力用特定整数の間に有るかそうでないか」の場合:
*「その2つの間に有るか」では「その第1定電位〜第N定電位のうち、『その2つの入力用特定整数に対応する2つの入力用特定定電位のうち、低い方の定電位』より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」と「その第1定電位〜第N定電位のうち、『その2つの入力用特定定電位のうち、高い方の定電位』より1つ下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
*「そうでないか」では「その2つの入力用特定定電位のうち、低い方の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」と「その2つの入力用特定定電位のうち、高い方の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
■■ Two or four threshold potentials ■■
(1) When these constant potentials increase in numerical order from the first constant potential to the Nth constant potential,
● a) “Equal or not”:
* In the case of “equal to”, “a positive threshold potential and a negative threshold potential determined in advance with reference to an input specific constant potential corresponding to the input specific integer”. However, when the specific integer for input is 0, only the positive threshold potential is obtained, and when the specific integer for input is (N-1), only the negative threshold potential is obtained.
* In the case of “not so”, “a negative threshold potential determined in advance with reference to a constant potential one of the first constant potential to the Nth constant potential that is one higher than the specific constant potential for input” “A positive threshold potential determined in advance with reference to a constant potential one lower than the specific constant potential for input among the first constant potential to the Nth constant potential”. However, when the specific integer for input is 0, only the negative threshold potential is obtained, and when the specific integer for input is (N-1), only the positive threshold potential is obtained.
● b) If “Large or not”:
* In the case of “larger”, “the predetermined constant of the first constant potential to the Nth constant potential is determined in advance with reference to a constant potential that is one higher than the“ specific constant potential for input corresponding to the specific integer for input ”. Negative threshold potential ”.
* In the case of “not so”, “a positive threshold potential determined in advance on the basis of the specific constant potential for input”.
● c) “Small or not”:
* “It is small” is “predetermined on the basis of a constant potential one lower than the“ specific constant potential for input corresponding to the specific integer for input ”among the first constant potential to the Nth constant potential”. “Positive side threshold potential”.
* "If not" is "a negative threshold potential determined in advance with reference to the input specific constant potential".
D) In the case of “whether or not between two specific integers for input”:
* “Is it between the two?” Means that “of the first constant potential to the Nth constant potential, the lower constant of the two input specific constant potentials corresponding to the two input specific integers. Among the first constant potential to the Nth constant potential, “of the two input specific constant potentials”. “Higher constant potential” is a positive threshold potential determined in advance based on a constant potential one level lower than “the higher constant potential”.
* In the case of “not”, “the positive threshold potential determined in advance with respect to the lower constant potential of the two input specific constant potentials” and “the two specific input constant potentials” The negative threshold potential determined in advance based on the higher constant potential.
■(2)その第1定電位から第N定電位まで番号順にこれらの定電位が低くなって行く場合で、さらに、
●a)「等しいかそうでないか」の場合:
*「等しいか」では「『前記入力用特定整数に対応する入力用特定定電位』を基準にしてあらかじめ決められたプラス側しきい値電位とマイナス側しきい値電位」。ただし、前記入力用特定整数が0のときは前記マイナス側しきい値電位だけで、前記入力用特定整数が(N−1)のときは前記プラス側しきい値電位だけである。
*「そうでないか」では「その第1定電位〜第N定電位のうち、前記入力用特定定電位より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」と「その第1定電位〜第N定電位のうち、前記入力用特定定電位より1つ下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。ただし、前記入力用特定整数が0のときは前記プラス側しきい値電位だけで、前記入力用特定整数が(N−1)のときは前記マイナス側しきい値電位だけである。
●b)「大きいかそうでないか」の場合:
*「大きいか」では「その第1定電位〜第N定電位のうち、『前記入力用特定整数に対応する入力用特定定電位』より1つした下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
*「そうでないか」では「前記入力用特定定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
●c)「小さいかそうでないか」の場合:
*「小さいか」では「その第1定電位〜第N定電位のうち、『前記入力用特定整数に対応する入力用特定定電位』より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
*「そうでないか」では「前記入力用特定定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
●d)「2つの前記入力用特定整数の間に有るかそうでないか」の場合:
*「その2つの間に有るか」では「その第1定電位〜第N定電位のうち、『その2つの入力用特定整数に対応する2つの入力用特定定電位のうち、低い方の定電位』より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」と「その第1定電位〜第N定電位のうち、『その2つの入力用特定定電位のうち、高い方の定電位』より1つ下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
*「そうでないか」では「その2つの入力用特定定電位のうち、低い方の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」と「その2つの入力用特定定電位のうち、高い方の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
(2) When these constant potentials decrease in numerical order from the first constant potential to the Nth constant potential,
● a) “Equal or not”:
* In the case of “equal to”, “a positive threshold potential and a negative threshold potential determined in advance with reference to an input specific constant potential corresponding to the input specific integer”. However, when the specific integer for input is 0, only the negative threshold potential is obtained, and when the specific integer for input is (N-1), only the positive threshold potential is obtained.
* In the case of “not so”, “a negative threshold potential determined in advance with reference to a constant potential one of the first constant potential to the Nth constant potential that is one higher than the specific constant potential for input” “A positive threshold potential determined in advance with reference to a constant potential one lower than the specific constant potential for input among the first constant potential to the Nth constant potential”. However, when the specific integer for input is 0, only the positive threshold potential is obtained, and when the specific integer for input is (N-1), only the negative threshold potential is obtained.
● b) If “Large or not”:
* In the case of “larger”, “it is determined in advance from the first constant potential to the Nth constant potential based on a constant potential that is one lower than the“ input specific constant potential corresponding to the input specific integer ”. Plus threshold potential.
* "If not" is "a negative threshold potential determined in advance with reference to the input specific constant potential".
● c) “Small or not”:
* In the case of “smaller”, “it is determined in advance from the first constant potential to the Nth constant potential, based on a constant potential one level higher than“ the specific constant potential for input corresponding to the specific integer for input ”. Negative threshold potential ”.
* In the case of “not so”, “a positive threshold potential determined in advance on the basis of the specific constant potential for input”.
D) In the case of “whether or not between two specific integers for input”:
* “Is it between the two?” Means that “of the first constant potential to the Nth constant potential, the lower constant of the two input specific constant potentials corresponding to the two input specific integers. Among the first constant potential to the Nth constant potential, “of the two input specific constant potentials”. “Higher constant potential” is a positive threshold potential determined in advance based on a constant potential one level lower than “the higher constant potential”.
* In the case of “not”, “the positive threshold potential determined in advance with respect to the lower constant potential of the two input specific constant potentials” and “the two specific input constant potentials” The negative threshold potential determined in advance based on the higher constant potential.
このことによって、その数値判別回路の入力側で「前記高電位側定電位を上回るオーバーシューティング」や「前記低電位側定電位を下回るアンダーシューティング」等の不要振動が発生しようとしても、2つの「前記電位クランプ・ダイオード又は前記電位クランプ手段」のそれぞれがその数値判別回路の入力電位をその高電位側定電位とその低電位側定電位にクランプする。
つまり、その入力信号のオーバーシューティングはその高電位側定電位まで立ち上がったままで安定する一方、その入力信号のアンダーシューティングはその低電位側定電位まで立ち下がったままで安定するので、その数値判別回路の入力側で発生するオーバーシューティングやアンダーシューティング等の不要振動を抑制することができる。
その結果、その数値判別回路はその入力数値を従来より早く確定することができる為、その前段回路からその数値判別回路への信号伝達速度を従来より速くすることができる。
その際に、前記高電位側定電位と前記低電位側定電位の関係が前記N個の定電位の中で隣り同士となる様に設定した結果、そのオーバーシューティングやアンダーシューティング等の不要振動の振幅そのものをできるだけ小さくすることができたので、そのクランプ動作に伴う電力損失を低減することができる。
As a result, even if an unnecessary vibration such as “overshooting exceeding the high potential side constant potential” or “undershooting falling below the low potential side constant potential” occurs on the input side of the numerical discrimination circuit, two “ Each of the potential clamp diode or the potential clamp means clamps the input potential of the numerical discrimination circuit to the high potential side constant potential and the low potential side constant potential.
In other words, the overshooting of the input signal stabilizes while rising to the high potential side constant potential, while the undershooting of the input signal stabilizes while falling to the low potential side constant potential. Unwanted vibrations such as overshooting and undershooting that occur on the input side can be suppressed.
As a result, the numerical value discriminating circuit can determine the input numerical value earlier than in the prior art, so that the signal transmission speed from the preceding circuit to the numerical value discriminating circuit can be made faster than in the past.
At that time, as a result of setting the relationship between the high potential side constant potential and the low potential side constant potential to be adjacent to each other among the N constant potentials, unnecessary vibrations such as overshooting and undershooting are prevented. Since the amplitude itself can be made as small as possible, the power loss associated with the clamping operation can be reduced.
以上の通り、前記高電位側定電位と前記低電位側定電位の関係が前記N個の定電位の中で隣り同士となる様に設定した結果、そのオーバーシューティングやアンダーシューティング等の不要振動の振幅そのものをできるだけ小さくすることができたので、そのクランプ動作に伴う電力損失を低減することができる。
なお、当然の事ながら、前記数値判別手段は「その高電位側定電位とその低電位側定電位」のうち、一方を前記肯定と判別し、その他方を前記否定と判別する。
As described above, as a result of setting the relationship between the high potential side constant potential and the low potential side constant potential to be adjacent to each other among the N constant potentials, unnecessary vibrations such as overshooting and undershooting are prevented. Since the amplitude itself can be made as small as possible, the power loss associated with the clamping operation can be reduced.
As a matter of course, the numerical value determining means determines one of “the high potential side constant potential and the low potential side constant potential” as the positive and the other as the negative.
本発明をより詳細に説明するために以下添付図面に従ってこれを説明する。なお、下記7つの注意事項を先に述べておく。
◆1)これからの説明には「電子回路的な観点からの説明」と「論理数学的な観点からの説明」が有り、さらに、両方が混ざった説明も有る。
◆2)主に前記第1定電位から前記第N定電位まで番号順にこれらの定電位が『高くなって行く』場合の各実施例について説明する。
一方、これらの定電位が『低くなって行く』場合の各実施例については「『これから説明する各実施例またはその各派生実施例』において各電源電位(これらの定電位のそれぞれに相当。)の高低を正反対にして、各可制御スイッチング手段を『それと相補関係に有る可制御スイッチング手段(例:Nチャネル型MOS・FETに対するPチャネル型MOS・FET)』で1つずつ置き換え、電圧方向または電圧極性の有る各構成要素(例:ダイオード、。)の向きを逆にした『元の実施例に対して電圧方向または電圧極性に関して対称的な関係に有る実施例』」がそれに該当する。但し、その場合その多値論理機能が元の回路と同じ場合も有るし、違う場合も有る。
◆3)各実施例中nが前述のN(所定の複数)に相当する。
◆4)整数mは出力用特定整数に相当し、「前述した出力用特定定電位供給手段(例:電源線Vm)の出力用特定定電位(例:特定電源電位vm)」に対応する整数である。「0≦m≦n−1」の関係に有る。
◆5)整数Cm(≠m)は「多値数N=nで使う整数0〜(n−1)」のうち、整数m以外の整数であるが、本発明では特にCm=m−1か、Cm=m+1である。
In order to explain the present invention in more detail, this will be described with reference to the accompanying drawings. The following seven points of caution are stated first.
◆ 1) There are “explanations from the viewpoint of electronic circuits” and “explanations from the viewpoint of logic mathematics”, and there are also descriptions that are a mixture of both.
2) Each embodiment will be described mainly in the case where these constant potentials “go higher” in numerical order from the first constant potential to the Nth constant potential.
On the other hand, each example in the case where these constant potentials “become lower” is “each power source potential (corresponding to each of these constant potentials) in“ Embodiments to be described or their derivatives ”). Each controllable switching means is replaced one by one with “controllable switching means in complementary relationship (eg, P-channel MOS • FET with respect to N-channel MOS • FET)” one by one. This corresponds to “an embodiment having a symmetrical relationship with respect to the voltage direction or the voltage polarity relative to the original embodiment” in which the direction of each component having a voltage polarity (eg, diode,...) Is reversed. However, in that case, the multi-value logic function may be the same as or different from the original circuit.
3) In each embodiment, n corresponds to the aforementioned N (predetermined plural).
◆ 4) The integer m corresponds to a specific integer for output, and corresponds to the above-mentioned specific constant potential for output of the output specific constant potential supply means (eg, power supply line V m ) (eg, specific power supply potential v m ). Is an integer. The relationship is “0 ≦ m ≦ n−1”.
5) The integer Cm (≠ m) is an integer other than the integer m among the “integer 0 to (n−1) used in the multi-valued number N = n”. In the present invention, in particular, Cm = m−1. , Cm = m + 1.
◆6)大文字Vで表現された「VG、VH、Vm、VCm、V−1、V0、V1〜Vn−1、Vn」等のそれぞれは電源線で、小文字v等で表現された「vG、vH、vm、vCm、v−1、v0、v1〜vn−1、vn」等はそれら電源線の電位(=定電位)を順々に表わし、電源電位v−1〜vnはこの順序でそれらの電源電位は高くなって行く。また、もちろん、電源線V0か他の電源線が「その回路の本体ケース」又は「その回路装置の本体」又は「自動車、オートバイ、自転車などの車体」又は「船などの船体」又は「水陸両用のホーバー・クラフト等の本体」又は「飛行機、ヘリコプター等の飛行手段の本体」又は「宇宙船、宇宙ステーション等の宇宙航行手段・宇宙漂遊手段の本体」又は「地球、月、火星などの天体」等に接続されて、その本体・車体・船体・天体の電位がアース電位などの基準電位となる。
ただし、「その電源電位の高さで隣り同士となる2つの電源線」それぞれの間に直流電圧供給用の直流電源が1つずつ接続されているが、図示されていない。
◆7)例えばダイオード10、12、35、36、「ツェナー・ダイオード2つを逆向きに直列接続したツェナー・ダイオード対」等、点線で「回路構成手段そのもの、または、回路構成手段の接続」を示す場合は「その接続または挿入・接続が有る場合と無い場合」が有ることを意味する。
◆8)「トランジスタ41、47、48のゲート端子または共通ゲート端子を2つずつ画(えが)いて、各ゲート端子がD型フリップ・フロップ27のQ端子(正出力端子)に接続されたり、Qバー端子(補出力端子)に接続されたりすること」を点線で示している。
当然の事ながら、「そのQ端子からQバー端子への接続変更」や「そのQバー端子からQ端子への接続変更」は「その接続変更前の回路に対してその接続変更後の回路が論理的にその否定回路になる」ことを意味する。なお、念の為、「Qバー」とはQの文字の上に線を引いた文字を意味する。
◆ 6) expressed in capital letters V "V G, V H, V m , V Cm, V -1, V 0, V 1~ V n-1, V n " in the power supply line, respectively, such as, lowercase v “V G , v H , v m , v Cm , v −1 , v 0 , v 1 to v n−1 , v n ” and the like expressed in the order of the potentials (= constant potential) of these power supply lines. s to represent, is the power supply potential v -1 to v n their power potential in this order becomes higher. Of course, the power supply line V 0 or other power supply line is “the main body of the circuit” or “the main body of the circuit device” or “the body of an automobile, motorcycle, bicycle, etc.” or “the hull of a ship” or “ "Body of hovercraft, etc. for two-purpose use" or "Body of airplane, helicopter, etc." or "Main body of space navigation, space station, etc." The potential of the main body, the vehicle body, the hull, and the celestial body becomes a reference potential such as a ground potential.
However, although one DC power supply for supplying DC voltage is connected between each of “two power supply lines adjacent to each other at the level of the power supply potential”, it is not shown.
7) For example, diodes 10, 12, 35, 36, “a pair of Zener diodes in which two Zener diodes are connected in series in the opposite direction”, etc. In the case of showing, it means that there are cases where the connection or insertion / connection is present and not.
◆ 8) “Two gate terminals or common gate terminals of the transistors 41, 47, and 48 are drawn, and each gate terminal is connected to the Q terminal (positive output terminal) of the D-type flip-flop 27. , “Is connected to the Q bar terminal (complementary output terminal)”.
Naturally, “change in connection from the Q terminal to the Q bar terminal” or “change in connection from the Q bar terminal to the Q terminal” means that the circuit after the connection change is different from the circuit before the connection change. It logically becomes the negation circuit. As a precaution, “Q bar” means a character in which a line is drawn on the letter Q.
◆9)請求項1記載中の入口手段は例えば一般的には入力端子のことであるが、実際には端子として存在せず、単なる導線や電極などである場合が多い。これは例えばトランジスタのベース端子、ベース電極、ベース・リード線、あるいは、単にベースという呼び方が
されるのと同様である。
◆10)「0≦m≦n−1」、「0≦Cm≦n−1」、「m≠Cm」の各関係に有る。
◆11)従来の数値判別回路には例えば以下の様なものが有る。
*「図22の回路中のほぼ左3分の1部分」
*「図25の回路中の両パワーMOS・FET以外の部分」
*「図26の回路中のほぼ左半分部分」
*「図28の回路中の左半分部分」
*「図30の回路中のほぼ左半分部分」
*「図35の回路中のトランジスタ1と抵抗21の直列回路部分」
*「図36の回路中のトランジスタ2、17、ダイオード35及び抵抗20、21の接続体部分」
*「図37の回路中のトランジスタ1、2、17、ダイオード35及び抵抗20、21の接続体部分」
*「図39の回路中のトランジスタ31〜33、ダイオード34、35及び抵抗20、21、62、67の接続体部分」
(9) The entrance means in claim 1 is generally an input terminal, for example, but it does not actually exist as a terminal, and is often a simple conductor or electrode. This is similar to what is called a transistor base terminal, base electrode, base lead, or simply base, for example.
◆ 10) “0 ≦ m ≦ n−1”, “0 ≦ Cm ≦ n−1”, “m ≠ Cm”.
◆ 11) Examples of conventional numerical value discrimination circuits include the following.
* “Almost left third part in the circuit of FIG. 22”
* "Parts other than both power MOS FETs in the circuit of Fig. 25"
* “Almost left half of the circuit in FIG. 26”
* “Left half of the circuit in FIG. 28”
* “Almost left half of the circuit in FIG. 30”
* "Series circuit portion of transistor 1 and resistor 21 in the circuit of FIG. 35"
* "Connector part of transistors 2 and 17, diode 35 and resistors 20 and 21 in the circuit of FIG. 36"
* "Connector part of transistors 1, 2 and 17, diode 35 and resistors 20 and 21 in the circuit of FIG. 37"
* "Connector part of transistors 31 to 33, diodes 34 and 35 and resistors 20, 21, 62 and 67 in the circuit of FIG. 39"
*「図46の回路中のトランジスタ1、2、17及び抵抗20、21、62の接続体部分」
*「図47の回路中のトランジスタ31a〜33a、31b〜33b、ダイオード34、35a、35b及び抵抗20a、20b、21、62、67の接続体部分」
*「図48の回路中のトランジスタ31a〜32a、31b〜32b、33、ダイオード34、35、68a、68b及び抵抗20、21、62、67の接続体部分」
*「図49の回路中のトランジスタ1a〜1c、2a〜2c、17と抵抗20、21、62の接続体部分」
*「図50の回路中のトランジスタ31a〜33a、31b〜33b等、ダイオード34、35及び抵抗20a、20b、21、62、67の接続体部分」
*「図51の回路中のトランジスタ1a〜1c、2a〜2c、17a〜17c、図中ダイオード3つ及び抵抗20a〜20c、21、62の接続体部分」
*「図52の回路中のトランジスタ1、2、17と抵抗20、21、62の接続体部分」
*「特開2004−032702の図15中の両電源線V(m−1)・V(m+1)間に直列接続された4個のNMOS・FETと2個の抵抗の直列接続体」
*「特開2004−032702の図16中の両電源線V(m−1)・V(m+1)間に直列接続された2個の抵抗と4個のPMOS・FETの直列接続体」
*「特開2004−032702の図17、図18の各回路」
*「特開2004−032702の図19中の両電源線V(m−1)・V(m+1)間に直列接続された『4個のNMOS・FETの並列回路』と3個の抵抗の直列接続体」
*「特開2004−032702の図20中の両電源線V(m−1)・V(m+1)間に直列接続された3個の抵抗と『4個のPMOS・FETの並列回路』の直列接続体」
* "Connector part of transistors 1, 2, 17 and resistors 20, 21, 62 in the circuit of FIG. 46"
* "Connector part of transistors 31a to 33a, 31b to 33b, diodes 34, 35a, 35b and resistors 20a, 20b, 21, 62, 67 in the circuit of FIG. 47"
* "Connector part of transistors 31a to 32a, 31b to 32b, 33, diodes 34, 35, 68a, 68b and resistors 20, 21, 62, 67 in the circuit of FIG. 48"
* "Connector part of transistors 1a to 1c, 2a to 2c, 17 and resistors 20, 21, 62 in the circuit of FIG. 49"
* "Connector portion of transistors 31a to 33a, 31b to 33b, diodes 34 and 35, and resistors 20a, 20b, 21, 62, and 67 in the circuit of FIG. 50"
* "Connectors of transistors 1a to 1c, 2a to 2c, 17a to 17c, three diodes and resistors 20a to 20c, 21, 62 in the circuit of FIG. 51"
* "Connector part of transistors 1, 2, 17 and resistors 20, 21, 62 in the circuit of FIG. 52"
* "A series connection of four NMOS FETs and two resistors connected in series between the power supply lines V (m-1) and V (m + 1) in FIG. 15 of JP2004-032702"
* "A series connection of two resistors and four PMOS FETs connected in series between both power supply lines V (m-1) and V (m + 1) in FIG. 16 of JP2004-032702"
* “Each circuit of FIG. 17 and FIG. 18 of JP2004-032702”
* "" Parallel circuit of four NMOS FETs "connected in series between both power supply lines V (m-1) and V (m + 1) in Fig. 19 of JP 2004-032702 and a series of three resistors Connected body "
* "Three resistors connected in series between both power supply lines V (m-1) and V (m + 1) in FIG. 20 of Japanese Patent Application Laid-Open No. 2004-032702 and a series of" a parallel circuit of four PMOS FETs ". Connected body "
同じ様な2つの実施例を図1(a)、(b)に示す。どちらも後段・多値EVEN(イーブン)回路の入力部の数値判別回路がその実施例に相当するが、クランプ・ダイオード(電位クランプ手段に対応。)2つしか具体的に図示していない。その数値判別回路およびその全体の多値EVEN回路の各回路構成の具体例は図22の通りである。あるいは特開2014−179977号の図8の実施例の説明で既に公知である。
各回路では「フージ代数(Hooji algebra)の原則に基づいて実現した多値EVEN(−logic)回路(又は多値EVEN手段)」2つを2段接続し、その前段出力部に「前段出力が開放の時その出力電位を所定の電源線VCmの電源電位vCmにプル・アップ又はプル・ダウンするプル抵抗」を接続した多値EVEN二段接続回路(又は多値EVEN二段接続手段)が構成されている。Tinはその多値EVEN二段接続回路の入力端子、100はその後段の多値EVEN回路の入力端子、Toutはその多値EVEN二段接続回路の出力端子である。
だたし、「0≦m≦n−1」、「0≦Cm≦n−1」、「Cm=m+1又はCm=m−1」である。
→→ 図60中の多値EVEN二段接続回路がその原形。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
図1では多値EVEN回路を簡略に「EVEN(m)=m」で表わしているが、その意味は「その括弧内の整数mが入力用特定整数(値)を表わし、イコールの右の整数mが出力用特定整数(値)を表わしている。あるいは簡略化して「EVENm」で表わしても構わない。
従って、実施例1の(a)、(b)各場合、両特定整数は同じ値mであり、その回路構成の具体例は図22の通りである。多値EVEN回路の論理動作について言えば、その入力数値がその入力用特定整数(値)と同じなら、出力用特定整数(値)を出力する一方、そうでないなら、その出力を開放する。
Two similar embodiments are shown in FIGS. 1 (a) and 1 (b). In either case, the numerical value discrimination circuit at the input of the latter-stage / multi-value EVEN (Even) circuit corresponds to the embodiment, but only two clamp diodes (corresponding to potential clamp means) are specifically shown. A specific example of each circuit configuration of the numerical value discrimination circuit and the entire multi-value EVEN circuit is as shown in FIG. Alternatively, it is already known in the description of the embodiment of FIG.
In each circuit, two “multi-level EVEN (−logic) circuits (or multi-level EVEN means) realized based on the principle of Hooji algebra” ”are connected in two stages, and“ the output of the previous stage is connected to the output of the previous stage ”. Multi-value EVEN two-stage connection circuit (or multi-value EVEN two-stage connection means) in which the output potential is pulled up or pulled down to the power supply potential v Cm of the predetermined power supply line V Cm when open. Is configured. Tin is an input terminal of the multilevel EVEN two-stage connection circuit, 100 is an input terminal of the subsequent multilevel EVEN circuit, and Tout is an output terminal of the multilevel EVEN two-stage connection circuit.
However, “0 ≦ m ≦ n−1”, “0 ≦ Cm ≦ n−1”, “Cm = m + 1 or Cm = m−1”.
→→ The multi-level EVEN two-stage connection circuit in FIG. 60 is its original form.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
In FIG. 1, the multi-value EVEN circuit is simply expressed as “EVEN (m) = m”, but the meaning is “the integer m in the parenthesis represents a specific integer (value) for input, and the integer to the right of the equal m represents a specific integer (value) for output, or may be simply expressed as “EVEN m ”.
Accordingly, in each of the first embodiment (a) and (b), both specific integers have the same value m, and a specific example of the circuit configuration is as shown in FIG. As for the logical operation of the multi-value EVEN circuit, if the input numerical value is the same as the input specific integer (value), the output specific integer (value) is output. Otherwise, the output is released.
実施例1では(a)、(b)各回路中の後段・多値EVEN回路の入力電位を「前段・多値EVEN回路の出力用特定整数mに対応する電源電位vm(=電源線Vmの電位)」と「その所定の電源電位vCm(=電源線VCmの電位)」それぞれにクランプするクランプ・ダイオードが入力端子100から回路内側の入力部(つまり数値判別回路部)に1つずつ接続されている。この場合できるだけその数値判別回路部の入力トランジスタに近付けて両クランプ・ダイオードを接続した方が良いことは言うまでもない。この事は後述する他の各実施例でも同様である。
その各・後段回路が、その入力数値が整数mであるかそうでないかを判別できれば良い場合は、m=0のとき電源線VCmの電源電位vCmは(数値との対応関係が定義されていない)電源線V−1の電源電位v−1でも構わないし、m=n−1のとき電源線VCmの電源電位vCmは(数値との対応関係が定義されていない)電源線Vnの電源電位vnでも構わない。ただし、電源線V−1又は電源線Vnが用意されている場合である。
(a)、(b)どちらの回路の場合も、その後段入力部でオーバーシューティング又はアンダーシューティングが発生しても、各クランプ・ダイオードが各電位振動(又は各電圧振動)を吸収・抑制する。
そのオーバーシューティングによりその後段の多値EVEN回路の入力電位が立ち上がって電位vCm{(a)の場合}又は電位vm{(b)の場合}に達すると、その高電位側のクランプ・ダイオードがその入力電位をその電位(vCm又はvm)に保持し、その後その前段側の出力スイッチ部がその電位保持を受け継ぐ。
一方、そのアンダーシューティングによりその後段の多値EVEN回路の入力電位が立ち下がって電位vm{(a)の場合}又は電位vCm{(b)の場合}に達すると、その低電位側のクランプ・ダイオードがその入力電位をその電位(vm又はvCm)に保持し、その後その前段側の出力スイッチ部がその電位保持を受け継ぐ。
In the first embodiment, (a) and (b) the input potential of the latter stage / multi-value EVEN circuit in each circuit is expressed as “the power source potential v m corresponding to the output specific integer m of the former stage / multi-value EVEN circuit (= power source line V m )) and “predetermined power supply potential v Cm (= potential of power supply line V Cm )” are clamp diodes from the input terminal 100 to the input section inside the circuit (that is, the numerical discrimination circuit section). Connected one by one. In this case, it goes without saying that it is better to connect both clamp diodes as close as possible to the input transistor of the numerical discrimination circuit section. The same applies to other embodiments described later.
As each & succeeding circuitry, if the input numerical value may if determined or not or an integer m is a power supply potential v Cm of the power supply line V Cm when m = 0 is defined correspondence between the (numeric have not) to may even supply potential v -1 of the power supply line V -1 by, m = source potential v Cm of the power supply line V Cm when n-1 is not defined correspondence between numeric power supply line V It does not matter, even the power supply potential v n of n. However, a case where the power supply line V -1 or a power line V n are prepared.
In either case of (a) or (b), even if overshooting or undershooting occurs in the subsequent input section, each clamp diode absorbs and suppresses each potential oscillation (or each voltage oscillation).
When the input potential of the subsequent multi-value EVEN circuit rises due to the overshooting and reaches the potential v Cm {in the case of (a)} or the potential v m {in the case of (b)}, the clamp diode on the high potential side Holds the input potential at the potential (v Cm or v m ), and then the output switch section on the front stage side inherits the potential holding.
On the other hand, when the input potential of the subsequent multilevel EVEN circuit falls due to the undershooting and reaches the potential v m {in the case of (a)} or the potential v Cm {in the case of (b)}, the lower potential side clamp diode retains its input potential to the potential (v m or v Cm), then the output switches of the preceding stage side takes over the potential holding.
同じ様な2つの実施例を図2(a)、(b)に示す。どちらも後段・多値EVEN(イーブン)回路の入力部の数値判別回路がその実施例に相当するが、クランプ・ダイオード2つしか具体的に図示していない。図2(a)、(b)の各回路でも図1(a)、(b)の各回路と同様に多値EVEN二段接続回路(又は手段)が構成されているが、それぞれの後段の多値EVEN回路の出力用特定整数(=入力用特定整数)はCmである。
だたし、「0≦m≦n−1」、「0≦Cm≦n−1」、「Cm=m+1又はCm=m−1」である。
→→ 図59中の多値EVEN二段接続回路がその原形。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
図2(a)、(b)の各回路中のプル抵抗と両クランプ・ダイオードの各接続の仕方は図1(a)、(b)の各回路の場合と同様である。
Two similar embodiments are shown in FIGS. 2 (a) and 2 (b). In either case, the numerical value discrimination circuit at the input of the latter-stage / multi-value EVEN (Even) circuit corresponds to the embodiment, but only two clamp diodes are specifically shown. In each circuit of FIGS. 2A and 2B, a multi-value EVEN two-stage connection circuit (or means) is configured as in the circuits of FIGS. 1A and 1B. The output specific integer (= input specific integer) of the multi-value EVEN circuit is Cm.
However, “0 ≦ m ≦ n−1”, “0 ≦ Cm ≦ n−1”, “Cm = m + 1 or Cm = m−1”.
→→ The multi-level EVEN two-stage connection circuit in FIG. 59 is its original form.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
The connection method of the pull resistor and both clamp diodes in each circuit of FIGS. 2A and 2B is the same as that of each circuit of FIGS. 1A and 1B.
同じ様な2つの実施例を図3(a)、(b)に示す。各回路では多値EVEN回路(又は手段)と多値NOT回路(又は手段)を二段接続した多値EVEN・NOT二段接続回路(又は手段)が構成されている。どちらも後段・多値NOT回路の入力部の数値判別回路がその実施例に相当するが、クランプ・ダイオード2つしか具体的に図示していない。
だたし、「0≦m≦n−1」、「0≦Cm≦n−1」、「Cm=m+1又はCm=m−1」である。
→→ 図63中の多値EVEN・NOT二段接続回路がその原形。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
図3(a)、(b)の各回路中のプル抵抗と両クランプ・ダイオードの各接続の仕方は図1(a)、(b)の各回路の場合と同じである。
図3では多値NOT回路も簡略に「NOT(m)=m」で表わしているが、その意味は「その括弧内の整数mが入力用特定整数(値)を表わし、イコールの右の整数mが出力用特定整数(値)を表わしている。あるいは簡略化して「NOTm」で表わしても構わない。
従って、実施例3の(a)、(b)各場合、両特定整数は同じ値mであり、その回路構成の具体例は図23、図24の各通りである。
多値NOT回路は多値EVEN回路の出力を否定した多値NEVEN(ニーブン)回路のことで、表示文字数がNOTの方が少ないのでNOTにした。多値NOT回路の論理動作について言えば、その入力数値がその入力用特定整数(値)と同じなら、その出力を開放する一方、そうでないなら、出力用特定整数(値)を出力する。
Two similar embodiments are shown in FIGS. 3 (a) and 3 (b). Each circuit includes a multi-value EVEN / NOT two-stage connection circuit (or means) in which a multi-value EVEN circuit (or means) and a multi-value NOT circuit (or means) are connected in two stages. In both cases, the numerical value discrimination circuit at the input of the latter-stage / multi-level NOT circuit corresponds to the embodiment, but only two clamp diodes are specifically shown.
However, “0 ≦ m ≦ n−1”, “0 ≦ Cm ≦ n−1”, “Cm = m + 1 or Cm = m−1”.
→→ The multi-level EVEN / NOT two-stage connection circuit in FIG.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
The connection method of the pull resistor and both clamp diodes in each circuit of FIGS. 3A and 3B is the same as that of each circuit of FIGS. 1A and 1B.
In FIG. 3, the multi-value NOT circuit is also simply expressed as “NOT (m) = m”. m represents a specific integer (value) for output, or may be simply expressed as “NOT m ”.
Therefore, in each case of the third embodiment (a) and (b), both specific integers have the same value m, and specific examples of the circuit configuration are as shown in FIGS.
The multi-value NOT circuit is a multi-value NEVEN circuit that negates the output of the multi-value EVEN circuit. Since the number of display characters is smaller than NOT, it is set to NOT. As for the logical operation of the multi-value NOT circuit, if the input numerical value is the same as the input specific integer (value), the output is released. Otherwise, the output specific integer (value) is output.
同じ様な2つの実施例を示す図4(a)、(b)の各回路でも図3(a)、(b)の各回路と同様に多値EVEN回路(又は手段)と多値NOT回路(又は手段)を二段接続した多値EVEN・NOT二段接続回路(又は手段)が構成されているが、それぞれの後段の多値NOT回路の出力用特定整数(=入力用特定整数)はCmである。どちらも後段・多値NOT回路の入力部の数値判別回路がその実施例に相当するが、クランプ・ダイオード2つしか具体的に図示していない。
だたし、「0≦m≦n−1」、「0≦Cm≦n−1」、「Cm=m+1又はCm=m−1」である。
→→ 図62中の多値EVEN・NOT二段接続回路がその原形。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
図4(a)、(b)の各回路中のプル抵抗と両クランプ・ダイオードの各接続の仕方は図1(a)、(b)の各回路の場合と同様である。
4A and 4B showing two similar embodiments, as in the circuits of FIGS. 3A and 3B, the multi-value EVEN circuit (or means) and the multi-value NOT circuit. A multi-value EVEN / NOT two-stage connection circuit (or means) in which two stages (or means) are connected is configured, but the output specific integer (= specific integer for input) of each subsequent multi-value NOT circuit is Cm. In both cases, the numerical value discrimination circuit at the input of the latter-stage / multi-level NOT circuit corresponds to the embodiment, but only two clamp diodes are specifically shown.
However, “0 ≦ m ≦ n−1”, “0 ≦ Cm ≦ n−1”, “Cm = m + 1 or Cm = m−1”.
→→ The multi-level EVEN / NOT two-stage connection circuit in FIG.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
In each circuit of FIGS. 4A and 4B, the pull resistors and the clamp diodes are connected in the same manner as in the circuits of FIGS. 1A and 1B.
同じ様な2つの実施例を図5(a)、(b)に示す。どちらも後段・多値NOT回路の入力部の数値判別回路がその実施例に相当するが、クランプ・ダイオード(電位クランプ手段に対応。)2つしか具体的に図示していない。その数値判別回路およびその全体の多値NOT回路の各回路構成の具体例は図23、図24の各通りである。あるいは特開2014−179977号の図2の実施例の説明で既に公知である。
各回路では「フージ代数(Hooji algebra)に基づいて実現した多値NOT(−logic)回路(又は多値NOT手段)」2つを2段接続し、その前段出力部に「前段出力が開放の時その出力電位を所定の電源線VCmの電源電位vCmにプル・アップ又はプル・ダウンするプル抵抗」を接続した多値NOT二段接続回路(又は多値NOT二段接続手段)が構成されている。Tinはその多値NOT二段接続回路の入力端子、100はその後段の多値NOT回路の入力端子、Toutはその多値NOT二段接続回路の出力端子である。
だたし、「0≦m≦n−1」、「0≦Cm≦n−1」、「Cm=m+1又はCm=m−1」である。
→→ 図54中の多値NOT二段接続回路がその原形。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
図5では多値NOT回路を簡略に「NOT(m)=m」で表わしているが、その意味は「その括弧内の整数mが入力用特定整数(値)を表わし、イコールの右の整数mが出力用特定整数(値)を表わしている。あるいは簡略化して「NOTm」で表わしても構わない。
従って、実施例5の(a)、(b)各場合、両特定整数は同じ値mであり、その回路構成の具体例は図23、図24の各通りである。
多値NOT回路は多値EVEN回路の出力を否定した多値NEVEN回路のことで、表示文字数がNOTの方が少ないのでNOTにした。多値NOT回路の論理動作について言えば、その入力数値がその入力用特定整数(値)と同じなら、その出力を開放する一方、そうでないなら、出力用特定整数(値)を出力する。
Two similar embodiments are shown in FIGS. 5 (a) and 5 (b). In both cases, the numerical value discrimination circuit at the input of the latter-stage / multi-level NOT circuit corresponds to the embodiment, but only two clamp diodes (corresponding to potential clamp means) are specifically shown. Specific examples of the circuit configurations of the numerical discrimination circuit and the entire multi-value NOT circuit are as shown in FIGS. Alternatively, it is already known in the description of the embodiment of FIG.
In each circuit, two “multi-value NOT (−logic) circuits (or multi-value NOT means) realized based on Hooji algebra” are connected in two stages, and “the front stage output is open” Multi-value NOT two-stage connection circuit (or multi-value NOT two-stage connection means) in which the output potential is connected to the power supply potential v Cm of the predetermined power supply line V Cm is connected to a pull resistor. Has been. Tin is an input terminal of the multi-level NOT two-stage connection circuit, 100 is an input terminal of the subsequent multi-level NOT circuit, and Tout is an output terminal of the multi-level NOT two-stage connection circuit.
However, “0 ≦ m ≦ n−1”, “0 ≦ Cm ≦ n−1”, “Cm = m + 1 or Cm = m−1”.
→→ The original form is the multi-level NOT two-stage connection circuit in FIG.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
In FIG. 5, the multi-value NOT circuit is simply expressed as “NOT (m) = m”, but the meaning is “the integer m in the parenthesis represents the input specific integer (value), and the integer on the right of the equal m represents a specific integer (value) for output, or may be simply expressed as “NOT m ”.
Therefore, in each of the fifth embodiment (a) and (b), both specific integers have the same value m, and specific examples of the circuit configuration are as shown in FIGS.
The multi-value NOT circuit is a multi-value NEVEN circuit in which the output of the multi-value EVEN circuit is negated. Since the number of display characters is smaller than NOT, it is set to NOT. As for the logical operation of the multi-value NOT circuit, if the input numerical value is the same as the input specific integer (value), the output is released. Otherwise, the output specific integer (value) is output.
実施例5では(a)、(b)各回路中の後段・多値NOT回路の入力電位を「前段・多値NOT回路の出力用特定整数mに対応する電源電位vm(=電源線Vmの電位)」と「その所定の電源電位vCm(=電源線VCmの電位)」それぞれにクランプするクランプ・ダイオードが入力端子100から回路内側の入力部(つまり数値判別回路部)に1つずつ接続されている。この場合できるだけその数値判別回路部の入力トランジスタに近付けて両クランプ・ダイオードを接続した方が良いことは言うまでもない。この事は後述する他の各実施例でも同様である。
その各・後段回路が、その入力数値が整数mであるかそうでないかを判別できれば良い場合は、m=0のとき電源線VCmの電源電位vCmは(数値との対応関係が定義されていない)電源線V−1の電源電位v−1でも構わないし、m=n−1のとき電源線VCmの電源電位vCmは(数値との対応関係が定義されていない)電源線Vnの電源電位vnでも構わない。ただし、電源線V−1又は電源線Vnが用意されている場合である。
図5(a)、(b)どちらの回路の場合も、その後段入力部でオーバーシューティング又はアンダーシューティングが発生しても、各クランプ・ダイオードが各電位振動(又は各電圧振動)を吸収・抑制する。
そのオーバーシューティングによりその後段の多値NOT回路の入力電位が立ち上がって電位vCm{(a)の場合}又は電位vm{(b)の場合}に達すると、その高電位側のクランプ・ダイオードがその入力電位をその電位(vCm又はvm)に保持し、その後その前段側の出力スイッチ部がその電位保持を受け継ぐ。
一方、そのアンダーシューティングによりその後段の多値NOT回路の入力電位が立ち下がって電位vm{(a)の場合}又は電位vCm{(b)の場合}に達すると、その低電位側のクランプ・ダイオードがその入力電位をその電位(vm又はvCm)に保持し、その後その前段側の出力スイッチ部がその電位保持を受け継ぐ。
なお、各クランプ・ダイオードを図5(a)、(b)に示す各後段回路中の数値判別回路の入力部にできるだけ近付けて接続した方が良いことは言うまでもない。この事は後述する他の各実施例でも同様である。
In the fifth embodiment, (a) and (b) the input potentials of the latter-stage / multi-level NOT circuit in each circuit are expressed as “the power source potential v m (= the power source line V corresponding to the output specific integer m of the front-stage / multi-level NOT circuit”. m )) and “predetermined power supply potential v Cm (= potential of power supply line V Cm )” are clamp diodes from the input terminal 100 to the input section inside the circuit (that is, the numerical discrimination circuit section). Connected one by one. In this case, it goes without saying that it is better to connect both clamp diodes as close as possible to the input transistor of the numerical discrimination circuit section. The same applies to other embodiments described later.
As each & succeeding circuitry, if the input numerical value may if determined or not or an integer m is a power supply potential v Cm of the power supply line V Cm when m = 0 is defined correspondence between the (numeric have not) to may even supply potential v -1 of the power supply line V -1 by, m = source potential v Cm of the power supply line V Cm when n-1 is not defined correspondence between numeric power supply line V It does not matter, even the power supply potential v n of n. However, a case where the power supply line V -1 or a power line V n are prepared.
5a and 5b, each clamp diode absorbs and suppresses each potential oscillation (or each voltage oscillation) even if overshooting or undershooting occurs in the subsequent input section. To do.
When the input potential of the subsequent multi-level NOT circuit rises due to the overshooting and reaches the potential v Cm {in the case of (a)} or the potential v m {in the case of (b)}, the clamp diode on the high potential side Holds the input potential at the potential (v Cm or v m ), and then the output switch section on the front stage side inherits the potential holding.
On the other hand, when the input potential of the subsequent multi-level NOT circuit falls due to the undershooting and reaches the potential v m {in the case of (a)} or the potential v Cm {in the case of (b)}, the low potential side clamp diode retains its input potential to the potential (v m or v Cm), then the output switches of the preceding stage side takes over the potential holding.
Needless to say, it is better to connect each clamp diode as close as possible to the input part of the numerical value discrimination circuit in each subsequent stage circuit shown in FIGS. 5 (a) and 5 (b). The same applies to other embodiments described later.
同じ様な2つの実施例を図6(a)、(b)に示す。どちらも後段・多値NOT回路の入力部の数値判別回路がその実施例に相当するが、クランプ・ダイオード2つしか具体的に図示していない。図6(a)、(b)の各回路でも図5(a)、(b)の各回路と同様に多値NOT二段接続回路(又は手段)が構成されているが、それぞれの後段の多値NOT回路の出力用特定整数(=入力用特定整数)はCmである。
だたし、「0≦m≦n−1」、「0≦Cm≦n−1」、「Cm=m+1又はCm=m−1」である。
→→ 図53中の多値NOT二段接続回路がその原形。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
図6(a)、(b)の各回路中のプル抵抗と両クランプ・ダイオードの各接続の仕方は図5(a)、(b)の各回路の場合と同様である。
Two similar examples are shown in FIGS. 6 (a) and 6 (b). In both cases, the numerical value discrimination circuit at the input of the latter-stage / multi-level NOT circuit corresponds to the embodiment, but only two clamp diodes are specifically shown. In each circuit of FIGS. 6A and 6B, a multi-value NOT two-stage connection circuit (or means) is configured as in the circuits of FIGS. 5A and 5B. An output specific integer (= input specific integer) of the multi-value NOT circuit is Cm.
However, “0 ≦ m ≦ n−1”, “0 ≦ Cm ≦ n−1”, “Cm = m + 1 or Cm = m−1”.
→→ The original form is the multi-level NOT two-stage connection circuit in FIG.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
The connection method of the pull resistor and both clamp diodes in each circuit of FIGS. 6A and 6B is the same as that of each circuit of FIGS. 5A and 5B.
同じ様な2つの実施例を図7(a)、(b)に示す。どちらも後段・多値EVEN(イーブン)回路の入力部の数値判別回路がその実施例に相当するが、クランプ・ダイオード2つしか具体的に図示していない。図7(a)、(b)の各回路では多値NOT回路(又は手段)と多値EVEN回路(又は手段)を二段接続した多値NOT・EVEN二段接続回路(又は手段)が構成されている。
だたし、「0≦m≦n−1」、「0≦Cm≦n−1」、「Cm=m+1又はCm=m−1」である。
→→ 図57中の多値NOT・EVEN二段接続回路がその原形。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
図7(a)、(b)の各回路中のプル抵抗と両クランプ・ダイオードの各接続の仕方は図5(a)、(b)の各回路の場合と同じである。
その各・後段回路が、その入力数値が整数mであるかそうでないかを判別できれば良い場合は、m=0のとき電源線VCmの電源電位vCmは(数値との対応関係が定義されていない)電源線V−1の電源電位v−1でも構わないし、m=n−1のとき電源線VCmの電源電位vCmは(数値との対応関係が定義されていない)電源線Vnの電源電位vnでも構わない。ただし、電源線V−1又は電源線Vnが用意されている場合である。
図7(a)、(b)どちらの回路の場合も、その後段入力部でオーバーシューティング又はアンダーシューティングが発生しても、各クランプ・ダイオードが各電位振動(又は各電圧振動)を吸収する。
そのオーバーシューティングによりその後段の多値EVEN回路の入力電位が立ち上がって電位vCm{(a)の場合}又は電位vm{(b)の場合}に達すると、その高電位側のクランプ・ダイオードがその入力電位をその電位(vCm又はvm)に保持し、その後その前段側の出力スイッチ部がその電位保持を受け継ぐ。
一方、そのアンダーシューティングによりその後段の多値EVEN回路の入力電位が立ち下がって電位vm{(a)の場合}又は電位vCm{(b)の場合}に達すると、その低電位側のクランプ・ダイオードがその入力電位をその電位(vm又はvCm)に保持し、その後その前段側の出力スイッチ部がその電位保持を受け継ぐ。
図7では多値EVEN回路も簡略に「EVEN(m)=m」で表わしているが、その意味は「その括弧内の整数mが入力用特定整数(値)を表わし、イコールの右の整数mが出力用特定整数(値)を表わしている。あるいは簡略化して「EVENm」で表わしても構わない。
従って、実施例7の(a)、(b)各場合、両特定整数は同じ値mであり、多値NOT回路と多値EVEN回路の各回路構成の具体例は図22〜図24の通りである。
多値EVEN回路の論理動作について言えば、その入力数値がその入力用特定整数(値)と同じなら、出力用特定整数(値)を出力する一方、そうでないなら、その出力を開放する。
Two similar examples are shown in FIGS. 7 (a) and 7 (b). In either case, the numerical value discrimination circuit at the input of the latter-stage / multi-value EVEN (Even) circuit corresponds to the embodiment, but only two clamp diodes are specifically shown. Each circuit of FIGS. 7A and 7B includes a multi-value NOT / EVEN two-stage connection circuit (or means) in which a multi-value NOT circuit (or means) and a multi-value EVEN circuit (or means) are connected in two stages. Has been.
However, “0 ≦ m ≦ n−1”, “0 ≦ Cm ≦ n−1”, “Cm = m + 1 or Cm = m−1”.
→→ The original form is the multi-level NOT / EVEN two-stage connection circuit in FIG.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
The connection method of the pull resistor and both clamp diodes in each circuit of FIGS. 7A and 7B is the same as in the circuits of FIGS. 5A and 5B.
As each & succeeding circuitry, if the input numerical value may if determined or not or an integer m is a power supply potential v Cm of the power supply line V Cm when m = 0 is defined correspondence between the (numeric have not) to may even supply potential v -1 of the power supply line V -1 by, m = source potential v Cm of the power supply line V Cm when n-1 is not defined correspondence between numeric power supply line V It does not matter, even the power supply potential v n of n. However, a case where the power supply line V -1 or a power line V n are prepared.
7A and 7B, each clamp diode absorbs each potential oscillation (or each voltage oscillation) even if overshooting or undershooting occurs in the subsequent stage input section.
When the input potential of the subsequent multi-value EVEN circuit rises due to the overshooting and reaches the potential v Cm {in the case of (a)} or the potential v m {in the case of (b)}, the clamp diode on the high potential side Holds the input potential at the potential (v Cm or v m ), and then the output switch section on the front stage side inherits the potential holding.
On the other hand, when the input potential of the subsequent multilevel EVEN circuit falls due to the undershooting and reaches the potential v m {in the case of (a)} or the potential v Cm {in the case of (b)}, the lower potential side clamp diode retains its input potential to the potential (v m or v Cm), then the output switches of the preceding stage side takes over the potential holding.
In FIG. 7, the multi-value EVEN circuit is also simply expressed as “EVEN (m) = m”. m represents a specific integer (value) for output, or may be simply expressed as “EVEN m ”.
Accordingly, in each of the seventh embodiment (a) and (b), both specific integers have the same value m, and specific examples of the circuit configurations of the multi-value NOT circuit and the multi-value EVEN circuit are as shown in FIGS. It is.
As for the logical operation of the multi-value EVEN circuit, if the input numerical value is the same as the input specific integer (value), the output specific integer (value) is output. Otherwise, the output is released.
同じ様な2つの実施例を図8(a)、(b)に示す。どちらも後段・多値EVEN(イーブン)回路の入力部の数値判別回路がその実施例に相当するが、クランプ・ダイオード2つしか具体的に図示していない。図8(a)、(b)の各回路でも図7(a)、(b)の各回路と同様に多値NOT回路(又は手段)と多値EVEN回路(又は手段)を二段接続した多値NOT・EVEN二段接続回路(又は手段)が構成されているが、それぞれの後段の多値EVEN回路の出力用特定整数(=入力用特定整数)はCmである。
だたし、「0≦m≦n−1」、「0≦Cm≦n−1」、「Cm=m+1又はCm=m−1」である。
→→ 図56中の多値NOT・EVEN二段接続回路がその原形。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
図8(a)、(b)の各回路中のプル抵抗と両クランプ・ダイオードの各接続の仕方は図5(a)、(b)の各回路の場合と同様である。
Two similar examples are shown in FIGS. 8 (a) and 8 (b). In either case, the numerical value discrimination circuit at the input of the latter-stage / multi-value EVEN (Even) circuit corresponds to the embodiment, but only two clamp diodes are specifically shown. In each circuit of FIGS. 8A and 8B, a multi-value NOT circuit (or means) and a multi-value EVEN circuit (or means) are connected in two stages as in the circuits of FIGS. 7A and 7B. A multi-level NOT / EVEN two-stage connection circuit (or means) is configured, and a specific integer for output (= specific integer for input) of each subsequent multi-level EVEN circuit is Cm.
However, “0 ≦ m ≦ n−1”, “0 ≦ Cm ≦ n−1”, “Cm = m + 1 or Cm = m−1”.
→→ The multi-level NOT / EVEN two-stage connection circuit in FIG.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
The connection method of the pull resistor and both clamp diodes in the circuits of FIGS. 8A and 8B is the same as that of the circuits of FIGS. 5A and 5B.
図9の実施例は、後述(段落番号[0117]。)する図18の多値論理完全回路(10値論理完全回路)に本発明の構成を持ち込んだものである。この元の多値論理完全回路(図18)では各「多値NOT回路もしくは多値EVEN回路」が前段回路に、各多値AND回路が後段回路になって二段接続され、各前段回路の出力開放時その出力電位を所定定電位にプル・アップ又はプル・ダウンするプル抵抗が1つずつ接続されている。
つまり、この元の多値論理完全回路(図18)では「その出力開放時その出力電位を所定定電位にプル・アップ又はプル・ダウンするプル抵抗を接続した多値『NOT又はEVEN』回路」と多値AND回路の二段接続が複数個並列接続されている。
ただし、各多値AND回路は2入力のAND回路な為、当然その前段には「多値NOT回路もしくは多値EVEN回路」が1つずつ接続されることになる。
また、各多値論理回路の入力用特定(整数)値と出力用特定(整数)値は同一で、各多値論理回路を示す四角の中に記載されている数値がその同一の特定(整数)値である。
さらに、前述した「所定定電位」とは「数値0〜9のうち、その特定値を除いた残りの中から1つ選んだ整数に対応する定電位」のことであるが、特にその(駆動)電力損失をできるだけ減らす為に図9中の電源線VC9は電源線V8(つまりC9=8)であり、図9中の電源線VC0は電源線V1(つまりC0=1)である。
一般的には、入出力共通の特定値をmとし、「数値0〜9のうち、その特定値を除いた数値をCmとすると、VCm=Vm+1 or VCm=Vm−1(m=0、1、2、……、8or9)で表わされる。
その元の多値論理完全回路(図18)において、各・後段回路(多値AND回路)の各入力電位を「その前段回路(多値「NOT又はEVEN」回路)の出力用特定定電位と前記所定定電位(=各プル抵抗のプル・アップ又はプル・ダウン先の定電位。)のうち、低い方を低電位側、高い方を高電位側にして」各定電位にクランプするクランプ・ダイオードを1つずつその各定電位の電源線に接続したものが実施例9の多値論理完全回路である。
しかも、図9中にVCm(m=0、1、2、……、8or9)で表わされた電源線が有るときはVCm=Vm+1又はVCm=Vm−1である。
これで各後段回路の各入力電位振動(又は各入力電圧振動)を抑制する際にその(駆動)電力損失をできるだけ減らすことができる。
In the embodiment of FIG. 9, the configuration of the present invention is brought into the multi-value logic complete circuit (10-value logic complete circuit) of FIG. 18 described later (paragraph number [0117]). In this original multi-valued logic complete circuit (FIG. 18), each “multi-value NOT circuit or multi-value EVEN circuit” is connected to the preceding circuit, and each multi-value AND circuit is connected to the subsequent circuit in two stages. One pull resistor is connected to pull up or pull down the output potential to a predetermined constant potential when the output is open.
That is, in this original multi-valued logic complete circuit (FIG. 18), “a multi-value“ NOT or EVEN ”circuit connected with a pull resistor that pulls up or down the output potential to a predetermined constant potential when the output is opened”. A plurality of two-stage connections of multi-value AND circuits are connected in parallel.
However, since each multi-level AND circuit is a 2-input AND circuit, naturally, one “multi-level NOT circuit or multi-level EVEN circuit” is connected to the preceding stage.
In addition, the input specific (integer) value and the output specific (integer) value of each multi-value logic circuit are the same, and the numerical values described in the squares indicating each multi-value logic circuit are the same specific (integer) ) Value.
Further, the above-mentioned “predetermined constant potential” means “a constant potential corresponding to an integer selected from the remaining values of the numerical values 0 to 9 excluding the specific value”. In order to reduce power loss as much as possible , the power line V C9 in FIG. 9 is the power line V 8 (that is, C9 = 8), and the power line V C0 in FIG. 9 is the power line V 1 (that is, C0 = 1). is there.
In general, a specific value common to input and output is m, and “Cm is a numerical value of the numerical values 0 to 9 excluding the specific value. V Cm = V m + 1 or V Cm = V m−1 (m = 0, 1, 2, ..., 8 or 9).
In the original multi-valued logic complete circuit (FIG. 18), each input potential of each rear-stage circuit (multi-value AND circuit) is set to a specific constant potential for output of “the previous-stage circuit (multi-value“ NOT or EVEN ”circuit). Among the predetermined constant potentials (= the constant potential of the pull-up or pull-down destination of each pull resistor), the lower one is set to the low potential side and the higher one is set to the high potential side. The multi-valued logic complete circuit of the ninth embodiment is such that one diode is connected to each constant potential power line one by one.
In addition, when there is a power line represented by V Cm (m = 0, 1, 2,..., 8 or 9) in FIG. 9, V Cm = V m + 1 or V Cm = V m−1 .
Thus, when the input potential oscillation (or each input voltage oscillation) of each subsequent circuit is suppressed, the (driving) power loss can be reduced as much as possible.
なお、「出力用特定定電位」とはその出力用特定(整数)値に対応する定電位のことである。
また、 多値AND回路の論理動作について言えば、その複数個の入力数値のすべてがその入力用特定整数(値)と同じなら、出力用特定整数(値)を出力する一方、そうでないなら、つまり、その複数個の入力数値のうち、少なくとも1つがその入力用特定整数(値)以外の数値ならば、その出力を開放する。
さらに、各前段回路である多値NOT回路または多値EVEN回路の特定(整数)値は判別すべき数値x、yの各値と同じであり、各後段回路である多値AND回路の特定(整数)値はその数値x、yに対応する論理関数f(x,y)の値と同じである。図9の実施例(=多値論理完全回路)は「分かり易く説明する為にかなり簡略化してある図13の真理値表」を満足する。その表の横方向に入力x値が、その表の縦方向に入力y値がそれぞれ示され、各升目の中に記された数値はそのx、yの各値に対応する論理関数f(x,y)の値である。実際には、すべての升目の中に数値が1つずつ記入されている。
それから、図13の真理値表において、あるy値とそのf(x,y)の値が同じ場合、そのy値を判別するのに使う多値論理回路は多値EVEN回路になる一方、両方の値が異なる場合、そのy値を判別するのに使う多値論理回路は多値NOT回路になる。この事はx値側の場合でも同様である。
そして、「各多値NOT回路の出力をプル・アップ又はプル・ダウンするプル抵抗」はその出力端子と「その後段・多値AND回路の特定値に対応する定電位の電源線」の間に接続されるが、「各多値EVEN回路の出力をプル・アップ又はプル・ダウンするプル抵抗」はその出力端子と「その多値EVEN回路の特定値に対応する定電位以外◆の電源線」の間に接続される。
しかも、図9からも分かる通り、各多値AND回路の各入力電位(つまりその入力部の数値判別回路の各入力電位)を「その前段回路の特定値に対応する定電位」と「その前段回路用プル抵抗のプル・アップ先またはプル・ダウン先の定電位」それぞれにクランプする電位クランプ・ダイオード(又は電位クランプ手段)が1つずつ接続されている。
■ 参 考 ■
●完全系 → Complete system。
●多値論理完全回路 → Multivalue logic completeness−of−completeness circuit。
The “specific constant potential for output” is a constant potential corresponding to the specific (integer) value for output.
As for the logic operation of the multi-value AND circuit, if all of the plurality of input numerical values are the same as the input specific integer (value), the output specific integer (value) is output. That is, if at least one of the plurality of input numerical values is a numerical value other than the input specific integer (value), the output is released.
Further, the specific (integer) value of the multi-level NOT circuit or multi-level EVEN circuit that is each pre-stage circuit is the same as each value of the numerical values x and y to be discriminated, and the multi-level AND circuit that is the post-stage circuit is specified ( The (integer) value is the same as the value of the logical function f (x, y) corresponding to the numerical values x and y. The embodiment of FIG. 9 (= multi-valued logic complete circuit) satisfies the “truth table of FIG. 13 considerably simplified for easy understanding”. An input x value is shown in the horizontal direction of the table, and an input y value is shown in the vertical direction of the table, and the numerical value written in each cell is a logical function f (x corresponding to each value of x and y. , Y). Actually, one number is entered in every square.
Then, in the truth table of FIG. 13, when a certain y value and the value of f (x, y) are the same, the multi-value logic circuit used to determine the y value becomes a multi-value EVEN circuit, while both When the values of are different, the multi-value logic circuit used to determine the y value becomes a multi-value NOT circuit. The same applies to the case of the x value side.
The “pull resistor that pulls up or pulls down the output of each multi-level NOT circuit” is between the output terminal and “the power line of the constant potential corresponding to the specific value of the subsequent stage / multi-level AND circuit”. Although connected, “pull resistor that pulls up or pulls down the output of each multilevel EVEN circuit” is its output terminal and “power supply line other than a constant potential corresponding to a specific value of the multilevel EVEN circuit” Connected between.
Moreover, as can be seen from FIG. 9, each input potential of each multi-value AND circuit (that is, each input potential of the numerical discriminating circuit of the input section) is set to “a constant potential corresponding to a specific value of the preceding circuit” and “the preceding stage”. One potential clamping diode (or potential clamping means) is connected to each of the fixed potentials of the pull-up destination or pull-down destination of the circuit pull resistor.
■ Reference ■
● Complete system → Complete system.
● Multi-valued logic complete circuit → Multivalue logic completeness-of-completeness circuit.
図10の実施例は、後述(段落番号[0120〜0121]。)する図21の多値論理完全回路(10値論理完全回路)に本発明の構成を持ち込んだものである。この元の多値論理完全回路(図21)では各「多値EVEN回路もしくは多値NOT回路」が前段回路に、各多値NOR回路が後段回路になって二段接続され、各前段回路の出力開放時その出力電位を所定定電位にプル・アップ又はプル・ダウンするプル抵抗が1つずつ接続されている。
つまり、この元の多値論理完全回路(図21)では「その出力開放時その出力電位を所定定電位にプル・アップ又はプル・ダウンするプル抵抗を接続した多値『EVEN又はNOT』回路」と多値NOR回路の二段接続が複数個並列接続されている。
ただし、各多値NOR回路は2入力のNOR回路な為、当然その前段には「多値EVEN回路もしくは多値NOT回路」が1つずつ接続されることになる。
また、各多値論理回路の入力用特定(整数)値と出力用特定(整数)値は同一で、各多値論理回路を示す四角の中に記載されている数値がその同一の特定(整数)値である。
さらに、前述した「所定定電位」とは「数値0〜9のうち、その特定値を除いた残りの中から1つ選んだ整数に対応する定電位」のことであるのことであるが、特にその(駆動)電力損失をできるだけ減らす為に図10中の電源線VC9は電源線V8(つまりC9=8)であり、図10中の電源線VC0は電源線V1(つまりC0=1)である。
一般的には、入出力共通の特定値をmとし、「数値0〜9のうち、その特定値を除いた数値をCmとすると、VCm=Vm+1 or VCm=Vm−1(m=0、1、2、……、8or9)で表わされる。
その元の多値論理完全回路(図21)において、各・後段回路(多値NOR回路)の各入力電位を「その前段回路(多値「EVEN又はNOT」回路)の出力用特定定電位と前記所定定電位のうち、低い方を低電位側、高い方を高電位側にして」各定電位にクランプするクランプ・ダイオードを1つずつ接続したものが実施例10の多値論理完全回路である。
しかも、図10中にVCm(m=0、1、2、……、8or9)で表わされた電源線が有るときはVCm=Vm+1又はVCm=Vm−1である。
これで各後段回路の各入力電位振動(又は各入力電圧振動)を抑制する際にその(駆動)電力損失をできるだけ減らすことができる。
The embodiment of FIG. 10 brings the configuration of the present invention into the multi-valued logic complete circuit (10-valued logic complete circuit) of FIG. 21 described later (paragraph numbers [0120 to 0121]). In this original multi-valued logic complete circuit (FIG. 21), each “multi-value EVEN circuit or multi-value NOT circuit” is connected to the preceding circuit, each multi-valued NOR circuit is connected to the subsequent circuit, and is connected in two stages. One pull resistor is connected to pull up or pull down the output potential to a predetermined constant potential when the output is open.
That is, in this original multi-valued logic complete circuit (FIG. 21), “a multi-value“ EVEN or NOT ”circuit in which a pull resistor is connected to pull up or pull down the output potential to a predetermined constant potential when the output is opened”. A plurality of two-stage connections of multi-value NOR circuits are connected in parallel.
However, since each multi-value NOR circuit is a 2-input NOR circuit, naturally, one “multi-value EVEN circuit or multi-value NOT circuit” is connected to the preceding stage.
In addition, the input specific (integer) value and the output specific (integer) value of each multi-value logic circuit are the same, and the numerical values described in the squares indicating each multi-value logic circuit are the same specific (integer) ) Value.
Furthermore, the above-mentioned “predetermined constant potential” means “a constant potential corresponding to an integer selected from the remaining values of the numerical values 0 to 9 excluding the specific value”. In particular, in order to reduce the (driving) power loss as much as possible , the power line V C9 in FIG. 10 is the power line V 8 (that is, C9 = 8), and the power line V C0 in FIG. 10 is the power line V 1 (that is, C0). = 1).
In general, a specific value common to input and output is m, and “Cm is a numerical value of the numerical values 0 to 9 excluding the specific value. V Cm = V m + 1 or V Cm = V m−1 (m = 0, 1, 2, ..., 8 or 9).
In the original multi-valued logic complete circuit (FIG. 21), the input potentials of the respective post-stage circuits (multi-value NOR circuits) are set as “specific constant potential for output of the pre-stage circuit (multi-value“ EVEN or NOT ”circuit). The multi-valued logic complete circuit of the tenth embodiment is one in which clamp diodes for clamping to each constant potential are connected one by one with the lower one being the low potential side and the higher one being the high potential side among the predetermined constant potentials. is there.
In addition, when there is a power line represented by V Cm (m = 0, 1, 2,..., 8 or 9) in FIG. 10, V Cm = V m + 1 or V Cm = V m−1 .
Thus, when the input potential oscillation (or each input voltage oscillation) of each subsequent circuit is suppressed, the (driving) power loss can be reduced as much as possible.
なお、「出力用特定定電位」とはその出力用特定(整数)値に対応する定電位のことである。
また、多値NOR回路の論理動作について言えば、その複数個の入力数値のうち、少なくとも1つがその入力用特定整数(値)と同じなら、その出力を開放する。一方、そうでないなら、つまり、その複数個の入力数値のすべてがその入力用特定整数(値)以外の数値(すべてが同じ数値でも、ばらばらの数値でも良い。)ならば、出力用特定整数(値)を出力する。
さらに、各前段回路である多値NOT回路または多値EVEN回路の特定(整数)値は判別すべき数値x、yの各値と同じであり、各後段回路である多値NOR回路の特定(整数)値はその数値x、yに対応する論理関数f(x,y)の値と同じである。図10の実施例(=多値論理完全回路)は「分かり易く説明する為にかなり簡略化してある図13の真理値表」を満足する。その表の横方向に入力x値が、その表の縦方向に入力y値がそれぞれ示され、各升目の中に記された数値はそのx、yの各値に対応する論理関数f(x,y)の値である。実際には、すべての升目の中に数値が1つずつ記入されている。
それから、図13の真理値表において、あるy値とそのf(x,y)の値が同じ場合、そのy値を判別するのに使う多値論理回路は多値NOT回路になる一方、両方の値が異なる場合、そのy値を判別するのに使う多値論理回路は多値EVEN回路になる。この事はx値側の場合でも同様である。蛇足ながら、これらx値、y値の判別に使う各多値論理回路の種類は図9の実施例の場合と正反対である。
そして、「各多値EVEN回路の出力をプル・アップ又はプル・ダウンするプル抵抗」はその出力端子と「その後段・多値NOR回路の特定値に対応する定電位の電源線」の間に接続されるが、「各多値NOT回路の出力をプル・アップ又はプル・ダウンするプル抵抗」はその出力端子と「その多値NOT回路の特定値に対応する定電位以外◆の電源線」の間に接続される。
しかも、図10からも分かる通り、各多値NOR回路の各入力電位(つまりその入力部の数値判別回路の各入力電位)を「その前段回路の特定値に対応する定電位」と「その前段回路用プル抵抗のプル・アップ先またはプル・ダウン先の定電位」それぞれにクランプする電位クランプ・ダイオード(又は電位クランプ手段)が1つずつ接続されている。
■ 参 考 ■
●完全系 → Complete system。
●多値論理完全回路 → Multivalue logic completeness−of−completeness circuit。
The “specific constant potential for output” is a constant potential corresponding to the specific (integer) value for output.
As for the logic operation of the multi-value NOR circuit, if at least one of the plurality of input numerical values is the same as the input specific integer (value), the output is released. On the other hand, if this is not the case, that is, if all of the plurality of input numerical values are numerical values other than the input specific integer (value) (all may be the same numerical value or separate numerical values), the output specific integer ( Value).
Further, the specific (integer) value of the multi-level NOT circuit or multi-level EVEN circuit that is each pre-stage circuit is the same as each value x and y to be discriminated, and the multi-level NOR circuit that is the post-stage circuit is specified ( The (integer) value is the same as the value of the logical function f (x, y) corresponding to the numerical values x and y. The embodiment of FIG. 10 (= multi-valued logic complete circuit) satisfies the “truth table of FIG. 13 considerably simplified for easy understanding”. An input x value is shown in the horizontal direction of the table, and an input y value is shown in the vertical direction of the table, and the numerical value written in each cell is a logical function f (x corresponding to each value of x and y. , Y). Actually, one number is entered in every square.
Then, in the truth table of FIG. 13, when a certain y value and the value of f (x, y) are the same, the multi-value logic circuit used to determine the y value becomes a multi-value NOT circuit, while both Are different from each other, the multi-value logic circuit used to determine the y value is a multi-value EVEN circuit. The same applies to the case of the x value side. However, the type of each multi-value logic circuit used for discriminating these x and y values is the opposite of that in the embodiment of FIG.
The “pull resistor that pulls up or pulls down the output of each multilevel EVEN circuit” is between the output terminal and “the power line of a constant potential corresponding to a specific value of the subsequent stage / multilevel NOR circuit”. “A pull resistor that pulls up or pulls down the output of each multi-level NOT circuit” is connected to its output terminal and “a power line other than a constant potential corresponding to a specific value of the multi-level NOT circuit” Connected between.
Moreover, as can be seen from FIG. 10, each input potential of each multi-value NOR circuit (that is, each input potential of the numerical discriminating circuit of the input unit) is expressed as “a constant potential corresponding to a specific value of the preceding circuit” and “the preceding stage”. One potential clamping diode (or potential clamping means) is connected to each of the fixed potentials of the pull-up destination or pull-down destination of the circuit pull resistor.
■ Reference ■
● Complete system → Complete system.
● Multi-valued logic complete circuit → Multivalue logic completeness-of-completeness circuit.
図11(a)の多値OR(m)回路の等価回路において多値AND回路の各入力電位を電源電位vm、vCmのうち、高電位側電位と低電位側電位それぞれにクランプするクランプ・ダイオードを1つずつ接続したり、あるいは、最終段の多値NOT回路の入力電位を電源電位vm、vCmのうち、高電位側電位と低電位側電位それぞれにクランプするクランプ・ダイオードを1つずつ接続したりした実施例11(図示せず。)が可能である。
この場合、実施例1〜8の各実施例と同様に以下の事が成り立つ。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
その等価関係の成立に関する説明は段落番号[0080〜0082]で行う。
In the equivalent circuit of the multi-valued OR (m) circuit of FIG. 11A, each input potential of the multi-valued AND circuit is clamped to the high potential side potential and the low potential side potential among the power supply potentials v m and v Cm.・ Connect diodes one by one, or clamp diodes that clamp the input potential of the multi-level NOT circuit at the final stage to the high potential side potential and the low potential side potential of the power supply potentials v m and v Cm , respectively. An eleventh embodiment (not shown) can be connected one by one.
In this case, the following is true as in the first to eighth embodiments.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
The establishment of the equivalent relationship will be described with paragraph numbers [0080 to 0082].
図11(b)の多値AND(m)回路の等価回路において多値OR回路の各入力電位を電源電位vm、vCmのうち、高電位側電位と低電位側電位それぞれにクランプするクランプ・ダイオードを1つずつ接続したり、あるいは、最終段の多値NOT回路の入力電位を電源電位vm、vCmのうち、高電位側電位と低電位側電位それぞれにクランプするクランプ・ダイオードを1つずつ接続したりした実施例12(図示せず。)が可能である。
この場合も、実施例1〜8の各実施例と同様に以下の事が成り立つ。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
その等価関係の成立に関する説明は段落番号[0080〜0082]で行う。
In the equivalent circuit of the multi-value AND (m) circuit of FIG. 11 (b), the clamp for clamping each input potential of the multi-value OR circuit to the high potential side potential and the low potential side potential of the power supply potentials v m and v Cm , respectively.・ Connect diodes one by one, or clamp diodes that clamp the input potential of the multi-level NOT circuit at the final stage to the high potential side potential and the low potential side potential of the power supply potentials v m and v Cm , respectively. Embodiment 12 (not shown) in which one by one is connected is possible.
Also in this case, the following holds true as in the first to eighth embodiments.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
The establishment of the equivalent relationship will be described with paragraph numbers [0080 to 0082].
図12の多値論理完全回路(10値論理完全回路)において、各・多値NOT・AND二段接続回路中の多値AND回路の各入力電位を「その前段・多値NOT回路の特定値に対応する定電位」と「その多値NOT回路用プル抵抗のプル・アップ先またはプル・ダウン先の定電位」それぞれにクランプするクランプ・ダイオードを1つずつ接続したり、あるいは、最終段の各多値OR回路の各入力電位を「その前段・多値AND回路の特定値に対応する定電位」と「その多値AND回路用プル抵抗のプル・アップ先またはプル・ダウン先の定電位」それぞれにクランプするクランプ・ダイオードを1つずつ接続したりした実施例13(図示せず。)が可能である。
この場合も、実施例1〜8の各実施例と同様に以下の事が成り立つ。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
その『完全』に関する説明は段落番号[0088〜0101]で行う。
In the multi-valued logic complete circuit (10-valued logic complete circuit) in FIG. 12, each input potential of the multi-value AND circuit in each multi-value NOT / AND two-stage connection circuit is expressed as “specific value of the preceding multi-value NOT circuit” A clamp diode for clamping to each of the “constant potential corresponding to” and “constant potential of the pull-up destination or pull-down destination of the multi-value NOT circuit pull resistor”, or Each input potential of each multi-valued OR circuit is expressed as “a constant potential corresponding to a specific value of the preceding stage multi-value AND circuit” and “a constant potential of the pull-up destination or pull-down destination of the pull resistor for the multi-value AND circuit The thirteenth embodiment (not shown) in which one clamp diode is connected to each other is possible.
Also in this case, the following holds true as in the first to eighth embodiments.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
The description of “complete” is given in paragraph numbers [0088 to 0101].
図14の多値論理完全回路(10値論理完全回路)において、各・多値NOT・AND二段接続回路中の多値AND回路の各入力電位を「その前段・多値NOT回路の特定値に対応する定電位」と「その多値NOT回路用プル抵抗のプル・アップ先またはプル・ダウン先の定電位」それぞれにクランプするクランプ・ダイオードを1つずつ接続した実施例14(図示せず。)が可能である。
この場合も、実施例1〜8の各実施例と同様に以下の事が成り立つ。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
その『完全』に関する説明は段落番号[0101〜0103]で行う。
In the multi-valued logic complete circuit (10-valued logic complete circuit) of FIG. 14, each input potential of the multi-value AND circuit in each multi-value NOT / AND two-stage connection circuit is expressed as “specific value of the previous stage / multi-value NOT circuit”. Example 14 (not shown) in which one clamp diode is connected to each of the “constant potential corresponding to“ a ”and“ constant potential of the pull-up destination or pull-down destination of the pull resistor for the multi-value NOT circuit ”. .) Is possible.
Also in this case, the following holds true as in the first to eighth embodiments.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
The description of “complete” is given in paragraph numbers [0101 to 0103].
図15の多値論理完全回路(3値論理完全回路)において多値NOT・AND二段接続回路が少なくとも1つ形成される場合、その1つ又は複数個の多値NOT・AND二段接続回路中の各多値AND回路の入力電位を「その前段・多値NOT回路の特定値に対応する定電位」と「その多値NOT回路用プル抵抗のプル・アップ先またはプル・ダウン先の定電位」それぞれにクランプするクランプ・ダイオードを1つずつ接続した実施例15(図示せず。)が可能である。
この場合も、実施例1〜8の各実施例と同様に以下の事が成り立つ。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
その『完全』に関する説明は段落番号[0104〜0107]で行う。
When at least one multi-value NOT / AND two-stage connection circuit is formed in the multi-value logic complete circuit (three-value logic complete circuit) of FIG. 15, one or a plurality of multi-value NOT / AND two-stage connection circuits The input potential of each multi-value AND circuit is defined as “a constant potential corresponding to a specific value of the preceding multi-value NOT circuit” and “a pull-up destination or a pull-down destination of the multi-value NOT circuit pull resistor. Embodiment 15 (not shown) is possible in which one clamping diode is connected to each “potential”.
Also in this case, the following holds true as in the first to eighth embodiments.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
The description of “complete” is given in paragraph numbers [0104 to 0107].
図17の多値論理完全回路(10値論理完全回路)において、各多値AND回路の各入力電位を「その前段・多値論理回路の特定値に対応する定電位」と「その多値論理回路用プル抵抗のプル・アップ先またはプル・ダウン先の定電位」それぞれにクランプするクランプ・ダイオードを1つずつ接続したり、あるいは、最終段の各多値OR回路の各入力電位を「その前段・多値AND回路の特定値に対応する定電位」と「その多値AND回路用プル抵抗のプル・アップ先またはプル・ダウン先の定電位」それぞれにクランプするクランプ・ダイオードを1つずつ接続したりした実施例16(図示せず。)が可能である。
この場合も、実施例1〜8の各実施例と同様に以下の事が成り立つ。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
その『完全』に関する説明は段落番号[0116]で行う。
In the multi-value logic complete circuit (10-value logic complete circuit) of FIG. 17, each input potential of each multi-value AND circuit is expressed as “a constant potential corresponding to a specific value of the preceding stage / multi-value logic circuit” and “its multi-value logic”. Connect one clamp diode to each of the pull-up destination or pull-down destination constant potential of the circuit pull resistor, or connect each input potential of each multi-level OR circuit to the One clamp diode to clamp to each of the “constant potential corresponding to a specific value of the pre-stage / multi-value AND circuit” and “the constant potential of the pull-up destination or pull-down destination of the pull resistor for the multi-value AND circuit” A connected Example 16 (not shown) is possible.
Also in this case, the following holds true as in the first to eighth embodiments.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
The explanation about “complete” is given in paragraph number [0116].
図18の多値論理完全回路(10値論理完全回路)において、各多値AND回路の各入力電位を「その前段・多値論理回路の特定値に対応する定電位」と「その多値論理回路用プル抵抗のプル・アップ先またはプル・ダウン先の定電位」それぞれにクランプするクランプ・ダイオードを1つずつ接続した実施例17(図示せず。)が可能である。
この場合も、実施例1〜8の各実施例と同様に以下の事が成り立つ。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
その『完全』に関する説明は段落番号[0117]で行う。
In the multi-value logic complete circuit (10-value logic complete circuit) of FIG. 18, each input potential of each multi-value AND circuit is expressed as “constant potential corresponding to a specific value of the preceding stage / multi-value logic circuit” and “the multi-value logic”. Embodiment 17 (not shown) is possible in which one clamping diode is connected to each of the constant potentials of the pull-up destination or the pull-down destination of the circuit pull resistor.
Also in this case, the following holds true as in the first to eighth embodiments.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
The explanation about “complete” is given in paragraph number [0117].
図19の多値論理完全回路(10値論理完全回路)において、各・多値NOT・NAND二段接続回路中の多値NAND回路の各入力電位を「その前段・多値NOT回路の特定値に対応する定電位」と「その多値NOT回路用プル抵抗のプル・アップ先またはプル・ダウン先の定電位」それぞれにクランプするクランプ・ダイオードを1つずつ接続したり、あるいは、最終段の各多値NAND回路の各入力電位を「その前段・多値NAND回路の特定値に対応する定電位」と「その前段・多値NAND回路用プル抵抗のプル・アップ先またはプル・ダウン先の定電位」それぞれにクランプするクランプ・ダイオードを1つずつ接続したりした実施例18(図示せず。)が可能である。
この場合も、実施例1〜8の各実施例と同様に以下の事が成り立つ。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
その『完全』に関する説明は段落番号[0118]で行う。
In the multi-value logic complete circuit (10-value logic complete circuit) of FIG. 19, each input potential of the multi-value NAND circuit in each multi-value NOT / NAND two-stage connection circuit is expressed as “specific value of the preceding multi-value NOT circuit”. A clamp diode for clamping to each of the “constant potential corresponding to” and “constant potential of the pull-up destination or pull-down destination of the multi-value NOT circuit pull resistor”, or Each input potential of each multi-level NAND circuit is set to “a constant potential corresponding to a specific value of the preceding stage / multi-level NAND circuit” and “pull-up or pull-down destination of the pull resistor for the previous stage / multi-level NAND circuit”. An eighteenth embodiment (not shown) in which one clamping diode is connected to each of the “constant potentials” is possible.
Also in this case, the following holds true as in the first to eighth embodiments.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
The explanation about “complete” is given in paragraph number [0118].
図20の多値論理完全回路(10値論理完全回路)において、二段目と三段目の多値NAND回路それぞれの各入力電位を「その前段・多値論理回路の特定値に対応する定電位」と「その前段・多値論理回路用プル抵抗のプル・アップ先またはプル・ダウン先の定電位」それぞれにクランプするクランプ・ダイオードを1つずつ接続した実施例19(図示せず。)が可能である。
この場合も、実施例1〜8の各実施例と同様に以下の事が成り立つ。
(a)Cm=m+1の場合VCmの電位vCmはVmの電位vmより高くなるので、そのプル抵抗はプル・アップ抵抗になる。
(b)Cm=m−1の場合その電位関係は正反対になり、VCmの電位vCmはVmの電位vmより低くなるので、そのプル抵抗はプル・ダウン抵抗になる。
その『完全』に関する説明は段落番号[0119]で行う。
In the multi-value logic complete circuit (10-value logic complete circuit) of FIG. 20, each input potential of the second-stage and third-stage multi-value NAND circuits is set to “a constant corresponding to a specific value of the previous stage / multi-value logic circuit”. Example 19 (not shown) in which one clamping diode is connected to each of “potential” and “constant potential of pull-up destination or pull-down destination of pull-up or pull-down destination of pull resistor for multistage logic circuit in the preceding stage”. Is possible.
Also in this case, the following holds true as in the first to eighth embodiments.
Because (a) Cm = m + 1 potential v Cm when V Cm is higher than the potential v m of V m, the pull resistance is a pull-up resistor.
Its potential relationship when the (b) Cm = m-1 becomes opposite, the potential v Cm of V Cm is lower than the potential v m of V m, the pull resistance is a pull-down resistor.
The description of “complete” is given in paragraph number [0119].
なお、図9〜10、図12、図14、図17〜図21の多値論理完全回路はどれも、図13に示す様な10値の真理値表を満足し、さらに「その10値の真理値表中の各数値を書き換えることによって表現できる全10値論理関数」のそれぞれと1対1ずつ対応する各・多値論理完全回路を具体化・実現化することができる。ただし、その実現の際には各多値論理回路の特定(整数)値を変更したり、多値NOT回路、多値EVEN回路などの各個数およびその割合を変更したりする必要が有る。
また、各図の回路構成を比較すれば分かる通りその完全系(Complete system)を成す多値論理回路の種類や種類数が以下の様に互いに異なっている。
■■ 多値論理回路の種類と種類数 ■■
ただし、フージ代数の原則に基づく多値論理回路の場合、同じ種類同士なら、その特定整数値の変更はその回路に接続する電源線の変更により簡単に行うことができる。
◆図9:多値「AND、NOT、EVEN」回路の3種類か、多値「AND、NOT」回路の2種類か、又は、多値「AND、EVEN」回路の2種類。
この様にその種類数が異なるのは、「各多値AND回路の前段でx、yの各入力数値を判別する時に使用する多値論理回路」次第だからである。例えば多値AND回路の特定整数値と判別すべき入力数値が同じ場合、多値EVEN回路を使用し、両数値が違う場合は多値NOT回路を使用する、からである。もし、すべての両数値が違うなら多値EVEN回路を使用しないし、すべての両数値が同じなら多値NOT回路を使用しない。
◆図10:多値「NOR、EVEN、NOT」回路の3種類か、多値「NOR、EVEN」回路の2種類か、又は、多値「NOR、NOT」回路の2種類。
◆図12:多値「OR、AND、NOT」回路の3種類か、多値「OR、AND」回路の2種類。
この場合、多値AND回路の特定整数値と判別すべき入力数値が同じ場合、その多値AND回路で直接判別している。
◆図14:多値「AND、NOT」回路の2種類か、多値AND回路の1種類。
図14の回路は、図12の回路に多値ワイヤードOR回路を導入して全多値OR回路を無くしたものである。
◆図17:多値「OR、AND、NOT、EVEN」回路の4種類か、多値「OR、AND、NOT」回路の3種類か、又は、多値「OR、AND、EVEN」回路の3種類。
◆図18:多値「AND、NOT、EVEN」回路の3種類か、多値「AND、NOT」回路の2種類か、又は、多値「AND、EVEN」回路の2種類。
◆図19:多値「NAND、NOT」回路の2種類か、多値NAND回路の1種類。
◆図20:多値「NAND、NOT、EVEN」回路の3種類か、多値「NAND、NOT」回路の2種類か、又は、多値「NAND、EVEN」回路の2種類。
◆図21:多値「NOR、EVEN、NOT」回路の3種類か、多値「NOR、EVEN」回路の2種類か、又は、多値「NOR、NOT」回路の2種類。
Note that all of the multi-valued logic complete circuits of FIGS. 9 to 10, 12, 14, and 17 to 21 satisfy the 10-value truth table as shown in FIG. It is possible to embody and realize each multi-value logic complete circuit corresponding one-to-one with each of the “all 10-value logic functions that can be expressed by rewriting each numerical value in the truth table”. However, when realizing this, it is necessary to change the specific (integer) value of each multi-value logic circuit, or to change the number and ratio of each of the multi-value NOT circuit, multi-value EVEN circuit, and the like.
Also, as can be seen from the comparison of the circuit configurations in the drawings, the types and the number of types of multi-value logic circuits forming the complete system are different as follows.
■■ Types and number of multi-level logic circuits ■■
However, in the case of multi-valued logic circuits based on the principle of the Fuji algebra, if they are of the same type, the specific integer value can be easily changed by changing the power supply line connected to the circuit.
FIG. 9: Three types of multi-value “AND, NOT, EVEN” circuits, two types of multi-value “AND, NOT” circuits, or two types of multi-value “AND, EVEN” circuits.
The number of types differs in this way because it depends on “a multi-value logic circuit used when determining each input value of x and y in the previous stage of each multi-value AND circuit”. This is because, for example, the multi-value EVEN circuit is used when the input numerical value to be discriminated from the specific integer value of the multi-value AND circuit is the same, and the multi-value NOT circuit is used when both numerical values are different. If all the two values are different, the multi-value EVEN circuit is not used. If all the two values are the same, the multi-value NOT circuit is not used.
FIG. 10: Three types of multi-value “NOR, EVEN, NOT” circuits, two types of multi-value “NOR, EVEN” circuits, or two types of multi-value “NOR, NOT” circuits.
FIG. 12: Three types of multi-value “OR, AND, NOT” circuits or two types of multi-value “OR, AND” circuits.
In this case, when the specific integer value of the multi-value AND circuit and the input numerical value to be discriminated are the same, the multi-value AND circuit directly discriminates.
FIG. 14: Two types of multi-value “AND, NOT” circuits or one type of multi-value AND circuits.
The circuit of FIG. 14 is obtained by introducing a multi-value wired OR circuit into the circuit of FIG. 12 and eliminating the entire multi-value OR circuit.
FIG. 17: Four types of multi-value “OR, AND, NOT, EVEN” circuit, three types of multi-value “OR, AND, NOT” circuit, or three of multi-value “OR, AND, EVEN” circuit type.
FIG. 18: Three types of multi-value “AND, NOT, EVEN” circuits, two types of multi-value “AND, NOT” circuits, or two types of multi-value “AND, EVEN” circuits.
FIG. 19: Two types of multi-level “NAND, NOT” circuits or one type of multi-level NAND circuits.
FIG. 20: Three types of multi-value “NAND, NOT, EVEN” circuits, two types of multi-value “NAND, NOT” circuits, or two types of multi-value “NAND, EVEN” circuits.
FIG. 21: Three types of multi-value “NOR, EVEN, NOT” circuits, two types of multi-value “NOR, EVEN” circuits, or two types of multi-value “NOR, NOT” circuits.
また、図9、図10の両実施例は全く同じ10値の真理値表を満足するが、両実施例を比較すれば分かる通り、前者は多くても多値EVEN回路、多値NOT回路および多値AND回路の3種類の多値論理回路で完全系(Complete system)を成すのに対し、後者は多くても多値EVEN回路、多値NOT回路および多値NOR回路の3種類の多値論理回路で完全系を成す。このため、使用できる完全系の種類が多くなる為、選択肢が多くて便利である。
さらに、図1〜図10の各実施例などにおいて、その各電位クランプ・ダイオード又は各電位クランプ手段として下記・特許文献19に開示されたトランジスタ式ダイオード手段を1つずつ用いた実施例も可能である。
Further, in each of the embodiments shown in FIGS. 1 to 10, it is possible to use one of the transistor type diode means disclosed in the following Patent Document 19 as each potential clamp diode or each potential clamp means. is there.
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
****************************************
◆◆◆*** 前述した内容と後述する内容に対して以下の事を補足する。 **◆◆◆
****************************************
●●1)説明の便宜上、入力端子、出力端子(請求項1記載中の入口手段、出口手段に相当。)と呼ぶが、実際には端子として存在せず、単なる導線や電極などである場合が多い。これは例えばトランジスタのベース端子、ベース電極、ベース・リード線、あるいは、単にベースという呼び方がされるのと同様である。
●●2)各実施例あるいはその各派生実施例において、「そのバックゲートとソースを接続した各NMOS」に関してそのバックゲートは「そのソース」ではなく「その回路の最低定電位供給手段{例:電源線V0又はV−1}」に接続しても良い。あるいは、そのソース電位より電位の低い他の定電位供給手段に接続しても良い。 ( 派生実施例 )
また、各実施例またはその各派生実施例において、「そのバックゲートとソースを接続した各PMOS」に関してそのバックゲートは「そのソース」ではなく「その回路の最高定電位供給手段{例:電源線Vn−1又はVn}」に接続しても良い。あるいは、そのソース電位より電位の高い他の定電位供給手段に接続しても良い。 ( 派生実施例 )
●●3)各実施例あるいはその各派生実施例において抵抗15、20、21、26、28、62〜64、67等の代わりに「そのゲート・ソース間を直結した接合型FETまたはノーマリィ・オン型MOS・FET」又は「そのドレイン・ゲート間を接続したノーマリィ・オフ型MOS・FET」を抵抗手段として1つずつ使用できる。( 派生実施例 )
さらに、その回路動作に支障が無ければ、各実施例あるいはその各派生実施例においてその各抵抗の代わりに定電流ダイオード、「定電流ダイオード2つを逆向きに直列接続したもの」、カレント・ミラー回路、又は、2端子の定電流手段を抵抗手段として1つずつ使用できる。ただし、定電流ダイオード、定電流手段などを使う場合は分圧比に注意する。
( 派生実施例 )
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
*** *** *** *** *** *** *** ***
◆◆◆ *** Add the following to the above-mentioned content and the content described later. ** ◆◆◆
*** *** *** *** *** *** *** ***
●● 1) For convenience of explanation, they are called an input terminal and an output terminal (corresponding to the inlet means and outlet means in claim 1), but they do not actually exist as terminals but are simply conductors or electrodes. There are many. This is similar to what is called a transistor base terminal, base electrode, base lead, or simply base, for example.
●● 2) In each embodiment or each derivative embodiment thereof, with respect to “each NMOS having its back gate and source connected”, its back gate is not “its source” but “the lowest constant potential supply means of the circuit {example: It may be connected to the power line V 0 or V −1 } ”. Alternatively, it may be connected to other constant potential supply means whose potential is lower than its source potential. (Derived example)
Further, in each embodiment or each derivative embodiment thereof, the back gate is not “its source” but “the highest constant potential supply means of the circuit {example: power supply line” for “each PMOS having its back gate and source connected” V n−1 or V n } ”. Alternatively, it may be connected to other constant potential supply means having a higher potential than the source potential. (Derived example)
3) Instead of resistors 15, 20, 21, 26, 28, 62-64, 67, etc. in each embodiment or its derivatives, “junction FET with its gate and source directly connected or normally on The “type MOS • FET” or “the normally-off type MOS • FET with its drain and gate connected” can be used one by one as the resistance means. (Derived example)
Furthermore, if there is no hindrance to the circuit operation, in each embodiment or each of its derivatives, a constant current diode instead of each resistor, “two constant current diodes connected in series in reverse direction”, current mirror One circuit or two-terminal constant current means can be used as the resistance means one by one. However, when using a constant current diode, constant current means, etc., pay attention to the voltage division ratio.
(Derived example)
●●4)各実施例あるいはその各派生実施例において、各ダイオードの代わりに「そのコレクタとベースを直結したバイポーラ・トランジスタ」、「そのドレインとソースを直結した接合型FET」、「そのドレインとゲートを直結したバイポーラ・モードのSIT又はGTBT」、「そのゲート、バックゲート及びソースを接続したノーマリィ・オフ型MOS・FET」又は「そのドレイン・バックゲート間、そのソース・バックゲート間それぞれが導通しない様にそのバックゲート電位を保ち、そのドレインとゲートを接続したノーマリィ・オフ型MOS・FET」を1つずつ使用できる。 ( 派生実施例 )
●●5)各実施例あるいはその各派生実施例において各電源電位の高低を正反対にして、各可制御スイッチング手段を「それと相補関係に有る可制御スイッチング手段(例:Nチャネル型MOS・FETに対するPチャネル型MOS・FET)」で1つずつ置き換え、電圧方向または電圧極性の有る各構成要素(例:ダイオード。)の向きを逆にした「元の実施例に対して電圧方向または電圧極性に関して対称的な関係に有る実施例」も当然可能である。この対称的な関係に有る各実施例は請求項1又は2記載中の「第1定電位から第N定電位まで番号順にこれらの定電位が低くなって行く場合」に対応する。但し、その場合、それは正論理に対する負論理に対応するので、その多値論理機能が元の回路と同じ場合も有るし、違う場合も有る。 ( 派生実施例 )
●●6)各実施例またはその各派生実施例において、電源線V0か他の電源線が「その回路の本体ケース」又は「その回路装置の本体」又は「自動車、オートバイ、自転車などの車体」又は「船などの船体」又は「水陸両用のホーバー・クラフト等の本体」又は「飛行機、ヘリコプター等の飛行手段の本体」又は「宇宙船、宇宙ステーション等の宇宙航行手段・宇宙漂遊手段の本体」又は「地球、月、火星などの天体」等に接続されて、その本体・車体・船体・天体の電位がアース電位などの大本(おおもと)の基準電位となる場合が多くなる。ただし、「その電源電位の高さで隣り同士となる2つの電源線」それぞれの間に直流電圧供給用の直流電源が1つずつ接続されているが、図示されていない。
●● 4) In each embodiment or each derivative embodiment thereof, instead of each diode, “bipolar transistor with its collector and base directly connected”, “junction FET with its drain and source directly connected”, “its drain and Bipolar mode SIT or GTBT with direct gate connection, “Normally-off type MOS FET with its gate, back gate and source connected” or “Between its drain and back gate, between its source and back gate, respectively. The normally-off type MOS FET having its back gate potential maintained and its drain and gate connected can be used one by one. (Derived example)
●● 5) In each embodiment or each derivative embodiment, the level of each power supply potential is reversed, and each controllable switching means is set to “controllable switching means in a complementary relationship with it (for example, for N-channel type MOS • FETs). “P-channel MOS • FET)” one by one, and the direction of each component (eg, diode) having a voltage direction or voltage polarity is reversed. Naturally, an “embodiment having a symmetric relationship” is also possible. Each embodiment having this symmetric relationship corresponds to “when these constant potentials decrease in numerical order from the first constant potential to the Nth constant potential” in claim 1 or 2. However, in that case, since it corresponds to negative logic relative to positive logic, the multi-value logic function may be the same as or different from the original circuit. (Derived example)
●● 6) In each embodiment or each derivative embodiment thereof, the power line V 0 or another power line is “the main body of the circuit” or “the main body of the circuit device” or “the body of an automobile, motorcycle, bicycle, etc.” "Or" hulls such as ships "or" main bodies of amphibious hovercrafts "or" main bodies of flying means such as airplanes and helicopters "or" main bodies of space navigation means such as spacecraft and space stations / space drifting means " ”Or“ celestial bodies such as the Earth, the Moon, and Mars ”, etc., and the potential of the main body, the vehicle body, the hull, and the celestial body often becomes a reference potential of a large book such as a ground potential. However, although one DC power supply for supplying DC voltage is connected between each of “two power supply lines adjacent to each other at the level of the power supply potential”, it is not shown.
●●7)蛇足ながら『Beyond the CMOS』ということで、量子素子など各種の新素子が提案されて来たが、☆☆☆CMOSも進化する!!! ☆☆☆CMOSは3次元IC、多値、新概念コンピューターに向かって進化する!!!
→→ 後述する段落番号[0262〜0268]。
多値(論理)回路を用いるとなると、必ずフージ代数を使う必要が出て来る。なぜなら、フージ代数がそれらの実用化を土台からしっかり支える能力を有している、からである。そして、光回路の光源にCMOS互換技術が既に活用されているが、光回路が多値化に向かうのであれば、この場合も必ずフージ代数を使う必要が出て来る。
→→ 後述する段落番号[0252〜0259]。
そのCMOS進化の1具体例が図22中の「トランジスタ3、5を組み合わせた双方向性スイッチ」又は「トランジスタ3、5、22〜25(とダイオード36)を組み合わせた双方向性スイッチング手段」である。
→→ 下記・特許文献6(特開2006−252742号)。
その別の1例が下記・特許文献8(特開2007−035233号)の図15の多値メモリーである。
しかも、たとえ、ある回路が完全なCMOS構造でなくても、その回路全体で電力消費が根本的に少なければ、全く問題が無い。例えばプル・アップ抵抗やプル・ダウン抵抗を使う場合であっても、その回路中において「その動作中オン状態にあって、プル・アップ(又はプル・ダウン)抵抗をプルするMOS・FET等の総数が常に少なく」、「その動作中そのオン・オフが切り換わるMOS・FET等の総数も常に少ない」回路の場合である。後述する入出力パターン記憶型(又は関数記憶型あるいはリザルト記憶型あるいはプリザルト記憶型)10進法コンピューターではそうなると予測される。
→→ 後述する段落番号[0262〜0268]。
一方、現在のCPU等はCMOS回路の塊(かたまり)であるにもかかわらず、「高いスイッチング周波数でオン・オフが切り換わるMOS・FET等」の総数が極めて多い為に、「その各貫通電流による電力損失を含む、その総スイッチング損失」と「その各ゲート・ソース間静電容量などの充放電に伴う総電力損失」などにより、そのCPU等はヒーターみたいになっているのが現状である。
→→ Paragraph numbers [0262 to 0268] to be described later.
Whenever a multi-value (logic) circuit is used, it is necessary to use a Fuji algebra. This is because the Fuji algebra has the ability to firmly support their practical application from the foundation. And, CMOS compatible technology has already been used for the light source of the optical circuit. However, if the optical circuit is going to be multi-valued, it is necessary to always use the Fuji algebra.
→→ Paragraph number [0252 to 0259] described later.
One specific example of the CMOS evolution is “bidirectional switch combining transistors 3 and 5” or “bidirectional switching means combining transistors 3, 5, 22 to 25 (and diode 36)” in FIG. is there.
-> The following and patent document 6 (Unexamined-Japanese-Patent No. 2006-252742).
Another example is the multi-valued memory of FIG. 15 of the following Patent Document 8 (Japanese Patent Laid-Open No. 2007-035233).
Moreover, even if a certain circuit does not have a complete CMOS structure, there is no problem if the power consumption of the entire circuit is fundamentally low. For example, even in the case of using a pull-up resistor or a pull-down resistor, in the circuit, “such as a MOS FET that pulls the pull-up (or pull-down) resistor in the ON state during operation” This is the case of a circuit in which the total number is always small and “the total number of MOS / FETs that are turned on / off during the operation is always small”. It is predicted that this will be the case with an input / output pattern storage type (or function storage type, result storage type, or result storage type) decimal computer described later.
→→ Paragraph numbers [0262 to 0268] to be described later.
On the other hand, despite the fact that the current CPU is a block of CMOS circuits, the total number of “MOS / FETs that are switched on and off at a high switching frequency” is extremely large. The current situation is that the CPUs are like heaters due to the "total switching loss including power loss due to power" and "total power loss due to charging / discharging of each gate-source capacitance". .
●●8)本発明で使うノーマリィー・オフ型MOS・FETに関して、そのドレイン・ソース間耐電圧とそのゲート・ソース間耐電圧をある程度の大きさに保つ(、できれば大きくする)一方、そのオフ時の漏れドレイン電流を小さく保ったまま、そのオン・オフしきい値電圧の大きさをどんどん小さくできれば、100値(又は100進法)コンピューター、さらに1000値(又は1000進法)コンピューター(!?)も視野に入って来る。
●●9)後述(段落番号[0122〜0249]。)する先願第1、第2発明の1構成手段である2値同期型フリップ・フロップ手段のデータ入力部(例:D端子の入力部。)が「その入力整数がその1つの入力用特定整数より『大きいか大きくないか』又は『小さいか小さくないか』を判別する数値判別手段の要件を満たしていれば、その2値同期型フリップ・フロップ手段がその数値判別手段を兼ねてももちろん構わない。
●● 8) For normally-off type MOS FETs used in the present invention, the withstand voltage between the drain and the source and the withstand voltage between the gate and the source are kept to a certain level (when possible), while being off. If the on / off threshold voltage can be made smaller and smaller while keeping the leakage drain current of the device small, a 100-value (or 100-decimal) computer, and a 1000-value (or 1000-decimal) computer (!?) Also comes into view.
●● 9) Data input section (example: D terminal input section) of binary synchronous flip-flop means, which is one constituent means of the first and second inventions of the first and second inventions described later (paragraph numbers [0122 to 0249]) )) “If the input integer satisfies the requirement of the numerical discriminating means for determining whether the input integer is“ larger or not larger ”or“ smaller or smaller ”than the one input specific integer, the binary synchronization type Of course, the flip-flop means may also serve as the numerical value discrimination means.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆◆◆
本発明の説明において、未(ま)だ広く知られていない『フージ代数』などを技術常識と同様に扱うことができる様に、念の為『フージ代数』などについて段落番号[0054〜0121]において詳しく説明する。
そのあと、段落番号[0122〜0249]において「同期ラッチング機能を持つ多値論理手段と多値ハザード除去手段」等についても同じく技術常識と同様に扱うことができる様に詳しく説明する。
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆◆◆
In the description of the present invention, paragraph numbers [0054 to 0121] of “Fuji algebra” etc. are used for the sake of precaution so that “Fuji algebra” that is not widely known can be handled in the same way as common technical knowledge. Will be described in detail.
After that, paragraphs [0122 to 0249] will be described in detail so that “multi-level logic means and multi-value hazard removal means having a synchronous latching function” and the like can be handled in the same manner as in common technical knowledge.
◆◆◆**** 新・多値論理『フージ(Hooji)代数』の説明 ****◆◆◆
***
◆◆◆**** Explanation of the new−multi−
value−logic,“Hooji algebra” ****◆◆◆
***
●●10)本発明の基になった電位モード(又は電圧モード)の各多値論理回路は『2002年当時、本発明者が独自に考え出した全く新しい世界初の多値論理』を具体化・実現化したものである。しかし、その新・多値論理に名前が無いと何かと不便なので、その後2010年に『フージ代数“Hooji algebra”)』と名付けることにした。
The multivalue−logic−circuits of which the present inventions are on the basis,are circuits ‘embodied and realized’ from a ‘world’s first’−&−‘completely new’−multivalue−logic.
The new−multivalue−logic,the present inventor thought out it by himself in the year 2002.And he called the logic “Hooji algebra” in the year 2010,because it was inconvenient in various ways if the logic has no name.
Reference:JP2010−149141(application number in Japan).
In addition,in the multivalue−logic−circuits it is defined that each ‘electric−potential or voltage’ is one by one correspodent to each numerical−value used in the logic.
Generally,the definition is called ‘electric−potential mode’ or ‘voltage mode’.
◆◆◆ **** Explanation of the new multi-valued logic “Hooji algebra” **** ◆◆◆
***
◆◆◆ **** Expansion of the new-multi-
value-logic, "Hooji algebra" ****** ◆◆◆
***
●● 10) Each multi-value logic circuit in the potential mode (or voltage mode) on which the present invention is based embodies “a completely new world-first multi-value logic originally conceived by the inventor at the time of 2002”・ It has been realized. However, since it is inconvenient if there is no name in the new multi-valued logic, it was later decided to name it “Houji algebra”) in 2010.
The multivalue-logic-circuits of who the present inventors are on the bases, are circuits-realized 'from the world's -----------------
The new-multivalue-logic, the present inventor, out of it by himsel in the year 2002. And he called the logic “Hooji algebra” in the year 2010, because it was inconvenient in various ways the name of the nose.
Reference: JP 2010-149141 (application number in Japan).
In addition, in the multivalue-logic-circuits it is defined that each 'electric-potential or vaultage' is one-by-one-corre-
Generally, the definition is called 'electric-potential mode' or 'voltage mode'.
そう名付けた理由は「本発明者は日本人なので、日本の象徴である富士山(Mt.Fuji)に因(ちな)んでいること」、「ブール代数(Boolean algebra)の『ブール』に少し語路(ごろ)合わせしていること」及び「その曖昧(あいまい)表現能力を含む能力、可能性、実用性、展開拡張性、将来性など、いずれを取っても、huge{=度外(どはず)れて大きい、途方も無く大きい、巨大な。}であると本発明者は強く判断しているので、英語のhuge(ヒュージ)に語路合わせしていること」である。(参考:下記・特許文献1〜3)
その英語表記名を決める際に「Huge」のスペール中の「H」、「Boole」のスペール中の「oo」、及び、「Fuji」のスペール中の「ji」を合体して『Hooji』とした。
The three reasons why the present inventor called the logic so,are the following.
(1)named from Mt.Fuji which is one of the symbols of Japan, because present inventor is a Japanese.
→→ the spelling of ‘ji’ picked out from the spelling of ‘Fuji’.
(2)named a little from ‘Boole’ of Boolean algebra.
→→ the spelling of ‘oo’ picked out from the spelling of ‘Boole’.
(3)named from the word of ‘huge’.
Because the present inventor strongly judges that “Hooji algebra” has many huge strong points.
For example,‘the huge abilities to include an ability to express ambiguity’,the huge possibility,the huge practicability,the huge expansibility,the huge great future,etc..
→→ the spelling of ‘H’ picked out from the spelling of ‘Huge’.
●To unite ‘H’,‘oo’ and ‘ji’,the spelling becomes “Hooji”.
→→ ◆●◇‘H’+‘oo’+‘ji’ ⇒⇒ “Hooji”
The reason for the name is “Because the inventor is Japanese, it is related to Mt. Fuji, which is a symbol of Japan”, and “Bool” in Boolean algebra (Even if it is combined) "and" Ability including its ambiguous (ambiguous) expression ability, possibility, practicality, expandability, future, etc. ) Is very large, tremendously large, and huge.} The present inventor strongly judges that it is, so that the language is aligned with the English huge. (Reference: Patent documents 1 to 3 below)
When deciding the name in English, “H” in the “Huge” spare, “oo” in the “Boole” spare, and “ji” in the “Fuji” spaer are combined into “Hooji”. did.
The three reasons why the present inventor called the logic so, the the following.
(1) named from Mt. Fuji who is one of the symbols of Japan, because present inventor is a Japan.
→→ the spelling of 'ji' picked out from the spelling of 'Fuji'.
(2) named a little from 'Boole' of Boolean algebra.
→→ the spelling of 'oo' picked out from the spelling of 'Bool'.
(3) named from the word of 'huge'.
Because the present inventor strong judget that “Hooji algebra” has many hung strong points.
For example, 'the huge capabilities to include an ability to express ambiguity', the huge possibilities, the huge practicability, .
→→ the spelling of 'H' picked out from the spelling of 'Huge'.
To unite “H”, “oo” and “ji”, the spelling becomes “Hooji”.
→→ ◆ ● ◇ 'H' + 'oo' + 'ji' ⇒⇒ “Hooji”
その様に判断した理由は、以下の通り新・多値論理『フージ代数』に基づいた多値論理回路には「『◎多値数Nがいくつであっても』、従来の多値論理回路には無い有利な独特の効果(⇒2002年当時、世界初。)」がいくつも有る、からである。ただし、2002年当時その存在に気が付かなかった効果も有る。
Speaking of the reasons for the present inventor to judge so,because there are ‘many advantageous−&−special effects not to exist in any multivalue−logic−circuits of until now’ in the new−multivalue−logic−circuits on the basis of the new−multivalue−logic,“Hooji algebra”,even if its multivalue−number‘N’ is any number.
Explaining the multivalue number‘N’,that means the number such as the following numbers.
*That means ‘2’ in case of 2value.
*That means ‘3’ in case of 3value.
*That means ‘4’ in case of 4value.
*That means ‘10’ in case of 10value.
*That means ‘N’ in case of ‘N’value.
The advantageous−&−special effects are as mentioned below.
The reason for such a determination is that the multi-value logic circuit based on the new multi-value logic “Fuji algebra” is as follows. This is because there are a number of advantageous and unique effects (⇒ the world's first in 2002). However, there was an effect that was not noticed in 2002.
Speaking of the reasons for the present inventor to judge so, because there are 'many advantageous - & - special effects not to exist in any multivalue-logic-circuits of until now' in the new-multivalue-logic-circuits on the basis of the new-multivalue-logic, "Hooji algebra", even if it's multivalue-number 'N' is any number.
Explaining the multivalue number 'N', that means the number such as the following numbers.
* That means '2' in case of 2value.
* That means '3' in case of 3value.
* That means '4' in case of 4value.
* That means '10' in case of 10value.
* That means 'N' in case of 'N' value.
The advantageous-&-special effects are asmented bellow.
◆a)その前段に2値回路を接続するとき、その接続性が極めて良く、その間に特別なインターフェイス(例:2値多値コード変換手段)が必要無いこと。[段落番号0109]
☆To have extremely good connectivity,when connecting a 2value−circuit at the prestage of the new−multivalue−logic−circuit,and to need no special interface between both the circuits.
For example,a circuit for converting 2value−code to multivalue−code.
→→ minutely explained at ‘paragraph number 0109’.
◆ a) When a binary circuit is connected to the preceding stage, the connectivity is extremely good, and no special interface (eg, binary multi-value code conversion means) is required between them. [Paragraph number 0109]
To Have extremly good connectivity, 2 connecting- the cir- cuit at the pre-stage of the new-c e-in-the-between c
For example, a circuit for converting 2value-code to multivalue-code.
→→ minutely explained at 'paragraph number 0109'.
◆b)その後段に2値回路を接続するときも、その接続性が極めて良く、その間に特別なインターフェイス(例:多値2値コード変換手段)が必要無いこと。[段落番号0110]
☆To have extremely good connectivity,when connecting a 2value−circuit at the next−stage of the new−multivalue−logic−circuit too,and to need no special interface between both the circuits.
For example,a circuit for converting multivalue−code to 2value−code.
→→ minutely explained at ‘paragraph number 0110’.
B) When a binary circuit is connected to the subsequent stage, the connectivity is extremely good, and no special interface (eg, multi-value binary code conversion means) is required between them. [Paragraph number 0110]
To Have extremly good connectivity, 2 connecting- the next-in-the-bound-of-the-new-c-to-to ---------------------
For example, a circuit for converting multivalue-code to 2value-code.
→→ minutely explained at 'paragraph number 0110'.
◆c)後(段落番号[0122〜0249]。)で先願発明について説明する通り多値論理回路内の信号伝達途中においても2値回路との接続性が極めて良く、その間に特別なインターフェイスが必要無いこと。[段落番号0160〜0162]
☆To have extremely good connectivity,when insert−connecting a 2value−circuit into one of the fixed places on the process of signal communiucation in the new−multivalue−logic−circuit.And to need no special interface between both the circuits then.
→→ minutely explained at ‘paragraph number 0156〜0157’.
C) As will be described later (paragraph numbers [0122 to 0249]), the connectivity with the binary circuit is very good even during signal transmission in the multi-value logic circuit, and a special interface is provided between them. Not necessary. [Paragraph numbers 0160 to 0162]
☆ To have extreme good connectivity, the two insert-connecting the circulated into the one of the confused circulators. And to need no special interface between both the circuits then.
→→ minutely explained at 'paragraph number 0156 to 0157'.
◆d)このため、従来の多値回路と違ってわさわざ2値に変換しなくても多値ハザードを本発明の様に除去できること。[段落番号0163〜0164]
For this reason,☆to be able to eliminate directly multivalue−hazards like the precedent invention‘JP2014−135709A’ of the present inventor without converting the multivalue−hazards into the 2value−hazards like multivalue−circuits of until now,by using the above connectivity.
→→ minutely explained at ‘paragraph number 0163〜0164’.
◆ d) Therefore, unlike the conventional multi-value circuit, the multi-value hazard can be removed as in the present invention without needing to convert to binary. [Paragraph numbers 0163 to 0164]
For this reason, ☆ to be able to eliminate directly multivalue-hazards like the precedent invention'JP2014-135709A 'of the present inventor without converting the multivalue-hazards into the 2value-hazards like multivalue-circuits of until now, by using the above connectivity.
→→ minutely explained at 'paragraph number 0163-0164'.
◆e)2値・ブール代数の(非反転論理、)AND論理、OR論理、NOT論理、NAND論理、NOR論理の各・基本論理回路を包含し、互換性が有ること。[段落番号0085〜0086]
☆To have compatibility with the 2value−basic−logic−circuits on the basis of Boolean algebra.
That is,the logic−circuits on the basis of “Hooji algebra” include some logic−circuits on the basis of Boolean algebra.
For example,each circuit of (NON−REVERSE−logic),AND−logic,OR−logic,NOT−logic,NAND−logic,and NOR−logic on the basis of Boolean algebra.
→→ minutely explained at ‘paragraph number 0085〜0086’.
E) Binary and Boolean algebra (non-inverted logic) AND logic, OR logic, NOT logic, NAND logic, NOR logic, and basic logic circuits are included and compatible. [Paragraph numbers 0085 to 0086]
☆ To have compatibility with the 2value-basic-logic-circuits on the basis of Boolean algebra.
That is, the logic-circuits on the basis of “Hooji algebra” include some logic-circuits on the basis of Boolean algorithm.
For example, each circuit of (NON-REVERSE-logic), AND-logic, OR-logic, NOT-logic, NAND-logic, and NOR-logic on the basis of Boolean algorithm.
→→ minutely explained at 'paragraph number 0085-0086'.
◆f)多値数Nに応じて複数個の「互いに特定整数が異なる同種の基本・多値論理回路」を使用する場合も有るが、その複数の同種の基本・多値論理回路・同士は「接続する電源線」が互いにただ違うだけで、それらの基本構成は全く同じで、互換性が有ること。[段落番号0083〜0084]
☆To have both ‘compatibility’ and ‘completely same basic structure’,speaking about all of ‘the same kind of the plural basic−multivalue−logic−circuits’ whose specific integers are different from each other.
The differences of the specific integers is due to differences of the power−lines which connect all the basic−multivalue−logic−circuits to their power−sources.
And there are cases of using simultaneously ‘the same kind of the plural basic−multivalue−logic−circuits’ according to the multivalue number‘N’ of a multivalue−circuit constructed by their logic−circuits and so on.
→→ minutely explained at ‘paragraph number 0083〜0084’.
◆ f) Depending on the multi-value number N, there may be a case where a plurality of “same kind of basic / multi-value logic circuits with different specific integers” are used. “Connected power lines” are just different from each other, their basic configuration is exactly the same and compatible. [Paragraph numbers 0083 to 0084]
☆ To have both 'compatibility' and 'completely same basic structure', speaking about all of 'the same kind of the plural basic-multivalue-logic-circuits' whose specific integers are different from each other.
The differentials of the specific integers is due to differentials of the power-linees who connect the basic-multivalent-logic-citrics-citrics-citrics-ci-
And there are cases of using simultaneously 'the same kind of the plural basic-multivalue-logic-circuits' according to the multivalue number'N' of a multivalue-circuit constructed by their logic-circuits and so on.
→→ minutely explained at 'paragraph number 0083-0084'.
◆g)このため、多値数Nの小さい合成・多値論理回路をそのまま土台にして多値数Nの大きい合成・多値論理回路を組むことができること。[段落番号0087]
For this reason,☆to be able to construct ‘the synthetic−multivalue−logic−circuits with the large multivalue−number“N” ’ on the base of those with the small multivalue−number“N”,by using the above compatibility etc..
Of course,in these cases,the large are satisfied with the truth table of the small.
→→ minutely explained at ‘paragraph number 0087’.
◆ g) Therefore, it is possible to assemble a synthesis / multi-value logic circuit having a large multi-value number N using a synthesis / multi-value logic circuit having a small multi-value number N as it is. [Paragraph number 0087]
For this reason, ☆ to be able to construct 'the synthetic-multivalue-logic-circuits with the large multivalue-number "N"' on the base of those with the small multivalue-number "N", by using the above compatibility etc . .
Of course, in the cases, the large are satisfied with the truth table of the small.
→→ minutely explained at 'paragraph number 0087'.
◆h)その多値数Nの変更が極めて容易なこと。[段落番号0087]
☆To be extremely easy to change the multivalue−number‘N’.
→→ minutely explained at ‘paragraph number 0087’.
◆ h) The multi-value number N can be changed very easily. [Paragraph number 0087]
☆ To be extremely easy to change the multivalue-number 'N'.
→→ minutely explained at 'paragraph number 0087'.
◆i)その多値数Nがいくつであっても『双対(そうつい)が常に成り立つ』という双対性が有ること。[段落番号0080〜0082]
☆To have duality in the multivalue−logic even if the multivalue number‘N’ is any number.
→→ minutely explained at ‘paragraph number 0080〜0082’.
◆ i) There is a duality that “duality always holds” no matter how many the multi-valued number N is. [Paragraph numbers 0080 to 0082]
☆ To have duality in the multiple-logic even if the multiple number 'N' is any number.
→→ minutely explained at 'paragraph number 0080-0082'.
◆j)その多値数Nに関係無く、全ての多値論理関数を1種類の基本多値論理回路(完全系)で表現できること。 ⇒⇒ 完全性、それも『完全』。[段落番号0088〜0101]
☆To be able to express all the multivalue−logic−functions by using a kind of the basic−multivalue−logic−circuit(→Complete−system) without relation to the largeness of the multivalue−number‘N’.
⇒⇒ ‘Completeness’,and that ‘Completeness of Completeness’.
***
→→ minutely explained at ‘paragraph number 0088〜0101’.
J) Regardless of the multi-value number N, all multi-value logic functions can be expressed by one type of basic multi-value logic circuit (complete system). ⇒⇒ Completeness, also “complete”. [Paragraph numbers 0088 to 0101]
☆ To be able to express all the multiple-logistic-functions by using a kind of the full-quantity of the first-to-the-thickness.
⇒⇒ 'Completeness', and that 'Completeness of Completeness'.
***
→→ minutely explained at 'paragraph number 0088-0101'.
◆k)その基本・多値論理回路と合成・多値論理回路の「ユニット化またはモジュール化」がとても容易なこと。[段落番号0083〜0084、0087]
☆To be so easy to make ‘each circuit−unite or each circuit−module’ of ‘each basic−multivalue−logic−circuit and each synthetic−multivalue−logic−circuit’.
→→ minutely explained at ‘paragraph number 0083〜0084、0087’.
◆ k) “Unitization or modularization” of the basic / multi-valued logic circuit and the composite / multi-valued logic circuit is very easy. [Paragraph numbers 0083 to 0084, 0087]
☆ To be so easy to make 'each circuit-unit or etch circuit-module' of 'each basic-logic-logic-cyclic-fluidic-and-cyclic-and-syntacticity.
→→ minutely explained at 'paragraph number 0083-0084, 0087'.
◆l)複数の論理変数「…、x、y、z、…」とその論理関数f(…、x、y、z、…)の各多値数N(≧2)が互いに全く異なっていても、全く問題無く柔軟に対応できる対応柔軟性が有ること。[段落番号0108]
☆To have flexible adaptability to be able to adapt the multivalue−logic−circuit to both plural logic−variables‘…,x,y,z,… ’ and their logic−function‘f(…,x,y,z,…)’ with no problem at all,even if each multivalue−number‘N(≧2,includes 2)’ of ‘…,x,y,z,…,f(…,x,y,z,…)’ is completely different from each other.
→→ minutely explained at ‘paragraph number 0108’.
◆ l) Each of the multi-value numbers N (≧ 2) of the plurality of logical variables “..., X, y, z,. However, it must be flexible enough to respond flexibly without any problems. [Paragraph number 0108]
☆ To have flexible adaptability to beable to adapt the multiple-logic-circuit-to-both full logic-variables '..., x, y, z, ...' andt, ..., and, ) 'With no problem at all, even if multivalue-number'N (≧ 2, includes 2)' of '..., x, y, z, ..., f (..., x, y, z, ...)' is complete differential different from other.
→→ minutely explained at 'paragraph number 0108'.
◆m)2値ワイヤードOR回路と同様に多値ワイヤードOR回路が成り立つ為、その全体回路構成の簡単化とその総部品点数の削減に際して非常に有利なこと。[段落番号0102〜0103]
☆To be very advantageous both ‘when simplifying the whole circuit structure’ and ‘when decreasing total articles of the parts’,as it is possible to construct multivalue−wired−OR−circuits as well as 2value−wired−OR−circuits.
→→ minutely explained at ‘paragraph number 0102〜0103’.
◆ m) Since a multi-value wired OR circuit is formed in the same manner as a binary wired OR circuit, it is very advantageous in simplifying the entire circuit configuration and reducing the total number of parts. [Paragraph numbers 0102 to 0103]
☆ To be very advantageous both 'when simplifying the whole circuit structure' and 'when decreasing total articles of the parts', as it is possible to construct multivalue-wired-OR-circuits as well as 2value-wired-OR-circuits.
→→ minutely explained at 'paragraph number 0102 to 0103'.
◆n)『多値論理完全回路』の(3次元の)プログラマブル・ロジック・アレイ化、セミ・オーダー(3次元)IC・LSI化などが可能なこと。[段落番号0104〜0107]
☆To be possible to construct ‘(3dimensional)programmable−logic−arraies’,‘(3dimensional)semi−ordered−ICs&LSIs’,etc. which ‘embody and realize’ multivalue−logic−“Completeness of Completeness”−circuits.
→→ minutely explained at ‘paragraph number 0104〜0107’.
N) It is possible to make (multidimensional logic complete circuit) (three-dimensional) programmable logic array, semi-order (three-dimensional) IC / LSI, etc. [Paragraph numbers 0104 to 0107]
* To be possible to construct '(3 dimensions) programmable-logic-arrays', '(3 dimensions) semi-ordered-ICs &LSIs', etc. who 'embody and realize' multivalue-logic- “Completeness of Completeness” -circuits.
→→ minutely explained at 'paragraph number 0104 to 0107'.
◆o)本発明者がさらに創り出した8個の新・多値論理、「OVER論理、NOVER(ノウバー)論理、UNDER論理、NUNDER(ナンダー)論理、IN論理、NIN(ニン)論理、OUT論理、NOUT(ナウト)論理」等の各・多値論理回路を使うことによって「曖昧(あいまい)さ」を自由・柔軟に簡単に定義・表現することができること。[段落番号0250〜0251]
☆To be ‘freely,flexibly and easily’ able to ‘define and express’ “ambiguity” by using each of the 8 new−multivalue−logic− circuits etc. which the present inventor further created out.
The logics of their circuits are OVER−logic,NOVER−logic,UNDER−logic,NUNDER−logic,IN−logic,NIN−logic,OUT−logic,NOUT−logic,&c..
These names are named from the golf−terms in order to make it easy for everyone to memorize them.
→→ minutely explained at ‘paragraph number 0250〜0251’.
◆ o) Eight new multi-value logics created by the inventor, “OVER logic, NOVER logic, UNDER logic, NUNDER logic, IN logic, NIN logic, OUT logic, “Ambiguity” can be easily and freely defined and expressed by using each multi-valued logic circuit such as “NOUT logic”. [Paragraph numbers 0250 to 0251]
☆ To be 'freely, flexible and easy' able to 'define and express'"ambiguity" who the present inventor further created out.
The logics of the circuits are OVER-logic, NOVER-logic, UNDER-logic, NUNDER-logic, IN-logic, NIN-logic, OUT-logic, NOUT-logic, & c. .
The names are named from the golf-terms in order to make it easy for everyone to memory them.
→→ minutely explained at 'paragraph number 0250-0251'.
これらの際(きわ)立った有利な独特な効果・特徴は『フージ代数』の出現以前のどの多値論理体系・回路にも無かった。
そんな訳で、「新・多値論理『フージ代数』は『ブール代数をこれまでで一番忠実に・正統的に多値へ展開・拡張したもの』であり」、「その曖昧表現能力を含む能力、可能性、実用性、展開拡張性、将来性など、いずれを取ってもhugeである」と本発明者は考えている。
There were neither multivalue−logic−systems nor their circuits to have ‘the above conspicuously advantageous−&−special effects−and−characteristics’ till “Hooji algebra” appeared.
For this reason,the present inventor is thinking that the new−multivalue−logic,“Hooji algebra” is the logic to have applied−&−expanded Boolean algebra to the direction of multivalue ‘most faithfully and most orthodoxly until now’.
Further the present inventor is thinking that all of the following characteristics are huge.
‘The abilities to include an ability to express ambiguity’,the possibility,the practicability,the applicability−&−expansibility,the great future,etc..
None of these multi-valued logic systems / circuits before the advent of “Fuji Algebra” had any distinctive advantageous effects or features.
For that reason, “New multi-valued logic 'Fuji algebra” is' the most faithful and orthodox expansion and extension of Boolean algebra to date 'and so far.' The present inventor believes that it is huge in any case such as ability, possibility, practicality, expandability, and future potential.
The here neater multivalue-logic-systems nor their circuits to have 'the above consciously-advantageous-and-special effects-and-special effects-and-special effects.
For this reason, the present inventor is thinking that the new-multivalue-logic, "Hooji algebra" is the logic to have applied - & - expanded Boolean algebra to the direction of multivalue 'most faithfully and most orthodoxly until now'.
Further the present inventor is thinking that all of the following characteristics are huge.
'The abilities to include an expiry to express ambiguity', the possibilities, the practicality, the applicability, & the expirability, the fragility. .
これまで多値コンピューターが2値コンピューターの様に広く深く実用化されず、発展して来なかった先ず大きな理由は「2値の場合、2値回路をしっかりと支える土台となり、かつ、実用化に耐え得る2値論理体系、『ブール代数』が有ったのに対して、多値の場合、多値回路をしっかりと支える土台となり、かつ、実用化に耐え得る多値論理体系が無かった」からだと本発明者は考えている。
The present inventor thinks of the reasons why multivalue−computers have been ‘neither put into practical use nor developed’ widely−and−deeply until now like 2value−computers as the following.
●The main big reason:
As against that there was the 2value−logic−system‘Boolean algebra’ to be able both ‘to become the foundation which firmly supports all 2value−logic−circuits’ and ‘to endure their practical application’ in case of the 2value−computers,
there was no multivalue−logic−system to be able both ‘to become the foundation which firmly supports all multivalue−logic−circuits’ and ‘to endure their practical application’ in case of the multivalue−computers.
そのほかにも、3次元(化)IC技術や「低電圧駆動(=オン・オフしきい値電圧の絶対値が小さい。)と高耐電圧の両立技術」が特に重要で、さらに、省エネルギー、冷却技術、多値ハザード除去技術そしてオーバーシューティング等の電圧振動抑制技術なども重要である。
Besides,the following technologies are especially important for the multivalue−computers.
(1) 3dimension IC(includes LSI) technologies.
(2) Compatibility−technologies of transistor’s low−voltage−driving(=the small absolute value of its threshold voltage) and its high−voltage−proof.
(3) Technologies to save energy for the multivalue−computers to consume.
(4) Technologies to cool the multivalue−computers,and so on.
(5) Technologies to prevent appearance of multivalue−hazards.
(6) Technologies to suppress damped−oscillations of input−sygnals such as overshooting and undershooting.
The first major reason why multi-level computers have not been developed and developed as widely as binary computers until now is the first major reason: “In the case of binary, it becomes the foundation that firmly supports the binary circuit, and it is in practical use. There was a binary logic system that could withstand "Boolean algebra", but in the case of multivalued, there was no multivalued logic system that would firmly support multivalued circuits and withstand practical use. " The inventor believes that this is a body.
The present inventor thinks of the reasons why multivalue-computers have ben'e the first-in-developed-and-developed-and-developed-wide--
● The main big reason:
As against that there was the 2value-logic-system'Boolean algebra 'to be able both' to become the foundation which firmly supports all 2value-logic-circuits' and 'to endure their practical application' in case of the 2value-computers,
there was no multivalue-logic-system to be able both 'to become the foundation which firmly supports all multivalue-logic-circuits' and 'to endure their practical application' in case of the multivalue-computers.
In addition, three-dimensional IC technology and “low voltage drive (= absolute value of on / off threshold voltage is small) and high withstand voltage technology” are particularly important. Furthermore, energy saving and cooling Technology, multi-value hazard removal technology and voltage vibration suppression technology such as overshooting are also important.
Besides, the following technologies are specially important for the multivalue-computers.
(1) 3 dimension IC (includes LSI) technologies.
(2) Compatibility-technologies of transducers' low-voltage-driving (= the small absolute value of it's threshold voltage) and it's high-voltage.
(3) Technologies to save energy for the multivalue-computers to consume.
(4) Technologies to cool the multi-computers, and so on.
(5) Technologies to present apparel of multivalue-hazards.
(6) Technologies to suppressed-oscillations of input-signals such as overshooting and undershooting.
その様に多値コンピューターの土台となる為には「2値論理、『ブール代数』と互換性が有って、それを完全に包含し」、しかも「互いに多値数Nの異なる同種の基本・多値論理回路・同士でも互換性が有り、その多値数Nの大きい方が小さい方を完全に包含し」、さらに「2値、多値に関係無く、『その論理関数および[その1つ又は複数の論理変数]』の各多値数N(≧2)がいくつであっても、互いに全く異なっていても全く影響されず、自由・柔軟に、その各機能を発揮できる」ことが必要である、と本発明者は考えている。
In order that the multivalue−logic−system becomes the foundation of the multivalue−computers like so,the present inventor thinks that the system moreover needs the following functions.
●The 1st function:
The multivalue−logic−system is compatible with the 2value−logic−system‘Boolean algebra’ and the former logically−&−perfectly includes the latter.
●The 2nd function:
As regards all of ‘the same kind of the basic−multivalue−logic−circuits to have the different multivalue−number“N” each other’,they are compatible each other,and the large of ‘N’ perfectly includes the small of ‘N’.
Of course,the large is satisfied with the truth table of the small.
●The 3rd function:
The multivalue−logic−system can freely−and−flexibly fulfill each working of their multivalue−logic−circuits,with no relation to the largeness of the multivalue−number‘N(≧2,includes 2)’,and with no influence at all even if it is different from each other ‘each multivalue−number“N(≧2)” of “its logic a−variable−or−variables and their logic−function ” ’.
ただし、フージ代数に基づく多値数Nの合成多値論理回路の場合、その特定整数値が0〜(N−1)である同種の基本多値論理回路を全部使用する場合も有るが、◆f)項で説明した通りその同種の基本多値論理回路・同士は互いに互換性が有る。
But in case of synthetic−multivalue−logic−circuits both ‘with the multivalue−number“N” ’ and ‘on the basis of Hooji algebra’,though there is moreover a case too when used all the same kind of basic−multivalue−logic−circuits whose special−integer−values are 0〜(N−1),as explained at Item ◆f),the same kind of basic−multivalue−logic−circuits are compatible with each other.
In order to become the basis of such a multi-valued computer, it is “compatible with binary logic,“ Boolean algebra ”and completely includes it”, and “the same kind of basics with different multi-valued numbers N from each other”・ Multi-valued logic circuits are compatible with each other, and the larger one of the multi-valued number N completely includes the smaller one. Further, “regardless of binary or multi-valued,“ the logical function and [part 1 “One or more logical variables]” can be used freely and flexibly without any influence regardless of the number of multi-values N (≧ 2), even if they are completely different from each other. The inventor believes that this is necessary.
In order that multi-wise-logic-system becomes the founding of the multi-computers like sothe the number of the wise.
● The 1st function:
The multivalued-logic-system is compatible with the 2value-logic-system'Bouleanalgebra 'and the formally logically-&-perfectly inclusive.
● The 2nd function:
As regards all of 'the same kind of the basic-multivalue-logic-circuits to have the different multivalue-number "N" each other', they are compatible each other, and the large of 'N' perfectly includes the small of ' N '.
Of course, the large is satisfied with the truth table of the small.
● The 3rd function:
The multivalue-logic-system can freely-and-flexibly fulfill each working of their multivalue-logic-circuits, with no relation to the largeness of the multivalue-number'N (≧ 2, includes 2) ', and with no influence at all even if it is differential from another another 'each multivalue-number “N (≧ 2)” of “its logic a-variable-or-variables and therity-func.”
However, in the case of a composite multi-valued logic circuit having a multi-valued number N based on the Fuji algebra, the same kind of basic multi-valued logic circuit having a specific integer value of 0 to (N-1) may be used. As described in the section f), the same kind of basic multi-valued logic circuits are mutually compatible.
But in case of synthetic-multivalue-logic-circuits both 'with the multivalue-number "N"' and 'on the basis of Hooji algebra', though there is moreover a case too when used all the same kind of basic-multivalue- logic-circuits what special-integer-values are 0- (N-1), as explained at Items ◆ f), the same kind of basic-logic-circuit- r.
ところで、多値数Nが大きければ大きい程、「表現することができる多値論理関数の種類数」つまり「表現することができる情報処理の種類数」が下記の通り超・爆発的に増え、さらにその各桁数も活用すると超・……超・爆発的に増え、「プログラム記憶型(=内蔵型)コンピューター方式の、プログラミングによる情報処理の種類数」を軽く越えることができる(!!!)為、例えば10値・10進法コンピューターでプログラムを使わない新概念のコンピューター方式が可能になる。
Changing the speaking,the larger the multivalue number‘N’ is,the more ‘the number of the kinds of the multivalue−logic−function to be able to express’ increases ultra−explosively.
That is,the more ‘the number of the kinds of the information−processing to be able to express’ increases ultra−explosively as the following number of the kinds.
In addition to the increasing of the multivalue−number‘N’,the more ‘the number of the figures(=digits) of the numerical−values utilized in the multivalue−logic−function’ increases,the more ‘the number of the kinds of the information−processing’ increases ★ultra−ultra……ultra−explosively as the following number of the kinds.
As the result,‘A New−Concept−Computing−Method not to use programs concerning 10value−Decimal−Computers for example’ becomes possible,because ‘the number of the kinds of the information−processing’ can easily exceed ‘the number of the kinds of the information−processing which “the Computing−Method of Program−Memorizing−Type” can express by its programing’.
By the way, the larger the multi-value number N, the greater the “number of types of multi-valued logic functions that can be expressed”, that is, the “number of types of information processing that can be expressed”, as shown below. Furthermore, if the number of digits is also used, it will become super -... excessively explosive, and can easily exceed the "program memory type (= built-in type) computer type of information processing by programming" !! Therefore, for example, a new concept computer system that does not use a program on a 10-value / decimal computer becomes possible.
Changing the peaking, the large the multiple number 'N' is, the more 'the number of the volatiles-logic-func-function-logic-function.
That is, the more 'the number of the kind of the information-processing to beable to express' increas- es ultra-exploratively the following.
In addition to the increasing of the multivalue-number'N ', the more' the number of the figures (= digits) of the numerical-values utilized in the multivalue-logic-function 'increases, the more' the number of the kinds of the information-processing'increases * ultra-ultra ... ultra-explorative as the following number of the kinds.
As the result, 'A New-Concept-Computing-Method not to use programs concerning 10value-Decimal-Computers for example' becomes possible, because 'the number of the kinds of the information-processing' can easily exceed 'the number of the “kinds of the information-processing” “the Computing-Method of Program-Memoriizing-Type” can express by programming.
◆◆ 10値論理関数などの種類数の例 ◆◆
ただし、各(多値)論理変数の個数は2個ずつである。
◆◆for examples,the number of the kinds of the 10value−logic−function etc.◆◆
But two variables to each multivalue−logic.
And each Kanji in Japan means as follows.
◆‘値’ means ‘a value’ or ‘values’.
◆‘桁’ means ‘a figure’,‘figures’,‘a digit’ or ‘digits’.
◆‘論理変数’ means ‘a logic−variable’ or ‘logic−variables’.
◆‘種類’ means ‘a kind’ or ‘kinds’.
***
*2値1桁2論理変数 →→ 2の4乗・種類=16種類
2value−1figure−2logic−variables →→
24kinds=16kinds
*3値1桁2論理変数 →→ 3の9乗・種類=19,683種類(=kinds)
=39kinds
*4値1桁2論理変数 →→ 4の16乗・種類≒4,294,968,000種類
=416kinds
*5値1桁2論理変数 →→ 5の25乗・種類=525kinds
*6値1桁2論理変数 →→ 6の36乗・種類=636kinds
*7値1桁2論理変数 →→ 7の49乗・種類=749kinds
*8値1桁2論理変数 →→ 8の64乗・種類=864kinds
*9値1桁2論理変数 →→ 9の81乗・種類=981kinds
*10値1桁2論理変数 →→ 10の100乗・種類=10100kinds
*10値2桁2論理変数 →→ 10の1万乗・種類 =1010,000kinds
*10値3桁2論理変数 →→ 10の100万乗・種類
=101,000,000kinds
*10値4桁2論理変数 →→ 10の1億乗・種類
=10100,000,000kinds
*10値5桁2論理変数 →→ 10の100億乗・種類
=1010,000,000,000kinds
*10値6桁2論理変数 →→ 10の1兆乗・種類
=101,000,000,000,000kinds
*10値7桁2論理変数 →→ 10の100兆乗・種類
=10100,000,000,000,000kinds
*10値8桁2論理変数 →→ 10の1京(=1万兆)乗・種類
10value−8figures−2logic−variables →→
→→ 1010,000,000,000,000,000kinds
However, the number of each (multi-valued) logical variable is two.
◆◆ for examples, the number of the kind of the 10 value-logic-function, etc. ◆◆
But two variables to each multivalue-logic.
Andeach Kanji in Japan means as follows.
◆ 'value' means 'a value' or 'values'.
◆ 'digits' means 'a figure', 'figures', 'a digit' or 'digits'.
◆ 'Logical variable' means 'a logic-variable' or 'logic-variables'.
◆ 'Type' means 'a kind' or 'kinds'.
***
* 2 values, 1 digit, 2 logical variables →→ 4 to the power of 2 = 16 types 2value-1 figure-2 logic-variables →→
2 4 kind = 16 kind
* 3 value 1 digit 2 logical variable →→ 9 to the power of 3, 19 = 683 types (= kinds)
= 3 9 kinds
* 4 values, 1 digit, 2 logical variables →→ 4 to the 16th power / type ≒ 4,294,968,000 types = 4 16 kinds
* 5 value 1 digit 2 logical variable →→ 5 to the 25th power / kind = 5 25 kinds
* 6 values, 1 digit, 2 logical variables →→ 6 to the 36th power, type = 6 36 kinds
* 7 value 1 digit 2 logical variable →→ 7 to the 49th power / kind = 7 49 kinds
* 8 values, 1 digit, 2 logical variables →→ 8 to the 64th power, type = 8 64 kinds
* 9 value 1 digit 2 logical variable →→ 9 to the power of 81, type = 9 81 kinds
* 10 value 1 digit 2 logical variable →→ 10 to the 100th power / kind = 10 100 kinds
* 10-value 2-digit 2-logical variable-> 10 to the 10th power / kind = 10 10,000 kinds
* 10-value 3-digit 2-logical variable-> 10 millionth power / type
= 10 1,000,000 kinds
* 10-value 4-digit 2-logical variable-> 10 to the 100 millionth power
= 10 100,000, kinds
* 10-value 5-digit 2-logical variable →→ 10 to the 10 billionth power / type
= 10 10,000,000,000 kinds
* 10-value 6-digit 2-logical variable →→ 10 to the power of 1 trillion
= 10 1,000,000,000,000 kinds
* 10-value 7-digit 2-logical variable →→ 10 to the power of 100 trillion
= 10 100,000,000,000,000 kinds
* 10-value 8-digit 2-logical variable →→ 10 raised to 1K (= 10,000 trillion) / type 10value-8figures-2logic-variables →→
→→ 10 10,000,000,000,000,000 kinds
正しく言えば、上記の「軽く越えることができる(!!!)」と言うよりは正反対に、その多値数N(≧2)がいくつであっても、「プログラミングによる情報処理の種類数」は絶対に「その桁数も活用して表現することができる論理関数の種類数」を超えることはできない。
Exactly speaking,‘the number of the kinds of the information−processing by the programing’ can ●absolutely not exceed ‘the number of the kinds of the logic−function to be able to express both ‘by increasing its multivalue−number“N(≧2)” ’ and ‘by utilizing its number of the figures’,even if the multivalue number‘N(≧2)’ is any number.
Speaking correctly, it is the opposite of the above-mentioned “can be lightly exceeded (!!!!)”, and the number of multi-values N (≧ 2) is “the number of types of information processing by programming”. Can never exceed "the number of types of logical functions that can be expressed using the number of digits".
Exactly speaking, 'the number of the kinds of the information-processing by the programing' can ● absolutely not exceed 'the number of the kinds of the logic-function to be able to express both' by increasing its multivalue-number "N ( .Gtoreq.2) "and and 'by utilityizing numbers number of the figures', even if the multivalue number 'N (≥2)' is any number.
その理由は次の通りである。「プログラムによる情報処理」においても、その情報処理の過程に関係無く、その「データ又は情報」の出入りだけからその情報処理手段としての機能内容を判別することができる。
The reason is as follows.Too in the information−processing by the programing,it’s possible to discriminate what kind of working its information−processing−means do ‘through only input−&−output of its data−or−information’ with no relation to how the information−processing has been done.
そして、その「個々の各入力『データ又は情報』」も「これに対する個々の情報処理結果」も必ずすべて数字の組合せ、そう!つまり真理値表で表現することができるので、その情報処理の種類数は絶対に「その真理値表で表現することができる論理関数の種類数」を超えることはできない。
And it’s possible to express certainly both ‘all the input−data−or−input−information’ and ‘all the information−processing−results to be gotten from their data−or−information’ by combinations of numerical values.
So!!! That is,because the combinations too can be expressed by a truth table,‘the number of the kinds of the information−processing by the programing’ can ●absolutely not exceed ‘the number of the kinds of the logic−function to be able to express by the truth table’.●Absolutely Not.
しかも、「プログラミングによって編み出され、人の役に立ち、実際に使用する情報処理」の種類数は、いくらなんでも、10の100乗・種類も有るとは思えない。
In addition,the present inventor doesn’t think there are the 10100kinds of the information−processing which are made by the programing,useful to human and used in practice’.
The reason is as follows. Too in the information-processing by the programing, it's possible to discriminate what kind of working its information-processing-means do 'through only input - & - output of its data-or-information' with no relation to how the information -Processing has bene done.
And the "each individual input" data or information "" and the "individual information processing result" must be a combination of numbers! In other words, since it can be expressed by a truth table, the number of types of information processing can never exceed “the number of types of logical functions that can be expressed by the truth table”.
And it's possible to express bots, and the all the input-data-or-input-information-and-the-form ----------------------
So! ! ! That is, because the combinations too can be expressed by a truth table, 'the number of the kinds of the information-processing by the programing' can ● absolutely not exceed 'the number of the kinds of the logic-function to be able to express by the truth table '. ● Absolutely Not.
Moreover, the number of types of “information created by programming, useful to humans, and actually used” does not seem to be as many as 10 to the 100th power.
In addition, the present inventor doesn't think the area the the 10 100 kinds of the information-processing to the training.
◆◆◆****** 『フージ(Hooji)代数』の双対性 ******◆◆◆
***
●●11)新・多値論理『フージ代数』の『多値数Nに関係無く双対(そうつい)が成り立つ』という性質、「双対性」などについて以下説明する。
『フージ代数』は「2値ブール代数を☆本発明者・流に忠実に多値へ展開・拡張させたもの」なので、当然、その多値(特定値)NOT論理、多値(特定値)AND論理および多値(特定値)OR論理に関して『双対』が成り立つ。
『ブール代数における双対性』とは「NOT論理、AND論理あるいはOR論理で構成された任意の論理関数の恒等式において、その両辺の『1』と『0』を入れ換え、同時にAND論理とOR論理を入れ換えても、その恒等式が成り立つこと」である。
図11は『フージ代数』においても「ブール代数における2重否定の定理、ド・モルガンの定理、双対定理それぞれと同様に対応する各定理」が成り立つことを示している。
***
***
●● 11) The new multivalued logic “Fuji algebra” that “a duality is established regardless of the multivalued number N”, “duality”, etc. will be described below.
"Fuji algebra" is "a binary Boolean algebra that has been expanded and expanded to multi-value faithfully to the present inventor and the present invention", so of course, its multi-value (specific value) NOT logic, multi-value (specific value) “Dual” holds for AND logic and multi-value (specific value) OR logic.
“Duality in Boolean algebra” means “in the identity of an arbitrary logic function composed of NOT logic, AND logic, or OR logic, swapping“ 1 ”and“ 0 ”on both sides, and simultaneously AND logic and OR logic Even if they are replaced, the identity holds. "
FIG. 11 shows that “theorem corresponding to the double negation theorem, de Morgan's theorem and duality theorem in Boolean algebra” also holds in “Fuji algebra”.
***
先ず先に、ブール代数において既に公知なOR回路、AND回路それぞれの等価回路について説明する。
★★OR回路の等価回路:
*2重否定の定理より
「AとBのOR論理」=A+B
=「(A+B)の2重否定」
*ド・モルガン定理のより
「(A+B)の2重否定」=「(Aの否定)・(Bの否定)の否定」
=「(Aの否定)と(Bの否定)のAND論理の否定」
*従って、
「AとBのOR論理」=「(Aの否定)と(Bの否定)のAND論理の否定」 ……
… … … … … … … … … … … … … … … … … 式(1)
★★AND回路の等価回路:
*2重否定の定理より
「AとBのAND論理」=A・B
=「A・Bの2重否定」
*ド・モルガン定理のより
「A・Bの2重否定」=「{(Aの否定)+(Bの否定)}の否定」
=「(Aの否定)と(Bの否定)のOR論理の否定」
*従って、
「AとBのAND論理」=「(Aの否定)と(Bの否定)のOR論理の否定」 ……
… … … … … … … … … … … … … … … … … 式(2)
★◆★ブール代数における双対性;
式(1)と式(2)は自分の両辺の「1」と「0」を入れ換え、同時にAND論理とOR論理を入れ換えると、互いに相手の恒等式に成り、双対が成り立つ。
First, an equivalent circuit of each of an OR circuit and an AND circuit already known in the Boolean algebra will be described.
★★ Equivalent circuit of OR circuit:
* From the double negation theorem "OR logic of A and B" = A + B
= “Double negation of (A + B)”
* From the de Morgan theorem "Double negation of (A + B)" = "Negation of (Negation of A) and (Negation of B)"
= "Negation of AND logic of (Negation of A) and (Negation of B)"
* Therefore,
“OR logic of A and B” = “Negation of AND logic of (Negation of A) and (Negation of B)” ……
………………………………………… Formula (1)
★★ Equivalent circuit of AND circuit:
* From the double-negative theorem "AND logic of A and B" = A · B
= "Double negation of A and B"
* From the de Morgan theorem "Double negation of A and B" = "Negation of {(Negation of A) + (Negation of B)}"
= "Negation of OR logic between (Negation of A) and (Negation of B)"
* Therefore,
“AND logic of A and B” = “Negation of OR logic of (Negation of A) and (Negation of B)” ……
………………………………………… Equation (2)
★ ◆ ★ Duality in Boolean Algebra;
In the equations (1) and (2), if “1” and “0” on both sides of the self are exchanged, and AND logic and OR logic are exchanged at the same time, they become identities of each other and duality is established.
★◆★新・多値論理[フージ(Hooji)代数における双対性:
次に、図14の多値論理回路に基づいて『新・多値論理[フージ(Hooji)代数]において多値数Nに関係無く、双対(そうつい)性が成り立つこと』等について説明する。
ただし、m=入力用特定整数=出力用特定整数、vmは「特定整数mに対応する電位」、vCm(≠vm)は「特定整数m以外の整数に対応する電位」又は「どの整数とも対応しない、独立した追加電位」、すなわち、「多値のAND、OR、NOTの各回路がその入力数値が特定整数mであると判別することが無い電位なら何でも良い電位」である。なお、電源電位vmの電源線をVmで表わし、電源電位vCmの電源線をVCmで表わしている。
また、「NOT(m)=m」は略して入力用特定整数=出力用特定整数=mの多値NOT回路を、「AND(m)=m」は略して入力用特定整数=出力用特定整数=mの多値AND回路を、「OR(m)=m」は略して入力用特定整数=出力用特定整数=mの多値OR回路を、それぞれ意味する。
念の為述べておくと、多値{特定値(=特定整数)}NOT論理、多値(特定値)AND論理、多値(特定値)OR論理の各定義は以下の通りである。
◆多値NOT論理;その入力数値が特定整数mと等しいとき「その出力を開放し」、そうでなければ特定整数mを出力する。
◆多値AND論理;そのすべての入力数値が特定整数mと等しいとき特定整数mを出力し、そうでなければ「その出力を開放する」。
◆多値OR論理;その少なくとも1つの入力数値が特定整数mと等しいとき特定整数mを出力し、そうでなければ「その出力を開放する」。
図14(a)の多値OR(m)回路の等価回路では「入力論理変数x、yの少なくとも1つが整数mのとき論理関数f(x、y)は特定整数mを出力する一方、そうでなければその出力を開放する」ことが分かる。しかも、mの値はマイナス整数からプラス整数までの自由な値である。
一方、図14(b)の多値AND(m)回路の等価回路では「入力論理変数x、yのすべてが整数mのとき論理関数f(x、y)は特定整数mを出力する一方、そうでなければその出力を開放する」ことが分かる。こちらもmの値はマイナス整数からプラス整数までの自由な値である。
しかも、後述(段落番号[0087]。)する(14)項の通り多値数Nの変更が極めて容易なので、『新・多値論理[フージ代数]では多値数Nに関係無く、少なくとも2重否定の定理、ド・モルガン定理、双対定理が成り立つ』ことが分かる。
★ ◆ ★ New multivalued logic [duality in Hooji algebra:
Next, based on the multi-value logic circuit of FIG. 14, “the duality is established regardless of the multi-value number N in the new multi-value logic [Hooji algebra]” and the like will be described.
Where m = a specific integer for input = a specific integer for output, v m is “a potential corresponding to the specific integer m”, and v Cm (≠ v m ) is “a potential corresponding to an integer other than the specific integer m” or “which “Independent additional potential that does not correspond to an integer”, that is, “any potential as long as the multi-value AND, OR, and NOT circuits cannot determine that the input numerical value is the specific integer m”. Note that represents the power line of the power supply potential v m in V m, represents the power line of the power supply potential v Cm at V Cm.
Also, “NOT (m) = m” is abbreviated as a specific integer for input = specific integer for output = m, a multi-value NOT circuit, and “AND (m) = m” is abbreviated as a specific integer for input = specific for output A multi-value AND circuit with integer = m, and “OR (m) = m” is abbreviated to mean a specific integer for input = specific integer for output = m.
To be sure, the definitions of multi-value {specific value (= specific integer)} NOT logic, multi-value (specific value) AND logic, and multi-value (specific value) OR logic are as follows.
Multi-value NOT logic: “Open the output” when the input numerical value is equal to the specific integer m, otherwise output the specific integer m.
Multi-value AND logic: When all the input numerical values are equal to the specific integer m, the specific integer m is output. Otherwise, the output is released.
Multi-valued OR logic: When the at least one input numerical value is equal to the specific integer m, the specific integer m is output. Otherwise, the output is released.
In the equivalent circuit of the multi-valued OR (m) circuit of FIG. 14A, “when at least one of the input logical variables x and y is an integer m, the logical function f (x, y) outputs a specific integer m, while If not, the output is released ". Moreover, the value of m is a free value from a negative integer to a positive integer.
On the other hand, in the equivalent circuit of the multi-value AND (m) circuit of FIG. 14B, “when the input logic variables x and y are all integers m, the logic function f (x, y) outputs a specific integer m, Otherwise, the output is released ". Again, the value of m is a free value from a negative integer to a positive integer.
In addition, since the multi-valued number N can be changed very easily as described in (14) below (paragraph number [0087].), The new multi-valued logic [Fuji algebra] has at least 2 regardless of the multi-valued number N. It is understood that the heavy negation theorem, the de Morgan theorem, and the duality theorem hold.
◆◆◆***** 多値数Nに影響されない、特定整数の変更容易性 *****◆◆◆
***
●●12)『フージ代数』に基づいた多値論理回路が持つ、多値数Nに全く影響されない『[特定整数値mの変更容易性]と[極めて容易な回路のユニット化またはモジュール化(独特な効果)]』という2つの特徴について以下説明する。
◆下記・特許文献1、2、3の各特許公報に開示されたEQUAL(または判定)回路、AND回路、OR回路、NOT回路、NAND回路、NOR回路の各実施例とその派生実施例などの場合、その出力スイッチ部が双方向性のとき特定整数mは(n−2)≧m≧1になっているが、別に「m=n−1」又は「m=0」であっても回路動作的にも論理動作的にも全く問題は無く、特定整数mの値を(n−1)≧m≧0の範囲で自由に設定できる。ただ、接続する電位供給手段(例:電源線など)を変更するだけである。
ただし、m=n−1の場合、電位v(n−1)[本発明ではvn−1で表記。]の上に電位vn[本発明ではvnで表記。]を供給する電源線Vn[本発明ではVnで表記。]等が必要になったり、あるいは、「プラス側のしきい値電位に基づいて判別する」という余分な機能や構成部分が有ったり、等するだけである。
そして、m=0の場合、電位v0[本発明ではv0で表記。]の下に電位v(−1)[本発明ではv−1で表記。]を供給する電源線V(−1)[本発明ではV−1で表記。]が必要になったり、あるいは、「マイナス側のしきい値電位に基づいて判別する」という余分な機能や構成部分が有ったり、等するだけである。
しかも、特定整数mは整数0からプラス整数まで自由な値を取っても構わない。いずれにしても、「接続する電位供給手段(例:電源線など)」を変更するだけで特定整数mの値を自由に変更できる。
このため、同じ多値論理・同士なら特定整数mの違いを考慮する必要が無く、同じ回路構成のままで良いので、多値論理の種類ごとに回路の「ユニット化またはモジュール化」が可能になる。 ( 独特な効果 )
☆☆回路の具体例:
・図22の非同期型・多値EVEN回路
・図23〜図24の各・非同期型・多値NOT{又はNEVEN(ニーブン又はネーブン)}回路。
・図25〜図26、図28の各・非同期型・多値AND回路
・図27、図29の非同期型・多値NAND回路
・図30の非同期型・多値OR回路
・図31の非同期型・多値NOR回路
***
●● 12) Multi-valued logic circuit based on “Fuji algebra” has no influence on the multi-valued number N at all [Easily change specific integer value m] and [Easily unitized or modularized circuit ( The following is a description of the two features of unique effects)]].
◆ Each embodiment of the EQUAL (or determination) circuit, AND circuit, OR circuit, NOT circuit, NAND circuit, NOR circuit and its derivatives disclosed in the following patent publications of Patent Documents 1, 2, and 3 In this case, when the output switch unit is bidirectional, the specific integer m is (n−2) ≧ m ≧ 1, but even if “m = n−1” or “m = 0”, There is no problem in terms of operation and logic operation, and the value of the specific integer m can be freely set in the range of (n−1) ≧ m ≧ 0. However, it is only necessary to change the potential supply means (for example, a power supply line) to be connected.
However, in the case of m = n−1, the potential v (n−1) [in the present invention, expressed as v n−1 . Denoted by v n in the potential vn [present invention over. ] Denoted by V n denotes a power line Vn [present invention supplies. ] Or the like, or there is an extra function or component such as “determination based on the threshold voltage on the plus side”.
In the case of m = 0, denoted by v 0 is the potential v0 [present invention. ] Is represented by a potential v (−1) [in the present invention, v −1 . ] Power supply line V (-1) [in the present invention, expressed as V- 1 . Is necessary, or there is an extra function or component such as “determining based on the minus threshold voltage”.
Moreover, the specific integer m may take any value from the integer 0 to a positive integer. In any case, the value of the specific integer m can be freely changed simply by changing the “potential supply means to be connected (eg, power supply line)”.
For this reason, it is not necessary to consider the difference of the specific integer m between the same multi-valued logics, and the same circuit configuration can be maintained, so that the circuit can be “unitized or modularized” for each type of multi-valued logic. Become. (Unique effect)
☆☆ Example of circuit:
Asynchronous type multi-value EVEN circuit of FIG. 22 Each of FIGS. 23 to 24 Asynchronous type Multi-value NOT {or NEVEN (Neven or Neven)} circuit
Each of FIGS. 25 to 26, FIG. 28, Asynchronous type, Multi-value AND circuit, Asynchronous type of FIGS. 27 and 29, Multi-value NAND circuit, Asynchronous type of FIG. 30, Multi-value OR circuit, Asynchronous type of FIG.・ Multi-value NOR circuit
◆また、同じく「OVER回路、UNDER回路、NOVER(ノウバー)回路、NUNDER(ナンダー)回路」、後述(段落番号0184〜0188、0209〜0217)する「IN回路、OUT回路、NIN(ニン)回路、NOUT(ナウト)回路」の場合でも、その限定された「1つ又は2つの入力用特定整数」の設定範囲内でその整数を自由に設定できる。ただ、接続する電位供給手段(例:電源線など)を同様に変更するだけである。
こちらでも、同じ多値論理・同士なら各特定整数mの違いを考慮する必要が無く、同じ回路構成のままで良いので、多値論理の種類ごとに回路の「ユニット化またはモジュール化」が可能になる。 ( 独特な効果 )
◆しかも、いずれの場合も後述(段落番号0087)する通り『多値数Nの変更が極めて容易である』という特徴が有るので、『特定整数の変更容易性』も『極めて容易な回路の[ユニット化またはモジュール化]』もその多値数Nに全く影響されない。
Also, "IN circuit, OUT circuit, NIN (nin) circuit", which will be described later (paragraph numbers 0184 to 0188, 0209 to 0217), "OVER circuit, UNDER circuit, NOVER circuit, NUNDER circuit" Even in the case of “NOUT circuit”, the integer can be freely set within the limited setting range of “one or two specific integers for input”. However, the potential supply means to be connected (for example, a power supply line or the like) is simply changed in the same manner.
Here too, it is not necessary to consider the difference of each specific integer m between the same multi-valued logics, and the same circuit configuration can be used, so the circuit can be “unitized or modularized” for each type of multi-valued logic. become. (Unique effect)
In addition, in any case, as described later (paragraph number 0087), it has a feature that “the change of the multi-value number N is very easy”. Unitization or modularization] ”is not affected at all by the multi-valued number N.
◆◆◆******** ブール代数を包含する『フージ代数』 *******◆◆◆
***
●●13)新・多値論理『フージ(Hooji)代数』が2値論理のブール代数を包含し、互換性が有ることについて以下説明する。
新・多値論理『フージ代数』は本発明者のやり方で2値論理のブール代数を忠実に多値へ展開・拡張したもので、ブール代数を完全に包含し、ブール代数と互換性が有る。
例えば、特定整数値が1である多値特定値EQUAL{又はEVEN(イーブン)又は非反転}回路、AND回路、OR回路、NOT{又はNEVEN(ニーブン)}回路、NAND回路、NOR回路の各出力端子を抵抗で電源線V0の電位v0にプル・ダウンして、各入力数値を「1」と「0」に限定すれば、これら多値論理回路は2値・正論理のバッファー(又は非反転)回路、AND回路、OR回路、NOT回路、NAND回路、NOR回路と全く同じ論理動作をし、互換性が有る。
そして、特定整数値が0である多値特定値EQUAL{又はEVEN(イーブン)又は非反転}回路、AND回路、OR回路、NOT{又はNEVEN(ニーブン)}回路、NAND回路、NOR回路の各出力端子を抵抗で電源線V1の電位v1にプル・アップして、各入力数値を「1」と「0」に限定すれば、これらの多値論理回路は2値・負論理のバッファー(又は非反転)回路、AND回路、OR回路、NOT回路、NAND回路、NOR回路と全く同じ論理動作をし、互換性が有る。
一方、「AND回路(=Min回路)、OR回路(=Max回路)、反転(complement)回路、リテラル(literal)回路およびサイクリング(cycling)回路」で構成される、ブール代数を多値へ展開・拡張した筈の従来の多値論理回路(ウカシェヴィッチ型)の場合、2値NOT回路を多値へ展開・拡張した「反転回路、リテラル回路およびサイクリング回路」に関して、どの多値回路もブール代数の2値NOT回路を包含せず、全く互換性が無い。
従って、その従来の多値NAND回路、多値NOR回路についても、当然の事ながら、同様にブール代数の2値NAND回路、2値NOR回路を包含せず、全く互換性が無い。
★参 考:非特許文献3のp.18〜p.20。
***
●● 13) The fact that the new multi-valued logic “Hooji algebra” includes Boolean algebra of binary logic and is compatible will be described below.
The new multi-valued logic "Fuji algebra" is a Boolean algebra faithfully expanded and expanded to multi-values in the manner of the present inventor, completely including Boolean algebra, and compatible with Boolean algebra. .
For example, each output of a multi-value specific value EQUAL {or EVEN (even) or non-inverted} circuit having a specific integer value of 1, an AND circuit, an OR circuit, a NOT {or NEVEN (neven)} circuit, a NAND circuit, or a NOR circuit If the terminal is pulled down to the potential v 0 of the power supply line V 0 with a resistor and each input numerical value is limited to “1” and “0”, these multi-value logic circuits can use a binary / positive logic buffer (or The non-inverting circuit, the AND circuit, the OR circuit, the NOT circuit, the NAND circuit, and the NOR circuit perform the same logical operation and are compatible.
Each output of the multi-value specific value EQUAL {or EVEN (even) or non-inverted} circuit having a specific integer value of 0, an AND circuit, an OR circuit, a NOT {or NEVEN (neven)} circuit, a NAND circuit, and a NOR circuit By pulling up the terminal to the potential v 1 of the power supply line V 1 with a resistor and limiting each input numerical value to “1” and “0”, these multi-valued logic circuits can use binary / negative logic buffers ( (Or non-inverted) circuit, AND circuit, OR circuit, NOT circuit, NAND circuit, and NOR circuit have the same logical operation and are compatible.
On the other hand, a Boolean algebra composed of “AND circuit (= Min circuit), OR circuit (= Max circuit), inversion (complement circuit), literal circuit and cycling circuit” is expanded to multi-value. In the case of the conventional multi-valued logic circuit (Ukashevich type) that has been expanded, any multi-value circuit is a Boolean algebra with respect to the “invert circuit, literal circuit, and cycling circuit” that expands and expands the binary NOT circuit to multi-value. The binary NOT circuit is not included, and there is no compatibility.
Therefore, it goes without saying that the conventional multi-level NAND circuit and multi-level NOR circuit do not include a Boolean algebraic binary NAND circuit and a binary NOR circuit, and are not compatible at all.
* Reference: Non-Patent Document 3 p. 18-p. 20.
しかも、例えば『フージ代数』に基づく10値論理回路において各・入出力用特定整数値が共通の場合「電源電位v8と対応する特定整数値8のAND回路」は「電源線V0の電位v0が整数0と対応する等と定義されるから」その特定整数値は8になるが、「もし、電源線V7の電位v7が整数0と対応する等と定義し直されれば」、その特定整数値は1になる。この場合、電源線V7・V8間に「ブール代数に基づく2値AND互換回路」が形成されることになり、『フージ代数』に基づくAND回路は「ブール代数に基づく2値AND回路(特にオープン・ドレイン型やオープン・コレクタ型)」と完全に互換性が有る。
同じ様に、電源線V6から電源線V1まで順々にその電源電位が整数0と対応する等と定義し直されれば、電源線V8の電位v8に対応する整数値は以下の様になる。
・電源線V6の電位v6 →→ 整数値2
・電源線V5の電位v5 →→ 整数値3
・電源線V4の電位v4 →→ 整数値4
・電源線V3の電位v3 →→ 整数値5
・電源線V2の電位v2 →→ 整数値6
・電源線V1の電位v1 →→ 整数値7
これらの定義し直しの間、電子回路的にはその回路構成は全く変化・変更しておらず、完全に同一である。
この様になるのは、『フージ代数』の原則に基づく各種・多値論理回路の場合、前述(段落番号0083〜0084)の通り特定整数mの変更が「その多値論理回路に接続する1つ又は複数の電源線をただ変更する」だけで良い為である。
その結果、例えば、ある10値論理回路の場合、そこで使用される「互いに特定整数値が異なる多値AND回路同士」について説明すれば以下の通りである。
*特定整数値0の多値AND回路の使用個数 →→ 0〜複数個。
*特定整数値1の多値AND回路の使用個数 →→ 0〜複数個。
*特定整数値2の多値AND回路の使用個数 →→ 0〜複数個。
*……………………………………………………………………………
*……………………………………………………………………………
*特定整数値8の多値AND回路の使用個数 →→ 0〜複数個。
*特定整数値9の多値AND回路の使用個数 →→ 0〜複数個。
その10値論理回路において、各多値AND回路の使用個数がたとえいくつであろうとも、その多値AND回路同士は互いに完全な互換性が有るから、しかも、各多値AND回路はブール代数の2値AND回路とも完全な互換性が有るから、結局、この10値論理回路の全多値AND回路はブール代数の2値AND回路によって表現したり、構成したりすることができる。
この事は、多値OR回路でも、多値NOT回路でも、多値NAND回路でも、多値NOR回路でも同様であるし、10値以外の多値論理回路でも同様である。
In addition, for example, in the 10-value logic circuit based on “Fuji algebra”, when the specific integer value for each input / output is common, “the AND circuit of the specific integer value 8 corresponding to the power supply potential v 8 ” is “the potential of the power supply line V 0 . The specific integer value is 8 because v 0 is defined as corresponding to the integer 0, etc. “If the potential v 7 of the power line V 7 is defined as corresponding to the integer 0, etc. ”, The specific integer value is 1. In this case, a “binary AND compatible circuit based on a Boolean algebra” is formed between the power supply lines V 7 and V 8 , and an AND circuit based on “Fuji algebra” is a “binary AND circuit based on a Boolean algebra ( In particular, open drain type and open collector type) ”.
Similarly, if the power supply potential to turn from the power supply line V 6 to the power supply line V 1 is redefined as such and the corresponding integer 0, integer value corresponding to the potential v 8 of the power supply line V 8 below It becomes like this.
・ Power supply line V 6 potential v 6 →→ integer value 2
・ Power supply line V 5 potential v 5 →→ integer value 3
・ Power supply line V 4 potential v 4 →→ integer value 4
・ Power supply line V 3 potential v 3 →→ integer value 5
And potential of the power supply line V 2 v 2 →→ integer value 6
・ Power supply line V 1 potential v 1 →→ integer value 7
During these redefinitions, the circuit configuration of the electronic circuit has not changed or changed at all, and is completely the same.
This is because, in the case of various / multi-valued logic circuits based on the principle of “Fuji algebra”, as described above (paragraph numbers 0083 to 0084), the change of the specific integer m is “1 connected to the multi-value logic circuit 1”. This is because it is sufficient to simply change one or more power lines.
As a result, for example, in the case of a certain 10-value logic circuit, “multi-value AND circuits having different specific integer values” used therein will be described as follows.
* Number of multi-value AND circuits with specific integer value 0 → → 0 to multiple.
* Number of multi-value AND circuits with a specific integer value of 1 → 0 to multiple.
* Number of multi-value AND circuits with specific integer value 2 → → 0 to multiple.
* ………………………………………………………………………………
* ………………………………………………………………………………
* Number of multi-value AND circuits with specific integer value 8 → → 0 to multiple.
* Number of multi-value AND circuits with specific integer value 9 → → 0 to multiple.
In the 10-value logic circuit, the multi-value AND circuits are completely compatible with each other no matter how many the multi-value AND circuits are used, and each multi-value AND circuit is a Boolean algebra. Since the binary AND circuit is also completely compatible, the multi-value AND circuit of this 10-valued logic circuit can be expressed and configured by a Boolean algebraic binary AND circuit.
This is the same for a multi-value OR circuit, a multi-value NOT circuit, a multi-value NAND circuit, a multi-value NOR circuit, and a multi-value logic circuit other than 10 values.
◆◆◆*********** 多値数Nの変更容易性 ***********◆◆◆
***
●●14)新・多値論理『フージ(Hooji)代数』の『多値数Nの変更が極めて容易である』という独特な効果・特徴について:
前述(段落番号0083〜0084、0086)の通り特定整数mの変更が極めて容易な為、多値数Nの変更も極めて容易である。
例えば、AND回路、OR回路、NOT回路などの基本・多値論理回路を多数個使って4値で合成・多値論理回路を組んでいた時に5値回路に変更したければ、電位供給手段(例:電源と電源線。)を1つ追加し、「その入力用特定整数あるいは出力用特定整数を『5』等に設定した(つまり、接続する電源線などを決めた)、必要な各種の『基本・多値論理回路または多値論理回路ユニットまたは多値論理回路モジュール』を追加し、必要な結線をする」だけで、その多値数Nを極めて容易に変更することができる。
その結果、「多値数Nの小さい合成・多値論理回路」をそのまま土台にして「多値数Nの大きい合成・多値論理回路」を構成することができる。この場合、当然の事ながら、その5値合成・多値論理回路はその4値合成・多値論理回路の真理値表を満足する。
***
一方、従来技術として「ブール代数を多値へ展開・拡張した筈のウカシェヴィッチ等の多値論理」に基づく多値論理回路の場合、前述(2つ前の段落。)の通り2値NOT回路を多値へ展開・拡張した「反転回路、リテラル回路およびサイクリング回路」に関して、どの多値論理回路も2値NOT回路を包含せず、全く互換性が無いだけでなく、その多値数Nの異なる同種の基本・多値論理回路・同士でも包含が成り立たず、全く互換性が無い。
例えば、「3値の反転回路と4値の反転回路」、「3値のリテラル回路と4値のリテラル回路」、「3値のサイクリング回路と4値のサイクリング回路」。他の多値数同士でも同様。
この為、これらの基本・多値論理回路に関して「多値数の小さい基本・多値論理回路」をそのまま土台にして「多値数の大きい基本・多値論理回路」を構成することができないし、当然、これらの基本・多値論理回路を応用した多値NAND回路、多値NOR回路についても同じ様な事が言える。
その結果、「これらの基本・多値論理回路を1つでも用いた合成・多値論理回路」をそのまま土台にして「これより多値数の大きい合成・多値論理回路」を構成することができないので、多値数Nの変更が極めて難しい。1から組み直す必要が有る。
◆◆◆ *********** Easiness to change multi-value number N ********** ◆◆◆◆
***
●● 14) About the unique effects and features of the new multi-valued logic “Hooji algebra” that “the multi-valued number N is very easy to change”:
As described above (paragraph numbers 0083 to 0084, 0086), it is very easy to change the specific integer m. Therefore, it is also easy to change the multi-value number N.
For example, if you want to change to a quinary circuit when using a large number of basic / multi-valued logic circuits such as AND circuits, OR circuits, NOT circuits, etc. Example: power supply and power supply line)), add "specific integer for input or specific integer for output to 5" (that is, determine the power supply line to be connected, etc.) By simply adding “basic / multi-value logic circuit or multi-value logic circuit unit or multi-value logic circuit module” and making necessary connections, the multi-value number N can be changed very easily.
As a result, it is possible to configure a “composite / multi-valued logic circuit with a large multi-value number N” as it is based on “a composite / multi-valued logic circuit with a small multi-value number N”. In this case, as a matter of course, the 5-value synthesis / multi-value logic circuit satisfies the truth table of the 4-value synthesis / multi-value logic circuit.
***
On the other hand, in the case of a multi-value logic circuit based on “multi-valued logic such as Ukasevich's cocoon that expands / expands Boolean algebra to multi-value” as a conventional technique, binary NOT as described above (two previous paragraphs). Regarding “inverting circuits, literal circuits, and cycling circuits”, which are expanded and expanded to multi-valued circuits, not all multi-valued logic circuits include binary NOT circuits and are not interchangeable at all, and the multi-valued number N The same kind of basic / multi-valued logic circuits of different types cannot be included, and there is no compatibility.
For example, “a ternary inverting circuit and a quaternary inverting circuit”, “a ternary literal circuit and a quaternary literal circuit”, and “a ternary cycling circuit and a quaternary cycling circuit”. The same applies to other multivalued numbers.
For this reason, it is impossible to construct a “basic / multi-valued logic circuit with a large multi-value number” based on the “basic / multi-valued logic circuit with a small multi-valued number” as it is for these basic / multi-valued logic circuits. Of course, the same can be said for a multi-value NAND circuit and a multi-value NOR circuit to which these basic and multi-value logic circuits are applied.
As a result, it is possible to construct a “composite / multi-value logic circuit having a larger multi-value number” based on “a composite / multi-value logic circuit using at least one of these basic / multi-value logic circuits”. Since it is not possible to change the multi-value number N, it is extremely difficult. It is necessary to reassemble from scratch.
◆◆◆******** 『フージ代数』の完全性それも完全 ********◆◆◆
***
●●15)新・多値論理『フージ(Hooji)代数』における『多値数Nに全く影響されない、1種類の多値論理回路による完全性、それも[完全]』という独特な効果・特徴について以下説明する。 →→ 多値論理完全回路の実現。
前述(段落番号[0080〜0082]。)した『多値数Nに関係無く双対(そうつい)が成り立つという双対性』等により『多値NAND論理か多値NOR論理どちらか1種類の多値論理を[単独で]又は[複数個組み合わせることにより]その多値数Nに関係無くすべての多値論理関数を実現することができる完全性、それも[完全]』という効果・特徴が『フージ代数』に有る。
***
●● 15) New multi-valued logic “Hooji Algebra” has a unique effect and feature of “completeness with one kind of multi-valued logic circuit that is completely unaffected by multi-valued number N, it is also [perfect]” Is described below. →→ Realization of complete multi-valued logic circuit.
As described above (paragraph numbers [0080 to 0082]), “multi-value NAND logic or multi-value NOR logic, one kind of multi-values”, etc. The perfection that can realize all multi-valued logic functions regardless of the multi-valued number N by [single] or [by combining a plurality of logics], and the effect / feature of [perfect] Algebra ”.
図12の合成・多値論理回路に基づいて「電子回路工学的に分かり易く」、その『完全(性)』について以下説明する。
◆ただし、多値数N=10(10進法)で、各・特定整数m(=入力用特定整数=出力用特定整数)と各・電源線電位(例:v0〜v9、vC0〜vC9、vC0≠v0、vC1≠v1、………、vC8≠v8、vC9≠v9)に関しては具体的に始めから各整数m(=0、1、2、……、8、9)を書き込んでいるが、電源電位v0〜v9の各電源線をV0〜V9で表わし、電源電位vC0〜vC9の各電源線をVC0〜VC9で表わしている。
◆また、各基本・多値論理回路の定義は以下の通りである。
☆多値NOT論理;その入力数値が特定整数mと等しいとき「その出力を開放し」、そうでなければ特定整数mを出力する。
☆多値AND論理;そのすべての入力数値が特定整数mと等しいとき特定整数mを出力し、そうでなければ「その出力を開放する」。
☆多値OR論理;その少なくとも1つの入力数値が特定整数mと等しいとき特定整数mを出力し、そうでなければ「その出力を開放する」。
◆さらに、2値論理回路の場合と同様に「多値NAND回路の全・入力端子を接続して1つの入力端子にまとめたり」あるいは「多値NAND回路の1つの入力端子を残して他の入力端子すべてをそのNAND回路の入力用特定電位vm(=その入力用特定整数mに対応する電源電位)の電源線等に接続したり」すれば、その多値NAND回路は「多値NOT回路」になる。
★図27、図29の非同期型・多値NAND回路
★参考:特開2005−236985号・図11の多値(特定値)NAND回路(3入力)。
◆それから、多値NAND回路の出力端子をそのNAND回路の入力用特定電位(=出力用特定電位)vm以外の電源電位vCm(≠vm)に抵抗等でプル・アップ又はプル・ダウンし、その出力端子の後段に上記「多値NOT回路」を接続すれば、その多値NAND回路は多値AND回路になる。
Based on the composite / multi-valued logic circuit of FIG. 12, “easy to understand in terms of electronic circuit engineering”, and “completeness” will be described below.
◆ However, in multi-level number N = 10 (10 decimal), the-specific integer m (= input specific integer = output for a particular integer) each Power line potential (eg: v 0 ~v 9, v C0 ˜v C9 , v C0 ≠ v 0 , v C1 ≠ v 1 ,..., V C8 ≠ v 8 , v C9 ≠ v 9 , each integer m (= 0, 1, 2, ......, although writing a 8,9), the power supply potential v 0 of each power supply line to v 9 expressed by V 0 ~V 9, the power supply potential v C0 each power line of ~v C9 V C0 ~V C9 It is represented by
◆ The definition of each basic / multi-valued logic circuit is as follows.
☆ Multi-level NOT logic: When the input numerical value is equal to the specific integer m, “open its output”, otherwise output the specific integer m.
☆ Multi-valued AND logic: When all the input numerical values are equal to the specific integer m, the specific integer m is output. Otherwise, the output is released.
☆ Multi-valued OR logic: When the at least one input numerical value is equal to the specific integer m, the specific integer m is output. Otherwise, the output is released.
◆ Furthermore, as in the case of the binary logic circuit, “all the input terminals of the multi-level NAND circuit are connected and combined into one input terminal” or “the one input terminal of the multi-level NAND circuit is left and other If all the input terminals are connected to the power supply line or the like of the input specific potential v m of the NAND circuit (= the power supply potential corresponding to the input specific integer m), the multi-level NAND circuit is “multi-level NOT. Circuit ".
★ Asynchronous multi-value NAND circuit of FIGS. 27 and 29 ★ Reference: Japanese Patent Application Laid-Open No. 2005-236985 ・ Multi-value (specific value) NAND circuit (3-input) of FIG.
◆ Then, pull up or pull down the output terminal of the multi-level NAND circuit to a power supply potential v Cm (≠ v m ) other than the input specific potential (= output specific potential) v m of the NAND circuit with a resistor or the like If the “multi-level NOT circuit” is connected to the subsequent stage of the output terminal, the multi-level NAND circuit becomes a multi-level AND circuit.
◆あるいは、2値論理回路の場合と同様に、「多値NOR回路の全・入力端子を接続して1つの入力端子にまとめたり」あるいは「多値NOR回路の1つの入力端子を残して他の入力端子すべてをそのNOR回路の入力用特定電位vm以外の電源電位vCm(≠vm)の電源線などに接続したり」すれば、その多値NOR回路は「多値NOT回路」になる。
★図31の非同期型・多値NOR回路
★参考:特開2005−236985号・図13の多値(特定値)NOR回路。
◆そして、多値NOR回路の出力端子をそのNOR回路の入力用特定電位(=出力用特定電位)vm以外の電源電位vCm(≠vm)に抵抗でプル・アップ又はプル・ダウンし、その出力端子の後段に上記「多値NOT回路」を接続すれば、その多値NOR回路は多値OR回路になる。
◆しかも、前述(図11と段落番号[0080〜0082]。)の通り「新・多値論理『フージ代数』の双対性」という特徴により多値OR回路から多値AND回路などを構成したり、又は、逆に多値AND回路から多値OR回路などを構成したり、することができる。
このため、多値NOR回路1種類から多値OR回路、多値AND回路、多値NOT回路、多値NAND回路を構成したり、多値NAND回路1種類から多値OR回路、多値AND回路、多値NOT回路、多値NOR回路を構成したり、することができる。
その結果、前述(段落番号[0083〜0084]。)の「多値数Nに全く影響されない、特定整数mの変更の容易性」という特徴も有って、新・多値論理『フージ代数』に基づく「多値NAND回路か多値NOR回路」のどちらか1種類の基本・多値論理回路だけで図15の合成・多値論理回路を構成できることが分かる。
◆ Or, as in the case of the binary logic circuit, “all the input terminals of the multi-value NOR circuit are connected to one input terminal” or “one other input terminal of the multi-value NOR circuit is left. The multi-value NOR circuit is “a multi-value NOT circuit” by connecting all of the input terminals to a power line of a power supply potential v Cm (≠ v m ) other than the input specific potential v m of the NOR circuit. become.
★ Asynchronous type multi-value NOR circuit of FIG. 31 ★ Reference: JP 2005-236985 A Multi-value (specific value) NOR circuit of FIG.
◆ Then, the output terminal of the multi-value NOR circuit is pulled up or down with a resistor to a power supply potential v Cm (≠ v m ) other than the input specific potential (= output specific potential) v m of the NOR circuit. If the “multi-value NOT circuit” is connected to the subsequent stage of the output terminal, the multi-value NOR circuit becomes a multi-value OR circuit.
In addition, as described above (FIG. 11 and paragraph numbers [0080 to 0082]), a multi-valued OR circuit can be constructed from a multi-valued OR circuit due to the feature of “duality of new multivalued logic“ Fuji algebra ””. Or, conversely, a multi-value OR circuit or the like can be constructed from a multi-value AND circuit.
Therefore, a multi-value NOR circuit, a multi-value AND circuit, a multi-value NOT circuit, and a multi-value NAND circuit are constructed from one type of multi-value NOR circuit, or a multi-value OR circuit and a multi-value AND circuit are constructed from one type of multi-value NAND circuit. A multi-value NOT circuit and a multi-value NOR circuit can be configured.
As a result, the new multi-valued logic “Fuji algebra” has the feature of “ease of changing the specific integer m, which is not affected by the multi-valued number N at all” as described above (paragraph numbers [0083 to 0084]). It can be seen that the composite / multi-valued logic circuit of FIG. 15 can be configured with only one type of basic / multi-valued logic circuit based on the “multi-valued NAND circuit or multi-valued NOR circuit”.
そして、図12の合成・多値論理回路は「図13に示す多値論理関数f(x、y)の真理値表で表現されるすべての多値論理関数」を実現・具体化できる多値論理完全回路である。ただし、図13は見易く、分かり易く説明する為にかなり省略・簡略化されている。
図13に示すf(x、y)の真理値表はその数値パターンの書換えによって、つまり、各・升(ます)目の数値を書き換えることによって、10進法・2論理変数x、yの全・多値論理関数(全部で10の100乗・種類有る。)を表現することができる。
なぜなら、1つの升(ます)目が取り得る数値は整数「0〜9」の10通りで、しかも、升目の総数は全部で100個有るので、升目100個が取り得る数値パターンは全部で、(10通り)×(10通り)×………… ≪≪100個の(10通り)同士の積≫≫ …………×(10通り)×(10通り)=10の100乗・種類になる、からである。
そのうえ、図13に示すf(x、y)の真理値表において、その「多値数N」と「論理変数x、yの各・論理変数範囲」の変更によってN進法・2論理変数の全・多値論理関数を表現できる。例えばN=7の7進法で、6≧x≧0、6≧y≧0。この場合、図13中のx横方向の升目は全部で7つ、y縦方向の升目も全部で7つ、従って、升目の総数は49個になり、その数値パターンは全部で7の49乗・種類になる。
The truth table of f (x, y) shown in FIG. 13 is obtained by rewriting the numerical pattern, that is, by rewriting the numerical value of each 升 (mass), all decimal numbers and two logical variables x and y. A multi-valued logic function (10 to the 100th power / various in total) can be expressed.
Because there are 10 numbers of integers “0-9” that can be taken by one square, and the total number of squares is 100, so the numerical patterns that 100 squares can take are all. (10 ways) × (10 ways) × …… ≪ << Product of 100 (10 ways) >> ≫ ………… (10 ways) × (10 ways) = 10 to the 100th power Because it becomes.
In addition, in the truth table of f (x, y) shown in FIG. 13, by changing the “multi-valued number N” and “each logical variable range of logical variables x and y”, an N-ary / two logical variable Can express all / multi-valued logic functions. For example, 6 ≧ x ≧ 0, 6 ≧ y ≧ 0 in N = 7 octal system. In this case, there are a total of 7 cells in the x horizontal direction and 7 cells in the y vertical direction in FIG. 13, so the total number of cells is 49, and the numerical pattern is 7 to the 49th power.・ It becomes a kind.
ところで、後述{段落番号[0098]中の◆ニ)項。}する通り「入力論理変数x、yの各値の組合せは2入力の多値AND回路などで表現することができる」し、「入力論理変数x、y、zの各値の組合せは3入力の多値AND回路などで表現することができる」し、「入力論理変数w、x、y、zの各値の組合せは4入力の多値AND回路などで表現することができる」し、「入力論理変数u、w、x、y、zの各値の組合せは5入力の多値AND回路などで表現することができる」という具合に、その入力論理変数の個数に応じてその多値AND回路の入力数を増減させることによってその個数の増減に対応することができる。
ただし、その入力論理変数の個数の増減に応じて(その真理値表の書き方が変わり、)「これらに対応する真理値表の升目の総数」も増減するが、それは「多値数Nの増減に応じてその真理値表の升目の総数・増減に対応する」のと全く同じ様な対応の仕方で良い。
例えば、10値1桁の入力論理変数u、w、x、y、z、aの6入力の場合は、図13の真理値表においてxの所をuwxと置き換え、yの所をyzaと置き換える。このため、uwx横方向は「数値000〜999」の1,000個の升目になり、yza縦方向も「数値000〜999」の1,000個の升目になるので、その升目の総数は100万個になり、その数値パターンは全部で10の100万乗・種類=101,000,000kindsになる。もちろん、このとき入力論理変数u、w、x、y、z、aそれぞれが10値1桁の整数それぞれを表現することになるが、この様に表現することによってその入力論理変数の個数が6個である場合を真理値表で、(その升目の総数からすると相当大変であるが)、たて・よこ・単純な仕組みで表現することができる。
By the way, the item {D> in paragraph number [0098] described later. } "As the combination of each value of the input logic variables x and y can be expressed by a 2-input multi-value AND circuit", the combination of each value of the input logic variables x, y and z is 3 inputs. "A combination of input logic variables w, x, y, and z can be expressed by a 4-input multi-value AND circuit" and " The combination of the values of the input logical variables u, w, x, y, and z can be expressed by a multi-input AND circuit with five inputs, etc., and so on, according to the number of the input logical variables. By increasing or decreasing the number of inputs of the circuit, it is possible to cope with the increase or decrease of the number.
However, according to the increase or decrease in the number of input logical variables (the way the truth table is written changes), the “total number of cells in the corresponding truth table” also increases or decreases. It corresponds to the total number and increase / decrease of the cells in the truth table.
For example, in the case of 6 inputs of 10-digit 1-digit input logical variables u, w, x, y, z, and a, the place of x is replaced with uwx and the place of y is replaced with yza in the truth table of FIG. . For this reason, the uwx horizontal direction becomes 1,000 squares of “numerical value 000 to 999”, and the yza vertical direction also becomes 1,000 squares of “numerical value 000 to 999”. The numerical pattern is 10 millionth power / kind = 10 1,000,000 kinds in total. Of course, at this time, each of the input logical variables u, w, x, y, z, and a represents an integer of 10 values and 1 digit. By this representation, the number of input logical variables is 6 The truth table can be represented by a truth table (although it is quite difficult from the total number of cells), and can be expressed by a vertical, horizontal, or simple mechanism.
ここで、さらに、そのuwxをx2x1x0で置き換え、このx2x1x0でxの3桁を表現することもできる。このとき、入力論理変数xが10値3桁で表現されていると解釈することもできるし、1000値1桁で表現されていると解釈することもできる。
なお、「1000値1桁で表現」と言うと奇妙に聞こえるかもしれないが、我々は既に16値を「0、1、2、……、8、9、A、B、C、D、E、F」の16文字1桁で表現している。「数値10がAに、数値11がBに、……、数値14がEに、数値15がFに」それぞれ該当する。同じ様に、10〜999の各数値を1文字ずつで置き換えれば、1000値1桁で表現することができる。一方、10値3桁・表現の場合、x2x1x0の3文字は互いに独立した数値を表現しているから、x2x1x0を1つの文字で表現したら、10値3桁・表現という意味が失われてしまう。また、1000値で必要な電源電位は少なくとも1000個であるが、10値なら少なくとも10個である。
さて、その残りのyza側も、そのyzaをy2y1y0で置き換え、このy2y1y0でyの3桁を表現することもできる。このとき、同様に入力論理変数yが10値3桁で表現されていると解釈することもできるし、1000値1桁で表現されていると解釈することもできる。
そして、以上述べて来た事を同様にもっと「……、u、w、x、y、z、a、……」の各変数を「 『……』、『…u4u3u2u1u0』、『…w4w3w2w1w0』、『…x4x3x2x1x0』、『…y4y3y2y1y0』、『…z4z3z2z1z0』、『…a4a3a2a1a0』、『……』 」という具合にいくらでも展開・拡張することができる。
そんな訳で、もし図12の合成・多値論理回路が「図13に示す論理関数f(x、y)の真理値表が表現する、N進法・2論理変数x、yの全・多値論理関数」を実現化・具体化できることを証明できれば、その論理変数の個数や桁数に関係無く、多値論理『フージ代数(Hooji algebra)』の『完全性』、それも『完全』が証明されることになる。
Here, furthermore, the uwx can be replaced with x 2 x 1 x 0 , and the x 2 x 1 x 0 can represent the three digits of x. At this time, it can be interpreted that the input logical variable x is expressed by 10 values and 3 digits, or can be interpreted as expressed by 1000 values and 1 digit.
It may sound strange to say "1000 values represented by one digit", but we already have 16 values "0, 1, 2, ..., 8, 9, A, B, C, D, E. , F ”is represented by one digit of 16 characters. “Numerical value 10 corresponds to A, numerical value 11 corresponds to B,..., Numerical value 14 corresponds to E, and numerical value 15 corresponds to F”. Similarly, if each numerical value of 10 to 999 is replaced with one character at a time, it can be expressed with one digit of 1000 values. On the other hand, in the case of 10-value 3-digit expression, the three characters x 2 x 1 x 0 represent independent numbers, so if x 2 x 1 x 0 is represented by one character, it is 10-digit 3-digit・ The meaning of expression is lost. Further, at least 1000 power supply potentials are required for 1000 values, but at least 10 are required for 10 values.
The remaining yza side can also replace the yza with y 2 y 1 y 0 and express the three digits of y with this y 2 y 1 y 0 . At this time, similarly, the input logical variable y can be interpreted as being expressed by 10 values and 3 digits, or can be interpreted as being expressed by 1000 values and 1 digit.
In addition, as described above, each variable of “……, u, w, x, y, z, a,...” Is changed to ““ …… ”,“… u 4 u 3 u 2 u ”. 1 u 0 ”,“ ... w 4 w 3 w 2 w 1 w 0 ”,“… x 4 x 3 x 2 x 1 x 0 ”,“… y 4 y 3 y 2 y 1 y 0 ”,“ ... z 4 z 3 z 2 z 1 z 0 ”,“... A 4 a 3 a 2 a 1 a 0 ”,“... ”” And so on.
For this reason, if the synthesis / multi-value logic circuit of FIG. 12 is expressed by “the truth table of the logic function f (x, y) shown in FIG. If it can be proved that the "value logic function" can be realized and embodied, the "completeness" of the multi-valued logic "Hooji algebra" can be used regardless of the number of the logical variables and the number of digits. It will be proved.
図12の合成・多値論理回路は「すべての、2論理変数の多値論理関数を実現できる回路」の1構成例で、その大部分の構成手段は点線で示されていて、具体的に図示されていないが下記の様に有る。
但し、「NOT(m)=m」は入力用特定整数=出力用特定整数=mの多値NOT回路を、「AND(m)=m」は入力用特定整数=出力用特定整数=mの多値AND回路を、「OR(m)=m」は入力用特定整数=出力用特定整数=mの多値OR回路を、それぞれ意味し、図12中では各特定整数mに具体的な数値m(=0、1、2、……、8、9)を書き込んでいる。
図12中、多値「OR(0)=0」回路と多値「OR(9)=9」回路の間にはふつう多値「OR(1)=1」回路〜多値「OR(8)=8」回路の8回路が有り、多値「AND(0)=0」回路グループ(=「AND(0)=0」で表わされる回路・全部。)と多値「AND(9)=9」回路グループ(=「AND(9)=9」で表わされる回路・全部。)の間にはふつう多値「AND(1)=1」回路グループ〜多値「AND(8)=8」回路グループの8回路グループが有る。各多値「AND(…)=…」回路グループには、そのグループに対応する多値「NOT(…)=…」回路が必要な数だけ接続されている。
また、再度確認しておくと、多値「OR(m)=m」回路、多値「AND(m)=m」回路および多値「NOT(m)=m」回路の各動作は次の通りである。
◆多値「OR(m)=m」回路:複数個の入力数値のうち少なくとも1つが特定整数mのとき特定整数mを出力する一方、そうでないときその出力を開放する。
→→ 図30の非同期型・多値OR回路。
◆多値「AND(m)=m」回路:複数個の入力数値すべてが特定整数mのとき特定整数mを出力する一方、そうでないときその出力を開放する。
→→ 図25〜図26、図28の各・非同期型・多値AND回路
◆多値「NOT(m)=m」回路:1つの入力数値が特定整数mのときその出力を開放する一方、そうでないとき特定整数mを出力する。
→→ 図23〜図24の各・非同期型・多値NOT{又はNEVEN(ニーブン又はネーブン)}回路。
The composition / multi-value logic circuit of FIG. 12 is one configuration example of “a circuit that can realize all the multi-value logic functions of two logic variables”, and most of the configuration means are indicated by dotted lines. Although not shown, it is as follows.
However, “NOT (m) = m” is a specific integer for input = specific integer for output = m, and “AND (m) = m” is a specific integer for input = specific integer for output = m. In the multi-value AND circuit, “OR (m) = m” means a multi-value OR circuit in which a specific integer for input = a specific integer for output = m, respectively. In FIG. m (= 0, 1, 2,..., 8, 9) is written.
In FIG. 12, between the multi-value “OR (0) = 0” circuit and the multi-value “OR (9) = 9” circuit, the multi-value “OR (1) = 1” circuit to the multi-value “OR (8) ) = 8 ”circuit, and there are multi-value“ AND (0) = 0 ”circuit group (= circuits represented by“ AND (0) = 0 ”) and multi-value“ AND (9) = ”. 9 ”circuit group (= circuits represented by“ AND (9) = 9 ”/ all) are usually multi-value“ AND (1) = 1 ”circuit group to multi-value“ AND (8) = 8 ”. There are 8 circuit groups of circuit groups. Each multi-value “AND (...) =...” Circuit group is connected with a necessary number of multi-value “NOT (...) =.
In addition, again, the operations of the multi-value “OR (m) = m” circuit, multi-value “AND (m) = m” circuit, and multi-value “NOT (m) = m” circuit are as follows. Street.
Multi-value “OR (m) = m” circuit: outputs a specific integer m when at least one of a plurality of input numerical values is a specific integer m, and releases the output otherwise.
→→ Asynchronous multi-value OR circuit of FIG.
Multi-value “AND (m) = m” circuit: outputs a specific integer m when all of a plurality of input numerical values are a specific integer m, and releases the output otherwise.
→→ Each of FIG. 25 to FIG. 26, FIG. 28, Asynchronous type, Multi-value AND circuit ◆ Multi-value “NOT (m) = m” circuit: While one input numerical value is a specific integer m, the output is released, Otherwise, a specific integer m is output.
→→ Asynchronous / multi-valued NOT {or NEVEN (Neven or Neven)} circuits shown in FIGS.
■■ 回路と機能の大まかな説明 ■■
図12中では各特定整数mに具体的な整数値m(=0、1、2、……、8、9)を書き込んでいるが、各回路の機能は以下の通りである。
◆多値「OR(m)=m」回路グループ(図面・縦方向に広がるグループ。全部で10回路。)は図13に示すf(x、y)の真理値表に記載された各整数m=0、1、……、8、9を出力する。
従って、多値「OR(m)=m」回路の個数と「図13に示すf(x、y)の真理値表に記載されている整数の種類数」は同じである。このため、もし、9種類の整数しか記載されていなければ、その記載されていない整数を除く、残り9個の整数に対応する9回路しかない。8種類なら8回路しかない。以下同様であるが、分かり易くするの為に一応m=0〜9として説明して行く。
◆同じ多値OR−AND−NOT回路グループ(図面・横方向に広がるグループ。全部で10グループ。)に属する多値「OR(m)=m」回路と多値「AND(m)=m」回路の両mの各値(=0〜9)は同一である。当然、このグループ数と多値「OR(m)=m」回路の総数は同じである。
◆各・多値「AND(m)=m」回路グループ(図面・縦方向に広がるグループ。m=0〜9。)は「図13の真理値表が示す各関係の通りに」f(x、y)の各値とx、yの各値を結び付ける。
このため、その論理変数の個数と各多値「AND(m)=m」回路の入力端子の数は同じである。
また、各・多値OR−AND−NOT回路グループに属する「AND(m)=m」回路の個数は、図13に示すf(x、y)の真理値表において「その回路グループ固有の整数の値m」を書き込んだ升目の総数と同じである。
◆各・多値「NOT(m)=m」回路グループ(図面・縦方向に広がるグループ。m=0〜9。)はx、yの各値を判別する。
この様にした理由は、各・多値「AND(m)=m」回路のm値と「判別する際に本来比較すべき特定整数値m」が異なっている場合が有る、からである。このため、各AND回路のm値と「それに接続されるNOT回路」のm値は必ず異なる。
両m値が一致する場合は、多値「NOT(m)=m」回路は不必要で、多値「AND(m)=m」回路が直接xの値またはyの値を判別するので、入力端子Txまたは入力端子Tyは多値「AND(m)=m」回路の入力部と直接接続される。
つまり、f(x、y)の値とxの値が同じm値の場合、多値「AND(m)=m」回路が直接そのxの値を判別し、f(x、y)の値とyの値が同じm値の場合、多値「AND(m)=m」回路が直接そのyの値を判別する。
◆各・多値「AND(m)=m」回路と各・多値「OR(m)=m」回路の各間に1つずつ接続されたプル・アップ抵抗またはプル・ダウン抵抗が前者の各出力信号を後者の各入力信号とする為に両信号をマッチング(整合)させる。なお、各電源電位に関してvC0≠v0、vC1≠v1、vC2≠v2、……、vC9≠v9の各関係に有るが、電源電位v0〜v9の各電源線をV0〜V9で表わし、電源電位vC0〜vC9の各電源線をVC0〜VC9で表わしている。
◆各・多値「NOT(m)=m」回路と各・多値「AND(m)=m」回路の各間に1つずつ接続されたプル・アップ抵抗またはプル・ダウン抵抗も前者の各出力信号を後者の各入力信号とする為に両信号をマッチング(整合)させる。
■■ Rough explanation of circuit and function ■■
In FIG. 12, a specific integer value m (= 0, 1, 2,..., 8, 9) is written in each specific integer m, and the function of each circuit is as follows.
A multi-value “OR (m) = m” circuit group (drawing / vertically extending group; 10 circuits in total) is an integer m described in the truth table of f (x, y) shown in FIG. = 0, 1, ..., 8, 9 are output.
Therefore, the number of multi-valued “OR (m) = m” circuits and the “number of types of integers described in the truth table of f (x, y) shown in FIG. 13” are the same. For this reason, if only 9 types of integers are described, there are only 9 circuits corresponding to the remaining 9 integers, excluding the integers not described. There are only 8 circuits for 8 types. The same applies to the following, but for the sake of clarity, the description will be made assuming that m = 0 to 9.
◆ Multi-valued “OR (m) = m” circuit and multi-valued “AND (m) = m” belonging to the same multi-valued OR-AND-NOT circuit group (drawing / horizontal direction group in total 10 groups) Each value (= 0-9) of both m of the circuit is the same. Naturally, the number of groups and the total number of multi-valued “OR (m) = m” circuits are the same.
Each multi-value “AND (m) = m” circuit group (drawing / vertically extending group, m = 0 to 9) is “as per the relationship shown in the truth table of FIG. 13” f (x , Y) and each value of x, y are linked.
For this reason, the number of the logical variables and the number of input terminals of each multi-value “AND (m) = m” circuit are the same.
The number of “AND (m) = m” circuits belonging to each multi-valued OR-AND-NOT circuit group is expressed as “integer specific to that circuit group” in the truth table of f (x, y) shown in FIG. Is the same as the total number of cells in which the value m ”is written.
Each multi-value “NOT (m) = m” circuit group (drawing / longitudinal group; m = 0 to 9) discriminates each value of x and y.
The reason for this is that the m value of each multi-value “AND (m) = m” circuit may be different from the “specific integer value m that should be originally compared when discriminating”. For this reason, the m value of each AND circuit and the m value of the “NOT circuit connected thereto” are necessarily different.
If both m values match, the multi-value “NOT (m) = m” circuit is unnecessary, and the multi-value “AND (m) = m” circuit directly determines the value of x or y. The input terminal Tx or the input terminal Ty is directly connected to the input part of the multi-value “AND (m) = m” circuit.
That is, when the value of f (x, y) and the value of x are the same m value, the multi-value “AND (m) = m” circuit directly determines the value of x, and the value of f (x, y) If the values of y and y are the same m value, the multi-value “AND (m) = m” circuit directly determines the y value.
◆ Pull-up resistor or pull-down resistor connected between each multi-value “AND (m) = m” circuit and each multi-value “OR (m) = m” circuit is the former. In order to make each output signal each input signal of the latter, both signals are matched. Each power supply potential has a relationship of v C0 ≠ v 0 , v C1 ≠ v 1 , v C2 ≠ v 2 ,..., V C9 ≠ v 9 , but each power line of the power supply potentials v 0 to v 9. the expressed as V 0 ~V 9, it represents the respective power line of the power supply potential v C0 to v C9 in V C0 ~V C9.
◆ A pull-up resistor or pull-down resistor connected between each multi-value “NOT (m) = m” circuit and each multi-value “AND (m) = m” circuit is also the former. In order to make each output signal each input signal of the latter, both signals are matched.
■■ 細部の各機能は次の通りである。 ■■
◆1)多値OR回路の特定整数m=0に設定した多値OR−AND−NOT回路グループでは、多値「OR(0)=0」回路の入力部は図13に示すf(x、y)の真理値表においてf(x、y)=0を満足する場合すべてを網羅(もうら)する。このため、「m=0が書き込まれた升目の総数」=多値「OR(0)=0」回路の入力端子の総数(=多値「AND(0)=0」回路の総数)となる。
なお、同じ多値OR−AND−NOT回路グループに属する「OR(m)=m」と「AND(m)=m」の両m値は同一であるが、そのグループ内の各「NOT(m)=m」のm値とは必ず異なる。
また、もし、その真理値表に「m=0が書き込まれた升目」が全部で2個しか無ければ、多値「OR(0)=0」回路の入力端子数も2個である。もし、その「m=0が書き込まれた升目」が全部で70個有れば、その入力端子数も70個である。
◆2)特定整数m=0に設定した各・多値「AND(0)=0」回路は「f(x、y)=0を満足する論理変数x、yの値の各・組合せ」を網羅(もうら)する。すなわち、各・多値「AND(0)=0」回路は「m=0が書き込まれた升目のx値とy値の各組合せ」と1対1ずつ対応する。
図13の真理値表では(5,0)と(8,3)の各組合せが図示されており、f(5,0)=0とf(8,3)=0である。
この様に、各・多値「AND(m)=m」回路は「f(x、y)=mを満足する論理変数x、yの値の各・組合せ」を網羅(もうら)する。
◆3)入力端子Txに接続された各「NOT(m)=m」回路は論理変数x=m(=0、1、2、……、8、9)を判別し、入力端子Tyに接続された各「NOT(m)=m」回路は論理変数y=m(=0、1、2、……、8、9)を判別する。
ただし、判別すべき論理変数xの値が多値「AND(m)=m」回路のm値と同じ場合、「NOT(m)=m」回路を使わずに多値「AND(m)=m」回路が論理変数x=mであるかどうか直接判別する。
例えば、f(x、y)=0を満足する論理変数xの値が0なら(つまりf値=x値のとき)、「NOT(0)=0」回路は必要無いので、入力端子Txの電位信号はそのまま多値「AND(0)=0」回路に入力される。
そして、f(x、y)=0を満足する論理変数yの値が0なら(つまりf値=y値のとき)、「NOT(0)=0」回路は必要無いので、入力端子Tyの電位信号はそのまま多値「AND(0)=0」回路に入力される為、両者は図15中の様に導線で直結される。
→→ f(5,0)=0のとき入力端子Tyは一番下の多値「AND(0)=0」回路の第2入力端子に直結される。
→→ 同様にf(7,9)=9のとき入力端子Tyは一番下の多値「AND(9)=9」回路の第2入力端子に直結される。
◆4)特定整数m=0に設定した多値「OR(0)=0」回路と各・多値「AND(0)=0」回路の間に1つずつ接続されたプル・「アップ又はダウン」抵抗は入出力信号のマッチング(整合)を行う。その為に、電位vC0≠v0である。
◆5)「同じ回路グループ内の多値『NOT(…)=…』回路とプル・『アップ又はダウン』抵抗」の各組合せは入力端子Tx、Tyの各電位信号と各・多値「AND(0)=0」回路の入力部をマッチング(整合)させる。
◆6)以下同様に、「特定整数m=1〜9」それぞれに設定した各・多値回路グループ(=多値OR、ANDおよびNOTの各回路グループ)においても、それぞれが全く同様な機能を果たす。
■■ Details of each function are as follows. ■■
1) In the multi-value OR-AND-NOT circuit group in which the specific integer m = 0 of the multi-value OR circuit, the input part of the multi-value “OR (0) = 0” circuit is f (x, In the truth table of y), all cases where f (x, y) = 0 are satisfied are covered. Therefore, “the total number of cells in which m = 0 is written” = the total number of input terminals of the multi-value “OR (0) = 0” circuit (= the total number of multi-value “AND (0) = 0” circuits). .
It should be noted that both m values of “OR (m) = m” and “AND (m) = m” belonging to the same multi-valued OR-AND-NOT circuit group are the same, but each “NOT (m ) = M ”is always different from the m value.
Also, if there are only two “total cells in which m = 0” is written in the truth table, the number of input terminals of the multi-value “OR (0) = 0” circuit is also two. If there are a total of 70 “cells in which m = 0” are written, the number of input terminals is also 70.
2) Each multi-value “AND (0) = 0” circuit set to a specific integer m = 0 “each value / combination of logical variables x and y satisfying f (x, y) = 0” Cover it. In other words, each multi-value “AND (0) = 0” circuit has a one-to-one correspondence with “each combination of x value and y value of a square in which m = 0 is written”.
In the truth table of FIG. 13, combinations of (5, 0) and (8, 3) are illustrated, and f (5, 0) = 0 and f (8, 3) = 0.
In this way, each multi-value “AND (m) = m” circuit covers (returns) “each combination of values of logical variables x and y satisfying f (x, y) = m”.
◆ 3) Each “NOT (m) = m” circuit connected to the input terminal Tx determines the logical variable x = m (= 0, 1, 2,..., 8, 9) and connects to the input terminal Ty. Each “NOT (m) = m” circuit thus determined determines the logical variable y = m (= 0, 1, 2,..., 8, 9).
However, when the value of the logical variable x to be determined is the same as the m value of the multi-value “AND (m) = m” circuit, the multi-value “AND (m) = m” is not used without using the “NOT (m) = m” circuit. The “m” circuit directly determines whether the logical variable x = m.
For example, if the value of the logical variable x satisfying f (x, y) = 0 is 0 (that is, when the f value = x value), the “NOT (0) = 0” circuit is not necessary, so the input terminal Tx The potential signal is input as it is to the multi-value “AND (0) = 0” circuit.
If the value of the logical variable y satisfying f (x, y) = 0 is 0 (that is, when the f value = y value), the “NOT (0) = 0” circuit is not necessary, so that the input terminal Ty Since the potential signal is input to the multi-value “AND (0) = 0” circuit as it is, both are directly connected by a conducting wire as shown in FIG.
→→ When f (5,0) = 0, the input terminal Ty is directly connected to the second input terminal of the lowest multi-value “AND (0) = 0” circuit.
→→ Similarly, when f (7,9) = 9, the input terminal Ty is directly connected to the second input terminal of the lowest multi-value “AND (9) = 9” circuit.
◆ 4) Pull-up or “up or down” connected one by one between the multi-value “OR (0) = 0” circuit set to a specific integer m = 0 and each multi-value “AND (0) = 0” circuit A “down” resistor provides input / output signal matching. Therefore, the potential v C0 ≠ v 0 .
5) Each combination of “multi-value“ NOT (...) =... Circuit ”and pull /“ up or down ”resistance in the same circuit group is each potential signal of the input terminals Tx and Ty and each multi-value“ AND ”. (0) = 0 ”Match the input part of the circuit.
6) Similarly, each of the multi-value circuit groups (= multi-value OR, AND, and NOT circuit groups) set to “specific integer m = 1 to 9” has the same function. Fulfill.
以上は10進法の場合であるが、N進法の場合なら、升目の値=0に関しては既に説明した通りで、ただ上述の「以下同様に『特定整数m=1〜9』それぞれ」が「以下同様に『特定整数m=1〜(N−1)』それぞれ」等に変わるだけである。
***
以上の通り、図12の合成・多値論理回路は「図13に示すf(x、y)の真理値表が表現する、すべての多値論理関数」を実現化・具体化できるので、新・多値論理『フージ代数』の『完全性』が証明される。しかも、『論理定数入力回路』を使わず、前述(段落番号0089〜0090)の通り1種類の基本・多値論理回路だけでそのすべての多値論理関数を実現化・具体化できるので、新・多値論理『フージ代数』の『完全』が証明される。
★★ 基本・多値論理回路1種類だけによる『フージ代数』の『完全』 ★★
***
As described above, the synthesis / multi-value logic circuit of FIG. 12 can realize and implement “all the multi-value logic functions represented by the truth table of f (x, y) shown in FIG. 13”.・ The "completeness" of the multi-valued logic "Fuji algebra" is proved. In addition, all the multi-valued logic functions can be realized and embodied by using only one type of basic / multi-value logic circuit as described above (paragraph numbers 0089 to 0090) without using the “logic constant input circuit”.・ "Complete" of multi-valued logic "Fuji algebra" is proved.
★★ “Complete” of “Fuji Algebra” with only one type of basic / multi-valued logic circuit ★★
■■ 図12に示す合成・多値論理回路の構成・個々の説明 ■■
念の為ここから、図12に示す合成・多値論理回路の構成・個々について図13に示す「簡略したf(x、y)の真理値表」を用いて具体的に説明する。ただし、最大ファン・イン、最大ファン・アウト、電流容量、多値ハザードの問題は無視している。
◆イ)図13に示すf(x、y)の真理値表の各升(ます)目にはふつう「f(x、y)=0〜9という各・具体的な整数値」が記載されるが、その記載される各・具体的な整数値を特定整数mとする各多値「OR(m)=m」回路を用意する。
もし、そこに記載されていない具体的な整数が有れば、その記載されていない具体的な整数の多値「OR(m)=m」回路、各多値「AND(m)=m」回路および「この各多値「AND(m)=m」回路の前段に接続される各多値「NOT(…)=…」回路は不要なので省略できる。
◆ロ)図13に示すf(x、y)の真理値表において、ある1つの升目の整数値、例えば整数m=0に設定したf(x、y)=0の升目を観ると全部で2つ有る(図示を簡略している為、実際にはもっと多い場合が有る。)ので、多値「OR(m)=m」回路において特定整数m=0に設定した多値「OR(0)=0」回路の入力端子数を同数の2個に設定する。
◆ハ)特定整数m=0に設定した多値「OR(0)=0」回路の入力端子数と同じ数だけ、多値「AND(m)=m」回路において特定整数m=0に設定した多値「AND(0)=0」回路を用意する。そして、その多値「OR(0)=0」回路の前段にその多値「AND(0)=0」回路を1つずつ接続する。
◆ニ)このとき、各多値「AND(m)=m」回路の入力端子数は論理変数x、yの個数2と同じ2であるが、論理変数がx、y、zの3個有ればその入力端子数は3になり、論理変数がw、x、y、zの4個有ればその入力端子数は4になり、論理変数がu、w、x、y、zの5個有ればその入力端子数は5になる。あとは各入力端子に多値「NOT(m)=m」回路を1つずつ接続する等するだけである。
上記ニ)項の通り各多値「AND(m)=m」回路の入力端子数は2個である。
■■ Configuration of the synthesis / multi-valued logic circuit shown in FIG.
As a precaution, the configuration / individual configuration of the synthesis / multi-value logic circuit shown in FIG. 12 will be specifically described with reference to the “simplified f (x, y) truth table” shown in FIG. However, the problems of maximum fan-in, maximum fan-out, current capacity, and multi-value hazard are ignored.
◆ b) Each of the squares in the truth table of f (x, y) shown in FIG. 13 is usually described as “each (specific integer value) f (x, y) = 0-9”. However, each multi-valued “OR (m) = m” circuit is prepared in which each specific integer value to be described is a specific integer m.
If there is a specific integer not described there, a multivalue “OR (m) = m” circuit of the specific integer not described, each multivalue “AND (m) = m”. The circuit and each multi-value “NOT (...) =...” Circuit connected to the previous stage of the “multi-value“ AND (m) = m ”circuit are unnecessary and can be omitted.
(B) In the truth table of f (x, y) shown in FIG. 13, when looking at the integer value of one cell, for example, the cell of f (x, y) = 0 set to integer m = 0, Since there are two (since the illustration is simplified, there may be more cases in reality), the multi-value “OR (0 (0)) is set to a specific integer m = 0 in the multi-value“ OR (m) = m ”circuit. ) = 0 ”The number of input terminals of the circuit is set to two of the same number.
◆ C) Set the specific integer m = 0 in the multi-value “AND (m) = m” circuit by the same number as the number of input terminals of the multi-value “OR (0) = 0” circuit set to the specific integer m = 0. A multi-value “AND (0) = 0” circuit is prepared. Then, one multi-value “AND (0) = 0” circuit is connected to the preceding stage of the multi-value “OR (0) = 0” circuit one by one.
◆ D) At this time, the number of input terminals of each multi-value “AND (m) = m” circuit is 2 which is the same as the number 2 of logical variables x and y, but there are 3 logical variables x, y and z. If the number of input terminals is 3, the number of input terminals is 4 if there are four logical variables w, x, y, and z, and the logical variables are 5 of u, w, x, y, and z. If there is one, the number of input terminals is five. All that remains is to connect a multi-value “NOT (m) = m” circuit to each input terminal one by one.
Each multi-value “AND (m) = m” circuit has two input terminals as described in the above section d).
◆ホ)特定整数m=0に設定した各多値「AND(0)=0」回路の出力端子を電位v0(このときm=0だからvm=v0。)以外の電位vC0(このときm=0だからvCm=vC0。)にプル・アップ又はプル・ダウンする。vC0≠v0(vCm≠vm)。
なお、電位vCmは「その特定整数m以外の整数に対応する電位」又は「いずれの整数にも対応しない独立した追加電位で、多値『OR(m)=m』回路が特定整数mと判別することが無い電位なら何でも良い電位」である。
◆ヘ)図13において整数m=0に設定したf(x、y)=0を満足する論理変数x、yの値の各組合せ(5、0)、(8、3)を確認する。
一般的には、f(x、y)=mを満足する論理変数x、yの値の各組合せを確認する。
◆ト)第1組(5、0)に対しては、入力端子Txと第1の多値「AND(0)=0」回路(ANDの特定整数m=0)の第1入力端子の間に特定整数m=5(=論理変数xの値mx)とする多値「NOT(5)=5」回路を接続し、その多値「NOT(5)=5」回路の出力端子を電位v0(ANDの特定整数m=0だからvm=v0)にプル・「アップ又はダウン」する。
一方、入力端子Tyと第1の多値「AND(0)=0」回路(このときm=0)の第2入力端子の間の場合、論理変数yの値my=0で、そのAND回路の特定値m=0と同じ値0なので、入力端子Tyをそのまま第1の多値「AND(0)=0」回路の第2入力端子に直結する。
もちろん、論理変数yの値my≠0なら、入力端子Txの場合と同様に入力端子Ty・その第2入力端子・間に、その0と違う整数「…」を特定整数とする多値「NOT(…)=…」回路を接続する等する。
また、論理変数xの値mx=0の場合が有るなら、上記の論理変数yの値my=0の場合と同様に入力端子Txはそのまま第1の多値「AND(0)=0」回路の第1入力端子に直結する。
◆ e) each multi-level "the AND (0) = 0" set to a specific integer m = 0 potential v 0 the output terminal of the circuit (this time m = 0 So v m = v 0.) Other potential v C0 ( At this time, since m = 0, it is pulled up or pulled down to v Cm = v C0 . v C0 ≠ v 0 (v Cm ≠ v m ).
The potential v Cm is “a potential corresponding to an integer other than the specific integer m” or “an independent additional potential that does not correspond to any integer, and the multi-value“ OR (m) = m ”circuit is set to the specific integer m. Any potential that is not discriminated can be used.
F) Confirm each combination (5, 0), (8, 3) of the values of the logical variables x, y satisfying f (x, y) = 0 set to the integer m = 0 in FIG.
In general, each combination of the values of logical variables x and y satisfying f (x, y) = m is confirmed.
◆ G) For the first set (5, 0), between the input terminal Tx and the first input terminal of the first multi-value “AND (0) = 0” circuit (a specific integer m = 0 of AND) certain integer m = 5 multilevel "NOT (5) = 5" to (= logical variable value m x of x) to connect the circuit, the multi-value "NOT (5) = 5" potential output terminal of the circuit to Pull “up or down” to v0 (v m = v 0 because AND is a specific integer m = 0 ).
On the other hand, in the case between the input terminal Ty and the second input terminal of the first multi-value “AND (0) = 0” circuit (where m = 0), the logical variable y value m y = 0 and the AND Since the specific value m = 0 of the circuit is 0, the input terminal Ty is directly connected to the second input terminal of the first multi-value “AND (0) = 0” circuit as it is.
Of course, if the value m y ≠ 0 of the logical variable y, as in the case of the input terminal Tx, between the input terminal Ty and its second input terminal, a multivalue “ NOT (...) =.
If there is a case where the value m x = 0 of the logical variable x, the input terminal Tx remains as it is in the first multi-value “AND (0) = 0 as in the case where the value m y = 0 of the logical variable y. Directly connected to the first input terminal of the circuit.
◆チ)第2組(8、3)に対しては、入力端子Txと第2の多値「AND(0)=0」回路(このときm=0)の第1入力端子の間に特定整数m=8(=論理変数xの値mx)とする多値「NOT(8)=8」回路を接続し、その多値「NOT(8)=8」回路の出力端子を電位v0(このときm=0だからvm=v0。)にプル・「アップ又はダウン」する。
一方、入力端子Tyと第2の多値「AND(0)=0」回路(このときm=0)の第2入力端子の間に特定整数m=3(=論理変数yの値my)とする多値「NOT(3)=3」回路を接続し、その多値「NOT(3)=3」回路の出力端子を電位v0(このときm=0だからvm=v0。)にプル・「アップ又はダウン」する。
もちろん、論理変数xの値mx=0又は論理変数yの値my=0の場合が有るなら、上記◆ト)項内の結線作業と同様に直結の結線作業をする。
◆リ)もし、図13に示すf(x、y)の真理値表においてf(x、y)=0を満足する論理変数xとyの値mx、myの組合せが他にも有れば、その組合せの数だけ上記◆ト)項または上記◆チ)項の結線作業を繰り返す。
◆ヌ)同様に、図13に示すf(x、y)の真理値表・中の★「f(x、y)=1〜9」の整数についても、その整数値ごとにその整数値をm=0の代わりに特定整数m=1〜9それぞれに設定して「上記◆ロ)〜上記◆リ)項」の結線作業を繰り返す。
◆ル)以上は10進法の場合であるが、N進法の場合なら、ただ上記★「f(x、y)=1〜9」が「f(x、y)=1〜(N−1)」等に変わるだけである。
以上で結線作業・完了。
◆ H) For the second set (8, 3), specify between the input terminal Tx and the first input terminal of the second multi-value “AND (0) = 0” circuit (in this case, m = 0) integer m = 8 (= logical variable values of x m x) to connect the multi-value "NOT (8) = 8" circuits, the multi-value "NOT (8) = 8" output terminal potential of the circuit v 0 Pull (up or down) to (v m = v 0 because m = 0 at this time).
On the other hand, a specific integer m = 3 (= the value m y of the logical variable y ) between the input terminal Ty and the second input terminal of the second multi-value “AND (0) = 0” circuit (where m = 0). Multi-value “NOT (3) = 3” circuit is connected, and the output terminal of the multi-value “NOT (3) = 3” circuit is connected to potential v 0 (since m = 0 at this time, v m = v 0 ). Pull to “up or down”.
Of course, if there is a case where the value m x = 0 of the logical variable x or the value m y = 0 of the logical variable y, the direct connection work is performed in the same manner as the connection work in the above item ( g ).
◆ Re) If Yes to other combinations of the values m x, m y logical variables x and y which satisfies f (x, y) = 0 in the truth table of f (x, y) shown in FIG. 13 If necessary, the connection work in the above item (vi) or item (v) is repeated for the number of combinations.
◆ N) Similarly, for the integer of “f (x, y) = 1 to 9” in the truth table of f (x, y) shown in FIG. Instead of m = 0, the specific integers m = 1 to 9 are set, respectively, and the connection work of “above ◆ b) to above ◆ re)” is repeated.
◆ Le) The above is the case of the decimal system, but in the case of the N-base system, the above “f (x, y) = 1 to 9” is replaced with “f (x, y) = 1 to (N− 1) "etc.
The connection work is completed.
それから、図12の合成・多値論理回路において、各・多値「OR(m)=m」回路と各・多値「AND(m)=m」回路を同時に多値「NAND(m)=m」回路で1つずつ置き換えた多値等価回路(→→図19の多値論理完全回路、段落番号[0118]。)が可能である。
もちろん、mの各整数値は図12中に示された各整数値に設定し、各・入力端子数も図●12中に示された各・入力端子数に設定する。
その等価回路になる理由は、図12中の各・多値「OR(m)=m」回路を図11(a)の多値「OR(m)=m」回路の等価回路で1つずつ置き換え、その置換え後の「多値『AND(m)=m』回路とその後段に接続される多値『NOT(m)=m』回路」の各・直列回路を多値「NAND(m)=m」回路で1つずつ置き換えると、上記の多値等価回路になる、からである。
さらに、前述(段落番号[0089〜0090])の通り、図12中の各・多値「NOT(m)=m」回路を「その全・入力端子を接続して入力端子1つにまとめた多値『NAND(m)=m』回路」等で1つずつ置き換えれば、上記の多値等価回路すなわち図12の合成・多値論理回路は多値「NAND(m)=m」回路だけで構成できることが分かる。その際に「論理定数入力回路」は必要無い。
しかも、前述(段落番号[0091]中)の通り論理変数x、yの各・論理変数範囲の変更によってN進法・2論理変数の全・多値論理関数を表現できるし、前述{段落番号[0092]や[0098]の◆ニ項)}の通り論理変数の個数を変更することができるし、あるいは、各論理変数x、yの各桁数を3桁などに変更することができる。
そういう訳で、新・多値論理『フージ(Hooji)代数』には『多値数Nに全く影響されない、1種類の多値論理による完全性、それも[完全]』という独特な効果・特徴が有る。
◆↑ 多値数Nに全く影響されない、基本・多値論理回路1種類だけ ↑◆
◆↑ による新・多値論理『フージ(Hooji)代数』の『完全』 ↑◆
Of course, each integer value of m is set to each integer value shown in FIG. 12, and each number of input terminals is also set to each number of input terminals shown in FIG.
The reason why it becomes an equivalent circuit is that each multi-value “OR (m) = m” circuit in FIG. 12 is one by one in the equivalent circuit of the multi-value “OR (m) = m” circuit in FIG. The multi-value “NAND (m)” is replaced with each series circuit of the “multi-value“ AND (m) = m ”circuit and the multi-value“ NOT (m) = m ”circuit connected to the subsequent stage” after the replacement. This is because the above-described multi-value equivalent circuit is obtained by replacing one by one with the “= m” circuit.
Further, as described above (paragraph numbers [0089 to 0090]), each of the multi-value “NOT (m) = m” circuits in FIG. 12 is “combined all the input terminals into one input terminal. If one multi-value “NAND (m) = m” circuit ”is replaced one by one, the multi-value equivalent circuit, that is, the synthesis / multi-value logic circuit of FIG. 12 is only a multi-value“ NAND (m) = m ”circuit. You can see that it can be configured. In this case, a “logic constant input circuit” is not necessary.
In addition, as described above (in paragraph number [0091]), by changing each of the logical variables x and y and the logical variable range, it is possible to express the N-ary system, all the two-valued logical functions, and the above-described {paragraph number The number of logical variables can be changed as in [0092] and [0098], or the number of digits of each logical variable x, y can be changed to 3 digits.
That's why the new multi-valued logic “Hooji Algebra” has a unique effect and feature of “completeness of one kind of multi-valued logic that is completely unaffected by the multi-valued number N, it is also [perfect]” There is.
◆ ↑ Only one type of basic / multi-valued logic circuit that is not affected by the multi-value number N at all ↑ ◆
◆ ↑ “Complete” of new multivalued logic “Hooji algebra” by ↑ ◆
◆◆◆***** 『フージ代数』における多値ワイヤードOR回路 *****◆◆◆
***
●●16)新・多値論理『フージ(Hooji)代数』に基づく多値論理回路において多値ワイヤードOR回路が成り立つことについて述べる。
最初に、図12の合成・多値論理回路(=完全回路)に多値ワイヤードOR回路を導入した合成・多値論理回路(=完全回路)を図14に示す。当然ながら、前者の回路構成に比べて後者の回路構成はかなり単純になり、その部品点数も相応に少なくなっている。
なお、図14の合成・多値論理回路において出力端子Tfにプル・アップ抵抗もプル・ダウン抵抗も接続されていないのは、常にいずれかのAND回路の出力スイッチ部がオンとなって、出力端子Tfの電位をプル・アップまたはプル・ダウンするので、そのプル・アップ抵抗もそのプル・ダウン抵抗も省略することができる、からである。
→→ 各プル抵抗が消費する電力の節約。
また、もし、図13の真理値表において数値が記入されていない升目が1つでも有れば、その升目のx値、y値の時に出力端子Tfは開放になるので、プル・アップ抵抗またはプル・ダウン抵抗の一端を出力端子Tfに接続し、他端を所定の電源線VCmに接続する必要が有る。
図14の合成・多値論理回路が図12の合成・多値論理回路と同様に図13の真理値表を満足していることは、具体的にそのx値、y値、f(x、y)値の各・整数値を図14の合成・多値論理回路に当てはめれば直ぐ判明することである。でも、単純に考えれば、「図12の合成・多値論理回路の各AND回路が各OR回路を介して出力端子Tfにその出力数値を出力する」のに対して、「図14の合成・多値論理回路の各AND回路は直接出力端子Tfにその出力数値を出力する」だけの違いである。
◆◆◆ ***** Multi-value wired OR circuit in “Fuji algebra” ********
***
●● 16) A description will be given of the fact that a multi-value wired OR circuit is realized in a multi-value logic circuit based on the new multi-value logic “Hooji algebra”.
First, FIG. 14 shows a synthesis / multi-value logic circuit (= complete circuit) in which a multi-value wired OR circuit is introduced into the synthesis / multi-value logic circuit (= complete circuit) of FIG. Of course, the latter circuit configuration is considerably simpler than the former circuit configuration, and the number of components is correspondingly reduced.
In the synthesis / multi-valued logic circuit of FIG. 14, the pull-up resistor and the pull-down resistor are not connected to the output terminal Tf because the output switch part of one of the AND circuits is always on and the output This is because the potential of the terminal Tf is pulled up or pulled down, so that the pull-up resistor and the pull-down resistor can be omitted.
→→ Power consumption by each pull resistor.
In addition, if there is at least one cell in which no numerical value is entered in the truth table in FIG. Attach one end of the pull-down resistor to the output terminal Tf, required there to connect the other end to a predetermined power supply line V Cm.
The fact that the synthesis / multi-value logic circuit of FIG. 14 satisfies the truth table of FIG. 13 in the same manner as the synthesis / multi-value logic circuit of FIG. 12 indicates that its x value, y value, f (x, y) If each integer value is applied to the synthesis / multi-value logic circuit of FIG. However, if simply considered, “each AND circuit of the synthesis / multi-value logic circuit of FIG. 12 outputs the output numerical value to the output terminal Tf via each OR circuit”, whereas “synthesis / The only difference is that each AND circuit of the multi-value logic circuit outputs its output value directly to the output terminal Tf.
それから、その回路構成や部品点数の課題に加えて図12の合成・多値論理回路には『非常に不便で、実用的でない』という「解決すべき課題」が有るが、「多値ワイヤードOR回路を用いている図14の合成・多値論理回路」はその課題を解決することができる。
◆例1:図13の真理値表においてその整数値が例えば6である升目が全部で80個有り、6以外の整数値0〜5、7〜9それぞれの升目が2、3個ずつ有る場合、多値「OR(6)=6」回路の総・入力端子数だけ80個必要になる。他のそれは2、3個ずつである。
◆例2:図13の真理値表においてm=0〜9の各整数値である升目の数が均一的にほぼ10個ずつの場合、各・多値「OR(m)=m」回路の総・入力端子数も均一的にほぼ10個ずつである。
***
要するに、図13の真理値表の数値パターンによって、すなわち、同一整数値の升目がいくつずつ有るかによって、各・多値「OR(m)=m」回路の総・入力端子数が変動してしまい、しかも、その書き込まれる整数値mが片寄ると、特定の多値「OR(m)=m」回路の総・入力端子数だけ特に多くなってしまう。
その結果、図13の真理値表で示される多値論理関数を合成・多値論理回路として具体化、実現化する際に非常に不便で、実用的ではない。
一方、図14の合成・多値論理回路では多値ワイヤードOR回路を用いている為、「図13の真理値表の数値パターンによってその入力端子数が変動する各・多値『OR(m)=m』回路そのもの」が無いので、図14の合成・多値論理回路は上述した「解決すべき課題」を解決することができる。加えて前述の通り図14の合成・多値論理回路は図12の合成・多値論理回路に比較してその回路構成が簡単になり、その部品点数が少なくなるので、極めて実用的で、とても便利である。
これらの事は、後述する「図15の合成・多値論理回路(多値数N=3)と図16の真理値表」の関係、及び、その発展・派生回路(多値数N=4、5、6……10。)の関係でも同様である。
Then, in addition to the problem of the circuit configuration and the number of parts, the composite / multi-value logic circuit of FIG. 12 has a “problem to be solved” that is “very inconvenient and impractical”, but “multi-value wired OR” The synthesis / multi-valued logic circuit of FIG. 14 using a circuit can solve the problem.
◆ Example 1: In the truth table of FIG. 13, there are a total of 80 squares whose integer value is 6, for example, and there are 2 or 3 squares of integer values 0 to 5 and 7 to 9 other than 6. The total number of input terminals of the multi-value “OR (6) = 6” circuit is 80. The others are two or three.
◆ Example 2: In the truth table of FIG. 13, when the number of squares each having an integer value of m = 0 to 9 is uniformly about 10, each multi-value “OR (m) = m” circuit The total number of input terminals is about 10 uniformly.
***
In short, depending on the numerical pattern of the truth table of FIG. 13, that is, depending on how many squares of the same integer value are present, the total number of input terminals of each multi-value “OR (m) = m” circuit varies. In addition, if the integer value m to be written is shifted, the total number of input terminals of the specific multi-value “OR (m) = m” circuit is particularly increased.
As a result, it is very inconvenient and not practical when the multi-value logic function shown in the truth table of FIG. 13 is embodied and realized as a synthesis / multi-value logic circuit.
On the other hand, since the composite / multi-value logic circuit of FIG. 14 uses a multi-value wired OR circuit, “each multi-value“ OR (m) whose number of input terminals varies depending on the numerical pattern of the truth table of FIG. = M ”circuit itself” does not exist, and therefore, the synthesis / multi-valued logic circuit of FIG. 14 can solve the “problem to be solved” described above. In addition, as described above, the synthesis / multi-value logic circuit of FIG. 14 has a simpler circuit configuration and a smaller number of parts than the synthesis / multi-value logic circuit of FIG. Convenient.
These are the relationship between the “composite / multi-value logic circuit (multi-value number N = 3) in FIG. 15 and truth table in FIG. 16” described later, and its development / derivation circuit (multi-value number N = 4). The same applies to the relationship of 5, 6,.
◆◆◆***** 『完全』回路の(3次元の)IC・LSI化など *****◆◆◆
***
●●17)『完全』回路の(3次元の)プログラマブル・ロジック・アレイ化、セミ・オーダー(3次元)IC・LSI化などが可能なことについて説明する。
図15の合成・多値論理回路は「図12の合成・多値論理回路において、両論理変数x、yの多値数を10から3に変更し、3個の多値「OR(m)=m」回路(m=0、1、2)の代わりに多値ワイヤードOR回路を用いて回路構成を簡単化し、標準化したもの」である。
なお、複数のAND回路のうち、必ずどれか1つがオンなので、プル・アップ抵抗またはプル・ダウン抵抗などの接続は省略することができる。つまり、それを接続する必要は無くなる。 →→ 消費電力の節約。
これにより、(3次元の)プログラマブル・ロジック・アレイ化、セミ・オーダー(3次元)IC・LSI化などが実現し易くなり、便利である。
◆◆ 多値ワイヤードOR回路が成り立つ効用 ◆◆
そして、図16は、図15中の関数f(x、y)=mzの真理値表・図で、書き直すと以下の通りである。
◆x=0、1、2
◆y=0、1、2
◆f(x、y)=mz、(mz=m0、m1、……、m7、m8)
f(0、0)=m0、 f(0、1)=m1、 f(0、2)=m2
f(1、0)=m3、 f(1、1)=m4、 f(1、2)=m5
f(2、0)=m6、 f(2、1)=m7、 f(2、2)=m8
ただし、2≧m0、m1、m2、m3、m4、m5、m6、m7、m8≧0
◆◆◆ ***** “Complete” circuit (three-dimensional) IC / LSI, etc. ******* ◆◆◆◆
***
●● 17) Explain that “complete” circuits (three-dimensional) programmable logic arrays, semi-order (three-dimensional) ICs and LSIs, etc. are possible.
The synthesis / multi-value logic circuit of FIG. 15 changes the multi-value number of both logical variables x and y from 10 to 3 in the synthesis / multi-value logic circuit of FIG. = M ”A circuit configuration is simplified and standardized by using a multi-value wired OR circuit instead of the circuit (m = 0, 1, 2)”.
Note that since any one of the plurality of AND circuits is always on, connection of a pull-up resistor or a pull-down resistor can be omitted. That is, there is no need to connect it. →→ Power saving.
This facilitates implementation of (three-dimensional) programmable logic array and semi-order (three-dimensional) IC / LSI, which is convenient.
◆◆ Benefits of multi-value wired OR circuit ◆◆
FIG. 16 is a truth table / diagram of the function f (x, y) = m z in FIG. 15 and is rewritten as follows.
X = 0, 1, 2
◆ y = 0, 1, 2
◆ f (x, y) = m z , (m z = m0, m1,..., M7, m8)
f (0,0) = m0, f (0,1) = m1, f (0,2) = m2
f (1, 0) = m3, f (1,1) = m4, f (1,2) = m5
f (2,0) = m6, f (2,1) = m7, f (2,2) = m8
However, 2 ≧ m0, m1, m2, m3, m4, m5, m6, m7, m8 ≧ 0
m0〜m8の各整数値は0、1、2のいずれか1つである為、m0の値は3通り、m1の値は3通り、……、m8の値は3通り有るので、結局、「これら全部で表現できる多値論理関数f(x、y)の種類」=(3通り)×(3通り)×(3通り)×(3通り)×(3通り)×(3通り)×(3通り)×(3通り)×(3通り)=3の9乗・種類=19,683種類有る。
それから、図15では各・多値「NOT(m)=m」回路の横に「単なる導線」が1つずつ画かれ、入力端子Tx、Tyそれぞれと各・多値「AND(mz)=mz」回路・入力部の間が各・多値「NOT(m)=m」回路を介して接続される場合と、直結される場合が有ることが「各接続端子と各点線」で示されている。
図16において論理変数xの値mx(0、1、2のうち、いずれか1つ)と多値論理関数f(x、y)の値mzが同じ(mx=mz)とき、入力端子Txは「そのmzを特定整数とする多値『AND(mz)=mz』回路の第1入力端子」に直結される。
一方、論理変数xの値mxと多値論理関数f(x、y)の値mzが異なる(mx≠mz)とき、入力端子Txは図15の様に多値「NOT(mx)=mx」回路を介して「そのmzを特定整数とする多値『AND(mz)=mz』回路の第1入力端子」に接続される。
同様に、入力端子Tyと各・多値「AND(mz)=mz」回路の第2入力端子の接続についても、多値「NOT(my)=my」回路を介して接続したり、あるいは、直結したりする。ただし、myは論理変数yの値で、0、1、2のうち、いずれか1つである。
Since each integer value of m0 to m8 is one of 0, 1, and 2, m0 has three values, m1 has three values,..., m8 has three values. “Types of multi-valued logical function f (x, y) that can be expressed in all of these” = (3 types) × (3 types) × (3 types) × (3 types) × (3 types) × (3 types) × There are (3 ways) × (3 ways) × (3 ways) = 3 to the 9th power and types = 19,683 types.
Then, in FIG. 15, one “simple conductor” is drawn next to each multi-value “NOT (m) = m” circuit, and each multi-value “AND (m z ) = The “m z ” circuit / input section is connected via each / multi-valued “NOT (m) = m” circuit and may be directly connected by “each connecting terminal and each dotted line”. Has been.
In FIG. 16, when the value m x of the logical variable x (one of 0, 1, 2) and the value m z of the multi-valued logical function f (x, y) are the same (m x = m z ), The input terminal Tx is directly connected to “a first input terminal of a multi-value“ AND (m z ) = m z ”circuit whose m z is a specific integer”.
On the other hand, the value of a logical variable x m x and the multi-level logic function f (x, y) when the value m z are different (m x ≠ m z), the multi-level "NOT (m as the input terminal Tx 15 x ) = m x ”circuit is connected to“ a first input terminal of a multi-value “AND (m z ) = m z ” circuit whose m z is a specific integer ”.
Similarly, the connection between the input terminal Ty and the second input terminal of each multi-value “AND (m z ) = m z ” circuit is also connected via the multi-value “NOT (m y ) = m y ” circuit. Or connected directly. However, m y is the value of a logical variable y, of 0,1,2 is any one.
なお、m0〜m8の各整数値を順々に0〜8の各整数に設定すると、図15の合成・多値論理回路は3値・9値コード変換回路になる。もちろん、yがその3値表現の1桁目で、xがその3値表現の2桁目である。この場合、「AND(0)=0」回路の特定電位供給手段は例えば電源線V0になり、「AND(1)=1」回路の特定電位供給手段は例えば電源線V1になり、……「AND(9)=9」回路の特定電位供給手段は例えば電源線V9になる。
また、論理変数x、y及び多値論理関数f(x、y)3つそれぞれの多値数を自由に設定することができる。全・多値数を同一に設定しても良いし、各・多値数を互いに違う値に設定しても良い。
さらに、それら3つの多値数Nが同一で4のとき、「表現できる多値論理関数f(x、y)の種類」は4の16乗・種類≒4,294,968,000種類も有る。しかも、そのぼう大な種類の多値論理関数は「図15の合成・多値論理回路において『多値[AND(…)=…]回路、2つの多値[NOT(…)=…]回路および2つの導線』の組合せを9組から16組に増やし、多値数の1増加に伴う電源と電源線を1つずつ増やす」だけで実現することができる。
同様に、その同一多値数が5のとき「表現できる多値論理関数f(x、y)の種類」は5の25乗・種類≒2.980233×(10の17乗)種類で、図15の合成・多値論理回路において上記・組合せをさらに16組から25組に増やす等するだけで良い。
同じく、その同一多値数が10のとき「表現できる多値論理関数f(x、y)の種類」は10の100乗・種類で、図15の合成・多値論理回路において上記・組合せをさらに25組から100組に増やす等するだけで良い。
そんな訳で、少ない部品点数の割りには「表現できる多値論理関数f(x、y)の種類」はその同一多値数Nの増加と共に超・爆発的に増えて行くことになる。
★参 考:特開2007−035233号の段落番号[0031〜0033]。
しかも、後述(段落番号0108)する通り論理変数x、論理変数y及び多値論理関数f(x、y)の各・多値数が違っても構わない。同一である必要は無い。→対応柔軟性。
この様な超・爆発的な増加とその対応柔軟性は、図14、図15の各合成・多値論理回路などをプログラマブル・3次元化ロジック・アレイ、セミ・オーダー・3次元化IC・LSIなどで実用化する際に、極めて強力な武器・効能になる。
If the integer values m0 to m8 are sequentially set to integers 0 to 8, the synthesis / multi-value logic circuit of FIG. 15 becomes a ternary / 9-value code conversion circuit. Of course, y is the first digit of the ternary representation and x is the second digit of the ternary representation. In this case, the specific potential supply means of the “AND (0) = 0” circuit is, for example, the power supply line V 0 , the specific potential supply means of the “AND (1) = 1” circuit is, for example, the power supply line V 1 ,. The specific potential supply means of the “AND (9) = 9” circuit is, for example, the power supply line V 9 .
In addition, the multi-value number of each of the three logical variables x and y and the three multi-value logic functions f (x, y) can be freely set. All / multi-value numbers may be set to the same value, or each / multi-value number may be set to a different value.
Further, when the three multi-value numbers N are the same and are 4, the “types of multi-valued logic function f (x, y) that can be expressed” are 4 16 · type≈4,294,968,000 types. . Moreover, such a large type of multi-value logic function is “a multi-value [AND (...) =...] Circuit, two multi-value [NOT (...) =...] Circuit in the synthesis / multi-value logic circuit of FIG. The number of combinations of “and two conductors” is increased from 9 to 16 and the power supply and the power line are increased one by one as the multi-value increases by one ”.
Similarly, when the same multi-value number is 5, the “type of multi-valued logical function f (x, y) that can be expressed” is 5 to the 25th power and the kind≈2.980233 × (10 to the 17th power), In the synthesis / multi-valued logic circuit of FIG. 15, the above-mentioned combinations need only be increased from 16 sets to 25 sets.
Similarly, when the same multi-value number is 10, the “type of multi-valued logic function f (x, y) that can be expressed” is 10 to the 100th power / type. It is only necessary to increase the number from 25 to 100.
For this reason, the “number of types of multi-valued logic functions f (x, y) that can be expressed” increases with an increase in the same multi-value number N for a small number of parts.
* Reference: Paragraph number [0031 to 0033] of JP-A-2007-035233.
In addition, as will be described later (paragraph number 0108), each of the multi-value numbers of the logic variable x, the logic variable y, and the multi-value logic function f (x, y) may be different. They do not have to be identical. → Flexibility.
This super-explosive increase and the flexibility to deal with it are possible to program each of the synthesized / multi-valued logic circuits of FIG. 14 and FIG. When it is put to practical use, it becomes an extremely powerful weapon and effect.
具体的な各多値論理回路として、例えば以下の様なものが有る。
◆例1:図23、図24に非同期型・多値「NOT(m)=m」回路の2例を示し、図25〜図26、図28に非同期型・多値「AND(m)=m」回路の3例を示し、図30に非同期型・多値「OR(m)=m」回路の1例を示す。
なお、図24の非同期型・多値NOT回路においてダイオード225は「トランジスタ201がオフで、トランジスタ202、228がオンのとき電源線Vmから抵抗223、トランジスタ228、抵抗220及びトランジスタ202を経て電源線Vm−1へ電流が流れるのを阻止する為のもの」である。ダイオード225の順電圧の為にトランジスタ201、228の直列回路がトランジスタ224をオフ駆動できないときはダイオード226と抵抗227が必要である。しかし、トランジスタ201がオフで、トランジスタ202がオンのときトランジスタ228がオフになるなら、ダイオード225、226を挿入接続する必要は無いし、抵抗227も不要である。
★参 照:特許文献3(特開2005−236985号)の図10と図9の各回路。
図23の非同期型・多値NOT回路は、図43に示す先願・第1、第2発明共通の実施例(=同期型・多値NOT回路)においてD型フリップ・フロップ127などを取り外す等して非同期型・多値NOT回路に変更したものである。
◆例2:所定数または9個の「図47に示す先願・第1、第2発明共通の実施例14中の同期型AND回路」と所定数または18個の「図32に示す先願・第1、第2発明共通の実施例1の同期型NOT回路」又は「図42に示す先願・第1、第2発明共通の実施例17の同期型NOT回路」で図14、図15の各合成・多値論理回路を同期型に変更し、その全・同期型NOT回路とその全・同期型AND回路の両ラッチングのタイミングをずらした同期型合成・多値論理回路が可能である。
当然の事ながら、この同期型合成・多値論理回路は多値ハザードを除去することができる。しかも、図32に示す先願・第1、第2発明共通の実施例1においてトランジスタ41のゲート端子をQ端子からQバー端子に接続変更すれば、実施例1は同期型NOT回路から同期型EVEN回路(=同期型EQUAL回路)に変わるので、図14、図15の各図中において各NOT回路の隣りに示された各導線は必要無くなる。
この場合も、「全多値数Nの増加」を前述(段落番号[0106]。)と同様に、そして、「互いに異なる各多値数Nへの変更」を次項の様に行うことができる。
Specific examples of the multi-value logic circuit include the following.
◆ Example 1: FIGS. 23 and 24 show two examples of asynchronous / multi-value “NOT (m) = m” circuits, and FIGS. 25 to 26 and FIG. 28 show asynchronous / multi-value “AND (m) = Three examples of the “m” circuit are shown, and FIG. 30 shows one example of the asynchronous multi-value “OR (m) = m” circuit.
In the asynchronous / multi-valued NOT circuit of FIG. 24, the diode 225 indicates that “when the transistor 201 is off and the transistors 202 and 228 are on, power is supplied from the power line V m through the resistor 223, transistor 228, resistor 220 and transistor 202 For preventing the current from flowing to the line V m−1 ”. When the series circuit of the transistors 201 and 228 cannot drive the transistor 224 off due to the forward voltage of the diode 225, the diode 226 and the resistor 227 are necessary. However, when the transistor 201 is off and the transistor 228 is off when the transistor 202 is on, the diodes 225 and 226 do not need to be inserted and connected, and the resistor 227 is also unnecessary.
* Reference: Each circuit of FIG. 10 and FIG. 9 of patent document 3 (Unexamined-Japanese-Patent No. 2005-236985).
23 removes the D-type flip-flop 127 and the like in the embodiment (= synchronous / multi-value NOT circuit) common to the prior application, first and second inventions shown in FIG. Thus, the asynchronous type multi-value NOT circuit is changed.
Example 2: Predetermined number or nine "prior application shown in FIG. 47 / synchronous AND circuit in embodiment 14 common to first and second inventions" and predetermined number or eighteen "prior application shown in FIG. 14 and FIG. 15 in the “synchronous NOT circuit of the first embodiment common to the first and second inventions” or “the synchronous NOT circuit of the seventeenth embodiment common to the first and second inventions shown in FIG. 42”. Synthetic / multi-valued logic circuits are possible by changing the synthesizing / multi-valued logic circuit to synchronous type and shifting the latching timing of both the all / synchronous NOT circuit and the all / synchronous AND circuit. .
As a matter of course, this synchronous synthesis / multi-value logic circuit can eliminate multi-value hazards. In addition, if the gate terminal of the transistor 41 is changed from the Q terminal to the Q bar terminal in the first embodiment common to the prior application, first and second inventions shown in FIG. 32, the first embodiment is changed from the synchronous NOT circuit to the synchronous type. Since the circuit changes to an EVEN circuit (= synchronous EQUAL circuit), the conductors shown next to each NOT circuit in each of FIGS. 14 and 15 are not necessary.
Also in this case, “increase in all multi-value numbers N” can be performed in the same manner as described above (paragraph number [0106]), and “change to multi-value numbers N different from each other” can be performed as described in the next section. .
◆◆◆**** 互いに多値数が異なる論理変数等に対する対応柔軟性 ****◆◆◆
***
●●18)新・多値論理『フージ(Hooji)代数』の『複数の論理変数およびそれらの論理関数それぞれの多値数N(≧2)が互いに異なっていても対応できる柔軟な対応性』という特徴について以下説明する。
★参 照:多値数N=2の場合については → 段落番号[0085〜0086]。
多値論理回路システムによっては、多値数N(≧2)が互いに異なる複数の「データ又は情報」が入(い)り交(ま)じった複合情報などを取り扱う場合が有る。例えば、光の3原色(青赤緑)の多値数「3」、陽画と陰画の多値数「2」、他にも「明るさの多段階」という多値数、「青赤緑の配合割合」という多値数などである。
この様な場合、互いに多値数N(≧2)の異なる多値論理回路を混在して組むことになるが、「その多値数の大きい方の多値論理」は「その多値数の小さい方の多値論理」を完全に包含し、前者が後者に対して互換性が有った方が良い。
新・多値論理『フージ(Hooji)代数』の場合、前述(段落番号[0087]。)の通り前者は後者(多値数N≧2)を土台にして組み上げられているので、当然の事ながら前者は後者を包含し、後者に対して互換性が有る。
また、前述した図12の合成・多値論理回路では多値AND回路と多値OR回路の多値数N1(≧2)に対して、論理変数xの多値数N2(≧2)は常に同じである必要は無いし、論理変数yの多値数N3(≧2)も常に同じである必要は無い。N1≠N2又はN1≠N3の場合が有っても構わない。さらに、N2とN3も常に同じである必要は無い。N1≠N2又はN1≠N3又はN2≠N3の場合が有っても構わない。
◆例1:段落番号[0106]中の3値・9値コード変換回路。
◆例2:図13の真理値表において論理変数xだけその変数範囲を例えば0〜7にする場合は、図12中で入力端子Txに接続された多値「NOT(m)=m」回路のうち、m=8、9となる多値「NOT(8)=8」回路と多値「NOT(9)=9」回路を取り外し、その取外しによって入力端子数が1つになった多値「AND(m)=m」回路も取り外せば、その多値数の変更に対応できる。
この場合、各多値「AND(8)=8」回路と各多値「AND(9)=9」回路のうち、その入力が直接入力端子Txに接続された多値AND回路が有れば、その多値AND回路も「それに接続された多値NOT回路」も不要なので、取り外すことができる。
この例2のことは、当然のことながら、論理変数yについても同様に当てはまる。
その結果、『[複数の論理変数およびそれらの関数]それぞれの多値数N(≧2)が互いに異なっていても対応できる柔軟な対応性』が新・多値論理『フージ(Hooji)代数』に有る。
一方、前述(段落番号[0085]後半と段落番号[0087]後半。)した従来の「AND回路、OR回路、反転回路、リテラル回路およびサイクリング回路」で構成される多値論理回路の場合、互いに多値数の異なる「反転回路同士、リテラル回路同士およびサイクリング回路同士」では包含が成り立たず、互換性が全く無いので、新・多値論理『フージ代数』の様な柔軟な対応性が無い。
★参 考:非特許文献3のp.19〜p.20。
***
●● 18) “Multi-valued logic“ Hooji algebra ”” “Flexible correspondence that can cope with multiple logical variables and multi-valued numbers N (≧ 2) of each of those logical functions” The characteristics will be described below.
★ Reference: For multi-value number N = 2 → paragraph number [0085 to 0086].
Depending on the multi-value logic circuit system, there are cases where a plurality of “data or information” having different multi-value numbers N (≧ 2) are handled. For example, the multi-value number “3” for the three primary colors of light (blue-red-green), the multi-value number “2” for positive and negative images, and the multi-value number “multi-level of brightness”, “blue-red-green” It is a multi-value number such as “mixing ratio”.
In such a case, multi-value logic circuits having different multi-value numbers N (≧ 2) are mixed together, but “the multi-value logic having the larger multi-value number” is “the multi-value number of the multi-value number”. It is better to completely include the “smaller multi-valued logic” and the former is compatible with the latter.
In the case of the new multi-value logic “Hooji algebra”, the former is built on the latter (multi-value number N ≧ 2) as described above (paragraph number [0087]). However, the former includes the latter and is compatible with the latter.
In the above-described synthesis / multi-value logic circuit of FIG. 12, the multi-value number N2 (≧ 2) of the logical variable x is always equal to the multi-value number N1 (≧ 2) of the multi-value AND circuit and multi-value OR circuit. It does not have to be the same, and the multi-value number N3 (≧ 2) of the logical variable y does not always have to be the same. There may be cases where N1 ≠ N2 or N1 ≠ N3. Furthermore, N2 and N3 need not always be the same. There may be cases where N1 ≠ N2 or N1 ≠ N3 or N2 ≠ N3.
Example 1: A ternary / nine-value code conversion circuit in paragraph number [0106].
Example 2: In the truth table of FIG. 13, when the variable range of the logical variable x is set to 0 to 7, for example, a multi-value “NOT (m) = m” circuit connected to the input terminal Tx in FIG. Among them, the multi-value “NOT (8) = 8” circuit where m = 8, 9 and the multi-value “NOT (9) = 9” circuit are removed, and the multi-value where the number of input terminals becomes one by the removal. If the “AND (m) = m” circuit is also removed, the change of the multi-value number can be handled.
In this case, if there is a multi-value AND circuit whose input is directly connected to the input terminal Tx among each multi-value “AND (8) = 8” circuit and each multi-value “AND (9) = 9” circuit. The multi-value AND circuit and the “multi-value NOT circuit connected to it” are unnecessary and can be removed.
This example 2 naturally applies to the logical variable y as well.
As a result, “[multiple logical variables and their functions] flexible correspondence that can be handled even if each multi-value number N (≧ 2) is different from each other” is a new multi-value logic “Hooji algebra” There is.
On the other hand, in the case of the multi-value logic circuit composed of the conventional “AND circuit, OR circuit, inverting circuit, literal circuit and cycling circuit” described above (paragraph number [0085] latter half and paragraph number [0087] latter half), Since "inversion circuits, literal circuits, and cycling circuits" with different multi-value numbers are not included and incompatible, there is no flexible correspondence like the new multi-value logic "Fuji algebra".
* Reference: Non-Patent Document 3 p. 19-p. 20.
◆◆◆********* 前段2値回路との良好な接続性 *********◆◆◆
***
●●19)新・多値論理『フージ(Hooji)代数』の『前段に2値回路を接続するとき、その接続性が極めて良く、その間に特別なインターフェイス(例:2値・多値コード変換手段。)が必要無い』という独特な効果・特徴について以下説明する。
新・多値論理『フージ代数』に基づく各・多値論理回路の場合、その判別手段が根本的に判別することは結局「各・判別内容に対して肯定か否定かを示す信号、肯定・否定信号(二者択一信号)」つまり「各・判別内容に対してYesかNoかを示す信号、Yes・No信号(二者択一信号)、2値信号みたいなもの」なので、基本的にその前段2値回路の出力信号との相性(あいしょう)がとても良い。
従って、あとは以下の通りその前段2値回路の出力部とそれら多値論理回路の入力部をマッチング(整合)させるだけである。
◆a)その前段2値回路がHレベルとLレベルの2つを出力する場合:
その多値論理回路が「肯定」と判別する入力判別範囲内にその2値回路のHレベル、Lレベルのうち一方の出力レベル範囲がすっぽり入(はい)り、その多値論理回路が「否定」と判別する入力判別範囲内にその他方の出力レベル範囲がすっぽり入る様にマッチング(整合)させれば良い。
◆b)その前段2値回路の出力部がオープン・コレクタ又はオープン・ドレイン等の場合:
図11、図12、図14、図15の各回路中の各・多値「NOT(…)=…」回路の様にそれら多値論理回路の出力端子にプル・アップ抵抗手段またはプル・ダウン抵抗手段を接続し、その2値回路が出力するHレベル、Lレベルの各・出力レベル範囲内について上記◆a)項と同様にマッチング(整合)させれば良い。
なお、◆a)項、◆b)項どちらの場合も、H、L両レベルが対応する両・電源電位は「多値回路の最低電位〜最高電位のうち、いずれか2つの電源電位」なら何でも良い。例えば10進法なら、その両・電源電位は「v0とv1」、「v4とv5」、「v8とv9」、「v5とv7」、「v3とv8」、「v0とv9」、「v0未満とv9を超えた電位(どちらの電位も数値と対応しない電位。)」など。
そういう訳で、『前段に2値回路を接続するとき、その接続性が極めて良く、その間に特別なインターフェイスが必要無い』という独特な効果・特徴が新・多値論理『フージ代数』に有ることが分かる。
◆◆◆ ********* Good connectivity with the binary circuit in the previous stage ********
***
●● 19) When connecting a binary circuit to the previous stage of the new multi-valued logic “Hooji Algebra”, its connectivity is extremely good, and a special interface (eg, binary / multi-value code conversion) A unique effect / characteristic that “means is not necessary” will be described below.
In the case of each multi-value logic circuit based on the new multi-value logic “Fuji algebra”, the discrimination means that the discrimination means fundamentally is “a signal indicating whether each discrimination content is positive or negative, “Negative signal (binary choice signal)”, that is, “A signal indicating yes or no for each discrimination content, yes / no signal (binary choice signal), binary signal”, etc. In addition, the compatibility with the output signal of the preceding binary circuit is very good.
Therefore, all that remains is to match the output part of the preceding binary circuit and the input part of the multi-value logic circuit as follows.
◆ a) When the preceding binary circuit outputs two signals, H level and L level:
The output level range of one of the H level and L level of the binary circuit is completely within the input discriminating range in which the multilevel logic circuit determines “Yes”, and the multilevel logic circuit is It is only necessary to perform matching so that the other output level range completely falls within the input determination range for determining "."
◆ b) When the output part of the preceding binary circuit is open collector or open drain:
Pull-up resistor means or pull-down at the output terminals of these multi-valued logic circuits as in the multi-value “NOT (...) =...” Circuit in each circuit of FIGS. 11, 12, 14, and 15. It is only necessary to connect a resistance means and match each of the output level range of the H level and L level output from the binary circuit in the same manner as in the above item a).
In both of the items ◆ a) and ◆ b), if both the power supply potentials corresponding to both the H and L levels are “two power supply potentials among the lowest potential to the highest potential of the multi-value circuit”. anything is fine. For example, in the decimal system, both the power supply potentials are “v 0 and v 1 ”, “v 4 and v 5 ”, “v 8 and v 9 ”, “v 5 and v 7 ”, “v 3 and v 8”. ”,“ V 0 and v 9 ”,“ potential less than v 0 and greater than v 9 (both potentials do not correspond to numerical values) ”, and the like.
That's why the new multi-valued logic “Fuji Algebra” has a unique effect and feature that “when connecting a binary circuit in the previous stage, its connectivity is very good and no special interface is required between them” I understand.
◆◆◆********* 後段2値回路との良好な接続性 *********◆◆◆
***
●●20)新・多値論理『フージ(Hooji)代数』の『後段に2値回路を接続するとき、その接続性が極めて良く、その間に特別なインターフェイス(例:多値・2値コード変換手段。)が必要無い』という独特な効果・特徴について以下説明する。
実際の2具体例として以下のものが有る。
◆例1:特開2006−190239号・図5の回路中の「各AND多値回路」と「その後段の各2値回路。
◆例2:特開2007−035233号・図11〜12両図に示す回路中の「図11に示す各多値NOT回路」とその後段の「図12に示す各2値NOR回路」。
***
一方、多値論理分野ではよく知られている従来のウカシェヴィッチ型多値論理回路などの場合、前段でも後段でも2値回路との接続性が悪く、その間に特別なインターフェイス(2値・多値コード変換手段と多値・2値コード変換手段)が必要である。
★参 考:非特許文献3のp.13の図1.2。
***
●● 20) New multi-valued logic “Hooji algebra” “When connecting a binary circuit in the latter stage, the connectivity is very good, and there is a special interface (eg, multi-value / binary code conversion) A unique effect / characteristic that “means is not necessary” will be described below.
There are the following two actual examples.
Example 1: “Each AND multi-value circuit” in the circuit of JP-A-2006-190239 and FIG.
Example 2: “Each multi-value NOT circuit shown in FIG. 11” and “Each binary NOR circuit shown in FIG. 12” in the circuit shown in FIGS.
***
On the other hand, in the case of a conventional Ukasevich-type multi-value logic circuit well known in the multi-value logic field, the connectivity with the binary circuit is poor both at the front and rear stages, and a special interface (binary / multi A value code conversion means and a multi-value / binary code conversion means) are required.
* Reference: Non-Patent Document 3 p. 13 of FIG.
◆◆◆** 図12、図14〜図15、図17〜図21の各回路で1方向スイッチの使用可能性 *◆◆◆
***
●●21)結論から言えば、1方向性出力スイッチの使用は可能である。前述(段落番号[0088〜0103]。)した図12、図14、図15の各合成・多値論理回路(=多値論理完全回路)では主に「その出力スイッチ部に双方向性スイッチング手段を使用する各種の基本・多値論理回路」を使用して、すべての多値論理関数を実現することができる『多値論理完全回路』について説明した。
しかし、図12、図14、図15の各合成・多値論理回路において「その出力部にプル・アップ抵抗あるいはプル・ダウン抵抗が接続された基本・多値論理回路」それぞれに関しては、その出力スイッチ部は何も双方向性スイッチング手段である必要は無い。「その出力部にプル・アップ抵抗が接続された基本・多値論理回路」それぞれは「その出力スイッチ部が逆阻止型または『逆阻止能力の無いタイプ(例:逆導通型、逆導電型等。)』のプル・ダウン・スイッチング手段である基本・多値論理回路」でも別に構わない。なお、その逆導通型には例えば内蔵ダイオードを持つMOS・FET等が有り、その逆導電型には例えばバイポーラ・トランジスタ等が有る。
一方、「その出力部にプル・ダウン抵抗が接続された基本・多値論理回路」それぞれは「その出力スイッチ部が逆阻止型あるいは『逆阻止能力の無いタイプ』のプル・アップ・スイッチング手段である基本・多値論理回路」でも別に構わない。もちろん、「その出力部にプル・アップ抵抗、プル・ダウン抵抗どちらを接続しても構わない基本・多値論理回路」それぞれはその抵抗のプル方向に応じて「その出力スイッチ部が『逆阻止型あるいは逆阻止能力の無いタイプ』の『プル・アップ・スイッチング手段かプル・ダウン・スイッチング手段』である基本・多値論理回路」を使うことになる。
これらの場合、図12の合成・多値論理回路では「1方向プル出力スイッチを用いた『多値NOT回路と多値AND回路』」及び「双方向性出力スイッチを用いた多値OR回路」の少なくとも3回路が完全系を成し、図14、図15の各合成・多値論理回路では「1方向プル出力スイッチを用いた多値NOT回路」、「双方向性出力スイッチを用いた多値AND回路」及び多値ワイヤードOR回路の少なくとも3回路が完全系を成す。
◆◆◆ ** Possibility of using a one-way switch in each of the circuits of FIGS. 12, 14 to 15, and 17 to 21.
***
●● 21) From the conclusion, it is possible to use a unidirectional output switch. In each of the composite / multi-value logic circuits (= multi-value logic complete circuit) of FIGS. 12, 14, and 15 described above (paragraph numbers [0088 to 0103]), the bidirectional switch means is mainly used in the output switch section. "Multi-valued logic complete circuit" that can realize all multi-valued logic functions using "various basic / multi-valued logic circuits that use" is explained.
However, in each of the composite / multi-value logic circuits of FIGS. 12, 14, and 15, the output of each “basic / multi-value logic circuit having a pull-up resistor or pull-down resistor connected to the output portion” is output. The switch part need not be any bidirectional switching means. Each of the "basic / multi-valued logic circuit with a pull-up resistor connected to its output section" is "the output switch section is a reverse blocking type or a type with no reverse blocking capability (eg, reverse conduction type, reverse conduction type, etc.) )) ”, Which is a pull-down switching means. The reverse conduction type includes, for example, a MOS • FET having a built-in diode, and the reverse conductivity type includes, for example, a bipolar transistor.
On the other hand, each of the "basic / multi-valued logic circuit with a pull-down resistor connected to its output part" is a pull-up switching means of "the output switch part is a reverse blocking type or a type without reverse blocking capability". It does not matter if it is a "basic / multi-valued logic circuit". Of course, “basic / multi-valued logic circuit that can connect either pull-up resistor or pull-down resistor to its output” depends on the pull direction of the resistor. “Basic or multi-value logic circuit that is“ pull-up switching means or pull-down switching means ”” of “type without type or reverse blocking capability”.
In these cases, in the synthesis / multi-value logic circuit of FIG. 12, “a multi-value NOT circuit and multi-value AND circuit using a one-way pull output switch” and “a multi-value OR circuit using a bidirectional output switch” are used. 14 and FIG. 15 are composed of “multi-value NOT circuit using one-way pull output switch” and “multi-output circuit using bidirectional output switch”. At least three circuits of “value AND circuit” and multi-value wired OR circuit form a complete system.
さらに、図12の合成・多値論理回路中の各・多値OR回路と図14の合成・多値論理回路中の各・多値AND回路に関しても、各回路の出力端子Tfのプル出力が双方向性である必要が無く、そのプル出力がプル・アップかプル・ダウンどちらかで良いのであれば、そのすべての基本・多値論理回路は「その出力スイッチ部が逆阻止型の『プル・アップ・スイッチング手段かプル・ダウン・スイッチング手段』である基本・多値論理回路」でも別に構わない。この場合、図12の合成・多値論理回路において、その全・多値OR回路がその出力スイッチ部に逆阻止型プル・アップ・スイッチング手段を使うのであれば、その出力端子Tfは例えば図12の合成・多値論理回路の電源電位v0より低い電源電位{例:電源電位v0より電位1つ低い電源電位v−1。}を基準にした出力信号を出力することになる。一方、その全・多値OR回路がその出力スイッチ部に逆阻止型プル・ダウン・スイッチング手段を使うのであれば、その出力端子Tfは例えば図12の合成・多値論理回路の電源電位v9より高い電源電位{例:電源電位v9より電位1つ高い電源電位v10。}を基準にした出力信号を出力することになる。この事は図14、図15の各合成・多値論理回路中の各・多値AND回路に関しても同様である。
これらの場合、図12の合成・多値論理回路では「1方向プル出力スイッチを用いた『多値NOT回路、多値AND回路および多値OR回路』」の少なくとも3回路が完全系を成し、図14、図15の各合成・多値論理回路では「1方向プル出力スイッチを用いた『多値NOT回路と多値AND回路』」及び多値ワイヤードOR回路の少なくとも3回路が完全系を成す。
Further, with respect to each of the multi-value OR circuits in the synthesis / multi-value logic circuit of FIG. 12 and each of the multi-value AND circuits in the synthesis / multi-value logic circuit of FIG. If it doesn't have to be bidirectional and its pull output can be either pull-up or pull-down, all its basic and multi-value logic circuits are "Basic / multi-valued logic circuit" that is "up-switching means or pull-down switching means" may be used. In this case, in the synthesis / multilevel logic circuit of FIG. 12, if the all / multilevel OR circuit uses reverse blocking pull-up switching means for the output switch section, the output terminal Tf is, for example, FIG. low power supply potential {example than the power supply potential v 0 of synthesis and multivalued logic circuits: a power supply potential v 0 than one potential lower supply potential v -1. } Is output as a reference. On the other hand, if the all-multi-value OR circuit uses reverse blocking pull-down switching means for the output switch section, the output terminal Tf is, for example, the power supply potential v 9 of the synthesis / multi-value logic circuit of FIG. higher supply potential {e.g. power supply potential v 9 than the potential one high power supply potential v 10. } Is output as a reference. The same applies to each of the multi-value AND circuits in each of the synthesis / multi-value logic circuits shown in FIGS.
In these cases, in the synthesis / multi-value logic circuit of FIG. 12, at least three circuits of “a multi-value NOT circuit, a multi-value AND circuit and a multi-value OR circuit using a one-way pull output switch” form a complete system. 14 and FIG. 15, at least three circuits of “multi-value NOT circuit and multi-value AND circuit using a one-way pull output switch” and multi-value wired OR circuit are complete systems. Make it.
それから、その出力スイッチ部に「逆阻止能力の無いタイプ(例:逆導通型、逆導電型等。)」の「プル・アップ・スイッチング手段かプル・ダウン・スイッチング手段」を使った各基本・多値論理回路に関しても、ひと工夫すれば図14の回路の最終段に使用することができる。例えば、図14の回路において、「その出力用特定整数が同じ値の多値AND回路」毎(ごと)に一旦その出力端子・全部を接続し、その接続・共通端子・毎(ごと)にその共通端子と出力端子Tfの間にダイオードを接続すれば良い。この様にすれば、多値AND回路・同士の電源短絡を防止することができる。
この場合も、全・多値AND回路の出力スイッチ部はオン駆動時プル・アップかプル・ダウンのどちらかを行い、プル・アップ動作とプル・ダウン動作の混在は無く、その出力端子Tfから出力される出力信号は図14の回路の「電源電位v9より高い電源電位{例:電源電位v9より電位1つ高い電源電位v10。}」か「電源電位v0より低い電源電位{例:電源電位v0より電位1つ低い電源電位v−1。}」どちらかを基準にすることになる。
このため、その出力用特定整数値が0(その基準電源電位がv10の時)か9(その基準電源電位がv−1の時)どちらかである多値AND回路群にはダイオードの接続は必要無いから、必要とする出力ダイオードの数は全部で9個で済む。
この場合、図14の合成・多値論理回路では「1方向プル出力スイッチを用いた『多値NOT回路と多値AND回路』」及び多値ワイヤードOR回路の少なくとも3回路に加えて、その出力ダイオード9個が完全系を成す。
一見、その部品点数が多くなった様に思えるが、前述(1つ前の段落。)した逆阻止型プル・スイッチング手段を使う図14の合成・多値論理回路の場合、普通なら必要とする逆阻止用・出力ダイオードの数は全部で100個で、出力ダイオードが91個余計に必要である。
Then, each of the basics using “pull-up switching means or pull-down switching means” of “type without reverse blocking capability (eg reverse conduction type, reverse conduction type, etc.)” in the output switch section. The multi-level logic circuit can also be used in the final stage of the circuit shown in FIG. For example, in the circuit of FIG. 14, the output terminals are all connected once for each “multi-value AND circuit whose output specific integer is the same value”, and for each connection / common terminal. A diode may be connected between the common terminal and the output terminal Tf. In this way, it is possible to prevent a power short circuit between the multi-value AND circuits.
Also in this case, the output switch section of the all-multi-value AND circuit performs either pull-up or pull-down operation when driving on, and there is no mixing of pull-up operation and pull-down operation. The output signal to be output is “power supply potential higher than power supply potential v 9 {eg, power supply potential v 10 higher by one than power supply potential v 9 ”} or “power supply potential lower than power supply potential v 0 { Example: A power supply potential v −1 lower than the power supply potential v 0 by one.} ”.
Therefore, a diode is connected to the multi-value AND circuit group whose specific integer value for output is either 0 (when the reference power supply potential is v 10 ) or 9 (when the reference power supply potential is v− 1 ). 9 is not necessary, so the total number of output diodes required is nine.
In this case, in the synthesis / multi-value logic circuit of FIG. 14, in addition to at least three circuits of “a multi-value NOT circuit and a multi-value AND circuit” using a one-way pull output switch and a multi-value wired OR circuit, its output Nine diodes form a complete system.
At first glance, it seems that the number of parts has increased, but in the case of the composite / multi-valued logic circuit of FIG. 14 that uses the reverse blocking pull switching means described above (the previous paragraph), it is usually required. The total number of reverse blocking and output diodes is 100, and an additional 91 output diodes are required.
あるいは、図12の合成・多値論理回路において、例えば、その電源電位がv0〜v4、vB、v5〜v9の順に電位が高くなって行き、電源電位vBが余分に有る場合、次の様にすることもできる。
図12の合成・多値論理回路中の各多値OR回路は電源電位vBを基準にした出力信号を出力する。その為に、「その出力用特定整数値が0〜4のいずれかである多値OR回路」それぞれに関して、その出力スイッチ部は逆阻止型プル・ダウン・スイッチング手段である。一方、「その出力用特定整数値が5〜9のいずれかである多値OR回路」それぞれに関して、その出力スイッチ部は逆阻止型プル・アップ・スイッチング手段である。
なお、その出力信号の基準電位となる電源電位vBは、必ずしも両電源電位v4・v5間に有る必要は無く、電源電位v0〜v9のうち、隣り合う2つの電源電位のいずれか2つの間に有っても構わない。もちろん、この場合、電源電位vBより高くプル・アップするか、電源電位vBより低くプル・ダウンすることになる。
これらの様にする事は、図14の合成・多値論理回路に対しても同様で、その各多値AND回路は電源電位vBを基準にした出力信号を出力する。前述した事が図12の合成・多値論理回路ではその各多値OR回路に対してだったのを図14の合成・多値論理回路ではその各多値AND回路に対して当てはめる。
これらの場合、そのプル方向が2つ有る場合も有るので、図12の合成・多値論理回路では「1方向プル出力スイッチを用いた『多値NOT回路、多値AND回路および多値OR回路』」の少なくとも4回路が完全系を成し、図14の合成・多値論理回路では「1方向プル出力スイッチを用いた『多値NOT回路と多値AND回路』」及び多値ワイヤードOR回路の少なくとも4回路が完全系を成す。
Alternatively, in the synthesis / multi-valued logic circuit of FIG. 12, for example, when the power supply potential increases in the order of v 0 to v 4 , vB, and v 5 to v 9 , and there is an extra power supply potential vB, You can also do the following:
Each multi-level OR circuit in the synthesis / multi-level logic circuit of FIG. 12 outputs an output signal based on the power supply potential vB. Therefore, for each of the “multi-valued OR circuit whose specific integer value for output is any one of 0 to 4”, the output switch section is a reverse blocking pull-down switching means. On the other hand, for each “multi-value OR circuit whose specific integer value for output is any of 5 to 9”, the output switch section is reverse blocking pull-up switching means.
The power supply potential vB serving as a reference potential of the output signal is not necessarily there in between both the power supply potential v4 · v5, among the power supply potential v 0 to v 9, the two power supply potential adjacent any two It may be in between. Of course, in this case, the voltage is pulled up higher than the power supply potential vB or pulled down below the power supply potential vB.
The same applies to the synthesis / multilevel logic circuit of FIG. 14, and each multilevel AND circuit outputs an output signal based on the power supply potential vB. What has been described above applies to each multi-valued OR circuit in the composite / multi-valued logic circuit of FIG. 12, and applies to each multi-valued AND circuit in the composite / multi-valued logic circuit of FIG.
In these cases, there are cases where there are two pull directions. Therefore, in the synthesis / multi-value logic circuit of FIG. 12, “multi-value NOT circuit, multi-value AND circuit and multi-value OR circuit using a one-way pull output switch” are used. 14] form a complete system, and in the composite / multi-value logic circuit of FIG. 14, “a multi-value NOT circuit and multi-value AND circuit” using a one-way pull output switch ”and a multi-value wired OR circuit At least four circuits form a complete system.
あるいは、前述(1つ前の段落内容。)の様に図14の合成・多値論理回路中の各多値AND回路が電源電位vBを基準にした出力信号を出力するのであるが、その各出力スイッチ部に逆導通型または逆導電型などのプル・スイッチング手段を使う場合である。
「その出力用特定整数値が0〜4のいずれかである多値AND回路」それぞれに関して、その出力スイッチ部は逆導通型または逆導電型などのプル・ダウン・スイッチング手段であるが、前述(段落番号[0113]。)と同様ひと工夫する。「その出力用特定整数が同じ値の多値AND回路」毎(ごと)に一旦その出力端子・全部を接続し、その接続・共通端子・毎(ごと)にその共通端子と出力端子Tfの間にダイオードをプル・ダウン方向にして接続する。
一方、「その出力用特定整数値が5〜9のいずれかである多値AND回路」それぞれに関して、その出力スイッチ部は逆導通型または逆導電型などのプル・アップ・スイッチング手段であるが、前述(段落番号[0113]。)と同様ひと工夫する。「その出力用特定整数が同じ値のAND回路」毎(ごと)に一旦その出力端子・全部を接続し、その接続・共通端子・毎(ごと)にその共通端子と出力端子Tfの間にダイオードをプル・アップ方向にして接続する。
この場合、そのプル方向が2つ有る場合も有るので、図14の合成・多値論理回路では「1方向プル出力スイッチを用いた『多値NOT回路と多値AND回路』」及び多値ワイヤードOR回路の少なくとも4回路に加えて、その出力ダイオード9個が完全系を成す。
Alternatively, as described above (contents of the preceding paragraph), each multi-value AND circuit in the synthesis / multi-value logic circuit of FIG. 14 outputs an output signal based on the power supply potential vB. This is a case where a reverse switching type or a reverse switching type pull switching means is used for the output switch section.
Regarding each of the “multi-value AND circuit whose specific integer value for output is any one of 0 to 4”, the output switch unit is a pull-down switching means such as a reverse conduction type or a reverse conduction type. Just like the paragraph number [0113].) The output terminals are all connected once for each “multi-value AND circuit having the same specific integer for output”, and between the common terminal and the output terminal Tf for each connection / common terminal. Connect the diode in the pull-down direction.
On the other hand, regarding each of the “multi-value AND circuit whose specific integer value for output is any of 5 to 9”, the output switch unit is a pull-up switching means such as a reverse conduction type or a reverse conduction type. Just as before (paragraph number [0113]). The output terminals are all connected once for each “AND circuit whose output specific integer is the same value”, and a diode is connected between the common terminal and the output terminal Tf for each connection / common terminal. Connect in the pull-up direction.
In this case, there are cases where there are two pull directions, so in the synthesis / multi-value logic circuit of FIG. 14, “multi-value NOT circuit and multi-value AND circuit” using a one-way pull output switch and multi-value wired In addition to at least four OR circuits, nine of its output diodes form a complete system.
◆◆◆********** 第3の10値論理完全回路 **********◆◆◆
***
●●22)第3の10値論理完全回路(=合成・多値論理回路)を図17に示す。図17の多値論理完全回路は図12の多値論理完全回路を改良したもので、入力端子Tyと各多値AND回路の入力部が直結されている各箇所に「多値EVEN回路と『プル・アップ抵抗またはプル・ダウン抵抗』」を1組ずつ挿入・接続したものである。
このことによって、図17の多値論理完全回路に各種の多値同期型論理手段を使用したときに、各・同期タイミングと各・信号伝搬時間を揃えることができる。例えば「全・同期型NOT手段と全・同期型EVEN手段」の同期タイミングを一致させ、全・同期型AND手段の同期タイミングを一致させ、全・同期型OR手段の同期タイミングを一致させることができる。
この場合、さらに例えば、その3つの同期タイミングが互いに違う場合も有るし、「全・同期型NOT手段と全・同期型EVEN手段」の同期タイミングと全・同期型OR手段の同期タイミングが同じで、全・同期型AND手段の同期タイミングだけが違う場合も有る。
なお、図17の多値論理完全回路においても、図12の多値論理完全回路においても、図11(a)のOR等価回路を用いて、各多値AND手段と各多値OR手段を多値NAND手段で1つずつ置き換えた各・多値等価回路(→→図19、図20の各・多値論理完全回路。)が可能である。
これは、「多値AND手段の後段に多値NOT手段を接続する等したもの」は多値NAND手段と等価的に同じだからである。
もちろん、その各多値NAND手段の特定整数値は「置き換え対象となる各・多値論理手段の特定整数値」に合わせる。
◆◆◆ ********** Third 10-valued logic complete circuit ************ ◆◆◆
***
●● 22) A third 10-valued logic complete circuit (= synthesis / multi-valued logic circuit) is shown in FIG. The multi-valued logic complete circuit of FIG. 17 is an improvement of the multi-valued logic complete circuit of FIG. 12, and “multi-value EVEN circuit and“ "Pull-up resistor or pull-down resistor""is inserted and connected one by one.
This makes it possible to align each synchronization timing and each signal propagation time when various multi-level synchronous logic means are used in the multi-value logic complete circuit of FIG. For example, the synchronization timing of “all / synchronous NOT unit and all / synchronous EVEN unit” is matched, the synchronization timing of all / synchronous AND unit is matched, and the synchronization timing of all / synchronous OR unit is matched. it can.
In this case, for example, the three synchronization timings may be different from each other, and the synchronization timing of “all / synchronous NOT means and all / synchronous EVEN means” is the same as that of all / synchronous OR means. In some cases, only the synchronization timing of all / synchronous AND means is different.
In both the multi-valued logic complete circuit of FIG. 17 and the multi-valued logic complete circuit of FIG. 12, each of the multi-value AND means and each of the multi-value OR means is made up using the OR equivalent circuit of FIG. Each multi-value equivalent circuit (→→ each multi-value logic complete circuit in FIGS. 19 and 20) replaced one by one by the value NAND means is possible.
This is because “the multi-level NOT unit connected to the subsequent stage of the multi-level AND unit” is equivalently equivalent to the multi-level NAND unit.
Of course, the specific integer value of each multi-value NAND means is set to “specific integer value of each multi-value logic means to be replaced”.
◆◆◆********** 第4の10値論理完全回路 **********◆◆◆
***
●●23)第4の10値論理完全回路(=合成・多値論理回路)を図18に示す。図18の多値論理完全回路は図14の多値論理完全回路を改良したもので、入力端子Tyと各多値AND回路の入力部が直結されている各箇所に「多値EVEN回路と『プル・アップ抵抗またはプル・ダウン抵抗』」を1組ずつ挿入・接続したものである。
このことによって、図18の多値論理完全回路に各種の多値同期型論理手段を使用したときに、各・同期タイミングと各・信号伝搬時間を揃えることができる。例えば「全・同期型NOT手段と全・同期型EVEN手段」の同期タイミングを一致させ、全・同期型AND手段の同期タイミングを一致させることができる。ただし、当然の事ながら、両方の同期タイミングは完全に違い、ずらされるのが普通である。
なお、各前段回路である多値NOT回路または多値EVEN回路の特定(整数)値は判別すべき数値x、yの各値と同じであり、各後段回路である多値AND回路の特定(整数)値はその数値x、yに対応する論理関数f(x,y)の値と同じである。図18の多値論理完全回路は「分かり易く説明する為にかなり簡略化してある図13の真理値表」を満足する。その表の横方向に入力x値が、その表の縦方向に入力y値がそれぞれ示され、各升目の中に記された数値はそのx、yの各値に対応する論理関数f(x,y)の値である。実際には、すべての升目の中に数値が1つずつ記入されている。
また、図13の真理値表において、あるy値とそのf(x,y)の値が同じ場合、そのy値を判別するのに使う多値論理回路は多値EVEN回路になる一方、両方の値が異なる場合、そのy値を判別するのに使う多値論理回路は多値NOT回路になる。この事はx値側の場合でも同様である。
◆◆◆ ********** 4th 10-valued logic complete circuit ************ ◆◆◆
***
23. A fourth 10-value logic complete circuit (= composite / multi-value logic circuit) is shown in FIG. The multi-valued logic complete circuit of FIG. 18 is an improvement of the multi-valued logic complete circuit of FIG. 14, and “multi-valued EVEN circuit and“ "Pull-up resistor or pull-down resistor""is inserted and connected one by one.
Accordingly, when various multi-level synchronous logic means are used in the multi-level logic complete circuit of FIG. 18, each synchronization timing and each signal propagation time can be made uniform. For example, the synchronization timings of “all-synchronous NOT means and all-synchronous EVEN means” can be matched, and the synchronization timings of all-synchronous AND means can be matched. However, as a matter of course, both synchronization timings are completely different and are usually shifted.
Note that the specific (integer) value of the multi-level NOT circuit or multi-level EVEN circuit that is each preceding stage circuit is the same as each value of the numerical values x and y to be discriminated, and the multi-level AND circuit that is each subsequent stage circuit is specified ( The (integer) value is the same as the value of the logical function f (x, y) corresponding to the numerical values x and y. The multi-valued logic complete circuit of FIG. 18 satisfies the “truth table of FIG. 13 considerably simplified for easy understanding”. An input x value is shown in the horizontal direction of the table, and an input y value is shown in the vertical direction of the table, and the numerical value written in each cell is a logical function f (x corresponding to each value of x and y. , Y). Actually, one number is entered in every square.
In the truth table of FIG. 13, when a certain y value and the value of f (x, y) are the same, the multi-value logic circuit used to determine the y value becomes a multi-value EVEN circuit, while both When the values of are different, the multi-value logic circuit used to determine the y value becomes a multi-value NOT circuit. The same applies to the case of the x value side.
◆◆◆********** 第5の10値論理完全回路 **********◆◆◆
***
●●24)第5の10値論理完全回路(=合成・多値論理回路)を図19に示す。図19の多値論理完全回路は図12の多値論理完全回路を等価的に変形したもので、図12の多値論理完全回路中の各多値AND回路および各多値OR回路を多値NAND回路で1つずつ置き換えた多値等価回路である。
もちろん、mの各整数値は図12中に示された各整数値に設定し、各・入力端子数も図12中に示された各・入力端子数に設定する。
その等価回路になる理由は、図12中の各・多値「OR(m)=m」回路を図11(a)の多値「OR(m)=m」回路の等価回路で1つずつ置き換え、その置換え後の「多値『AND(m)=m』回路とその後段に接続される多値『NOT(m)=m』回路」の各・直列回路を多値「NAND(m)=m」回路で1つずつ置き換えると、上記の多値等価回路になる、からである。
この場合も、図19の多値論理完全回路に各種の多値同期型論理回路を使用したときに、各・同期タイミングと各・信号伝搬時間を揃えることができる。例えば1段目の「全・同期型NOT回路と全・同期型EVEN回路」の同期タイミングを一致させ、2段目の全・同期型NAND回路の同期タイミングを一致させ、3段目の全・同期型NAND回路の同期タイミングを一致させる。ただし、当然の事ながら、各段の同期タイミングは互いに完全に違い、ずらされるのが普通である。あるいは、1段目の同期タイミングと3段目の同期タイミングを一致させ、2段目の同期タイミングだけ両・同期タイミングからずらす場合も有る。
◆◆◆ ********** Fifth 10-valued logic complete circuit ************
***
FIG. 19 shows a fifth 10-value logic complete circuit (= synthesis / multi-value logic circuit). The multi-valued logic complete circuit in FIG. 19 is an equivalent modification of the multi-valued logic complete circuit in FIG. This is a multi-value equivalent circuit that is replaced one by one with a NAND circuit.
Of course, each integer value of m is set to each integer value shown in FIG. 12, and each number of input terminals is also set to each number of input terminals shown in FIG.
The reason why it becomes an equivalent circuit is that each multi-value “OR (m) = m” circuit in FIG. 12 is one by one in the equivalent circuit of the multi-value “OR (m) = m” circuit in FIG. The multi-value “NAND (m)” is replaced with each series circuit of the “multi-value“ AND (m) = m ”circuit and the multi-value“ NOT (m) = m ”circuit connected to the subsequent stage” after the replacement. This is because the above-described multi-value equivalent circuit is obtained by replacing one by one with the “= m” circuit.
Also in this case, when various multi-level synchronous logic circuits are used in the multi-level logic complete circuit of FIG. 19, each synchronization timing and each signal propagation time can be made uniform. For example, the synchronization timings of the first stage “all-synchronous NOT circuit and all-synchronous EVEN circuit” are matched, the synchronization timings of the second stage all-synchronous NAND circuit are matched, and the third stage all- The synchronization timing of the synchronous NAND circuit is matched. However, as a matter of course, the synchronization timing of each stage is usually completely different and shifted. Alternatively, the synchronization timing of the first stage and the synchronization timing of the third stage may be made to coincide with each other and shifted from both synchronization timings by the synchronization timing of the second stage.
◆◆◆********** 第6の10値論理完全回路 **********◆◆◆
***
●●25)第6の10値論理完全回路(=合成・多値論理回路)を図20に示す。図20の多値論理完全回路は図17の多値論理完全回路を等価的に変形したもので、図17の多値論理完全回路中の各多値AND回路および各多値OR回路を多値NAND回路で1つずつ置き換えた多値等価回路である。
もちろん、mの各整数値は図17中に示された各整数値に設定し、各・入力端子数も図12中に示された各・入力端子数に設定する。
その等価回路になる理由は、図17中の各・多値「OR(m)=m」回路を図11(a)の多値「OR(m)=m」回路の等価回路で1つずつ置き換え、その置換え後の「多値『AND(m)=m』回路とその後段に接続される多値『NOT(m)=m』回路」の各・直列回路を多値「NAND(m)=m」回路で1つずつ置き換えると、上記の多値等価回路になる、からである。
この場合も、図20の多値論理完全回路に各種の多値同期型論理回路を使用したときに、各・同期タイミングと各・信号伝搬時間を揃えることができる。例えば1段目の「全・同期型NOT回路と全・同期型EVEN回路」の同期タイミングを一致させ、2段目の全・同期型NAND回路の同期タイミングを一致させ、3段目の全・同期型NAND回路の同期タイミングを一致させる。ただし、当然の事ながら、各段の同期タイミングは互いに完全に違い、ずらされるのが普通である。あるいは、1段目の同期タイミングと3段目の同期タイミングを一致させ、2段目の同期タイミングだけ両・同期タイミングからずらす場合も有る。
◆◆◆ ********** Sixth 10-valued logic complete circuit ************ ◆◆◆
***
●● 25) A sixth 10-valued logic complete circuit (= synthesis / multi-valued logic circuit) is shown in FIG. The multi-valued logic complete circuit in FIG. 20 is an equivalent modification of the multi-valued logic complete circuit in FIG. This is a multi-value equivalent circuit that is replaced one by one with a NAND circuit.
Of course, each integer value of m is set to each integer value shown in FIG. 17, and each number of input terminals is also set to each number of input terminals shown in FIG.
The reason for the equivalent circuit is that each multi-value “OR (m) = m” circuit in FIG. 17 is equivalent to the multi-value “OR (m) = m” circuit in FIG. 11A one by one. The multi-value “NAND (m)” is replaced with each series circuit of the “multi-value“ AND (m) = m ”circuit and the multi-value“ NOT (m) = m ”circuit connected to the subsequent stage” after the replacement. This is because the above-described multi-value equivalent circuit is obtained by replacing one by one with the “= m” circuit.
Also in this case, when various multi-level synchronous logic circuits are used in the multi-level logic complete circuit of FIG. 20, the respective synchronization timings and the respective signal propagation times can be made uniform. For example, the synchronization timings of the first stage “all-synchronous NOT circuit and all-synchronous EVEN circuit” are matched, the synchronization timings of the second stage all-synchronous NAND circuit are matched, and the third stage all- The synchronization timing of the synchronous NAND circuit is matched. However, as a matter of course, the synchronization timing of each stage is usually completely different and shifted. Alternatively, the synchronization timing of the first stage and the synchronization timing of the third stage may be made to coincide with each other and shifted from both synchronization timings by the synchronization timing of the second stage.
◆◆◆********** 第7の10値論理完全回路 **********◆◆◆
***
●●26)第7の10値論理完全回路(=合成・多値論理回路)を図21に示す。図21の多値論理完全回路は図18の多値論理完全回路を等価的に変形したものである。
その等価回路になる理由は以下の通りである。図18中の各・多値「AND(m)=m」回路を図11(b)の多値「AND(m)=m」回路の等価回路で1つずつ置き換え、その置換え後の「多値『OR(m)=m』回路とその後段に接続される多値『NOT(m)=m』回路」の各・直列回路を多値「NOR(m)=m」回路で1つずつ置き換える。そして、互いに特定値の異なる2つの多値NOT回路の直列回路に図53の多値NOT二段接続回路の等価回路を適用して多値EVEN回路に変更する。さらに、同じ特定値である「多値EVEN回路と多値NOT回路」2つの直列回路に図63の多値EVEN・NOT二段接続回路の等価回路を適用して多値NOT回路に変更する。それらの置き換えと変更により図18の多値論理完全回路は等価的に図21の多値論理完全回路に換わる。
もちろん、mの各整数値は図18中に示された各整数値に設定し、各・入力端子数も図18中に示された各・入力端子数に設定する。
この場合も、図21の多値論理完全回路に各種の多値同期型論理回路を使用したときに、各・同期タイミングと各・信号伝搬時間を揃えることができる。例えば「全・同期型EVEN回路と全・同期型NOT回路」の同期タイミングを一致させ、2段目の全・同期型NOR回路の同期タイミングを一致させることができる。ただし、当然の事ながら、両方の同期タイミングは完全に違い、ずらされるのが普通である。
◆◆◆ ********* Seventh 10-valued logic complete circuit ************* ◆◆◆
***
●● 26) A seventh 10-valued logic complete circuit (= synthesis / multi-valued logic circuit) is shown in FIG. The multi-valued logic complete circuit of FIG. 21 is an equivalent modification of the multi-valued logic complete circuit of FIG.
The reason for the equivalent circuit is as follows. Each multi-value “AND (m) = m” circuit in FIG. 18 is replaced one by one with the equivalent circuit of the multi-value “AND (m) = m” circuit in FIG. Each series circuit of the value “OR (m) = m” circuit and the multi-value “NOT (m) = m” circuit connected to the subsequent stage is one by one with the multi-value “NOR (m) = m” circuit. replace. Then, an equivalent circuit of the multi-level NOT two-stage connection circuit of FIG. 53 is applied to a series circuit of two multi-level NOT circuits having different specific values to change to a multi-level EVEN circuit. Furthermore, the multi-value NOT circuit is changed to the multi-value NOT circuit by applying the equivalent circuit of the multi-value EVEN / NOT two-stage connection circuit of FIG. By their replacement and change, the multi-valued logic complete circuit of FIG. 18 is equivalently replaced with the multi-valued logic complete circuit of FIG.
Of course, each integer value of m is set to each integer value shown in FIG. 18, and each number of input terminals is also set to each number of input terminals shown in FIG.
Also in this case, when various multi-level synchronous logic circuits are used in the multi-level logic complete circuit of FIG. 21, each synchronization timing and each signal propagation time can be made uniform. For example, the synchronization timings of the “all-synchronous EVEN circuit and the all-synchronous NOT circuit” can be made to coincide, and the synchronization timings of the second-stage all-synchronous NOR circuit can be made to coincide. However, as a matter of course, both synchronization timings are completely different and are usually shifted.
なお、各前段回路である多値NOT回路または多値EVEN回路の特定(整数)値は判別すべき数値x、yの各値と同じであり、各後段回路である多値NOR回路の特定(整数)値はその数値x、yに対応する論理関数f(x,y)の値と同じである。図21の多値論理完全回路は「分かり易く説明する為にかなり簡略化してある図13の真理値表」を満足する。その表の横方向に入力x値が、その表の縦方向に入力y値がそれぞれ示され、各升目の中に記された数値はそのx、yの各値に対応する論理関数f(x,y)の値である。実際には、すべての升目の中に数値が1つずつ記入されている。
それから、図13の真理値表において、あるy値とそのf(x,y)の値が同じ場合、そのy値を判別するのに使う多値論理回路は多値NOT回路になる一方、両方の値が異なる場合、そのy値を判別するのに使う多値論理回路は多値EVEN回路になる。この事はx値側の場合でも同様である。蛇足ながら、これらx値、y値の判別に使う各多値論理回路の種類は図18の多値論理完全回路の場合と正反対である。
The specific (integer) value of the multi-level NOT circuit or multi-level EVEN circuit that is each preceding stage circuit is the same as each value of the numerical values x and y to be discriminated, and the multi-level NOR circuit that is each subsequent stage circuit is specified ( The (integer) value is the same as the value of the logical function f (x, y) corresponding to the numerical values x and y. The multi-valued logic complete circuit of FIG. 21 satisfies the “truth table of FIG. 13 considerably simplified for easy understanding”. An input x value is shown in the horizontal direction of the table, and an input y value is shown in the vertical direction of the table, and the numerical value written in each cell is a logical function f (x corresponding to each value of x and y. , Y). Actually, one number is entered in every square.
Then, in the truth table of FIG. 13, when a certain y value and the value of f (x, y) are the same, the multi-value logic circuit used to determine the y value becomes a multi-value NOT circuit, while both Are different from each other, the multi-value logic circuit used to determine the y value is a multi-value EVEN circuit. The same applies to the case of the x value side. In spite of this, the type of each multi-value logic circuit used to discriminate these x and y values is the opposite of that of the multi-value logic complete circuit of FIG.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆◆◆
◆◆◆***** 特開2012−075084号公報等の開示内容 *****◆◆◆
***
●●27)「フージ代数の原則に基づく各種の多値論理回路」と特開2012−075084号および特開2014−135709号の「同期ラッチング機能を持つ多値論理手段と多値ハザード除去手段」(特許文献16、17)等を本発明の説明において技術常識と同様に扱うことができる様に、念の為、本発明者はそれらの技術をこれから段落番号[0123〜0249]において説明する。
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆◆◆
◆◆◆ ***** Disclosure contents of JP 2012-077504 A, etc. ********
***
27) “Various multi-valued logic circuits based on the principle of Fuji algebra” and “2012-135709” and “2014-135709“ Multi-value logic means and multi-value hazard removal means having synchronous latching function ” In order to be able to handle (Patent Documents 16 and 17) and the like in the description of the present invention in the same manner as the common general technical knowledge, the present inventors will now describe these techniques in paragraph numbers [0123 to 0249].
◇◇◇ 技 術 分 野 ◇◇◇
先願第2、3発明共通は、下記『フージ代数(=多値論理)』に基づく電位モード(又は電圧モード)の多値論理回路に同期ラッチング機能を持たせた「同期ラッチング機能を持つ多値論理手段」に関する。
「多値論理で使用するいずれの数値もラッチできる全数値ラッチング機能」を持つ多値同期型ラッチング手段を用いてラッチするよりも、その様な全数値ラッチング機能は無くても上記「同期ラッチング機能を持つ多値論理手段」単位でラッチした方が以下の効果・特徴が有る。
●1)2値同期型フリップ・フロップ手段を内蔵しているので、その各トリガー方式(例:エッジ・トリガー、レベル・トリガー、パルス・トリガー)をそのまま利用できる。
★「各トリガー方式」に関する参考資料:下記・非特許文献4の79〜88頁。
●2)「出力開放または開放出力に対応する信号状態」をラッチすることができる。
★注:下記『フージ代数』には「出力を開放する」という独特な出力の仕方が有る。
●3)「多値の全数値の中で、出力用特定整数以外の各整数に対応する信号状態」に対してはラッチング機能が無い。すなわち、余計・無駄なラッチング機能が無い。
→→ 無駄な部品、無駄な構成が無いため部品・回路を効率的に利用できる上に、消費電力の節約になる。
→→ 使用する多値回路{例:多値論理回路、多値演算回路(または多進法演算回路)、多値記憶手段、多値メモリー手段、多値ディジタル回路など。}の構成に応じてその後段に接続する多値同期型ラッチング手段の選択肢が増えて便利になる。
従来は例えば多値回路と多値回路の間に多値同期型ラッチング手段を設けることが考えられた。
In common with the second and third inventions of the prior application, a multi-level logic circuit in a potential mode (or voltage mode) based on the following “Fuji algebra (= multi-level logic)” has a “synchronous latching function”. Value logic means ".
Rather than using multi-value synchronous latching means with "all-value latching function that can latch any numerical value used in multi-valued logic", the above-mentioned "synchronous latching function" Latching in units of "multi-valued logic means" has the following effects and features.
1) Since a binary synchronous flip-flop means is built in, each trigger method (eg, edge trigger, level trigger, pulse trigger) can be used as it is.
★ Reference materials on “each trigger method”: Non-Patent Document 4, pages 79-88.
● 2) “Output open or signal state corresponding to open output” can be latched.
* Note: The “Fuji algebra” below has a unique output method of “releasing output”.
● 3) There is no latching function for "signal state corresponding to each integer other than the output specific integer among all multi-values". That is, there is no extra / useless latching function.
→→ Since there are no useless parts and useless configurations, parts and circuits can be used efficiently and power consumption can be saved.
→→ Multi-value circuit to be used {Example: Multi-value logic circuit, multi-value arithmetic circuit (or multi-ary arithmetic circuit), multi-value storage means, multi-value memory means, multi-value digital circuit, etc. }, The number of options of the multi-level synchronous latching means to be connected to the subsequent stage is increased according to the configuration of {}.
Conventionally, for example, it has been considered to provide a multilevel synchronous latching means between a multilevel circuit and a multilevel circuit.
●なお、フリップ・フロップには元々2つの状態しか無い為「多値フリップ・フロップ」という言い方はそぐわないので、「多値ラッチング手段」という様な言い方で統一した。
●また、各発明の構成手段である多値論理回路は『本発明者が創(つく)り出した多値論理』を具体化・実現化したものであるが、その新・多値論理に名前が無いと何かと不便なので、『★フージ代数(Hooji Algebra)』(詳細は段落番号[0054〜0121]に。)と名付けることにした。
そう名付けた理由は「本発明者は日本人なので、日本の象徴である富士山(Mt.Fuji)に因(ちな)んでいること」、「ブール代数(Boolean Algebra)の『ブール』に少し語路(ごろ)合わせしていること」及び「その能力、可能性、実用性、展開拡張性、将来性など、いずれを取ってもhuge{=度外(どはず)れて大きい、途方も無く大きい、巨大な。}であると本発明者は強く判断しているので、英語のhuge(ヒュージ)に語路合わせしていること」である。(参考:下記・特許文献1〜3。)
その英語表記名を決める際に「Huge」のスペール中の「H」、「Boole」のスペール中の「oo」、及び、「Fuji」のスペール中の「ji」を合体して『Hooji』とした。
● Also, the multi-value logic circuit that constitutes each invention is a materialization and realization of “multi-value logic created by the inventor”. Since it is inconvenient if there is no name, I decided to name it as "★ Houji Algebra" (details are in paragraph numbers [0054-0121]).
The reason for the name is “Because the inventor is Japanese, it is named after Mt. Fuji, the symbol of Japan.” (About) to be together "and" the ability, possibility, practicality, expandability, future, etc. Since the present inventor strongly judges that it is enormous.}, The language is aligned with the English huge. (Reference: The following patent documents 1-3)
When deciding the name in English, “H” in the “Huge” spare, “oo” in the “Boole” spare, and “ji” in the “Fuji” spaer are combined into “Hooji”. did.
●さらに、論理数学分野ではそもそも「電子回路では基本技術としてよく知られている『出力を開放する』とか『開放出力(例:オープン・コレクタ、オープン・ドレイン。)』という概念」そのものが上記『フージ代数』以前には無かった。しかし、この『フージ代数』の出現によりその概念を取り入れざるを得なくなった。なぜなら、『フージ代数』には従来の多値論理には無い「有利な独特な効果」がいくつも有る、からである。 →→段落番号[0057〜0074]。
一方、電子回路分野でも「『1種類または数種類の基本・多値論理回路だけで』又は『その組合せ又はそれらの組合せ』によって多値数N(N値のNのこと。)に関係無く『全ての多値論理関数を実現・具体化できる機能』すなわち『完全性』、それも『完全』」という特徴を持ち、しかも、論理数学分野において公表された多値論理体系に頼らず、独自に構築した多値論理体系・回路は、上記・特許文献1〜3以前には無かった。上記『★フージ代数』の『完全』については段落番号[0088〜0101]において証明された。
★『完全系、完全性、完全』に関する参考資料:下記・非特許文献1〜3。
●それから、本発明ではN値の各整数と各定電位供給手段(例:電源線、電源板など。)が互いに順々に1対1ずつ対応するが、その整数が大きくなるに連れて第1定電位から第N定電位まで番号順にこれらの定電位が「高くなって行く場合」が正論理に対応し、「低くなって行く場合」が負論理に対応する。
On the other hand, in the field of electronic circuits, “all one or several types of basic / multi-valued logic circuits” or “a combination or combination thereof” can be used regardless of the multi-value number N (N of N values). `` Function that can realize and embody multi-valued logic functions '', that is, `` completeness '', it is also `` perfect '', and it is built independently without relying on the multivalued logic system published in the field of logic There was no multi-valued logic system / circuit before the above-mentioned Patent Documents 1-3. The “completeness” of the above “★ Fuji algebra” was proved in paragraph numbers [0088 to 0101].
★ Reference materials on "complete system, completeness, completeness": Non-patent documents 1 to 3 below.
In the present invention, each integer of N value and each constant potential supply means (eg, power supply line, power supply plate, etc.) correspond to each other one by one in order, but as the integer increases, From the 1st constant potential to the Nth constant potential, these constant potentials correspond to the positive logic when they become higher, and the case where they become lower correspond to the negative logic.
先願第2発明は、先願第2、3発明共通の「同期ラッチング機能を持つ多値論理手段」を活用した多値ハザード除去手段に関し、その多値数N(=N値のNのこと。)に関係無く、その多値ハザード除去手段の入力前あるいは入力時などの時に発生した多値ハザードを除去することができる。
なお、多値回路(例:多値論理回路、多値演算回路(又は多進法演算回路)、多値記憶手段、多値メモリー手段、多値ディジタル回路など。)では「2値ハザードと同様な仕組みで発生する多値ハザード」に加えて、「互いに1対1ずつ対応する論理数値、論理レベル及び電位(又は電圧)」が共に3つ以上有る為「多値固有の多値ハザード」が発生する。
The second invention of the prior application relates to a multi-value hazard removal means utilizing the “multi-value logic means having a synchronous latching function” common to the first, second and third inventions, and the multi-value number N (= N of N values). Regardless of.), The multi-value hazard generated before or during the input of the multi-value hazard removing means can be removed.
In the multi-value circuit (eg, multi-value logic circuit, multi-value arithmetic circuit (or multi-ary arithmetic circuit), multi-value storage means, multi-value memory means, multi-value digital circuit, etc.), “same as binary hazard” In addition to “multi-value hazards that occur due to various mechanisms”, there are three or more “logical values, logic levels and potentials (or voltages) that correspond one-to-one with each other”, so “multi-value specific hazards” Occur.
◇◇◇ 背 景 技 術 ◇◇◇
■■■ 先願第2、3発明共通の背景技術 ■■■
従来の多値同期型ラッチング手段として、特開2006−345468号公報の実施例10(段落番号0035)にレベル・トリガー方式の多値同期型ラッチ(ング)手段が開示され、特開2007−35233号公報の図18・図15両図にパルス・トリガー方式(=マスター・スレーブ方式)の多値同期型ラッチング手段が開示されている。
しかしながら、「ポジティブ・エッジ・トリガー方式やネガティブ・エッジ・トリガー方式の各2値フリップ・フロップ手段に対応する方式の各・多値同期型ラッチング手段」はまだまだ具体化・実用化されていないので、当然の事ながら、ポジティブ、ネガティブの各エッジ・トリガー方式を使用できない。
もし、同期信号の立上り又は立下りで同期型多値回路をトリガーすることができれば、トリガー・タイミングやトリガー方法の各選択肢が増えてとても便利になる。例えば、その各エッジ・トリガー方式を使用できれば、本発明者が考えた階段状の多値同期信号(参考:下記・特許文献11。)をさらに有効的に活用することができるので、その同期信号1周期中においてトリガー・タイミングの選択肢が増えて大変便利になる。
従って、従来技術では『ポジティブ、ネガティブの各エッジ・トリガー方式を使用できない』という課題が有る。 ( 先願第2、3発明共通が解決すべき第1課題 )
■■■ Background technology common to the second and third inventions ■■■
As a conventional multi-level synchronous latching means, a level-trigger type multi-level synchronous latching means is disclosed in Example 10 (paragraph 0035) of Japanese Patent Application Laid-Open No. 2006-345468. FIG. 18 and FIG. 15 of this publication disclose a multi-level synchronous latching means of a pulse trigger system (= master / slave system).
However, “each multi-level synchronous latching means corresponding to each binary flip-flop means of positive edge trigger method and negative edge trigger method” has not yet been realized and put into practical use. Naturally, the positive and negative edge trigger methods cannot be used.
If the synchronous multi-value circuit can be triggered at the rising edge or falling edge of the synchronization signal, the choices of trigger timing and trigger method are increased, which is very convenient. For example, if each of the edge trigger methods can be used, the stepwise multi-level synchronization signal (reference: the following, Patent Document 11) considered by the present inventor can be used more effectively. There are more trigger timing options in one cycle, which is very convenient.
Therefore, the conventional technique has a problem that “positive and negative edge trigger methods cannot be used”. (First problem to be solved in common with the second and third inventions)
また、前述した『フージ代数』に基づく電位モード(又は電圧モード)の多値論理回路の場合、「出力開放または開放出力」という重要な出力の仕方が有るが、『どちらの従来・多値同期型ラッチング手段も[出力開放または開放出力]に対応する信号状態をラッチすることができない』という課題が有る。 ( 先願第2、3発明共通が解決すべき第2課題 ) In addition, in the case of the multi-value logic circuit in the potential mode (or voltage mode) based on the “Fuji algebra” described above, there is an important output method of “output open or open output”. There is also a problem that the type latching means cannot latch the signal state corresponding to [output open or open output]. (Second problem to be solved in common with the second and third inventions)
さらに、『[出力される数値]に対応したラッチング機能を備えておらず、無駄が生じてしまう』という課題が有る。 ( 先願第2、3発明共通が解決すべき第3課題 )
例えば、どちらの前記多値同期型ラッチング手段も「多値論理で用いる、いずれの数値もラッチできる全数値ラッチング機能」を持つ。その(入)出力される数値が全数値に渡る場合そのラッチング機能の使用効率は良いが、「全数値のうち一部の数値しか(入)出力されない場合(=ラッチする数値がその一部に限定される場合)」、そのラッチング機能の使用効率は部品・回路の有効利用の面でも電力使用効率の面でも悪くなる。
つまり、「出力されない数値に対応するラッチング機能部分」が使われない為に、その機能部分の回路が無駄になる上に、「そのラッチング内容の書換えに伴う、全トランジスタ等のオン・オフ切換え時の総スイッチング損失」は「その使われない無駄なラッチング機能部分のスイッチング損失」の分だけ余計に多くなってしまう。
換言すれば「出力されない数値に対するラッチング機能部分」だけ余計にその部品点数が多くなり、その回路構成が複雑になる為、その部品・回路の有効利用率が悪くなる上に、その余計なラッチング機能部分のオン・オフ切換えスイッチング損失分だけ余分に電力を消費する。
しかも、その全トランジスタ等がMOS・FETや絶縁ゲート型トランジスタ等の電圧駆動型の場合、そのゲート・ソース間静電容量などによる充放電エネルギー損失も有る為、その余計なラッチング機能部分の充放電エネルギー損失分だけ更に余分に電力を消費する。
その結果、そのラッチング機能・使用効率はその部品・回路の有効利用の面でも、その電力使用効率の面でも悪くなる。その部品・回路の有効利用率が悪いと、当然、2次元IC中や2次元LSI中のその多値同期型ラッチング手段の占有面積が、3次元化IC、LSIならばその占有体積が、多くなり、コスト・アップ要因になる。
この様に、そのラッチング機能・使用効率が悪い原因は「出力される数値以外の各数値に対しても余分なラッチング機能が有ること」に有る。
従って、『[出力される数値]に対応したラッチング機能を備えておらず、無駄が生じてしまう』という課題が有る。 ( 先願第2、3発明共通が解決すべき第3課題 )
Furthermore, there is a problem that “the latching function corresponding to [output numerical value] is not provided, and waste is generated”. (Third issue to be solved in common with the second and third inventions)
For example, both of the multi-level synchronous latching means have “all-number latching function that can be used for multi-level logic and can latch any numerical value”. If the (input / output) numerical value is over all numerical values, the use efficiency of the latching function is good, but “If only a part of the numerical values (input / output) is output (= the numerical value to be latched is a part In the case of limitation), the use efficiency of the latching function deteriorates both in terms of effective use of components and circuits and in terms of power use efficiency.
In other words, because “the latching function part corresponding to the numerical value that is not output” is not used, the circuit of the function part is wasted, and “when all transistors are turned on / off due to rewriting of the latching contents” "Total switching loss" increases by the amount of "switching loss of the unused latching function portion that is not used".
In other words, the number of parts is increased by the “latching function part for the numerical value that is not output”, and the circuit configuration becomes complicated. Therefore, the effective utilization rate of the part / circuit deteriorates, and the extra latching function. Extra power is consumed by the switching loss of the part on / off switching.
Moreover, if all of the transistors are voltage-driven, such as MOS / FET or insulated gate type transistors, there is charge / discharge energy loss due to the capacitance between the gate and source, etc. More power is consumed by the amount of energy loss.
As a result, the latching function / usage efficiency deteriorates both in terms of effective use of the parts / circuits and in terms of power use efficiency. If the effective utilization rate of the parts / circuits is poor, the occupied area of the multi-level synchronous latching means in the two-dimensional IC or two-dimensional LSI is naturally large if the three-dimensional IC or LSI is occupied. This increases costs.
As described above, the reason why the latching function / use efficiency is poor is that “there is an extra latching function for each numerical value other than the output numerical value”.
Therefore, there is a problem that “the latching function corresponding to [output numerical value] is not provided and waste occurs”. (Third issue to be solved in common with the second and third inventions)
それから、もし、使用する多値回路{例:多値ディジタル回路など。}の構成に応じて、その後段に接続する多値同期型ラッチング手段を選択できれば、便利になる。
具体的に言えば、もし、多値論理手段が同期ラッチング機能を持っていれば、多値論理手段・単位で同期ラッチングできるので、その全体回路の組み方に柔軟性が生まれ、全体の回路構成の選択肢が増えて便利になる。
→→『フージ代数』に基づく各多値論理回路の場合、この回路が接続する定電位供給手段(例:電源線、電源板など。)の接続変更によってラッチする『数値』を容易に変更できる上に、その各種の多値論理回路の中から使用回路を選択することができる。つまり、元々その多値論理回路の選択肢が多いので、その各多値論理回路に同期ラッチング機能を持たせることができれば、「選択できる多値同期型ラッチング手段」が増えて便利になる。
従って、使用する多値回路{例:多値論理回路、多値演算回路(又は多進法演算回路)、多値メモリー、多値記憶手段、多値ディジタル回路など。}の構成に応じてその後段に接続する多値同期型ラッチング手段の選択肢が多いことが望まれる。その選択肢が多いと全体の多値回路の構成に柔軟性が生じる。 ( 先願第2、3発明共通が解決すべき第4課題 )
→→その各種の多値論理回路には例えば本発明者が「(多値)AND回路、(多値)OR回路、(多値)NOT回路、(多値)NAND回路、(多値)NOR回路、OVER回路、NOVER(ノウバー)回路、EVEN(イーブン)回路、UNDER回路、NUNDER(ナンダー)回路、IN回路、NIN(ニン)回路、OUT回路、NOUT(ナウト)回路」と呼ぶ各・多値論理回路とその組合せ多値論理回路(例:多値AND・OVER回路、多値OR・OUT回路など。)が有る。
Then, if the multi-value circuit to be used {eg multi-value digital circuit etc. }, It will be convenient if a multi-level synchronous latching means to be connected to the subsequent stage can be selected in accordance with the configuration of {}.
Specifically, if the multi-value logic means has a synchronous latching function, the multi-value logic means / unit can be synchronized and latched. More choices will be useful.
→→ In the case of each multi-value logic circuit based on “Fuji algebra”, the “numerical value” to be latched can be easily changed by changing the connection of the constant potential supply means (eg, power line, power plate, etc.) to which this circuit is connected. In addition, a use circuit can be selected from the various multi-value logic circuits. In other words, since there are many choices for the multi-value logic circuit from the beginning, if each multi-value logic circuit can be provided with a synchronous latching function, the number of “selectable multi-value synchronization latching means” is increased, which is convenient.
Therefore, the multi-value circuit to be used {eg, multi-value logic circuit, multi-value arithmetic circuit (or multi-value arithmetic circuit), multi-value memory, multi-value storage means, multi-value digital circuit, etc. }, It is desirable that there are many options of the multi-level synchronous latching means connected to the subsequent stage in accordance with the configuration of {}. When there are many choices, flexibility occurs in the configuration of the entire multi-value circuit. (Fourth problem to be solved in common with the second and third inventions)
→→ For example, the present inventor has described “(multi-value) AND circuit, (multi-value) OR circuit, (multi-value) NOT circuit, (multi-value) NAND circuit”, (multi-value) NOR circuit, etc. Circuit, OVER circuit, NOVER circuit, EVEN circuit, UNDER circuit, NUNDER circuit, IN circuit, NIN circuit, OUT circuit, NOUT circuit There are logic circuits and their combination multi-value logic circuits (eg, multi-value AND / OVER circuit, multi-value OR / OUT circuit, etc.).
そして、従来だと多値回路と多値回路の間に多値同期型ラッチング手段を設けなければならず、そのラッチング箇所が固定されている。もし、そのラッチング箇所の選択肢が多ければ全体回路の構成に柔軟性が生じる。
従って、「全体回路内のどこでラッチングするか」というラッチング箇所の選択肢が多いことが望まれる。 ( 先願第2、3発明共通が解決すべき第5課題 )
Conventionally, a multi-value synchronous latching means must be provided between the multi-value circuit and the multi-value circuit, and the latching location is fixed. If there are many choices of the latching location, the configuration of the entire circuit becomes flexible.
Therefore, it is desirable that there are many choices of the latching location “where to latch in the entire circuit”. (Fifth issue to be solved in common with the second and third inventions)
■■■ 先願第2発明の背景技術 ■■■
先ず予備知識として「多値の各論理レベル」、「その各論理レベルの各しきい値電位(又は各しきい値電圧)」及び「電位(または電圧)変化の連続性」について説明する。
■■ 多値の各論理レベル ■■
2値回路(例:2値論理回路、2値演算回路、2値メモリー、2値記憶手段、2値ディジタル・システム等。)の場合、その2つの論理数値に例えば「0」と「1」しかないので、正論理、負論理に関係無く各論理レベルの表現に「LレベルとHレベル」という用語を使うことができる。正論理では実質的にLレベルは「論理数値0の論理レベル」を意味し、Hレベルは「論理数値1の論理レベル」を意味する一方、負論理では実質的にLレベルは「論理数値1の論理レベル」を意味し、Hレベルは「論理数値0の論理レベル」を意味する。
また、3値回路の場合、その3つの論理数値に例えば「0」、「1」、「2」が有るので、正論理、負論理に関係無く各論理レベルの表現に例えば「Lレベル、Mレベル、Hレベル」という用語を使うことができる。
さらに、4値回路の場合、その4つの論理数値に例えば「0」、「1」、「2」、「3」が有るので、正論理、負論理に関係無く各論理レベルの表現に例えば「Lレベル、M0レベル、M1レベル、Hレベル」という用語を使うことができる。
同様に、5値回路の場合、その5つの論理数値に例えば「0」、「1」、「2」、「3」、「4」が有るので、正論理、負論理に関係無く各論理レベルの表現に例えば「Lレベル、M0レベル、M1レベル、M2レベル、Hレベル」という用語を使うことができる。
しかし、「多値数(=N値のNのこと。)が互いに異なる多値回路が複数個入り混じる複合多値ディジタル回路」の場合、あるいは、「多値数が互いに異なる『多値論理関数とその1つ又は複数個の論理変数』が複数個入り混じる変則的な多値ディジタル回路」の場合(例:前述した段落番号[0103]。)など、それらの用語が混乱してしまう。
例えば、3値回路のHレベルは4値回路のM1レベルに相当し、4値回路のHレベルは5値回路のM2レベルに相当する。
それなら、いっその事、「使用する一番大きい多値数N(=N値のNのこと。)」をその全体回路の基準にして、各電源線に対応する「論理レベル名と論理数値」を「その使用する一番大きい多値数Nの論理レベル名と論理数値」に固定・統一して、例えば、電源線V2と対応する「論理数値2の論理レベル」のことを略して「論理2レベル」と呼び、さらに略して「L2レベル」と呼んだ方がある程度すっきりする。
従って、10値回路の場合、例えば「電源線V0〜電源線V9」と1対1ずつ対応する「論理数値0〜9の論理レベル」は「L0レベル〜L9レベル」と呼び、「各論理レベルと1対1ずつ対応する各『定電位または定電圧』」はL0レベルからL9レベルに向かって、正論理なら高くなって行き、負論理なら低くなって行くことになる。
このため、この10値回路の中に例えば2値回路を構成するとき「電源線V0〜電源線V9」の中から「必要とする2電源線」を選択して使用することになるため、その選択はその10値の全体回路の中では論理数学的には数値「0と1」だけでなく数値「4と5」、数値「8と9」、数値「3と7」、数値「5と9」、数値「0と9」など、いろいろな数値の組合せとその2値回路用電源電圧の大きさの選択を意味することになる。
しかし、その2値回路の中では結局LレベルとHレベルしか無いので、その2値回路の中だけなら2値的に新しくLレベルを数値0として、Hレベルを数値1として考えることもできるが、その10値回路を含む全体回路としては「L0レベル〜L9レベル」として考えることになる。
要するに、これらの事を純然たる電子回路だけで考えるなら何の混乱も無いのであるが、例えばその電源電圧の大きさの違い・その電源電位の高さの違いが有るだけであるが、論理数学との対応関係を考慮すると、「その各多値数の違い」や「どの電源線を基準数値0に対応させるか」という要素が入って来るので混乱し易くなる。
以後、取り敢えず多値の各数値の論理レベルを「L0レベル、L1レベル、L2レベル……」という具合に呼ぶことにする。
★★★各論理数値と1対1ずつ対応する各論理レベルの呼び名(仮)★★★
■■■ Background Art of the Second Invention of the Prior Application ■■■
First, "multi-valued logic levels", "each threshold potential (or each threshold voltage) at each logic level" and "continuity of potential (or voltage) change" will be described as preliminary knowledge.
■■ Multi-level logic levels ■■
In the case of a binary circuit (eg, binary logic circuit, binary arithmetic circuit, binary memory, binary storage means, binary digital system, etc.), for example, “0” and “1” are used as the two logical values. Therefore, the term “L level and H level” can be used to express each logic level regardless of positive logic or negative logic. In the positive logic, the L level substantially means “logical level of logical value 0”, and the H level means “logical level of logical value 1”, whereas in negative logic, the L level is substantially “logical value 1”. "Logic level" means H and "H level" means "logic level of logical value 0".
In the case of a ternary circuit, since the three logical values include, for example, “0”, “1”, and “2”, the expression of each logical level can be expressed, for example, “L level, M” regardless of positive logic or negative logic. The terms “level, H level” can be used.
Further, in the case of a quaternary circuit, the four logical values include, for example, “0”, “1”, “2”, “3”. The terms “L level, M0 level, M1 level, H level” can be used.
Similarly, in the case of a quinary circuit, the five logical values include, for example, “0”, “1”, “2”, “3”, “4”. For example, the terms “L level, M0 level, M1 level, M2 level, H level” can be used.
However, in the case of a “composite multi-value digital circuit in which a plurality of multi-value circuits having different multi-value numbers (= N of N values) are mixed” or “multi-value logic functions having different multi-value numbers” In the case of “anomalous multi-valued digital circuit in which a plurality of“ and one or a plurality of logical variables ”are mixed” (for example, paragraph number [0103] described above), the terms are confused.
For example, the H level of the ternary circuit corresponds to the M1 level of the quaternary circuit, and the H level of the quaternary circuit corresponds to the M2 level of the quinary circuit.
If that is the case, then “the largest multi-value number N (= N of N values) to be used” is used as a reference for the entire circuit, and “logic level name and logic value” corresponding to each power line. Is fixed and unified to “the logical level name and logical value of the largest multi-level number N to be used”, for example, “logical level of logical value 2” corresponding to the power supply line V2 is abbreviated to “logical It is called “2 level”, and the abbreviated “L2 level” is somewhat clearer.
Therefore, in the case of a 10-value circuit, for example, “logic levels 0 to 9” that correspond one-to-one with “power supply line V0 to power supply line V9” are called “L0 level to L9 level”. Each “constant potential or constant voltage” corresponding to 1 to 1 increases from the L0 level toward the L9 level, increasing in the positive logic state and decreasing in the negative logic state.
For this reason, when configuring a binary circuit in the 10-value circuit, for example, the “required two power supply lines” are selected from the “power supply lines V0 to V9” and used. In the entire circuit of 10 values, not only the numerical values “0 and 1” but also numerical values “4 and 5”, numerical values “8 and 9”, numerical values “3 and 7”, numerical values “5 and This means selection of various combinations of numerical values such as “9” and numerical values “0 and 9” and the magnitude of the power supply voltage for the binary circuit.
However, since there are only L level and H level in the binary circuit after all, if only in the binary circuit, the L level can be considered as a numerical value 0 and the H level can be considered as a numerical value 1. The entire circuit including the 10-value circuit is considered as “L0 level to L9 level”.
In short, there is no confusion if you think about these things with purely electronic circuits. In consideration of the correspondence relationship, it becomes easy to be confused because elements such as “the difference in each multi-value number” and “which power line corresponds to the reference value 0” are included.
Hereinafter, the logical levels of the multi-valued numerical values will be referred to as “L0 level, L1 level, L2 level...” For the time being.
★★★ Name of each logical level corresponding to each logical value one-to-one (provisional)
■■ 数値判別と各しきい値電位(または各しきい値電圧) ■■
正論理の数値判別方法について述べる。2値回路において「Lレベルの入力電圧(又は入力電位)」とは実質的に「国際標準規格・国際標準仕様等によってあらかじめ決められた、電源電圧ゼロ(又は電源電位ゼロ)を基準にしたプラス側しきい値電圧(又はプラス側しきい値電位)」のことであり、「Hレベルの入力電圧(又は入力電位)」とは実質的に「その国際標準規格・国際標準仕様等によってあらかじめ決められた、プラス電源電圧+V(又はプラス電源電位+V)を基準にしたマイナス側しきい値電圧(又はマイナス側しきい値電位)」のことである。
なお、2値回路で普通「しきい値電圧(又はしきい値電位)」と呼ばれるものは、例えばCMOSの場合「PMOSとNMOSの動作状態が反転する境」すなわち「回路しきい値電圧(又はしきい値電位)」のことである。そして、半導体素子のオン・オフしきい値電圧が有る。これらのしきい値はその電源電圧の大きさや各半導体素子の特性によって一義的に決まる。(参考:上記・非特許文献8)
従って、多値の入力数値が「最低の論理レベルに対応すると定義された数値」であるかを判別する方法は、その入力数値に対応する信号電位が「その最低の論理レベルに対応する定電位を基準にしてあらかじめ決められたプラス側しきい値電位」より低ければ、その入力数値は「その最低の論理レベルの数値」であると判別される。
ただし、現在の所その多値の「プラス側しきい値電位」はまだ具体的に国際標準規格・国際標準仕様等によってあらかじめ決められていない(?)ので、当然であるが、その多値回路の各研究者・各設計者などが独自の「プラス側しきい値電位」をあらかじめ決めることになる。もし、将来、「電位モード(又は電圧モード)の多値回路」が汎用的に利用される様になれば、国際標準規格・国際標準仕様等によって「そのプラス側しきい値電位」はあらかじめ決められることになる。この事は下記「各しきい値電位」についても言える。
また、多値の入力数値が「最高の論理レベルに対応すると定義された数値」であるかを判別する方法は、その入力数値に対応する信号電位が「その最高の論理レベルに対応する定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」より高ければ、その入力数値は「その最高の論理レベルの数値」であると判別される。
さらに、多値の入力数値が「最低、最高の両論理レベル以外の各中間の論理レベルと1対1ずつ対応すると定義された各数値」であるかを判別する方法は、その入力数値の信号電位が「その1つ又は複数個の中間の論理レベルに対応する定電位それぞれを基準にしてあらかじめ決められた『プラス側しきい値電位とマイナス側しきい値電位』」の間のうち1つに有れば、その入力数値は「その対応する1つの中間の論理レベルの数値」であると判別される。
具体的には、数値0〜9の10値回路の場合、正論理なら、以下の通りになる。
★L0レベルの領域は「最低電位の第1定電位(例:電源電位ゼロ等。)を基準にしたプラス側しきい値電位」より低い領域。
★L1〜L8の各レベルの領域は順々に「第2定電位〜第9定電位の各定電位を基準にしたプラス側しきい値電位とマイナス側しきい値電位」の間の領域。
★L9レベルの領域は「最高電位の第10定電位を基準にしたマイナス側しきい値電位」より高い領域。
一般的に『国際標準規格・国際標準仕様』等で次の通り設定されるのが普通であるが、そうではない例外(例:TTLの様にバイポーラ・トランジスタ等を使う場合、上下非対称になる。)も有る。L1レベル〜L9レベルの各マイナス側しきい値電位は「その論理レベルの定電位」と「その論理レベルの定電位と『その論理レベルの定電位より1つ下の論理レベルの定電位』の真ん中電位」の間に1つずつ設定される一方、L0レベル〜L8レベルの各プラス側しきい値電位は「『その論理レベルの定電位より1つ上の論理レベルの定電位』とその論理レベルの定電位の真ん中電位」と「その論理レベルの定電位」の間に1つずつ設定される。
■■ Numeric discrimination and each threshold potential (or each threshold voltage) ■■
A positive logic numerical discrimination method will be described. In a binary circuit, “L-level input voltage (or input potential)” is essentially a plus based on the power supply voltage zero (or power supply potential zero) determined in advance by international standards, international standard specifications, etc. Side threshold voltage (or positive side threshold potential) ”and“ H-level input voltage (or input potential) ”is substantially determined in advance by its international standard, international standard specification, etc. The negative threshold voltage (or the negative threshold potential) with reference to the positive power supply voltage + V (or the positive power supply potential + V) ”.
In the binary circuit, what is usually called “threshold voltage (or threshold potential)” is, for example, in the case of CMOS “a boundary where the operating state of PMOS and NMOS is inverted”, that is, “circuit threshold voltage (or Threshold potential) ”. There is an on / off threshold voltage of the semiconductor element. These threshold values are uniquely determined by the magnitude of the power supply voltage and the characteristics of each semiconductor element. (Reference: Above / Non-Patent Document 8)
Therefore, the method for determining whether the multi-value input numerical value is “a numerical value defined as corresponding to the lowest logic level” is that the signal potential corresponding to the input numerical value is “a constant potential corresponding to the lowest logical level”. If the value is lower than the “predetermined positive side threshold potential”, the input value is determined to be “the value of the lowest logic level”.
However, since the multi-value “plus-side threshold potential” has not yet been determined in advance by international standards, international standard specifications, etc. (?), It is natural that the multi-value circuit. Each researcher / designer in the field will determine their own “plus-side threshold potential” in advance. If the “multi-value circuit in potential mode (or voltage mode)” will be used for general purposes in the future, the “positive side threshold potential” will be determined in advance according to international standards and specifications. Will be. This is also true for the following “each threshold potential”.
In addition, the method of determining whether a multi-value input value is a “number defined as corresponding to the highest logic level” is that the signal potential corresponding to the input value is “a constant potential corresponding to the highest logic level”. If it is higher than “a negative threshold potential determined in advance with reference to”, the input numerical value is determined to be “the numerical value of the highest logic level”.
Further, a method for determining whether a multi-valued input numerical value is “each numerical value defined to correspond one-to-one with each intermediate logical level other than the lowest and highest logical levels”. One of the potentials between “a positive threshold potential and a negative threshold potential” determined in advance with reference to each of the constant potentials corresponding to the one or more intermediate logic levels. , It is determined that the input numerical value is “the numerical value of the corresponding one intermediate logic level”.
Specifically, in the case of a 10-value circuit with numerical values 0 to 9, if positive logic, it is as follows.
* The L0 level region is a region lower than “the positive side threshold potential based on the first constant potential of the lowest potential (eg, power supply potential zero, etc.)”.
The regions of each level of L1 to L8 are regions between “plus side threshold potential and minus side threshold potential with reference to each of the second constant potential to the ninth constant potential” in order.
★ L9 level region is higher than “minus threshold potential with reference to 10th constant potential of maximum potential”.
In general, it is usually set as follows in “International Standards / International Standard Specifications”, etc., but there are exceptions that are not so (for example, when using bipolar transistors etc. like TTL, it becomes vertically asymmetric) .) Is also available. The negative threshold potentials of the L1 level to the L9 level are “constant potential of the logic level”, “constant potential of the logic level, and“ constant potential of the logic level one level lower than the constant potential of the logic level ”. Each of the positive side threshold potentials of the L0 level to L8 level is “a constant potential of a logic level one higher than the constant potential of the logic level” and its logic. One is set between “the middle potential of the constant potential of the level” and “the constant potential of the logic level”.
ところで、「『……の数値である』と判別する際のしきい値電位(又はしきい値電圧)」と「『その数値ではない』と『明確に』に判別する際のしきい値電位(又はしきい値電圧)」は同じではない、一致しない。この理由は、数値化の際に数値0、1どっち付かずでは困るので、どっち付かずの電位領域(又はどっち付かずの電圧領域)を除く為である。
2値回路では当たり前のことであるが、正論理なら、「『数値0である★』と判別する際のしきい値電位(又はしきい値電圧)」はLレベルの入力電位(又は入力電圧)になる一方、「『数値0ではない★』と『明確に』判別する際のしきい値電位(又はしきい値電圧)」は「『数値1である★』と判別する際のしきい値電位(又はしきい値電圧)」すなわちHレベルの入力電位(又は入力電圧)と同じになるので、両しきい値電位は一致しない。
●このため、例えば10値回路の入力数値が数値「0」ではない★と『明確に』判別される為には、その入力数値は数値「1〜9」のいずれか1つであると判別される必要が有るので、その入力数値の信号電位は必ずL1レベルのマイナス側しきい値電位より高いと判別されなければならない。
なお、この場合、「数値1、2どっち付かずの電位領域」、「数値2、3どっち付かずの電位領域」、……、「数値7、8どっち付かずの電位領域」及び「数値8、9どっち付かずの電位領域」が「数値『1〜9』のいずれか1つであると判別する為の電位領域」に含まれるが、全く問題無い。なぜなら、いずれの「どっち付かずの電位領域」も「数値0ではない電位領域」だからである。
つまり、「その入力数値が数値「0」である★と『明確に』判別される為のしきい値電位」はL0レベルのプラス側しきい値電位であるが、「その入力数値が数値「0」ではない★と『明確に』判別される為のしきい値電位」はL1レベルのマイナス側しきい値電位となり、両しきい値電位は一致しない。
●同様に、10値回路の入力数値が数値「9」ではない★と『明確に』判別される為には、その入力数値は数値「0〜8」のいずれか1つであると判別される必要が有るので、その入力数値の信号電位は必ずL8レベルのプラス側しきい値電位より低いと判別されなければならない。
つまり、「その入力数値が数値「9」である★と『明確に』判別される為のしきい値電位」はL9レベルのマイナス側しきい値電位であるが、「その入力数値が数値「9」ではない★と『明確に』判別される為のしきい値電位」はL8レベルのプラス側しきい値電位となり、両しきい値電位は一致しない。
●また同様に、10値回路の入力数値が数値「1」ではない★と『明確に』判別される為には、その入力数値は数値「0、2〜9」のいずれか1つであると判別される必要が有るので、その入力数値の信号電位は必ず「L0レベルのプラス側しきい値電位より低いと判別されるか、又は、L2レベルのマイナス側しきい値電位より高いと判別されるか」しなければならない。
つまり、「その入力数値が数値『1』である★と『明確に』判別される為のしきい値電位2つ」はL1レベルのプラス、マイナス両側のしきい値電位であるが、「その入力数値が数値『1』ではない★と『明確に』判別される為のしきい値電位2つ」は「L0レベルのプラス側しきい値電位」と「L2レベルのマイナス側しきい値電位」となり、両「しきい値電位2つ」は一致しない。
●全く同じ様に、数値「2〜8」それぞれにおいても『明確に』判別される為の同様な両「しきい値電位2つ」は一致しない。
→→→ 「先願の請求項1中に記載の2組の●a)項〜●d)項の各しきい値電位」
By the way, “threshold potential (or threshold voltage) when discriminating“… ”is a numerical value” ”and“ threshold potential when discriminating “not that numeric value” and “clearly” (Or threshold voltage) "is not the same and does not match. The reason for this is to eliminate a potential region (or a voltage region without any), since it is not necessary to have either a numerical value 0 or 1 at the time of digitization.
As a matter of course in a binary circuit, if it is positive logic, “threshold potential (or threshold voltage) when discriminating from“ 0 ”” is an L level input potential (or input voltage). On the other hand, “threshold potential (or threshold voltage) when discriminating between“ not numeric value ★ ”” and “clearly” is “threshold when discriminating between“ number 1 ”” Since it is the same as the “value potential (or threshold voltage)”, that is, the H level input potential (or input voltage), the threshold potentials do not match.
For this reason, for example, in order to determine “clearly” that the input numerical value of the 10-value circuit is not the numerical value “0”, it is determined that the input numerical value is any one of the numerical values “1 to 9”. Therefore, it must be determined that the signal potential of the input numerical value is always higher than the negative threshold potential of the L1 level.
In this case, “potential region without numerical value 1, 2”, “potential region without numerical value 2, 3”,..., “Potential region without numerical value 7, 8” and “numerical value 8” , “None of the potential regions” is included in the “potential region for determining that it is any one of the numerical values“ 1 to 9 ””, but there is no problem at all. This is because any “potential region without any” is “a potential region that is not a numerical value 0”.
In other words, “threshold potential for“ clearly distinguishing ”that the input numerical value is“ 0 ”” is a positive threshold potential of the L0 level, but “the input numerical value is a numerical value“ The threshold potential for “clearly distinguishing” from ★ which is not “0” is the negative threshold potential of the L1 level, and the two threshold potentials do not match.
● Similarly, the input numerical value of the 10-value circuit is determined to be any one of the numerical values “0 to 8” in order to be “clearly” determined that the numerical value is not “9”. Therefore, it is necessary to determine that the signal potential of the input numerical value is always lower than the positive threshold potential of the L8 level.
That is, “threshold potential for“ clearly distinguishing ”that the input numerical value is“ 9 ”” is a negative threshold potential of the L9 level, but “the input numerical value is a numerical value“ The threshold potential for “clearly distinguishing” from ★ which is not “9” is the positive threshold potential of the L8 level, and the two threshold potentials do not match.
● Similarly, the input numerical value of the 10-value circuit is any one of the numerical values “0, 2 to 9” in order to be “clearly” determined that the numerical value is not “1”. Therefore, it is always determined that the signal potential of the input numerical value is “lower than the positive threshold potential of the L0 level or higher than the negative threshold potential of the L2 level. "Do you have to be?"
In other words, “two threshold potentials for distinguishing between“ * ”whose input numerical value is“ 1 ”and“ clearly ”” are the threshold potentials on both the positive and negative sides of the L1 level. “Two threshold potentials for distinguishing“ ★ ”that is not“ 1 ”as the input value is“ L0 level positive threshold potential ”and“ L2 level negative threshold potential ” ”And“ two threshold potentials ”do not match.
In exactly the same way, both of the “threshold potentials” that are “clearly” determined for each of the numerical values “2 to 8” do not match.
→→→ “Two threshold potentials of ● a) to ● d) as described in claim 1 of the prior application”
■■ 電位(または電圧)変化の連続性 ■■
「論理数学」には「連続」という概念が無いというか「連続性」に拘束されず、それをわざわざ考慮する必要は全く無いが、その論理動作(=論理的思考活動)を物理的動作(例:電子回路動作など。)に置き換えて代理的に実際に動作させる為、その置き換えた論理動作は必ずその物理的性質によって制約される。例えばコンデンサ電圧VCの連続性(その静電容量Cが一定の時。)やコイル電流ILの連続性(そのインダクタンスLが一定の時。)である。
どちらの連続性も『エネルギー保存法則』と『エネルギー変換・移動には時間が掛かること』に起因している。エネルギー保存法則によりエネルギーは不連続に発生・消滅したり、不連続に増減したりすることは無い為、コンデンサの蓄電エネルギーEC=C・VC 2/2によりCが一定ならコンデンサ電圧VCも不連続に発生・消滅したり、不連続に増減したりすることは無いし、コイルの磁気エネルギー(=励磁エネルギー)EL=L・IL 2/2によりLが一定ならコイル電流ILも不連続に発生・消滅したり、不連続に増減したりすることは無い。
仮に、Cが連続的に(多少)変化しても、その蓄電エネルギー式の左辺は一定なので、コンデンサ電圧Vcも連続的に(多少)変化するだけで、その変化は不連続にはならない。この事はその磁気エネルギー式においても同様なので、Lが連続的に(多少)変化しても、コイル電流ILも連続的に(多少)変化するだけで、その変化は不連続にはならない。と言うことは、蓄電エネルギーECと磁気エネルギーELの和が一定の場合も同様にその事は当てはまる。
また、回路内には浮遊の「静電容量、インダクタンス、抵抗」や各回路部品中の「内部静電容量、内部インダクタンス、内部抵抗」が必ず有るので、「コンデンサの蓄電エネルギーEC」や「コイルの磁気エネルギーEL」をその回路内の導線や他の各回路部品を介して別のエネルギーに変換したり、別の場所に移動させたりするには時間が掛かる。例えば、その回路内の共振動作による電磁変換、その回路内の抵抗によるジュール発熱、各・時定数による時間遅れ、などである。このため、コンデンサ電圧VCもコイル電流ILも変化するのに時間が掛かる。どちらも「時間ゼロで」すなわち「不連続に」変化することは無い。
そんな訳で、下記の場合を除き、コンデンサ電圧VCもコイル電流ILも変化するときは必ず連続的になり、不連続に飛び飛びの値を取ることは無い。
■■ Continuity of potential (or voltage) change ■■
“Logical mathematics” does not have the concept of “continuity” or is not constrained by “continuity”, and there is no need to consider it at all, but its logical action (= logical thinking activity) is a physical action (= Example: electronic circuit operation etc.)), the replacement logical operation is always restricted by its physical properties. For example, a continuity of the capacitor voltage V C (when the electrostatic capacitance C is constant.) And continuity of the coil current I L (when the inductance L is constant.).
Both continuities are attributed to the “Energy Conservation Law” and “Energy conversion and movement takes time”. Energy or discontinuously generated and extinction by the energy saving law, because it will not be increased or decreased discontinuously, stored energy E C = C-V C 2/2 by If C is a constant capacitor voltage V C of the capacitor or also discontinuous generation and extinction, to never be increased or decreased discontinuously, the coil current I L if L by magnetic energy (= exciting energy) E L = L · I L 2/2 coils is constant Will not discontinuously occur or disappear, nor will it increase or decrease discontinuously.
Even if C is continuously (slightly) changed, since constant left-hand side of the stored energy type, also the capacitor voltage V c only varies continuously (somewhat), the change is not a discontinuous. Since this is the same in the magnetic energy equation, even if L changes continuously (somewhat), the coil current IL also changes only continuously (somewhat), and the change does not become discontinuous. This also applies to the case where the sum of the stored energy E C and the magnetic energy E L is constant.
Also, since there are always floating “capacitance, inductance, resistance” in the circuit and “internal capacitance, internal inductance, internal resistance” in each circuit component, “capacitor stored energy E C ” and “ It takes time to convert the coil's magnetic energy E L "to another energy or to move it to another location via the conductors and other circuit components in the circuit. For example, electromagnetic conversion due to resonance operation in the circuit, Joule heat generation due to resistance in the circuit, time delay due to each time constant, and the like. Therefore, it takes time to change both the coil current I L capacitor voltage V C. Neither changes at “time zero” or “discontinuously”.
This is why, with the exception of the following, the capacitor voltage V C becomes always continuously when changing also the coil current I L, it is not take a discontinuous discrete values.
ただし、フライバック型電力変換回路や電流遮断式点火回路などでその変圧器の1次側電流が遮断され、その2次側で電流が流れ始める場合、一般的に(インダクタンス)∝(巻数の2乗)である為その巻数比が1でない限り、その1次側インダクタンス値から2次側インダクタンス値への変化は不連続になるので、エネルギー保存法則によって当然その1次側電流値から2次側電流値への変化も不連続になる。
ほかにもコイルLの透磁率やコンデンサCの誘電率を積極的に不連続に変化させる場合が有れば、コンデンサ電圧VCやコイル電流ILも不連続に変化する。しかし、これらの様な回路動作は論理回路などでは行われない。
However, when the primary side current of the transformer is interrupted by a flyback type power conversion circuit or a current interrupt type ignition circuit and the current starts to flow on the secondary side, in general, (inductance) 2 (2 turns) Since the change from the primary inductance value to the secondary inductance value becomes discontinuous unless the turns ratio is 1, the natural current conservation law naturally changes the primary current value to the secondary side. The change to the current value also becomes discontinuous.
If there are cases in addition to that positively discontinuously change the dielectric constant of permeability and capacitor C of the coil L is also the capacitor voltage V C and the coil current I L is also changed discontinuously. However, such circuit operations are not performed in a logic circuit or the like.
当然の事ながら、上記(段落番号[00136]。)コンデンサ電圧VCの連続性はMOS・FET等の電圧駆動型トランジスタのゲート・ソース間静電容量などの電圧連続性に直結するので、その「ゲート電位またはゲート電圧」等も必ず連続的に変化し、不連続に飛び飛びの値を取ることは無い。
→→ 電位モード(又は電圧モード)のディジタル回路(=2値〜多値回路)
一方、上記コイル電流ILの連続性も電子回路中の導線、配線等の浮遊インダクタンス電流の連続性に直結するので、その電流の連続性から逃(のが)れられない限りバイポーラ・トランジスタ等の電流駆動型トランジスタのベース電流なども必ず連続的に変化し、不連続に飛び飛びの値を取ることは無い。
→→ 電流モードのディジタル回路(=2値〜多値回路)
その結果、「ある多値信号が示す論理レベル」が例えば「L0レベルからL3レベル」に変化する際に、その論理レベルは必ず途中で「L1レベル」と「L2レベル」を通過する。
これを論理数値的に表現すれば、「その多値信号が示す論理数値」が例えば「0」から「3」に変化する際に、前述した物理的制約すなわち『前述した各連続性』によってその論理数値は必ず途中で「1」と「2」の各数値を取る(これらの数値を通過する)。
Of course, the (paragraphs [00136].) Because continuity of the capacitor voltage V C is directly connected to the voltage continuity, such as the gate-source capacitance of the voltage-driven transistors such MOS-FET, its The “gate potential or gate voltage” or the like always changes continuously and does not take a discontinuous value.
→→ Digital circuit in potential mode (or voltage mode) (= 2-value to multi-value circuit)
On the other hand, lead in continuity and electronic circuitry of the coil current I L, since directly linked to the continuity of the stray inductance current such as wiring, bipolar transistor or the like as long as the continuity of the current escape (the can) and are not The base current of the current driven transistor always changes continuously and does not take a discontinuous value.
→→ Digital circuit in current mode (= 2-value to multi-value circuit)
As a result, when the “logic level indicated by a certain multi-level signal” changes from “L0 level to L3 level”, for example, the logic level always passes “L1 level” and “L2 level” on the way.
If this is expressed in a logical numerical value, when the “logical numerical value indicated by the multi-level signal” changes from “0” to “3”, for example, the physical restriction described above, that is, “each continuity described above” indicates that The logical value always takes each value of “1” and “2” in the middle (passes these values).
■■■さて、ここから本題(先願第2発明の背景技術)に入る。一般的に従来の2値回路でも多値回路でも「ハザード」は「信号ノイズ」として偽りの「ゴースト信号、ゴースト・データ又はゴースト情報」に相当し、本当の「信号、データ又は情報」を伝達するのを妨げ、「どこ」と「どこ」が、あるいは、「どこ」から「どこ」までがその本当の「信号、データ又は情報」であるか分かり難くする。そして、「ハザード」は他の回路動作に悪影響(誤動作や無駄な回路動作など)を与える。
さらに加えて、従来の多値論理回路の課題5つをまとめると以下の通りである。これらの詳細な説明は後述する。
◆1)従来の2値ハザードと同様な仕組みで発生するハザードの課題に加えて、その論理数値と論理レベルが共に3つ以上有る為に『ある多値信号の論理レベルが変化するとき、途中の論理レベルを通過することによって過渡的ハザードが発生してしまう』という多値固有の回路障害、多値ハザードが大きな課題として特に有る。
( 先願第2発明が解決すべき第1課題 )
★参考:下記・非特許文献9の最下段の後ろから13〜10行目。多値固有ハザード。
◆2)『同じく、ある多値信号の論理レベルが変化するとき、オーバー・シューティングやアンダー・シューティングで振れ過ぎて本来の向かうべき論理レベル領域を通り越して隣りの論理レベル領域に達してからその向かうべき論理レベル領域に戻ったり収束したりることによって過渡的ハザードが発生してしまう』という多値固有の回路障害、多値ハザードが大きな課題として特に有る。 ( 先願第2発明が解決すべき第2課題 )
◆3)多値回路ではさらに悪い事に『多値ハザードが電力損失の増幅・増大に繋(つな)がってしまう』という課題が有る。 ( 先願第2発明が解決すべき第3課題 )
◆4)その多値数が大きければ大きい程それだけ、上記第1〜第3の各課題の悪影響度も大きくなるので、『大きな多値数の論理回路ほど多値ハザードの悪影響度も大きい』。
( 先願第2発明が解決すべき第4課題 )
◆5)考えられる従来の多値ハザード除去回路を使っても、その多値ハザードを除去する前の前段の回路部分ではその多値ハザードの影響は避けられないが、その影響が及ぶ回路部分範囲をできるだけ小さくしたい。
従って、『できることなら、その発生した多値ハザードの影響を受ける回路内の範囲を少しでも狭くしたい』という課題が有る。( 先願第2発明が解決すべき第5課題 )
In addition, the five problems of the conventional multilevel logic circuit are summarized as follows. Detailed description thereof will be described later.
◆ 1) In addition to the hazard problem that occurs in the same mechanism as the conventional binary hazard, there are three or more logical values and logic levels, so “when the logic level of a multilevel signal changes, A multi-level inherent circuit failure and a multi-level hazard that “transient hazards occur by passing through the logic level” are particularly significant issues.
(First problem to be solved by the second invention of the prior application)
★ Reference: 13th to 10th lines from the back of the bottom of Non-Patent Document 9 below. Multi-valued inherent hazard.
◆ 2) “Similarly, when the logic level of a multi-value signal changes, it moves too much by overshooting or undershooting and after passing through the logic level area that should be headed to the next logic level area. A multi-valued circuit failure and a multi-valued hazard such as “transient hazards are generated by returning to or converging to a logic level region” are particularly significant issues. (Second problem to be solved by the second invention of the prior application)
◆ 3) The problem with multi-level circuits is that “multi-level hazards lead to amplification and increase of power loss”. (Third problem to be solved by the second invention of the prior application)
(4) The larger the multi-value number, the greater the adverse effect of each of the first to third problems. Therefore, “the larger the multi-value logic circuit, the greater the adverse effect of the multi-value hazard”.
(Fourth problem to be solved by the second invention of the prior application)
◆ 5) Even if a possible conventional multi-value hazard removal circuit is used, the effect of the multi-value hazard is unavoidable in the previous stage of the circuit before removing the multi-value hazard. Want to be as small as possible.
Therefore, there is a problem that “if possible, I would like to narrow the range in the circuit affected by the generated multi-value hazard as much as possible”. (Fifth problem to be solved by the second invention of the prior application)
■■ 先願第2発明が解決すべき第1、第3課題の詳細な説明 ■■
ここから、分かり易い例で「第1要因による多値固有のハザードの発生」を説明する。例えば多値数N=4で、第1の多値回路の入力数値が最小値「0」から最大値「3」に変化するとき、必ず途中の数値「1と2」を通過するが、その回路の出力側は「入力数値0に対応する出力数値」から「入力数値1に対応する出力数値」、「入力数値2に対応する出力数値」を経て「入力数値3に対応する出力数値」になる。このとき各出力数値の値によっては以下の様に多値ハザードが発生してしまう。
仮に、その「入力数値1と3に対応する出力数値」が「3」で、その「入力数値0と2に対応する出力数値」が「0」ならば、その入力数値が「0」から「3」へ1回変化する間にその出力数値は「0」→「3」→「0」→「3」と無駄に3回変化する為、その入力側の変化回数が3倍増幅され、しかも、第1の余計なパルスが1つその出力側に現われてしまう。
( 第1の多値ハザードの発生 →→ ●先願第2発明が解決すべき第1課題 )
そして、その出力数値を入力する後段の第2の多値回路・以降でも同様な事が起これば、『その入力数値が「0」から「3」へ1回変化する間』だけでなく『その入力数値が「3」から「0」へ1回変化する間』にも同様な事が起きてしまう。
すなわち、第2の多値回路においてその入力数値が「3」から「0」へ1回変化する間でもその出力数値は「3」→「0」→「3」→「0」と無駄に3回変化する為、その入力側の変化回数が3倍増幅され、しかも、第2の余計なパルスが1つその出力側に現われてしまう。
( 第2の多値ハザードの発生 →→ ●先願第2発明が解決すべき第1課題 )
その結果、その第2の多値回路の入力数値の変化すなわち「0→3」、「3→0」及び「0→3」の3回変化に対して、その1回の入力数値変化・毎(ごと)にその出力側には3回数値変化と1つの余計なパルス出現が有ることになるので、結局、第1の多値回路の入力数値の1回変化がその第2の多値回路の出力側では9回の数値変化と余計なパルス3つの出現となってしまう。いや、余計なパルスの出現は計4つである。実際に、紙にその9回の数値変化を描いてみれば分かる。
この様に、その後段の第2の多値回路・以降でも同じ様な事が起これば、「その無駄に変化する回数」と「その余計なパルス発生数」はその多値回路の接続段数を重ねるに連れてさらにどんどん増えて行く。その結果、その回路動作は、その後段回路になればなる程極めて複雑・異常になる上に、他の回路動作にさらにどんどん悪影響を与えて行く。仕舞(しまい)には使い物にならなくなってしまう。
その悪影響の例としては「信号ノイズの出現」つまり「どことどこが、又は、どこからどこまでがその真の『信号、データ又は情報』であるか分かり難くすること」、「ハザード・ノイズによる誤動作」、「無駄な回路動作」等である。
( 多値ハザード発生回数の増幅・増加作用と、それによる悪影響の拡大 )
→→ ( ●先願第2発明が解決すべき第1課題 )
しかも、その発生ハザード・パルス1つでも「塵(ちり)も積もれば山となる」で多値回路中のハザード・パルスを合計すれば当然無視できないが、加えて「その無駄に変化する回数の増幅・増加」すなわち「ほぼ一定期間内の多値ハザード発生回数の増幅・増加(=多値ハザード・パルス発生周波数の高周波化)」は『オン・オフ切換え時のスイッチング(電力)損失や、MOS・FETならゲート・ソース間静電容量などの充放電に伴う電力損失が、さらに無駄に増幅・増加すること』を意味する。
( 電力損失のさらに無駄な増加 →→ ●先願第2発明が解決すべき第3課題 )
■■ Detailed explanation of the first and third problems to be solved by the second invention of the prior application ■■
From here, “Generation of multi-value specific hazard due to first factor” will be described as an easy-to-understand example. For example, when the multi-value number N = 4 and the input value of the first multi-value circuit changes from the minimum value “0” to the maximum value “3”, it always passes the intermediate values “1 and 2”. The output side of the circuit changes from “output numerical value corresponding to input numerical value 0” to “output numerical value corresponding to input numerical value 1” and “output numerical value corresponding to input numerical value 2” to “output numerical value corresponding to input numerical value 3”. Become. At this time, depending on the value of each output numerical value, a multi-value hazard occurs as follows.
If the “output numerical value corresponding to the input numerical values 1 and 3” is “3” and the “output numerical value corresponding to the input numerical values 0 and 2” is “0”, the input numerical value is changed from “0” to “ Since the output value changes unnecessarily three times as “0” → “3” → “0” → “3” while changing to “3” once, the number of changes on the input side is amplified by three times. The first extra pulse appears on the output side.
(Generation of the first multi-value hazard →→ ● First issue to be solved by the second invention of the prior application)
And if the same thing happens in the second multi-value circuit in the subsequent stage that inputs the output numerical value, not only “while the input numerical value changes once from“ 0 ”to“ 3 ”” The same thing happens when the input numerical value changes once from “3” to “0”.
That is, while the input value changes once from “3” to “0” in the second multi-value circuit, the output value is “3” → “0” → “3” → “0”. Since the number of times of change changes, the number of changes on the input side is amplified by a factor of 3, and one second extra pulse appears on the output side.
(Generation of second multi-value hazard →→ ● First problem to be solved by the second invention of the prior application)
As a result, for each change of the input value of the second multi-value circuit, that is, three changes of “0 → 3”, “3 → 0” and “0 → 3”, the change of the input value for each time Since (every) the output side has a three-time value change and one extra pulse appearance, after all, the one-time change in the input numerical value of the first multi-value circuit is the second multi-value circuit. On the output side, there are nine numerical changes and three extra pulses. No, there are a total of four extra pulses. Actually, if you draw the 9 numerical changes on paper, you can see it.
In this way, if the same thing happens in the second multi-level circuit in the subsequent stage, the “number of wasteful changes” and the “number of extra pulses” are the number of connected stages of the multi-level circuit. The more you add, the more you add. As a result, the circuit operation becomes extremely complicated / abnormal as the circuit becomes a subsequent stage, and further adversely affects other circuit operations. It will no longer be useful for the end.
Examples of the adverse effects are “appearance of signal noise”, that is, “making it difficult to understand where and where or from where to where the true“ signal, data or information ””, “malfunction due to hazard noise”, For example, “useless circuit operation”.
(Amplification / increase of the number of occurrences of multi-value hazards and expansion of adverse effects)
→→ (● First problem to be solved by the second invention of the prior application)
Moreover, even if one hazard pulse is generated, it will naturally be ignored if the hazard pulses in the multi-valued circuit are summed up because “the dust accumulates,” but in addition, “ “Amplification / Increase”, that is, “Amplification / Increase in the number of multi-value hazard occurrences within an almost fixed period (= High-frequency multi-value hazard / Pulse generation frequency)” means “switching (power) loss at ON / OFF switching, MOS -In the case of FET, it means that the power loss due to charging / discharging such as capacitance between gate and source is further amplified and increased.
(Further increase in power loss →→ ● Third problem to be solved by the second invention of the prior application)
■■ 先願第2発明が解決すべき第2、第3課題の詳細な説明 ■■
次に、分かり易い例で「第2要因による多値固有のハザードの発生」を説明する。仮に多値数N=4で、第1の多値回路の出力数値が最小値「0」から数値「2」に変化すると、その後段の第2の多値回路の入力部では「正論理ならオーバー・シューティング、負論理ならアンダー・シューティング」が発生してしまう。一方、その出力数値が最大値「3」から数値「1」に変化するときは、正反対に「正論理ならアンダー・シューティング、負論理ならオーバー・シューティング」が発生してしまう。
これらの減衰振動は多値ハザードの第2発生要因になるが、ふつう、第1の多値回路の出力抵抗は小さく、第2の多値回路の入力インピーダンスは容量性(例:MOS・FETのゲート・ソース間静電容量。)であり、両回路間の信号線に浮遊インピーダンスが有れば、その内部抵抗は小さいので、オーバー・シューティングやアンダー・シューティングが発生し易い。つまり、前段から後段へ信号をエネルギー効率良く、早く伝達しようとすると、それらの減衰振動が発生し易い。
もし、その入力信号のオーバー・シューティング又はアンダー・シューティングが振れ過ぎて、その入力信号が「本来の向かうべき論理レベル領域」を通り越して隣りの論理レベル領域に達してからその「本来の向かうべき論理レベル領域」に戻ったり収束したりすると、過渡的にハザード・パルスが発生してしまう。この様なハザード・パルスは3値回路でも発生する場合が多い。
(オーバー・シューティング等による多値ハザードの発生)
→→ (●先願第2発明が解決すべき第2課題 )
■■ Detailed explanation of the second and third problems to be solved by the second invention of the prior application ■■
Next, “Generation of multi-value specific hazard due to second factor” will be described as an easy-to-understand example. If the multi-value number N = 4 and the output numerical value of the first multi-value circuit changes from the minimum value “0” to the numerical value “2”, the input part of the second multi-value circuit in the subsequent stage “if positive logic “Overshooting, undershooting if negative logic” occurs. On the other hand, when the output numerical value changes from the maximum value “3” to the numerical value “1”, “under-shooting for positive logic and over-shooting for negative logic” occurs in the opposite direction.
Although these damped oscillations are the second cause of multi-value hazards, the output resistance of the first multi-value circuit is usually small, and the input impedance of the second multi-value circuit is capacitive (for example, MOS · FET If the signal line between the two circuits has stray impedance, the internal resistance is small, so overshooting and undershooting are likely to occur. In other words, if an attempt is made to transmit a signal from the preceding stage to the subsequent stage with high energy efficiency, these damping vibrations are likely to occur.
If overshooting or undershooting of the input signal swings too much and the input signal passes through the “logic level region to be originally directed” and reaches the next logic level region, then the “original logic to be directed to” When returning to the “level region” or converging, a hazard pulse is transiently generated. Such a hazard pulse often occurs even in a ternary circuit.
(Generation of multi-value hazard due to overshooting etc.)
→→ (Second issue to be solved by the second invention of the prior application)
ここで、オーバー・シューティングやアンダー・シューティングが発生してしまう仕組みについて簡単に説明する。いま、直流電源の両端に双方向性スイッチを介して直列共振回路を接続した回路の動作を考える。初期条件としてその直列共振回路の蓄積エネルギーはゼロで、その共振動作でのエネルギー損失もゼロとしてその双方向性スイッチをオンにすると、その共振コンデンサの電圧はその電源電圧VEを中心に電圧ゼロと2VEの間を延々と振動する。その電源電圧方向が正反対なら、その共振コンデンサの電圧はその電源電圧マイナスVEを中心に電圧ゼロとマイナス2VEの間を延々と振動する。
要するに、その共振動作にエネルギー損失が全く無ければ、その共振コンデンサの電圧は軽々とその電源電圧の2倍(=電源電位差の2倍)に達してしまうのである。
一般的なディジタル回路では、例えばその共振コンデンサがMOS・FETのゲート・ソース間静電容量であり、その共振コイルが前段回路・後段回路間の信号線・配線の浮遊インダクタンスであり、その前段回路の出力抵抗は比較的に小さい。
同様に、3値回路でその入力信号電位が最低電源電位から中間電源電位へ変化するときも、その共振動作に電力損失が無ければ、その入力信号電位は軽々とその最高電源電位に達してしまう(オーバー・シューティング)。そして、その入力信号電位が最高電源電位から中間電源電位へ変化するときも、その共振動作に電力損失が無ければ、その入力信号電位は軽々とその最低電源電位に達してしまう(アンダー・シューティング)。
しかし、実際にはその共振動作に電力損失が有るから、その共振動作は減衰振動になる為、その入力信号電位は「その最高電源電位の手前」や「その最低電源電位の手前」までしか達することができない場合が多い。とは言っても、例えば数値0、1、2の3値回路において正論理ならば数値2の論理レベルのしきい値電位は「その最高電源電位を基準にしたマイナス側しきい値電位」である一方、数値0の論理レベルのしきい値電位は「その最低電源電位を基準にしたプラス側しきい値電位」である為に、その入力信号電位がそのオーバー・シューティングによって数値2の論理レベル領域に達したり、そのアンダー・シューティングによって数値0の論理レベル領域に達したりしてしまうことは3値回路でも多い。
(オーバー・シューティング等による多値ハザードの発生)
→→ (●先願第2発明が解決すべき第2課題 )
これが例えば数値0〜3の4値回路なら「数値0・数値2間に対応する電位差」は普通「数値2・数値3間に対応する電位差」の2倍になり、5値回路なら「数値0・数値3間に対応する電位差」は普通「数値3・数値4間に対応する電位差」の3倍になる為、その数値変化の際にその入力信号電位は極めて容易にそのオーバー・シューティングによって「本来の向かうべき数値の論理レベル領域」を通り越して隣りの論理レベル領域に達することができる。そして、そのオーバー・シューティング又はアンダー・シューティングの振動回数が多ければ多い程、その隣りの論理レベル領域に達する回数も多くなり、その発生ハザード・パルス数は増加する。
(オーバー・シューティング等による多値ハザードの発生)
→→ (●先願第2発明が解決すべき第2課題 )
しかも、その発生ハザード・パルス1つでも「塵も積もれば山となる」で多値回路中のハザード・パルスを合計すれば当然無視できないが、加えてその発生ハザード・パルス数の増加は「オン・オフ切換え時のスイッチング(電力)損失の増加」や「MOS・FETならゲート・ソース間静電容量などの充放電に伴う電力損失の増加」を意味する。
(電力損失のさらに無駄な増加)
→→ (●先願第2発明が解決すべき第3課題 )
Here, a mechanism that causes overshooting and undershooting will be briefly described. Consider the operation of a circuit in which a series resonant circuit is connected to both ends of a DC power source via a bidirectional switch. Stored energy in the series resonant circuit as an initial condition is zero, turning on its bidirectional switch as energy loss zero at the resonant operation, the voltage of the resonance capacitor voltage zero around the power source voltage V E And 2V E oscillate endlessly. If the direction of the power supply voltage is opposite, the voltage of the resonance capacitor oscillates between zero voltage and negative 2V E around the power supply voltage minus V E.
In short, if there is no energy loss in the resonance operation, the voltage of the resonance capacitor will easily reach twice the power supply voltage (= twice the power supply potential difference).
In a general digital circuit, for example, the resonant capacitor is the capacitance between the gate and the source of the MOS / FET, the resonant coil is the floating inductance of the signal line / wiring between the preceding circuit and the succeeding circuit, and the preceding circuit The output resistance of is relatively small.
Similarly, when the input signal potential changes from the lowest power supply potential to the intermediate power supply potential in the ternary circuit, the input signal potential easily reaches the maximum power supply potential if there is no power loss in the resonance operation. (Over shooting). Even when the input signal potential changes from the highest power supply potential to the intermediate power supply potential, the input signal potential can easily reach the lowest power supply potential if there is no power loss in the resonance operation (under shooting). .
However, since the resonance operation actually has power loss, the resonance operation becomes a damped oscillation, so that the input signal potential reaches only “before the maximum power supply potential” or “before the minimum power supply potential”. There are many cases where this is not possible. However, for example, if the ternary circuit of numerical values 0, 1, and 2 is positive logic, the threshold potential of the logical level of numerical value 2 is “a negative threshold potential based on the highest power supply potential”. On the other hand, since the threshold potential of the logic level of the numerical value 0 is “a positive threshold potential with respect to the lowest power supply potential”, the input signal potential becomes the logical level of the numerical value 2 by the overshooting. Even in the case of a ternary circuit, an area is reached or a logic level area of 0 is reached due to undershooting.
(Generation of multi-value hazard due to overshooting etc.)
→→ (Second issue to be solved by the second invention of the prior application)
For example, if this is a quaternary circuit of numerical values 0 to 3, the “potential difference corresponding to the numerical value 0 and the numerical value 2” is usually twice the “potential difference corresponding to the numerical value 2 and the numerical value 3”.・ "Potential difference corresponding to numerical value 3" is usually three times "potential difference corresponding to numerical value 3 and numerical value 4", so when the numerical value changes, the input signal potential is very easily " The next logical level region can be reached past the “logical level region of the numerical value that should be headed”. As the number of overshooting or undershooting vibrations increases, the number of times that the adjacent logic level region is reached increases, and the number of generated hazard pulses increases.
(Generation of multi-value hazard due to overshooting etc.)
→→ (Second issue to be solved by the second invention of the prior application)
Moreover, even if one hazard pulse is generated, it will naturally be ignored if the hazard pulses in the multi-valued circuit are summed up because “the dust accumulates”, but the increase in the number of generated hazard pulses is “on”. "Increase in switching (power) loss when switching off" and "In the case of MOS / FET, increase in power loss due to charge / discharge of gate-source capacitance".
(Further increase in power loss)
→→ (● The third problem to be solved by the second invention of the prior application)
なお、2値回路の場合、数値は0と1しか無い為、つまり最高電源電位と最低電源電位の2種類しかない為、その入力信号電位を「その最高電源電位側とその最低電源電位側」それぞれに1方向に1つずつダイオード・クランプすることによってその入力部のオーバー・シューティングやアンダー・シューティングを吸収することができるので、上述の様なオーバー・シューティングやアンダー・シューティングの問題は無い。
しかし、多値回路の場合、少なくとも1つの中間電源電位が有るので、「その入力信号電位をその中間電源電位にダイオード・クランプする」という手法を使うことはできない。なぜなら、その後段回路の入力信号電位をその中間電源電位の1つにでも1方向にダイオード・クランプすると、そのダイオードの順方向電圧となる様にその前段回路の出力部がその中間電源電位以外の電源電位を出力したとき、その出力部とそのクランプ・ダイオードが電源短絡を引き起こす、からである。
In the case of a binary circuit, since there are only two values, 0 and 1, that is, there are only two types of maximum power supply potential and minimum power supply potential, the input signal potential is “the highest power supply potential side and the lowest power supply potential side”. By over-shooting or under-shooting the input portion by diode-clamping one diode in each direction, there is no problem of over-shooting or under-shooting as described above.
However, in the case of a multi-value circuit, since there is at least one intermediate power supply potential, the technique of “clamping the input signal potential to the intermediate power supply potential” cannot be used. This is because if the input signal potential of the subsequent circuit is diode-clamped in one direction even to one of its intermediate power supply potentials, the output circuit of the preceding circuit will have a voltage other than the intermediate power supply potential so that the forward voltage of the diode is obtained. This is because when the power supply potential is output, the output section and the clamp diode cause a power supply short circuit.
■■ 先願第2発明が解決すべき第4課題の詳細な説明 ■■
第1に、その多値数が大きければ大きい程それだけ「その多値信号の論理レベルが変化するときに通過する途中の論理レベルの数」が多くなり、多値ハザードが多く発生し易くなる為、その多値回路の段数を重ねるに連れてその発生回数の増幅・増加作用が強くなるので、第1、第3課題の悪影響度も大きくなる。
***
第2に、その多値数が大きければ大きい程それだけ「小さい数値から大きい数値へ変化したり、または、大きい数値から小さい数値へ変化したりして、その数値変化に対応する電位差の変化も大きくなり、そのオーバー・シューティングやアンダー・シューティングの振幅が大きくなる場合」が多くなるので、その振れ過ぎによって隣りの論理レベル領域どころか、さらにその隣りの隣りの論理レベル領域に達してから本来の向かうべき論理レベル領域に戻ることによって「より多くの過渡的ハザード」が発生してしまう。
加えて、その隣りの論理レベル領域などはその向かうべき論理レベル領域の高電位側と低電位側の両方に有る場合が多いから、さらに「より多くの過渡的ハザード」が発生してしまう場合が多くなるので、第2、第3課題の悪影響度も大きくなる。
もちろん、「そのオーバー・シューティングまたはアンダー・シューティングの、収束までの振動回数」が多ければ多い程、その隣りの論理レベル領域などに達する回数も多くなり、その発生ハザード・パルス数は増加する。そして、その多値回路の接続段数によってその悪影響は広がる。
***
従って、その「振幅の大きさと振動回数」両方の面から『大きな多値数ほど多値ハザードの課題・悪影響も大きい』。 ( 先願第2発明が解決すべき第4課題 )
■■ Detailed explanation of the fourth problem to be solved by the second invention of the prior application ■■
First, the larger the multi-value number, the more “the number of logic levels that are in the middle of passing when the logic level of the multi-value signal changes”, and the greater the number of multi-value hazards. As the number of stages of the multi-value circuit is increased, the effect of amplifying / increasing the number of occurrences becomes stronger, and the adverse effects of the first and third problems also increase.
***
Secondly, the larger the multi-value number, the greater the change in the potential difference corresponding to the change in the numerical value, such as “change from a small numerical value to a large numerical value, or change from a large numerical value to a small numerical value. When the amplitude of the overshooting or undershooting becomes large, ”it should increase to the original logic level area, not just the next logical level area, but also the next logical level area. Returning to the logic level region will cause “more transient hazards”.
In addition, since the adjacent logic level region and the like are often on both the high potential side and the low potential side of the logic level region to which the heading is directed, there may be a case where “more transient hazards” occur. Since it increases, the adverse effect of the second and third problems also increases.
Of course, the greater the “number of vibrations until convergence of the overshooting or undershooting” is, the greater the number of times that the adjacent logic level region is reached, and the number of generated hazard pulses increases. The adverse effect spreads depending on the number of connection stages of the multi-value circuit.
***
Therefore, in terms of both the “magnitude and number of vibrations”, “the larger the multi-value number, the greater the problems and adverse effects of multi-value hazards”. (Fourth problem to be solved by the second invention of the prior application)
■■ 先願第2発明が解決すべき第5課題の詳細な説明 ■■
それから、別の多値ハザード除去方法として、前述した「特開2006−345468号公報の実施例10(段落番号0035)又は特開2007−35233号公報の図18・図15両図」に開示された従来の多値同期型ラッチング手段を1つずつ、「前後に複数段・接続した『新・多値論理[フージ代数]に基づく多値論理回路』」の各間に設けて同様に除去することが考えられるが、後述(段落番号[0147]。)する「先願第2、3発明共通が解決しようとする課題」に加えて『その発生した多値ハザードの影響を受ける回路内の範囲を少しでも狭くしたい』という課題が有る。
先ず、多値固有の多値ハザード(段落番号[0140〜0143]中で説明。)を発生する発生源はその多値論理回路の数値判別手段である為に、その数値判別手段で発生した多値ハザードはその回路内・後段のオン・オフ駆動手段を経て出力スイッチ部まで伝わり、その回路外・後段の多値同期型ラッチング手段によってその伝播は遮断(しゃだん)される。
また、その数値判別手段がその多値ハザードを発生し始めるとしたら、その回路外・前段の多値同期型ラッチング手段の出力が変化する時である。
従って、その多値論理回路の前段と後段の多値同期型ラッチング手段2つの間、すなわち、その多値論理回路・中(じゅう)がその多値ハザードの影響を「小刻(こきざ)みではあるが」、前述(1つ前の段落。)の通り受けることになる。この事は「その前段と後段に接続された多値同期型ラッチング手段2つによって挟まれた多値論理回路」すべてについて同様に当てはまる。
このため、『できることなら、その発生した多値ハザードの影響を受ける回路内の範囲を少しでも狭くしたい』という課題が有る。( 先願第2発明が解決すべき第5課題 )
■■ Detailed explanation of the fifth problem to be solved by the second invention of the prior application ■■
Then, another multilevel hazard removal method is disclosed in the above-mentioned “Example 10 (paragraph number 0035) of Japanese Patent Laid-Open No. 2006-345468 or both FIGS. 18 and 15 of Japanese Patent Laid-Open No. 2007-35233”. One conventional multi-level synchronous latching means is provided between each of the "multi-level logic circuit based on a new multi-level logic [Fuji algebra]" connected in multiple stages before and after, and removed in the same manner. However, in addition to the “problem to be solved by the prior inventions Nos. 2 and 3 in common” described later (paragraph number [0147]), “the range within the circuit affected by the multi-value hazard that has occurred” "I want to make it as small as possible."
First, since the source that generates the multi-valued hazard (explained in paragraphs [0140 to 0143]) is the numerical value judging means of the multi-value logic circuit, the multi-value hazard generated by the numerical value judging means is the first. The value hazard is transmitted to the output switch section through the on / off driving means in the circuit and the subsequent stage, and the propagation is blocked by the multi-value synchronous latching means outside and behind the circuit.
Further, if the numerical value judging means starts to generate the multi-value hazard, it is a time when the output of the multi-value synchronous latching means outside the circuit and the previous stage changes.
Therefore, the multi-level logic circuit between the two stages of the multi-level logic circuit, that is, the multi-level synchronous type latching means, that is, the multi-level logic circuit and the middle (the tenth) shows the effect of the multi-level hazard as However, it will be received as described above (the previous paragraph). This applies similarly to all of the “multi-value logic circuit sandwiched between two multi-value synchronous latching means connected to the preceding stage and the latter stage”.
For this reason, there is a problem that “if possible, I would like to narrow the range in the circuit affected by the generated multi-value hazard as much as possible”. (Fifth problem to be solved by the second invention of the prior application)
◇◇◇ 先 願 発 明 の 概 要 ◇◇◇
◇◇◆ 先願発明が解決しようとする課題 ◆◇◇
◇◇◇ Summary of prior application ◇◇◇
◇◇ ◆ Problems to be solved by the invention of the prior application ◆ ◇◇
■■■ 先願第2、3発明共通が解決しようとする課題 ■■■
そういう訳(段落番号0127〜0131)で、従来の多値同期型ラッチング手段には以下5つの課題が有る。
◆1)ポジティブ、ネガティブの各エッジ・トリガー方式を使用できない。
→→ 例えば各エッジ・トリガー方式を使用できれば、特に、本発明者が考えた階段状の多値同期信号(下記・特許文献11の図4の波形。その立上り箇所または立下り箇所または水平部分が複数個有る。)をさらに有効的に活用することができる様になるので、その同期1周期中においてトリガー・タイミングの選択肢が増えて大変便利になる。
◆2)「出力開放または開放出力に対応する信号状態」をラッチすることができない。
★注:前述の『フージ代数』には「出力を開放する」という独特な出力の仕方が有る。
◆3)「出力される数値」に応じたラッチング機能を備えておらず、無駄が生じる。
→→ その全数値ラッチング機能の一部しか使われない場合に、その部品・回路の有効利用の面でも、その電力損失の面でも無駄が生じる。
◆4)使用する多値回路{例:多値論理回路、多値演算回路(または多進法演算回路)、多値メモリー回路、多値ディジタル回路など。}の構成に応じてその後段に接続する多値同期型ラッチング手段の選択肢が多いことが望まれる。その選択肢が多いと全体の多値回路の構成に柔軟性が生じる。
◆5)「全体回路内のどこでラッチングするか」というラッチング箇所の選択肢が多いことが望まれる。
→→ 従来だと、多値回路と多値回路の間に多値同期型ラッチング手段を設けなければならず、そのラッチング箇所が固定されている。もし、そのラッチング箇所の選択肢が多いと全体回路の構成に柔軟性が生じる。
For that reason (paragraph numbers 0127 to 0131), the conventional multilevel synchronous latching means has the following five problems.
◆ 1) Positive and negative edge trigger methods cannot be used.
→→ For example, if each edge trigger method can be used, in particular, the stepwise multilevel synchronization signal considered by the present inventor (the waveform shown in FIG. 4 of the following Patent Document 11). This makes it very convenient to increase the number of trigger timing options during one synchronization period.
◆ 2) “Output open or signal status corresponding to open output” cannot be latched.
* Note: The "Fuji algebra" mentioned above has a unique output method of "releasing output".
◆ 3) It does not have a latching function according to the “output numerical value”, resulting in waste.
→→ When only a part of the all-number latching function is used, waste is generated both in terms of effective use of the parts / circuits and power loss.
4) Multi-value circuit to be used {Example: Multi-value logic circuit, multi-value arithmetic circuit (or multi-ary arithmetic circuit), multi-value memory circuit, multi-value digital circuit, etc. }, It is desirable that there are many options of the multi-level synchronous latching means connected to the subsequent stage in accordance with the configuration of {}. When there are many choices, flexibility occurs in the configuration of the entire multi-value circuit.
◆ 5) It is desirable that there are many choices of the latching location “where to latch in the entire circuit”.
→→ Conventionally, a multi-value synchronous latching means must be provided between the multi-value circuit and the multi-value circuit, and the latching location is fixed. If there are many choices of the latching location, the configuration of the entire circuit becomes flexible.
■■ 先願第2、3発明共通の目的 ■■
そこで、先願第2、3発明共通は、以下5つの効果を有する「同期ラッチング機能を持つ多値論理手段」を提供することを目的としている。
◆1)2値同期型フリップ・フロップ手段の各トリガー方式(例:エッジ・トリガー、レベル・トリガー、パルス・トリガー)を利用することができる。
( 先願第2、3発明共通の第1効果 )
◆2)「出力開放または開放出力に対応する信号状態」をラッチすることができる。
( 先願第2、3発明共通の第2効果 )
◆3)「出力される数値(=出力用特定整数)以外の各数値」に対してラッチング機能が無い為、「出力される数値」に応じたラッチング機能を備えており、無駄が生じない。
( 先願第2、3発明共通の第3効果 )
→→無駄な部品、無駄な構成が無いため部品・回路を効率的に利用できる上に、消費電力の節約になる。
◆4)使用する多値回路{例:多値論理回路、多値演算回路(または多進法演算回路)、多値記憶手段、多値ディジタル回路など。}の構成に応じてその後段に接続する多値同期型ラッチング手段の選択肢が増えて便利になる。その全体の多値回路の構成に柔軟性が生じる。 ( 先願第2、3発明共通の第4効果 )
→→『フージ代数』に基づく各多値論理回路の場合、この回路が接続する定電位供給手段(例:電源線、電源板など。)によってラッチする『数値』を容易に変更できる上に、その各種の多値論理回路の中から使用回路を選択できる。先願第2、3発明共通はその各多値論理回路に同期ラッチング機能を持たせたものなので、結局、その多値同期型ラッチング手段の選択肢が増える。
→→その各種の多値論理回路には例えば本発明者が「(多値)AND回路、(多値)OR回路、OVER回路、EVEN回路、UNDER回路、IN回路、OUT回路など」と呼ぶ各回路が有る。
◆5)「全体回路内のどこでラッチングするか」というラッチング箇所の選択肢が増えて便利になる。その全体回路の構成に柔軟性が生じる。( 先願第2、3発明共通の第5効果 )
→→先願第2、3発明共通の多値論理手段・自体が同期ラッチング機能を持っているので、「多値回路と多値回路の間に多値同期型ラッチング手段を設けなくても良い」という選択肢が追加される。
■■ Common purpose of the second and third inventions ■■
Accordingly, the invention common to the second and third inventions aims to provide a “multi-value logic means having a synchronous latching function” having the following five effects.
◆ 1) Each trigger method (eg, edge trigger, level trigger, pulse trigger) of binary synchronous flip-flop means can be used.
(First effect common to the second and third inventions)
◆ 2) “Output open or signal state corresponding to open output” can be latched.
(Second effect common to the second and third inventions)
◆ 3) Since there is no latching function for “Each numerical value other than the output numerical value (= specific integer for output)”, a latching function corresponding to the “output numerical value” is provided, and no waste occurs.
(Third effect common to the second and third inventions)
→→ Since there are no useless parts and useless configurations, parts and circuits can be used efficiently and power consumption can be saved.
4) Multi-value circuit to be used {Example: multi-value logic circuit, multi-value arithmetic circuit (or multi-ary arithmetic circuit), multi-value storage means, multi-value digital circuit, etc. }, The number of options of the multi-level synchronous latching means to be connected to the subsequent stage is increased according to the configuration of {}. Flexibility occurs in the configuration of the entire multi-value circuit. (The fourth effect common to the second and third inventions of the prior application)
→→ In the case of each multi-value logic circuit based on “Fuji algebra”, the “numerical value” latched by the constant potential supply means (eg, power line, power plate, etc.) connected to this circuit can be easily changed. The circuit to be used can be selected from the various multi-value logic circuits. Since the common inventions of the second and third inventions are those in which each multi-value logic circuit is provided with a synchronous latching function, the number of options for the multi-value synchronous latching means increases after all.
→→ For example, the various invented multi-value logic circuits are called “(multi-value) AND circuit, (multi-value) OR circuit, OVER circuit, EVEN circuit, UNDER circuit, IN circuit, OUT circuit, etc.” There is a circuit.
◆ 5) The number of options for the latching location “where to latch in the entire circuit” increases, which is convenient. Flexibility occurs in the configuration of the entire circuit. (Fifth effect common to the second and third inventions)
→→ The multi-value logic means common to the second and third inventions of the prior application itself has a synchronous latching function. Is added.
■■■ 先願第2発明が解決しようとする課題 ■■■
前述(段落番号[0139〜0145]。)した通り、一般的に従来の2値回路でも多値回路でも「ハザード」は「信号ノイズ」として偽りの「ゴースト信号、ゴースト・データ又はゴースト情報」に相当し、本当の「信号、データ又は情報」を伝達するのを妨げ、「どこ」と「どこ」が、あるいは、「どこ」から「どこ」までがその本当の「信号、データ又は情報」であるか分かり難くする。そして、「ハザード」は他の回路動作に悪影響(誤動作や無駄な回路動作など)を与える。
さらに加えて、従来の多値論理回路の課題5つをまとめると以下の通りである。
◆1)従来の2値ハザードと同様な仕組みで発生するハザードの課題に加えて、その論理数値と論理レベルが共に3つ以上有る為に『ある多値信号の論理レベルが変化するとき、途中の論理レベルを通過することによって過渡的ハザードが発生してしまう』という多値固有の回路障害、多値ハザードが大きな課題として特に有る。
( 先願第2発明の第1解決課題 )
★参考:下記・非特許文献9の最下段の後ろから13〜10行目。多値固有ハザード。
◆2)『同じく、ある多値信号の論理レベルが変化するとき、オーバー・シューティングやアンダー・シューティングで振れ過ぎて本来の向かうべき論理レベル領域を通り越して隣りの論理レベル領域に達してからその向かうべき論理レベル領域に戻ったり収束したりすることによって過渡的ハザードが発生してしまう』という多値固有の回路障害、多値ハザードが大きな課題として特に有る。 ( 先願第2発明の第2解決課題 )
◆3)多値回路ではさらに悪い事に『多値ハザードが電力損失の増幅・増大に繋(つな)がってしまう』という課題が有る。 ( 先願第2発明の第3解決課題 )
◆4)その多値数が大きければ大きい程それだけ、上記第1〜第3の各課題の悪影響度も大きくなるので、『大きな多値数の論理回路ほど多値ハザードの悪影響度も大きい』。
( 先願第2発明の第4解決課題 )
◆5)考えられる従来の多値ハザード除去回路を使っても、その多値ハザードを除去する前の前段の回路部分ではその多値ハザードの影響は避けられないが、その影響が及ぶ回路部分範囲をできるだけ小さくしたい。
従って、『できることなら、その発生した多値ハザードの影響を受ける回路内の範囲を少しでも狭くしたい』という課題が有る。 ( 先願第2発明の第1解決課題 )
■■■ Problems to be solved by the second invention of the prior application ■■■
As described above (paragraph numbers [0139 to 0145]), “hazard” generally becomes a false “ghost signal, ghost data or ghost information” as “signal noise” in both conventional binary circuits and multi-value circuits. Correspondingly, it prevents the transmission of the real “signal, data or information” and “where” and “where” or “where” to “where” is the real “signal, data or information”. Make it difficult to understand. The “hazard” adversely affects other circuit operations (malfunctions, useless circuit operations, etc.).
In addition, the five problems of the conventional multilevel logic circuit are summarized as follows.
◆ 1) In addition to the hazard problem that occurs in the same mechanism as the conventional binary hazard, there are three or more logical values and logic levels, so “when the logic level of a multilevel signal changes, A multi-level inherent circuit failure and a multi-level hazard that “transient hazards occur by passing through the logic level” are particularly significant issues.
(First solution of the second invention of the prior application)
★ Reference: 13th to 10th lines from the back of the bottom of Non-Patent Document 9 below. Multi-valued inherent hazard.
◆ 2) “Similarly, when the logic level of a multi-value signal changes, it moves too much by overshooting or undershooting and after passing through the logic level area that should be headed to the next logic level area. A multi-level inherent circuit failure and a multi-value hazard that “transient hazards will occur by returning to or convergence to a power level region” are particularly significant issues. (Second solution of the second invention of the prior application)
◆ 3) The problem with multi-level circuits is that “multi-level hazards lead to amplification and increase of power loss”. (Third solution to the second invention of the prior application)
(4) The larger the multi-value number, the greater the adverse effect of each of the first to third problems. Therefore, “the larger the multi-value logic circuit, the greater the adverse effect of the multi-value hazard”.
(Fourth solution to the second invention of the prior application)
◆ 5) Even if a possible conventional multi-value hazard removal circuit is used, the effect of the multi-value hazard is unavoidable in the previous stage of the circuit before removing the multi-value hazard. Want to be as small as possible.
Therefore, there is a problem that “if possible, I would like to narrow the range in the circuit affected by the generated multi-value hazard as much as possible”. (First solution of the second invention of the prior application)
■■ 先願第2発明の目的 ■■
そこで、先願先願第2発明は、『2値ハザードと同様な仕組みで発生する多値ハザードに加えて、多値固有の多値ハザードも除去することができて』、『その発生した多値ハザードの影響を受ける回路内の範囲を少しでも狭くすることができる』多値ハザード除去手段を提供することを目的としている。
■■ Purpose of the second invention of the prior application ■■
Accordingly, the second invention of the prior application is that “in addition to multi-value hazards generated by the same mechanism as binary hazards, multi-value hazards peculiar to multi-values can be removed” The purpose of the present invention is to provide a multi-value hazard removal means that can narrow the range in the circuit affected by the value hazard as much as possible.
◇◇◆ 課題を解決するための手段 ◆◇◇
■■■ 先願第2、3発明共通の「課題を解決するための手段」 ■■■
即ち、先願第2、3発明共通は、
3又は3以上の所定の複数をNで表わし、所定の自然数をSで表わしたときに、
「『第1定電位から第N定電位まで番号順にこれらの定電位が高くなって行くか、又は、低くなって行くN個の定電位』を供給し、その各定電位と0〜(N−1)の各整数がその第1定電位とその整数0から順々に1対1ずつ対応すると定義された第1定電位供給手段〜第N定電位供給手段」と、
「S個の入力電位信号の入口となる第1の入口手段〜第Sの入口手段」と、
「出力電位信号の出口となる出口手段」と、
「『前記第1定電位供給手段〜前記第N定電位供給手段の中であらかじめ決められた1つの出力用特定定電位供給手段』と前記出口手段の間に接続され、オフ駆動されたときに1方向または双方向にオフとなるプル・スイッチング手段」と、
「『S=1の場合は1つの前記入力電位信号に対応する入力整数、S≧2の場合は[S個の前記入力電位信号のそれぞれと1対1ずつ対応するS個の入力整数のすべて]か[S個の前記入力電位信号のそれぞれと1対1ずつ対応するS個の入力整数のうち、少なくとも1つ]』が『[整数0〜(N−1)の中であらかじめ決められた1つの入力用特定整数と等しいかそうでないか]、[整数0〜(N−2)の中であらかじめ決められた1つの入力用特定整数より大きいかそうでないか]、[整数1〜(N−1)の中であらかじめ決められた1つの入力用特定整数より小さいかそうでないか]、[整数0〜(N−1)の中であらかじめ決められた、その差が少なくとも2である2つの入力用特定整数の間に有るかそうでないか]のいずれか1つ』について、それに適用する『下記(=段落番号[0152〜0153]中の)2つ又は4つのしきい値電位』に基づいて肯定か否定かを判別し、その判別結果を判別結果信号として出力する数値判別手段」と、
「同期信号に基づいて前記判別結果信号を保持信号として『そのまま又はマッチングさせて』入力し、その保持信号の『正出力信号または補出力信号』を出力する2値同期型フリップ・フロップ手段」と、
「前記同期信号を前記2値同期型フリップ・フロップ手段に供給する同期信号供給手段」と、
「『その正出力信号か補出力信号』に基づいて前記プル・スイッチング手段をオン・オフ駆動するのであるが、『その基づく方の出力信号が示す、その入力時の前記判別結果が肯定であればそれをオン駆動し、否定であればそれをオフ駆動する』か『正反対に肯定であればそれをオフ駆動し、否定であればそれをオン駆動する』オン・オフ駆動手段」、
を有する同期ラッチング機能を持つ多値論理手段である。
ただし、前述した「1つの入力用特定整数より小さい」という意味にはその1つの入力用特定整数は含まれないし、前述した「1つの入力用特定整数より大きい」という意味にはその1つの入力用特定整数は含まれないし、前述した「2つの入力用特定整数の間に有る」という意味にはその2つの入力用特定整数は含まれない。
◇◇ ◆ Means to solve the problem ◆ ◇◇
■■■ “Means for solving problems” common to the second and third inventions ■■■
In other words, the common inventions of the second and third inventions are:
When a predetermined plural number of 3 or 3 is represented by N and a predetermined natural number is represented by S,
“N constant potentials that increase or decrease in numerical order from the first constant potential to the Nth constant potential” are supplied, and each constant potential and 0 to (N -1), the first constant potential supply means to the Nth constant potential supply means defined as one-to-one correspondence with the first constant potential in order from the integer 0, "
“First to Sth Inlet Means for Incoming S Input Potential Signals”,
“Exit means for exiting output potential signal”;
“When connected between the“ first constant potential supply means to one predetermined constant potential supply means for output among the first constant potential supply means to the Nth constant potential supply means ”and the outlet means, "Pull switching means that is turned off in one or both directions";
““ When S = 1, an input integer corresponding to one of the input potential signals, and when S ≧ 2, [all of the S input integers corresponding one-to-one with each of the S input potential signals. ] Or [At least one of S input integers corresponding one-to-one with each of the S input potential signals] ”is determined in advance in [integer 0 to (N−1)]. It is equal to or not equal to one input specific integer], [is greater than one input specific integer predetermined in integer 0 to (N−2)], or [integer 1 to (N -1) smaller than or not one input specific integer predetermined in advance], [two predetermined in integer 0 to (N-1), the difference of which is at least 2 Any one of the input integers or not] Is determined as affirmative or negative based on “two or four threshold potentials in the following (= paragraph numbers [0152 to 0153]”) applied thereto, and the determination result is output as a determination result signal. Numeric discrimination means "
“Binary synchronous flip-flop means for inputting the determination result signal“ as is or matched ”as a holding signal based on the synchronizing signal and outputting a“ positive output signal or complementary output signal ”of the holding signal; ,
“Synchronizing signal supply means for supplying the synchronizing signal to the binary synchronous flip-flop means”;
“The pull switching means is driven on and off based on“ the positive output signal or the complementary output signal ”, but“ the determination result at the time of input indicated by the output signal based on that is positive. If it is negative, drive it off, or if it is negative, drive it off ”or“ If it is affirmative, drive it off, and if it is negative, drive it on ”on / off drive means”,
Is a multi-value logic means having a synchronous latching function.
However, the meaning of “less than one input specific integer” does not include the one input specific integer, and the meaning of “greater than one input specific integer” means that one input. The specific integer for use is not included, and the meaning of “between two input specific integers” does not include the two input specific integers.
■■ その2つ又は4つのしきい値電位 ■■
■(1)その第1定電位から第N定電位まで番号順にこれらの定電位が高くなって行く場合、さらに、
●a)「等しいかそうでないか」の場合:
*「等しいか」では「『前記入力用特定整数に対応する入力用特定定電位』を基準にしてあらかじめ決められたプラス側しきい値電位とマイナス側しきい値電位」。ただし、前記入力用特定整数が0のときは前記プラス側しきい値電位だけで、前記入力用特定整数が(N−1)のときは前記マイナス側しきい値電位だけである。
*「そうでないか」では「その第1定電位〜第N定電位のうち、前記入力用特定定電位より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」と「その第1定電位〜第N定電位のうち、前記入力用特定定電位より1つ下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。ただし、前記入力用特定整数が0のときは前記マイナス側しきい値電位だけで、前記入力用特定整数が(N−1)のときは前記プラス側しきい値電位だけである。
●b)「大きいかそうでないか」の場合:
*「大きいか」では「その第1定電位〜第N定電位のうち、『前記入力用特定整数に対応する入力用特定定電位』より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
*「そうでないか」では「前記入力用特定定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
●c)「小さいかそうでないか」の場合:
*「小さいか」では「その第1定電位〜第N定電位のうち、『前記入力用特定整数に対応する入力用特定定電位』より1つ下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
*「そうでないか」では「前記入力用特定定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
●d)「2つの前記入力用特定整数の間に有るかそうでないか」の場合:
*「その2つの間に有るか」では「その第1定電位〜第N定電位のうち、『その2つの入力用特定整数に対応する2つの入力用特定定電位のうち、低い方の定電位』より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」と「その第1定電位〜第N定電位のうち、『その2つの入力用特定定電位のうち、高い方の定電位』より1つ下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
*「そうでないか」では「その2つの入力用特定定電位のうち、低い方の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」と「その2つの入力用特定定電位のうち、高い方の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
■■ Two or four threshold potentials ■■
(1) When these constant potentials increase in numerical order from the first constant potential to the Nth constant potential,
● a) “Equal or not”:
* In the case of “equal to”, “a positive threshold potential and a negative threshold potential determined in advance with reference to an input specific constant potential corresponding to the input specific integer”. However, when the specific integer for input is 0, only the positive threshold potential is obtained, and when the specific integer for input is (N-1), only the negative threshold potential is obtained.
* In the case of “not so”, “a negative threshold potential determined in advance with reference to a constant potential one of the first constant potential to the Nth constant potential that is one higher than the specific constant potential for input” “A positive threshold potential determined in advance with reference to a constant potential one lower than the specific constant potential for input among the first constant potential to the Nth constant potential”. However, when the specific integer for input is 0, only the negative threshold potential is obtained, and when the specific integer for input is (N-1), only the positive threshold potential is obtained.
● b) If “Large or not”:
* In the case of “larger”, “the predetermined constant of the first constant potential to the Nth constant potential is determined in advance with reference to a constant potential that is one higher than the“ specific constant potential for input corresponding to the specific integer for input ”. Negative threshold potential ”.
* In the case of “not so”, “a positive threshold potential determined in advance on the basis of the specific constant potential for input”.
● c) “Small or not”:
* “It is small” is “predetermined on the basis of a constant potential one lower than the“ specific constant potential for input corresponding to the specific integer for input ”among the first constant potential to the Nth constant potential”. “Positive side threshold potential”.
* "If not" is "a negative threshold potential determined in advance with reference to the input specific constant potential".
D) In the case of “whether or not between two specific integers for input”:
* “Is it between the two?” Means that “of the first constant potential to the Nth constant potential, the lower constant of the two input specific constant potentials corresponding to the two input specific integers. Among the first constant potential to the Nth constant potential, “of the two input specific constant potentials”. “Higher constant potential” is a positive threshold potential determined in advance based on a constant potential one level lower than “the higher constant potential”.
* In the case of “not”, “the positive threshold potential determined in advance with respect to the lower constant potential of the two input specific constant potentials” and “the two specific input constant potentials” The negative threshold potential determined in advance based on the higher constant potential.
■(2)その第1定電位から第N定電位まで番号順にこれらの定電位が低くなって行く場合、さらに、
●a)「等しいかそうでないか」の場合:
*「等しいか」では「『前記入力用特定整数に対応する入力用特定定電位』を基準にしてあらかじめ決められたプラス側しきい値電位とマイナス側しきい値電位」。ただし、前記入力用特定整数が0のときは前記マイナス側しきい値電位だけで、前記入力用特定整数が(N−1)のときは前記プラス側しきい値電位だけである。
*「そうでないか」では「その第1定電位〜第N定電位のうち、前記入力用特定定電位より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」と「その第1定電位〜第N定電位のうち、前記入力用特定定電位より1つ下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。ただし、前記入力用特定整数が0のときは前記プラス側しきい値電位だけで、前記入力用特定整数が(N−1)のときは前記マイナス側しきい値電位だけである。
●b)「大きいかそうでないか」の場合:
*「大きいか」では「その第1定電位〜第N定電位のうち、『前記入力用特定整数に対応する入力用特定定電位』より1つした下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
*「そうでないか」では「前記入力用特定定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
●c)「小さいかそうでないか」の場合:
*「小さいか」では「その第1定電位〜第N定電位のうち、『前記入力用特定整数に対応する入力用特定定電位』より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
*「そうでないか」では「前記入力用特定定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
●d)「2つの前記入力用特定整数の間に有るかそうでないか」の場合:
*「その2つの間に有るか」では「その第1定電位〜第N定電位のうち、『その2つの入力用特定整数に対応する2つの入力用特定定電位のうち、低い方の定電位』より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」と「その第1定電位〜第N定電位のうち、『その2つの入力用特定定電位のうち、高い方の定電位』より1つ下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
*「そうでないか」では「その2つの入力用特定定電位のうち、低い方の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」と「その2つの入力用特定定電位のうち、高い方の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
(2) When these constant potentials decrease in numerical order from the first constant potential to the Nth constant potential,
● a) “Equal or not”:
* In the case of “equal to”, “a positive threshold potential and a negative threshold potential determined in advance with reference to an input specific constant potential corresponding to the input specific integer”. However, when the specific integer for input is 0, only the negative threshold potential is obtained, and when the specific integer for input is (N-1), only the positive threshold potential is obtained.
* In the case of “not so”, “a negative threshold potential determined in advance with reference to a constant potential one of the first constant potential to the Nth constant potential that is one higher than the specific constant potential for input” “A positive threshold potential determined in advance with reference to a constant potential one lower than the specific constant potential for input among the first constant potential to the Nth constant potential”. However, when the specific integer for input is 0, only the positive threshold potential is obtained, and when the specific integer for input is (N-1), only the negative threshold potential is obtained.
● b) If “Large or not”:
* In the case of “larger”, “it is determined in advance from the first constant potential to the Nth constant potential based on a constant potential that is one lower than the“ input specific constant potential corresponding to the input specific integer ”. Plus threshold potential.
* "If not" is "a negative threshold potential determined in advance with reference to the input specific constant potential".
● c) “Small or not”:
* In the case of “smaller”, “it is determined in advance from the first constant potential to the Nth constant potential, based on a constant potential one level higher than“ the specific constant potential for input corresponding to the specific integer for input ”. Negative threshold potential ”.
* In the case of “not so”, “a positive threshold potential determined in advance on the basis of the specific constant potential for input”.
D) In the case of “whether or not between two specific integers for input”:
* “Is it between the two?” Means that “of the first constant potential to the Nth constant potential, the lower constant of the two input specific constant potentials corresponding to the two input specific integers. Among the first constant potential to the Nth constant potential, “of the two input specific constant potentials”. “Higher constant potential” is a positive threshold potential determined in advance based on a constant potential one level lower than “the higher constant potential”.
* In the case of “not”, “the positive threshold potential determined in advance with respect to the lower constant potential of the two input specific constant potentials” and “the two specific input constant potentials” The negative threshold potential determined in advance based on the higher constant potential.
このことによって、先願第2、3発明共通の「課題を解決する為の手段」は従来の「『フージ代数』に基づく多値論理回路」中に前記2値同期型フリップ・フロップ手段と前記同期信号供給手段を組み込む等した「同期ラッチング機能を持つ多値論理手段」となる。
その従来の多値論理回路は前記「第1定電位供給手段〜第N定電位供給手段」、前記「第1の入口手段〜第Sの入口手段」、前記「出口手段」、前記「プル・スイッチング手段」、前記「数値判別手段」及び前記「オン・オフ駆動手段」を有するが、この従来の多値論理回路ではその判別結果信号に基づいてそのオン・オフ駆動手段がそのプル・スイッチング手段をオン・オフ駆動する。
この様に多値回路中に2値回路を組み込むことができるのは、後述(段落番号0160〜0161)の通り『その多値信号伝達途中(例:前記数値判別手段と前記オン・オフ駆動手段の間。)において2値回路を挿入・接続しても、この2値回路とその前段・後段との接続性が極めて良く、[その前段と2値回路の間]にも[その2値回路と後段の間]にも特別なインターフェイスが必要無い』という独特な効果が「フージ代数の原則に基づく多値論理回路」に有るからである。
ただし、どちらの両者の間もそのまま接続できる場合も有るが、マッチングさせて接続する場合も有る。
また、後述(段落番号[0166]の◇1)項の終わりの方。)する様に前記2値同期型フリップ・フロップ手段が前記オン・オフ駆動手段を兼ねる場合も有る。
さらに、「そのS個の入力整数(=S個の前記入力電位信号のそれぞれと1対1ずつ対応するS個の整数。)がその1つの入力用特定整数と等しいかそうでないかを判別すること」は「そのS個の入力整数が『その1つの入力用特定整数の両隣りの整数2つ』の間に有るかそうでないかを判別すること]と同じであるし、「そのS個の入力整数が0と等しいか等しくないかを判別すること」は「そのS個の入力整数が1より小さいかそうでないかを判別すること]と同じであるし、さらに、「そのS個の入力整数が(N−1)と等しいか等しくないかを判別すること」は「そのS個の入力整数が(N−2)より大きいかそうでないかを判別すること]と同じである。これらの数値判別はだぶっており、これらの判別には冗長(じょうちょう)性が有る。
As a result, the “means for solving the problems” common to the second and third inventions of the prior application is the conventional “multi-level logic circuit based on“ Fuji algebra ”” and the above-mentioned binary synchronous flip-flop means and the above-mentioned It becomes a “multi-value logic means having a synchronization latching function” by incorporating a synchronization signal supply means.
The conventional multi-value logic circuit includes the “first constant potential supply means to Nth constant potential supply means”, the “first inlet means to Sth inlet means”, the “exit means”, the “pull Switching means "," numerical value discrimination means "and" on / off drive means ". In this conventional multi-value logic circuit, the on / off drive means is the pull switching means based on the discrimination result signal. Is driven on and off.
As described later (paragraph numbers 0160 to 0161), the binary circuit can be incorporated in the multi-value circuit in this way “in the middle of the multi-value signal transmission (for example, the numerical value discriminating means and the on / off driving means). Even if a binary circuit is inserted and connected in between), the connectivity between this binary circuit and its pre-stage and post-stage is extremely good. This is because there is a unique effect in “a multi-valued logic circuit based on the principle of the Fuji algebra”.
However, there are cases where both can be connected as they are, but there are also cases where they are connected by matching.
Also, the end of the paragraph (paragraph number [0166] ◇ 1) described later. In some cases, the binary synchronous flip-flop means also serves as the on / off driving means.
Further, “determining whether or not the S input integers (= S integers corresponding to each of the S input potential signals on a one-to-one basis) is equal to or not equal to the one input specific integer. Is the same as “determining whether or not the S input integers are between“ two integers on both sides of the one input specific integer ”” and “the S input integers” "Determining whether the input integer of is equal to or not equal to 0" is the same as "determining whether the S input integers are less than or not 1" and " “Determining whether an input integer is equal to or not equal to (N−1)” is the same as “determining whether the S input integers are greater than (N−2)” or not. Numerous discrimination is difficult, and these discriminations are redundant. There.
◆その結果、前記数値判別手段と前記オン・オフ駆動手段の間にその2値同期型フリップ・フロップ手段を内蔵することができるので、その2値の各トリガー方式(例:プラス、マイナスのエッジ・トリガー、レベル・トリガー、パルス・トリガー)をそのまま利用することができる。 ( 先願第2、3発明共通の第1効果 )
特に、本発明者が考えた階段状の多値同期信号(特許文献7の図4の波形。その立上り箇所または立下り箇所または水平部分が複数個有る。)をさらに有効的に活用することができるので、その同期信号1周期中においてトリガー・タイミングの選択肢が増えて大変便利になる。
なぜなら、その2値同期型フリップ・フロップ手段をどの前記定電位供給手段2つ(例:2電源線)間に接続するかによってその複数個有る「立上り箇所または立下り箇所または水平部分」から1つを選択することができる、からである。
なお、その2値同期型フリップ・フロップ手段の出力電流容量が大きいなど、その2値同期型フリップ・フロップ手段が前記オン・オフ駆動手段の要件を満たしているならば、その2値同期型フリップ・フロップ手段がそのオン・オフ駆動手段を兼ねてももちろん構わない。
◆また、その2値同期型フリップ・フロップ手段は「その多値論理手段の出力用特定整数に対応する信号状態」か「出力開放または開放出力に対応する信号状態」どちらかをラッチするだけなので、当然「出力開放または開放出力に対応する信号状態」をラッチすることができる。 ( 先願第2、3発明共通の第2効果 )
◆さらに、「出力される数値(=出力用特定整数)以外の各数値」に対してラッチング機能が無い為、「出力される数値」に対応したラッチング機能を備えており、無駄が生じない。 ( 先願第2、3発明共通の第3効果 )
→→無駄な部品、無駄な構成が無いため部品・回路を効率的に利用できる上に、消費電力の節約になる。
◆それから、使用する多値回路{例:多値論理回路、多値演算回路(または多進法演算回路)、多値ディジタル回路など。}の構成に応じてその後段に接続する多値同期型ラッチング手段の選択肢が増えて便利になる。全体の回路構成に柔軟性が生じる。
( 先願第2、3発明共通の第4効果 )
→→『フージ代数』に基づく多値論理回路の場合、その数値判別手段、プル・スイッチング手段それぞれが接続する定電位供給手段(例:電源線、電源板など。)によってその入力用特定整数、出力用特定整数どちらも容易に変更できる上に、その各種の多値論理回路の中から使用回路を選択できる。先願第2、3発明共通はその各多値論理回路に同期ラッチング機能を持たせたものなので、結局、その多値同期型ラッチング手段の選択肢が増える。
→→その各種の多値論理回路には例えば本発明者が「(多値)AND回路、(多値)OR回路、OVER回路、EVEN回路、UNDER回路、IN回路、OUT回路など」と呼ぶ各回路が有る。
◆そして、「全体回路中のどこでラッチングするか」というラッチング箇所の選択肢が増えて便利になる。多値論理手段・単位で同期ラッチングできるので、その全体の回路構成に柔軟性が生じる。 ( 先願第2、3発明共通の第5効果 )
→→先願第2、3発明共通の多値論理手段・自体が同期ラッチング機能を持っているので、「多値回路と多値回路の間に多値同期型ラッチング手段を設けなくても良い」という選択肢が追加される。
As a result, since the binary synchronous flip-flop means can be built in between the numerical value discriminating means and the on / off driving means, each binary trigger method (eg, plus, minus edge)・ Triggers, level triggers, and pulse triggers can be used as they are. (First effect common to the second and third inventions)
In particular, it is possible to more effectively utilize the step-like multi-level synchronization signal (the waveform shown in FIG. 4 of Patent Document 7, which has a plurality of rising portions, falling portions, or horizontal portions) considered by the present inventor. Since this is possible, the number of trigger timing options increases during one period of the synchronization signal, which is very convenient.
This is because, depending on which of the two constant potential supply means (for example, two power supply lines) the binary synchronous flip-flop means is connected, a plurality of “rising points or falling points or horizontal portions” are used. This is because one can be selected.
If the binary synchronous flip-flop means satisfies the requirements of the on / off drive means, such as the output current capacity of the binary synchronous flip-flop means is large, the binary synchronous flip-flop Of course, the flop means may also serve as the on / off driving means.
In addition, the binary synchronous flip-flop means only latches either “signal state corresponding to a specific integer for output of the multi-value logic means” or “signal state corresponding to output open or open output”. Of course, the "signal state corresponding to the output open or open output" can be latched. (Second effect common to the second and third inventions)
◆ Furthermore, since there is no latching function for “each numerical value other than the output numerical value (= specific integer for output)”, a latching function corresponding to “output numerical value” is provided, so that no waste occurs. (Third effect common to the second and third inventions)
→→ Since there are no useless parts and useless configurations, parts and circuits can be used efficiently and power consumption can be saved.
◆ Then, the multi-value circuit to be used {example: multi-value logic circuit, multi-value arithmetic circuit (or multi-ary arithmetic circuit), multi-value digital circuit, etc. }, The number of options of the multi-level synchronous latching means to be connected to the subsequent stage is increased according to the configuration of {}. Flexibility occurs in the overall circuit configuration.
(The fourth effect common to the second and third inventions of the prior application)
→→ In the case of a multi-valued logic circuit based on “Fuji algebra”, its numerical identification means, pull-switching means, constant potential supply means (for example, power supply line, power supply plate, etc.) connected to each input specific integer, Both the output specific integers can be easily changed, and the circuit to be used can be selected from the various multi-value logic circuits. Since the common inventions of the second and third inventions are those in which each multi-value logic circuit is provided with a synchronous latching function, the number of options for the multi-value synchronous latching means increases after all.
→→ For example, the various invented multi-value logic circuits are called “(multi-value) AND circuit, (multi-value) OR circuit, OVER circuit, EVEN circuit, UNDER circuit, IN circuit, OUT circuit, etc.” There is a circuit.
◆ And the number of options for the latching part “where to latch in the entire circuit” increases, which is convenient. Since synchronous latching can be performed in units of multi-valued logic, the flexibility of the overall circuit configuration arises. (Fifth effect common to the second and third inventions)
→→ The multi-value logic means common to the second and third inventions of the prior application itself has a synchronous latching function. Is added.
なお、そのN(≧3)はN値の多値数Nを指しており、その使用する整数は0〜(N−1)である。その第1定電位が整数0に、その第2定電位が整数1に、その第3定電位が整数2に、 ……… ≪同様に両者1つずつ増えて行き、≫ ……… 、そして、その第N定電位が整数(N−1)にそれぞれ対応すると定義される。
→→ [電位モード(又は電圧モード)]
従って、その入力側の論理レベルとの関係で言えば以下の通り定義される。但し、2値回路の「Hレベル、Lレベル」という表現は多値回路では使えない為、例えば「整数…の論理レベル」とか「特定整数…の論理レベル」いう具合に具体的に数値を出して表現せざるを得ない。また、当然の事ながら、各論理レベル領域は重ならず、各「互いに隣同士となる2つの論理レベル領域」間には2領域間余裕領域が1つずつ設定される。
◆前記第1定電位から前記第N定電位まで番号順にこれらの定電位が『高くなって行く』場合:
「その第1定電位を基準にしたプラス側しきい値電位より低い第1定電位領域」が整数0の論理レベル領域であり、「その第2定電位を基準にしたマイナス側しきい値電位とプラス側しきい値電位の間に有る第2定電位領域」が整数1の論理レベル領域である。以下同様に「その第3定電位から第(N−1)定電位までの各定電位を順々に基準にしたマイナス側しきい値電位とプラス側しきい値電位の間に有る第3定電位領域から第(N−1)定電位領域」が順々に「整数2の論理レベル領域から整数(N−2)の論理レベル領域」である。そして、「その第N定電位を基準にしたマイナス側しきい値電位より高い第N定電位領域」が整数(N−1)の論理レベル領域である。
◆前記第1定電位から前記第N定電位まで番号順にこれらの定電位が『低くなって行く』場合:
「その第1定電位を基準にしたマイナス側しきい値電位より高い第1定電位領域」が整数0の論理レベル領域であり、「その第2定電位を基準にしたプラス側しきい値電位とマイナス側しきい値電位の間に有る第2定電位領域」が整数1の論理レベル領域である。以下同様に「その第3定電位から第(N−1)定電位までの各定電位を順々に基準にしたプラス側しきい値電位とマイナス側しきい値電位の間に有る第3定電位領域から第(N−1)定電位領域」が順々に「整数2の論理レベル領域から整数(N−2)の論理レベル領域」である。そして、「その第N定電位を基準にしたプラス側しきい値電位より低い第N定電位領域」が整数(N−1)の論理レベル領域である。
その結果、「高くなって行く場合」、「低くなって行く場合」どちらの場合でもその入力電位信号がその第1定電位領域内に有れば「それに対応する入力整数」は0であると判別され、その入力電位信号がその第2定電位領域内に有れば「それに対応する入力整数」は1であると判別される。以下同様に、その入力電位信号がその第3定電位領域内からその第N定電位領域内まで順々に有れば、「それに対応する入力整数」は順々に2から(N−1)であると判別される。
Note that N (≧ 3) indicates a multi-value number N of N values, and the integer used is 0 to (N−1). The first constant potential is an integer 0, the second constant potential is an integer 1, the third constant potential is an integer 2, and so on. The Nth constant potential is defined as corresponding to an integer (N-1).
→→ [Potential mode (or voltage mode)]
Therefore, it is defined as follows in relation to the logic level on the input side. However, since the expression “H level, L level” in a binary circuit cannot be used in a multi-value circuit, for example, “numerical level… a logical level” or “specific integer… a logical level” is used to express a specific numerical value. I have to express it. As a matter of course, the logical level areas do not overlap each other, and one margin area between the two areas is set between each of the “two logical level areas adjacent to each other”.
◆ When these constant potentials “go higher” in numerical order from the first constant potential to the Nth constant potential:
The “first constant potential region lower than the positive side threshold potential with reference to the first constant potential” is the logic level region of the integer 0, and “the negative side threshold potential with reference to the second constant potential. The second constant potential region between the positive-side threshold potential and the logic level region of integer 1. In the same manner, “the third constant potential between the negative threshold potential and the positive threshold potential with reference to each constant potential from the third constant potential to the (N−1) th constant potential in order. The (N-1) th constant potential region from the potential region is sequentially “the logic level region of integer 2 to the logic level region of integer (N−2)”. The “Nth constant potential region higher than the negative threshold potential with reference to the Nth constant potential” is an integer (N−1) logic level region.
◆ When these constant potentials “go down” in numerical order from the first constant potential to the Nth constant potential:
The “first constant potential region that is higher than the negative threshold potential with reference to the first constant potential” is the logic level region with an integer 0, and “the positive threshold potential with reference to the second constant potential. The second constant potential region between the negative-side threshold potential and the logic level region of integer 1. Hereinafter, in the same manner, “a third constant potential between a positive threshold potential and a negative threshold potential with reference to each constant potential from the third constant potential to the (N−1) th constant potential in order. The (N-1) th constant potential region from the potential region is sequentially “the logic level region of integer 2 to the logic level region of integer (N−2)”. The “Nth constant potential region lower than the positive threshold potential with respect to the Nth constant potential” is an integer (N−1) logic level region.
As a result, if the input potential signal is in the first constant potential region in either case of “increase” or “increase”, “the corresponding input integer” is 0. If the input potential signal is within the second constant potential region, it is determined that “the corresponding input integer” is 1. Similarly, if the input potential signal is in order from the third constant potential region to the Nth constant potential region, the “corresponding input integer” is sequentially reduced from 2 to (N−1). It is determined that
ただし、前述した「あらかじめ決められた1つ又は2つの入力用特定値に対してどうなのか」という判別内容(例:等しいかそうでないか、大きいかそうでないか、小さいかそうでないか、間に有るかそうでないか。)ごとに適用するしきい値電位は、これらのしきい値電位のうち、2つ又は4つだけである。しかし、「その1つの入力用特定整数は『整数0〜整数(N−1)』のいずれか1つの整数値を取り得るから」つまり「整数0を取る場合、整数1を取る場合、整数2を取る場合、………、整数(N−1)を取る場合、それぞれの場合を想定することになるから」、結局、上述した「各整数、各論理レベルおよび各しきい値電位の関係」が導き出される。
その2つの入力用特定整数も、小さい方の入力用特定整数は整数0〜整数(N−3)のいずれか1つの値を取り得る一方、大きい方の入力用特定整数は「その小さい方の入力用特定整数」に応じて整数2〜整数(N−1)のいずれか1つの値を取り得るから、結局同様に、上述した「各整数、各論理レベルおよび各しきい値電位の関係」が導き出される。
ところで、そのS個の入力整数(=S個の前記入力電位信号のそれぞれと1対1ずつ対応するS個の整数。)が「2と5の間に有るかそうでないか」を判別するとき、仮にそのS個の入力整数が例えば3と4の間に有って「どっちつかず」でも、明確に「2と5の間に有る」と判別することができる。同様に、そのS個の入力整数が5より大きいかそうでないかを判別するとき、仮にそのS個の入力整数が例えば7と8の間に有って「どっちつかず」でも、もちろん「5より大きい」と判別することができる。同様に、そのS個の入力整数が6より小さいかそうでないかを判別するとき、仮にそのS個の入力整数が例えば2と3の間に有って「どっちつかず」でも、やはり「6より小さい」と判別することができる。
However, the above-mentioned determination content of “how is it with respect to one or two predetermined input specific values” (e.g., whether it is equal or not, larger or not, smaller or not, There are only two or four of these threshold potentials to be applied every time. However, “the one specific integer for input can take any one integer value of“ integer 0 to integer (N−1) ””, that is, “when taking integer 0, when taking integer 1, integer 2” ..., And when taking an integer (N−1), each case is assumed. After all, “the relationship between each integer, each logic level, and each threshold potential” described above. Is derived.
The two input specific integers can also be any one of integer 0 to integer (N-3), while the smaller input specific integer can have the value of the larger input specific integer " Since any one of integers 2 to (N-1) can be taken according to the “specific integer for input”, the above-described “relationship between each integer, each logic level, and each threshold potential” is the same as above. Is derived.
By the way, when it is determined whether or not the S input integers (= S integers corresponding to each of the S input potential signals on a one-to-one basis) are between 2 and 5. For example, even if the S input integers are between 3 and 4, for example, and “do not get any”, it can be clearly determined that they are “between 2 and 5.” Similarly, when it is determined whether the S input integers are greater than 5 or not, even if the S input integers are between 7 and 8, for example, “Neither”, of course, “5 Greater than ". Similarly, when it is determined whether or not the S input integers are smaller than 6 or not, even if the S input integers are between 2 and 3, for example, and “do not get stuck”, “6 It is possible to determine that it is “smaller”.
いま、その出力用特定整数をmで表わして、その出力側の論理レベルについて説明する。先願第2、3発明共通の多値論理手段の場合、その出力はその出力用特定整数mか出力開放のいずれか一方になるのであるが、「その1構成手段であるプル・スイッチング手段の一端が接続される出力用特定定電位供給手段」は前記第1定電位供給手段〜前記第N定電位供給手段の中から1つ選択されるので、その出力用特定整数mは整数0〜(N−1)のいずれか1つの整数値を取り得ることになる。その出力用特定整数mがそのいずれの整数値を取るにしても、その出力用特定整数mの論理レベル領域は必ず余裕を持ってその後段回路の「整数mの入力側論理レベル領域」に含まれる様に設定される。その1つ又は2つの余裕領域分が「ノイズに対する雑音余裕(又は雑音余裕度)」である。この事は2値回路の延長で考えれば分かり易い。
ここで、各しきい値電位の規格・仕様の(国際的な)統一化・標準化を考えれば、「その後段回路の各・入力側論理レベル領域について言える事」はその多値論理手段の各・入力側論理レベル領域についても言えるので、結局、その出力側・論理レベルの説明はその多値論理手段・自体の「出力用特定整数mの論理レベル領域」と「各・入力側論理レベル領域」の関係を説明することになる。そうなると、その出力用特定整数mが「整数0〜整数(N−1)」のいずれの整数値を取っても構わない様に、その出力側においても0〜(N−1)の各整数に対応する論理レベル領域を決めておく必要が有る。
そこで、前記第1定電位から前記第N定電位まで番号順にこれらの定電位が『高くなって行く』とき、整数1〜整数(N−1)それぞれの入力側論理レベルのマイナス側しきい値電位より「その出力側論理レベルのマイナス側しきい値電位」の方がそのマイナス側の雑音余裕の分だけ高く、整数0〜整数(N−2)それぞれの入力側論理レベルのプラス側しきい値電位より「その出力側論理レベルのプラス側しきい値電位」の方がそのプラス側の雑音余裕の分だけ低い。なお、各しきい値電位については前述(段落番号[0152〜0153]。)の通りである。
一方、前記第1定電位から前記第N定電位まで番号順にこれらの定電位が『低くなって行く』とき、整数1〜整数(N−1)それぞれの入力側論理レベルのプラス側しきい値電位より「その出力側論理レベルのプラス側しきい値電位」の方がそのプラス側の雑音余裕の分だけ低く、整数0〜整数(N−2)それぞれの入力側論理レベルのマイナス側しきい値電位より「その出力側論理レベルのマイナス側しきい値電位」の方がそのマイナス側の雑音余裕の分だけ高い。なお、各しきい値電位については前述(段落番号[0152〜0153]。)の通りである。
これらの事は2値回路の「Hレベルの入力電位(または入力電圧)、Hレベルの出力電位(または出力電圧)、及び、Hレベルの雑音余裕の関係」と「Lレベルの入力電位(または入力電圧)、Lレベルの出力電位(または出力電圧)、及び、Lレベルの雑音余裕の関係」を考えれば理解し易い。2値回路の正論理では実質的に「Hレベルの入力電位、出力電位の各下限値は数値1の入力側論理レベル、出力側論理レベルの各マイナス側しきい値電位のことであり」、「Lレベルの入力電位、出力電位の各上限値は数値0の入力側論理レベル、出力側論理レベルの各プラス側しきい値電位のことである」。
蛇足ながら、2値回路で普通「しきい値電位(又は電圧)」と呼ばれるものは、例えばCMOSインバーター回路の場合「PMOSとNMOSの動作状態が反転する境」すなわち「回路しきい値電位(又は電圧)」のことである。そして、半導体素子のオン・オフしきい値電圧が有る。
Now, a specific integer for output is represented by m, and the logic level on the output side will be described. In the case of the multi-value logic means common to the second and third inventions, the output is either the output specific integer m or the output release. Since the output specific constant potential supply means to which one end is connected is selected from the first constant potential supply means to the Nth constant potential supply means, the output specific integer m is an integer 0 to ( N-1) can take any one integer value. Whichever integer value the output specific integer m takes, the logic level region of the output specific integer m always includes a margin and is included in the “input-side logic level region of integer m” in the subsequent circuit. It is set to be One or two margin areas are “noise margin against noise (or noise margin)”. This can be easily understood by considering the extension of the binary circuit.
Here, considering the (international) standardization and standardization of the standard and specification of each threshold potential, “what can be said about each input side logic level region of the subsequent circuit” is each of the multi-value logic means. Since it can also be said about the input side logic level area, the explanation of the output side and the logic level is eventually the multi-valued logic means. "Will be explained. Then, as the output specific integer m may take any integer value of “integer 0 to integer (N−1)”, the output side also sets each integer of 0 to (N−1). It is necessary to determine the corresponding logical level area.
Therefore, when these constant potentials “go higher” in numerical order from the first constant potential to the Nth constant potential, the negative thresholds of the input side logic levels of the integers 1 to (N−1) respectively. The “negative threshold potential of the output logic level” is higher than the potential by the noise margin on the minus side, and the positive threshold of the input logic level of each of the integer 0 to integer (N−2). The “positive side threshold potential of the output side logic level” is lower than the value potential by the noise margin on the positive side. Note that each threshold potential is as described above (paragraph numbers [0152 to 0153]).
On the other hand, when these constant potentials are “decreasing” in numerical order from the first constant potential to the Nth constant potential, the positive side threshold values of the input side logic levels of the integers 1 to (N−1). The positive threshold potential of the output logic level is lower than the potential by the noise margin on the plus side, and the negative threshold of the input logic level of each of integer 0 to integer (N-2). The “negative threshold potential of the output logic level” is higher than the value potential by the noise margin on the negative side. Note that each threshold potential is as described above (paragraph numbers [0152 to 0153]).
These things are the relationship between the “H level input potential (or input voltage), the H level output potential (or output voltage), and the H level noise margin” of the binary circuit and the “L level input potential (or It is easy to understand by considering “the relationship between the input voltage), the L level output potential (or output voltage), and the L level noise margin”. In the positive logic of the binary circuit, “the lower limit values of the H level input potential and the output potential are the negative side threshold potentials of the input side logic level and the output side logic level of the numerical value 1”, “The upper limit values of the L-level input potential and output potential are the positive-side threshold potentials of the input-side logic level and output-side logic level of numerical value 0”.
In spite of this, what is commonly referred to as “threshold potential (or voltage)” in a binary circuit is, for example, in the case of a CMOS inverter circuit, “a boundary where the operating state of PMOS and NMOS is reversed”, that is, “circuit threshold potential (or Voltage) ”. There is an on / off threshold voltage of the semiconductor element.
それから、「先願第2、3発明共通の基になった多値論理回路」は新・多値論理『フージ代数』を実現化・具体化したものであるが、この多値論理回路の場合『その回路内部の信号伝達途中の回路部3段(例:前記数値判別手段、前記オン・オフ駆動手段および前記プル・スイッチング手段。)において[その前段側となる手段(例:前記数値判別手段または前記オン・オフ駆動手段。)の出力側と2値回路の間の接続性]及び[その後段側となる手段(例:前記オン・オフ駆動手段または前記プル・スイッチング手段。)の入力側と2値回路の間の接続性]が極めて良く、どちらの間にも特別なインターフェイス(例:2値・多値コード変換手段、多値・2値コード変換手段。)が必要無い』という独特な効果・特徴が有る。 ( 先願第2、3発明共通の基になった前記多値論理回路の独特な効果・特徴 )
その理由は次の通りである。その回路内の伝達途中の信号は「前記数値判別手段と前記オン・オフ駆動手段の各出力側では『肯定か否定かの[前記判別結果信号とそのオン・オフ駆動信号]』つまり2値信号みたいなもの、High・Low信号」であり、かつ、「前記オン・オフ駆動手段と前記プル・スイッチング手段の各入力側では『その出力用特定整数の出力(オン駆動時)と出力開放(オフ駆動時)に対応する[前記オン・オフ信号と前記オン・オフ駆動信号]』つまり2値信号みたいなもの、High・Low信号」である為、前記多値論理回路内の信号伝達途中部分は2値回路との相性(あいしょう)・接続性が極めて良い。
Then, “Multi-valued logic circuit that was the basis for the second and third inventions” is a realization and implementation of the new multi-valued logic “Fuji algebra”. “Means on the front stage side (eg, the numerical value discriminating means) in the circuit stage 3 stages (eg: the numerical value discriminating means, the on / off driving means and the pull switching means) in the middle of signal transmission in the circuit” Or the connectivity between the output side of the on / off driving means.) And the binary circuit] and [the input side of the means at the subsequent stage (eg, the on / off driving means or the pull switching means). Is very good, and there is no need for a special interface between them (eg binary / multi-value code conversion means, multi-value / binary code conversion means) ” There are various effects and features. (Unique effects / features of the multi-value logic circuit, which is the basis for the second and third inventions)
The reason is as follows. The signal in the middle of transmission in the circuit is “at each output side of the numerical discriminating means and the on / off driving means“ affirmative or negative [the discrimination result signal and its on / off driving signal] ”, that is, a binary signal. “High / Low signal”, and “on each input side of the on / off drive means and the pull switching means,“ output a specific integer for that output (on drive) and open output (off) [The on / off signal and the on / off drive signal] corresponding to (at the time of driving) ”, that is, a binary signal, such as a High / Low signal”, the signal transmission middle part in the multi-value logic circuit is Excellent compatibility with binary circuits.
ただし、「前記判別結果信号と前記オン・オフ駆動信号(どちらも2値信号みたいなもの、High・Low信号)」は「通常の2値信号の『HレベルとLレベル』と同じ場合」と「暫定(ざんてい)的な2値信号の『HレベルとLレベルの様なもの』であって、通常の2値信号の『HレベルとLレベル』とは違う場合」が有るが、「通常と暫定」両2値信号は互いにただ「電位レベルの高さ」又は「レベル変化時の振幅の大きさ」が異なるだけである。
例えば、2値回路でもTTLとCMOSの様に各電源電圧の大きさが違えば、「そのHレベル電位(又は電圧)の高さ」も「そのレベル変化時の振幅の大きさ」も違うが、正論理ではその電位の高低が違ってもHレベルはやはりHレベルのままであり、数値1もやはり数値1のままである。
一方、多値回路中で「通常または暫定」の2値信号のHレベルとLレベルを扱う場合、「その各整数と1対1ずつ対応する、3つ又は3つ以上有る定電位」又は「これらには含まれない、追加した定電位{例:図46中の電源線V−1の電源電位v−1。}」の中からどの定電位2つを用いるか選択することになるが、その多値回路全体からすると「どの定電位2つを選択してその2値回路用電源とするか」によって「そのHレベル、Lレベルに対応する各定電位の高さ」と「そのレベル変化時の振幅の大きさ」が違ってしまう。
そのHレベル、Lレベルに対応する各定電位の高さが違うと、その多値回路においてそれぞれに対応する各数値も違ってしまう。その「Hレベル、Lレベルに対応する2数値」が例えば「9と0」とか「8と5」とか「3と1」とかになってしまい、通常2値回路の「1と0」ではない場合が多い。なぜなら、その多値回路を中心・基準に考えられており、先願第2、3発明共通の「課題を解決するための手段」(→段落番号[0151]。)の最初の方で各定電位と各整数の関係を定義している、からである。あるいは、その「全く別の追加した定電位」の場合、対応する整数そのものが定義されていない。
しかし、一般的に正論理の2値回路は元々自分を中心・基準に考えられており、「自分のHレベルの下限値より高い入力電位信号をHレベルと判別する一方、自分のLレベルの上限値より低い入力電位信号をLレベルと判別する」という機能を持っている。先願第2、3発明共通はこの判別機能を多値回路中において有効的に活用している。このため、前記2値同期型フリップ・フロップ手段は、その判別機能に加えて必要なら(電圧)マッチング機能(例:その入力部に接続された分圧抵抗による分圧機能。)を持つことによって、上記の暫定的な2値信号を通常の2値信号に変換することができる。そのマッチングの必要性は前記2値同期型フリップ・フロップ手段の入力部の耐電圧などによる。
あるいは、前記2値同期型フリップ・フロップ手段の入力部に有る電位(又は電圧)クランプ手段(例:2つのクランプ・ダイオード等。)が、その暫定(ざんてい)的な2値信号の上限をその2値回路用電源のプラス側定電位にクランプする一方、その暫定的な2値信号の下限をその2値回路用電源のマイナス側定電位にクランプして、その暫定的な2値信号を通常の2値信号に変換することができる。先願第2、3発明共通はこの変換機能も多値回路中において有効的に活用している。この場合、必要なら一種の(インピーダンス・)マッチング機能を持つことによって(例:電源短絡防止用抵抗の挿入接続。図32中の抵抗28。)その前段の出力部がそのクランプ手段を介して電源短絡するのを防止する。
以上の事は一般的な負論理の2値回路の場合も同様である。
However, “the determination result signal and the on / off drive signal (both are like a binary signal, a high / low signal)” are “when they are the same as the“ H level and L level ”of a normal binary signal”. There are “provisional binary signals“ like H level and L level ”and different from the normal binary signals“ H level and L level ”. The “binary” and “provisional” binary signals are different from each other only in “potential level height” or “amplitude magnitude at level change”.
For example, even in a binary circuit, if the magnitude of each power supply voltage is different as in TTL and CMOS, the “height of the H level potential (or voltage)” and the “magnitude of the amplitude when the level changes” are different. In the positive logic, even if the potential level is different, the H level remains at the H level, and the numerical value 1 also remains at the numerical value 1.
On the other hand, when handling the H level and L level of a “normal or provisional” binary signal in a multi-value circuit, “three or more constant potentials corresponding to each integer one to one” or “ It is selected which of the two constant potentials to use from the added constant potential {example: power supply potential v -1 of the power supply line V -1 in FIG. 46} not included in these, According to the entire multi-value circuit, “the constant potential corresponding to the H level and L level” and “the level change” depending on “which constant potential is selected to be the power source for the binary circuit”. “Magnitude of time” is different.
If the constant potentials corresponding to the H level and L level are different from each other, the corresponding numerical values in the multi-value circuit are also different. The “2 numerical values corresponding to the H level and L level” are, for example, “9 and 0”, “8 and 5”, and “3 and 1”, which are not normally “1 and 0” of the binary circuit. There are many cases. This is because the multi-value circuit is considered to be the center and reference, and each means is determined at the beginning of “means for solving the problems” (→ paragraph number [0151]) common to the second and third inventions of the prior application. This is because the relationship between the electric potential and each integer is defined. Alternatively, in the case of “a completely different added constant potential”, the corresponding integer itself is not defined.
However, in general, a binary circuit of positive logic is originally considered based on itself as the center and reference. “While an input potential signal higher than the lower limit value of its own H level is determined as H level, It has a function of “determining an input potential signal lower than the upper limit value as an L level”. In common with the second and third inventions of the prior application, this discrimination function is effectively utilized in the multi-value circuit. For this reason, the binary synchronous flip-flop means has a (voltage) matching function (eg, a voltage dividing function by a voltage dividing resistor connected to the input unit) if necessary in addition to the discrimination function. The provisional binary signal can be converted into a normal binary signal. The necessity of the matching depends on the withstand voltage of the input part of the binary synchronous flip-flop means.
Alternatively, the potential (or voltage) clamping means (for example, two clamping diodes) at the input part of the binary synchronous flip-flop means sets the temporary upper limit of the binary signal. While clamping to the positive constant potential of the binary circuit power supply, the lower limit of the temporary binary signal is clamped to the negative constant potential of the binary circuit power supply, and the temporary binary signal is normally Can be converted into a binary signal. This conversion function is also effectively utilized in the multi-value circuit in common with the second and third inventions. In this case, if necessary, it has a kind of (impedance / matching) matching function (for example, insertion connection of a power supply short-circuit prevention resistor, resistor 28 in FIG. 32). Prevent short circuit.
The same applies to the case of a general negative logic binary circuit.
以上の通り、その論理数値との対応関係を常に考慮して、2値回路と多値回路を捉(とら)えるからややこしくなるが、純粋な電子回路だけで捉えれば以上の話は当たり前の事で、把握し易い。
なお、前記2値同期型フリップ・フロップ手段の同期信号については前記同期信号供給手段が「前記2値同期型フリップ・フロップ手段が使用できる同期信号」を供給するのであるが、必要なら、前記同期信号供給手段が前述した各マッチング機能を持ったり、前述した2値回路の判別機能または「クランプによる変換機能」を活用したり、する。
また、前記2値同期型フリップ・フロップ手段の出力電流容量が充分に大きい等、前記2値同期型フリップ・フロップ手段が前記オン・オフ駆動手段の要件を満たしていれば、前記2値同期型フリップ・フロップ手段が前記オン・オフ駆動手段を兼ねてももちろん構わない。
As mentioned above, taking into account the correspondence with the logical values, it is complicated to grasp the binary circuit and the multi-value circuit, but the above story is a matter of course if only a pure electronic circuit is considered. It is easy to grasp.
As for the synchronization signal of the binary synchronization flip-flop means, the synchronization signal supply means supplies a “synchronization signal that can be used by the binary synchronization flip-flop means”. The signal supply means has the above-described matching functions, or utilizes the above-described binary circuit discrimination function or “clamp conversion function”.
If the binary synchronous flip-flop means satisfies the requirements of the on / off driving means, such as the output current capacity of the binary synchronous flip-flop means is sufficiently large, the binary synchronous type Of course, the flip-flop means may also serve as the on / off driving means.
■■ 先願第2発明の「課題を解決するための手段」 ■■
前述(段落番号0151〜0153)した先願第2、3発明共通の「課題を解決するための手段」すなわち「同期ラッチング機能を持つ多値論理手段」において、
前記同期信号に基づいて「前記判別結果信号にハザードが現われず、前記判別結果信号が安定する期間」中に2値同期型フリップ・フロップ手段が前記判別結果信号を保持信号として「そのまま又はマッチングさせて」入力する多値ハザード除去手段である。
■■ “Means for solving the problems” of the second invention of the prior application ■■
In the "means for solving the problem" common to the second and third inventions of the prior application (paragraph numbers 0151 to 0153) described above, that is, "multi-value logic means having a synchronous latching function"
Based on the synchronization signal, during the “period in which no hazard appears in the discrimination result signal and the discrimination result signal is stable”, the binary synchronous flip-flop means uses the discrimination result signal as a holding signal “as is or matches. This is a multi-value hazard removing means for inputting.
このことによって、「前記判別結果信号に現われる2値的な多値ハザード」に従来の2値ハザード除去手法を活用できるので、多値ハザードを除去することができる。(効果)
その理由は次の通りである。ある多値信号が前記多値論理回路に入力されても、その回路内の信号伝達途中で前述(段落番号0160〜0161)の通り2値信号の様に取り扱うことができる。もし、その入力前または入力時などの時に多値ハザードが発生しても、その多値信号をその信号伝達途中で2値的ハザードを含む2値信号の様に取り扱うことができるので、従来の2値ハザード除去回路と方法をその信号伝達途中で活用することができる。
また、その多値ハザードが現われる期間は回路設計段階または動作チェック段階などで前もって把握できるので、その多値ハザード出現タイミングと前記同期信号(又はクロック・パルス信号など)のタイミングを擦(す)り合わせることができる。この為、「その2値的ハザードが前記判別結果信号に現われる期間」中その同期信号に基づいて前記2値同期型フリップ・フロップ手段はその判別結果信号を無視してそれまでの保持信号(又は保持データ)を保持し続ける。
一方、「その2値的ハザードが前記判別結果信号に現われず、その判別結果信号が安定する期間」中にその同期信号に基づいて前記2値同期型フリップ・フロップ手段はその判別結果信号を取り入れ、新・保持信号(又は新・保持データ)として保持し、その新・保持信号(又は保持データ)に基づいた「正出力信号か補出力信号」を前記オン・オフ信号として前記オン・オフ駆動手段に出力する。
あとは同様に、前記2値同期型フリップ・フロップ手段は前記同期信号に基づいてその保持信号(又は保持データ)を書き換え、「その保持信号(又は保持データ)に基づいた正出力信号あるいは補出力信号」を出力して行くので、前記2値同期型フリップ・フロップ手段は「その伝達途中の2値的信号から2値的ハザードを除去した2値的信号」を後段の前記オン・オフ駆動手段に供給することができる。以上の様にして、先願第2発明の多値ハザード除去手段(=多値ハザード除去機能を持つ多値論理手段)は、その多値ハザードをその信号伝達途中で2値的ハザードに変え、従来の2値ハザード除去方法を応用して除去することができる。その結果、その「多値ハザードを含む多値信号」から本当の「信号、データ又は情報」部分だけを取りだすことができる。
ところで、従来のほとんどの多値論理回路の場合、この様に信号伝達の途中に2値回路(例:フリップ・フロップなど。)を設ける多値ハザード除去方法は応用することができない。なぜなら、ほとんどの場合、その信号伝達途中の信号も完全な多値信号だからである。
As a result, the conventional binary hazard removal technique can be used for the “binary multi-value hazard appearing in the discrimination result signal”, so that the multi-value hazard can be removed. (effect)
The reason is as follows. Even if a multi-value signal is input to the multi-value logic circuit, it can be handled like a binary signal as described above (paragraph numbers 0160 to 0161) during signal transmission in the circuit. Even if a multi-value hazard occurs before or at the time of input, the multi-value signal can be handled like a binary signal including a binary hazard during the signal transmission. The binary hazard removal circuit and method can be utilized during the signal transmission.
In addition, since the period in which the multi-value hazard appears can be grasped in advance at the circuit design stage or the operation check stage, the timing of the multi-value hazard appearance and the timing of the synchronization signal (or clock pulse signal, etc.) is rubbed. Can be matched. For this reason, during the “period in which the binary hazard appears in the discrimination result signal”, the binary synchronous flip-flop means ignores the discrimination result signal based on the synchronization signal and holds the previous holding signal (or (Retained data) is retained.
On the other hand, the “binary synchronous flip-flop means incorporates the discrimination result signal based on the synchronization signal during a period when the binary hazard does not appear in the discrimination result signal and the discrimination result signal is stable”. Is held as a new / holding signal (or new / holding data), and the on / off driving is performed with the “positive output signal or complementary output signal” based on the new / holding signal (or holding data) as the on / off signal. Output to the means.
Similarly, the binary-synchronous flip-flop means rewrites the holding signal (or holding data) based on the synchronizing signal and reads “a positive output signal or a complementary output based on the holding signal (or holding data). Since the binary synchronous flip-flop means outputs a "binary signal obtained by removing a binary hazard from the binary signal being transmitted", the subsequent on / off driving means. Can be supplied to. As described above, the multi-value hazard removing means (= multi-value logic means having a multi-value hazard removing function) of the second invention of the prior application changes the multi-value hazard into a binary hazard during the signal transmission, It can be removed by applying a conventional binary hazard removal method. As a result, only the true “signal, data or information” portion can be extracted from the “multilevel signal including multilevel hazard”.
By the way, in the case of most conventional multi-value logic circuits, the multi-value hazard removal method in which a binary circuit (eg, flip-flop, etc.) is provided in the middle of signal transmission in this way cannot be applied. This is because in most cases, the signal in the middle of signal transmission is also a complete multi-value signal.
それから、「多値固有の多値ハザードの1発生源となる前記数値判別手段」の直ぐ後ろに前記2値同期型フリップ・フロップ手段が有る為、前記2値同期型フリップ・フロップ手段が「前記数値判別手段が発生した多値ハザード」を直ぐ遮断するので、その多値ハザードはその多値論理手段内・後段の前記オン・オフ駆動手段や前記プル・スイッチング手段には伝播(でんぱん)しない。
その結果、「その発生した多値ハザードの影響を受ける多値論理手段内の範囲」は前記数値判別手段だけに限定されるので、『その発生した多値ハザードの影響を受ける多値論理手段内の範囲を少しでも狭くすることができる』。
Then, since the binary-synchronous flip-flop means is immediately behind the “numerical value discrimination means that is one source of multi-valued hazards”, the binary-synchronous flip-flop means Since the multi-value hazard generated by the numerical discrimination means is immediately cut off, the multi-value hazard does not propagate to the on / off drive means and the pull switching means in the latter stage of the multi-value logic means. .
As a result, since “the range in the multi-value logic means affected by the generated multi-value hazard” is limited only to the numerical value determination means, “in the multi-value logic means affected by the generated multi-value hazard” The range can be reduced as much as possible.
◇◇◇ 先 願 発 明 の 効 果 ◇◇◇
■■ 先願第2、3発明共通の効果 ■■
以上、先願第2、3発明共通の効果をまとめると以下の通りである。
◆1)前記数値判別手段と前記オン・オフ駆動手段の間に前記2値同期型フリップ・フロップ手段を内蔵することができるので、その2値の各トリガー方式(例:プラス、マイナスの各エッジ・トリガー、レベル・トリガー、パルス・トリガー)をそのまま利用することができる。 ( 第 1 効 果 )
特に、本発明者が考えた階段状の多値同期信号(特開2006−345468号の図4の波形。その立上り箇所または立下り箇所または水平部分が複数個有る。)をさらに有効的に活用することができるので、その同期信号1周期中においてトリガー・タイミングの選択肢が増えて大変便利になる。なぜなら、その2値同期型フリップ・フロップ手段をどの前記定電位供給手段2つ(例:2電源線)間に接続するかによってその複数個有る「立上り箇所または立下り箇所または水平部分」から1つを選択することができる、からである。
なお、その2値同期型フリップ・フロップ手段の出力電流容量が大きいなど、その2値同期型フリップ・フロップ手段が前記オン・オフ駆動手段の要件を満たしているならば、その2値同期型フリップ・フロップ手段がそのオン・オフ駆動手段を兼ねてももちろん構わない。
◆2)前記2値同期型フリップ・フロップ手段は「その多値論理手段の出力用特定整数に対応する信号状態」か「出力開放または開放出力に対応する信号状態」どちらかをラッチするだけなので、当然「出力開放または開放出力に対応する信号状態」をラッチすることができる。 ( 第 2 効 果 )
◆3)「出力される数値(=出力用特定整数)以外の各数値(=各整数)」に対してラッチング機能が無い為、「出力される数値」に対応したラッチング機能を備えており、無駄が生じない。 ( 第 3 効 果 )
→→無駄な部品、無駄な構成が無いため部品・回路を効率的に利用できる上に、消費電力の節約になる。
◆4)使用する多値回路{例:多値論理回路、多値演算回路(または多進法演算回路)、多値ディジタル回路など。}の構成に応じてその後段に接続する多値同期型ラッチング手段の選択肢が増えて便利になる。全体の回路構成に柔軟性が生じる。
( 第 4 効 果 )
→→『フージ代数』に基づく多値論理回路の場合、その数値判別手段、プル・スイッチング手段それぞれが接続する定電位供給手段(例:電源線、電源板など。)によってその入力用特定整数、出力用特定整数どちらも容易に変更できる上に、その各種の多値論理回路(例:AND回路、OR回路、OVER回路、UNDER回路など。)の中から使用回路を選択できる。先願第2、3発明共通はその各多値論理回路に同期ラッチング機能を持たせたものなので、結局、その多値同期型ラッチング手段の選択肢が増える。
→→その各種の多値論理回路には例えば本発明者が「(多値)AND回路、(多値)OR回路、OVER回路、EVEN回路、UNDER回路、IN回路、OUT回路など」と呼ぶ各回路が有る。
◆5)「全体回路中のどこでラッチングするか」というラッチング箇所の選択肢が増えて便利になる。全体の回路構成に柔軟性が生じる。 ( 第 5 効 果 )
→→先願第2、3発明共通の多値論理手段・自体が同期ラッチング機能を持っているので、「多値回路と多値回路の間に多値同期型ラッチング手段を設けなくても良い」という選択肢が追加される。
◇◇◇ Effect of prior application ◇◇◇
■■ Common effects of the second and third inventions ■■
The effects common to the second and third inventions are summarized as follows.
1) Since the binary synchronous flip-flop means can be built in between the numerical value discriminating means and the on / off driving means, each binary trigger method (eg, positive and negative edges)・ Triggers, level triggers, and pulse triggers can be used as they are. (First effect)
In particular, the step-like multilevel synchronization signal (the waveform shown in FIG. 4 of Japanese Patent Application Laid-Open No. 2006-345468, which has a plurality of rising points, falling points, or horizontal portions) considered by the present inventor is used more effectively. Therefore, the trigger timing options increase during one period of the synchronization signal, which is very convenient. This is because, depending on which of the two constant potential supply means (for example, two power supply lines) the binary synchronous flip-flop means is connected, a plurality of “rising points or falling points or horizontal portions” are used. This is because one can be selected.
If the binary synchronous flip-flop means satisfies the requirements of the on / off drive means, such as the output current capacity of the binary synchronous flip-flop means is large, the binary synchronous flip-flop Of course, the flop means may also serve as the on / off driving means.
2) Since the binary synchronous flip-flop means only latches either “signal state corresponding to the specific integer for output of the multi-value logic means” or “signal state corresponding to output open or open output”. Of course, the "signal state corresponding to the output open or open output" can be latched. (Second effect)
◆ 3) Since there is no latching function for each numerical value (= each integer) other than “output numerical value (= specific integer for output)”, a latching function corresponding to “output numerical value” is provided. There is no waste. (Third effect)
→→ Since there are no useless parts and useless configurations, parts and circuits can be used efficiently and power consumption can be saved.
4) Multi-value circuit to be used {Example: Multi-value logic circuit, multi-value arithmetic circuit (or multi-ary arithmetic circuit), multi-value digital circuit, etc. }, The number of options of the multi-level synchronous latching means to be connected to the subsequent stage is increased according to the configuration of {}. Flexibility occurs in the overall circuit configuration.
(4th effect)
→→ In the case of a multi-valued logic circuit based on “Fuji algebra”, its numerical identification means, pull-switching means, constant potential supply means (for example, power supply line, power supply plate, etc.) connected to each input specific integer, Both output specific integers can be easily changed, and a circuit to be used can be selected from various multi-value logic circuits (eg, AND circuit, OR circuit, OVER circuit, UNDER circuit, etc.). Since the common inventions of the second and third inventions are those in which each multi-value logic circuit is provided with a synchronous latching function, the number of options for the multi-value synchronous latching means increases after all.
→→ For example, the various invented multi-value logic circuits are called “(multi-value) AND circuit, (multi-value) OR circuit, OVER circuit, EVEN circuit, UNDER circuit, IN circuit, OUT circuit, etc.” There is a circuit.
◆ 5) The number of options for the latching part “where to latch in the entire circuit” increases and becomes convenient. Flexibility occurs in the overall circuit configuration. (Fifth effect)
→→ The multi-value logic means common to the second and third inventions of the prior application itself has a synchronous latching function. Is added.
■■ 先願第2発明の効果 ■■
以上、先願第2発明の効果をまとめると以下の通りである。
2値ハザードと同様な仕組みで発生する多値ハザードに加えて、多値固有の多値ハザードも除去することができる。 ( 第 1 効 果 )
→→ その「多値ハザードを含む多値信号」から本当の「信号、データ又は情報」部分だけを取りだすことができる。
また、その発生した多値ハザードの影響を受ける回路内の範囲を少しでも狭くすることができる。 ( 第 2 効 果 )
これらの効果は多値ハザード・ノイズの低減や電力損失の低減に繋(つな)がる。
■■ Effects of the second invention of the prior application ■■
The effects of the second invention of the prior application are summarized as follows.
In addition to multi-value hazards generated by the same mechanism as binary hazards, multi-value hazards inherent to multi-values can also be removed. (First effect)
→→ Only the true “signal, data or information” part can be extracted from the “multilevel signal including multilevel hazard”.
In addition, the range in the circuit affected by the generated multi-value hazard can be narrowed even a little. (Second effect)
These effects lead to reduction of multi-value hazard noise and power loss.
◇◇◇ 先願発明を実施するための形態 ◇◇◇
第1〜第2発明をより詳細に説明するために以下添付図面に従ってこれらを説明する。なお、下記7つの注意事項を先に述べておく。
◆1)これからの説明には「電子回路的な観点からの説明」と「論理数学的な観点からの説明」が有り、さらに、両方が混ざった説明も有る。
◆2)主に前記第1定電位から前記第N定電位まで番号順にこれらの定電位が『高くなって行く』場合の各実施例について説明する。
一方、これらの定電位が『低くなって行く』場合の各実施例については「『これから説明する各実施例またはその各派生実施例』において各電源電位(これらの定電位のそれぞれに相当。)の高低を正反対にして、各可制御スイッチング手段を『それと相補関係に有る可制御スイッチング手段(例:Nチャネル型MOS・FETに対するPチャネル型MOS・FET)』で1つずつ置き換え、電圧方向または電圧極性の有る各構成要素(例:ダイオード)の向きを逆にした『元の実施例に対して電圧方向または電圧極性に関して対称的な関係に有る実施例』」がそれに該当する。但し、その場合その多値論理機能が元の回路と同じ場合も有るし、違う場合も有る。
◆3)各実施例中nが前述のN(所定の複数)に相当する。
◆4)整数mは出力用特定整数に相当し、「前述した出力用特定定電位供給手段(例:電源線Vm)の出力用特定定電位(例:特定電源電位vm)」に対応する整数である。「n−1≧m≧0」の関係に有る。
◇◇◇ Form for carrying out the invention of the prior application ◇◇◇
In order to explain the first and second inventions in more detail, these will be described with reference to the accompanying drawings. The following seven points of caution are stated first.
◆ 1) There are “explanations from the viewpoint of electronic circuits” and “explanations from the viewpoint of logic mathematics”, and there are also descriptions that are a mixture of both.
2) Each embodiment will be described mainly in the case where these constant potentials “go higher” in numerical order from the first constant potential to the Nth constant potential.
On the other hand, each example in the case where these constant potentials “become lower” is “each power source potential (corresponding to each of these constant potentials)” Each controllable switching means is replaced one by one with “controllable switching means in complementary relationship (eg, P-channel MOS • FET with respect to N-channel MOS • FET)” one by one. This corresponds to “an embodiment having a symmetrical relationship with respect to the voltage direction or the voltage polarity with respect to the original embodiment” in which the direction of each component having a voltage polarity (eg, diode) is reversed. However, in that case, the multi-value logic function may be the same as or different from the original circuit.
3) In each embodiment, n corresponds to the aforementioned N (predetermined plural).
◆ 4) The integer m corresponds to a specific integer for output, and corresponds to the above-mentioned specific constant potential for output of the output specific constant potential supply means (eg, power supply line V m ) (eg, specific power supply potential v m ). Is an integer. The relationship is “n−1 ≧ m ≧ 0”.
◆5)大文字Vで表現された「VG、VH、Vm、V−1、V0、V1〜Vn−1、Vn」等のそれぞれは電源線で、小文字v等で表現された「vG、vH、vm、v−1、v0、v1〜vn−1、vn」等はそれら電源線の電位(=定電位)を順々に表わし、電源電位v−1〜vnはこの順序でそれらの電源電位は高くなって行く。また、もちろん、電源線V0か他の電源線が「その回路の本体ケース」又は「その回路装置の本体」又は「自動車、オートバイ、自転車などの車体」又は「船などの船体」又は「水陸両用のホーバー・クラフト等の本体」又は「飛行機、ヘリコプター等の飛行手段の本体」又は「宇宙船、宇宙ステーション等の宇宙航行手段・宇宙漂遊手段の本体」又は「地球、月、火星などの天体」等に接続されて、その本体・車体・船体・天体の電位がアース電位などの基準電位となる。
ただし、「その電源電位の高さで隣り同士となる2つの電源線」それぞれの間に直流電圧供給用の直流電源が1つずつ接続されているが、図示されていない。
◆6)例えばダイオード10、12、35、36、「ツェナー・ダイオード2つを逆向きに直列接続したツェナー・ダイオード対」等、点線で「回路構成手段そのもの、または、回路構成手段の接続」を示す場合は「その接続または挿入・接続が有る場合と無い場合」が有ることを意味する。
◆7)「トランジスタ41、47、48のゲート端子または共通ゲート端子を2つずつ画(えが)いて、各ゲート端子がD型フリップ・フロップ27のQ端子(正出力端子)に接続されたり、Qバー端子(補出力端子)に接続されたりすること」を点線で示している。
当然の事ながら、「そのQ端子からQバー端子への接続変更」や「そのQバー端子からQ端子への接続変更」は「その接続変更前の回路に対してその接続変更後の回路がその否定回路になる」ことを意味する。
なお、念の為、「Qバー」とはQの文字の上に線を引いた文字を意味する。
◆ 5) expressed in capital letters V "V G, V H, V m , V -1, V 0, V 1~ V n-1, V n " in the power supply line, respectively, such as, represented by a lower case v etc. “V G , v H , v m , v −1 , v 0 , v 1 to v n−1 , v n ” and the like represent the potentials (= constant potential) of these power supply lines in order, and the power supply potential The power supply potentials of v −1 to v n increase in this order. Of course, the power supply line V 0 or other power supply line is “the main body of the circuit” or “the main body of the circuit device” or “the body of an automobile, motorcycle, bicycle, etc.” or “the hull of a ship” or “ "Body of hovercraft, etc. for two-purpose use" or "Body of airplane, helicopter, etc." or "Main body of space navigation, space station, etc." The potential of the main body, the vehicle body, the hull, and the celestial body becomes a reference potential such as a ground potential.
However, although one DC power supply for supplying DC voltage is connected between each of “two power supply lines adjacent to each other at the level of the power supply potential”, it is not shown.
◆ 6) For example, diodes 10, 12, 35, 36, “a pair of Zener diodes in which two Zener diodes are connected in series in the opposite direction”, etc. In the case of showing, it means that there are cases where the connection or insertion / connection is present and not.
7) “Two gate terminals or common gate terminals of the transistors 41, 47, and 48 are drawn, and each gate terminal is connected to the Q terminal (positive output terminal) of the D-type flip-flop 27. , “Is connected to the Q bar terminal (complementary output terminal)”.
Naturally, “change in connection from the Q terminal to the Q bar terminal” or “change in connection from the Q bar terminal to the Q terminal” means that the circuit after the connection change is different from the circuit before the connection change. It means that it becomes a negative circuit.
As a precaution, “Q bar” means a character in which a line is drawn on the letter Q.
◇◆ 図32の先願・実施例1 ◆◇
図32の先願・実施例1(同期ラッチング機能を持つ多値論理手段と、多値ハザード除去手段)では以下の通り各構成要素が前述(段落番号[0151〜0153]。)した各構成手段に相当し、S=1で、「n≧3」、「n−1≧m≧0」の関係に有る。その1つの出力用特定整数mはその1つの入力用特定整数mを兼ねる為、出力用特定電源電位vmは前記入力用特定定電位(→段落番号[0152]。)を兼ねる。
ただし、前述(段落番号[0154]の最終9行。)の通り「その1つの入力整数がその1つの入力用特定整数mと等しいかそうでないかを判別すること」は「その1つの入力整数がその2つの入力用特定整数(m−1)、(m+1)の間に有るかそうでないかを判別すること」と同じである。また、n>m+1のとき電源線Vn等は図示されていないことになる。
◆a)電源電位v0〜電源電位vn−1が前述(段落番号[0151〜0153]。)した第1定電位〜第N定電位に。
◆b)電源線V0〜電源線Vn−1が前述した第1定電位供給手段〜第N定電位供給手段に。
但し、電源電位v0の下にさらに電源電位v−1の電源線V−1が有ったり、あるいは、電源電位vn−1の上にさらに電源電位vnの電源線Vnが有ったり、する場合も有る。また、図32では一部の電源線しか図示していない。
◆c)入力端子Tinが前述した第1(S=1)の入口手段に。
◆d)出力端子Toutが前述した出口手段に。
◆e)電源線Vmが前述した出力用特定定電位供給手段(=入力用特定定電位供給手段)に。
◆f)特定電源電位vmが「前述した入力用特定定電位」と「その出力用特定定電位供給手段が供給する出力用特定定電位」に。
◆g)トランジスタ3、4の直列回路が前述した(双方向性の)プル・スイッチング手段に。 ☆参 考:特開2005−236985号(特許文献3)
◆h)「トランジスタ1、2、17、ダイオード35及び抵抗20、21が構成する回路部」が前述した数値判別手段に。
◆i)「トランジスタ41、37、ダイオード39及び抵抗15が構成する回路部」が前述したオン・オフ駆動手段に。
◆j)D型フリップ・フロップ27が前述した2値同期型フリップ・フロップ手段に。
◆k)「同期信号発生手段60、トランジスタ61及び抵抗26、28が構成する回路部」が前述した同期信号供給手段に。
◇ ◆ Prior application, Example 1 in Fig. 32 ◆ ◇
In the prior application / embodiment 1 of FIG. 32 (multi-value logic means having a synchronous latching function and multi-value hazard elimination means), the respective constituent elements are as described above (paragraph numbers [0151 to 0153]). S = 1, and “n ≧ 3” and “n−1 ≧ m ≧ 0”. Since the one output specific integer m also serves as the one input specific integer m, the output specific power supply potential v m also serves as the input specific constant potential (→ paragraph number [0152]).
However, as described above (the last nine lines of paragraph number [0154]), “determining whether the one input integer is equal to or not the one input specific integer m” means “the one input integer. Is the same between the two input specific integers (m−1) and (m + 1) ”. Further, the power supply line V n, etc. When n> m + 1 will be not shown.
A) The power supply potential v 0 to the power supply potential v n−1 are changed from the first constant potential to the Nth constant potential as described above (paragraph numbers [0151 to 0153]).
B) The power supply line V 0 to the power supply line V n−1 are the first constant potential supply means to the Nth constant potential supply means described above.
However, further or there is a power supply line V -1 supply potential v -1 under the power potential v 0, or there is a further power supply line V n of the power supply potential v n on the power potential v n-1 Sometimes, there are cases. FIG. 32 shows only a part of the power supply lines.
C) The input terminal T in serves as the first (S = 1) inlet means described above.
◆ d) The output terminal T out is the outlet means described above.
E) The power supply line V m serves as the above-mentioned output specific constant potential supply means (= input specific constant potential supply means).
◆ f) to a specific power supply voltage v m is "specific input described above constant potential" and "specific constant potential output supplies its output a specific constant potential supply unit".
G) The series circuit of the transistors 3 and 4 is the aforementioned (bidirectional) pull switching means. ☆ Reference: JP 2005-236985 (Patent Document 3)
◆ h) “The circuit portion formed by the transistors 1, 2, 17, the diode 35 and the resistors 20, 21” is the numerical value discrimination means described above.
I) “Circuit part formed of transistors 41 and 37, diode 39 and resistor 15” is the on / off driving means described above.
J) The D-type flip-flop 27 is the binary synchronous flip-flop means described above.
◆ k) “Synchronous signal generating means 60, transistor 61, and circuit portion constituted by resistors 26 and 28” are the above-described synchronizing signal supply means.
なお、もし「D型フリップ・フロップ27、同期信号発生手段60、トランジスタ61及び抵抗26、28」を取り外し、トランジスタ41のゲートをダイオード35のアノードに直接接続すれば、「{電源線V−1、}電源線V0〜電源線Vn−1{、電源線Vn}、トランジスタ1、2、3、4、17、37、41、ダイオード35、39及び抵抗15、20、21等(直流電源は図示せず。)が構成する多値論理回路」は前述した『フージ代数』に基づく非同期型・多値論理回路になる。
また、トランジスタ41のゲートはD型フリップ・フロップ27のQ端子(正出力端子)に接続されているが、もちろんQバー端子(補出力端子)に接続される場合も有る。
さらに、「トランジスタ1、2、17、41及びD型フリップ・フロップ27等が接続されている電源線Vm−1〜Vm+1の各部分だけ同時に同じだけ高電位へ接続変更すること」によってトランジスタ41のソースを電源線Vm+2又は「これより電位の高い任意の電源線」に接続変更すれば、ダイオード39の代わりに電圧降下用として抵抗または「ツェナー・ダイオード2つを逆向きに直列接続したもの」を使うことができる。この場合、トランジスタ37はノーマリィ・オン型(ディプレッション・モード)でも構わない。
それから、D型フリップ・フロップ27の同期信号入力部に「CP端子の電位の下限を特定電源電位vmにクランプするクランプ・ダイオード(図示せず。)」が接続されていて、特定電源電位vmが電源電位v0より高い場合、そのクランプ・ダイオードとトランジスタ61が両電源線Vm・V0間を短絡するのを抵抗28が防止する。特定電源電位vm=電源電位v0のとき抵抗28の抵抗値はゼロで良い。
そして、各「その電源電位の高さで隣り同士となる電源線2つ」の間にはもちろん直流電源手段(図示せず。)が1つずつ接続されている。
If “D-type flip-flop 27, synchronization signal generating means 60, transistor 61 and resistors 26, 28” are removed and the gate of transistor 41 is directly connected to the anode of diode 35, “{power supply line V −1 ,} Power supply line V 0 to power supply line V n−1 {, power supply line V n }, transistors 1, 2, 3, 4, 17, 37, 41, diodes 35, 39, resistors 15, 20, 21 and the like (DC "Multi-valued logic circuit configured by a power supply not shown") is an asynchronous multi-valued logic circuit based on the aforementioned "Fuji algebra".
Further, the gate of the transistor 41 is connected to the Q terminal (positive output terminal) of the D-type flip-flop 27, but of course, it may be connected to the Q bar terminal (complementary output terminal).
Further, the transistor is changed by “changing the connection of each portion of the power supply lines V m−1 to V m + 1 to which the transistors 1, 2, 17, 41 and the D-type flip-flop 27 are connected to the same high potential at the same time”. If the source of 41 is changed to the power line V m + 2 or “any power line having a higher potential”, a resistor or “two zener diodes are connected in series in reverse direction for voltage drop instead of the diode 39” Things can be used. In this case, the transistor 37 may be normally on (depletion mode).
Then, D-type sync signal input of the flip-flop 27 "identify the lower limit of the potential of the CP terminal power supply potential v clamping diode for clamping the m (not shown.)" It is connected and the particular power supply potential v When m is higher than the power supply potential v 0 , the resistor 28 prevents the clamp diode and the transistor 61 from short-circuiting between both power supply lines V m · V 0 . When the specific power supply potential v m = power supply potential v 0 , the resistance value of the resistor 28 may be zero.
Of course, one DC power supply means (not shown) is connected between each “two power supply lines adjacent to each other at the level of the power supply potential”.
上述の通り出力用特定整数(=出力用特定定電位に対応する整数)mは入力用特定整数(値)を兼ね、電源線Vmは入力用特定定電位供給手段と出力用特定定電位供給手段を兼ね、特定電源電位vmは入力用特定定電位と出力用特定定電位を兼ねる。
「入力電位vin(=入力端子Tinの電位)」、「入力用特定整数mの論理レベルのしきい値電位」及び「入力電位vinに対応する入力数値Nin」の関係は以下の通りである。
◆1)特定整数m=0のとき:
入力電位vinが電源電位v0を基準にしたプラス側しきい値電位より低ければ、入力数値Ninは整数0と判別され、その入力電位vinが「電源電位v0より1つ上の電源電位v1」を基準にしたマイナス側しきい値電位より高ければ、入力数値Ninは整数0ではないと判別される。
◆2)特定整数mが「n−2≧m≧1」のとき:
入力電位vinが「特定電源電位vmを基準にしたプラス側しきい値電位とマイナス側しきい値電位の間」に有れば、入力数値Ninは整数mと判別され、入力電位vinが「『特定電源電位vmより1つ上の電源電位vm+1』を基準にしたマイナス側しきい値電位より高い」あるいは「『特定電源電位vmより1つ下の電源電位vm−1』を基準にしたプラス側しきい値電位より低い」場合は、入力数値Ninは整数mではないと判別される。
◆3)特定整数m=(n−1)のとき:
入力電位vinが電源電位vn−1を基準にしたマイナス側しきい値電位より高ければ、入力数値Ninは整数(n−1)と判別され、入力電位vinが「電源電位vn−1より1つ下の電源電位vn−2」を基準にしたプラス側しきい値電位より低ければ、その入力数値は整数(n−1)ではないと判別される。
なお、普通は各・雑音余裕(度)を考慮しながら、特定整数mの入力側論理レベルのマイナス側しきい値電位は特定電源電位vmと「特定電源電位vmと『特定電源電位vmより1つ下の電源電位vm−1』の真ん中電位」の間に設定される一方、特定整数mの入力側論理レベルのプラス側しきい値電位は「『特定電源電位vmより1つ上の電源電位vm+1』と特定電源電位vmの真ん中電位」と特定電源電位vmの間に設定される。
もちろん、各・雑音余裕(度)を考慮するが、「上下対称性が無い2値TTLの各しきい値電位」の様にそういう設定ではなく、片寄った設定でも構わない。
As described above, the output specific integer (= integer corresponding to the output specific constant potential) m also serves as the input specific integer (value), and the power supply line V m is the input specific constant potential supply means and the output specific constant potential supply. also serves as a means, certain power potential v m doubles as a certain constant potential output with a particular input constant potential.
"Input voltage v in (= the potential of the input terminal T in)", the relationship "the logic level of the threshold potential of the input specific integer m" and "input numerical value N in corresponding to the input voltage v in" following Street.
◆ 1) When specific integer m = 0:
If lower than the input potential v in is the power supply potential v 0 to the reference positive threshold potential, input numerical value N in is determined that the integer 0, the input voltage v in the one above "supply potential v 0 of If it is higher than the negative threshold potential with reference to the power supply potential v 1 ”, it is determined that the input numerical value N in is not an integer 0.
◆ 2) When the specific integer m is “n−2 ≧ m ≧ 1”:
If there input potential v in is a "between the positive side threshold potential and the negative side threshold potential relative to the specific power supply potential v m", the input numeric N in is determined that the integer m, the input potential v in the "" specific power supply potential v power supply potential on the one than m v m + 1 "higher than the negative threshold voltage relative to the" or "" specific power supply potential v below one than m power supply potential v m- In the case of “lower than the plus-side threshold potential with reference to 1 ” ”, it is determined that the input numerical value N in is not an integer m.
◆ 3) When a specific integer m = (n−1):
Is higher than the minus side threshold potential input potential v in is the power supply potential v n-1 to the reference, the input numerical value N in is determined that the integer (n-1), the input potential v in the "power supply potential v n If it is lower than the plus-side threshold potential with reference to the power supply potential v n-2 that is one lower than −1, it is determined that the input numerical value is not an integer (n−1).
Incidentally, normally taking into account the respective-noise margin (degrees), the negative side threshold potential of the input side logical level of a particular integer m certain supply potential v m and a "specific supply potential v m and a" specific power supply potential v while being set between the middle potential "of one power supply potential v m-1 of below" m, the plus side threshold potential of the input side logical level of a particular integer m is from "" specific power supply potential v m 1 One power supply potential v m + 1 "on the middle potential" of a particular power supply potential v m is set during a particular power supply potential v m.
Of course, each noise margin (degree) is taken into consideration, but such a setting may be used instead of such a setting as “each threshold potential of binary TTL having no vertical symmetry”.
■ 先ず、元の非同期型・多値論理回路の動作説明 ■
「図32の先願・実施例1においてD型フリップ・フロップ27の挿入・接続などが無く、トランジスタ41のゲートがダイオード35のアノードに直結されている、『フージ代数』に基づく非同期型・多値論理回路(参考:段落番号0171中の最初。)」の論理動作は次の通りである。
入力端子Tinの入力数値Ninが特定整数mの時トランジスタ1、2、17、37がオンとなり、トランジスタ41、3、4がオフとなる為、出力端子Toutからの出力は開放される。一方、入力数値Ninが特定整数m以外の時トランジスタ「1、2のどちらか一方」、17、37がオフとなり、トランジスタ41、3、4がオンとなる為に、出力端子Toutの電位は特定電源電位vmになり、特定整数mが出力される。このため、本発明者は、この非同期型・多値論理回路を「(非同期型・)多値(特定値)NOT(=ノット)回路」と呼ぶ。
従って、図32の先願・実施例1においてトランジスタ41のゲートがD型フリップ・フロップ27のQ端子に接続されているとき、本発明者は図32の先願・実施例1を「同期型・多値(特定値)NOT回路」と呼ぶ。
しかし、その非同期型・多値論理回路において「両電源線Vm+1・Vmからその電源を取った2値NOT回路(図示せず。)」を使ってトランジスタ17のドレイン信号を反転させてトランジスタ41のゲートに入力すれば、トランジスタ41、3、4の各オン・オフ動作も正反対になるので、この場合、本発明者はこの非同期型・多値論理回路を「(非同期型・)多値(特定値)EQUAL(=イコール)回路」と呼ぶ。あるいは、「本発明者が既に非同期型(多値特定値)OVER(=オウバー)回路とか非同期型(多値特定値)UNDER(=アンダー)回路と呼ぶ各回路」が有るので、それらの名前をゴルフ用語で統一して「非同期型(多値特定値)EVEN(=イーブン)回路」と本発明者は呼ぶ。この場合、この否定回路を「(非同期型・)多値(特定値)NOT(=ノット)回路」ではなく「非同期型(多値特定値)NEVEN(=ニーブン)回路」と呼んでも良い。
従って、図32の先願・実施例1においてトランジスタ41のゲートがD型フリップ・フロップ27のQバー端子に接続されているとき図32の先願・実施例1を「同期型EQUAL回路、又は、同期型EVEN回路」と呼ぶ。
なお、「n−1≧m≧0」を満足する特定電源電位vmは出力用特定整数mに対応し、出力端子Toutの開放出力は例えば「出力端子Toutをどの電源電位にプル・アップ又はプル・ダウンするか」または「その出力端子Toutを別の同様な多値論理回路の出力端子Toutと接続するか」等するが、いずれにしても出力端子Toutは「多値に対応する定電位」を出力することができる。
■ First, the operation of the original asynchronous / multi-valued logic circuit ■
“In the prior application of FIG. 32, the D-type flip-flop 27 is not inserted or connected in the first embodiment, and the gate of the transistor 41 is directly connected to the anode of the diode 35. The logic operation of the value logic circuit (reference: first in paragraph number 0171) is as follows.
Input numerical value N in the input terminal T in the transistor 1,2,17,37 is turned on when a particular integral m, since the transistor 41,3,4 is turned off, the output from the output terminal T out is opened . On the other hand, "On the other hand either 1, 2," when the transistor input numerical value N in the other than the specific integer m, 17,37 is turned off, in order to transistor 41,3,4 is turned on, the potential of the output terminal T out becomes the specific supply potential v m, the specific integer m is output. For this reason, the present inventor calls this asynchronous / multi-value logic circuit “(asynchronous /) multi-value (specific value) NOT (= knot) circuit”.
Accordingly, when the gate of the transistor 41 is connected to the Q terminal of the D-type flip-flop 27 in the prior application / embodiment 1 of FIG. 32, the present inventor determines that the prior application / embodiment 1 of FIG. Called “multi-value (specific value) NOT circuit”.
However, in the asynchronous multi-valued logic circuit, the drain signal of the transistor 17 is inverted by using a “binary NOT circuit (not shown) that takes its power supply from both power supply lines V m + 1 · V m ”. 41, since the on / off operations of the transistors 41, 3 and 4 are opposite to each other, in this case, the present inventor designates the asynchronous type / multilevel logic circuit as "(asynchronous type) multilevel". (Specific value) EQUAL (= equal) circuit ”. Alternatively, there are “each circuit that the inventor has already called an asynchronous (multi-value specific value) OVER (= over) circuit or an asynchronous type (multi-value specific value) UNDER (= under) circuit”. The present inventors refer to the term “asynchronous (multi-value specific value) EVEN (= even) circuit” in golf terms. In this case, this negative circuit may be called an “asynchronous (multi-value specific value) NEVEN (= neven) circuit” instead of the “(asynchronous type) multi-value (specific value) NOT (= knot) circuit”.
Accordingly, when the gate of the transistor 41 is connected to the Q bar terminal of the D-type flip-flop 27 in the prior application / embodiment 1 of FIG. 32, the prior application / embodiment 1 of FIG. This is called a “synchronous EVEN circuit”.
Incidentally, the specific power supply potential v m that satisfies "n-1 ≧ m ≧ 0" corresponds to a specific output integer m, the pull-open output of the output terminal T out in which the power supply potential, for example, "the output terminal T out up or pull-down or "or" is either "or the like for connecting the output terminal T out and the output terminal T out of another similar multivalued logic circuit, the output terminal Tout in any case the" multi-level Corresponding constant potential "can be output.
■ 同期型・多値論理回路へ ■
図32の先願・実施例1の各機能は以下の通りである。「トランジスタ17のドレイン出力信号」も「トランジスタ41のゲート入力信号」も実質的に両電源線Vm+1・Vm間電圧を電源とする2値回路の様な信号である。
このため、前述(段落番号0160〜0161)の通りその『フージ代数』に基づく多値論理回路には『その回路内の信号伝達途中での2値回路との接続性が極めて良く、その間に特別なインターフェイス(例:2値・多値コード変換手段、多値・2値コード変換手段)が必要無い』という独特な効果が有る。
( その『フージ代数』に基づく多値論理回路の独特な効果 )
また、抵抗26、28と「D型フリップ・フロップ27のCP入力部に有る2値・数値判別手段の様な手段またはクランプ・ダイオード2つ」の組合せは「見なし又は変換」機能を本来持っている。その「見なし又は変換」機能とは「電源電位v0・電源電位vm+1間でスウィングする2値信号の様なHigh・Low信号」を「特定電源電位vm・電源電位vm+1間でスウィングする通常の2値信号」の様に容易に見なすことができる、又は、その通常の2値信号に容易に変換することができる、という機能である。
ただし、その2値信号の様なHigh・Low信号は数値的な解釈によっては多値信号と見なすこともできる。→→段落番号[0161]前半。
その「見なし又は変換」機能は「一般的な2値回路の数値判別部が、そのHレベルの下限値より高いすべての『(多値)電位信号または(多値)電圧信号』を常に『Hレベル』と判別し、そのLレベルの上限値より低いすべての『(多値)電位信号または(多値)電圧信号』を常に『Lレベル』と判別する」という2値回路・固有の動作特性に起因している。あるいは、「LレベルからHレベルへの立上りか、HレベルからLレベルへの立下りを判別する」という2値回路・固有の動作特性に起因している。
■ To a synchronous / multi-valued logic circuit ■
The functions of the prior application / embodiment 1 of FIG. 32 are as follows. The “drain output signal of the transistor 17” and the “gate input signal of the transistor 41” are substantially signals like a binary circuit using the voltage between the power supply lines V m + 1 and V m as a power source.
For this reason, as described above (paragraph numbers 0160 to 0161), the multi-value logic circuit based on the “Fuji algebra” “has extremely good connectivity with a binary circuit in the middle of signal transmission in the circuit, and special A unique interface (e.g., binary / multi-value code conversion means, multi-value / binary code conversion means) is not necessary ”.
(Unique effects of multi-valued logic circuits based on the "Fuji algebra")
The combination of the resistors 26 and 28 and “a means such as a binary / numerical value discriminating means or two clamp diodes in the CP input section of the D-type flip-flop 27” originally has a “deemed or converted” function. Yes. The “deemed or converted” function is to swing “High / Low signal like a binary signal swinging between power supply potential v 0 and power supply potential v m + 1” between “specific power supply potential v m and power supply potential v m + 1”. This is a function that can be easily regarded as “normal binary signal” or can be easily converted into the normal binary signal.
However, a High / Low signal such as the binary signal can be regarded as a multi-level signal depending on numerical interpretation. →→ First paragraph [0161].
The “deemed or converted” function is “a numerical discriminating unit of a general binary circuit always outputs all“ (multi-value) potential signals or (multi-value) voltage signals ”higher than the lower limit value of the H level” to “H Binary circuit with unique operating characteristics that distinguishes all “(multi-valued) potential signals or (multi-valued) voltage signals” that are lower than the upper limit value of the L level ”and always distinguishes them from“ L level ”. Due to Alternatively, this is due to a binary circuit and a specific operation characteristic of “determining whether the rise from the L level to the H level or the fall from the H level to the L level”.
あるいは、その「見なし又は変換」機能は「一般的な2値回路の入力部に有るクランプ・ダイオード2つが、『(多値)電位信号または(多値)電圧信号』の上限をその2値のプラス側定電位(又はプラス側電源電圧)vm+1にクランプする一方、その下限をその2値のマイナス側定電位(又はマイナス側電源電圧)vmにクランプする」という2値回路の動作特性に起因している。
図32に示す先願・実施例1の場合、「その2値回路の数値判別部または入力部」としてD型フリップ・フロップ27のCP端子・入力部を用いているが、D型フリップ・フロップ27のD端子・入力部についても同様である。つまり、先願第1、第2発明に関してその1構成手段である2値同期型フリップ・フロップ手段のデータ入力部(例:D端子の入力部。)が「その入力整数がその1つの入力用特定整数より『大きいか大きくないか』又は『小さいか小さくないか』を判別する数値判別手段の要件を満たしていれば、その2値同期型フリップ・フロップ手段がその数値判別手段を兼ねてももちろん構わない。
この図32の先願・実施例1の場合、この2値回路(=D型フリップ・フロップ27)の電源が電源線Vm+1と電源線Vmから供給される様に両電源線が選択されている。
Alternatively, the “deemed or converted” function means that “the two clamp diodes in the input part of a general binary circuit have an upper limit of“ (multi-value) potential signal or (multi-value) voltage signal ””. while clamped to positive constant potential (or positive power supply voltage) v m + 1, the lower limit on the operating characteristics of the negative constant potential (or minus side power supply voltage) v is clamped to m "of the binary circuit of the binary Is attributed.
In the case of the prior application / embodiment 1 shown in FIG. 32, the CP terminal / input section of the D-type flip-flop 27 is used as the “numerical value discrimination section or input section of the binary circuit”. The same applies to the 27 D terminals / input units. In other words, regarding the first and second inventions of the first and second inventions, the data input section (eg, the input section of the D terminal) of the binary synchronous flip-flop means which is one of the constituent means is “the input integer is for the one input. If the requirement of the numerical discriminating means for discriminating whether it is "larger or not larger" or "smaller or smaller" than a specific integer is satisfied, even if the binary synchronous flip-flop means also serves as the numerical discriminating means Of course.
For prior application, the first embodiment of FIG. 32, both the power supply line as the power is supplied from the power supply line V m + 1 and the power source line V m of the binary circuit (= D-type flip-flop 27) is selected ing.
さらに、新・多値論理『フージ(Hooji)代数』に基づく多値論理回路には極めて独特な効果・特徴が有る。それは、「前段2値回路との接続性」も「その多値論理回路内の信号伝達途中での2値回路との接続性」も「後段2値回路との接続性」も極めて良いにもかかわらず、その多値数Nに関係無く、すべての多値論理関数を1種類の基本多値論理回路の単独あるいはその複数個の組合せ(完全系)で表現できること。⇒完全性それも『完全』。
*参考:非特許文献3、『多値情報処理 ―ポストバイナリエレクトロニクス―』)である。
◆『フージ(Hooji)代数』の『完全』に関する証明は既に段落番号[0088〜0101]において説明されている。
この為、ある多値信号がその1種類の多値論理回路に入力されてその回路内の信号伝達途中で、前述(段落番号[0160〜0161]。)の通り2値(的)信号として取り扱うことができる。もし、その入力前または入力時などの時に多値ハザードが発生しても、その信号伝達途中で2値(的)ハザードを含む2値(的)信号として取り扱うことができるので、従来の2値ハザード除去回路と方法をその信号伝達途中で活用することができる。
それから、多値ハザードが現われる期間は回路設計段階あるいは動作チェック段階などで前もって予測または把握できるので、その多値ハザードの出現タイミングと「トランジスタ61に入力される同期信号(又はクロック・パルス信号など)」のタイミングを擦(す)り合わせることができる。
例えば、「その2値的ハザードがトランジスタ17のドレイン出力信号に現われる期間」中、トランジスタ61の入力同期信号はロー・レベルまたはハイ・レベルに設定される為、D型フリップ・フロップ27はそのドレイン出力信号を無視して前の保持信号(又は保持データ)を保持し続ける。
一方、「その2値ハザードがトランジスタ17のドレイン出力信号に現われず、そのドレイン出力信号が安定する期間」中にトランジスタ61の入力同期信号が立ち下がる様に設定される為、D型フリップ・フロップ27はそのドレイン出力信号を取り入れて新しい保持信号(又は保持データ)として保持し、トランジスタ41にそのまま出力する。
あとは同様に、D型フリップ・フロップ27はトランジスタ61の出力同期信号に基づいて「その保持信号(又は保持データ)の書換え」と「その新・保持信号(又は新・保持データ)の保持・出力」を行(おこな)って行くので、D型フリップ・フロップ27は「その伝達途中の2値的信号から2値的ハザードを除去した2値的信号」を後段のオン・オフ駆動手段(トランジスタ41、37等)に供給することができる。
以上の様にして、図32の先願・実施例1は、多値ハザードをその信号伝達途中で2値的ハザードとして扱うことができるので、従来の2値ハザード除去回路と方法を応用して除去することができる。
Further, the multi-value logic circuit based on the new multi-value logic “Hooji algebra” has extremely unique effects and features. This means that “connectivity with the binary circuit in the previous stage”, “connectivity with the binary circuit in the middle of signal transmission in the multi-level logic circuit”, and “connectivity with the binary circuit in the subsequent stage” are extremely good. Regardless of the multi-value number N, all multi-value logic functions can be expressed by a single basic multi-value logic circuit or a combination of them (complete system). ⇒ Completeness is also “complete”.
* Reference: Non-Patent Document 3, “Multi-valued information processing—Post-binary electronics”).
The proof of “complete” in “Hooji algebra” has already been explained in paragraph numbers [0088 to 0101].
For this reason, a certain multi-value signal is input to the one type of multi-value logic circuit and is handled as a binary (target) signal as described above (paragraph number [0160 to 0161]) in the middle of signal transmission in the circuit. be able to. Even if a multi-value hazard occurs before or at the time of input, it can be treated as a binary (target) signal including a binary (target) hazard during the signal transmission. The hazard removal circuit and method can be utilized during the signal transmission.
Then, the period in which the multi-value hazard appears can be predicted or grasped in advance in the circuit design stage or the operation check stage, so that the appearance timing of the multi-value hazard and the “synchronization signal (or clock pulse signal etc.) input to the transistor 61” Can be rubbed together.
For example, during the “period in which the binary hazard appears in the drain output signal of the transistor 17”, the input synchronization signal of the transistor 61 is set to a low level or a high level. Ignore the output signal and continue to hold the previous hold signal (or hold data).
On the other hand, the D-type flip-flop is set so that the input synchronization signal of the transistor 61 falls during “a period in which the binary hazard does not appear in the drain output signal of the transistor 17 and the drain output signal is stable”. 27 takes in the drain output signal, holds it as a new holding signal (or holding data), and outputs it to the transistor 41 as it is.
Similarly, the D-type flip-flop 27 is configured to “rewrite its holding signal (or holding data)” and “hold / hold the new / holding signal (or new / holding data) based on the output synchronization signal of the transistor 61. Since the “output” is performed, the D-type flip-flop 27 outputs the “binary signal in which the binary hazard is removed from the binary signal being transmitted” to the subsequent on / off driving means. (Transistors 41, 37, etc.).
As described above, the prior application / embodiment 1 in FIG. 32 can treat a multi-value hazard as a binary hazard in the middle of signal transmission, so that the conventional binary hazard removal circuit and method are applied. Can be removed.
■ 同期型・多値論理回路の動作説明 ■
図32の先願・実施例1においてトランジスタ41のゲートがD型フリップ・フロップ27のQ端子に接続されている場合、図32の先願・実施例1を本発明者は『同期型NEVEN(ニーブン)回路』又は『同期型NOT回路』」と呼ぶ。その回路動作は以下の通りである。
「同期信号発生手段60、トランジスタ61及び抵抗26、28が構成する同期信号供給手段」がD型フリップ・フロップ27のQ端子にその同期信号を供給するが、この同期信号に基づいてD型フリップ・フロップ27がトランジスタ17からその判別結果信号を取り入れる。
その取り入れた判別結果信号つまりQ端子の正出力信号が「入力端子Tinの入力整数Ninが整数mと等しい整数である」ことを示していれば、「トランジスタ41、37等が形成するオン・オフ駆動手段」がトランジスタ3、4をオフ駆動するので、出力端子Toutからの出力は開放される。
しかし、その正出力信号がそうでないことを示していれば、そのオン・オフ駆動手段がトランジスタ3、4をオン駆動するので、回路的には出力端子Toutから特定電源電位vmが出力され、論理数値的には出力用特定整数mが出力される。
その後、その同期信号に基づいてD型フリップ・フロップ27がトランジスタ17からその次の判別結果信号を取り入れるまで、その出力状態は続く。以後同様に、その次の判別結果信号の取入れが行われ、同じ様な事が繰り返される。
■ Explanation of operation of synchronous type multi-value logic circuit ■
When the gate of the transistor 41 is connected to the Q terminal of the D-type flip-flop 27 in the prior application / embodiment 1 of FIG. "Neven) circuit" or "synchronous NOT circuit". The circuit operation is as follows.
The “synchronizing signal generating means 60, the transistor 61, and the synchronizing signal supplying means constituted by the resistors 26 and 28” supply the synchronizing signal to the Q terminal of the D-type flip-flop 27. Based on this synchronizing signal, the D-type flip The flop 27 takes in the determination result signal from the transistor 17.
If shows a positive output signal of the intake discrimination result signal, that Q terminals may "input terminal T in the input integer N in the is an integer equal to the integer m", "on the transistor 41,37, etc. to form Since the “off driving means” drives the transistors 3 and 4 off, the output from the output terminal T out is released.
However, if the positive output signal indicates that it is not, the on / off driving means drives the transistors 3 and 4 on, so that the specific power supply potential v m is output from the output terminal T out in terms of circuit. In terms of logical values, the output specific integer m is output.
Thereafter, the output state continues until the D-type flip-flop 27 takes in the next discrimination result signal from the transistor 17 based on the synchronization signal. Thereafter, similarly, the next determination result signal is taken in, and the same thing is repeated.
一方、図32の先願・実施例1においてトランジスタ41のゲートがD型フリップ・フロップ27のQバー端子に接続されている場合、図32の先願・実施例1を本発明者は『同期型EVEN回路』又は『同期型EQUAL回路』」と呼ぶ。
この回路動作は上記『同期型NEVEN回路』の否定動作だから、ただ出力端子Toutからの出力の仕方が正反対になるだけである。
On the other hand, when the gate of the transistor 41 is connected to the Q bar terminal of the D-type flip-flop 27 in the prior application / embodiment 1 of FIG. "EVEN circuit" or "synchronous EQUAL circuit".
Since this circuit operation is a negative operation of the “synchronous NEVEN circuit”, the way of output from the output terminal T out is just opposite.
●なお、D型フリップ・フロップ27の代わりに「エッジ・トリガーで導通・非導通する様に改良した2値3ステート・バッファー」と「その後段の2値メモリー手段」の組合せの1段あるいは「前段後段に接続された2段」(→→実質的には2値フリップ・フロップ手段である。)を用いても構わない。(派生実施例)
●また、2値同期型フリップ・フロップ手段や2値3ステート・バッファー手段等がその同期信号(あるいはクロック・パルス信号など)に基づいて動作するトリガー方式の種類には以下3つの方式が有るので、他のトリガー方式に変更することもできる。(派生実施例)
イ)レベル・トリガー方式
ロ)プラス、マイナスの各エッジ・トリガー方式
ハ)パルス・トリガー方式(=マスター・スレーブ方式)
●さらに、トランジスタ3のドレインを電源線Vmから別の電源線V0〜Vm−1のいずれか1つへ接続し直すことによりその出力用特定整数をmから0〜(m−1)のいずれか1つへ変更することができる。
これらの事(上記組合せ、上記各トリガー方式、及び、上記・電源線の接続変更)は他の各実施例についても同様である。
● Also, there are three types of trigger methods in which the binary synchronous flip-flop means and binary three-state buffer means operate based on the synchronous signal (or clock pulse signal, etc.). It is also possible to change to another trigger method. (Derived Example)
B) Level trigger method b) Plus / minus edge trigger method c) Pulse trigger method (= master / slave method)
Furthermore, by reconnecting the drain of the transistor 3 from the power line V m to any one of the other power lines V 0 to V m−1 , the specific integer for output is changed from m to 0 to (m−1). It can be changed to any one of these.
These things (the above combination, the above trigger methods, and the above-described connection change of the power supply line) are the same for the other embodiments.
◇◆ 先願・実施例2 ◆◇
図33に示す先願・実施例2は図32の先願・実施例1又はその各派生実施例から派生する。前述(段落番号[0170]の6〜10行目。)の通り「その1つの入力整数Ninがその1つの入力用特定整数mと等しいかそうでないかを判別すること」は「その1つの入力整数Ninがその2つの入力用特定整数(m−1)、(m+1)の間に有るかそうでないかを判別すること」ことと同じである。
そして、図32の先願・実施例1はその入力用特定整数2つの間に有る整数の個数が1個の場合であるが、図33の先願・実施例2はその個数が2個の場合である。このため、「その1つの入力整数Ninがその入力用特定整数2つの間に有る整数のいずれかであるか(=いずれかと等しいか)、それとも、そのいずれでもないか(=そのいずれとも等しくないか)を図33の先願・実施例2は判別する」と言い換えることができる。
図33の先願・実施例2は「図32の先願・実施例1又はその各派生実施例において『トランジスタ1のソースとバックゲート及びトランジスタ17のバックゲート』と電源線Vm+1の接続を一旦切り離し、そのソース等を『電源線Vm+2〜電源線Vn−1のいずれか1つの電源線VH』に接続し直したもの」である。つまり、m+2≦H≦n−1である。
ただし、D端子の所に「電源線Vm+1にその一端を接続した内蔵クランプ・ダイオード」が有れば、トランジスタ17のドレインと「抵抗21とD端子の接続点」の間に電源短絡防止抵抗を挿入・接続する必要が有る。(一種のマッチング)
その結果、先願・実施例2の入力用特定整数2つは、下記のNIN回路やIN回路の場合、整数(m−1)と「その接続し直した電源線の番号、すなわち『整数(m+2)〜(n−1)』のうち、その電源線に対応する1つの整数H」になる。この詳細については後述(段落番号[0184〜0188]。)する。
なお、トランジスタ3のドレインを電源線Vmから別の電源線V0〜Vm−1のいずれか1つへ接続し直すことによりその出力用特定整数をmから0〜(m−1)のいずれか1つへ変更することができる。
◇ ◆ Prior application, Example 2 ◆ ◇
The prior application / embodiment 2 shown in FIG. 33 is derived from the prior application / embodiment 1 of FIG. 32 or its derivative embodiments. As described above (paragraph number [0170], lines 6 to 10), “determining whether the one input integer N in is equal to or not the one input specific integer m” means “the one It is the same as “determining whether or not the input integer N in is between the two input specific integers (m−1) and (m + 1)”.
32 is the case where the number of integers between the two specific integers for input is one, the prior application / example 2 of FIG. 33 has two pieces. Is the case. For this reason, “whether the one input integer N in is one of the integers between the two input specific integers (= is equal to) or neither (= is equal to either) In other words, the prior application / Example 2 of FIG.
The prior application / embodiment 2 in FIG. 33 is “the connection between the source and back gate of the transistor 1 and the back gate of the transistor 17” and the power line V m + 1 in the prior application / embodiment 1 of FIG. once disconnected, its source and those obtained reconnect to the "power line V m + 2 ~ power supply line V n-1 of any one power line V H '". That is, m + 2 ≦ H ≦ n−1.
However, if there is a “built-in clamp diode whose one end is connected to the power supply line V m + 1 ” at the D terminal, a power supply short-circuit prevention resistor is provided between the drain of the transistor 17 and the “connection point between the resistor 21 and the D terminal”. Need to be inserted and connected. (A kind of matching)
As a result, in the case of the following NIN circuit or IN circuit, two specific integers for input in the prior application / embodiment 2 are an integer (m−1) and “the number of the reconnected power line, that is,“ integer ( m + 2) to (n−1) ”is one integer H” corresponding to the power line. Details of this will be described later (paragraph numbers [0184 to 0188]).
Note that by reconnecting the drain of the transistor 3 from the power line V m to any one of the other power lines V 0 to V m−1 , the output specific integer is changed from m to 0 to (m−1). It can be changed to any one.
図33の先願・実施例2においてトランジスタ41のゲートがD型フリップ・フロップ27のQ端子に接続されている場合、先願・実施例2を本発明者は『同期型(多値特定値)NOBETWEEN(=ノー・ビトウィーン。BETWEENの否定。)回路』又は「ゴルフ用語で統一して『同期型(多値特定値)NIN(=ニン。INの否定。)回路』又は『同期型(多値特定値)OUT(=アウト)回路』」と呼ぶ。もちろん、これらの回路においてD型フリップ・フロップ27等を取り外し、トランジスタ41のゲートを直接ダイオード35のアノードに接続すれば、これらの回路は非同期型になる。
ただし、この場合、IN回路やNIN回路の特定整数2つは(m−1)とHであるが、OUT回路の特定整数2つはmと(H−1)である。これらの事は後で詳しく説明する。
その回路動作は以下の通りである。「同期信号発生手段60、トランジスタ61及び抵抗26、28が構成する同期信号供給手段」がD型フリップ・フロップ27のCP端子にその同期信号を供給するが、この同期信号に基づいてD型フリップ・フロップ27がトランジスタ17からその判別結果信号を取り入れる。
その取り入れた判別結果信号つまりQ端子の正出力信号が「入力端子Tinの入力整数Ninが整数(m−1)と整数Hの間に有る整数である」ことを示していれば、「トランジスタ41、37等が形成するオン・オフ駆動手段」がトランジスタ3、4をオフ駆動するので、出力端子Toutからの出力は開放される。
しかし、その正出力信号がそうでないことを示していれば、そのオン・オフ駆動手段がトランジスタ3、4をオン駆動するので、回路的には出力端子Toutから特定電源電位vmが出力され、論理数値的には出力用特定整数mが出力される。
その後、その同期信号に基づいてD型フリップ・フロップ27がトランジスタ17からその次の判別結果信号を取り入れるまで、その出力状態は続く。以後同様に、その次の判別結果信号の取入れが行われ、同じ様な事が繰り返される。
When the gate of the transistor 41 is connected to the Q terminal of the D-type flip-flop 27 in the prior application / embodiment 2 of FIG. ) NOBETWEEN (= No Between. Negation of BETWEEN) "or" Synchronized (multi-value specific value) NIN (= Nin.IN negation) circuit "or" Synchronous (multi Value specific value) OUT (= out) circuit ”. Of course, if the D-type flip-flop 27 and the like are removed in these circuits and the gate of the transistor 41 is directly connected to the anode of the diode 35, these circuits become asynchronous.
However, in this case, the two specific integers of the IN circuit and the NIN circuit are (m−1) and H, but the two specific integers of the OUT circuit are m and (H−1). These will be described in detail later.
The circuit operation is as follows. The “synchronizing signal generating means 60, the transistor 61 and the synchronizing signal supplying means constituted by the resistors 26 and 28” supply the synchronizing signal to the CP terminal of the D-type flip-flop 27. Based on this synchronizing signal, the D-type flip The flop 27 takes in the determination result signal from the transistor 17.
Long as the positive output signal of the intake discrimination result signal, i.e. Q terminal indicates that the "input integer N in the input terminal T in is an integer there between the integer H integer (m-1)", " Since the on / off driving means formed by the transistors 41 and 37 etc. drives the transistors 3 and 4 off, the output from the output terminal T out is released.
However, if the positive output signal indicates that it is not, the on / off driving means drives the transistors 3 and 4 on, so that the specific power supply potential v m is output from the output terminal T out in terms of circuit. In terms of logical values, the output specific integer m is output.
Thereafter, the output state continues until the D-type flip-flop 27 takes in the next discrimination result signal from the transistor 17 based on the synchronization signal. Thereafter, similarly, the next determination result signal is taken in, and the same thing is repeated.
一方、先願・実施例2においてトランジスタ41のゲートがD型フリップ・フロップ27のQバー端子に接続されている場合、先願・実施例2を本発明者は『同期型(多値特定値)BETWEEN(=ビトウィーン)回路』又は「ゴルフ用語で統一して『同期型(多値特定値)IN回路』又は『同期型(多値特定値)NOUT(=ナウト。OUTの否定。)回路』」と呼ぶ。
この回路動作は上記『同期型NIN回路』の否定動作だから、ただ出力端子Toutからの出力の仕方が正反対になるだけである。
On the other hand, when the gate of the transistor 41 is connected to the Q-bar terminal of the D-type flip-flop 27 in the prior application / embodiment 2, the present inventor states that the prior application / embodiment 2 is “synchronous (multi-value specific value)”. ) BETWEEN (= Between) circuit ”or“ synchronized (multi-value specific value) IN circuit ”or“ synchronous (multi-value specific value) NOUT (= Now. OUT negation) circuit ” "
Since this circuit operation is a negative operation of the “synchronous NIN circuit”, the way of output from the output terminal T out is just opposite.
もちろん、これらの同期型「IN、NOUT」回路においてD型フリップ・フロップ27等を取り外し、トランジスタ41のゲートとダイオード35のアノードの間に「両電源線Vm+1・Vmから電源を取った2値インバーター回路」を接続してトランジスタ17のドレイン信号を反転させれば、これらの回路は非同期型「IN、NOUT」回路になる。
ただし、同期型OUT回路と同期型NOUT回路の場合、その入力用特定整数2つは整数mと「『その接続し直した電源線の番号すなわち[整数(m+2)〜(n−1)のうち、その電源線に対応する1つの整数H]』から1を引いた整数(H−1)」である。この事は非同期型でも当てはまる。この詳細については後述(段落番号[0186〜0187]。)する。
Of course, in these synchronous type “IN, NOUT” circuits, the D-type flip-flop 27 and the like are removed, and the power supply from both power supply lines V m + 1 and V m is taken between the gate of the transistor 41 and the anode of the diode 35. If the “value inverter circuit” is connected and the drain signal of the transistor 17 is inverted, these circuits become asynchronous “IN, NOUT” circuits.
However, in the case of the synchronous OUT circuit and the synchronous NOUT circuit, the two specific integers for input are the integer m and ““ the number of the power line reconnected, that is, [of integers (m + 2) to (n−1). , An integer (H−1) ”obtained by subtracting 1 from one integer H]” corresponding to the power supply line. This is true even for asynchronous types. Details of this will be described later (paragraph numbers [0186 to 0187]).
IN論理とNIN論理に基づいてIN回路とNIN回路と呼ぶ理由は「整数0〜(N−1)を順々に並べた整数列において特定の整数a、b(ただし、N−1≧b≧a+2≧2)2つを指定すれば、その整数列を『その特定整数2つに挟まれた内側の[1つ又は複数個の整数]から成る内側整数部分』つまり『その2つの特定整数それぞれを塀に見立てれば、その特定整数2つの塀によって隔てられた3つのうち、その内側の[1つ又は複数個の整数]から成る内側整数部分』と『その内側整数部分に含まれない内側否定整数部分(整数a、bを含む。)』に分けることができる」からである。
そこで、本発明者は、前者の内側整数部分を数値判別基準に用いて「多値BETWEEN(ビトウィーン)論理、又は、多値IN(イン)論理」、略して「BETWEEN論理、又は、IN論理」と呼ぶ一方、後者の内側否定整数部分を数値判別基準に用いて「多値NOBETWEEN(ノー・ビトウィーン)論理、又は、多値NIN(ニン)論理」、略して「NOBETWEEN論理、又は、NIN論理」と呼ぶことにした。
なお、「IN」の方が文字数が少ない上に、母音で始まる為その否定はただNをその前に付けて「NIN」とすれば済むので都合が良い。しかも、本発明者はすでに多値特定値OVER(オウバー)論理(略してOVER論理)、多値特定値UNDER(アンダー)論理(略してUNDER論理)、多値特定値EVEN(イーブン)論理(略してEVEN論理)という名前を用いているので、覚え易い様にゴルフ用語で統一する上でも都合が良い。
☆☆ついでながら、多値IN論理に関して次の様な譬(たと)え方も有る。ゴルフの「ホール又はカップ」の断面図を思い浮かべて、その両側の壁を前述した塀と同様に「その整数列中の2つの特定整数a、b」と見なせば、「ホール・イン又はカップ・イン」の連想から「多値IN論理」という用語は覚え易いのではないかと本発明者は思う。
The reason why the IN circuit and the NIN circuit are referred to based on the IN logic and the NIN logic is that “a specific integer a, b (where N−1 ≧ b ≧ a + 2 ≧ 2) If two are specified, the integer string is “an inner integer part consisting of [one or more integers] sandwiched between the two specified integers”, ie, each of the two specified integers. Of the three integers separated by the two specific integers, the inner integer part consisting of [one or more integers] inside it and the inner part not included in the inner integer part This is because it can be divided into “negative integer parts (including integers a and b)”.
Therefore, the present inventor uses the inner integer part of the former as a numerical discriminant criterion, “multi-value BETWEEN logic (Between) logic or multi-value IN (in) logic”, abbreviated “BETWEEN logic or IN logic”. On the other hand, the inner negative integer part of the latter is used as a numerical discriminant criterion, “multi-valued NOBETWEEN logic or multi-valued NIN logic”, abbreviated “NOBETWEEN logic or NIN logic”. I decided to call it.
Note that “IN” has a smaller number of characters, and since it begins with a vowel, the negation is convenient because it is sufficient to add “N” in front of it to “NIN”. In addition, the present inventor already has a multi-value specific value OVER logic (abbreviated OVER logic), a multi-value specific value UNDER (under) logic (abbreviated UNDER logic), and a multi-value specific value EVEN (abbreviated) logic (abbreviated). EVEN logic) is used, so it is convenient to unify the golf terms so that it is easy to remember.
☆☆ Incidentally, there are the following methods for multi-valued IN logic. Recalling the cross-section of a golf “hole or cup” and considering the walls on both sides as “two specific integers a, b” in the integer row, like the above-mentioned saddle, “hole in or cup” The inventor thinks that the term “multi-valued IN logic” is easy to remember from the association of “in”.
ここで、IN論理とNIN論理の各・数値判別基準と各・論理出力との関係をまとめると、以下の通りになる。
●IN論理(別名、BETWEEN論理):
その1つの入力整数Ninがその内側整数部分の1つであるかどうか判別する。つまり、その1つの入力整数Ninがその特定整数aとb、2つの間の整数であるかどうか判別する。ただし、Nは多値数(N値のNのこと。)で、N−1≧b≧a+2≧2である。
従って、
・b>Nin>aなら、あらかじめ決められた出力用特定整数を出力し、
・Nin≧bか、a≧Ninなら、その出力を開放する。
●NIN論理(別名、NOBETWEEN論理):
IN論理の否定だから、その1つの入力整数Ninがその内側否定整数部分の1つであるかどうか判別する。つまり、その出力の仕方がIN論理と正反対になる。
従って、
・b>Nin>aなら、その出力を開放し、
・Nin≧bか、a≧Ninなら、あらかじめ決められた出力用特定整数を出力する。
Here, the relationship between each of the IN logic and the NIN logic and the numerical value discrimination criteria and each of the logic outputs is summarized as follows.
● IN logic (also known as BETWEEN logic):
It is determined whether the one input integer N in is one of its inner integer parts. That is, it is determined whether or not the one input integer N in is an integer between the specific integers a and b. However, N is a multi-value number (N of N values), and N−1 ≧ b ≧ a + 2 ≧ 2.
Therefore,
If b> N in > a, output a predetermined output specific integer,
If N in ≧ b or a ≧ N in , the output is released.
NIN logic (also known as NOBETWEEN logic):
Since it is negative of IN logic, it is determined whether or not that one input integer N in is one of its inner negative integer parts. That is, the output method is opposite to the IN logic.
Therefore,
If b> N in > a, release the output,
If N in ≧ b or a ≧ N in , a predetermined specific integer for output is output.
もう1つの呼び方、考え方も有る。整数0〜(N−1)を順々に並べた整数列において特定の整数a、b(ただし、N−1>b≧a+2>2。★注:この不等式はIN論理の場合と異なる。)2つを指定すれば、その整数列を『その2つの特定整数それぞれを塀に見立てれば、その特定整数2つの塀によって隔てられた3部分のうち、その外側の複数個の整数から成る外側整数部分』と『その外側整数部分に含まれない外側否定整数部分(その特定整数2つを含む。)』に分けることもできる。
そこで、本発明者は、前者の外側整数部分を数値判別基準に用いて「多値OUT(アウト)論理、略してOUT論理」と呼ぶ一方、後者の外側否定整数部分を数値判別基準に用いて「多値NOUT(ナウト)論理、略してNOUT論理」と呼ぶことにした。
***
★★OUT論理とNIN論理の違い★★
OUT論理とNIN論理の違いはその2つの特定整数をOUTの方は含まず、NINの方は含むことである。
★★IN論理とNOUT論理の違い★★
IN論理とNOUT論理の違いはその2つの特定整数をINの方は含まず、NOUTの方は含むことである。
***
従って、OUT(a、b)=NIN(a−1、b+1)、IN(a、b)=NOUT(a+1、b−1)すなわちNOUT(a、b)=IN(a−1、b+1)が成り立つ。ただし、各括弧(かっこ)内の整数値2つはそれぞれの入力用特定整数2つを表わす。当然、これらの事は非同期型・同士と同期型・同士どちらにおいても成り立つが、当然、同期型・同士ではその同期条件やそのラッチング条件は同じである。
There is another way of calling, thinking. Specific integers a and b (where N-1> b ≧ a + 2> 2 in an integer sequence in which integers 0 to (N−1) are arranged in order. Note: This inequality is different from the case of IN logic.) If two are specified, the integer string is expressed as follows: “If each of the two specific integers is considered to be a 塀, the outer part consisting of a plurality of integers outside the three parts separated by the two specific integers. It can be divided into “integer part” and “outer negative integer part not included in the outer integer part (including two specific integers)”.
Therefore, the present inventor uses the former outer integer part as a numerical discrimination criterion and calls it “multi-valued OUT (out) logic, abbreviated as OUT logic”, while the latter outer negative integer part is used as a numerical discrimination criterion. We decided to call it "multi-valued NOUT logic".
***
★★ Difference between OUT logic and NIN logic ★★
The difference between OUT logic and NIN logic is that the two specific integers are not included in OUT and NIN is included.
★★ Difference between IN logic and NOUT logic ★★
The difference between IN logic and NOUT logic is that the two specific integers do not include IN but NOUT.
***
Therefore, OUT (a, b) = NIN (a−1, b + 1), IN (a, b) = NOUT (a + 1, b−1), that is, NOUT (a, b) = IN (a−1, b + 1). It holds. However, two integer values in each parenthesis represent two specific integers for input. Of course, these things are true for both the asynchronous type and the synchronous type. However, the synchronous condition and the latching condition are the same for the synchronous type.
ここで、OUT論理とNOUT論理の各(数値)判別基準と各論理出力との関係をまとめると、以下の通りになる。
●OUT論理:
その1つの入力整数Ninがその外側整数部分の1つであるかどうか判別する。ただし、Nは多値数(N値のNのこと。)で、N−1>b≧a+2>2(★注:この不等式はIN論理の場合と異なる。)である。
従って、
・Nin>bか、a>Ninなら、あらかじめ決められた出力用特定整数を出力し、
・b≧Nin≧aなら、その出力を開放する。
●NOUT論理:
OUT論理の否定だから、その1つの入力整数がその外側否定整数部分の1つであるかどうか判別する。つまり、その出力の仕方がOUT論理と正反対になる。
従って、
・Nin>bか、a>Ninなら、その出力を開放し、
・b≧Nin≧aなら、あらかじめ決められた出力用特定整数を出力する。
Here, the relationship between each (numerical value) discrimination criterion of OUT logic and NOUT logic and each logic output is summarized as follows.
● OUT logic:
It is determined whether the one input integer N in is one of its outer integer parts. However, N is a multi-value number (N of N values), and N-1> b ≧ a + 2> 2 (* Note: this inequality is different from the case of IN logic).
Therefore,
If N in > b or a> N in , output a predetermined integer for output,
・ If b ≧ N in ≧ a, the output is released.
● NOUT logic:
Since the OUT logic is negated, it is determined whether or not the one input integer is one of the outer negative integer parts. That is, the output method is the opposite of OUT logic.
Therefore,
If N in > b or a> N in , release the output,
If b ≧ N in ≧ a, a predetermined specific integer for output is output.
これまで述べて来た同期型・多値論理回路はもちろん先願第2、3発明共通の「同期ラッチング機能を持つ多値論理手段」に含まれる。これらを以下にまとめる。
☆同期型EVEN(イーブン)回路(別名、同期型EQUAL回路)
☆同期型NEVEN(ニーブン)回路(別名、同期型NOT回路)
☆同期型IN(イン)回路(別名、同期型BETWEEN回路)
☆同期型NIN(ニン)回路(別名、同期型NOBETWEEN回路)
☆同期型OUT(アウト)回路
☆同期型NOUT(ナウト)回路
The synchronous multi-value logic circuit described so far is of course included in the “multi-value logic means having a synchronous latching function” common to the second and third inventions of the prior application. These are summarized below.
☆ Synchronous EVEN circuit (also known as synchronous EQUAL circuit)
☆ Synchronous NEVEN circuit (also known as synchronous NOT circuit)
☆ Synchronous IN circuit (also known as synchronous BETWEEN circuit)
☆ Synchronous NIN circuit (also known as synchronous NOBETWEEN circuit)
☆ Synchronous OUT circuit ☆ Synchronous NOUT circuit
◇◆ 先願・実施例3 ◆◇
図34に示す先願・実施例3も図32の先願・実施例1又はその各派生実施例から派生する。前述(段落番号[0170]の6〜10行目。)の通り「その1つの入力整数Ninがその1つの入力用特定整数mと等しいかそうでないかを判別すること」は「その1つの入力整数Ninがその2つの入力用特定整数(m−1)、(m+1)の間に有るかそうでないかを判別すること」ことと同じである。
そして、図32の先願・実施例1はその入力用特定整数2つの間に有る整数の個数が1個の場合であるが、先願・実施例3はその個数が2個の場合である。このため、「その1つの入力整数Ninがその入力用特定整数2つの間に有る整数のいずれかであるか(=いずれかと等しいか)、それとも、そのいずれでもないか(=そのいずれとも等しくないか)を先願・実施例3は判別する」と言い換えることができる。
図34の先願・実施例3は「図32の先願・実施例1又はその各派生実施例において『トランジスタ2のソースとバックゲート』と電源線Vm−1の接続を一旦切り離し、そのソース等を『電源線V0〜電源線Vm−2のいずれか1つの電源線VG』に接続し直したもの」である。つまり、0≦G≦m−2である。
◇ ◆ Prior application, Example 3 ◆ ◇
The prior application / embodiment 3 shown in FIG. 34 is also derived from the prior application / embodiment 1 of FIG. 32 or its derivative embodiments. As described above (paragraph number [0170], lines 6 to 10), “determining whether the one input integer N in is equal to or not the one input specific integer m” means “the one It is the same as “determining whether or not the input integer N in is between the two input specific integers (m−1) and (m + 1)”.
The prior application / embodiment 1 in FIG. 32 is a case where the number of integers between the two specific integers for input is one, whereas the prior application / embodiment 3 is a case where the number is two. . For this reason, “whether the one input integer N in is one of the integers between the two input specific integers (= is equal to) or neither (= is equal to either) In other words, the prior application / Example 3 is discriminated.
Prior application, the embodiment of FIG. 34 3 disconnects "the transistor 2 of the source and the back gate" to connect the power supply line V m-1 once the prior application, Example 1 or each derived embodiments thereof "Figure 32, the source such as a those reconnect to "any one power line V G of the power supply lines V 0 ~ power supply line V m-2 '". That is, 0 ≦ G ≦ m−2.
先願・実施例3においてトランジスタ41のゲートがD型フリップ・フロップ27のQ端子に接続されている場合、先願・実施例3を本発明者は『同期型NIN回路』又は『同期型NOBETWEEN回路」又は『同期型OUT回路』と呼ぶ。
その回路動作は以下の通りである。「同期信号発生手段60、トランジスタ61及び抵抗26、28が構成する同期信号供給手段」がD型フリップ・フロップ27のCP端子にその同期信号を供給するが、この同期信号に基づいてD型フリップ・フロップ27がトランジスタ17からその判別結果信号を取り入れる。
その取り入れた判別結果信号つまりQ端子の正出力信号が「入力端子Tinの入力整数Ninが整数Gと整数(m+1)の間に有る整数である」ことを示していれば、「トランジスタ41、37等が形成するオン・オフ駆動手段」がトランジスタ3、4をオフ駆動するので、出力端子Toutからの出力は開放される。
しかし、その正出力信号がそうでないことを示していれば、そのオン・オフ駆動手段がトランジスタ3、4をオン駆動するので、回路的には出力端子Toutから特定電源電位vmが出力され、論理数値的には出力用特定整数mが出力される。
その後、その同期信号に基づいてD型フリップ・フロップ27がトランジスタ17からその次の判別結果信号を取り入れるまで、その出力状態は続く。以後同様に、その次の判別結果信号の取入れが行われ、同じ様な事が繰り返される。
In the prior application / embodiment 3, when the gate of the transistor 41 is connected to the Q terminal of the D-type flip-flop 27, the inventor described the prior application / embodiment 3 as “synchronous NIN circuit” or “synchronous NOBETWEEN”. Circuit "or" Synchronous OUT circuit ".
The circuit operation is as follows. The “synchronizing signal generating means 60, the transistor 61 and the synchronizing signal supplying means constituted by the resistors 26 and 28” supply the synchronizing signal to the CP terminal of the D-type flip-flop 27. Based on this synchronizing signal, the D-type flip The flop 27 takes in the determination result signal from the transistor 17.
Long as the positive output signal of the intake discrimination result signal, i.e. Q terminal indicates that "an integer there between the input integer N in an integer G and an integer input terminal T in (m + 1)", "the transistor 41 , 37, etc. "drives the transistors 3 and 4 off, so that the output from the output terminal Tout is released.
However, if the positive output signal indicates that it is not, the on / off driving means drives the transistors 3 and 4 on, so that the specific power supply potential v m is output from the output terminal T out in terms of circuit. In terms of logical values, the output specific integer m is output.
Thereafter, the output state continues until the D-type flip-flop 27 takes in the next discrimination result signal from the transistor 17 based on the synchronization signal. Thereafter, similarly, the next determination result signal is taken in, and the same thing is repeated.
一方、図34の先願・実施例3においてトランジスタ41のゲートがD型フリップ・フロップ27のQバー端子に接続されている場合、先願・実施例3を本発明者は『同期型BETWEEN回路』又は『同期型IN回路』又は『同期型NOUT回路』と呼ぶ。
この回路動作は上記『同期型NIN回路』の否定動作だから、ただ出力端子Toutからの出力の仕方が正反対になるだけである。
On the other hand, when the gate of the transistor 41 is connected to the Q-bar terminal of the D-type flip-flop 27 in the prior application / embodiment 3 of FIG. Or “synchronous IN circuit” or “synchronous NOUT circuit”.
Since this circuit operation is a negative operation of the “synchronous NIN circuit”, the way of output from the output terminal T out is just opposite.
なお、IN回路やNIN回路の場合、その入力用特定整数2つは整数(m+1)と「その接続し直した電源線の番号、すなわち『整数0〜(m−2)』のうち、その電源線に対応する1つの整数G」である。一方、OUT回路とNOUT回路の場合、その入力用特定整数2つは整数mと「『その接続し直した電源線の番号、すなわち[整数0〜(m−2)のうち、その電源線に対応する1つの整数G]』に1を足した整数(G+1)」である。
また、トランジスタ3のドレインを電源線Vmから別の電源線V0〜Vm−1のいずれか1つへ接続し直すことによりその出力用特定整数をmから0〜(m−1)のいずれか1つへ変更することができる。
In the case of the IN circuit or the NIN circuit, the two specified integers for input are an integer (m + 1) and “the number of the reconnected power line, that is,“ integer 0 to (m−2) ”. One integer G "corresponding to the line. On the other hand, in the case of the OUT circuit and the NOUT circuit, the two specific integers for input are the integer m and ““ the number of the reconnected power line, that is, among the integers 0 to (m−2), Integer (G + 1) ”obtained by adding 1 to the corresponding one integer G]”.
Further, by reconnecting the drain of the transistor 3 from the power line V m to any one of the other power lines V 0 to V m−1 , the output specific integer is changed from m to 0 to (m−1). It can be changed to any one.
◇◆ 先願・実施例4 ◆◇
図35に示す先願・実施例4も図32の先願・実施例1又はその各派生実施例から派生する。その説明の前に「その1つの入力整数Ninがその1つの入力用特定整数mと等しいかそうでないかを判別すること」は「『その1つの入力整数Ninがその第1の入力用特定整数(m−1)より大きく、かつ、その第2の入力用特定整数(m+1)より小さい』かそうでないかを判別すること」ことと同じである。
そして、「その1つの入力整数Ninがその2つの入力用特定整数aとb(≧a+2)、2つの整数の間に有るかそうでないかを判別すること」は「『その1つの入力整数Ninがその第1の入力用特定整数aより大きく、かつ、その第2の入力用特定整数bより小さい』かそうでないかを判別すること」ことと同じである。
このため、「図32の先願・実施例1又はその各派生実施例」の判別機能の一部すなわち「その1つの入力整数Ninがその第1の入力用特定整数aより大きいか大きくないか判別する機能」を無くした先願・実施例4は、同期型UNDER(アンダー)回路、又は、同期型NUNDER(ナンダー)回路(=同期型UNDER回路の否定)になり得る。
そこで、図35の先願・実施例4は「図32の先願・実施例1又はその各派生実施例においてトランジスタ2、17、ダイオード35及び抵抗20を取り外し、『抵抗21とD型フリップ・フロップ27のD端子の接続点』をトランジスタ1のドレインに接続し直したもの」である。
◇ ◆ Prior application, Example 4 ◆ ◇
The prior application / embodiment 4 shown in FIG. 35 is also derived from the prior application / embodiment 1 of FIG. 32 or its derivative embodiments. "Part one input integer N in is possible to determine or not equal and its one input for a specific integer m", "" one of its inputs the integer N in is for the first input before the description It is the same as “determining whether it is larger than the specific integer (m−1) and smaller than the second input specific integer (m + 1)” or not.
Then, “determining whether the one input integer N in is between the two input specific integers a and b (≧ a + 2) or two integers” is “the one input integer. It is the same as “determining whether N in is larger than the first input specific integer a and smaller than the second input specific integer b” or not.
For this reason, a part of the discrimination function of “the prior application / embodiment 1 of FIG. 32 or its derivative embodiments”, that is, “the one input integer N in is not larger or larger than the first input specific integer a. The prior application / Embodiment 4 in which the “determination function” is eliminated can be a synchronous UNDER (under) circuit or a synchronous NUNDER circuit (= negative of the synchronous UNDER circuit).
Therefore, the prior application / embodiment 4 in FIG. 35 is “removing the transistors 2, 17, the diode 35, and the resistor 20 in the prior application / embodiment 1 of FIG. The “connection point of the D terminal of the flop 27” is reconnected to the drain of the transistor 1 ”.
図35の先願・実施例4においてトランジスタ41のゲートがD型フリップ・フロップ27のQ端子に接続されている場合、先願・実施例4を本発明者は『同期型NUNDER回路』あるいは『同期型OVER(オウバー)回路』と呼ぶ。もちろん、両・入力用特定整数は異なる。
その回路動作は以下の通りである。「同期信号発生手段60、トランジスタ61及び抵抗26、28が構成する同期信号供給手段」がD型フリップ・フロップ27のCP端子にその同期信号を供給するが、この同期信号に基づいてD型フリップ・フロップ27がトランジスタ1からその判別結果信号を取り入れる。
その取り入れた判別結果信号つまりQ端子の正出力信号が「入力端子Tinの入力整数Ninが整数(m+1)より小さい整数である」ことを示していれば、トランジスタ41、37等が形成するオン・オフ駆動手段」がトランジスタ3、4をオフ駆動するので、出力端子Toutからの出力は開放される。
しかし、その正出力信号が「そうでないこと」すなわち「入力端子Tinの入力整数Ninが整数(m+1)より大きいか等しい整数である」を示していれば、そのオン・オフ駆動手段がトランジスタ3、4をオン駆動するので、回路的には出力端子Toutから特定電源電位vmが出力され、論理数値的には出力用特定整数mが出力される。
その後、その同期信号に基づいてD型フリップ・フロップ27がトランジスタ1からその次の判別結果信号を取り入れるまで、その出力状態は続く。以後同様に、その次の判別結果信号の取入れが行われ、同じ様な事が繰り返される。
When the gate of the transistor 41 is connected to the Q terminal of the D-type flip-flop 27 in the prior application / embodiment 4 of FIG. 35, the present inventor has described the prior application / embodiment 4 as “synchronous NUNDER circuit” or “ It is called a “synchronous OVER circuit”. Of course, both and input specific integers are different.
The circuit operation is as follows. The “synchronizing signal generating means 60, the transistor 61 and the synchronizing signal supplying means constituted by the resistors 26 and 28” supply the synchronizing signal to the CP terminal of the D-type flip-flop 27. Based on this synchronizing signal, the D-type flip The flop 27 takes in the determination result signal from the transistor 1.
If positive output signal of the intake discrimination result signal, i.e. Q terminal indicates that the "input integer N in the input terminal T in is an integer (m + 1) is smaller than the integer", the transistor 41,37, etc. to form Since the “on / off driving means” drives the transistors 3 and 4 off, the output from the output terminal T out is released.
However, if a positive output signal is "otherwise" or "input integer N in the input terminal T in is an integer (m + 1) is greater than or equal to an integer" indicates the its on-off driving means transistor Since the circuits 3 and 4 are turned on, the specific power supply potential v m is output from the output terminal T out in terms of a circuit, and the output specific integer m is output in terms of a logical value.
Thereafter, the output state continues until the D-type flip-flop 27 takes in the next discrimination result signal from the transistor 1 based on the synchronization signal. Thereafter, similarly, the next determination result signal is taken in, and the same thing is repeated.
一方、図35の先願・実施例4においてトランジスタ41のゲートがD型フリップ・フロップ27のQバー端子に接続されている場合、先願・実施例4を本発明者は『同期型UNDER回路』あるいは『同期型NOVER(ノウバー)回路(=同期型OVER回路の否定)』と呼ぶ。もちろん、両・入力用特定整数は異なる。
この回路動作は上記『同期型NUNDER回路』または『同期型OVER回路』の否定動作だから、ただ出力端子Toutからの出力の仕方が正反対になるだけである。
On the other hand, when the gate of the transistor 41 is connected to the Q-bar terminal of the D-type flip-flop 27 in the prior application / embodiment 4 of FIG. Or “synchronous NOVER circuit (= negation of synchronous OVER circuit)”. Of course, both and input specific integers are different.
Since this circuit operation is a negative operation of the “synchronous NUNDER circuit” or “synchronous OVER circuit”, the output method from the output terminal T out is just opposite.
なお、UNDER論理とNOVER論理の違いは「UNDERの方は自分用の1つの特定整数を含まず、NOVERの方は自分用の1つの特定整数を含むこと」である。そして、OVER論理とNUNDER論理の違いは「OVERの方は自分用の1つの特定整数を含まず、NUNDERの方は自分用の1つの特定整数を含むこと」である。従って、UNDER(m+1)=NOVER(m)、NUNDER(m+1)=OVER(m)が成り立つ。ただし、各括弧(かっこ)内の整数値1つはそれぞれの入力用特定整数1つを表わす。
また、これらの事は非同期型・同士と同期型・同士どちらにおいても成り立つが、当然、同期型・同士ではその同期条件やそのラッチング条件は同一である。
さらに、「トランジスタ1のソースとバックゲート」を電源線Vm+1から別の電源線Vm+2〜Vn−1のいずれか1つへ接続し直すことによりUNDER回路やNUNDER回路の各・入力用特定整数を(m+1)から「(m+2)〜(n−1)のいずれか1つ」へ変更することができる。ただし、D型フリップ・フロップ27のD端子の所に「電源線Vm+1にその一端を接続した内蔵クランプ・ダイオード」が接続されている場合、電源短絡防止用抵抗をトランジスタ1のドレインと「そのD端子と抵抗21の接続点」の間に接続する必要が有る。
それから、トランジスタ3のドレインを電源線Vmから別の電源線V0〜Vm−1のいずれか1つへ接続し直すことによりその出力用特定整数をmから0〜(m−1)のいずれか1つへ変更することができる。
The difference between UNDER logic and NOVER logic is that UNDER does not include one specific integer for its own use, and NOVER includes one specific integer for its own use. The difference between the OVER logic and the NUNDER logic is “OVER does not include one specific integer for its own use, and NUNDER includes one specific integer for its own use”. Therefore, UNDER (m + 1) = NOVER (m) and NUNDER (m + 1) = OVER (m) hold. However, one integer value in each parenthesis represents one specific integer for input.
In addition, these things are valid for both the asynchronous type and the synchronous type, but naturally, the synchronous condition and the latching condition are the same in the synchronous type.
Furthermore, by reconnecting the “source and back gate of transistor 1” from the power supply line V m + 1 to any one of the other power supply lines V m + 2 to V n−1 , each of the UNDER circuit and the NUNDER circuit is specified for each input. The integer can be changed from (m + 1) to “any one of (m + 2) to (n−1)”. However, when a “built-in clamp diode having one end connected to the power supply line V m + 1 ” is connected to the D terminal of the D-type flip-flop 27, the power supply short-circuit prevention resistor is connected to the drain of the transistor 1 It is necessary to connect between the “connection point of the D terminal and the resistor 21”.
Then, by reconnecting the drain of the transistor 3 from the power line V m to any one of the other power lines V 0 to V m−1 , the output specific integer is changed from m to 0 to (m−1). It can be changed to any one.
◇◆ 先願・実施例5 ◆◇
図36に示す先願・実施例5も図32の先願・実施例1又はその各派生実施例から派生する。その説明の前に「その1つの入力整数Ninがその1つの入力用特定整数mと等しいかそうでないかを判別すること」は「『その1つの入力整数Ninがその第1の入力用特定整数(m−1)より大きく、かつ、その第2の入力用特定整数(m+1)より小さい』かそうでないかを判別すること」ことと同じである。
そして、「その1つの入力整数Ninがその2つの入力用特定整数aとb(≧a+2)、2つの整数の間に有るかそうでないかを判別すること」は「『その1つの入力整数Ninがその第1の入力用特定整数aより大きく、かつ、その第2の入力用特定整数bより小さい』かそうでないかを判別すること」ことと同じである。
このため、「図32の先願・実施例1又はその各派生実施例」の判別機能の一部すなわち「その1つの入力整数がその第2の入力用特定整数bより小さいか小さくないか判別する機能」を無くした先願・実施例5は、同期型OVER回路、又は、同期型NOVER回路(=同期型OVER回路の否定)になり得る。
そこで、図36の先願・実施例5は「図32の先願・実施例1又はその各派生実施例においてトランジスタ1を取り外し、『トランジスタ17のソースと抵抗20の接続点』を電源線Vm+1に直結したもの」である。
◇ ◆ Prior application, Example 5 ◆ ◇
The prior application / embodiment 5 shown in FIG. 36 is also derived from the prior application / embodiment 1 of FIG. 32 or its derivative embodiments. "Part one input integer N in is possible to determine or not equal and its one input for a specific integer m", "" one of its inputs the integer N in is for the first input before the description It is the same as “determining whether it is larger than the specific integer (m−1) and smaller than the second input specific integer (m + 1)” or not.
Then, “determining whether the one input integer N in is between the two input specific integers a and b (≧ a + 2) or two integers” is “the one input integer. It is the same as “determining whether N in is larger than the first input specific integer a and smaller than the second input specific integer b” or not.
For this reason, a part of the discrimination function of “the prior application / Example 1 of FIG. 32 or its derivative examples”, that is, “the one input integer is discriminated whether it is smaller or smaller than the second input specific integer b”. The prior application / Embodiment 5 in which the “function to perform” is eliminated can be a synchronous OVER circuit or a synchronous NOVER circuit (= negative of the synchronous OVER circuit).
Therefore, the prior application / embodiment 5 of FIG. 36 is “the transistor 1 is removed in the prior application / embodiment 1 of FIG. 32 or its derivative embodiments, and the“ connection point between the source of the transistor 17 and the resistor 20 ” directly connected to m + 1 ".
図36の先願・実施例5においてトランジスタ41のゲートがD型フリップ・フロップ27のQ端子に接続されている場合、先願・実施例5を本発明者は『同期型NOVER回路(=同期型OVER回路の否定)』あるいは『同期型UNDER回路』と呼ぶ。もちろん、両・入力用特定整数は異なる。
その回路動作は以下の通りである。「同期信号発生手段60、トランジスタ61及び抵抗26、28が構成する同期信号供給手段」がD型フリップ・フロップ27のCP端子にその同期信号を供給するが、この同期信号に基づいてD型フリップ・フロップ27がトランジスタ17からその判別結果信号を取り入れる。
その取り入れた判別結果信号つまりQ端子の正出力信号が「入力端子Tinの入力整数Ninが整数(m−1)より大きい整数である」ことを示していれば、トランジスタ41、37等が形成するオン・オフ駆動手段」がトランジスタ3、4をオフ駆動するので、出力端子Toutからの出力は開放される。
しかし、その正出力信号が「そうでないこと」すなわち「入力端子Tinの入力整数Ninが整数(m−1)より小さいか等しい整数である」を示していれば、そのオン・オフ駆動手段がトランジスタ3、4をオン駆動するので、回路的には出力端子Toutから特定電源電位vmが出力され、論理数値的には出力用特定整数mが出力される。
その後、その同期信号に基づいてD型フリップ・フロップ27がトランジスタ17からその次の判別結果信号を取り入れるまで、その出力状態は続く。以後同様に、その次の判別結果信号の取入れが行われ、同じ様な事が繰り返される。
When the gate of the transistor 41 is connected to the Q terminal of the D-type flip-flop 27 in the prior application / embodiment 5 of FIG. Negation of type OVER circuit) ”or“ synchronous UNDER circuit ”. Of course, both and input specific integers are different.
The circuit operation is as follows. The “synchronizing signal generating means 60, the transistor 61 and the synchronizing signal supplying means constituted by the resistors 26 and 28” supply the synchronizing signal to the CP terminal of the D-type flip-flop 27. Based on this synchronizing signal, the D-type flip The flop 27 takes in the determination result signal from the transistor 17.
If positive output signal of the intake discrimination result signal, i.e. Q terminal indicates that the "input integer N in the input terminal T in is an integer (m-1) integer greater than", transistors 41,37 etc. Since the “on / off driving means to be formed” drives the transistors 3 and 4 off, the output from the output terminal T out is released.
However, if a positive output signal is "otherwise" or "input integer N in the input terminal T in is an integer (m-1) is less than or equal to the integer" indicates the its on-off driving means Since the transistors 3 and 4 are turned on, the specific power supply potential v m is output from the output terminal T out in terms of a circuit, and the output specific integer m is output in terms of logical values.
Thereafter, the output state continues until the D-type flip-flop 27 takes in the next discrimination result signal from the transistor 17 based on the synchronization signal. Thereafter, similarly, the next determination result signal is taken in, and the same thing is repeated.
一方、図36の先願・実施例5においてトランジスタ41のゲートがD型フリップ・フロップ27のQバー端子に接続されている場合、先願・実施例5を本発明者は『同期型OVER回路』あるいは『同期型NUNDER回路』と呼ぶ。もちろん、両・入力用特定整数は異なる。
この回路動作は上記『同期型NOVER回路』または『同期型UNDER回路』の否定動作だから、ただ出力端子Toutからの出力の仕方が正反対になるだけである。
On the other hand, when the gate of the transistor 41 is connected to the Q bar terminal of the D-type flip-flop 27 in the prior application / embodiment 5 of FIG. 36, the present inventor described the prior application / embodiment 5 as “synchronous OVER circuit”. Or “synchronous NUNDER circuit”. Of course, both and input specific integers are different.
Since this circuit operation is a negative operation of the “synchronous NOVER circuit” or the “synchronous UNDER circuit”, the output method from the output terminal T out is just opposite.
なお、UNDER論理とNOVER論理の違いは「UNDERの方は自分用の1つの特定整数を含まず、NOVERの方は自分用の1つの特定整数を含むこと」である。そして、OVER論理とNUNDER論理の違いは「OVERの方は自分用の1つの特定整数を含まず、NUNDERの方は自分用の1つの特定整数を含むこと」である。従って、OVER(m−1)=NUNDER(m)、NOVER(m−1)=UNDER(m)が成り立つ。ただし、各括弧(かっこ)内の整数値1つはそれぞれの入力用特定整数1つを表わす。
また、これらの事は非同期型・同士と同期型・同士どちらにおいても成り立つが、当然、同期型・同士ではその同期条件やそのラッチング条件は同一である。
さらに、トランジスタ2のソースを電源線Vm−1から別の電源線V0〜Vm−2のいずれか1つへ接続し直すことによりOVER回路やNOVER回路の各・入力用特定整数を(m−1)から「0〜(m−2)のいずれか1つ」へ変更することができる。
それから、トランジスタ3のドレインを電源線Vmから別の電源線V0〜Vm−1のいずれか1つへ接続し直すことによりその出力用特定整数をmから0〜(m−1)のいずれか1つへ変更することができる。
The difference between UNDER logic and NOVER logic is that UNDER does not include one specific integer for its own use, and NOVER includes one specific integer for its own use. The difference between the OVER logic and the NUNDER logic is “OVER does not include one specific integer for its own use, and NUNDER includes one specific integer for its own use”. Therefore, OVER (m−1) = NUNDER (m) and NOVER (m−1) = UNDER (m) hold. However, one integer value in each parenthesis represents one specific integer for input.
In addition, these things are valid for both the asynchronous type and the synchronous type, but naturally, the synchronous condition and the latching condition are the same in the synchronous type.
Further, by reconnecting the source of the transistor 2 from the power supply line V m-1 to any one of the other power supply lines V 0 to V m-2 , specific integers for input / input of each of the OVER circuit and the NOVER circuit ( m-1) can be changed to “any one of 0 to (m-2)”.
Then, by reconnecting the drain of the transistor 3 from the power line V m to any one of the other power lines V 0 to V m−1 , the output specific integer is changed from m to 0 to (m−1). It can be changed to any one.
これまで述べて来た同期型・多値論理回路はもちろん先願第2、3発明共通の「同期ラッチング機能を持つ多値論理手段」に含まれる。これらを以下にまとめる。
☆同期型OVER(オウバー)回路
☆同期型EVEN(イーブン)回路=同期型EQUAL(イコール)回路
☆同期型UNDER(アンダー)回路
☆同期型NOVER(ノウバー)回路
☆同期型NEVEN(ニーブン)回路=同期型NOT(ノット)回路
☆同期型NUNDER(ナンダー)回路
The synchronous multi-value logic circuit described so far is of course included in the “multi-value logic means having a synchronous latching function” common to the second and third inventions of the prior application. These are summarized below.
☆ Synchronous OVER circuit ☆ Synchronous EVEN circuit = Synchronous EQUAL circuit ☆ Synchronous UNDER (under) circuit ☆ Synchronous NOVER circuit ☆ Synchronous NEVEN circuit = Synchronous Type NOT circuit ☆ Synchronous NUNDER circuit
◇◆ 先願・実施例6 ◆◇
図32の先願・実施例1から図37の先願・実施例6に派生することができる。図37の先願・実施例6は図37中の逆阻止用のダイオード10が接続されていない場合と接続されている場合が有る。
「ダイオード10が接続されていない場合の図37の先願・実施例6」は「図32の先願・実施例1においてトランジスタ3を取り外し、『トランジスタ4のソース、トランジスタ37のドレイン及び抵抗15の一端の接続点』を電源線Vmに直結して、「前述(段落番号[0151]中)したプル・スイッチング手段」を双方向可制御プル・スイッチング手段から逆導通型プル・ダウン・スイッチング手段に変更した実施例」である。
(図32の先願・実施例1の派生実施例)
「さらにトランジスタ4のドレインと出力端子Toutの間に逆阻止用のダイオードを挿入・接続して、前述したプル・スイッチング手段を双方向可制御プル・スイッチング手段から逆阻止型プル・ダウン・スイッチング手段に変更した実施例」が「ダイオード10が接続されている場合の図37の先願・実施例6」である。(図32の先願・実施例1の派生実施例)
これらの回路構成変更の様に、「先願・実施例2、3、4又は5、あるいは、後述する実施例8等、又は、これらの各派生実施例」からも同様な「逆導通型プル・ダウン・スイッチング手段、逆阻止型プル・ダウン・スイッチング手段どちらかを持つ」各派生実施例へ派生することができる。
そして、図37の先願・実施例6の各実施例やその各派生実施例において、そのプル・スイッチング手段の接続を電源線Vmから「電源線V0〜電源線Vm−1のいずれか1つ」に接続し直して、入力用特定整数(値)と出力用特定整数(値)が互いに異なる様にした新・各派生実施例が可能である。 (新・派生実施例)
32 can be derived from the prior application / Example 1 shown in FIG. 37 may be connected to the case where the reverse blocking diode 10 shown in FIG. 37 is not connected or connected.
“Prior application / embodiment 6 of FIG. 37 when the diode 10 is not connected” is obtained by removing “the transistor 3 in the prior application / embodiment 1 of FIG. 32,“ the source of the transistor 4, the drain of the transistor 37, and the resistor 15 the connection point of the one end "a directly connected to the power supply line V m," above (paragraph [0151] in) was pulled switching means "reverse conducting pull-down switching from the bidirectional controllable pull switching means Example changed to means ".
(Derived Example of FIG. 32 Prior Application / Example 1)
“Furthermore, a reverse blocking diode is inserted and connected between the drain of the transistor 4 and the output terminal T out , and the above-described pull switching means is switched from the bidirectional controllable pull switching means to the reverse blocking pull down switching. “Embodiment changed to means” is “prior application / embodiment 6 in FIG. 37 when the diode 10 is connected”. (Derived Example of FIG. 32 Prior Application / Example 1)
Like these circuit configuration changes, “reverse conduction type pull” similar to “prior application / embodiment 2, 3, 4 or 5 or embodiment 8 to be described later, or their respective derivatives” It can be derived from each of the derived embodiments having either a down switching means or a reverse blocking type pull down switching means.
In each embodiment and each of its derivation embodiment of the prior application, Embodiment 6 of FIG. 37, either the connection of the pull switching means from the power supply line V m "of the power supply lines V 0 ~ power supply line V m-1 In this case, new and different embodiments are possible in which the input specific integer (value) and the output specific integer (value) are different from each other. (New and derived examples)
◇◆ 先願・実施例7 ◆◇
図32の先願・実施例1から図38の先願・実施例7に派生することができる。図38の先願・実施例7は図38中の逆阻止用のダイオード12が接続されていない場合と接続されている場合が有る。
「逆阻止用のダイオード12が接続されていない場合の図38の先願・実施例7」は「図32の先願・実施例1においてトランジスタ4を取り外し、『トランジスタ3のソース、トランジスタ37のドレイン及び抵抗15の一端の接続点』に出力端子Toutを接続して逆導通型プル・アップ・スイッチング手段を構成した実施例」である。
(図32の先願・実施例1の派生実施例)
一方、「ダイオード12が接続されている場合の図38の先願・実施例7」は「図32の先願・実施例1において、トランジスタ4の代わりに逆阻止用のダイオード12を接続し、このカソード端子を出力端子Toutとし、ダイオード12とトランジスタ3の直列回路で逆阻止型プル・アップ・スイッチング手段を構成した実施例」である。
(図32の先願・実施例1の派生実施例)
これらの回路構成変更の様に、「先願・実施例2、3、4又は5、あるいは、後述する実施例8等、又は、これらの各派生実施例」からも同様な「逆導通型プル・ダウン・スイッチング手段、逆阻止型プル・ダウン・スイッチング手段どちらかを持つ」各派生実施例へ派生することができる。
そして、図38の先願・実施例7の各実施例やその各派生実施例において、そのプル・スイッチング手段の接続を電源線Vmから「電源線V0〜電源線Vm−1のいずれか1つ」に接続し直して、入力用特定整数(値)と出力用特定整数(値)が互いに異なる様にした新・各派生実施例が可能である。 (新・派生実施例)
◇ ◆ Prior application, Example 7 ◆ ◇
32 can be derived from the prior application / embodiment 1 of FIG. 32 to the prior application / embodiment 7 of FIG. The prior application / Embodiment 7 of FIG. 38 has a case where the reverse blocking diode 12 in FIG. 38 is not connected and a case where it is connected.
“Prior application / embodiment 7 of FIG. 38 when reverse blocking diode 12 is not connected” is obtained by removing “transistor 4 in prior application / embodiment 1 of FIG. An embodiment in which a reverse conduction type pull-up switching means is configured by connecting the output terminal T out to the connection point of the drain and one end of the resistor 15 ”.
(Derived Example of FIG. 32 Prior Application / Example 1)
On the other hand, the “prior application / embodiment 7 of FIG. 38 in which the diode 12 is connected” is the same as the “prior application / embodiment 1 of FIG. This cathode terminal is used as the output terminal Tout, and the reverse blocking type pull-up switching means is constituted by a series circuit of the diode 12 and the transistor 3.
(Derived Example of FIG. 32 Prior Application / Example 1)
Like these circuit configuration changes, “reverse conduction type pull” similar to “prior application / embodiment 2, 3, 4 or 5 or embodiment 8 to be described later, or their respective derivatives” It can be derived from each of the derived embodiments having either a down switching means or a reverse blocking type pull down switching means.
In each embodiment of the prior application / embodiment 7 of FIG. 38 and each of its derivatives, the connection of the pull switching means is changed from the power line V m to any of the power line V 0 to the power line V m−1 . In this case, new and different embodiments are possible in which the input specific integer (value) and the output specific integer (value) are different from each other. (New and derived examples)
◇◆ 先願・実施例8 ◆◇
図39に示す先願・実施例8は、図32の先願・実施例1においてその数値判別手段を別タイプの数値判別手段に置き換えた「同期ラッチング機能を持つ多値論理手段」又は「多値ハザード除去手段」である。「トランジスタ31〜33、ダイオード34及び抵抗20〜21、62、67の回路部分」がその置き換えた新・数値判別手段である。
但し、S=1で、「n−1>H≧G≧m+1」及び「m≧0(ゼロ)」の関係すなわち「n−2>H−1≧G−1≧m≧0(ゼロ)」の関係に有る。
◇ ◆ Prior application / Example 8 ◆ ◇
The prior application / Embodiment 8 shown in FIG. 39 is different from the prior application / Embodiment 1 of FIG. 32 in that the numerical value discriminating means is replaced with another type of numerical value discriminating means. Value hazard removal means ”. “The circuit portion of the transistors 31 to 33, the diode 34, and the resistors 20 to 21, 62, and 67” is the new and numerical value discriminating means replaced.
However, when S = 1, the relationship of “n−1> H ≧ G ≧ m + 1” and “m ≧ 0 (zero)”, that is, “n-2> H−1 ≧ G-1 ≧ m ≧ 0 (zero)”. There is a relationship.
●H=Gの場合、図39の先願・実施例8の判別内容は前記(段落番号0151〜0153中)の「等しいか等しくないか」になる。いま分かり易くする為に、その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号とQ出力信号が一致するとした論理動作は次の通りである。
その入力数値NinがHのときトランジスタ31〜33、37がオフとなり、トランジスタ41、3、4がオンとなるため、出力端子Toutは特定電源電位vmを出力する。一方、その入力数値NinがH以外のときトランジスタ「『31、33』か32」、37がオンとなり、トランジスタ41、3、4がオフとなる為、出力端子Toutからの出力は開放される。あとはD型フリップ・フロップ27の正規動作が加味される。
この為、本発明者はこの「同期ラッチング機能を持つ多値論理手段」を「同期型EQUAL(イコール)回路」あるいは「同期型EVEN(イーブン)回路」と呼ぶ。
しかし、トランジスタ41のゲート端子をQ端子からQバー端子に接続し直すと、トランジスタ3、4の両オン・オフ動作が正反対になる為、出力端子Toutの「特定電位vm出力と開放出力」も正反対になるので、本発明者はこの「同期ラッチング機能を持つ多値論理手段」を「同期型NOT(ノット)回路」あるいは「同期型NEVEN(ニーブン)回路」と呼ぶ。
When H = G, the determination content of the prior application / Embodiment 8 in FIG. 39 is “equal or not equal” in the above (in paragraph numbers 0151 to 0153). For the sake of clarity, the logical operation in which the D input signal and the Q output signal of the D-type flip-flop 27 coincide with each other while ignoring the time delay associated with the synchronous operation is as follows.
Its input numerical value N in becomes the transistor 31~33,37 is off when the H, the transistor 41,3,4 is turned on, the output terminal T out outputs the specific power supply potential v m. On the other hand, when the input numerical value N in is other than H, the transistors “31, 33” or 32 ”, 37 are turned on and the transistors 41, 3, 4 are turned off, so that the output from the output terminal T out is released. The After that, the normal operation of the D-type flip-flop 27 is added.
For this reason, the present inventor calls this “multi-value logic means having a synchronous latching function” as a “synchronous EQUAL circuit” or “synchronous EVEN circuit”.
However, simply disconnecting and connecting the gate terminal of the transistor 41 from the Q terminal to the terminal Q, for both the on-off operation of the transistors 3 and 4 is opposite, "specific potential v m outputs an open output of the output terminal T out "Is also the opposite, the present inventor calls this" multi-valued logic means having a synchronous latching function "as a" synchronous NOT (knot) circuit "or" synchronous NEVEN (neven) circuit ".
●「H≠GつまりH>G」の場合、図39の先願・実施例8の判別内容は前記(段落番号0142〜0144)の「2つの入力用特定整数(H+1)、(G−1)の間に有るかそうでないか」になる。いま分かり易くする為、その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号とQ出力信号が一致するとした論理動作は次の通りである。
「H+1>(入力数値Nin)>G−1」のとき、すなわち、「H≧(入力数値Nin)≧G」のとき出力端子Toutは特定電源電位vmを出力する一方、「(入力数値Nin)≧H+1、又は、G−1≧(入力数値Nin)」のとき、すなわち、「(入力数値Nin)>H、又は、G>(入力数値Nin)」のとき出力端子Toutからの出力は開放される。あとはD型フリップ・フロップ27の正規動作が加味される。
この為、本発明者はこの「同期ラッチング機能を持つ多値論理手段」を「2つの入力用特定整数が(H+1)と(G−1)である同期型BETWEEN回路あるいは同期型IN回路」とか、「2つの入力用特定整数がHとGである同期型NOUT(ナウト)回路(=同期型OUT回路の否定)」と呼ぶ。
しかし、トランジスタ41のゲート端子をQ端子からQバー端子に接続し直すと、トランジスタ3、4の両オン・オフ動作が正反対になる為、出力端子Toutの「特定電源電位vm出力と開放出力」も正反対になる。このため、本発明者はこの「同期ラッチング機能を持つ多値論理手段」を「2つの入力用特定整数が(H+1)と(G−1)である同期型NOBETWEEN回路あるいは同期型NIN回路」とか、「2つの入力用特定整数がHとGである同期型OUT回路」とも呼ぶ。
In the case of “H ≠ G, that is, H> G”, the determination contents of the prior application / Embodiment 8 in FIG. 39 are “two specific integers for input (H + 1), (G−1 ) Or not ”. For the sake of clarity, the logical operation in which the D input signal and the Q output signal of the D-type flip-flop 27 coincide with each other while ignoring the time delay associated with the synchronous operation is as follows.
When “H + 1> (input numerical value N in )> G−1”, that is, when “H ≧ (input numerical value N in ) ≧ G”, the output terminal T out outputs the specific power supply potential v m , while “( Output when “input numerical value N in ) ≧ H + 1 or G−1 ≧ (input numerical value N in )”, ie, “(input numerical value N in )> H or G> (input numerical value N in )”. The output from the terminal Tout is opened. After that, the normal operation of the D-type flip-flop 27 is added.
For this reason, the present inventor refers to this “multi-valued logic means having a synchronous latching function” as “a synchronous BETWEEN circuit or a synchronous IN circuit whose two input specific integers are (H + 1) and (G−1)”. , “Synchronous NOUT circuit in which two input specific integers are H and G (= negation of synchronous OUT circuit)”.
However, simply disconnecting and connecting the gate terminal of the transistor 41 from the Q terminal to the terminal Q, for both the on-off operation of the transistors 3 and 4 is opposite, the "specific power supply potential v m output of the output terminal T out opening The output is also the opposite. For this reason, the present inventor refers to this “multi-valued logic means having a synchronous latching function” as “a synchronous NOBETWEEN circuit or a synchronous NIN circuit whose two input specific integers are (H + 1) and (G−1)”. , “Synchronous OUT circuit in which two input specific integers are H and G”.
ところで、図39の先願・実施例8の入力用特定整数2つがHとGである「同期型IN回路と同期型NOUT回路」の違いは、その入力用特定整数2つを前者は含まず、後者は含むことである。従って、同期型IN回路がHとGを含む様にする為には、その入力用特定整数2つは(H+1)と(G−1)になる。
同様に、その入力用特定整数2つが(H+1)と(G−1)である同期型OUT回路と同期型NIN回路の違いは、その入力用特定整数2つを前者は含まず、後者は含むことである。従って、同期型OUT回路が(H+1)と(G−1)を含む様にする為には、その入力用特定整数2つはHとGになる。
Incidentally, the difference between the “synchronous IN circuit and the synchronous NOUT circuit” in which the two input specific integers of the prior application / Embodiment 8 in FIG. 39 are H and G does not include the two input specific integers. The latter is to include. Therefore, in order for the synchronous IN circuit to include H and G, the two specific integers for input are (H + 1) and (G-1).
Similarly, the difference between the synchronous OUT circuit and the synchronous NIN circuit whose two input specific integers are (H + 1) and (G-1) is that the former does not include the input specific integer two, and the latter includes it. That is. Therefore, in order for the synchronous OUT circuit to include (H + 1) and (G-1), the two specific integers for input are H and G.
なお、図39の先願・実施例8ではH=Gの場合も「H≠GつまりH>G」の場合も、あとの「プル・アップ抵抗26又は『26、28』とD型フリップ・フロップ27」の各動作は図32の先願・実施例1の場合(段落番号[0177〜0178]。)と同様である。
また、段落番号[0177、0193〜0203]に記載した事は先願・実施例8についても同様に言える。これらの事は先願・実施例8の数値判別手段を活用する他の各実施例についても同様である。ただし、「図32の先願・実施例1等における(m+1)、(m−1)の各値の取り方」と「図39の先願・実施例8等におけるH、Gの各値の取り方」はずれる
さらに、トランジスタ3のドレインを電源線Vmから別の電源線V0〜Vm−1のいずれか1つへ接続し直すことによりその出力用特定整数をmから0〜(m−1)のいずれか1つへ変更することができる。
39, in the case of H = G and “H ≠ G, that is, H> G”, the subsequent “pull-up resistor 26 or“ 26, 28 ”and the D-type flip-flop are used. Each operation of “Flop 27” is the same as that in the case of the prior application / Example 1 of FIG. 32 (paragraph numbers [0177 to 0178]).
In addition, the description in paragraph numbers [0177, 0193 to 0203] can be similarly applied to the prior application and Example 8. The same applies to each of the other embodiments using the numerical value discriminating means of the prior application / Embodiment 8. However, “how to take the values of (m + 1) and (m−1) in the prior application / Example 1 etc. of FIG. 32” and “the values of H and G in the prior application / Example 8 etc. of FIG. 39”. Further, by reconnecting the drain of the transistor 3 from the power line V m to any one of the other power lines V 0 to V m−1 , the output specific integer is changed from m to 0 to (m -1) can be changed to any one of them.
蛇足ながら、特開2005−236985号の明細書・段落番号[0033]には非同期型の『AND』、『NAND』、『OR』、『NOR』のグループと非同期型の『BETWEEN』、『NOBETWEEN』の組合せについて記載されている。
同様に、非同期型の『AND』、『NAND』、『OR』、『NOR』のグループと非同期型の『IN(イン)』、『NIN(ニン)』、『OUT(アウト)』、『NOUT(ナウト)』のグループの組合せが以下の通り考えられる。
ただし、基本的には、ANDは「その複数個の入力整数すべてが……」という意味であり、ORは「その複数個の入力整数のうち、少なくとも1つが……」という意味である。
また、本発明者がこれらの分類・分類名を最初に提案する際に取り敢(あ)えず各機能に冗長(じょうちょう)性を持たせた為これらの多値論理機能の一部は重複するが、もし、フージ代数(Hooji Algebra)が広く利用されて行くなら、利用し易い様にこれらの回路名や機能は収斂(しゅうれん)されて行くであろう。
In spite of this, the description and paragraph number [0033] of Japanese Patent Application Laid-Open No. 2005-236985 includes the asynchronous “AND”, “NAND”, “OR”, and “NOR” groups and the asynchronous “BETWEEN” and “NOBETWEEN”. ] Is described.
Similarly, a group of asynchronous “AND”, “NAND”, “OR”, “NOR” and asynchronous “IN”, “NIN”, “OUT”, “NOUT” (Naut) ”group combinations are considered as follows.
However, basically, AND means “all of the plurality of input integers are ...”, and OR means “at least one of the plurality of input integers is ...”.
In addition, when the present inventor first proposed these classifications / classification names, some of these multi-valued logic functions are given because each function has been made redundant. Although overlapping, if the Houji Algebra is widely used, these circuit names and functions will be converged for ease of use.
■■ 各種IN回路と各種NIN回路に関して ■■
●AND・IN回路(別名、AND・BETWEEN回路)
その複数個の入力整数すべてが「その両・入力用特定整数a、bの間に有る整数」であれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
言い換えると、その複数個の入力整数のうち、少なくとも1つの入力整数が「aより小さいか等しい整数(≦a)、又は、bより大きいか等しい整数(≧b)」であれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
この場合、b≧a+2なので、当然の事ながら「≧b」かつ「a≧」である整数は存在しない。
■■ Regarding various IN circuits and various NIN circuits ■■
● AND / IN circuit (also known as AND / BETWEEN circuit)
If all of the plurality of input integers are “integers between the two input specific integers a and b”, the output specific integer is output; otherwise, the output is released.
In other words, if at least one input integer among the plurality of input integers is “an integer less than or equal to a (≦ a), or an integer greater than or equal to b (≧ b)”, the output is If not, output a specific integer for output.
In this case, since b ≧ a + 2, there is of course no integer with “≧ b” and “a ≧”.
☆☆☆☆☆☆☆
集合論では集合「A又はBである」は集合「Aだけである」、集合「Bだけである」及び集合「Aであり、かつ、Bである(共通部分)」の和集合になる。
このため、集合「Aであり、かつ、Bである」が空っぽなら、集合「A又はBである」は集合「Aだけである」と集合「Bだけである」の和集合になる。
☆☆☆☆☆☆☆
In the set theory, the set “is A or B” becomes the union of the set “is only A”, the set “is only B”, and the set “is A and is B (common part)”.
Therefore, if the set “A and B” is empty, the set “A or B” becomes the union of the set “only A” and the set “only B”.
●NAND・IN回路(別名、NAND・BETWEEN回路)
この回路はAND・IN回路の否定だから、その出力の仕方は正反対になる。従って、その複数個の入力整数すべてが「その両・入力用特定整数a、bの間に有る整数」であれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
言い換えると、その複数個の入力整数のうち、少なくとも1つの入力整数が「aより小さいか等しい整数(≦a)、又は、bより大きいか等しい整数(≧b)」であれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
●AND・NIN回路(別名、AND・NOBETWEEN回路)
その複数個の入力整数すべてが「aより小さいか等しい整数(≦a)、又は、bより大きいか等しい整数(≧b)」であれば、つまり、その複数個の入力整数のそれぞれが「aより小さいか等しい整数(≦a)」か「bより大きいか等しい整数(≧b)」のどちらかであれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
言い換えると、その複数個の入力整数のうち、少なくとも1つの入力整数が「その両・入力用特定整数a、bの間に有る整数」であれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
●NAND・NIN回路(別名、NAND・NOBETWEEN回路)
この回路はAND・NIN回路の否定だから、その出力の仕方は正反対になる。従って、その複数個の入力整数すべてが「aより小さいか等しい整数(≦a)、又は、bより大きいか等しい整数(≧b)」であれば、つまり、その複数個の入力整数のそれぞれが「aより小さいか等しい整数(≦a)」か「bより大きいか等しい整数(≧b)」のどちらかであれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
言い換えると、その複数個の入力整数のうち、少なくとも1つの入力整数が「その両・入力用特定整数a、bの間に有る整数」であれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
NAND / IN circuit (also known as NAND / BETWEEN circuit)
Since this circuit is the negation of the AND / IN circuit, the output method is opposite. Therefore, if all of the plurality of input integers are “integers between the two / input specific integers a and b”, the output is released; otherwise, the output specific integer is output. .
In other words, if at least one of the plurality of input integers is “an integer smaller than or equal to a (≦ a) or an integer larger than or equal to b (≧ b)”, the output integer Output a specific integer, otherwise release the output.
● AND / NIN circuit (also known as AND / NOBETWEEN circuit)
If all of the plurality of input integers are “an integer less than or equal to a (≦ a) or an integer greater than or equal to b (≧ b)”, that is, each of the plurality of input integers is “a If the integer is smaller than or equal to (≦ a) or “integer greater than or equal to b (≧ b)”, the output specific integer is output, otherwise the output is released.
In other words, if at least one input integer among the plurality of input integers is “an integer between the input specific integers a and b”, the output is released. The output specific integer is output.
NAND / NIN circuit (also known as NAND / NOBETWEEN circuit)
Since this circuit is a negative of the AND / NIN circuit, the output method is the opposite. Therefore, if all of the plurality of input integers are “an integer less than or equal to a (≦ a), or an integer greater than or equal to b (≧ b)”, that is, each of the plurality of input integers is If “integer less than or equal to a (≦ a)” or “integer greater than or equal to b (≧ b)”, the output is released, otherwise the output specific integer is output To do.
In other words, if at least one input integer among the plurality of input integers is “an integer between the two input specific integers a and b”, the output specific integer is output. If not, the output is released.
●OR・IN回路(別名、OR・BETWEEN回路)
その複数個の入力整数のうち、少なくとも1つが「その両・入力用特定整数a、bの間に有る整数」であれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
言い換えると、その複数個の入力整数すべてが「aより小さいか等しい整数(≦a)、又は、bより大きいか等しい整数(≧b)」であれば、つまり、その複数個の入力整数のそれぞれが「aより小さいか等しい整数(≦a)」か「bより大きいか等しい整数(≧b)」のどちらかであれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
●NOR・IN回路(別名、NOR・BETWEEN回路)
この回路はOR・IN回路の否定だから、その出力の仕方は正反対になる。従って、その複数個の入力整数のうち、少なくとも1つが「その両・入力用特定整数a、bの間に有る整数」であれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
言い換えると、その複数個の入力整数すべてが「aより小さいか等しい整数(≦a)、又は、bより大きいか等しい整数(≧b)」であれば、つまり、その複数個の入力整数のそれぞれが「aより小さいか等しい整数(≦a)」か「bより大きいか等しい整数(≧b)」のどちらかであれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
●OR・NIN回路(別名、OR・NOBETWEEN回路)
その複数個の入力整数のうち、少なくとも1つが「aより小さいか等しい整数(≦a)、又は、bより大きいか等しい整数(≧b)」であれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
言い換えると、その複数個の入力整数すべてが「その両・入力用特定整数a、bの間に有る整数」であれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
●NOR・NIN回路(別名、NOR・NOBETWEEN回路)
この回路はOR・NIN回路の否定だから、その出力の仕方は正反対になる。従って、その複数個の入力整数のうち、少なくとも1つが「aより小さいか等しい整数(≦a)、又は、bより大きいか等しい整数(≧b)」であれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
言い換えるとその複数個の入力整数すべてが「その両・入力用特定整数a、bの間に有る整数」であれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
● OR / IN circuit (also known as OR / BETWEEN circuit)
If at least one of the plurality of input integers is “an integer between the two input specific integers a and b”, the output specific integer is output; otherwise, the output is output. Open.
In other words, if all of the plurality of input integers are “an integer less than or equal to a (≦ a), or an integer greater than or equal to b (≧ b)”, that is, each of the plurality of input integers. Is either “an integer less than or equal to a (≦ a)” or “an integer greater than or equal to b (≧ b)”, the output is released; otherwise, the output specific integer is Output.
● NOR / IN circuit (also known as NOR / BETWEEN circuit)
Since this circuit is the negation of the OR / IN circuit, the output method is opposite. Therefore, if at least one of the plurality of input integers is “an integer between the two input specific integers a and b”, the output is released. Otherwise, the output specific is set. Output an integer.
In other words, if all of the plurality of input integers are “an integer less than or equal to a (≦ a), or an integer greater than or equal to b (≧ b)”, that is, each of the plurality of input integers. Is an integer less than or equal to a (≦ a) or “an integer greater than or equal to b (≧ b)”, it outputs a specific integer for its output; otherwise, its output is Open.
● OR / NIN circuit (also known as OR / NOBETWEEN circuit)
If at least one of the plurality of input integers is “an integer less than or equal to a (≦ a), or an integer greater than or equal to b (≧ b)”, the output specific integer is output, Otherwise, the output is released.
In other words, if all of the plurality of input integers are “integers between the two input specific integers a and b”, the output is released; otherwise, the output specific integer is output. To do.
NOR / NIN circuit (also known as NOR / NOBETWEEN circuit)
Since this circuit is the negation of the OR / NIN circuit, the output method is opposite. Therefore, if at least one of the plurality of input integers is “an integer less than or equal to a (≦ a), or an integer greater than or equal to b (≧ b)”, the output is released, and so on. Otherwise, the output specific integer is output.
In other words, if all of the plurality of input integers are “an integer between the input specific integers a and b”, the output specific integer is output, otherwise the output is released. .
■■ 各種OUT回路と各種NOUT回路に関して ■■
その両・入力用特定整数がaとbである場合、以下の通りである。
●AND・OUT回路
その複数個の入力整数すべてが「aより小さい整数(<a)、又は、bより大きい整数(>b)」であれば、つまり、その複数個の入力整数のそれぞれが「aより小さいか等しい整数(≦a)」か「bより大きいか等しい整数(≧b)」のどちらかであれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
言い換えると、その複数個の入力整数のうち、少なくとも1つが「a又はbと等しい整数、又は、aとbの間に有る整数」であれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
●NAND・OUT回路
この回路はAND・OUT回路の否定だから、その出力の仕方は正反対になる。従って、その複数個の入力整数すべてが「aより小さい整数(<a)、又は、bより大きい整数(>b)」であれば、つまり、その複数個の入力整数のそれぞれが「aより小さいか等しい整数(≦a)」か「bより大きいか等しい整数(≧b)」のどちらかであれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
言い換えると、その複数個の入力整数のうち、少なくとも1つが「a又はbと等しい整数、又は、aとbの間に有る整数」であれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
●AND・NOUT回路
その複数個の入力整数すべてが「a又はbと等しい整数、又は、aとbの間に有る整数」であれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
言い換えると、その複数個の入力整数のうち、少なくとも1つが「aより小さい整数(<a)、又は、bより大きい整数(>b)」であれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
●NAND・NOUT回路
この回路はAND・NOUT回路の否定だから、その出力の仕方は正反対になる。従って、その複数個の入力整数すべてが「a又はbと等しい整数、又は、aとbの間に有る整数」あれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
言い換えると、その複数個の入力整数のうち、少なくとも1つが「aより小さい整数(<a)、又は、bより大きい整数(>b)」であれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
■■ Regarding various OUT circuits and various NOUT circuits ■■
When both the input specific integers are a and b, they are as follows.
AND / OUT circuit If all the plurality of input integers are “integer less than a (<a) or integer greater than b (> b)”, that is, each of the plurality of input integers is “ If either an integer less than or equal to a (≦ a) or an integer greater than or equal to b (≧ b), a specific integer for output is output, otherwise the output is released. .
In other words, if at least one of the plurality of input integers is “an integer equal to a or b, or an integer between a and b”, the output is released; Output a specific integer for output.
NAND / OUT circuit This circuit is the negation of the AND / OUT circuit, so the output method is the opposite. Therefore, if all of the plurality of input integers are “an integer smaller than a (<a) or an integer larger than b (> b)”, that is, each of the plurality of input integers is smaller than “a”. If it is either “equal integer (≦ a)” or “integer greater than or equal to b (≧ b)”, the output is released, otherwise the output specific integer is output.
In other words, if at least one of the plurality of input integers is “an integer equal to a or b, or an integer between a and b”, the specific integer for output is output. The output is released.
AND / NOUT circuit If all of the multiple input integers are "an integer equal to a or b, or an integer between a and b", a specific integer for output is output; otherwise, Release the output.
In other words, if at least one of the input integers is "an integer smaller than a (<a) or an integer larger than b (>b)", the output is released, otherwise , Output a specific integer for output.
NAND / NOUT circuit Since this circuit is the negation of the AND / NOUT circuit, the output method is the opposite. Therefore, if all of the plurality of input integers are "an integer equal to a or b, or an integer between a and b", the output is released, and if not, the output specific integer is output. To do.
In other words, if at least one of the plurality of input integers is “an integer smaller than a (<a) or an integer larger than b (> b)”, the specific integer for output is output, and so on. Otherwise, the output is released.
●OR・OUT回路
その複数個の入力整数のうち、少なくとも1つが「aより小さい整数(<a)、又は、bより大きい整数(>b)」であれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
言い換えると、その複数個の入力整数すべてが「a又はbと等しい整数、又は、aとbの間に有る整数」であれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
●NOR・OUT回路
この回路はOR・OUT回路の否定だから、その出力の仕方は正反対になる。従って、その複数個の入力整数のうち、少なくとも1つが「aより小さい整数(<a)、又は、bより大きい整数(>b)」であれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
言い換えると、その複数個の入力整数すべてが「a又はbと等しい整数、又は、aとbの間に有る整数」であれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
●OR・NOUT回路
その複数個の入力整数のうち、少なくとも1つが「a又はbと等しい整数、又は、aとbの間に有る整数」であれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
言い換えると、その複数個の入力整数すべてが「aより小さい整数(<a)、又は、bより大きい整数(>b)」であれば、つまり、その複数個の入力整数のそれぞれが「aより小さいか等しい整数(≦a)」か「bより大きいか等しい整数(≧b)」のどちらかであれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
●NOR・NOUT回路
この回路はOR・NOUT回路の否定だから、その出力の仕方は正反対になる。従って、その複数個の入力整数のうち、少なくとも1つが「a又はbと等しい整数、又は、aとbの間に有る整数」であれば、その出力を開放し、そうでなければ、その出力用特定整数を出力する。
言い換えると、その複数個の入力整数すべてが「aより小さい整数(<a)、又は、bより大きい整数(>b)」であれば、つまり、その複数個の入力整数のそれぞれが「aより小さいか等しい整数(≦a)」か「bより大きいか等しい整数(≧b)」のどちらかであれば、その出力用特定整数を出力し、そうでなければ、その出力を開放する。
OR / OUT circuit If at least one of the multiple input integers is "an integer less than a (<a) or an integer greater than b (>b)", a specific integer for output is output. Otherwise, open its output.
In other words, if all of the plurality of input integers are "an integer equal to a or b, or an integer between a and b", the output is released; otherwise, the output specific integer Is output.
NOR / OUT circuit Since this circuit is the negation of the OR / OUT circuit, the output method is the opposite. Therefore, if at least one of the plurality of input integers is "an integer smaller than a (<a) or an integer larger than b (>b)", the output is released, otherwise, The output specific integer is output.
In other words, if all of the plurality of input integers are “an integer equal to a or b, or an integer between a and b”, the output specific integer is output; otherwise, the output is output. Is released.
OR / NOUT circuit If at least one of the input integers is "an integer equal to a or b, or an integer between a and b", a specific integer for output is output. Otherwise, the output is released.
In other words, if all of the plurality of input integers are “an integer smaller than a (<a) or an integer larger than b (> b)”, that is, each of the plurality of input integers is “from a. If it is either a smaller or equal integer (≦ a) or “an integer greater than or equal to b (≧ b)”, the output is released, and if not, the output specific integer is output.
NOR / NOUT circuit Since this circuit is the negation of the OR / NOUT circuit, the output method is the opposite. Therefore, if at least one of the plurality of input integers is “an integer equal to a or b, or an integer between a and b”, the output is released; otherwise, the output is output. Output a specific integer.
In other words, if all of the plurality of input integers are “an integer smaller than a (<a) or an integer larger than b (> b)”, that is, each of the plurality of input integers is “from a. If either a smaller or equal integer (≦ a) or “an integer greater than or equal to b (≧ b)”, the output specific integer is output, and if not, the output is released.
これらの多値論理回路に関して成り立つ恒等式をまとめると以下の通りである。当然の事ながら、各・両回路の「複数の論理変数のそれぞれ同士、2つの入力用特定整数のそれぞれ同士、出力用特定整数・同士」等は同じである。さらに各・両回路が同期型・同士なら、その同期周波数などの同期条件やそのラッチング条件も同じである。
ただし、各回路の元になる「IN回路、NIN回路」と「OUT回路、NOUT回路」では前述した通りこれらの入力用特定整数2つはどちらの整数も1つずつだけずれる。
★a)AND・IN回路=NOR・NIN回路
★b)NAND・IN回路=OR・NIN回路
★c)AND・NIN回路=NOR・IN回路
★d)NAND・NIN回路=OR・IN回路
★e)AND・OUT回路=NOR・NOUT回路
★f)NAND・OUT回路=OR・NOUT回路
★g)AND・NOUT回路=NOR・OUT回路
★h)NAND・NOUT回路=OR・OUT回路
The identities that hold for these multilevel logic circuits are summarized as follows. As a matter of course, “each of a plurality of logical variables, each of two specific integers for input, each of specific integers for output” and the like of each circuit are the same. Furthermore, if each circuit is synchronous, the synchronization conditions such as the synchronization frequency and the latching conditions are the same.
However, in the “IN circuit, NIN circuit” and “OUT circuit, NOUT circuit” that are the basis of each circuit, as described above, these two specific integers for input are shifted by one each.
* A) AND / IN circuit = NOR / NIN circuit * b) NAND / IN circuit = OR / NIN circuit * c) AND / NIN circuit = NOR / IN circuit * d) NAND / NIN circuit = OR / IN circuit * e ) AND / OUT circuit = NOR / NOUT circuit * f) NAND / OUT circuit = OR / NOUT circuit * g) AND / NOUT circuit = NOR / OUT circuit * h) NAND / NOUT circuit = OR / OUT circuit
これらの恒等式は「非同期型・同士にしろ同期型・同士にしろ、同一の多値論理回路を2つの名前でただ呼んでいるに過ぎないこと」をも☆意味するが、多値論理的には重要な意味が有る。
例えば、NAND・IN論理はAND・IN論理の否定だからAND・IN論理とNAND・IN論理は互いに相補関係に有り、NAND・IN論理とOR・NIN論理は同じだから、AND・IN論理とOR・NIN論理も互いに相補関係に有ることになる。同様に、NAND・IN論理とNOR・NIN論理も互いに相補関係に有ることになる。
この場合、その『相補関係』とは『所定の複数個の論理変数がその2つの論理に同時に与えられたとき、必ず、一方の論理がその出力用特定整数の値になり、他方の論理がその反対の出力すなわち開放出力となること』を意味する。
ついでながら、例えば上記★a)項からAND・IN論理は「OR・NIN論理とNOT論理を結合したもの」を意味するので、同期型AND・IN回路を「同期型OR・NIN回路の後段に非同期型NOT回路を接続し、両回路の間にマッチング(整合)用のプル・アップ抵抗またはプル・ダウン抵抗を接続したもの」又は「非同期型OR・NIN回路の後段に同期型NOT回路を接続し、両回路の間にマッチング(整合)用のプル・アップ抵抗またはプル・ダウン抵抗を接続したもの」で代替的に構成することはできるが、「時間遅れ、電力損失、及び、多値ハザードの面から不利となる。否(いや)、それを逆に活用して「時間調整、タイミング合わせ、または、論理信号2つのマッチング」に利用することも考えられる。この場合、両回路とも同期型にすることが考えられる。
These identities also mean "synchronous, mutual, synchronous, or just call the same multi-valued logic circuit with two names". Has an important meaning.
For example, because NAND · IN logic is the negation of AND · IN logic, AND · IN logic and NAND · IN logic are complementary to each other, and NAND · IN logic and OR · NIN logic are the same. NIN logic is also complementary to each other. Similarly, NAND · IN logic and NOR · NIN logic are complementary to each other.
In this case, the “complementary relationship” is “when a predetermined number of logic variables are simultaneously given to the two logics, one of the logics always becomes the value of the specific integer for output, and the other logic is It means that the output is the opposite, that is, an open output ”.
Incidentally, for example, from the above item * a), AND / IN logic means “the combination of OR / NIN logic and NOT logic”, so that the synchronous AND / IN circuit is placed “after the synchronous OR / NIN circuit”. An asynchronous NOT circuit is connected, and a matching pull-up resistor or pull-down resistor is connected between both circuits "or" Synchronous NOT circuit is connected to the subsequent stage of the asynchronous OR / NIN circuit " However, it can be alternatively configured with a matching pull-up resistor or pull-down resistor connected between both circuits. However, “time delay, power loss, and multi-value hazard” However, it is also conceivable to use it for “time adjustment, timing adjustment, or matching of two logic signals”. In this case, both circuits can be considered to be synchronous.
◇◆ 図40に示す先願・実施例9 ◆◇
図40に先願・実施例9の「オン・オフ駆動手段」と「双方向性プル・スイッチング手段」等を示す。そのD型フリップ・フロップ27を含む前段回路部として「図32〜36の各図に示す先願・実施例1〜5の各実施例」又は「図39に示す先願・実施例8」又は「後述する図47に示す実施例16」又は「後述する図48に示す先願・実施例17」の中の前段回路部分が接続される。「トランジスタ41、22〜25(、ダイオード36)及び抵抗15の回路部」がそのオン・オフ駆動手段であり、トランジスタ3、5の直列回路がその双方向性のプル・スイッチング手段である。
ただし、点線で示すダイオード36は無い場合も有るが、無い場合、トランジスタ5のオフ駆動時に出力端子Toutの電位が電源電位vm+1より高い場合、トランジスタ5のゲート・ソース静電容量の充電電流が出力端子Toutからトランジスタ5内蔵ダイオードとトランジスタ22を経て電源線Vm+1へ流れる。
◇ ◆ Prior application shown in Fig. 40, Example 9 ◆ ◇
FIG. 40 shows the “on / off driving means” and “bidirectional pull switching means” of the prior application / Embodiment 9. As the pre-stage circuit portion including the D-type flip-flop 27, the "prior application / examples 1 to 5 shown in FIGS. 32 to 36" or the "prior application / example 8 shown in FIG. 39" or The pre-stage circuit portion in “Embodiment 16 shown in FIG. 47 described later” or “Prior application / Embodiment 17 shown in FIG. 48 described later” is connected. “The circuit portion of the transistors 41, 22 to 25 (and the diode 36) and the resistor 15” is the on / off driving means, and the series circuit of the transistors 3 and 5 is the bidirectional pull switching means.
However, there is a case where there is no diode 36 indicated by a dotted line. In the case where there is no diode 36, when the potential of the output terminal T out is higher than the power supply potential v m + 1 when the transistor 5 is driven off, the charging current of the gate-source capacitance of the transistor 5 Flows from the output terminal T out to the power supply line V m + 1 through the transistor 5 built-in diode and the transistor 22.
なお、トランジスタ22〜25、3、5と抵抗15を取り外し、トランジスタ41のドレイン端子を出力端子Toutとすることもできる。この場合、その内蔵ダイオードの形成によりトランジスタ41を逆導通型プル・アップ・スイッチング手段として使う場合も有るし、逆阻止用ダイオードをトランジスタ41に直列接続して逆阻止型プル・アップ・スイッチング手段として使う場合も有る。 ( 別の実施例 )
又は、図37の先願・実施例6の様に「トランジスタ5の代わりに逆阻止用のダイオード10を用いてトランジスタ3と共に逆阻止型プル・ダウン・スイッチング手段を構成する」か「トランジスタ5を取り外し、トランジスタ3のドレイン端子を出力端子Toutにして逆導通型プル・ダウン・スイッチング手段を構成する」こともできる。
(派生実施例)
又は、図38の実施例7の様に「トランジスタ3を取り外し、トランジスタ5のソースを電源線Vmに直結して逆導通型プル・アップ・スイッチング手段を構成する」か「トランジスタ3を取り外し、トランジスタ5のソースを電源線Vmに直結し、トランジスタ5のドレインと出力端子Toutの間に逆阻止用ダイオードを挿入・接続して、このダイオードとトランジスタ5の直列回路で逆阻止型プル・アップ・スイッチング手段を構成する」こともできる。 (派生実施例)
これらの事は後述する「図42に示す先願・実施例11」でも同様に当てはまる。
Incidentally, remove the transistor 22~25,3,5 and the resistor 15 may be an output terminal T out of the drain terminal of the transistor 41. In this case, the transistor 41 may be used as reverse conduction type pull-up switching means by forming the built-in diode, or a reverse blocking diode is connected in series with the transistor 41 as reverse blocking type pull-up switching means. Sometimes used. (Another example)
Alternatively, as in the prior application / embodiment 6 of FIG. 37, “reverse blocking pull-down switching means is configured with transistor 3 using reverse blocking diode 10 instead of transistor 5” or “transistor 5 It is also possible to configure the reverse conducting pull-down switching means by removing the transistor 3 and using the drain terminal of the transistor 3 as the output terminal Tout . "
(Derived Example)
Or, as in the seventh embodiment of FIG. 38, “removing the transistor 3 and directly connecting the source of the transistor 5 to the power supply line V m to form a reverse conduction type pull-up switching means” or “removing the transistor 3; directly the source of the transistor 5 to the power supply line V m, and inserting and connecting the reverse blocking diode between the drain and the output terminal T out of the transistor 5, reverse blocking pull a series circuit of the diode and the transistor 5 It is also possible to constitute an up-switching means. (Derived Example)
The same applies to the “prior application / Example 11 shown in FIG. 42” described later.
◇◆ 図41に示す先願・実施例10 ◆◇
図41に示す先願・実施例10は、図40に示す先願・実施例9を変形したものである。この先願・実施例10は「本発明者が同期型の多値EVEN回路または非反転バッファー回路と呼ぶ多値論理回路と呼ぶ多値論理回路」であるが、トランジスタ22、23の両ゲートの接続をQ端子からQバー端子に変更すれば、この先願・実施例10は「本発明者が同期型の多値NOT回路または多値NEVEN回路」になる。
図41中のD型フリップ・フロップ127はD型フリップ・フロップ27(図40中)の電源電圧の2倍で動作する為、両電源線Vm−1、Vm+1から電源供給を受ける。このため、D型フリップ・フロップ127が直接トランジスタ22〜25をオン・オフ駆動するので、図40中のトランジスタ41と抵抗15は必要無い。
また、D型フリップ・フロップ127の出力部(=Q端子とQバー端子の回路部分)が「トランジスタ22〜25(及びダイオード36)が構成するオン・オフ駆動手段」と構成が同様で、そのQ端子、Qバー端子の各・出力電流容量が充分に大きければ、D型フリップ・フロップ127が直接トランジスタ3、5をオン・オフ駆動することもできる。
すなわち、トランジスタ3、5のうち、一方のゲートがQ端子に、他方のゲートがQバー端子にそれぞれ接続される。この場合、D型フリップ・フロップ127は前述(段落番号[0151]。)したオン・オフ駆動手段を兼ねることになる。
◇ ◆ Prior application shown in Fig. 41, Example 10 ◆ ◇
The prior application / Example 10 shown in FIG. 41 is a modification of the prior application / Example 9 shown in FIG. This prior application / Embodiment 10 is a “multi-value logic circuit called the multi-value logic circuit that the inventor calls a synchronous multi-value EVEN circuit or a non-inversion buffer circuit”, but the connection of both gates of the transistors 22 and 23. Is changed from the Q terminal to the Q bar terminal, the prior application / Embodiment 10 becomes "the inventor is a synchronous multi-value NOT circuit or multi-value NEVEN circuit".
Since the D-type flip-flop 127 in FIG. 41 operates at twice the power supply voltage of the D-type flip-flop 27 (in FIG. 40), power is supplied from both power supply lines V m−1 and V m + 1 . For this reason, since the D-type flip-flop 127 directly drives the transistors 22 to 25 on and off, the transistor 41 and the resistor 15 in FIG. 40 are not necessary.
Further, the output part of the D-type flip-flop 127 (= the circuit part of the Q terminal and the Q bar terminal) has the same configuration as the “on / off driving means constituted by the transistors 22 to 25 (and the diode 36)”. If the output current capacity of each of the Q terminal and the Q bar terminal is sufficiently large, the D-type flip-flop 127 can directly drive the transistors 3 and 5 on and off.
That is, of the transistors 3 and 5, one gate is connected to the Q terminal and the other gate is connected to the Q bar terminal. In this case, the D-type flip-flop 127 also serves as the on / off driving means described above (paragraph number [0151]).
◇◆ 図42に示す先願・実施例11 ◆◇
図42に先願・実施例11の「オン・オフ駆動手段」と「双方向性プル・スイッチング手段」等を示す。D型フリップ・フロップ27を含む前段回路部として「図32〜36の各図に示す先願・実施例1〜5の各実施例」又は「図39に示す先願・実施例8」又は「後述する図47に示す先願・実施例16」又は「後述する図48に示す先願・実施例17」の中の前段回路部分が接続される。
図40の先願・実施例9との違いは「トランジスタ3、5の接続順序」、「トランジスタ3、5の各ゲートの接続の仕方」及び「トランジスタ3、5のオン・オフ動作が正反対になっていること、従って、その論理が先願・実施例9の否定になっていること」である。
ただし、図40の先願・実施例9でも図42の先願・実施例11でもその出力端子Tout側トランジスタのオフ駆動を先にして速める為、そのゲートは前段側の2値インバーター回路に接続されている。
◇ ◆ Prior application shown in Fig. 42, Example 11 ◆ ◇
FIG. 42 shows the “on / off drive means” and “bidirectional pull switching means” of the prior application / Embodiment 11. As the pre-stage circuit portion including the D-type flip-flop 27, the “prior application / examples 1 to 5 shown in FIGS. 32 to 36” or the “prior application / example 8 shown in FIG. 39” or “ A pre-stage circuit portion in “prior application / embodiment 16 shown in FIG. 47” or “prior application / embodiment 17 shown in FIG. 48” described later is connected.
40 differs from the prior application / Embodiment 9 in “the connection order of transistors 3 and 5”, “how to connect the gates of transistors 3 and 5” and “on / off operation of transistors 3 and 5”. Therefore, the logic is the negative of the prior application / Embodiment 9 ”.
However, since the accelerating and previously off driving of the output terminal T out side transistor even prior application, Example 11 of FIG. 42 even prior application, Embodiment 9 of FIG. 40, a binary inverter circuit has the gate front side It is connected.
◇◆ 図43に示す先願・実施例12 ◆◇
図43に示す先願・実施例12は、図42に示す先願・実施例11を変形したものである。この先願・実施例12は「本発明者が同期型の多値NOT回路または多値NEVEN回路と呼ぶ多値論理回路」であるが、トランジスタ22、23の両ゲートの接続をQ端子からQバー端子に変更すれば、この先願・実施例12は「本発明者が同期型の多値EVEN回路または非反転バッファー回路と呼ぶ多値論理回路」になる。
図43中のD型フリップ・フロップ127はD型フリップ・フロップ27(図42中)の電源電圧の2倍で動作する為、両電源線Vm−1、Vm+1から電源供給を受ける。このため、D型フリップ・フロップ127が直接トランジスタ22〜25をオン・オフ駆動するので、図42中のトランジスタ41と抵抗15は必要無い。
また、D型フリップ・フロップ127の出力部(=Q端子とQバー端子の回路部分)が「トランジスタ22〜25(及びダイオード36)が構成するオン・オフ駆動手段」と構成が同様で、そのQ端子、Qバー端子の各・出力電流容量が充分に大きければ、D型フリップ・フロップ127が直接トランジスタ3、5をオン・オフ駆動することもできる。
すなわち、トランジスタ3、5のうち、一方のゲートがQ端子に、他方のゲートがQバー端子にそれぞれ接続される。この場合、D型フリップ・フロップ127は前述(段落番号[0151]。)したオン・オフ駆動手段を兼ねることになる。
◇ ◆ Prior application shown in Fig. 43, Example 12 ◆ ◇
The prior application / embodiment 12 shown in FIG. 43 is a modification of the prior application / embodiment 11 shown in FIG. This prior application / embodiment 12 is a "multi-value logic circuit that the inventor calls a synchronous multi-value NOT circuit or multi-value NEVEN circuit", but the connection of both gates of the transistors 22 and 23 is connected from the Q terminal to the Q-bar. If it is changed to a terminal, this prior application / embodiment 12 becomes "a multi-value logic circuit that the present inventor calls a synchronous multi-value EVEN circuit or a non-inverting buffer circuit".
The D-type flip-flop 127 in FIG. 43 operates at twice the power supply voltage of the D-type flip-flop 27 (in FIG. 42), and thus is supplied with power from both power supply lines V m−1 and V m + 1 . For this reason, since the D-type flip-flop 127 directly drives the transistors 22 to 25 on and off, the transistor 41 and the resistor 15 in FIG. 42 are not necessary.
Further, the output part of the D-type flip-flop 127 (= the circuit part of the Q terminal and the Q bar terminal) has the same configuration as the “on / off driving means constituted by the transistors 22 to 25 (and the diode 36)”. If the output current capacity of each of the Q terminal and the Q bar terminal is sufficiently large, the D-type flip-flop 127 can directly drive the transistors 3 and 5 on and off.
That is, of the transistors 3 and 5, one gate is connected to the Q terminal and the other gate is connected to the Q bar terminal. In this case, the D-type flip-flop 127 also serves as the on / off driving means described above (paragraph number [0151]).
◇◆ 図44に示す先願・実施例13 ◆◇
図44に先願・実施例13の「オン・オフ駆動手段」と「双方向性プル・スイッチング手段」を示す。D型フリップ・フロップ27を含む前段回路部として「図32〜36の各図に示す先願・実施例1〜5の各実施例」又は「図39に示す先願・実施例8」又は「後述する図47に示す先願・実施例16」又は「後述する図48に示す先願・実施例17」の中の前段回路部分が接続される。
「トランジスタ3〜6とダイオード9〜12が形成する双方向性プル・スイッチング手段」のオフ速度を速める為に各ゲートを逆バイアスできる様にした。
なお、トランジスタ3、6とダイオード9、12を取り外せば、その双方向性スイッチング手段は逆阻止型プル・ダウン・スイッチング手段になる。一方、トランジスタ4、5とダイオード10、11を取り外せば、その双方向性スイッチング手段は逆阻止型プル・アップ・スイッチング手段になる。
また、図44に先願・実施例13においてトランジスタ41と抵抗15を取り外し、D型フリップ・フロップ127を含む前段回路部として「図41、43の各図に示す先願・実施例10、12の各実施例」の中の前段回路部分を接続しても構わない。
この場合、D型フリップ・フロップ127の出力部(=Q端子とQバー端子の回路部分)が「トランジスタ22〜25(及びダイオード36)が構成するオン・オフ駆動手段」と構成が同様で、そのQ端子、Qバー端子の各・出力電流容量が充分に大きければ、D型フリップ・フロップ127が直接トランジスタ3〜6をオン・オフ駆動することもできる。すなわち、トランジスタ3、4とトランジスタ5、6のうち、一方の共通ゲートがQ端子に、他方の共通ゲートがQバー端子にそれぞれ接続される。この場合、D型フリップ・フロップ127は前述(段落番号[0151]。)したオン・オフ駆動手段を兼ねることになる。
FIG. 44 shows the “on / off drive means” and the “bidirectional pull switching means” of the prior application / Embodiment 13. As the pre-stage circuit portion including the D-type flip-flop 27, the “prior application / examples 1 to 5 shown in FIGS. 32 to 36” or the “prior application / example 8 shown in FIG. 39” or “ A pre-stage circuit portion in “prior application / embodiment 16 shown in FIG. 47” or “prior application / embodiment 17 shown in FIG. 48” described later is connected.
In order to increase the off speed of the “bidirectional pull switching means formed by the transistors 3 to 6 and the diodes 9 to 12”, each gate can be reverse-biased.
If the transistors 3 and 6 and the diodes 9 and 12 are removed, the bidirectional switching means becomes reverse blocking pull-down switching means. On the other hand, if the transistors 4 and 5 and the diodes 10 and 11 are removed, the bidirectional switching means becomes reverse blocking pull-up switching means.
44, the transistor 41 and the resistor 15 are removed in the prior application / embodiment 13, and a pre-stage circuit unit including the D-type flip-flop 127 is shown as “the prior applications / embodiments 10 and 12 shown in the drawings of FIGS. 41 and 43”. The previous circuit portion in each of the embodiments may be connected.
In this case, the output section of the D-type flip-flop 127 (= the circuit portion of the Q terminal and the Q bar terminal) has the same configuration as the “on / off driving means formed by the transistors 22 to 25 (and the diode 36)”. If each output current capacity of the Q terminal and Q bar terminal is sufficiently large, the D-type flip-flop 127 can directly drive the transistors 3 to 6 on and off. That is, of the transistors 3 and 4 and the transistors 5 and 6, one common gate is connected to the Q terminal, and the other common gate is connected to the Q bar terminal. In this case, the D-type flip-flop 127 also serves as the on / off driving means described above (paragraph number [0151]).
◇◆ 図45に示す先願・実施例14 ◆◇
図45に先願・実施例14の「オン・オフ駆動手段」と「双方向性プル・スイッチング手段」を示す。D型フリップ・フロップ27を含む前段回路部として「図32〜36の各図に示す先願・実施例1〜5の各実施例」又は「図39に示す先願・実施例8」又は「後述する図47に示す先願・実施例16」又は「後述する図48に示す先願・実施例17」の中の前段回路部分が接続される。但し、電源線Vmと電源線IVmは同じ場合も有れば、全く違う場合も有る。
先願・実施例14では「完全絶縁型双方向性スイッチング手段」を「前述(段落番号[0151]。)したプル・スイッチング手段」として用いている為「その片方のスイッチ端子が接続される電源線IVm」は電源線V0〜電源線Vn−1のいずれでも良い。要するに、電源線IVmの電源電位ivmを自由に設定できる。
その理由は次の通りである。トランジスタ41、23、24、47がオンのとき、トランジスタ24、47及びダイオード49〜50、65〜66が「その双方向性スイッチング手段を形成するトランジスタ3〜6」それぞれをゲート逆バイアスすると同時にゲート順バイアス用のコンデンサ45を充電する。このとき、トランジスタ3〜6がオフな為、電源線IVm及び出力端子Toutはこれらのゲート・ソース間部と双方向に遮断(しゃだん)されるので、電源線Vm+1や電源線Vm−1とも双方向に遮断される。
一方、トランジスタ41、23がオフで、トランジスタ22がオンのとき「トランジスタ24、47及びダイオード49〜50、65〜66」は双方向にオフなため、トランジスタ3〜6のゲート・ソース間部は電源線Vm+1や電源線Vm−1と双方向に遮断されるので、そのゲート・ソース間部が電源線IVm及び出力端子Toutと導通状態に有っても全く支障は無い。このとき、ゲート順バイアス用のコンデンサ45が「その双方向性スイッチング手段を形成するトランジスタ3〜6」全部を同時にオン駆動する。
FIG. 45 shows the “on / off drive means” and “bidirectional pull switching means” of the prior application / Embodiment 14. As the pre-stage circuit portion including the D-type flip-flop 27, the “prior application / examples 1 to 5 shown in FIGS. 32 to 36” or the “prior application / example 8 shown in FIG. 39” or “ A pre-stage circuit portion in “prior application / embodiment 16 shown in FIG. 47” or “prior application / embodiment 17 shown in FIG. 48” described later is connected. However, the power line V m and the power line IV m may be the same or completely different.
In the prior application / Embodiment 14, since the “fully insulated bidirectional switching means” is used as the “pull switching means described above (paragraph [0151]”), the “power supply to which one of the switch terminals is connected” The line IV m ”may be any of the power supply line V 0 to the power supply line V n−1 . In short, the power supply potential iv m of the power supply line IV m can be set freely.
The reason is as follows. When the transistors 41, 23, 24, 47 are on, the transistors 24, 47 and the diodes 49-50, 65-66 simultaneously gate reverse-bias “transistors 3-6 forming their bidirectional switching means” respectively. The forward bias capacitor 45 is charged. At this time, since the transistors 3 to 6 are turned off, the power supply line IV m and the output terminal T out are bidirectionally blocked from the gate-source portion, so that the power supply line V m + 1 and the power supply line V Both m-1 are blocked in both directions.
On the other hand, when the transistors 41 and 23 are off and the transistor 22 is on, the “transistors 24 and 47 and the diodes 49 to 50 and 65 to 66” are off in both directions. due to being blocked in the power supply line V m + 1 and the power supply line V m-1 two-way, completely trouble no it is in a conductive state a gate-source unit and the power supply line IV m and the output terminal T out. At this time, the capacitor 45 for gate forward bias simultaneously turns on all the “transistors 3 to 6 forming the bidirectional switching means”.
◇◆ 図46に示す先願・実施例15 ◆◇
図46に示す先願・実施例15では「条件付き絶縁型双方向性スイッチング手段」を「双方向性プル・スイッチング手段」として用いている。電源線Vmの特定電源電位vmと「出力端子Toutに接続される後段回路入力部や負荷等」の電位は共に電源電位v0より高い必要が有る。特定電源電位vmがこの電位条件を満たす限り、特定電源電位vmの高さを自由に設定することができる。
従って、出力用特定整数mの値は入力用特定整数「HとG」の各値に全く拘束されず、n−1≧m≧1の間で出力用特定整数mを自由な値に設定することができる。
その理由は次の通りである。トランジスタ47、48がオンのときダイオード49、50と共に、「トランジスタ3、4が形成する双方向性プル・スイッチング手段」をゲート逆バイアスしてオフ駆動すると同時にゲート順バイアス用のコンデンサ45を充電する。このとき特定電源電位vmと出力端子Toutの電位が電源電位v0より高い限り、トランジスタ3、4のゲート・ソース間部は電源線Vm及び出力端子Toutと遮断される。
一方、トランジスタ47、48がオフのときコンデンサ45がその双方向性プル・スイッチング手段つまりトランジスタ3、4をオン駆動してターン・オンさせる為、逆電圧が電源線Vmからトランジスタ3を経てダイオード49、50に印加され、両ダイオードはオフとなる。この為、そのゲート・ソース間部は両電源線V0、V−1と遮断されるので、そのゲート・ソース間部が電源線Vmと出力端子Toutと導通しても支障は無い。
In the prior application / embodiment 15 shown in FIG. 46, “conditionally insulated bidirectional switching means” is used as “bidirectional pull switching means”. Potential of "subsequent circuit input and load the like connected to the output terminal T out" certain power potential v m and the power supply line V m are both power supply potential v 0 higher required there. Specific supply potential v m as long as this potential condition is satisfied, it is possible to freely set the height of the particular power supply potential v m.
Therefore, the value of the output specific integer m is not restricted to the values of the input specific integers “H and G”, and the output specific integer m is set to a free value between n−1 ≧ m ≧ 1. be able to.
The reason is as follows. When the transistors 47 and 48 are on, together with the diodes 49 and 50, the “bidirectional pull switching means formed by the transistors 3 and 4” is reverse-biased to drive off, and at the same time, the gate forward bias capacitor 45 is charged. . At this time, as long as the specific power source potential v m and the potential of the output terminal T out are higher than the power source potential v 0 , the gate-source portion of the transistors 3 and 4 is disconnected from the power source line V m and the output terminal T out .
On the other hand, when the transistors 47 and 48 are off, the capacitor 45 is turned on by turning on the bidirectional pull switching means, that is, the transistors 3 and 4, so that the reverse voltage is dioded from the power line V m through the transistor 3. 49 and 50, both diodes are turned off. For this reason, since the gate-source portion is cut off from both power supply lines V 0 and V −1 , there is no problem even if the gate-source portion is electrically connected to the power supply line V m and the output terminal T out .
◇◆ 図47に示す先願・実施例16 ◆◇
図47に示す先願・実施例16は「図39に示す先願・実施例8」を応用したものである。図47の先願・実施例16では図示していないがD型フリップ・フロップ27の後段には「図39に示す先願・実施例8」中の「トランジスタ41、37、ダイオード39及び抵抗15が形成するオン・オフ駆動手段」と「トランジスタ3、4を直列接続した双方向性プル・スイッチング手段」が接続される。
あるいは、D型フリップ・フロップ27の後段には「図40に示す先願・実施例9」〜「図45に示す先願・実施例14」のいずれか1つに示された「オン・オフ駆動手段と双方向性プル・スイッチング手段」が接続される。ただし、図41、図43の先願・実施例10、12に示された「オン・オフ駆動手段と双方向性プル・スイッチング手段」を使用する場合、D型フリップ・フロップ27の代わりに電源電圧2倍のD型フリップ・フロップ127を使う。
図47の先願・実施例16に「図39に示す先願・実施例8」又は「図40に示す先願・実施例9」又は「図44に示す先願・実施例13」の「オン・オフ駆動手段と双方向性プル・スイッチング手段」を接続したときに、以下4つの場合について考える。
◆◇◆1)H=Gの場合:
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各場合の論理動作」すなわち「元の非同期型・多値論理回路の非反転・論理動作とその反転・論理動作」は次の通りである。
◆a)非反転・論理動作;
その1つの入力用特定整数がHである為、入力端子Tin1、Tin2の入力整数Nin1、Nin2が共に整数Hなら出力端子Toutから出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。このため、本発明者は図47の先願・実施例16の「同期ラッチング機能を持つ多値論理手段」をさらに同期型(多値)AND回路と呼ぶ。
◆b)反転・論理動作;
入力整数Nin1、Nin2が共に整数Hなら出力端子Toutからの出力は開放され、そうでないなら出力端子Toutから出力用特定整数mが出力される。このため、図47の先願・実施例16においてトランジスタ41(図39中、図40中、図44中)のゲート端子をQ端子からQバー端子に接続し直すと、先願・実施例16の「同期ラッチング機能を持つ多値論理手段」は「さらに本発明者が『入力用特定整数をHとする同期型(多値)NAND回路』と呼ぶ回路」になる。
◇ ◆ Prior application shown in Fig. 47, Example 16 ◆ ◇
The prior application / embodiment 16 shown in FIG. 47 is an application of the “prior application / embodiment 8 shown in FIG. 39”. Although not shown in the prior application / embodiment 16 of FIG. 47, “transistors 41 and 37, diode 39 and resistor 15 in the prior application / embodiment 8 shown in FIG. 39” follow the D-type flip-flop 27. Are connected to "on / off drive means formed by" and "bidirectional pull switching means in which transistors 3 and 4 are connected in series".
Alternatively, the “on / off” shown in any one of “prior application / embodiment 9 shown in FIG. 40” to “prior application / embodiment 14 shown in FIG. 45” follows the D-type flip-flop 27. The driving means and the bidirectional pull switching means "are connected. However, when using the “on / off drive means and bidirectional pull switching means” shown in the prior application / embodiments 10 and 12 of FIGS. 41 and 43, a power source is used instead of the D-type flip-flop 27. A double D-type flip-flop 127 is used.
47, “Prior application / Example 8 shown in FIG. 39” or “Prior application / Example 9 shown in FIG. 40” or “Prior application / Example 13 shown in FIG. Consider the following four cases when the on / off driving means and the bidirectional pull switching means are connected.
◆ ◇ ◆ 1) When H = G:
For the sake of clarity, “the logic in each case where the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronization operation. The “operation”, that is, “non-inversion / logic operation of the original asynchronous type / multi-valued logic circuit and its inversion / logic operation” is as follows.
◆ a) Non-inversion / logical operation;
Therefore one input for a specific integer is H, the input integer N in1, N in2 certain integer m output from the output terminal T out if integer both H at the input terminal T in1, T in2 is output, if not The output from the output terminal Tout is opened. For this reason, the present inventor further calls the “multi-valued logic means having a synchronous latching function” of the prior application / embodiment 16 of FIG. 47 as a synchronous (multi-valued) AND circuit.
◆ b) Inversion / logical operation;
If the input integers N in1 and N in2 are both integers H, the output from the output terminal T out is released, otherwise the output specific integer m is output from the output terminal T out . Therefore, when the gate terminal of the transistor 41 (in FIG. 39, FIG. 40, and FIG. 44) is reconnected from the Q terminal to the Q bar terminal in the prior application / embodiment 16 of FIG. The “multi-valued logic means having a synchronous latching function” is “a circuit called by the present inventor a“ synchronous (multi-valued) NAND circuit whose input specific integer is H ””.
◆◇◆2)H>Gの場合:
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各場合の論理動作」すなわち「元の非同期型・多値論理回路の非反転・論理動作とその反転・論理動作」は次の通りである。
◆a)非反転・論理動作;
入力端子Tin1、Tin2の入力整数Nin1、Nin2が共に「H≧Nin1、Nin2≧G」なら出力端子Toutから出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。このため、本発明者は図47に示す先願・実施例16を「2つの入力用特定整数(値)をHとGとする同期型AND・NOUT回路(または同期型NOR・OUT回路)」と呼ぶ。
◆b)反転・論理動作;
入力整数Nin1、Nin2が共に「H≧Nin1、Nin2≧G」なら出力端子Toutは開放され、そうでないなら出力端子Toutから出力用特定整数mが出力される。このため、図47の先願・実施例16においてトランジスタ41(図39中、図40中、図44中)のゲート端子をQ端子からQバー端子に接続し直すと、先願・実施例16は「さらに本発明者が『2つの入力用特定整数(値)をHとGとする同期型(多値)NAND・NOUT回路(又は同期型OR・OUT回路)』と呼ぶ回路」になる。
◆ ◇ ◆ 2) If H> G:
For the sake of clarity, “the logic in each case where the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronization operation. The “operation”, that is, “non-inversion / logic operation of the original asynchronous type / multi-valued logic circuit and its inversion / logic operation” is as follows.
◆ a) Non-inversion / logical operation;
Input integer N in1, N in2 are both "H ≧ N in1, N in2 ≧ G " of the input terminal T in1, T in2 if certain integer m output from the output terminal T out is output, the output terminal T out if not The output from is released. For this reason, the present inventor described the prior application / embodiment 16 shown in FIG. 47 as “synchronous AND / NOUT circuit (or synchronous NOR / OUT circuit) having two input specific integers (values) H and G”. Call it.
◆ b) Inversion / logical operation;
If both the input integers N in1 and N in2 are “H ≧ N in1 and N in2 ≧ G”, the output terminal T out is opened, and if not, the output specific integer m is output from the output terminal T out . Therefore, when the gate terminal of the transistor 41 (in FIG. 39, FIG. 40, and FIG. 44) is reconnected from the Q terminal to the Q bar terminal in the prior application / embodiment 16 of FIG. Is “a circuit called by the present inventor“ synchronous (multi-value) NAND / NOUT circuit (or synchronous OR / OUT circuit) in which two input specific integers (values) are H and G ””.
◆◇◆3)トランジスタ32a、32b、ダイオード34及び抵抗67を取り外した場合:
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各場合の論理動作」すなわち「元の非同期型・多値論理回路の非反転・論理動作とその反転・論理動作」は次の通りである。
◆a)非反転・論理動作;
入力端子Tin1、Tin2の入力整数Nin1、Nin2が共に整数Hより小さいか等しいなら出力端子Toutから出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。このため、本発明者は図47に示す先願・実施例16を「その1つの入力用特定整数をHとする同期型AND・NOVER回路(又は同期型NOR・OVER回路)」と呼ぶ。
◆b)反転・論理動作;
入力整数Nin1、Nin2のうち少なくとも一方が整数Hより大きいなら出力用特定整数mが出力され、そうでないなら、つまり、入力整数Nin1、Nin2が共に整数Hより小さいか等しいなら出力端子Toutからの出力は開放される。このため、図47の先願・実施例16においてトランジスタ41(図39中、図40中、図44中)のゲート端子をQ端子からQバー端子に接続し直すと、先願・実施例16は「さらに本発明者が『その1つの入力用特定整数をHとする同期型NAND・NOVER回路(又は同期型OR・OVER回路)』と呼ぶ回路になる。
◆ ◇ ◆ 3) When transistors 32a and 32b, diode 34, and resistor 67 are removed:
For the sake of clarity, “the logic in each case where the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronization operation. The “operation”, that is, “non-inversion / logic operation of the original asynchronous type / multi-valued logic circuit and its inversion / logic operation” is as follows.
◆ a) Non-inversion / logical operation;
Input integer N in1, N in2 certain integer m output from the output terminal T out if both integers H less than or equal to the input terminal T in1, T in2 is outputted, the output from the output terminal T out if not open Is done. Therefore, the present inventor calls the prior application / embodiment 16 shown in FIG. 47 as “synchronous AND / NOVER circuit (or synchronous NOR / OVER circuit) having one input specific integer H”.
◆ b) Inversion / logical operation;
If at least one of the input integers N in1 and N in2 is greater than the integer H, the output specific integer m is output, otherwise, if the input integers N in1 and N in2 are both less than or equal to the integer H, the output terminal the output from the T out is opened. Therefore, when the gate terminal of the transistor 41 (in FIG. 39, FIG. 40, and FIG. 44) is reconnected from the Q terminal to the Q bar terminal in the prior application / embodiment 16 of FIG. Is a circuit that the present inventor calls “a synchronous NAND / NOVER circuit (or a synchronous OR / OVER circuit) in which one input specific integer is H”.
◆◇◆4)トランジスタ31a、31b、33a、33b、ダイオード35a、35b及び抵抗20a、20b、62を取り外した場合:
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各場合の論理動作」すなわち「元の非同期型・多値論理回路の非反転・論理動作とその反転・論理動作」は次の通りである。
◆a)非反転・論理動作;
入力端子Tin1、Tin2の入力整数Nin1、Nin2が共に整数Gより大きいか等しいなら出力端子Toutから出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。このため、本発明者は図47に示す先願・実施例16を「その1つの入力用特定整数をGとする同期型AND・NUNDER回路(又は同期型NOR・UNDER回路)」と呼ぶ。
◆b)反転・論理動作;
入力整数Nin1、Nin2のうち少なくとも一方が整数Gより小さいなら出力用特定整数mが出力され、そうでないなら、つまり、入力整数Nin1、Nin2が共に整数Gより大きいか等しいなら出力端子Toutからの出力は開放される。このため、図47の先願・実施例16においてトランジスタ41(図39中、図40中、図44中)のゲート端子をQ端子からQバー端子に接続し直すと、先願・実施例16は「さらに本発明者が『その1つの入力用特定整数をGとする同期型NAND・NUNDER回路(又は同期型OR・UNDER回路)』と呼ぶ回路」になる。
◆ ◇ ◆ 4) When transistors 31a, 31b, 33a, 33b, diodes 35a, 35b and resistors 20a, 20b, 62 are removed:
For the sake of clarity, “the logic in each case where the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronization operation. The “operation”, that is, “non-inversion / logic operation of the original asynchronous type / multi-valued logic circuit and its inversion / logic operation” is as follows.
◆ a) Non-inversion / logical operation;
Input integer N in1, N in2 certain integer m output from the output terminal T out if both greater than or equal to an integer G input terminal T in1, T in2 is outputted, the output from the output terminal T out if not open Is done. Therefore, the present inventor calls the prior application / embodiment 16 shown in FIG. 47 as “synchronous AND / NUNDER circuit (or synchronous NOR / UNDER circuit) having one input specific integer G”.
◆ b) Inversion / logical operation;
If at least one of the input integers N in1 and N in2 is smaller than the integer G, the output specific integer m is output. If not, that is, if the input integers N in1 and N in2 are both greater than or equal to the integer G, the output terminal the output from the T out is opened. Therefore, when the gate terminal of the transistor 41 (in FIG. 39, FIG. 40, and FIG. 44) is reconnected from the Q terminal to the Q bar terminal in the prior application / embodiment 16 of FIG. Is "a circuit called by the present inventor" synchronous NAND / NUNDER circuit (or synchronous OR / UNDER circuit) whose one specific input integer is G "".
これらの多値論理回路に関して成り立つ恒等式をまとめると以下の通りである。当然の事ながら、各・両回路の「複数の論理変数のそれぞれ同士、入力用特定整数・同士、出力用特定整数・同士」等は同じである。さらに各・両回路が同期型・同士なら、その同期周波数などの同期条件やそのラッチング条件も同じである。
ただし、各回路の元になる「OVER回路、NOVER回路」と「UNDER回路、NUNDER回路」では前述した通りこれらの入力用特定整数は1だけずれる。
★a)AND・NUNDER回路=NOR・UNDER回路
★b)NAND・NUNDER回路=OR・UNDER回路
★c)OR・NUNDER回路=NAND・UNDER回路
★d)NOR・NUNDER回路=AND・UNDER回路
★e)AND・NOVER回路=NOR・OVER回路
★f)NAND・NOVER回路=OR・OVER回路
★g)OR・NOVER回路=NAND・OVER回路
★h)NOR・NOVER回路=AND・OVER回路
The identities that hold for these multilevel logic circuits are summarized as follows. As a matter of course, “each of a plurality of logical variables, input specific integers, mutual output specific integers” and the like of each circuit are the same. Furthermore, if each circuit is synchronous, the synchronization conditions such as the synchronization frequency and the latching conditions are the same.
However, in the “OVER circuit, NOVER circuit” and “UNDER circuit, NUNDER circuit” that are the basis of each circuit, as described above, these input specific integers are shifted by one.
* A) AND / NUNDER circuit = NOR / UNDER circuit * b) NAND / NUNDER circuit = OR / UNDER circuit * c) OR / UNDER circuit = NAND / UNDER circuit * d) NOR / NUNDER circuit = AND / UNDER circuit * e ) AND / NOVER circuit = NOR / OVER circuit * f) NAND / NOVER circuit = OR / OVER circuit * g) OR / NOVER circuit = NAND / OVER circuit * h) NOR / NOVER circuit = AND / OVER circuit
これらの恒等式は「非同期型・同士にしろ同期型・同士にしろ、同一の多値論理回路を2つの名前でただ呼んでいるに過ぎないこと」をも☆意味するが、多値論理的には重要な意味が有る。
例えば、NAND・NUNDER論理はAND・NUNDER論理の否定だからAND・NUNDER論理とNAND・NUNDER論理は互いに相補関係に有り、NAND・NUNDER論理とOR・UNDER論理は同じだから、AND・NUNDER論理とOR・UNDER論理も互いに相補関係に有ることになる。同様に、NAND・NUNDER論理とNOR・UNDER論理も互いに相補関係に有ることになる。
この場合、その『相補関係』とは『所定の複数個の論理変数がその2つの論理に同時に与えられたとき、必ず、一方の論理がその出力用特定整数の値になり、他方の論理がその正反対の出力、開放出力となること』を意味する。
ついでながら、例えば、上記★b)項からOR・UNDER論理は「AND・NUNDER論理とNOT論理を結合したもの」を意味するので、同期型OR・UNDER回路を「同期型AND・NUNDER回路の後段に非同期型NOT回路を接続し、両回路の間にマッチング(整合)用のプル・アップ抵抗またはプル・ダウン抵抗を接続したもの」又は「非同期型AND・NUNDER回路の後段に同期型NOT回路を接続し、両回路の間にマッチング(整合)用のプル・アップ抵抗またはプル・ダウン抵抗を接続したもの」で代替的に構成することはできるが、「時間遅れ、電力損失、及び、多値ハザードの面から不利となる。否(いや)、それを逆に活用して「時間調整、タイミング合わせ、または、論理信号2つのマッチング」に利用することも考えられる。この場合、両回路とも同期型にすることが考えられる。
全く同様に、例えば、上記★a)項からAND・NUNDER論理は「OR・UNDER論理とNOT論理を結合したもの」を意味するので、同期型AND・NUNDER回路を「同期型OR・UNDER回路の後段に非同期型NOT回路を接続し、両回路の間にマッチング(整合)用のプル・アップ抵抗またはプル・ダウン抵抗を接続したもの」又は「非同期型OR・UNDER回路の後段に同期型NOT回路を接続し、両回路の間にマッチング(整合)用のプル・アップ抵抗またはプル・ダウン抵抗を接続したもの」で代替的に構成することはできるが、時間遅れと電力損失と多値ハザードの面から不利となる。否(いや)、逆に活用して「時間調整、タイミング合わせ、又は、論理信号2つのマッチング」に利用することも考えられる。この場合、両回路とも同期型にすることが考えられる。
These identities also mean "synchronous, mutual, synchronous, or just call the same multi-valued logic circuit with two names". Has an important meaning.
For example, since NAND / NUNDER logic is the negation of AND / NUNDER logic, AND / NUNDER logic and NAND / NUNDER logic are complementary to each other, and NAND / NUNDER logic and OR / UNDER logic are the same. The UNDER logic is also complementary to each other. Similarly, the NAND · NUNDER logic and the NOR · UNDER logic are also complementary to each other.
In this case, the “complementary relationship” is “when a predetermined number of logic variables are simultaneously given to the two logics, one of the logics always becomes the value of the specific integer for output, and the other logic is It means that the output is the opposite, that is, the open output.
Incidentally, for example, from the above item * b), the OR / UNDER logic means “the combination of AND / NUNDER logic and NOT logic”, so that the synchronous OR / UNDER circuit is replaced with “the subsequent stage of the synchronous AND / NUNDER circuit”. A non-synchronous NOT circuit is connected to this circuit, and a matching pull-up resistor or pull-down resistor is connected between the two circuits "or" synchronous NOT circuit after the asynchronous AND NUNDER circuit. It can be alternatively configured with "Connecting and connecting pull-up or pull-down resistor for matching between both circuits", but "time delay, power loss and multi-value This is disadvantageous in terms of hazards.No (No), but it can be used in reverse to make use of “time adjustment, timing adjustment, or matching of two logic signals”. It is also conceivable to. In this case, both circuits can be considered to be synchronous.
Exactly in the same manner, for example, from the above item * a), AND / NUNDER logic means “the combination of OR / UNDER logic and NOT logic”. Therefore, the synchronous AND / NUNDER circuit is changed to “the synchronous OR / UNDER circuit”. An asynchronous NOT circuit is connected to the subsequent stage, and a matching pull-up resistor or pull-down resistor is connected between the two circuits "or" synchronous NOT circuit to the subsequent stage of the asynchronous OR / UNDER circuit Can be configured alternatively by connecting a pull-up resistor or a pull-down resistor for matching (matching) between both circuits. It is disadvantageous from the aspect. No (no), conversely, it may be used for “time adjustment, timing adjustment, or matching of two logic signals”. In this case, both circuits can be considered to be synchronous.
それから、図47の先願・実施例16においてD型フリップ・フロップ27の後段として上記「図39に示す先願・実施例8」等の「オン・オフ駆動手段と双方向性プル・スイッチング手段」ではなく「図42に示す先願・実施例11」又は「図45に示す先願・実施例14」の「オン・オフ駆動手段と双方向性プル・スイッチング手段」を接続したときは次の通りになる。
「上述(段落番号[0226〜0229]。)の◇◇◇1)〜◇◇◇4)においてトランジスタ41のゲート端子をQ端子に接続したときの内容(=非反転論理)」が「こちらではそのゲート端子をQバー端子に接続したときの内容(=反転論理)」になり、「上述の◇◇◇1)〜◇◇◇4)においてトランジスタ41のゲート端子をQバー端子に接続したときの内容(=反転論理)」が「こちらではそのゲート端子をQ端子に接続したときの内容(=非反転論理)」になるだけである。
そして、図39〜図45に示す先願・実施例8〜14のそれぞれにおいて、その出力用特定整数を変更した各実施例について説明したが、図47に示す先願・実施例16はそれらの実施例の「オン・オフ駆動手段と双方向性プル・スイッチング手段」を用いているので、当然、先願・実施例16においてもその出力用特定整数を変更することができる。
さらに、図47の先願・実施例16では双方向性プル・スイッチング手段としてトランジスタ3、4の逆向き直列回路を用いているが、その双方向性プル・スイッチング手段の代わりにプル・スイッチング手段として図37の実施例6や図38の実施例7の様に「逆阻止型または逆導通型」の「プル・アップ・スイッチング手段またはプル・ダウン・スイッチング手段」を使う実施例も又可能である。
Then, “on / off drive means and bidirectional pull-switching means” such as the above-mentioned “prior application / Example 8 shown in FIG. 39” as a stage subsequent to the D-type flip-flop 27 in the prior application / Example 16 of FIG. When the “on / off drive means and bidirectional pull switching means” of “prior application / embodiment 11 shown in FIG. 42” or “prior application / embodiment 14 shown in FIG. 45” are connected instead of “ It becomes as follows.
“Contents when the gate terminal of the transistor 41 is connected to the Q terminal (= non-inverted logic) in ◇◇◇ 1) to ◇◇◇ 4) above” (paragraph numbers [0226 to 0229].) When the gate terminal is connected to the Q bar terminal (= inverted logic), and when the gate terminal of the transistor 41 is connected to the Q bar terminal in the above-mentioned ◇◇◇ 1) to ◇◇◇ 4) The contents of (= inverted logic) ”only become“ here the contents when the gate terminal is connected to the Q terminal (= non-inverted logic) ”.
In each of the prior applications / embodiments 8 to 14 shown in FIGS. 39 to 45, the output specific integers have been described. However, the prior application / embodiment 16 shown in FIG. Since the “on / off drive means and bidirectional pull switching means” of the embodiment are used, the output specific integer can be changed in the prior application / embodiment 16 as a matter of course.
47, the reverse series circuit of the transistors 3 and 4 is used as the bidirectional pull switching means. However, the pull switching means is used instead of the bidirectional pull switching means. As in the sixth embodiment in FIG. 37 and the seventh embodiment in FIG. 38, an embodiment using a “reverse blocking type or reverse conducting type” “pull up switching means or pull down switching means” is also possible. is there.
◇◆ 図48に示す先願・実施例17 ◆◇
図48に示す先願・実施例17は、図47に示す先願・実施例16においてトランジスタ33a、33b等を1つにまとめたものである。このため、その「オン・オフ駆動手段と双方向性プル・スイッチング手段」等については図47の先願・実施例16の場合と全く同様である。
なお、図48の先願・実施例17では双方向性プル・スイッチング手段としてトランジスタ3、4の逆向き直列回路を用いているが、その双方向性プル・スイッチング手段の代わりにプル・スイッチング手段として図37の実施例6や図38の実施例7の様に「逆阻止型または逆導通型」の「プル・アップ・スイッチング手段またはプル・ダウン・スイッチング手段」を使う実施例も又可能である。
◇ ◆ Prior application shown in Fig. 48, Example 17 ◆ ◇
The prior application / embodiment 17 shown in FIG. 48 is a combination of the transistors 33a, 33b and the like in the prior application / embodiment 16 shown in FIG. For this reason, the “on / off driving means and bidirectional pull switching means” and the like are exactly the same as in the case of the prior application / embodiment 16 of FIG.
48, the reverse series circuit of the transistors 3 and 4 is used as the bidirectional pull switching means in the prior application / Embodiment 17, but the pull switching means is used instead of the bidirectional pull switching means. As in the sixth embodiment in FIG. 37 and the seventh embodiment in FIG. 38, an embodiment using a “reverse blocking type or reverse conducting type” “pull up switching means or pull down switching means” is also possible. is there.
◇◆ 図49に示す先願・実施例18 ◆◇
図49に示す先願・実施例18は、図25に示す非同期型・多値AND回路から派生したものである。参考:特開2005−236985号の図11。
◆◇◆1)H=G+2の場合その1つの入力用特定整数は(H+G)/2である。そして、この先願・実施例18は「本発明者が同期型の多値NAND回路と呼ぶ多値論理回路」であるが、トランジスタ41のゲートの接続をQ端子からQバー端子に変更すれば、この先願・実施例18は「本発明者が同期型の多値AND回路と呼ぶ多値論理回路」になる。
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各場合の論理動作」すなわち「元の非同期型・多値論理回路の反転・論理動作とその非反転・論理動作」は次の通りである。
◆a)反転・論理動作;
入力端子Tin1、Tin2、Tin3の入力整数Nin1、Nin2、Nin3すべてが整数(H+G)/2なら出力端子Toutからの出力は開放され、そうでないなら出力端子Toutから出力用特定整数mが出力される。このため、図49の先願・実施例18の「同期ラッチング機能を持つ多値論理手段」は「本発明者が『入力用特定整数を(H+G)/2とする同期型(多値)NAND回路』と呼ぶ回路」になる。
◆b)非反転・論理動作;
さらにトランジスタ41のゲート端子がQ端子からQバー端子に接続し直された場合、その3つの入力整数Nin1、Nin2、Nin3すべてが整数(H+G)/2なら出力端子Toutから出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。このため、図49の先願・実施例18の「同期ラッチング機能を持つ多値論理手段」は「さらに本発明者が『入力用特定整数を(H+G)/2とする同期型(多値)AND回路』と呼ぶ回路」になる。
◇ ◆ Prior application shown in Fig. 49, Example 18 ◆ ◇
The prior application / Example 18 shown in FIG. 49 is derived from the asynchronous multi-value AND circuit shown in FIG. Reference: FIG. 11 of JP-A-2005-236985.
◆ ◇ ◆ 1) When H = G + 2, the specific integer for input is (H + G) / 2. And this prior application / Embodiment 18 is a “multi-value logic circuit that the inventor calls a synchronous multi-value NAND circuit”, but if the connection of the gate of the transistor 41 is changed from the Q terminal to the Q bar terminal, This prior application / Embodiment 18 becomes "a multi-value logic circuit which the inventor calls a synchronous multi-value AND circuit".
For the sake of clarity, “the logic in each case where the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronization operation. The “operation”, that is, “inversion / logical operation of the original asynchronous type / multi-valued logic circuit and non-inversion / logic operation thereof” is as follows.
◆ a) Inversion / logical operation;
If the input integers N in1 , N in2 , and N in3 of the input terminals T in1 , T in2 , and T in3 are all integers (H + G) / 2, the output from the output terminal T out is released. Otherwise, the output from the output terminal T out is output. Specific integer m is output. For this reason, the “multi-valued logic means having a synchronous latching function” of the prior application / Embodiment 18 of FIG. 49 is “the synchronous type (multi-valued) NAND in which the present inventor“ has a specific integer for input (H + G) / 2 ”. The circuit is called “circuit”.
◆ b) Non-inversion / logical operation;
Further, when the gate terminal of the transistor 41 is reconnected from the Q terminal to the Q bar terminal, if all three input integers N in1 , N in2 , and N in3 are integers (H + G) / 2, the output terminal T out is used for output. A specific integer m is output, otherwise the output from the output terminal Tout is opened. For this reason, the “multi-valued logic means having a synchronous latching function” of the prior application / Embodiment 18 of FIG. 49 is “the synchronous type (multi-valued) in which the present inventor“ has a specific integer for input (H + G) / 2 ”. The circuit is called “AND circuit”.
◆◇◆2)H>G+2の場合その2つの入力用特定整数はHとGである。そして、この先願・実施例18は「本発明者が『2つの入力用特定整数(値)をHとGとする同期型(多値)NAND回路・NOUT回路(又は同期型OR・OUT回路)』と呼ぶ回路」であるが、トランジスタ41のゲートの接続をQ端子からQバー端子に変更すれば、この先願・実施例18は「本発明者が『2つの入力用特定整数(値)をHとGとする同期型AND・NOUT回路(または同期型NOR・OUT回路)』と呼ぶ回路」になる。
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各場合の論理動作」すなわち「元の非同期型・多値論理回路の反転・論理動作とその非反転・論理動作」は次の通りである。
◆a)反転・論理動作;
その3つの入力整数Nin1、Nin2、Nin3すべてが「H>Nin1、Nin2、Nin3>G」なら出力端子Toutは開放され、そうでないなら出力端子Toutから出力用特定整数mが出力される。このため、先願・実施例18は「本発明者が『2つの入力用特定整数(値)をHとGとする同期型(多値)NAND・IN回路(又は同期型OR・NIN回路)』と呼ぶ回路」である。
◆b)非反転・論理動作;
さらにトランジスタ41のゲート端子がQ端子からQバー端子に接続し直された場合、その3つの入力整数Nin1、Nin2、Nin3すべてが「H>Nin1、Nin2、Nin3>G」なら出力端子Toutから出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。このため、先願・実施例18は「さらに本発明者が『2つの入力用特定整数(値)をHとGとする同期型(多値)AND・IN回路(又は同期型NOR・NIN回路)』と呼ぶ回路」になる。
◆ ◇ ◆ 2) When H> G + 2, the two specific integers for input are H and G. And this prior application / Embodiment 18 states that “the present inventor“ synchronous (multi-value) NAND circuit / NOUT circuit (or synchronous OR / OUT circuit) having two input specific integers (values) H and G ”. However, if the connection of the gate of the transistor 41 is changed from the Q terminal to the Q bar terminal, the prior application / Embodiment 18 states that “the present inventor has given“ two specific integers (values) for input ”. A circuit called “synchronous AND / NOUT circuit (or synchronous NOR / OUT circuit)”.
For the sake of clarity, “the logic in each case where the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronization operation. The “operation”, that is, “inversion / logical operation of the original asynchronous type / multi-valued logic circuit and non-inversion / logic operation thereof” is as follows.
◆ a) Inversion / logical operation;
If all of the three input integers N in1 , N in2 , and N in3 are “H> N in1 , N in2 , N in3 > G”, the output terminal T out is opened. Otherwise, the output specific integer is output from the output terminal T out. m is output. For this reason, the prior application / Embodiment 18 states that “the present inventor“ synchronous (multi-value) NAND IN circuit (or synchronous OR NIN circuit) having two input specific integers (values) H and G ”. Is a circuit called "".
◆ b) Non-inversion / logical operation;
Further, when the gate terminal of the transistor 41 is reconnected from the Q terminal to the Q bar terminal, all of the three input integers N in1 , N in2 , N in3 are “H> N in1 , N in2 , N in3 > G”. Nara output terminal T out certain integer m output from is output and the output from the output terminal T out if not opened. For this reason, the prior application / Embodiment 18 states, “Furthermore, the present inventor“ synchronous (multi-value) AND / IN circuit (or synchronous NOR / NIN circuit) having two input specific integers (values) H and G ”. ) ”.
◆◇◆3)トランジスタ2a〜2c、17及び抵抗20を取り外し、抵抗62の開放端をトランジスタ1cのドレインに接続し直した場合:
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各場合の論理動作」すなわち「元の非同期型・多値論理回路の反転・論理動作とその非反転・論理動作」は次の通りである。
◆a)反転・論理動作;
その3つの入力整数Nin1、Nin2、Nin3すべてが整数Hより小さいなら出力端子Toutからの出力は開放され、そうでないなら出力用特定整数mが出力される。言い換えると、その3つの入力整数Nin1、Nin2、Nin3のうち、少なくとも1つが整数Hより大きいか等しいなら出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。
このため、図49の先願・実施例18は「本発明者が『その1つの入力用特定整数をHとする同期型NAND・UNDER回路(又は同期型OR・NUNDER回路)』と呼ぶ回路」である。
◆b)非反転・論理動作;
さらに図49の先願・実施例18においてトランジスタ41のゲート端子をQ端子からQバー端子に接続した場合、その3つの入力整数Nin1、Nin2、Nin3すべてが整数Hより小さいなら出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。言い換えると、その3つの入力整数Nin1、Nin2、Nin3のうち、少なくとも1つが整数Hより大きいか等しいなら出力端子Toutからの出力は開放され、そうでないなら出力端子Toutから出力用特定整数mが出力される。
このため、図49の先願・実施例18は「本発明者が『その1つの入力用特定整数をHとする同期型AND・UNDER回路(又は同期型NOR・NUNDER回路)』と呼ぶ回路」になる。
◆ ◇ ◆ 3) When the transistors 2a to 2c, 17 and the resistor 20 are removed and the open end of the resistor 62 is connected to the drain of the transistor 1c:
For the sake of clarity, “the logic in each case where the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronization operation. The “operation”, that is, “inversion / logical operation of the original asynchronous type / multi-valued logic circuit and non-inversion / logic operation thereof” is as follows.
◆ a) Inversion / logical operation;
If all of the three input integers N in1 , N in2 , and N in3 are smaller than the integer H, the output from the output terminal T out is released, and if not, the output specific integer m is output. In other words, if at least one of the three input integers N in1 , N in2 , and N in3 is greater than or equal to the integer H, the output specific integer m is output, otherwise the output from the output terminal T out is released. Is done.
For this reason, the prior application / Embodiment 18 in FIG. 49 is “a circuit called by the present inventor“ a synchronous NAND / UNDER circuit (or synchronous OR / NUNDER circuit) having one input specific integer H ””. It is.
◆ b) Non-inversion / logical operation;
Further, when the gate terminal of the transistor 41 is connected from the Q terminal to the Q bar terminal in the prior application / Example 18 of FIG. 49, if all three input integers N in1 , N in2 , and N in3 are smaller than the integer H, the output is used. A specific integer m is output, otherwise the output from the output terminal Tout is opened. In other words, if at least one of the three input integers N in1 , N in2 , and N in3 is greater than or equal to the integer H, the output from the output terminal T out is released, otherwise the output from the output terminal T out is for output. The specific integer m is output.
For this reason, the prior application / Embodiment 18 in FIG. 49 is “a circuit called by the present inventor“ a synchronous AND UNDER circuit (or a synchronous NOR / NUNDER circuit having one specific input integer H ”)”. become.
◆◇◆4)トランジスタ1a〜1cを取り外し、トランジスタ17のソースを電源線VHに接続し直した場合:
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各場合の論理動作」すなわち「元の非同期型・多値論理回路の反転・論理動作とその非反転・論理動作」は次の通りである。
◆a)反転・論理動作;
その3つの入力整数Nin1、Nin2、Nin3すべてが整数Gより大きいなら出力端子Toutからの出力は開放され、そうでないなら出力端子Toutから出力用特定整数mが出力される。言い換えると、その3つの入力整数Nin1、Nin2、Nin3のうち、少なくとも1つが整数Gより小さいか等しいなら出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。
このため、図49の先願・実施例18は「本発明者が『その1つの入力用特定整数をGとする同期型NAND・OVER回路(又は同期型OR・NOVER回路)』と呼ぶ回路である。
◆b)非反転・論理動作;
さらに図49の先願・実施例18においてトランジスタ41のゲート端子をQ端子からQバー端子に接続した場合、その3つの入力整数Nin1、Nin2、Nin3すべてが整数Gより大きいなら出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。言い換えると、その3つの入力整数Nin1、Nin2、Nin3のうち、少なくとも1つが整数Gより小さいか等しいなら出力端子Toutからの出力は開放され、そうでないなら出力端子Toutから出力用特定整数mが出力される
このため、図49の先願・実施例18は「さらに本発明者が『その1つの入力用特定整数をGとする同期型AND・OVER回路(又は同期型NOR・NOVER回路)』と呼ぶ回路になる。
なお、図49の先願・実施例18では双方向性プル・スイッチング手段としてトランジスタ3、4の逆向き直列回路を用いているが、その双方向性プル・スイッチング手段の代わりにプル・スイッチング手段として図37の実施例6や図38の実施例7の様に「逆阻止型または逆導通型」の「プル・アップ・スイッチング手段またはプル・ダウン・スイッチング手段」を使う実施例も又可能である。
◆ ◇ ◆ 4) Remove the transistor 1 a to 1 c, when re-connecting the source of the transistor 17 to the power supply line V H:
For the sake of clarity, “the logic in each case where the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronization operation. The “operation”, that is, “inversion / logical operation of the original asynchronous type / multi-valued logic circuit and non-inversion / logic operation thereof” is as follows.
◆ a) Inversion / logical operation;
If all of the three input integers N in1 , N in2 , and N in3 are larger than the integer G, the output from the output terminal T out is released. Otherwise, the output specific integer m is output from the output terminal T out . In other words, the output specific integer m is output if at least one of the three input integers N in1 , N in2 , N in3 is smaller than or equal to the integer G, otherwise the output from the output terminal T out is opened. Is done.
For this reason, the prior application / Eighteenth embodiment of FIG. 49 is a circuit referred to as “a synchronous NAND / OVER circuit (or a synchronous OR / NOVER circuit) having one input specific integer G”. is there.
◆ b) Non-inversion / logical operation;
Further, when the gate terminal of the transistor 41 is connected from the Q terminal to the Q bar terminal in the prior application / Example 18 of FIG. 49, if all of the three input integers N in1 , N in2 , and N in3 are larger than the integer G, the output is used. A specific integer m is output, otherwise the output from the output terminal Tout is opened. In other words, if at least one of the three input integers N in1 , N in2 , N in3 is less than or equal to the integer G, the output from the output terminal T out is released, otherwise, the output from the output terminal T out is used. For this reason, the prior application / Embodiment 18 in FIG. 49 states, “Furthermore, the present inventor“ synchronized AND / OVER circuit (or synchronous NOR. NOVER circuit) ”.
49, the reverse series circuit of the transistors 3 and 4 is used as the bidirectional pull switching means in the prior application / Embodiment 18, but the pull switching means is used instead of the bidirectional pull switching means. As in the sixth embodiment in FIG. 37 and the seventh embodiment in FIG. 38, an embodiment using a “reverse blocking type or reverse conducting type” “pull up switching means or pull down switching means” is also possible. is there.
◇◆ 図50に示す先願・実施例19 ◆◇
図50に示す先願・実施例19は、図47に示す先願・実施例16と同様に「図39に示す先願・実施例8」を応用したものである。
図50の先願・実施例19では図示されていないがD型フリップ・フロップ27の後段には「図39に示す先願・実施例8」中の「トランジスタ41、37、ダイオード39及び抵抗15が形成するオン・オフ駆動手段」と「トランジスタ3、4を直列接続した双方向性プル・スイッチング手段」が接続される。
あるいは、D型フリップ・フロップ27の後段には「図40に示す先願・実施例9」〜「図45に示す先願・実施例14」のいずれか1つに示された「オン・オフ駆動手段と双方向性プル・スイッチング手段」が接続される。ただし、図41、図43の先願・実施例10、12に示された「オン・オフ駆動手段と双方向性プル・スイッチング手段」を使用する場合、D型フリップ・フロップ27の代わりに電源電圧2倍のD型フリップ・フロップ127を使う。
◇ ◆ Prior application shown in Fig. 50, Example 19 ◆ ◇
The prior application / example 19 shown in FIG. 50 is an application of the “prior application / example 8 shown in FIG. 39” in the same manner as the prior application / example 16 shown in FIG.
Although not shown in the prior application / embodiment 19 of FIG. 50, the “transistors 41 and 37, the diode 39 and the resistor 15 in the prior application / embodiment 8 shown in FIG. Are connected to "on / off drive means formed by" and "bidirectional pull switching means in which transistors 3 and 4 are connected in series".
Alternatively, the “on / off” shown in any one of “prior application / embodiment 9 shown in FIG. 40” to “prior application / embodiment 14 shown in FIG. 45” follows the D-type flip-flop 27. The driving means and the bidirectional pull switching means "are connected. However, when using the “on / off drive means and bidirectional pull switching means” shown in the prior application / embodiments 10 and 12 of FIGS. 41 and 43, a power source is used instead of the D-type flip-flop 27. A double D-type flip-flop 127 is used.
ここから、図50の先願・実施例19に「図39に示す先願・実施例8」又は「図40に示す先願・実施例9」又は「図44に示す先願・実施例13」の「オン・オフ駆動手段と双方向性プル・スイッチング手段」を接続したときに、以下4つの場合について考える。
◆◇◆1)H=Gの場合:
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各・論理動作」すなわち「元の非同期型・多値論理回路の非反転・論理動作とその反転・論理動作」は次の通りである。
◆a)非反転・論理動作;
その1つの入力用特定整数がHである為、入力端子Tin1、Tin2の入力整数Nin1、Nin2のうち、少なくとも1つが整数Hなら出力端子Toutから出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。このため、本発明者は図50の先願・実施例19の「同期ラッチング機能を持つ多値論理手段」をさらに同期型(多値)OR回路と呼ぶ。
◆b)反転・論理動作;
さらに図50の先願・実施例19においてトランジスタ41(図39中、図40中、図44中)のゲート端子をQ端子からQバー端子に接続した場合、その入力整数Nin1、Nin2のうち、少なくとも1つが整数Hなら出力端子Toutからの出力は開放され、そうでないなら出力端子Toutから出力用特定整数mが出力される。このため、図50の先願・実施例19の「同期ラッチング機能を持つ多値論理手段」は「さらに本発明者が『入力用特定整数をHとする同期型(多値)NOR回路』と呼ぶ回路」になる。
From here, the prior application / embodiment 19 shown in FIG. 50 corresponds to “the prior application / embodiment 8 shown in FIG. 39” or “the prior application / embodiment 9 shown in FIG. When the “on / off driving means and bidirectional pull switching means” are connected, the following four cases will be considered.
◆ ◇ ◆ 1) When H = G:
For the sake of clarity now, “each of the logic operations that the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronous operation, "In other words," non-inversion / logic operation of the original asynchronous type / multi-value logic circuit and its inversion / logic operation "is as follows.
◆ a) Non-inversion / logical operation;
Since the one input specific integer is H, if at least one of the input integers N in1 and N in2 of the input terminals T in1 and T in2 is an integer H, the output specific integer m is output from the output terminal T out. Otherwise, the output from the output terminal Tout is opened. Therefore, the inventor further calls the “multi-valued logic means having a synchronous latching function” of the prior application / Embodiment 19 in FIG. 50 as a synchronous (multi-valued) OR circuit.
◆ b) Inversion / logical operation;
50, when the gate terminal of the transistor 41 (in FIG. 39, FIG. 40, and FIG. 44) is connected from the Q terminal to the Q bar terminal, the input integers N in1 and N in2 If at least one of them is an integer H, the output from the output terminal Tout is released, and if not, the output specific integer m is output from the output terminal Tout . Therefore, the “multi-valued logic means having a synchronous latching function” of the prior application / Embodiment 19 in FIG. 50 is “the synchronous type (multi-valued NOR circuit having a specific integer for input H”). It becomes a "calling circuit".
◆◇◆2)H>Gの場合:
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各・論理動作」すなわち「元の非同期型・多値論理回路の非反転・論理動作とその反転・論理動作」は次の通りである。
◆a)非反転・論理動作;
入力端子Tin1、Tin2の入力整数Nin1、Nin2のうち、少なくとも1つが「H又はGと等しいか、又は、HとGの間の整数」なら出力端子Toutから出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。このため、本発明者は図50に示す先願・実施例19を「2つの入力用特定整数(値)をHとGとする同期型OR・NOUT回路(または同期型NAND・OUT回路)」と呼ぶ。
◆b)反転・論理動作;
さらに図50の先願・実施例19においてトランジスタ41(図39中、図40中、図44中)のゲート端子をQ端子からQバー端子に接続した場合、その入力整数Nin1、Nin2のうち、少なくとも1つが「H又はGと等しいか、又は、HとGの間の整数」なら出力端子Toutは開放され、そうでないなら出力端子Toutから出力用特定整数mが出力される。このため、図50の先願・実施例19は「さらに本発明者が『2つの入力用特定整数(値)をHとGとする同期型(多値)NOR・NOUT回路(又は同期型AND・OUT回路)』と呼ぶ回路」になる。
◆ ◇ ◆ 2) If H> G:
For the sake of clarity now, “each of the logic operations that the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronous operation, "In other words," non-inversion / logic operation of the original asynchronous type / multi-value logic circuit and its inversion / logic operation "is as follows.
◆ a) Non-inversion / logical operation;
If at least one of the input integers N in1 and N in2 of the input terminals T in1 and T in2 is “equal to H or G, or an integer between H and G”, the output specific integer m from the output terminal T out Is output, otherwise the output from the output terminal Tout is opened. For this reason, the present inventor described the prior application / embodiment 19 shown in FIG. 50 as “synchronous OR / NOUT circuit (or synchronous NAND / OUT circuit) having two input specific integers (values) H and G”. Call it.
◆ b) Inversion / logical operation;
50, when the gate terminal of the transistor 41 (in FIG. 39, FIG. 40, and FIG. 44) is connected from the Q terminal to the Q bar terminal, the input integers N in1 and N in2 If at least one of them is “equal to H or G, or an integer between H and G”, the output terminal T out is opened, and if not, the output specific integer m is output from the output terminal T out . For this reason, the prior application / Embodiment 19 in FIG. 50 stated that “In addition, the present inventor“ synchronous (multi-value) NOR / NOUT circuit (or synchronous AND AND) having two input specific integers (values) H and G ”. -Circuit called "OUT circuit)".
◆◇◆3)トランジスタ32a、32b、ダイオード34及び抵抗67を取り外した場合:
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各場合の論理動作」すなわち「元の非同期型・多値論理回路の非反転・論理動作とその反転・論理動作」は次の通りである。
◆a)非反転・論理動作;
入力端子Tin1、Tin2の入力整数Nin1、Nin2のうち、少なくとも1つが整数Hより小さいか等しいなら出力端子Toutから出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。
言い換えると、その入力整数Nin1、Nin2の両方が整数Hより大きいなら出力端子Toutからの出力は開放され、そうでないなら出力用特定整数mが出力される。
このため、本発明者は図50に示す先願・実施例19を「その1つの入力用特定整数をHとする同期型OR・NOVER回路(又は同期型NAND・OVER回路)」と呼ぶ。
◆b)反転・論理動作;
さらに図50の先願・実施例19においてトランジスタ41(図39中、図40中、図44中)のゲート端子をQ端子からQバー端子に接続した場合、その入力整数Nin1、Nin2のうち、少なくとも1つが整数Hより小さいか等しいなら出力端子Toutからの出力は開放され、そうでないなら出力端子Toutから出力用特定整数mが出力される。
言い換えると、その入力整数Nin1、Nin2の両方が整数Hより大きいなら出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。
このため、図50の先願・実施例19は「さらに本発明者が『その1つの入力用特定整数をHとする同期型NOR・NOVER回路(又は同期型AND・OVER回路)』と呼ぶ回路になる。
◆ ◇ ◆ 3) When transistors 32a and 32b, diode 34, and resistor 67 are removed:
For the sake of clarity, “the logic in each case where the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronization operation. The “operation”, that is, “non-inversion / logic operation of the original asynchronous type / multi-valued logic circuit and its inversion / logic operation” is as follows.
◆ a) Non-inversion / logical operation;
Of the input integer N in1, N in2 input terminal T in1, T in2, at least one output is specified integer m output from the output terminal T out if or equal to an integer smaller than H, from the output terminal T out if not The output of is released.
In other words, if both of the input integers N in1 and N in2 are larger than the integer H, the output from the output terminal T out is released, and if not, the output specific integer m is output.
Therefore, the present inventor calls the prior application / Embodiment 19 shown in FIG. 50 as “synchronous OR / NOVER circuit (or synchronous NAND / OVER circuit) having one input specific integer H”.
◆ b) Inversion / logical operation;
50, when the gate terminal of the transistor 41 (in FIG. 39, FIG. 40, and FIG. 44) is connected from the Q terminal to the Q bar terminal, the input integers N in1 and N in2 If at least one of them is less than or equal to the integer H, the output from the output terminal Tout is released, and if not, the output specific integer m is output from the output terminal Tout .
In other words, if both of the input integers N in1 and N in2 are larger than the integer H, the output specific integer m is output, and if not, the output from the output terminal T out is released.
Therefore, the prior application / Embodiment 19 in FIG. 50 is a circuit further referred to as “a synchronous NOR / NOVER circuit (or a synchronous AND / OVER circuit) in which the specific integer for input is H”. become.
◆◇◆4)トランジスタ31a、31b、33a、33b、ダイオード35、68a、68b及び抵抗20a、20b、62を取り外した場合:
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各場合の論理動作」すなわち「元の非同期型・多値論理回路の非反転・論理動作とその反転・論理動作」は次の通りである。
◆a)非反転・論理動作;
入力端子Tin1、Tin2の入力整数Nin1、Nin2のうち、少なくとも1つが整数Gより大きいか等しいなら出力端子Toutから出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。
言い換えると、その入力整数Nin1、Nin2の両方が整数Gより小さいなら出力端子Toutからの出力は開放され、そうでないなら出力用特定整数mが出力される。
このため、本発明者は図50に示す先願・実施例19を「その1つの入力用特定整数をGとする同期型OR・NUNDER回路(又は同期型NAND・UNDER回路)」と呼ぶ。
◆b)反転・論理動作;
さらに図50の先願・実施例19においてトランジスタ41(図39中、図40中、図44中)のゲート端子をQ端子からQバー端子に接続した場合、その入力整数Nin1、Nin2のうち、少なくとも一方が整数Gより大きいか等しいなら出力端子Toutからの出力は開放され、そうでないなら出力用特定整数mが出力される。言い換えると、その入力整数Nin1、Nin2の両方が整数Gより小さいなら出力端子Toutから出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。
このため、図50の先願・実施例19は「さらに本発明者が『その1つの入力用特定整数をGとする同期型NOR・NUNDER回路(又は同期型AND・UNDER回路)』と呼ぶ回路」になる。
なお、図50の先願・実施例19では双方向性プル・スイッチング手段としてトランジスタ3、4の逆向き直列回路を用いているが、その双方向性プル・スイッチング手段の代わりにプル・スイッチング手段として図37の実施例6や図38の実施例7の様に「逆阻止型または逆導通型」の「プル・アップ・スイッチング手段またはプル・ダウン・スイッチング手段」を使う実施例も又可能である。
◆ ◇ ◆ 4) When transistors 31a, 31b, 33a, 33b, diodes 35, 68a, 68b and resistors 20a, 20b, 62 are removed:
For the sake of clarity, “the logic in each case where the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronization operation. The “operation”, that is, “non-inversion / logic operation of the original asynchronous type / multi-valued logic circuit and its inversion / logic operation” is as follows.
◆ a) Non-inversion / logical operation;
Of the input integer N in1, N in2 input terminal T in1, T in2, at least one output is specified integer m output from the output terminal T out if greater than or equal to integer G, from the output terminal T out if not The output of is released.
In other words, if both of the input integers N in1 and N in2 are smaller than the integer G, the output from the output terminal T out is released, and if not, the output specific integer m is output.
Therefore, the present inventor calls the prior application / Embodiment 19 shown in FIG. 50 as “synchronous OR / NUNDER circuit (or synchronous NAND / UNDER circuit) having one input specific integer G”.
◆ b) Inversion / logical operation;
50, when the gate terminal of the transistor 41 (in FIG. 39, FIG. 40, and FIG. 44) is connected from the Q terminal to the Q bar terminal, the input integers N in1 and N in2 If at least one of them is greater than or equal to the integer G, the output from the output terminal T out is released, and if not, the output specific integer m is output. In other words, both the input integer N in1, N in2 certain integer m output from the output terminal T out if integer G smaller is output and the output from the output terminal T out if not opened.
Therefore, the prior application / Embodiment 19 in FIG. 50 is a circuit further referred to as “a synchronous NOR / NUNDER circuit (or a synchronous AND / UNDER circuit) having one input specific integer G”. "become.
In the prior application / Example 19 of FIG. 50, a reverse series circuit of transistors 3 and 4 is used as the bidirectional pull switching means, but the pull switching means is used instead of the bidirectional pull switching means. As in the sixth embodiment in FIG. 37 and the seventh embodiment in FIG. 38, an embodiment using a “reverse blocking type or reverse conducting type” “pull up switching means or pull down switching means” is also possible. is there.
◇◆ 図51に示す先願・実施例20 ◆◇
図51に示す先願・実施例20は特開2005−236985号の図13の実施例を応用したものである。
◆◇◆1)H=G+2の場合その1つの入力用特定整数は(H+G)/2である。そして、図51の先願・実施例20は「本発明者が同期型の多値NOR回路と呼ぶ多値論理回路」であるが、トランジスタ41のゲートの接続をQ端子からQバー端子に変更すれば、図51の先願・実施例20は「本発明者が同期型の多値OR回路と呼ぶ多値論理回路」になる。
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各場合の論理動作」すなわち「元の非同期型・多値論理回路の反転・論理動作とその非反転・論理動作」は次の通りである。
◆a)反転・論理動作;
入力端子Tin1、Tin2、Tin3の入力整数Nin1、Nin2、Nin3のうち、少なくとも1つが整数(H+G)/2なら出力端子Toutからの出力は開放され、そうでないなら出力端子Toutから出力用特定整数mが出力される。このため、図51の先願・実施例20の「同期ラッチング機能を持つ多値論理手段」は「さらに本発明者が『入力用特定整数を(H+G)/2とする同期型(多値)NOR回路』と呼ぶ回路」になる。
◆b)非反転・論理動作;
さらにトランジスタ41のゲート端子がQ端子からQバー端子に接続し直された場合、その3つの入力整数Nin1、Nin2、Nin3のうち、少なくとも1つが整数(H+G)/2なら出力端子Toutから出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。このため、図51の先願・実施例20の「同期ラッチング機能を持つ多値論理手段」は「さらに本発明者が『入力用特定整数を(H+G)/2とする同期型(多値)OR回路』と呼ぶ回路」になる。
◇ ◆ Prior application / Example 20 shown in Fig. 51 ◆ ◇
The prior application / Example 20 shown in FIG. 51 is an application of the example shown in FIG. 13 of JP-A-2005-236985.
◆ ◇ ◆ 1) When H = G + 2, the specific integer for input is (H + G) / 2. The prior application / Example 20 in FIG. 51 is a “multi-value logic circuit that the inventor calls a synchronous multi-value NOR circuit”, but the gate connection of the transistor 41 is changed from the Q terminal to the Q bar terminal. In this case, the prior application / embodiment 20 in FIG. 51 becomes a “multi-value logic circuit that the present inventor calls a synchronous multi-value OR circuit”.
For the sake of clarity, “the logic in each case where the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronization operation. The “operation”, that is, “inversion / logical operation of the original asynchronous type / multi-valued logic circuit and non-inversion / logic operation thereof” is as follows.
◆ a) Inversion / logical operation;
If at least one of the input integers N in1 , N in2 , and N in3 of the input terminals T in1 , T in2 , and T in3 is an integer (H + G) / 2, the output from the output terminal T out is released. certain output from the T out integer m is output. Therefore, the “multi-valued logic means having synchronous latching function” of the prior application / embodiment 20 of FIG. 51 is “the synchronous type (multi-valued) in which the present inventor“ has a specific integer for input (H + G) / 2 ”. The circuit is called “NOR circuit”.
◆ b) Non-inversion / logical operation;
Further, when the gate terminal of the transistor 41 is reconnected from the Q terminal to the Q bar terminal, if at least one of the three input integers N in1 , N in2 , N in3 is an integer (H + G) / 2, the output terminal T The output specific integer m is output from out, otherwise the output from the output terminal T out is released. Therefore, the “multi-valued logic means having synchronous latching function” of the prior application / embodiment 20 of FIG. 51 is “the synchronous type (multi-valued) in which the present inventor“ has a specific integer for input (H + G) / 2 ”. The circuit is called an “OR circuit”.
◆◇◆2)H>G+2の場合その2つの入力用特定整数はHとGである。そして、図51の先願・実施例20は「本発明者が『2つの入力用特定整数(値)をHとGとする同期型(多値)NAND回路・NOUT回路(又は同期型OR・OUT回路)』と呼ぶ回路」であるが、トランジスタ41のゲートの接続をQ端子からQバー端子に変更すれば、図51の先願・実施例20は「本発明者が『2つの入力用特定整数(値)をHとGとする同期型AND・NOUT回路(または同期型NOR・OUT回路)』と呼ぶ回路」になる。
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各場合の論理動作」すなわち「元の非同期型・多値論理回路の反転・論理動作とその非反転・論理動作」は次の通りである。
◆a)反転・論理動作;
その3つの入力整数Nin1、Nin2、Nin3のうち、少なくとも1つが「HとGの間に有る整数>G」なら出力端子Toutは開放され、そうでないなら出力端子Toutから出力用特定整数mが出力される。このため、図51の先願・実施例20は「本発明者が『2つの入力用特定整数(値)をHとGとする同期型(多値)NOR・IN回路(又は同期型AND・NIN回路)』と呼ぶ回路」である。
◆b)非反転・論理動作;
さらにトランジスタ41のゲート端子がQ端子からQバー端子に接続し直された場合、その3つの入力整数Nin1、Nin2、Nin3のうち、少なくとも1つが「HとGの間に有る整数>G」なら出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。このため、図51の先願・実施例20は「さらに本発明者が『2つの入力用特定整数(値)をHとGとする同期型(多値)AND・IN回路(又は同期型NOR・NIN回路)』と呼ぶ回路」になる。
◆ ◇ ◆ 2) When H> G + 2, the two specific integers for input are H and G. The prior application / embodiment 20 of FIG. 51 states that “the present inventor“ synchronous (multi-value) NAND circuit / NOUT circuit (or synchronous OR. OUT circuit) ”, but if the gate connection of the transistor 41 is changed from the Q terminal to the Q bar terminal, the prior application / embodiment 20 of FIG. This is a circuit called “synchronous AND / NOUT circuit (or synchronous NOR / OUT circuit)” in which specific integers (values) are H and G ”.
For the sake of clarity, “the logic in each case where the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronization operation. The “operation”, that is, “inversion / logical operation of the original asynchronous type / multi-valued logic circuit and non-inversion / logic operation thereof” is as follows.
◆ a) Inversion / logical operation;
If at least one of the three input integers N in1 , N in2 , N in3 is “integer between G and H> G”, the output terminal T out is opened, and if not, the output terminal T out is used for output. The specific integer m is output. For this reason, the prior application / embodiment 20 of FIG. 51 states that “the present inventor“ synchronous (multi-value) NOR / IN circuit (or synchronous AND / NIN circuit) ”.
◆ b) Non-inversion / logical operation;
Further, when the gate terminal of the transistor 41 is reconnected from the Q terminal to the Q bar terminal, at least one of the three input integers N in1 , N in2 , and N in3 is “an integer between H and G> If “G”, the output specific integer m is output, and if not, the output from the output terminal T out is released. Therefore, the prior application / embodiment 20 of FIG. 51 states that “in addition, the present inventor“ synchronous (multi-value) AND / IN circuit (or synchronous NOR circuit) in which two input integers (values) are H and G ”.・ NIN circuit) ”.
◆◇◆3)図51の先願・実施例20においてトランジスタ2a〜2c、17a〜17c、図中ダイオード3つ及び抵抗20a〜20cを取り外し、トランジスタ1a〜1cの全ドレイン端子を接続し、その共通ドレイン端子に抵抗62の開放端を接続し直した場合:
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各場合の論理動作」すなわち「元の非同期型・多値論理回路の反転・論理動作とその非反転・論理動作」は次の通りである。
◆a)反転・論理動作;
その3つの入力整数Nin1、Nin2、Nin3のうち、少なくとも1つが整数Hより小さいなら出力端子Toutからの出力は開放され、そうでないなら出力用特定整数mが出力される。言い換えると、その3つの入力整数Nin1、Nin2、Nin3のそれぞれが整数Hと等しいか大きいなら出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。
このため、図51の先願・実施例20は「本発明者が『その1つの入力用特定整数をHとする同期型NOR・UNDER回路(又は同期型AND・NUNDER回路)』と呼ぶ回路」である。
◆b)非反転・論理動作;
さらに図51の先願・実施例20においてトランジスタ41のゲート端子をQ端子からQバー端子に接続した場合、その3つの入力整数Nin1、Nin2、Nin3のうち、少なくとも1つが整数Hより小さいなら出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。言い換えると、その3つの入力整数Nin1、Nin2、Nin3のそれぞれが整数Hと等しいか大きいなら出力端子Toutからの出力は開放され、そうでないなら出力用特定整数mが出力される。
このため、図49の先願・実施例18は「本発明者が『その1つの入力用特定整数をHとする同期型OR・UNDER回路(又は同期型NAND・NUNDER回路)』と呼ぶ回路」になる。
◆ ◇ ◆ 3) In the prior application / Example 20 of FIG. 51, the transistors 2a to 2c, 17a to 17c, the three diodes and the resistors 20a to 20c in the figure are removed, and all the drain terminals of the transistors 1a to 1c are connected When the open end of the resistor 62 is reconnected to the common drain terminal:
For the sake of clarity, “the logic in each case where the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronization operation. The “operation”, that is, “inversion / logical operation of the original asynchronous type / multi-valued logic circuit and non-inversion / logic operation thereof” is as follows.
◆ a) Inversion / logical operation;
If at least one of the three input integers N in1 , N in2 , and N in3 is smaller than the integer H, the output from the output terminal T out is released, and if not, the output specific integer m is output. In other words, if each of the three input integers N in1 , N in2 , N in3 is equal to or larger than the integer H, the output specific integer m is output, otherwise the output from the output terminal T out is released.
Therefore, the prior application / embodiment 20 of FIG. 51 is a circuit called by the present inventor “a synchronous NOR / UNDER circuit (or a synchronous AND / NUNDER circuit having one input specific integer H)”. It is.
◆ b) Non-inversion / logical operation;
51, when the gate terminal of the transistor 41 is connected from the Q terminal to the Q bar terminal, at least one of the three input integers N in1 , N in2 , and N in3 is greater than the integer H. If it is smaller, the output specific integer m is output, and if not, the output from the output terminal Tout is released. In other words, if each of the three input integers N in1 , N in2 , and N in3 is equal to or larger than the integer H, the output from the output terminal T out is released, and if not, the output specific integer m is output.
For this reason, the prior application / Embodiment 18 of FIG. 49 is “a circuit that the present inventor calls a“ synchronous OR / UNDER circuit (or synchronous NAND / NUNDER circuit) in which one input specific integer is H ””. become.
◆◇◆4)トランジスタ1a〜1cを取り外し、トランジスタ17a〜17cの全ソースを電源線VHに接続し直した場合:
いま分かり易くする為に、「その同期動作に伴う時間遅れを無視して、D型フリップ・フロップ27のD入力信号と『Q出力信号、Qバー出力信号』それぞれが一致するとした各場合の論理動作」すなわち「元の非同期型・多値論理回路の反転・論理動作とその非反転・論理動作」は次の通りである。
◆a)反転・論理動作;
その3つの入力整数Nin1、Nin2、Nin3のうち、少なくとも1つが整数Gより大きいなら出力端子Toutからの出力は開放され、そうでないなら出力用特定整数mが出力される。言い換えると、その3つの入力整数Nin1、Nin2、Nin3のそれぞれが整数Gと等しいか小さいなら出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。
このため、図51の先願・実施例20は「本発明者が『その1つの入力用特定整数をGとする同期型NOR・OVER回路(又は同期型AND・NOVER回路)』と呼ぶ回路」である。
◆b)非反転・論理動作;
さらに図51の先願・実施例20においてトランジスタ41のゲート端子をQ端子からQバー端子に接続した場合、その3つの入力整数Nin1、Nin2、Nin3のうち、少なくとも1つが整数Gより大きいなら出力用特定整数mが出力され、そうでないなら出力端子Toutからの出力は開放される。言い換えると、その3つの入力整数Nin1、Nin2、Nin3のそれぞれが整数Gと等しいか小さいなら出力端子Toutからの出力は開放され、そうでないなら出力端子Toutから出力用特定整数mが出力される。
このため、図51の先願・実施例20は「さらに本発明者が『その1つの入力用特定整数をGとする同期型OR・OVER回路(又は同期型NAND・NOVER回路)』と呼ぶ回路になる。
なお、図51の先願・実施例20では双方向性プル・スイッチング手段としてトランジスタ3、4の逆向き直列回路を用いているが、その双方向性プル・スイッチング手段の代わりにプル・スイッチング手段として図37の実施例6や図38の実施例7の様に「逆阻止型または逆導通型」の「プル・アップ・スイッチング手段またはプル・ダウン・スイッチング手段」を使う実施例も又可能である。
◆ ◇ ◆ 4) Remove the transistor 1 a to 1 c, when reconnect all the source of the transistor 17a~17c the power supply line V H:
For the sake of clarity, “the logic in each case where the D input signal of the D-type flip-flop 27 and the“ Q output signal, Q bar output signal ”match each other, ignoring the time delay associated with the synchronization operation. The “operation”, that is, “inversion / logical operation of the original asynchronous type / multi-valued logic circuit and non-inversion / logic operation thereof” is as follows.
◆ a) Inversion / logical operation;
If at least one of the three input integers N in1 , N in2 , and N in3 is larger than the integer G, the output from the output terminal T out is released, and if not, the output specific integer m is output. In other words, if each of the three input integers N in1 , N in2 , and N in3 is equal to or smaller than the integer G, the output specific integer m is output, otherwise the output from the output terminal T out is released.
For this reason, the prior application / embodiment 20 of FIG. 51 is a circuit called by the present inventor “a synchronous NOR / OVER circuit (or a synchronous AND / NOVER circuit) having one input specific integer G”. It is.
◆ b) Non-inversion / logical operation;
51, when the gate terminal of the transistor 41 is connected from the Q terminal to the Q bar terminal, at least one of the three input integers N in1 , N in2 , and N in3 is greater than the integer G. If it is larger, the output specific integer m is outputted, and if not, the output from the output terminal Tout is released. In other words, if each of the three input integers N in1 , N in2 , N in3 is equal to or smaller than the integer G, the output from the output terminal T out is released, otherwise, the output specific integer m from the output terminal T out. Is output.
For this reason, the prior application / embodiment 20 of FIG. 51 is a circuit further referred to as “a synchronous OR / OVER circuit (or a synchronous NAND / NOVER circuit) in which the input specific integer is G”. become.
51, the reverse series circuit of the transistors 3 and 4 is used as the bidirectional pull switching means. However, the pull switching means is used instead of the bidirectional pull switching means. As in the sixth embodiment in FIG. 37 and the seventh embodiment in FIG. 38, an embodiment using a “reverse blocking type or reverse conducting type” “pull up switching means or pull down switching means” is also possible. is there.
◇◆ 図52に示す先願・実施例21◆◇
図52に示す先願・実施例21では同期信号発生手段60(=同期信号供給手段)とD型フリップ・フロップ70は同じ両電源線V0、V−1から電源供給を受ける。
また、そのオン・オフ駆動手段をトランジスタ71、72、ダイオード39及び抵抗15が構成し、その双方向性プル・スイッチング手段をトランジスタ73、74が構成する。
さらに、「トランジスタ1、2、17及び抵抗20、62が構成する数値判別手段」の代わりに「図39中のトランジスタ31〜33、ダイオード34及び抵抗20、62、67が構成する数値判別手段」、「図47中のトランジスタ31a〜33a、31b〜33b、ダイオード34、35a、35b及び抵抗20a、20b、62、67が構成する数値判別手段」、「図48中のトランジスタ31a〜32a、31b〜32b、33、ダイオード34、68a、68b及び抵抗20、62、67が構成する数値判別手段」を使う各実施例も可能である。
それから、「図52中に示す電源線V−1、V0」それぞれの代わりに電源線V0、V1それぞれを使用し、つまりその各電源電位を1つずつ上げ、トランジスタ72〜74、ダイオード39及び抵抗15を取り外し、トランジスタ71のドレイン端子を出力端子Toutとすることもできる。この場合、「その内蔵ダイオードの形成によりトランジスタ71を逆導通型プル・ダウン・スイッチング手段として使う場合」も有るし、「逆阻止用ダイオードをトランジスタ71に直列接続して、この直列回路を逆阻止型プル・ダウン・スイッチング手段として使う場合」も有る。 ( 別の実施例 )
又は、Nチャネル型とPチャネル型の違いは有るが、図38の先願・実施例7と同様に「トランジスタ74の代わりにダイオード12を用いてトランジスタ73と共に逆阻止型プル・ダウン・スイッチング手段を構成する」か「トランジスタ74を取り外し、トランジスタ73のソース端子などを出力端子Toutにして逆導通型プル・ダウン・スイッチング手段を構成する」こともできる。 ( 派生実施例 )
又は、Nチャネル型とPチャネル型の違いは有るが、図37の先願・実施例6と同様に「トランジスタ73を取り外し、トランジスタ74のソース等を電源線Vmに直結して逆導通型プル・アップ・スイッチング手段を構成する」か「トランジスタ73を取り外し、トランジスタ74のソース等を電源線Vmに直結し、トランジスタ74のドレインと出力端子Toutの間にダイオード10を挿入・接続して、トランジスタ74とダイオード10で逆阻止型プル・アップ・スイッチング手段を構成する」こともできる。
( 派生実施例 )
◇ ◆ Prior application / Example 21 shown in Fig. 52 ◆ ◇
In the prior application / embodiment 21 shown in FIG. 52, the synchronizing signal generating means 60 (= synchronizing signal supplying means) and the D-type flip-flop 70 are supplied with power from the same power supply lines V 0 and V −1 .
Further, the transistors 71 and 72, the diode 39, and the resistor 15 constitute the on / off driving means, and the transistors 73 and 74 constitute the bidirectional pull switching means.
Furthermore, instead of “numerical value discriminating means constituted by transistors 1, 2, 17 and resistors 20, 62”, “numerical value discriminating means constituted by transistors 31 to 33, diode 34 and resistors 20, 62, 67 in FIG. 39”. , “Numerical discriminating means constituted by transistors 31a to 33a, 31b to 33b, diodes 34, 35a and 35b and resistors 20a, 20b, 62 and 67 in FIG. 47” and “transistors 31a to 32a and 31b to FIG. Embodiments using “numerical value discriminating means comprising 32b, 33, diodes 34, 68a, 68b and resistors 20, 62, 67” are also possible.
Then, instead of the “power supply lines V −1 and V 0 shown in FIG. 52”, the power supply lines V 0 and V 1 are used, that is, the respective power supply potentials are raised one by one, transistors 72 to 74, diodes 39 and the resistor 15 can be removed, and the drain terminal of the transistor 71 can be used as the output terminal Tout . In this case, there is a case where the transistor 71 is used as a reverse conduction type pull-down switching means by forming the built-in diode, and a case where a reverse blocking diode is connected in series to the transistor 71 to reverse block this series circuit. There is also a case of using as a type pull-down switching means. (Another example)
Or, although there is a difference between the N-channel type and the P-channel type, as in the prior application / Embodiment 7 of FIG. Or “removing the transistor 74 and using the source terminal of the transistor 73 as the output terminal T out to configure a reverse conduction type pull-down switching means”. (Derived example)
Or, although differences in N-channel and P-channel type there, similarly to the previous application, Embodiment 6 of FIG. 37 and remove the "transistor 73, reverse conducting directly connected to the source or the like of the transistor 74 to the power supply line V m constituting the pull-up switching unit "or remove the" transistor 73, directly connected to the source or the like of the transistor 74 to the power supply line V m, the diode 10 inserted and connected between the drain and the output terminal T out of the transistor 74 Thus, the transistor 74 and the diode 10 constitute reverse blocking pull-up switching means. "
(Derived example)
◇◆ 先願・実施例22◆◇
別の実施例(図示せず。)について説明する。前述した「図32に示す先願・実施例1」は「特開2005−236985号(特許文献3)の図9の多値論理回路において、ダイオード26及び抵抗27が無い場合で、『ダイオード25と抵抗23の接続点』・『トランジスタ24のゲート』間に図32の先願・実施例1中のD型フリップ・フロップ27を挿入・接続する等し、双方向性プル・スイッチング手段のターン・オフ速度を図32の先願・実施例1中のトランジスタ37等で速めたもの」である。
同様に、特開2005−236985号の図11、図13、図17、図20、図23(b)、図25(b)の各・多値論理回路においても同様な事をした本発明の各実施例が可能である。
つまり、特開2005−236985号の図17、図20の各多値論理回路では2つ有るPMOSのうち、前段のPMOSのドレインと後段のPMOSのゲートの間に同様に「両電源線Vm+1・Vmから電源供給されたD型フリップ・フロップ27」を挿入・接続する等することになる。
また、特開2005−236985号の図23(b)の多値論理回路では前段の「入力端子In4を持つPMOS」のドレインと後段のPMOSのゲートの間に同様に「両電源線Vm+1・Vmから電源供給されたD型フリップ・フロップ27」を挿入・接続する等することになる。
さらに、特開2005−236985号の図25(b)の多値論理回路では前段のPMOS4つのドレイン接続点と後段のPMOSのゲートの間に同様に「両電源線Vm+1・Vmから電源供給されたD型フリップ・フロップ27」を挿入・接続する等することになる。
「図32に示す先願・実施例1から図33〜38に示す先願・実施例2〜7それぞれへ派生した」のと同様に、その入力用特定整数の数値と個数を変更したり、あるいは、そのプル・スイッチング手段を逆導通型または逆阻止型に変更したり、あるいは、そのプル・スイッチング手段の一方のスイッチ端子を接続する電源線を変更したりすることによって、「上述の特開2005−236985号の各実施例から派生した本発明の各実施例」からさらに派生した各・派生実施例が可能である。そして、これら本発明の各実施例またはその各・派生実施例でも本発明・「図32に示す先願・実施例1」の様にトランジスタ37等でその双方向性スイッチング手段のターン・オフを速めた各・派生実施例も可能である。
( 派生実施例 )
つまり、トランジスタ37等の有る場合と無い場合の各派生実施例が有るということである。
◇ ◆ Prior application / Example 22 ◆ ◇
Another embodiment (not shown) will be described. The above-mentioned “prior application / Example 1 shown in FIG. 32” is a case where the diode 26 and the resistor 27 are not provided in the multi-value logic circuit of FIG. 9 of “Japanese Patent Laid-Open No. 2005-236985” (Patent Document 3). 32 and the gate of the transistor 24), the D-type flip-flop 27 in FIG. 32 is inserted and connected between the gate of the transistor 24 and the turn of the bidirectional pull switching means. “The off-speed is increased by the transistor 37 etc. in the prior application / embodiment 1 of FIG. 32”.
Similarly, in each of the multi-value logic circuits shown in FIGS. 11, 13, 17, 17, 20, 23 (b), and 25 (b) of Japanese Patent Laid-Open No. 2005-236985, the same thing is applied. Each embodiment is possible.
That is, in each of the multi-valued logic circuits of FIGS. 17 and 20 of Japanese Patent Laid-Open No. 2005-236985, among the two PMOSs, the “both power supply lines V m + 1 ” is similarly placed between the drain of the preceding PMOS and the gate of the subsequent PMOS. · comprising a D-type flip-flop 27 'which is powered from V m to equal to the insertion and connection.
In the multi-value logic circuit of FIG. 23B of Japanese Patent Laid-Open No. 2005-236985, “both power supply lines V m + 1. It will be equal to inserting and connecting the D-type flip-flop 27 'which is powered from V m.
Further, in the multi-value logic circuit shown in FIG. 25B of Japanese Patent Laid-Open No. 2005-236985, “power is supplied from both power supply lines V m + 1 · V m similarly between the drain connection points of the four preceding PMOSs and the gate of the subsequent PMOS. The inserted D-type flip-flop 27 "is inserted and connected.
In the same way as “derived from the prior application / Example 1 shown in FIG. 32 to the prior application / Examples 2-7 shown in FIGS. 33 to 38”, the numerical value and the number of the specific integer for input can be changed, Alternatively, by changing the pull switching means to the reverse conduction type or reverse blocking type, or by changing the power line connecting one switch terminal of the pull switching means, Each derived embodiment further derived from “each embodiment of the present invention derived from each embodiment of 2005-236985” is possible. In each of the embodiments of the present invention or each of the embodiments thereof, the bidirectional switching means is turned off by the transistor 37 or the like as in the present invention “first application shown in FIG. 32 / embodiment 1”. Expedited variants are possible.
(Derived example)
In other words, there are derivative examples with and without the transistor 37 and the like.
先願第1、第2発明に関して、最後に、その1構成手段である2値同期型フリップ・フロップ手段のデータ入力部(例:D端子の入力部。)が「その入力整数がその1つの入力用特定整数より『大きいか大きくないか』又は『小さいか小さくないか』を判別する数値判別手段の要件を満たしていれば、その2値同期型フリップ・フロップ手段がその数値判別手段を兼ねてももちろん構わない。
また、追加効果として、多値論理手段・単位で同期ラッチングできるので、その全体回路の組み方に柔軟性が有って、全体の回路構成の選択肢が増えて便利になる。従来だと必ず多値回路と多値回路の間に多値同期ラッチング回路を設けなければならなかった。
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆◆◆
以上、「フージ代数の原則に基づく各種の多値論理回路」及び「特許文献16、17の特開2012−075084号と特開2014−135709号」の「同期ラッチング機能を持つ多値論理手段と多値ハザード除去手段」等を本発明発明の説明において技術常識と同様に扱うことができる様に、念の為、それらの技術などを段落番号[0122〜0249]において本発明者は説明した。
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
Regarding the first and second inventions of the prior application, finally, the data input section (eg, the input section of the D terminal) of the binary synchronous flip-flop means which is one of the constituent means is “the input integer is the one of the input integers. If the requirement of the numerical discriminating means for discriminating whether it is “larger or not larger” or “smaller or smaller” than the input specific integer is satisfied, the binary synchronous flip-flop means also serves as the numerical discriminating means. Of course.
As an additional effect, synchronous latching can be performed by multi-value logic means / unit, so that the whole circuit assembly method is flexible, and the number of options for the entire circuit configuration is increased, which is convenient. Conventionally, a multi-level synchronous latching circuit must be provided between the multi-level circuit and the multi-level circuit.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆◆◆
As described above, “various multi-value logic circuits based on the principle of the Fuji algebra” and “multi-value logic means having synchronous latching function” disclosed in Japanese Patent Application Laid-Open Nos. 2012-077504 and 2014-135709 of Patent Documents 16 and 17 In order to be able to handle “multi-value hazard removing means” and the like in the description of the present invention in the same manner as the common technical knowledge, the present inventors have described these techniques and the like in paragraphs [0122 to 0249].
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆◆◆***** 「あいまいさ」を表現できる各種の新・多値論理 *****◆◆◆
***
●●28)本発明者が創(つく)り出した8個の新・多値論理、「多値OVER論理、多値NOVER(ノウバー)論理、多値UNDER論理、多値NUNDER(ナンダー)論理、多値IN論理、多値NIN(ニン)論理、多値OUT論理、多値NOUT(ナウト)論理」の各・多値論理回路を使うことによって「曖昧(あいまい)さ」を自由・柔軟に簡単に定義・表現することができる。
これらの各・多値論理回路を使って例えば下記の様に「曖昧さ」を自由・柔軟に簡単に定義したり、表現したりすることができる。
◆例1:論理数値的に「大体この辺の数値」と表現する場合。0〜9の中で「3〜5」とか「4〜6」とか「≦2」とか「7≦」。
◆例2:Yes(→数値9)、No(→数値0)どちらとも言えない、どっち付かずの場合を数値「4、5」で表現。
◆例3:「どちらかと言えばYes寄り」と表現する場合。「数値9がYes」、「数値0がNo」を意味すると定義したときに「6〜7」。
◆例4:「どちらかと言えばNo寄り」と表現する場合。「数値9がYes」、「数値0がNo」を意味すると定義したときに「2〜3」。
◆例5:「疑わしきは被告人の利益に」ということで「限りなく有罪(→数値0)に近い灰色無罪(→数値1)」を表現する場合。つまり、数値0が「完全な有罪(真っ黒)」を意味し、数値9が「完全な無罪(真っ白)」を意味すると定義したときに数値1で「限りなく有罪に近い灰色無罪」を表現する場合。
***
あとは「この各種の新・多値論理を利用する人」が自由に、好きな様に、どうにでも、各数値の意味を定義・表現することができる。
◆◆◆ ***** Various new and multi-valued logic that can express “ambiguity” ********
***
●● 28) Eight new multi-value logics created by the present inventor, “multi-value OVER logic, multi-value NOVER logic, multi-value UNDER logic, multi-value NUNDER logic Multi-value IN logic, multi-value NIN logic, multi-value OUT logic, multi-value NOUT logic Easy to define and express.
By using each of these multi-valued logic circuits, for example, “ambiguity” can be easily and freely defined and expressed as follows.
◆ Example 1: When expressed in terms of logical numerical values, “approximately the numerical values in this area”. Among 0-9, “3-5”, “4-6”, “≦ 2”, “7 ≦”.
◆ Example 2: When neither Yes (→ numerical value 9) nor No (→ numerical value 0) is attached, the case where neither is attached is represented by the numerical value “4, 5”.
◆ Example 3: When expressing as “Nearly Yes”. “6-7” when it is defined that “numerical value 9 is Yes” and “numerical value 0 is No”.
◆ Example 4: When expressing as “Nearly No”. “2-3” when it is defined that “numerical value 9 is Yes” and “numerical value 0 is No”.
◆ Example 5: When expressing “Gray innocence (→ Numeric value 1) close to guilty (→ Numerical value 0)” by saying “Suspect is in the interest of the accused”. In other words, when the numerical value 0 means "complete guilt (black)" and the numerical value 9 means "complete innocence (white)", the numerical value 1 expresses "gray innocence that is almost guilty" If.
***
After that, "the person who uses these various new and multi-valued logic" can freely define and express the meaning of each numerical value as they like.
なお、「多値OVER論理、多値UNDER論理、多値IN論理、多値OUT論理」の各多値論理回路においてその該当する入力整数の個数を、例えば「その入力用特定整数値が4と8である多値IN論理において該当する整数5、6、7の3個を複数個から徐々に1つに絞り込む」様に、絞り込むと、その各多値論理は必ず多値EVEN論理になる。
→→ 前述した段落番号[0154]の後ろ3分の1。
つまり、その絞り込みはちょうど「写真のピントの『ぼやけ』から『合致』へのピント合わせ」の様に「曖昧さ」から「明確さ」への焦点合わせを意味する為、「OVER論理、NOVER(ノウバー)論理、UNDER論理、NUNDER(ナンダー)論理、IN論理、NIN(ニン)論理、OUT論理、NOUT(ナウト)論理」及び「これらの各多値論理と多値AND論理または多値OR論理の組合せ論理」によって「曖昧さ」を表現することは的(まと)外(はず)れ、ピント外れではなく、理(り)に適(かな)っていると本発明者は考える。
そんな訳で、これらの多値論理および「これらの多値論理と多値AND論理や多値OR論理の組合せ」を使って、従来のファジー制御技術と異なる、新しい『あいまい制御技術(IMy[ai−mai]−Control−Technology)』を切り開くことができるのではないかと本発明者は考えている。なぜなら、従来のファジー制御理論では「明確にYESとNOをはっきり表現する数値0、1」の中に「あいまいさ」を表現する為にブール代数に「確率と統計の数学理論」を導入したが、一般的にはかなり複雑で、分かり難い、からである。
なお、その発音から直ぐ分かる通り、その英語名、IMy[ai−mai]はその日本語名の「あいまい」の語路(ごろ)合わせから本発明者がその様に名付けた。
The number of corresponding input integers in each multi-value logic circuit of “multi-value OVER logic, multi-value UNDER logic, multi-value IN logic, multi-value OUT logic” is, for example, “the input specific integer value is 4”. When the number of integers 5, 6, and 7 corresponding to the multi-value IN logic of 8 is narrowed down from a plurality to one, the multi-value logic always becomes multi-value EVEN logic.
→→ One third after the paragraph number [0154] mentioned above.
In other words, the refinement means focusing from “ambiguity” to “clarity” just like “focusing from“ blurring ”to“ matching ”in the focus of a photo”, so “OVER logic, NOVER ( (NOWBER) logic, UNDER logic, NUNDER logic, IN logic, NIN logic, OUT logic, NOUT logic, and "each of these multi-value logic and multi-value AND logic or multi-value OR logic The present inventor considers that expressing “ambiguity” by “combinatorial logic” is not true, is not out of focus, and is appropriate for reason.
For this reason, using these multi-value logic and “combination of these multi-value logic and multi-value AND logic and multi-value OR logic”, a new “fuzzy control technology (IMy [ai -Ai] -Control-Technology) "is considered by the present inventor. This is because in the conventional fuzzy control theory, “mathematical theory of probability and statistics” was introduced to Boolean algebra in order to express “ambiguity” in “numeric values 0 and 1 that clearly express YES and NO”. This is because it is generally quite complicated and difficult to understand.
As can be readily understood from the pronunciation, the inventor named the English name IMy [ai-mai] in such a way as to match the Japanese name “Ambiguous”.
◆◆◆*** フージ(Hooji)代数の展開・拡張性と普遍性について **◆◆◆
***
◆◇◇***
About ‘applicability,expansibility
and universality’ of “Hooji algebra”
in the field of multivalue−logic
***◇◇◆
***
●●29)今まではフージ代数(Hooji algebra)を電位モード(または電圧モード)の電子回路において展開して来たが、論理数学的にはもっと広くフージ代数を展開・拡張することができる。
○○29)We can more widely apply−&−expand “Hooji algebra” logic−mathematically,though the present inventor was applying “Hooji algebra” only in the field of electronic circuit of electric−potential mode(or voltage mode) until now.
その展開・拡張の際に問題となるのは「電子回路における出力開放または開放出力」を論理数学においてどの様に定義・表現するかである。その1例として、その「出力開放または開放出力」を「トランプ・ゲーム、七ならべ」のジョーカー(Joker)で定義・表現すれば良い。
‘A problem thought when applying−&−expanding so’ is how we should define−&−express ‘opened−output(or output−opening) in the field of electronic circuit’ in the field of logic−mathematics.
As one example,it’s all right to define−&−express the opened−output(or output−opening) like Joker in a Japanese card−game‘Shichinarabe’.
‘Shichinarabe’ is translated into ‘Fantan’,‘Sevens’ or ‘Parliament’ in English,and the game−rule of ‘Shichinarabe’ is similar to that of ‘Fantan’ according to an English=Japanese dictionary.
その様に定義・表現する理由は、よく知られている通り「トランプ・ゲーム、七ならべ」ではジョーカー(Joker)を自由に「7を除く1〜13」のいずれかの数値にも変身(又は変更)させることができる、からである。あるいは、そのジョーカー(Joker)がオール・マイティーだからである。一方、電子回路の開放出力も「そのどの電源電位にプル・アップするか、プル・ダウンするか」によって「その対応する論理数値」を自由に変更(変身)させることができる、からである。
‘The reason why the present inventor define−&−express so’ is as the following.
In the card game‘Shichinarabe’,as well known in Japan,because its game−players can freely convert Joker into one of the cards with numerical value‘1〜13 except 7’,or because the Joker is almighty.
And because we can freely convert ‘an opened−output too in the electronic circuit’ into one of the logic−numerical−values used in “Hooji algebra” by pulling up−or−down the opened−output to the power−source−electric−potential correspondent to the one logic−numerical−value.
◆◆◆ *** About the expansion, expandability and universality of Hooji algebra ** ◆◆◆
***
◆ ◇◇ ***
About 'applicability, expirability
and universality 'of “Hooji algebra”
in the field of multivalue-logic
*** ◇◇ ◆
***
●● 29) Up to now, the Houji algebra has been developed in the electric circuit of the potential mode (or the voltage mode), but the Fuji algebra can be expanded and expanded more logically.
○○ 29) We can more widely apply - & - expand "Hooji algebra" logic-mathematically, though the present inventor was applying "Hooji algebra" only in the field of electronic circuit of electric-potential mode (or voltage mode) until now .
The problem in the expansion and expansion is how to define and express “open output or open output in an electronic circuit” in logical mathematics. As an example, the “output release or release output” may be defined and represented by a “card game, seven-layered” joker.
'A probable what when applying-&-expanding so'
As one example, it's all right to define-&-express the opened-output (or output-opening) like Joker in a Japan card-game'game.
'Shichinabe' is translated into the 'Fantan', 'Sevens' or 'Parliament' in English, and the game-rule of. 'Shichinarbe' is similar to the att.
The reason for defining and expressing it in this way is that, as is well known, in “Trump Game, Shichibanaibe”, Joker is freely transformed into any number of “1 to 13 excluding 7” (or Change). Or because the joker is all-mighty. On the other hand, the open output of the electronic circuit can also freely change (transform) its “corresponding logical value” depending on “to which power supply potential it is pulled up or pulled down”.
'The reason why the present inventor define-&-express so' is as the following.
In the card game'Shichinarabe ', as well known in Japan, because its game-players can freely convert Joker into one of the cards with numerical value'1~13 except 7', or because the Joker is almighty.
And because we can freely convert 'an opened-output too in the electronic circuit' into one of the logic-numerical-values used in "Hooji algebra" by pulling up-or-down the opened-output to the power-source-electric -Potential correspondent to the one-logic-numerical-value.
だから、例えばNOT(7)=7の意味は「その入力数値が7の時その出力はJkr(Jokerの略字。1具体例:電位モードの電子回路なら開放出力。)であり、その入力数値が7ではない時その出力は数値7である」という意味に拡張される。
So,for the 1st example,the meaning of “NOT(7)=7” is expanded into the meaning of the following.
Its output is Jkr(=an abbreviation of Joker) when its input−numerical−value is ‘7’,but its output is numerical−value‘7’ when its input−numerical−value isn’t ‘7’.
( A concrete example of Jkr:an opened−output in the electronic circuit of electric−potential mode.)
また、例えばAND(5)=5の意味は「その複数個の入力数値のすべてが5の時その出力は数値5であり、そうでない時(=その複数個の入力数値のうち、1つでも5ではない時)その出力はJkr(Jokerの略字。1具体例:上記電子回路なら開放出力。)である」という意味に拡張される。
And,for the 2nd example,the meaning of “AND(5)=5” is expanded into the meaning of the following.
Its output is numerical−value‘5’ when all of its plural input−numerical−values are ‘5’,but its output is Jkr(=Joker) when being not so(=when at least one of its plural input−numerical−values aren’t ‘5’).
( A concrete example of Jkr:an opened−output in the electronic circuit of electric−potential mode.)
さらに、例えばOR(3)=3の意味は「その複数個の入力数値のうち、少なくとも1つが3の時その出力は数値3であり、そうでない時(=その複数個の入力数値のすべてが3以外の数値である時)その出力はJkr(Jokerの略字。1具体例:上記電子回路なら開放出力。)である」という意味に拡張される。
And,for the 3rd example,the meaning of “OR(3)=3” is expanded into the meaning of the following.
Its output is numerical−value‘3’ when at least one of its plural input−numerical−values are ‘3’,but its output is Jkr(=Joker) when being not so(=when all of its plural input−numerical−values are ‘a value or values’ except ‘3’).
( A concrete example of Jkr:an opened−output in the electronic circuit of electric−potential mode.)
Therefore, for example, NOT (7) = 7 means “when the input numerical value is 7, the output is Jkr (Abbreviation of Joker. One specific example: open output in the case of electric circuit in potential mode), and the input numerical value is When it is not 7, the output is the numerical value 7 ”.
So, for the 1st example, the means of “NOT (7) = 7” is expanded into the means of the following.
It's output is Jkr (= an abrasion of Joker) when it's input-numerical-value is' 7 ', but it's output is numeric-value-'7' when it's int
(A concrete example of Jkr: an opened-output in the electrical circuit of electrical-potential mode.)
Further, for example, AND (5) = 5 means “when all of the plurality of input numerical values are 5, the output is the numerical value 5; otherwise (= at least one of the plurality of input numerical values). The output is extended to the meaning of “Jkr (abbreviation of Joker. 1 specific example: open output in the case of the electronic circuit)”.
And, the the 2nd example, the means of of “AND (5) = 5” is expanded into the means of the following.
Its output is numeric-value '5' when all of it's full input-numerical-values are '5', but it's output is Jr (= Joker) when bet. values aren't '5').
(A concrete example of Jkr: an opened-output in the electrical circuit of electrical-potential mode.)
Further, for example, OR (3) = 3 means “if at least one of the plurality of input numerical values is 3, the output is the numerical value 3; otherwise (= all of the plurality of input numerical values are all The output is extended to the meaning of “Jkr (Joke abbreviation. One specific example: open output in the case of the electronic circuit)”.
And, the the 3rd example, the mean of of “OR (3) = 3” is expanded into the mean of of the flowing.
Its output is numeric-value '3' when at least one of it's full input-numerical-values are '3', but outputs output is Jkr (= Joker) values area 'a value or values' exception '3').
(A concrete example of Jkr: an opened-output in the electrical circuit of electrical-potential mode.)
光回路で具体的に言えば、フージ代数を光回路へ展開する1具体例として各・論理数値を「互いに周波数の異なる同数個の光」と1対1ずつ対応させる場合、Jokerも「そのいずれの周波数とも異なる光」に対応させる。
Concretely speaking of light−multivalue−logic−circuits on the basis of “Hooji algebra”,one of the concrete examples is as the following.
In case when each logic−numerical−value is one by one correspondent to each of lights whose frequencies are different from each other,Joker too is correspondent to another light whose frequency is different from any of their light frequencies.
この場合、下記・光周波数変換などを実現できるかどうかは別にして「電子回路のプル・アップ結線作業またはプル・ダウン結線作業」などに相当するのが「そのJokerの光周波数をそのいずれか1つの論理数値の光周波数に変換する変換手段を設ける設置作業」又は「そのJoker光の出力を停止または遮断(しゃだん)する停止・遮断手段を設ける設置作業」又は「そのJoker光に対して何もせず、そのまま出力させること」である。
In this case,setting apart whether we can realize the following light−frequency−converting etc. or not,
‘Pulling−up−or−down etc. in an electronic circuit’ are correspondent with ‘Converting the frequency of Joker−light into one of the frequencies of their logic−numerical−value−lights’ or ‘Stopping or Interrupting the output of the Joker−light’ or ‘Letting the Joker−light pass through without doing anything to it ’.
More specifically, in the optical circuit, as one specific example of expanding the Fuji algebra to the optical circuit, when each logical value is made to correspond to “the same number of lights having different frequencies” one by one, To light with a different frequency.
Concrete speaking of light-multivalue-logic-circuits on the basis of “Hooji algebra”
In case when each logic-numerical-value is one by one correspondent to each of lights whose frequencies are different from each other, Joker too is correspondent to another light whose frequency is different from any of their light frequencies.
In this case, aside from whether or not the following optical frequency conversion can be realized, it corresponds to “electronic circuit pull-up connection work or pull-down connection work”, etc. "Installation work for providing conversion means for converting to one logical numerical optical frequency" or "Installation work for providing stop / blocking means for stopping or blocking the output of the Joker light" or "For the Joker light" Do nothing and output as is. "
In this case, setting apart where the canalize the following light-frequency-conversing etc. or not,
'Pulling-up-or-down etc. in an electronic circuit 'are correspondent with' Converting the frequency of Joker-light into one of the frequencies of their logic-numerical-value-lights 'or' Stopping or Interrupting the output of the Joker-light 'or' Letting the Joker- light pass through without doing to it '.
少し詳しく言えば、その光周波数・変換手段の設置作業が「そのいずれかの論理数値に対応する電源電位にその出力電位をプル・アップ又はプル・ダウンする結線作業」に対応し、「そのJoker光に対して何もせず、そのまま出力させること」が「そのいずれの論理数値にも対応しない電源電位にその出力電位をプル・アップ又はプル・ダウンする結線作業」に対応し、そのJoker光出力停止・遮断手段の設置作業が「図12の実施例中の各多値OR回路の出力端子(=出力端子Tf)と同様にそれらにプル・アップ抵抗もプル・ダウン抵抗も接続しないこと」に対応する。
A little minutely speaking,the ‘converting light−frequency’ is correspondent with ‘pulling “the output−electric−potential of a logic−circuit” up−or−down to the power−source−electric−potential correspondent to one of the logic−numerical−values’.
And the ‘letting the Joker−light pass through without doing anything to it’ is correspondent with ‘pulling the output−electric−potential up−or−down to the power−source−electric−potential correspondent to no one of the logic−numerical−values’.
And the ‘stopping or interrupting the output of the Joker−light’ is correspondent with ‘connecting neither pull−up−resister nor pull−down−resister to the common output−terminal‘Tf’ of all the multivalue OR (logic) circuits in the working example showed fig.12’.
More specifically, the installation work of the optical frequency / conversion means corresponds to “connection work for pulling up or pulling down the output potential to the power supply potential corresponding to any one of the logical values” and “the Joker”. “Do nothing for the light and output it as it is” corresponds to “a wiring operation that pulls up or down the output potential to a power supply potential that does not correspond to any of the logical values”, and its Joker light output The installation work of the stopping / shut-off means is “Never connect a pull-up resistor or a pull-down resistor to the output terminal (= output terminal Tf) of each multi-value OR circuit in the embodiment of FIG. 12”. Correspond.
A little minutely speaking, the 'converting light-frequency' is correspondent with 'pulling "the output-electric-potential of a logic-circuit" up-or-down to the power-source-electric-potential correspondent to one of the logic -Numeral-values'.
And the 'letting the Joker-light pass through without doing anything to it' is correspondent with 'pulling the output-electric-potential up-or-down to the power-source-electric-potential correspondent to no one of the logic-numerical -Values'.
And the 'stopping or interrupting the output of the Joker-light' is correspondent with 'connecting neither pull-up-resister nor pull-down-resister to the common output-terminal'Tf' of all the multivalue OR (logic) circuits in the working example showered fig. 12 '.
そして、フージ代数を光回路へ展開する別の1具体例として、各・論理数値を「互いに偏光方向の異なる同数個の光」と1対1ずつ対応させる場合、Jokerも「そのいずれの偏光方向とも異なる光」に対応させる。
And another concrete example on the basis of “Hooji algebra” is as the following.
In case when each logic−numerical−value is one by one correspondent to each of lights whose polarization−directions are different from each other,Joker too is correspondent to another light whose polarization−direction is different from any of their polarization−directions.
この場合、それらの偏光方向の「検出または判別」や下記・偏光方向変換などを実現できるかどうかは別にして「電子回路のプル・アップ結線作業またはプル・ダウン結線作業」などに相当するのが「そのJokerの偏光方向をそのいずれか1つの論理数値の偏光方向に変換する変換手段を設ける設置作業」又は「そのJoker光の出力を停止または遮断(しゃだん)する停止・遮断手段を設ける設置作業」又は「そのJoker光に対して何もせず、そのまま出力させること」である。
In this case,‘Pulling−up−or−down etc. in an electronic circuit’ are correspondent with ‘Converting the polarization−direction of Joker−light into one of the polarization−directions of their logic−numerical−value−lights’ or ‘Stopping or Interrupting the output of the Joker−light’ or ‘Letting the Joker−light pass through without doing anything to it ’.
But setting apart whether we can realize the following means or not.
(1) A means for detecting−or−discriminating their polarization−direction.
(2) A means for converting as mentioned above.
(3) Etc..
As another specific example of developing the Fuji algebra into an optical circuit, when each logical value is made to correspond one-to-one with “the same number of lights having different polarization directions”, It corresponds to "light different from".
And another concrete example on the basis of “Hooji algebra” is as the following.
In case when each logic-numerical-value is one by one correspondent to each of lights whose polarization-directions are different from each other, Joker too is correspondent to another light whose polarization-direction is different from any of their polarization-directions.
In this case, it corresponds to "pull-up connection work or pull-down connection work of electronic circuits", etc., apart from whether or not "detection or discrimination" of those polarization directions and the following polarization direction conversion can be realized. “Installation work for providing a conversion means for converting the polarization direction of the Joker into a polarization direction of any one of its logical values” or “Providing a stop / blocking means for stopping or blocking the output of the Joker light” “Installation work” or “Do nothing with the Joker light and output it as it is”.
In this case, 'Pulling-up-or-down etc. in an electronic circuit 'are correspondent with' Converting the polarization-direction of Joker-light into one of the polarization-directions of their logic-numerical-value-lights 'or' Stopping or Interrupting the output of the Joker-light 'or'Let's the Joker-light pass through without annoying to it '.
But setting apart where we can realize the following means or not.
(1) A means for detecting-or-discriminating tear polarization-direction.
(2) A means for converting as attended above.
(3) Etc. .
少し詳しく言えば、その光偏光方向・変換手段の設置作業が「そのいずれかの論理数値に対応する電源電位にその出力電位をプル・アップ又はプル・ダウンする結線作業」に対応し、「そのJoker光に対して何もせず、そのまま出力させること」が「そのいずれの論理数値にも対応しない電源電位にその出力電位をプル・アップ又はプル・ダウンする結線作業」に対応し、そのJoker光出力停止・遮断手段の設置作業が「図12の実施例中の各多値OR回路の出力端子(=出力端子Tf)と同様にそれらにプル・アップ抵抗もプル・ダウン抵抗も接続しないこと」に対応する。
A little minutely speaking,the ‘converting polarization−direction’ is correspondent with ‘pulling “the output−electric−potential of a logic−circuit” up−or−down to the power−source−electric−potential correspondent to one of the logic−numerical−values’.
And the ‘letting the Joker light pass through without doing anything to it’ is correspondent with ‘pulling the output−electric−potential up−or−down to the power−source−electric−potential correspondent to no one of the logic−numerical−values’.
And the ‘stopping or interrupting the output of the Joker light’ is correspondent with ‘connecting neither pull−up−resister nor pull−down−resister to the common output−terminal‘Tf’ of all the multivalue OR (logic) circuits in the working example showed fig.12’.
以上の様に、前述した各光変換手段などを実現できれば、フージ代数を電子回路分野に加えて光回路分野へも展開することができるので、フージ代数の適用分野を拡張することができる。いや、考え方としては既に展開、拡張することができた。
→→ フージ代数(Hooji algebra)の展開・拡張性と普遍性。
As mentioned till here,we can expand the fields to be able to apply “Hooji algebra” to,because we can apply “Hooji algebra” to the field of light circuit too in addition to the field of electronic circuit,if we can realize above−mentioned each light−converting−means etc..
Namely,it has already been accomplished how we should think when applying−&−expanding “Hooji algebra” to real light−circuits.
蛇足ではあるが、光多値論理回路のことも考慮すると、多値を英語でmulti−levelと訳すのはそぐわない。やはりmultivalue等の方がぴったりである。
Speaking a superfluous thing,the present inventor thinks it better to use widely one of the words of “multivalue,multivalued etc.” than to use a word of “multilevel” when thinking about Light−multivalue−logic−circuits too.
Because it’s nothing to be called ‘high−level or low−level’ in either case of the light−frequencies or the light−polarization−angles.
→→ ●‘Applicability,Expansibility and universality’ of “Hooji algebra”.
In a little more detail, the installation work of the light polarization direction / conversion means corresponds to the “connection work of pulling up or pulling down the output potential to the power supply potential corresponding to any one of the logical values” “Do nothing with Joker light and output it as it is” corresponds to “wiring work to pull up or pull down the output potential to a power supply potential that does not correspond to any of the logical values”. The installation work of the output stop / shut-off means is “no pull-up resistor or pull-down resistor connected to the output terminal (= output terminal Tf) of each multi-level OR circuit in the embodiment of FIG. 12”. Corresponding to
A little minutely speaking, the 'converting polarization-direction' is correspondent with 'pulling "the output-electric-potential of a logic-circuit" up-or-down to the power-source-electric-potential correspondent to one of the logic -Numeral-values'.
And the 'letting the Joker light pass through without doing anything to it' is correspondent with 'pulling the output-electric-potential up-or-down to the power-source-electric-potential correspondent to no one of the logic-numerical- values'.
And the 'stopping or interrupting the output of the Joker light' is correspondent with 'connecting neither pull-up-resister nor pull-down-resister to the common output-terminal'Tf' of all the multivalue OR (logic) circuits in the working example showered fig. 12 '.
As described above, if the above-described optical conversion means and the like can be realized, the fuji algebra can be expanded to the optical circuit field in addition to the electronic circuit field, so that the application field of the fuji algebra can be expanded. No, the idea has already been expanded and expanded.
→→ The expansion, expandability and universality of Hooji algebra.
As mentioned till here, we can expand the fields to be able to apply "Hooji algebra" to, because we can apply "Hooji algebra" to the field of light circuit too in addition to the field of electronic circuit, if we can realize above -Mentioned eagle light-converting-means etc. .
Namely, it has already been accomplished how we should think when applying-&-expanding “Hooji algebra” to real light-circuits.
Although it is snake-legged, considering multi-level optical circuits, it is not appropriate to translate multi-level into multi-level in English. After all, multivalue is more suitable.
Speaking a superfluous thing, the present inventor thinks it better to use widely one of the words of "multivalue, multivalued etc." than to use a word of "multilevel" when thinking about Light-multivalue-logic-circuits too.
Because it's noting to be called 'high-level or low-level'
→→ ● 'Applicability, Expansibility and universality' of “Hooji algebra”.
■ 偏光角度検出・偏光角度判別と偏光角度の出力制御について ■
なお、現在、偏光方向の検出精度、判別精度、分解能は1000分の1°=0.001°だそうである。これが本当なら、360°全部を使う場合、360°/0.001°=360,000通りを判別できることになる。すなわち、光多値回路の入力部だけについて言えば、360,000値の多値が可能であり、充分過ぎる程の多値である。
一方、その光多値回路の出力部について言えば、互いに偏光方向の異なる偏光板を所定の数(例:10〜360,000のうちの数1つ。)だけ用意し、それぞれの偏光板に「発光手段」あるいは「その偏光板に所定の光を導く光誘導手段と光シャッター手段」を1つずつ設ければ良い。この場合、その各発光手段またはその各光誘導手段を制御すれば、その偏光方向を不連続に出力することができるので、本発明で説明した多値固有の多値ハザードの発生(段落番号[0018]。)そのものが全く無くなる上に、その出力変化が速くなる(?)ので、これらの点で光多値回路の方が電子多値回路よりも極めて有利になることになる。しかも、オーバーシューティングやアンダーシューティングの問題も無いので、さらに光多値回路の方が極めて有利になる。
ただし、光IC化・光LSI化したときに例えば0.001°とは言わないまでも、その回路中のある前段回路の出力部とその後段回路の入力部との間で「実用に耐え得る偏光取付け精度」で光多値回路を組むことができるかが光多値コンピューターを実用化する際の課題になる。また、光回路だけで光多値メモリーを実現できるかどうかも光多値コンピューターを実用化する際の課題である。
■ Polarization angle detection, polarization angle discrimination, and polarization angle output control ■
Currently, the detection accuracy, discrimination accuracy, and resolution of the polarization direction are 1/1000 ° = 0.001 °. If this is true, 360 ° / 0.001 ° = 360,000 can be discriminated when all 360 ° is used. That is, as far as the input part of the optical multi-value circuit is concerned, a multi-value of 360,000 values is possible, and the multi-value is too large.
On the other hand, regarding the output part of the optical multilevel circuit, a predetermined number of polarizing plates having different polarization directions (for example, one of 10 to 360,000) are prepared, and each polarizing plate is provided. One “light emitting means” or “light guiding means and optical shutter means for guiding predetermined light to the polarizing plate” may be provided one by one. In this case, if the light emitting means or the light guiding means is controlled, the polarization direction can be output discontinuously. Therefore, the occurrence of the multivalued hazard described in the present invention (paragraph number [ )]) Is completely eliminated, and the output change is accelerated (?). Therefore, in these respects, the optical multi-value circuit is much more advantageous than the electronic multi-value circuit. In addition, since there is no problem of overshooting or undershooting, the optical multilevel circuit is more advantageous.
However, when the optical IC / optical LSI is formed, it is not possible to say, for example, 0.001 °, but between the output portion of a certain previous circuit and the input portion of the subsequent circuit in the circuit, Whether or not an optical multilevel circuit can be built with "polarization mounting accuracy" is an issue when putting an optical multilevel computer into practical use. In addition, whether or not an optical multilevel memory can be realized by using only an optical circuit is a problem when putting an optical multilevel computer into practical use.
■ 光周波数変換について ■
□ about light−frequency−converting □
簡単な例として、「A光を光電変換で一旦電力に変換し、その電力を電力増幅してから発光ダイオードやレーザー発光手段などを使って『A光と周波数の異なるB光』を出力させる実現可能な光周波数変換方法」が有る。
当然の事ながら、その入力光信号がA光を判別する(数値)判別回路が必要であることは言うまでも無い。
For an easy example,there is a realizable light−frequency−converting−method as the following.
◆Firstly,converting light−A into electric power by photoelectric−converting temporarily.
◆Secondly,amplifying the electric power.
◆Thirdly,making ‘a LED or a laser−emiting−means,etc.’ put out ‘light−B whose frequency is different from the frequency of light−A’ by using the amplified electric power.
Of course、it’s needless to say to need a circuit for distinguishing light−A.
この光周波数変換の場合、その変換に際して電気エネルギーを仲介する必要が有り、「光回路だけで構成できる、スマートな完全光回路」とは行かないが、これで少なくともフージ代数(Hooji algebra)を光分野へ展開・拡張できることが判明する。
In case of this light−frequency−converting,though it needs to be via electric−energy and the converter isn’t constructed of only light−circuits,it’s at least proved to be able to apply−&−expand “Hooji algebra” to the field of light.
この場合も、その各光周波数変換を制御すれば、その出力光の周波数を不連続に変化させることができるので、先願第2発明で説明した多値固有の多値ハザードの発生そのものが全く無くなる上に、その出力変化が速くなる(?)ので、これらの点に関しては光多値回路の方が電子多値回路よりも極めて有利になることになる。しかも、オーバーシューティングやアンダーシューティングの問題も無いので、さらに光多値回路の方が極めて有利になる。ただし、この場合も光回路だけで光多値メモリーを実現できるかどうかが光多値コンピューターを実用化する際の課題である。
◆◆参考1:日経エレクトロニクス・第1106号、日経BP社が2013年4月15日発行。
(a)『SiやSiCが様々な色で発光 「ドレスト光子」で実現 光伝送や太陽電池、ディスプレイやコンピューターを刷新へ』、執筆:野澤哲生。p.12〜p.13。
→→ 『光で光を制御する光能動素子の発見・発明!?』。
(b)『光伝送はチップ間へ 光源もCMOS互換に』、執筆:野澤哲生。p.43〜p.51。 →→ 『多値変調、1024値QAM!!!』。
◆◇ Reference 1:
“Si and SiC emit lights with the many kinds of colors” and so on.
→→ A discovery−invention(!?) of a light−active−element to control a light by another light.
→→ Multivalue−modulation,1024−value−QAM !!!
‘NIKKEI ELECTRONICS No.1106’,published by Nikkei Business Publications,Inc.(in Japan) on the 15th April in 2013year.
This article is written by Tetsuo Nozawa.
◆◆参考2:日経エレクトロニクス・第1129号、日経BP社が2014年3月3日発行。p.55の『量子ドットの働き、粒子の大きさで光の色を制御』など。執筆:田中直樹。
‘NIKKEI ELECTRONICS No.1129’,published by Nikkei Business Publications,Inc.(in Japan) on the third March in 2014year.
■ Optical frequency conversion ■
□ about light-frequency-converting □
As a simple example, “A light is converted into electric power once by photoelectric conversion, and the power is amplified, and then a light emitting diode or a laser light emitting means is used to output“ B light having a frequency different from that of A light ”. There is a “possible optical frequency conversion method”.
Of course, it goes without saying that a (numerical) discrimination circuit for discriminating the A light from the input optical signal is necessary.
For an easy example, there is a realizable light-frequency-converting-method as the following.
◆ Firstly, converting light-A into electric power by photoelectric-converting template.
◆ Secondary, amplifying the electric power.
◆ Thirdly, making 'a LED or a laser-emitting-means, etc. 'put out' light-B where frequency is the difference of the frequency of light-A 'by using the amplified electrical power.
Of course, it's needless to say to need for circuiting lighting light-A.
In the case of this optical frequency conversion, it is necessary to mediate electric energy at the time of conversion, and this does not mean “smart perfect optical circuit that can be configured only by an optical circuit”. It turns out that it can be expanded and expanded into the field.
In case of this light-frequency-converting, though it needs to be via electric-energy and the converter is not constructed of only light-circuits, it's at least proved to be able to apply - & - expand "Hooji algebra To the field of light.
Also in this case, if each optical frequency conversion is controlled, the frequency of the output light can be changed discontinuously. Therefore, the occurrence of the multi-value hazard inherent to the multi-value hazard described in the second invention of the prior application is completely eliminated. In addition, since the output change becomes faster (?), The optical multi-value circuit is much more advantageous than the electronic multi-value circuit in these respects. In addition, since there is no problem of overshooting or undershooting, the optical multilevel circuit is more advantageous. However, in this case as well, whether or not an optical multilevel memory can be realized by using only an optical circuit is a problem in putting an optical multilevel computer into practical use.
◆◆ Reference 1: Nikkei Electronics 1106, published by Nikkei BP on April 15, 2013.
(A) “Si and SiC emit light in various colors“ Dressed photons ”Realize light transmission, solar cells, displays and computers”, written by Tetsuo Nozawa. p. 12-p. 13.
→→ “Discovery and Invention of Optical Active Devices that Control Light with Light! ? ].
(B) “Optical transmission between chips makes the light source compatible with CMOS”, written by Tetsuo Nozawa. p. 43-p. 51. →→ “Multi-level modulation, 1024-level QAM! ! ! ].
◆ ◇ Reference 1:
“Si and SiC emit lights with the many kind of colors” and so on.
→→ A discovery-invention (!?) Of a light-active-element to control a light by another light.
→→ Multivalue-modulation, 1024-value-QAM! ! !
'NIKKEI ELECTRONICS No. 1106 ′, published by Nikei Business Publications, Inc. (In Japan) on the 15th April in 2013year.
This article is written by Tetsuo Nozawa.
◆◆ Reference 2: Nikkei Electronics No. 1129, published by Nikkei BP on March 3, 2014. p. 55 “Working of quantum dots, controlling the color of light by the size of the particles”. Writing: Naoki Tanaka.
'NIKKEI ELECTRONICS No. 1129 ′, published by Nikkei Business Publications, Inc. (In Japan) on the third March in 2014year.
■ フージ代数の電流モード電子回路への展開・拡張 ■
◆a)各・論理数値を「互いに異なる同数個の電流値(マイナス値からプラス値までのいずれかの同数個。)と1対1ずつ対応させる。
◆b)Jokerも「そのいずれの電流値とも異なる電流値」に対応させる。
◆c)カレント・ミラー回路などを使ってそのJoker電流を「所定の論理数値に対応する電流に変換する電流変換手段を設ける設置作業」又は「そのJoker電流の出力を停止または遮断(しゃだん)する停止・遮断手段を設ける設置作業」又は「そのJoker電流に対して何もせず、そのまま出力させること」である。
その場合、その電流モードの電流変換手段の設置作業が電位モードの「そのいずれかの論理数値に対応する電源電位にその出力電位をプル・アップ又はプル・ダウンする結線作業」に対応し、「そのJoker電流に対して何もせず、そのまま出力させること」が電位モードの「そのいずれの論理数値にも対応しない電源電位にその出力電位をプル・アップ又はプル・ダウンする結線作業」に対応し、そのJoker電流出力停止・遮断手段の設置作業が電位モードの「図12の実施例中の各多値OR回路の出力端子(=出力端子Tf)と同様にそれらにプル・アップ抵抗もプル・ダウン抵抗も接続しないこと」に対応する。
当然の事ながら、多値IC化、多値LSI化したときに、その回路中の各信号電流や各判別用基準電流が流しっ放しになる為、総全力損失の低減が極めて大きな課題となる。例えば、その各電流の大きさをできるだけ小さくしたり、その回路内の各箇所での電圧降下を限りなくゼロにしたり、することが必要になって来る。
■ Expansion and extension of the Fuji algebra to current mode electronics ■
◆ a) Each logical value is made to correspond one-to-one with “the same number of different current values (the same number of any value from a minus value to a plus value)”.
B) Joker also corresponds to “a current value different from any of the current values”.
C) Using a current mirror circuit or the like, the Joker current is “installed to provide a current conversion means for converting the current into a current corresponding to a predetermined logic value” or “the Joker current output is stopped or shut off (shaded)” "Installation work to provide stop / shut off means" or "Do nothing for the Joker current and output it as it is".
In that case, the installation work of the current conversion means in the current mode corresponds to the “wiring work for pulling up or pulling down the output potential to the power supply potential corresponding to any one of the logical values” in the potential mode. “Do nothing to the Joker current and output it as it is” corresponds to the “wiring operation to pull up or pull down the output potential to the power supply potential that does not correspond to any logical value” in the potential mode. The installation operation of the Joker current output stop / interrupt means is “potential mode” as in the case of the output terminal (= output terminal Tf) of each multi-valued OR circuit in the embodiment of FIG. Corresponding to "Do not connect the down resistor".
Naturally, when multi-level IC or multi-level LSI is implemented, each signal current and each discrimination reference current in the circuit is allowed to flow away, so reducing the total power loss becomes a very big issue. . For example, it is necessary to reduce the magnitude of each current as much as possible, or to reduce the voltage drop at each location in the circuit to zero as much as possible.
■ 光多値論理回路の有利な点、不利な点 ■
その有利な点は電子多値論理回路の様にオーバーシューティングやアンダーシューティング等の入力信号の不要振動が発生せず、しかも、その信号数値を不連続に変更させることができることである。
一方、その不利な点(?)は、その光多値論理回路の特定(整数)値を容易に変更できるかどうかである。電位モード(又は電圧モード)の電子多値論理回路ならその電源線の接続変更によって容易にその特定値を変更することができる。
ただし、上記(段落番号[0259]。)・参考2の通り『粒子の大きさで光の色(=光周波数あるいは波長)を制御』する場合、『その粒子を入れ換えたり、光を当てる粒子を選択して変えたりする等して、その大きさを実質的に変更することが容易にできる』なら大いに可能性は有る。
■ Advantages and disadvantages of optical multilevel logic circuits ■
The advantage is that unnecessary vibration of the input signal such as overshooting and undershooting does not occur unlike the electronic multi-valued logic circuit, and the signal value can be changed discontinuously.
On the other hand, the disadvantage (?) Is whether or not the specific (integer) value of the optical multilevel logic circuit can be easily changed. In the case of an electronic multilevel logic circuit in potential mode (or voltage mode), the specific value can be easily changed by changing the connection of the power supply line.
However, as described above (paragraph number [0259]) and “controlling the color of light (= light frequency or wavelength) by the size of the particles” as in Reference 2, “the particles to be replaced or the particles to which the light is applied are changed. There is great potential if it can be easily changed in size by selecting and changing it.
◆◆◆**** 本発明者が考える真の3次元IC(3次元LSI)! ****◆◆◆
***
●●30)LSIもICに含まれるが、「複数の2次元ICチップを積層し、そのチップ同士を貫通電極で上下に接続したものは3次元『化』ICであって『真の3次元IC』ではない」と本発明者は考えている。
『3次元IC』と3次元『化』ICの違いは両者の上下方向の信号の流れ方に有る。その違いは『空を飛ぶヘリコプター』と『立体駐車場で動き回る自動車』の違いの様なものである。
前者は前後、左右、上下と、3次元空間を自由に動き回ることができる。一方、後者は各階の駐車フロアー毎(ごと)に前後、左右と、その各2次元平面を自由に動き回ることはできるが、上下方向は「上りスロープ、下りスロープ」又は「自動車用エレベーター」が設置された所でしか移動できない。しかも、その上下の移動方向も制約され、右斜め上方向とか左斜め上方向とか後ろ斜め上方向へは移動できない。そう!まさに、その「上りスロープ、下りスロープ」や「自動車用エレベーター」が貫通電極に相当する。
だから、複数個の2次元ICチップを積層して、その上下の各回路を貫通電極で接続したICは3次元『化』ICであって『真の3次元IC』ではない。
『真の3次元IC』とは「前後、左右の2次元xy方向」、「上下、前後の2次元yz方向」及び「上下、左右の2次元xz方向」それぞれに回路を自由に展開できることはもちろんのこと、究極的には3次元xyz方向に回路を自由に展開できるICのことである。
具体例を挙げて説明すると、例えば特開2005−116168号公報の選択図(図2)の多値メモリーの場合、「各階(各2電源線間)に有る、独立した完成2値メモリー同士」をただ単に貫通電極で上下に接続すれば、多値メモリーになる。
一方、例えば特開2006−252742号公報の選択図(図10)の多値メモリーの場合、各階(各2電源線間)には「独立して完全動作する2値メモリー」は1つも無く、全階合わせて初めて1つの多値メモリーになる為、「ただ単に貫通電極で上下の回路を接続すれば良い」という訳には行かない。この多値メモリーをメモリー・セルにして多数個集積した多値メモリー回路には『真の3次元IC技術』が必要である。他にも、その『真の3次元IC技術』が必要なものに、特開2007−35233号公報の図9〜図19の各実施例などが有る。
なお、●3Dプリンター等をIC・LSI製造に応用すれば『真の3次元IC・LSI』を製造できる様になるかもしれない。いや、必ずそうなると断定できるほど本発明者は極めて強く確信している。
その際に、下記の印刷や塗装等の技術による半導体や電子回路の製作手法が必須になることも極めて強く確信している。
□■□参考資料1■ 日経産業新聞(東京版)(2009年3月24日発行)。
(a)大日本印刷、『電子回路 印刷で安く』、「インクに微粒銅」、「素材価格、銀の10分の1に」。 ⇒⇒ プリント基板の配線パターンを形成する技術を開発。
(b)帝人、『樹脂にシリコン粒子』、『半導体のn型とp型のナノ粒子のつくり分けにも成功!』。 ⇒⇒ トランジスタやダイオードからなる電子回路づくりに着手。
□■□参考資料2■ 日本経済新聞(東京版)(2014年2月18日発行)。
(a)理研など、『スプレーで有機半導体』、「車全体で発電・発光」。
□■□参考資料3■ 日経エレクトロニクス・第1146号。
『微細印刷技術が進展、有機集積回路へ応用』(p.61〜p.73)。研究開発&講演:時任静士。日経BP社が2014年10月27日発行。
●1)p型、n型の塗布系低分子を開発。
●2)電極も配線も印刷で形成可能に。
●3)バラつきが小さくVTHはほぼゼロ。
●4)集積回路を作製し、動作を確認。
□■□参考資料4■ 日経エレクトロニクス・第1155号。
『紙と導電性インクで安価に 農業用センサー:Sensprout』(p.59)。執筆:根津禎。日経BP社が2015年4月20日発行。
●1)導電性インクでお手軽デジタルサイネージ。
◆◆◆ *** True 3D IC (3D LSI) considered by the inventor! **** ◆◆◆
***
●● 30) LSIs are also included in ICs. “Three two-dimensional IC chips are stacked and connected to each other vertically with through electrodes are three-dimensional“ chemical ”ICs. The inventor believes that it is not “IC”.
The difference between the “three-dimensional IC” and the three-dimensional “ka” IC is in the way in which the signals flow in the vertical direction. The difference is similar to the difference between "a helicopter flying in the sky" and "a car moving around in a multilevel parking lot."
The former can freely move around in a three-dimensional space such as front and rear, left and right, up and down. On the other hand, the latter can move freely around the two-dimensional planes of the parking floor on each floor (every side), but the up and down direction is set up with "up slope, down slope" or "car elevator" You can move only where it was done. Moreover, the upper and lower moving directions are also restricted, and cannot move in the diagonally upward right direction, diagonally upward left direction, or diagonally upward rearward direction. so! Exactly, the “up slope, down slope” and “automotive elevator” correspond to the through electrode.
Therefore, an IC in which a plurality of two-dimensional IC chips are stacked and their upper and lower circuits are connected by through electrodes is a three-dimensional “ized” IC, not a “true three-dimensional IC”.
“True 3D IC” means that the circuit can be freely developed in “front and back, left and right 2D xy directions”, “up and down, front and back 2D yz directions” and “up and down, left and right 2D xz directions”. Of course, it is an IC that can develop a circuit freely in the three-dimensional xyz direction.
For example, in the case of the multi-value memory shown in the selection diagram (FIG. 2) of Japanese Patent Application Laid-Open No. 2005-116168, “independent completed binary memories on each floor (between two power supply lines)”. Simply connect the top and bottom with through electrodes to create a multi-value memory.
On the other hand, for example, in the case of the multi-value memory of the selection diagram (FIG. 10) of Japanese Patent Application Laid-Open No. 2006-252742, there is no “binary memory that operates completely independently” on each floor (between each two power supply lines). Since it becomes one multi-valued memory for the first time in all floors, it is not possible to simply say that the upper and lower circuits need only be connected by through electrodes. A “true three-dimensional IC technology” is required for a multi-level memory circuit in which a large number of multi-level memories are integrated as memory cells. In addition, there are the embodiments shown in FIGS. 9 to 19 of Japanese Patent Application Laid-Open No. 2007-35233 which require the “true three-dimensional IC technology”.
If a 3D printer or the like is applied to IC / LSI manufacturing, a “true 3D IC / LSI” may be manufactured. No, the inventor is extremely convinced that it can be determined that this will always happen.
At that time, I am extremely convinced that the manufacturing method of semiconductors and electronic circuits by the following technologies such as printing and painting will be indispensable.
□ ■ □ Reference 1 ■ Nikkei Sangyo Shimbun (Tokyo edition) (issued March 24, 2009).
(A) Dai Nippon Printing, “Electric Circuit Printing is Cheap”, “Ink for Fine Copper”, “Material Price, 1 / 10th of Silver”. ⇒⇒ Developed technology to form printed circuit board wiring patterns.
(B) Teijin, “Silicon particles on resin”, “Semiconductor n-type and p-type nanoparticles were successfully created! ]. ⇒⇒ Started making electronic circuits consisting of transistors and diodes.
□ ■ □ Reference Material 2 ■ Nikkei (Tokyo edition) (issued February 18, 2014).
(A) Riken et al., “Organic semiconductors with sprays”, “Power generation and light emission throughout the car”.
□ ■ □ Reference 3 ■ Nikkei Electronics No. 1146.
“Advance of fine printing technology, application to organic integrated circuits” (p. 61-p. 73). R & D & Lecture: Shizushi Tokito. Published by Nikkei BP on October 27, 2014.
● 1) Developed p-type and n-type coating type small molecules.
● 2) Electrodes and wiring can be formed by printing.
● 3) Small variation and VTH is almost zero.
● 4) Make an integrated circuit and check its operation.
□ ■ □ Reference Material 4 ■ Nikkei Electronics No. 1155.
“Agricultural sensor: Sensprout” (p. 59) with paper and conductive ink at low cost. Written by Kei Nezu. Published by Nikkei BP on April 20, 2015.
● 1) Easy digital signage with conductive ink.
◆◆◆** 3次元化IC等を使って多値メモリーを構成する方法について **◆◆◆
***
●●31)その後、3次元化ICや3次元化LSIを使って前述した特開2006−252742号公報の選択図(図10)の多値メモリーなどを構成する方法を検討してみた。
その2次元の回路図のままそっくり平面IC基板に多値メモリー回路を多数個構成する。従って、その平面IC基板には「互いに電位の異なる電源線」がほぼ平行(?)に所定数(10値なら9本)形成されることになり、その多数個の多値メモリー回路がそれらの電源線を共有することになる。
また、各多値メモリーの入出力端子に選択スイッチを1つずつ接続して共通のデータ線に接続する。
さらに、それらの電源線に特開2007−035233号公報の多値デコーディング回路を構成して各選択スイッチを制御する。
それから、その平面IC基板を所定の枚数たて・よこ揃えて上下に積層し、同じ電源電位の電源線同士を貫通電極で接続する。各データ線同士も貫通電極で接続する。
そして、その上下に積層した平面IC基板・積層体を倒して、左右もしくは前後に積層した平面IC基板・積層体の形(かたち)にする。つまり、始めからその平面IC基板を所定の枚数たて・よこ揃えて「左右方向に」もしくは「前後方向に」もしくは「水平方向に」積層する。
さらに、その倒した平面IC基板・積層体の多数をマザー平面IC基板に整然と接続して行く。
という具合で、どうであろうか!?
◆◆◆ ** About the method of constructing multi-level memory using 3D IC etc. ** ◆◆◆
***
31) After that, a method for constructing the multi-value memory of the selection diagram (FIG. 10) of the above-mentioned Japanese Patent Laid-Open No. 2006-252742 using a three-dimensional IC or a three-dimensional LSI was examined.
Many multi-valued memory circuits are formed on a planar IC substrate as it is in the two-dimensional circuit diagram. Therefore, a predetermined number (“9” for 10 values) of “power supply lines having different potentials” is formed on the planar IC substrate substantially in parallel (?). Share power lines.
In addition, one selection switch is connected to the input / output terminals of each multi-level memory and connected to a common data line.
Further, a multi-level decoding circuit disclosed in Japanese Patent Application Laid-Open No. 2007-035233 is configured on these power supply lines to control each selection switch.
Then, a predetermined number of the planar IC substrates are aligned and stacked vertically, and the power supply lines having the same power supply potential are connected to each other through the through electrodes. Each data line is also connected by a through electrode.
Then, the planar IC substrates / laminates stacked on the upper and lower sides are brought down to form the shape (form) of the planar IC substrates / laminates laminated on the left and right or front and rear. In other words, a predetermined number of planar IC substrates are prepared from the beginning and are aligned in the “left-right direction”, “front-rear direction”, or “horizontal direction”.
Further, many of the overturned planar IC substrates / laminates are orderly connected to the mother planar IC substrate.
How about that? ?
◆◆◆******* 3次元IC・LSIの貫通冷却法について ******◆◆◆
***
●●32)3次元IC・3次元LSIの冷却法は最終的に自動車エンジンの冷却システム、ウォーター・ジャケットと同じ様に3次元IC、3次元LSIの中に冷媒となる液体(例:水など。)や気体を直接流してその内部を効率的に冷やす貫通冷却法になると本発明者は考えている。
その際に、従来の貫通電極の技術や3Dプリンター等の技術が役に立つ。各・貫通電極(=導電性の貫通パイプ)または各・貫通●非電極(=非導電性で高い熱伝導率の貫通パイプ)の中を空洞にして、その中にその冷媒を流す。あるいは、3次元IC、3次元LSIに「空気絶縁した穴状の空洞」を設け、そのただの空洞に絶縁性の冷媒を直接流す。
また、各電源電位の「電源線または電源板」やシールド板の中にパイプ状の空洞を1本もしくは何本も走らせ、同じく冷媒を流す。
なお、現在、下記・参考資料5に記載されている液浸冷却方法では3次元化IC・LSIや3次元IC・LSIの中心部まで直接冷却することはできない。このため、「3次元IC、3次元LSIの冷却に液浸冷却方法では追っ付かなくなった時」又は「その中心部と外側表面の温度差が無視できる範囲を超え、その外側から内側へ向かって(?)生じる機械的歪み・温度的歪みがその半導体特性に悪影響を与える時」がその新冷却方法の出番になると本発明者は考えている。
□■□参考資料5■ 日経エレクトロニクス・第1157号。
『Exa級の高性能機を目指し半導体・冷却・接続を刷新(上)』(p.99〜p.105)。研究開発&執筆:齊藤元章。日経BP社が2015年6月20日発行。
●1)液浸冷却前提の高密度実装、専用設計で体積性能密度4倍に。
◆◆◆ ******* Three-dimensional IC / LSI through cooling method ****** ◆◆◆
***
●● 32) The cooling method for 3D IC and 3D LSI is the liquid used as a coolant in the 3D IC and 3D LSI in the same way as the cooling system for automobile engines and water jacket (eg water) The present inventor believes that it will be a through cooling method in which a gas is directly flowed to cool the inside efficiently.
At that time, conventional penetrating electrode technology and 3D printer technology are useful. Each through electrode (= conductive through pipe) or each through hole ● Non-electrode (= non-conductive through pipe with high thermal conductivity) is hollowed and the coolant is passed through it. Alternatively, an “air-insulated hole-like cavity” is provided in a three-dimensional IC or three-dimensional LSI, and an insulating coolant is directly flowed into the cavity.
Further, one or several pipe-shaped cavities are run in the “power supply line or power supply plate” or the shield plate of each power supply potential, and the refrigerant is also caused to flow.
At present, the immersion cooling method described below and in Reference Material 5 cannot directly cool the three-dimensional IC / LSI or the center of the three-dimensional IC / LSI. For this reason, “when the immersion cooling method can no longer follow the cooling of the three-dimensional IC or the three-dimensional LSI” or “the temperature difference between the central portion and the outer surface exceeds a negligible range, from the outside toward the inside. The present inventor believes that “(?) The time when the mechanical strain / temperature strain generated adversely affects the semiconductor characteristics” is the turn of the new cooling method.
□ ■ □ Reference 5 ■ Nikkei Electronics No. 1157.
“Aiming for Exa-class high-performance machines, renovating semiconductors, cooling, and connections (top)” (p.99-p.105). R & D & Writing: Motoaki Saito. Issued June 20, 2015 by Nikkei BP.
● 1) High-density mounting on the premise of immersion cooling, specially designed to quadruple volumetric performance density.
◆◆◆****** プログラム等を使わない新概念コンピューター *****◆◆◆
***
◆◆◆**** New Concept Computers
not to use programs etc. ****◆◆◆
***
●●33)本発明者は多値関連技術として「プログラム・ソフトウエアやCPU等を使わない新概念コンピューター」として自分の先願発明[特開2007−035233号]において「処理結果{又は前(まえ)処理結果}記憶型(別名:入出力パターン記憶型、または、関数記憶型)」10進法コンピューター(=Decimal Computers)などを開示しているが、これに本発明技術を利用することができる。
→→(Decimal or Binary etc.)Computers of ‘Processing−Result or Pre−Processing−Result’−Memorizing−Type etc. →→ New Concept Computers
The present inventor was calling The Pre−Processing−Result−Memorizing−Type ‘Input−Output−Pattern−Memorizing−Type or Function−Memorizing−Type or Result−Memorizing−Type’ in another name.
なお、その前(まえ)処理には前もって情報を収集する前(まえ)収集も含まれるので、当然、その前(まえ)処理結果には前(まえ)情報処理結果のほかに前(まえ)情報収集結果も含まれる。その前情報処理結果にしろ、その前情報収集結果にしろ、その入出力パターンにしろ、その関数にしろ、いずれも「1つまたは複数の『入力データ又は入力情報』」と「1つまたは複数の『出力データ又は出力情報』」の関係、相関関係を表わす新しいソフトウエアになるから、最近よく耳にする『ビッグ・データ』はそのままその新しいソフトウエアになり得る。そう、つまり、その新概念コンピューターとその『ビッグ・データ』との相性は抜群に良い。
‘The Pre−processing’ means ‘pre−processing data or information’ or ‘pre−collecting data or information’.
In other words,‘Meanings of The Pre−processing’ include ‘pre−processing data or information’ and ‘pre−collecting data or information’.
The present inventor thinks that ‘Big Data to become often a topic of conversation recently’ can directly become ‘Presult Software’ written below.
The present inventor calls ‘The Pre−processing Result Software’ ‘The Presult Software’ for short.
So,in a word,Big Data fit the New Concept Computers very much.
◆◆◆ ****** New concept computer that doesn't use programs, etc. ***** ◆◆◆
***
◆◆◆ **** New Concept Computers
not to use programs etc. **** ◆◆◆
***
●● 33) The present inventor has described “processing result {or previous (or previous) as a multi-value related technique as a“ new concept computer that does not use program software, CPU, etc. ”in his invention [JP 2007-035233]. (Preliminary processing results) Memory type (also known as input / output pattern memory type or function memory type) "Decimal computer (= Decimal Computers) etc. are disclosed. it can.
→→ (Decimal or Binary etc.) Computers of 'Processing-Results or Pre-Processing-Results-Memoriizing-Type etc. →→ New Concept Computers
The present inventor was calling The Pre-Processing-Result-Memoriizing-Type 'Input-Output-Pattern-Memoriizing-Type or Function-Tempering-Tempering-Tempering.
Note that the previous processing includes information collection before information is collected in advance, so naturally, the previous processing results include the previous information processing results in addition to the previous information processing results. Information collection results are also included. Regardless of the previous information processing result, the previous information collection result, the input / output pattern, or the function, both “one or more“ input data or input information ”” and “one or more” The “big data” that is often heard recently can be the new software as it is. In other words, the compatibility between the new concept computer and its “big data” is outstanding.
'The Pre-processing data' information 'Pre-processing data or information' or 'pre-collecting data or information'.
In other words, 'Means of the Pre-processing' inclusion 'pre-processing data or information' and 'pre-collecting data or information'.
The present inventor thinks that 'Big Data to become of ten a topic of conversion recurrence' can direct become 'Present software' bit.
The present inventor calls 'The Pre-processing Result Software''The Pres Software Software' for short.
So, in a word, Big Data fit the New Concept Computers very much.
いや、その言い方、表現は正しくない。正確に言えば、全く当たり前である。なぜなら、そのビッグ・データはその前(まえ)処理結果ソフトウエアの一部分だからである。そのビッグ・データで整理されたものはその前(まえ)処理結果ソフトウエアの一部分そのものであるし、そのビッグ・データは真理値表の様に整理されていなければ全く役に立たず、情報収集・データ収集する意味が全く無い、からである。
No,that expression isn’t right. Exactly speaking,it’s quite natural !!! Because the Big Data are a part of ‘The Presult Software’.
And because ‘data put in order’ of the Big Data are a part itself of ‘The Presult Software’,and because,if the Big Data aren’t put in order like truth tables,the Big Data are no usefulness and no meaning to pre−collect them at all.
その新概念コンピューターでは『プレプロセッシング・リザルト・ソフトウエア{略してプレザルト(又はプリザルト)・ソフトウエア(Presult Software)と呼ぶことにする。}』(別名:入出力パターン・ソフトウエア、又は、ファンクション・ソフトウエア、又は、単にリザルト・ソフトウエア)と多値論理回路などを使う。
→→ ★Presult−Memorizing−Type Computers
The Presult−Memorizing−Type Computers use ‘The Presult Software’ and multivalue logic circuits etc..
また、プログラミングに相当するのが「プレザルティング(またはプリザルティング)=Presulting」(別名:パターニング又はファンクショニング又はリザルティング)であり、プログラマーに相当するのが「プレザルター(又はプリザルター)=Presulter」(別名:パターナー又はファンクショナー又はリザルター)である。
‘The Presulting’ means ‘producing the Presult Software’, and ‘The Presulters’ mean ‘people producing the Presult Software’.
No, the words and expressions are not correct. To be exact, it is quite natural. This is because the big data is a part of the previous processing result software. What is organized in the big data is a part of the previous processing result software, and if the big data is not organized like a truth table, it will not be useful at all. This is because there is no meaning to collect.
No, that expression isn't right. Exactly speaking, it's quiet natural! ! ! Because the Big Data area a part of 'The Presto Software'.
And because 'data put in order' of the Big Data are a part itself of 'The Presult Software', and because, if the Big Data are not put in order like truth tables, the Big Data are no usefulness and no meaning to pre-collect them at all.
In the new concept computer, it will be called “preprocessing result software {Present (or Presert) software (Present Software) for short. } ”(Also known as input / output pattern software, function software, or simply result software) and a multi-value logic circuit.
→→ ★ Presult-Memoriizing-Type Computers
The Presult-Memoriizing-Type Computers use 'The Pres Software Software' and multivalue logic circuits etc. .
Moreover, “Presalting (or Presalting) = Presulting” (also known as patterning or functioning or resulting) corresponds to programming, and “Presaler (or Presalter) = Presulter” (equivalent to a programmer) ( (Alternative name: patterner or functioner or resultr).
'The PRESULTING' means 'Producing the Presto Software', and 'THE PRESULTERS' mean 'People producing the Prestoware'.
以上の事から、ビッグ・データにおいて最近よく言われている「データ・サイエンティスト」と大げさに難しく考える必要は無く、簡単な話だと本発明者は考えている。なぜなら、前述した通り膨(ぼう)大な真理値表の升目(ますめ)・空欄(くうらん)を「単純に根気よく地道(じみち)に汗水流して? あるいはコンピューターを使って効率良く」ただ数値で埋めて行くだけの話だからである。そのビッグ・データが全部揃っていれば、その真理値表を完成することができる。その真理値表は、1つ又は複数個の入力「データ又は情報」と1つ又は複数個の出力「データ又は情報」の関係、相関関係を表わす論理関数そのものである。あとは、その真理値表に基づくプレザルト(presult)記憶型コンピューターを使ってそのビッグ・データを直接解析することができると本発明者は考えている。
→→ 特開2007−035233号(following Reference−A)と前述した段落番号[0076〜0079、0092〜0093]。
ビッグ・データの使い方とは、例えば単純に、ある論理関数の結果を1次元〜3次元のグラフ等にして「そのビッグ・データが示す傾向」などを視覚的に把握し易くする。
または効果的に、「ある1つ又は複数個の入力『データ又は情報』を論理関数1に入力して出た結果」すなわち「その1つ又は複数個の出力『データ又は情報』」を論理関数2に入力する。論理関数2の1つ又は複数個の出力『データ又は情報』をさらに論理関数3に入力する。その結果、「一番最初の1つ又は複数個の入力『データ又は情報』」と論理関数3の1つ又は複数個の出力『データ又は情報』の関係、相関関係が新しく求まる。(→新・論理関数)必要なら論理関数4、5……と続ければ良い。
その際に、常に各論理関数の全「データ又は情報」を使用する必要は無く、その各論理関数の中の必要とする部分部分だけを使用する使い方も有る。
なお、「データ・サイエンティスト」って本発明者が当初「パターナー又はファンクショナー」、最近「プレザルター(又はプリザルター)=Presulter」と呼んでいる人達そのものだと本発明者は考えている。
また、収集すべき「データ又は情報」が全部揃わず「作成しようとする真理値表に空欄がポツポツ有る場合は、その各空欄データを、その周(まわ)りのデータの平均値から求めたり、その周りのデータの増減傾向(微分)から求めたり、することになると本発明者は考えている。
さらに、ビッグ・データをコンピューターで扱うなら、当然の事ながら、従来のプログラム記憶型コンピューターではなくプレザルト(又はプリザルト)記憶型コンピューターを用いた方が簡単で、その情報処理速度は圧倒的に速い。
それから、プレザルト(又はプリザルト)記憶型コンピューターは当初2進法を使わざるを得ないが、前述(段落番号[0076〜0078]。)した通り多進法、特に10進法を使用した方が超・超・……・超・天文学的な真理値表を表現したり、それに対応する多値論理完全回路を構成したり、将来どんどん膨大になって行く「ビッグ・データ又はビッグ情報」の通信や情報処理を行ったり、するのに極めて便利であり、かつ、圧倒的に有利になると本発明者は考えている。従って、2進法のプレザルト(又はプリザルト)記憶型コンピューターより10進法のそれが重要かつ必要であると本発明者は考えている。
From the above, the present inventor thinks that it is a simple story without having to think about it as “data scientist” that is often said recently in big data. This is because, as mentioned above, the swell and blank of the large truth table are “simply perseverely and sweatfully flowing into the road? Or efficiently using a computer” Because it's just a story filled with numbers. If all the big data is available, the truth table can be completed. The truth table is a logical function itself representing the relationship and correlation between one or more input “data or information” and one or more output “data or information”. After that, the present inventor believes that the big data can be directly analyzed by using a result storage type computer based on the truth table.
→→ JP 2007-035233 (following Reference-A) and paragraph numbers [0076 to 0079, 0092 to 0093] described above.
The use of big data means, for example, that a result of a certain logical function is simply made into a one-dimensional to three-dimensional graph or the like to make it easy to visually grasp “the tendency indicated by the big data”.
Or, effectively, “a result of inputting one or more inputs“ data or information ”to the logical function 1”, ie, “the one or more outputs“ data or information ”” is a logical function. Enter in 2. One or more outputs “data or information” of the logic function 2 are further input to the logic function 3. As a result, the relationship and correlation between the “first one or more inputs“ data or information ”” and one or more outputs “data or information” of the logical function 3 are newly determined. (→ New logic function) If necessary, it can be continued with logic functions 4, 5,.
At that time, it is not always necessary to use all “data or information” of each logical function, and there is a usage in which only a necessary part of each logical function is used.
The inventor believes that the “data scientist” is what the inventor originally calls “a patterner or functioner”, and recently “a presalter (or presalter) = Presulter”.
In addition, if all of the “data or information” to be collected is not complete and “the truth table to be created contains a blank, the blank data is calculated from the average value of the data around the circle. The present inventor believes that it is obtained from the increase / decrease tendency (differentiation) of the data around it.
Furthermore, if big data is handled by a computer, it is obvious that it is easier to use a pre-store (or pre-store) storage computer rather than a conventional program storage computer, and the information processing speed is overwhelmingly faster.
Then, the Presalto (or Presalto) memory type computer must use the binary system at first, but as mentioned above (paragraph numbers [0076 to 0078]), the multi-adic system, especially the decimal system, is more・ Representing super-astronomical truth table, constructing corresponding multi-valued logic complete circuit, communication of “big data or big information” that will become enormous in the future The present inventor believes that it is extremely convenient for performing information processing and is advantageous overwhelmingly. Accordingly, the inventor believes that decimal is more important and necessary than binary presalto (or presalto) memory type computers.
■◇ Reference−A ◇■ 特開2007−035233号(JP2007−035233A)。段落番号(Paragraph number)[0003〜0004、0024〜0034、0082〜0084]。
→→ New Concept Computers and Multi−valued Computers,specialy Decimal Computers.
→→ Their memories have functions to convert ‘input−data or input−information’ into ‘output−data or output−information’.
■◇ Reference−B ◇■ 実開平2−5937号(『多値論理ドライバ』、1990year).“A multivalue−logic−driver”.
■◇ Reference−C ◇■ 『MOS−ROMを使ったエンジンの電子式燃料噴射装置(自動車の排気ガス汚染を減らす)』。
An electronic device to use MOS−ROMs and to inject fuel for an automobile engine. The purpose is to decrease pollution by its exhaust gas.
→→ 2次元の入力「情報またはデータ」と1次元の出力「情報またはデータ」の関係を表わす3次元の「情報またはデータ」。
→→ 3dimension−‘information or data’ to express relations between 2dimension−input−‘information or data’ and 1dimension−output−‘information or data’.
日経エレクトロニクス(1972年12月18日発行)(p.116〜p.126)、NIKKEI ELECTRONICS DEC.18,1972 Number.
Written by Malcolm Williams{Joseph Lucas(Electrical)Ltd.}、published by Nikkei Business Publications,Inc.(in Japan) on the 18th,DEC.,1972year.(from a news−item of Electronics)
■◇ Reference−D ◇■ 『ICメモリの使い方』の「第7章 ICメモリの応用例」、著者:新田松雄・大表良一、産報出版(株)が1978年6月20日(JUN.20,1978year)に4版発行。
→→ Memories have functions to convert ‘input−data or input−information’ into ‘output−data or output−information’.
■◇ Reference−E ◇■ 『メモリーだけで演算・記憶するアーキテクチャーを東芝が提案、高速・低消費電力のSTT−MRAMを利用』。執筆:木村雅秀。
‘Toshiba suggests an architecture to calculate−&−memorize something needful by using only memories.Those are fast−&−low−power STT−MRAMs.’ This article was written by Masahide Kimura.
日経エレクトロニクス・第1125号(2014年1月6日発行)(p.12〜p.13)、NIKKEI ELECTRONICS JAN.6,2014.Published by Nikkei Business Publications,Inc.(in Japan).
■ ◇ Reference-A ◇ ■ JP 2007-035233 (JP2007-035233A). Paragraph number [0003-0004, 0024-0034, 0082-0084].
→→ New Concept Computers and Multi-valued Computers, special Decimal Computers.
→→ Ther memories have functions to convert 'input-data or input-information' into 'output-data or output-information'.
■ ◇ Reference-B ◇ ■ Japanese Utility Model Publication No. 2-5937 (“Multi-valued logic driver”, 1990year). “A multivalue-logic-driver”.
■ ◇ Reference-C ◇ ■ “Electronic fuel injection system for engines using MOS-ROM (to reduce automobile exhaust gas pollution)”.
An electronic device to use MOS-ROMs and to inject fuel for an automobile engine. The purchase is to decrease population by it exhaust gas.
→→ Three-dimensional “information or data” representing the relationship between a two-dimensional input “information or data” and a one-dimensional output “information or data”.
→→ 3 dimension-'information or data 'to express relations between 2 dimension-input-'information or data' and 1 dimension-output-'information or data '.
Nikkei Electronics (issued December 18, 1972) (p.116-p.126), NIKKEI ELECTRONICS DEC. 18, 1972 Number.
Written by Malcolm Williams {Joseph Lucas (Electrical) Ltd. }, Published by Nikkei Business Publications, Inc. (In Japan) on the 18th, DEC. , 1972year. (From a new-item of Electronics)
■ ◇ Reference-D ◇ ■ "Chapter 7 Application Examples of IC Memory" in "How to Use IC Memory", Author: Matsuo Nitta, Ryoichi Oomote, Sangyo Publishing Co., Ltd. June 20, 1978 (JUN 20th, 1978year).
→→ Memories have functions to convert 'input-data or input-information' into 'output-data or output-information'.
■ ◇ Reference-E ◇ ■ “Toshiba proposes an architecture that uses only memory to calculate and store, and uses high-speed, low-power-consumption STT-MRAM”. Writing: Masahide Kimura.
'Toshiba suggests an architecture to calculus-&-memoriize measuring needful using only memories. There are fast-&-low-power STT-MRAMs. 'This article was written by Masahide Kimura.
Nikkei Electronics No. 1125 (issued on January 6, 2014) (p.12-p.13), NIKKEI ELECTRONICS JAN. 6, 2014. Published by Nikkei Business Publications, Inc. (In Japan).
従来のコンピューターの場合、例えば「その情報処理すべき内容」が与えられてから情報処理を開始して結果を出すので、その開始からその結果まで長い情報処理時間が必要である。一方、この新概念コンピューターの場合、「その全ての情報処理すべき内容」があらかじめ分かっているか、完全に推測・把握されていて、「その全ての情報処理すべき内容」に対して「前もって(Pre)情報処理(processing)した結果(Result)」すなわち『プレザルト(=Presult。又はプリザルト。)』が既にそのメモリー領域に記憶されている為、後は「その全ての情報処理すべき内容のうち、入力される内容部分」毎(ごと)に「それに対応するプレザルト」をただ読み出すだけである。
この為、至極(しごく)当然の事であるが、その新概念コンピューターの外側から見れば、その情報処理速度は圧倒的に速い。それが外見上であろうがなかろうが、その情報処理速度は実質的に実際に圧倒的に速いのだからリアル・タイム処理で極めて有利となる。
→→ 後述する段落番号[0275]中の車載コンピューターの国際標準化。
将来「この新概念のプレザルト(Presult)記憶型コンピューター」と「従来のプログラム記憶型(又は内蔵型)コンピューター」は、(前者の方が超・……超・圧倒的に高性能になる可能性が有ると本発明者は考えているが)、「許容される、又は、必要とされる記憶容量の大小」、「情報処理速度の優先度の高さ」、「多値論理使用の必要性」、「IC、LSIの3次元技術の改良・進歩具合」、「MOS・FET等の各性能の改良・進歩具合」、「電力節約の面から」、「冷却の必要度あるいは発熱の抑制要求」、「ソフトウエアの作成容易性」、「バグの発生具合」又は「不正侵入操作に対する耐性」等によって、『両者の利用分野が棲(す)み分けられる』と本発明者は確信している。
そして、『将来、必ず両方式の良い所取りで、両方式を有機的に組み合わせて使うことが有る』と本発明者は確信している。
In the case of a conventional computer, for example, since “information to be processed” is given and information processing is started and a result is obtained, a long information processing time is required from the start to the result. On the other hand, in the case of this new concept computer, “all the contents to be processed” is known in advance or is completely inferred and grasped. Pre) Information processing result (Result) ”, that is,“ Presert (= Presult. Or Pres.) ”Has already been stored in the memory area. For each “content part that is input”, the “present corresponding to it” is simply read out.
For this reason, as a matter of course, the information processing speed is overwhelmingly fast when viewed from the outside of the new concept computer. Whether it looks or not, the real-time processing is extremely advantageous because the information processing speed is actually overwhelmingly fast.
→→ International standardization of in-vehicle computers in paragraph number [0275] described later.
In the future, the “Present storage computer of this new concept” and the “conventional program storage type (or built-in type) computer” will have the possibility that the former will be super-high-performance. The present inventor believes that there is a large or small amount of storage capacity that is permitted or required, “high priority of information processing speed”, “necessity of using multi-valued logic” ”,“ Improvement / advancement of 3D technology of IC and LSI ”,“ Improvement / advancement of each performance of MOS / FET ”,“ In terms of power saving ”,“ Requirement of cooling or suppression of heat generation ” The inventor is convinced that “the fields of use of both are discriminated” by “ease of software creation”, “development of bugs” or “resistance to unauthorized intrusion operation”, etc. Yes.
And the present inventor is convinced that “in the future, there is always a good arrangement of both methods, and both methods may be used in an organic combination”.
なお、従来のプログラム記憶型コンピューターの場合、毎回々々、「その入力内容に対する情報処理」の為にかなり多数の命令(インストラクション)をチャカチャカとこなすことになるので、相当大きな電力を消費し、現在そのCPUはヒーター状態である。一方、プレザルト(Presult)記憶型コンピューターの場合、毎回々々「その入力内容に対する情報処理」はたった1回のメモリー・アクセスで済むので、圧倒的にその消費電力は少なくて済む。そういう訳で、世界中のプログラム記憶型コンピューターをプレザルト(Presult)記憶型コンピューターで置き換えたら、極めて莫大(ばくだい)な電力を節約することができる。その節約電力は原子力発電所・何基分になるであろうか!? いや、将来的に情報処理・通信分野においてその消費電力が急激に増加することが予想されているから、その節約電力は原子力発電所・何十基分(、いや何百基分)になるであろうか!? ただし、それは今の所2値回路同士、同じ多値数の多値回路同士の話である。
とは言っても、地球温暖化阻止の観点から原子力発電所の活用は避けられないと本発明者は考えている。特に、『最近の豪雨被害』そして『予想される将来のモンスター台風などによる、更なる豪雨被害』を考えると、その活用は喫緊(きっきん)の課題である。要(よう)は地球温暖化阻止と原発回避のバランスの問題だと思う。しかも、雨や曇りが多くなると予想される(!?)ので、太陽電池などの太陽発電はこれまで考えられたほど地球温暖化阻止にはあまり役に立たないかもしれない。
また、不正侵入操作に対する耐性に関して、従来のプログラム記憶型コンピューターの場合、不正侵入者は「その侵入先のコンピューターが持つ各コマンドや各アプリケーション・ソフトウエア、OS等のシステム・ソフトウエア」を悪用することになるであろうから、無防備なら「そのシステムの全プログラム量に比べて比較的小さな不正プログラム」でそのコンピューターを完全に支配することができる。一方、プレザルト記憶型コンピューターの場合、そのコンピューターを完全に不正支配しようとするならば、今の所考えられる事は、そのプレザルト・ソフトウエア(=Presult Software)全部を書き換える必要が有るので、このコンピューターを完全に不正支配することはほとんど不可能である。
In the case of a conventional program storage type computer, a considerable number of instructions (instructions) are processed for “information processing on the input contents” each time, so a considerable amount of power is consumed. The CPU is in the heater state. On the other hand, in the case of a Preset memory type computer, since “information processing for the input contents” is performed only once each time, only one memory access is required, so that the power consumption is overwhelmingly small. That's why if you replace program storage computers around the world with Presto storage computers, you can save a tremendous amount of power. How much energy will it save for nuclear power plants? ? No, the power consumption is expected to increase rapidly in the information processing / communication field in the future, so how much energy will be saved at nuclear power plants and dozens (or hundreds)? ! ? However, it is a story between binary circuits and multi-value circuits having the same multi-value number so far.
Nevertheless, the present inventor believes that the use of nuclear power plants is inevitable from the viewpoint of preventing global warming. In particular, considering the “recent heavy rain damage” and “further heavy rain damage due to anticipated future monster typhoons”, its use is an urgent issue. I think the important point is the balance between preventing global warming and avoiding nuclear power. Moreover, it is expected that there will be more rain and cloudiness (!?), So solar power generation such as solar cells may not be as useful in preventing global warming as previously thought.
Also, regarding resistance to unauthorized intrusion operations, in the case of a conventional program storage type computer, an unauthorized intruder abuses “each software, each application software, and system software such as an OS that the intrusion destination computer has”. As such, if you are unprotected, you can take full control of the computer with a “malware that is relatively small compared to the total amount of programs in the system”. On the other hand, in the case of a Presto memory type computer, if it is attempted to completely control the computer completely, it is necessary to rewrite the entire Pres software (= Present Software). It is almost impossible to completely improperly control.
さらに、プログラム記憶型コンピューターの記憶容量に関して、例えば自動車分野ではそのプログラムが何千万行・何億行(→そのメモリー・アドレスに換算すれば、その数倍?である。)に達して、必要とする記憶容量が膨大(ぼうだい)になって来ているが、それなら、プレザルト(Presult)記憶型コンピューターを使用した方が圧倒的に有利になって来るので、その完全使用が次第次第に視野に入って来る。
⇒⇒ 段落番号[0266]のReference−C、Reference−E。
それから、プレザルト記憶型コンピューターとクラウド・コンピューターの相性(あいしょう)は良いと考えられる。なぜなら、その必要とするメモリー容量のぼう大さをクラウド・コンピューター側が吸収・負担する、からである。
Furthermore, regarding the storage capacity of a program storage type computer, for example, in the automobile field, the program reaches tens of millions and hundreds of millions of lines (→ if converted to the memory address, it is several times that?) The storage capacity is becoming enormous, but if that is the case, the use of a PRESULT storage computer will become overwhelmingly advantageous, so its full use will gradually become a field of view. Come in.
=> Reference-C, Reference-E of paragraph number [0266].
Then, the compatibility between the Presto storage computer and the cloud computer is considered good. This is because the cloud computer side absorbs and bears the amount of memory required.
ただし、クラウド・コンピューターの利用はクライアント自身が自分に関するプレザルト・ソフトウエア(→ビッグデータ又はビッグ情報)をただで提供していることに注意、警戒する必要が有る。と言うのは、未来的にはその情報収集の果てがそのクライアントのクローン人工知能(=A Clone−Artificial−Intelligence of the client)の構築になってしまうと本発明者は考えている、からである。( いやー、まだまだ人工知能もどき●かも!?! )
例えば、ある会社が業務で外部のクラウド・コンピューターを利用する場合、万が一、その会社に関する「ビッグ・データ又はビッグ情報」が第三者に流れると、その会社のクローン・カンパニー(Clone Company)もしくは「それ以上に優れた会社」が強力なライバルとして出現する恐れが有る、からである。それを防ぐなら、自前でクラウド・コンピューター・システムを持つしかないのでは!?
これを考え過ぎと思う人が居るかもしれないが、最近「本来守られて当たり前の基本的な義務・ルール」が守られていない事件が下記の通り続発している。それでも……???
●実例)某大手メーカーの不正会計事件、建物の杭(くい)打ちデータの改ざん・流用事件、他国の組織ぐるみ(?)のドーピング不正事件、某ゴム製造会社のゴム・データの改ざん事件、などなど。
***
■◇◇顧小失大◇◇■ 小(しょう)を顧(かえり)みて大(だい)を失う!!!
小利(しょうり。=小さな利益)に目を奪われて大利(たいり。=大きな利益)を失うこと。中国の諺(ことわざ)。
***
そして、個人利用の場合、まぁー、今の所そこまでは行かなくとも(very)スモール・クローン人工知能(very small Clone−Artificial−Intelligence)の構築がプライバシーの侵害に繋(つな)がる恐れが有る、からである。そんな事を本発明者は極めて強く危惧している。結局は、その恐れが世の中に次第に広く知れ渡り「従来通り個々のパソコンがOSを内蔵するタイプに戻る」等するのではないかと本発明者は考えている。
However, when using cloud computers, it is necessary to be cautious and aware that clients themselves provide their own software (→ big data or big information). This is because, in the future, the present inventor believes that the end of the information collection will be the construction of the client's clone artificial intelligence (= A Clone-Artificial-Intelligence of the client). is there. (No, artificial intelligence is still coming up!)
For example, when a company uses an external cloud computer for business, if “big data or big information” about the company flows to a third party, the company's Clone Company or “ This is because “a better company” may emerge as a strong rival. If you want to prevent that, you have to have your own cloud computer system! ?
There may be people who think this is too much, but recently there have been a series of incidents where the “basic obligations and rules that have been protected and taken for granted” have not been observed. Still ...? ? ?
● Examples: Unauthorized accounting cases of certain major manufacturers, cases of tampering and diversion of building pile data, doping fraud cases of organizations in other countries (?), Cases of tampering with rubber data of certain rubber manufacturing companies, etc. Such.
***
■ ◇◇ Large loss ◇◇ ■ Look back on the small, lose the large! ! !
Losing interest (severity. = Big profit) by losing attention to it. Chinese proverb.
***
And in the case of personal use, well, even if it doesn't go so far (very), building a small clone artificial intelligence (very small Clone-Artificial-Intelligence) will lead to an infringement of privacy. Because there is fear. The present inventor is extremely concerned about such a situation. In the end, the present inventor thinks that the fear gradually becomes widely known in the world and that “individual personal computers will return to the type in which the OS is built in” as in the past.
ところで、ファジー制御の分野においても、ファジー制御で使ういろいろな関数や特性曲線や演算など全部を膨大な真理値表で表現することができるので、当然の事ながら、この新概念コンピューターを用いてファジー制御することもできる。
また、『ニューロ・コンピューター(又はニューラル・ネットワーク・コンピューター)に関してもそのメモリー容量を有意義に合理的にどんどん膨大に増やして行くと、そのメモリー容量増大の果てはそのニューロ・コンピューターがプレザルト記憶型コンピューターになってしまうと本発明者は考えている。
と言うのも、いろいろと工夫をしながらプレザルト記憶型コンピューターのメモリー容量を超・(超・……超・)大幅に節約したものがニューロ・コンピューターであると本発明者は考えている、からである。この考えが正しければ、その節約は、当然の事ながら、そのコンピューターに誤差を持ち込んでしまう為、ニューロ・コンピューターは(超)精密な細かい機械制御(例:エンジン制御、ロケット制御など。)には向かないだろう。
By the way, even in the field of fuzzy control, all the various functions, characteristic curves and calculations used in fuzzy control can be expressed in a huge truth table. It can also be controlled.
In addition, regarding a neuro computer (or neural network computer), if its memory capacity is increased significantly and reasonably and reasonably, the neuro computer will become a Presto memory computer as a result of the increase in memory capacity. The inventor believes that
This is because the present inventor believes that the memory capacity of the Presto storage computer is greatly reduced (super -... super-) with a lot of ingenuity, and that the neuro-computer is the one. It is. If this idea is correct, the savings will, of course, introduce errors into the computer, so the neuro computer is (ultimate) for precise mechanical control (eg engine control, rocket control, etc.). It will not be suitable.
◆◆◆**** 不正プログラムを無害なガラクタにする情報処理手段 ****◆◆◆
***
◆◆◇** Information−processing−means
to be able to treat unjust−
programs as harmless rubbish **◇◆◆
***
●●34)本発明者は多値関連技術として自分の先願発明「特開2006−190239(◆自発取下)」において「不正侵入操作阻止機能を持つ情報処理手段」を開示しているが、これにも本発明技術を活用することができる。ただし、この数年サイバー・テロ、サイバー戦争など緊急を要する事態になって来る等した為、本発明者は自発的にこの先願発明を取り下げた。
■□c))The present inventor is disclosing “Information−processing−means with working to prevent unjust−invasion−operation” in his prior invention‘JP2006−190239A’ as a relative technology to multivalue.
(But he voluntarily withdrew the prior invention,because “Crises such as a cyber terrorism and a cyber war,etc.” were gradually starting in to come during these several years.)
この先願技術は、割り切って『不正侵入されても不正操作されなければ、それで良し』という考え方に基づいている。
This prior invention−technology is on the basis of a simple−and−creative idea of “that it’s all right for no unjust program to be able to operate a computer system even if every unjust program can invade it”.
◆◆◆ **** Information processing means to make malicious programs harmless. ******** ◆◆◆
***
◆◆ ◇ ** Information-processing-means
to be able to treat unjust-
programs as harmless rubbish ** ◇ ◆◆
***
34) The present inventor has disclosed “an information processing means having a function of preventing unauthorized intrusion operation” in his prior invention “Japanese Patent Application Laid-Open No. 2006-190239 (◆ Self-collection)” as a multi-value related technique. The technique of the present invention can also be utilized for this. However, the inventor voluntarily withdrew this earlier invention because of the emergence of urgent situations such as cyber terrorism and cyber war in the past few years.
■ □ c)) The present inventor is disclosing “Information-processing-means with working to present unjust-investment-operation”
(But he voluntary with the prior invention, because “Crises as a cyber terrism and a cyberwar tor ve s e r s e r e r e r t e s” ”
This prior application technology is based on the idea that “if an unauthorized intrusion occurs, if it is not illegally operated, that is fine”.
This prior invention-technology is on the basis of a simple-and-creative idea of "that it's all right for no unjust program to be able to operate a computer system even if every unjust program can invade it".
例えば、この情報処理手段では2値表現と明確に区別できる3値表現(例:その機械語の少なくとも1つの桁が数値2であること。)で表現された「命令(インストラクション)、プログラム又はコマンド」等を使用し、「完全に信頼できない、2値表現で表現された『外部データ又は外部情報』」を取り入れるとき「2値表現で表現されたものしか通過させないフィルター手段(例:クランプ・ダイオード等のハードウエア手段。)」を介してそれを取り入れる。
For example,this information−processing−means uses “its instructions,programs or commands,etc.” expressed by 3value−expression which can clearly be distinguished from 2value−expression.
In the 3value−expression,for instance,at least one digit of each of its machine languages are numerical value‘2’.
And this information−processing−means takes outside−data−or−outside−information into itself through its filter means,when taking those thereinto.
But The outside−data−or−outside−information aren’t perfectly reliable and are expressed by 2value−expression.
And the filter−means can pass only digital signals expressed by 2value−expression.As examples of the filter means,there are some hardware means such as a clamping diode and so on.
つまり、この情報処理手段ではその3値表現された「命令(インストラクション)、プログラム又はコマンド」等だけがその実行の対象であり、2値表現された内部・外部の「データ又は情報」がその情報処理の対象であり、その2値表現された「外部データ又は外部情報」はその入力の対象に含まれる。
Namely,in this information−processing−means,“only the instructions,programs or commands,etc. expressed by the 3value” are its object of execution,and “the inside−and−outside data−or−information expressed by the 2value” are its object of information processing,and “the outside data−or−information expressed by the 2value” include its objects of input.
For example, in this information processing means, an “instruction (instruction), program or command expressed in a ternary expression (eg, at least one digit of the machine language is a numerical value 2) that can be clearly distinguished from the binary expression. , Etc., and when "external data or external information" expressed in binary representation that is completely unreliable is taken in, "filter means that passes only what is expressed in binary representation (eg: clamp diode) Incorporate it via "Hardware means etc.").
For example, this information-processing-means uses “its instructions, programs or commands, etc.” expressed by 3value-expression-wide-burned-burning
In the 3 value-expression, for instance, at least one digit of each of the machines language areas are numeric value '2'.
And this information-processing-means Takes outside-data-or-outside-information into itself through the filters it, the human taking these into.
But The outside-data-or-outside-information aren's perfectly reliable and are expressed by 2value-expression.
And the filter-means can pass only digital signals expressed by 2value-expression. As examples of the filter means, there are some hardware measures such as a clamping diode and so on.
In other words, in this information processing means, only “instructions (instructions), programs or commands” expressed in ternary values are targets of execution, and internal or external “data or information” expressed in binary values is the information. The “external data or external information” that is the target of processing and is expressed in binary is included in the input target.
Named, in this information-processing-means, “only the instructions--the-like-and-the-next-the-the-number-of-the-bound-and-the-the-number-of-the-the-number-and-the-the-of-the-of-the-of-the-the_the_the_the_object_of_the_the_of_the_the_the_of_the_the_of_the_the_of_the_the_of_the_the_for_the_the_of_the_the_the_for_the_of_the_the_the_s are objects object of information processing, and “the outside data-or-information expressed by the 2value” include it objects of input.
そして、2値表現と明確に区別できる3値表現で表現された、外部の信頼できる「『命令(インストラクション)、プログラム又はコマンド』等、あるいは、データ又は情報」が「隔離された専用の別の入出力ポート」から入出力される。
→→ 信頼できる通信例:量子通信(伝送情報量が少ない。)など、人や機械を使って直接伝達。
And the following things are put into−and−out from its another input−output−port isolated−and−prepared for only them.
★Outside and reliable “instructions,programs,commands or data−or−information,etc.” expressed by 3value−expression which can clearly be distinguished from 2value−expression.
⇒⇒ Examples of some reliable communication means:
Quantum communication means etc.,and direct communication means such as a human carrier or a machine carrier.
But communicable information−quantity of the quantum communication is very small now.
その結果、この情報処理手段に不正侵入できたとしても、その不正侵入した「不正プログラム、不正コマンド」等は、その実行対象ではない為全く実行されないので、その情報処理手段が不正操作されることは完全に無い。その不正プログラム・不正コマンド等はその情報処理手段にとってただの無害、無価値なガラクタ「データ又は情報」になるだけである。
As the result,it’s absolutely impossible that the unjust ‘program,command,etc.’ operate the information−processing−means,because they aren’t executed at all on account of no object of execution,even if all of them can invade thereinto.
The unjust ‘program,command,etc.’ are ‘mere,harmless and worthless’ rubbish−‘data or information’ for the information−processing−means.
そんな訳で、最近の「不正侵入操作に対する対策の手こずり」、「その不正操作とその対策のいたちごっこを終わりにする究極的な対策・手段への強い要望」からすれば、今直ぐにでもこの先願技術が利用されてもおかしくないと本発明者は考える。
By such reasons,the present inventor doesn’t think it strange that this prior invention−technology is now used when thinking both ‘recent big trouble with respect to defense against unjust invade−operating’ and ‘recent great request for final defense means which puts an end to a vicious circle between the unjust invade−operation and the defense’.
And an external reliable “instruction (instruction), program or command”, etc., or data or information ”expressed in a ternary expression that can be clearly distinguished from the binary expression, Input / output from “input / output port”.
→→ Reliable communication example: Quantum communication (small amount of transmission information), etc. Direct transmission using humans and machines.
And the following things are put into-and-out from other inputs-output-port isolated-and-prepared for only the.
★ Outside and reliable “instructions, programs, commands or data-or-information, etc.” expressed by 3valued-expressed
⇒⇒ Examples of some reliable communication means:
Quantum communication means etc. , And direct communication mens such as a human carrier or a machine carrier.
But communicable information-quantity of the quantum communication is very small now.
As a result, even if this information processing means can be illegally infiltrated, the illegally intruding “illegal program, illegal command”, etc. are not executed at all, so that the information processing means is illegally operated. Is completely absent. The malicious program, illegal command, etc. are merely harmless and valueless trash “data or information” for the information processing means.
As the result, it's absolutely impossible that the unjust 'program, command, etc. 'operate the information-processing-means, because the are aren't executed at all of the object of the ex-education, even if the invent of the theft.
The unjust 'program, command, etc. 'area' mere, harmless and worstless 'rubbish-'data or information' for the information-processing-means.
That's why, according to the recent “hands-on countermeasures against unauthorized intrusion operations” and “strong demands for the ultimate countermeasures and measures to end the illegal operations and countermeasures,” this prior-application technology is immediately available. The present inventor thinks that it is not strange to use.
By such reasons, the present inventor does not think it strange that this prior invention-technology is now used when thinking both 'recent big trouble with respect to defense against unjust invade-operating' and 'recent great request for final defense means which puts an end to a virtual circle be the the unjust invade-operation and the defense '.
他にも特開2011−103124(上記先願発明と同じ理由で◆自発取下)の「不正侵入操作阻止機能を持つ情報処理手段」が有る。
Besides,there is his another prior invention‘JP2011−103124A’ of “Information−processing−means with working to prevent unjust−invasion−operation”.
(But he voluntarily withdrew this invention too by the same reason with that of the first prior invention.)
これらの不正侵入操作阻止方法を使えば、最近、特に大問題となって来ているサイバー空間での戦争(陸、海、空、宇宙そして第5番目の戦場)そのものを無くすことができるかもしれない。
It may be possible to extinguish every war itself in cyber space,if using these way how to prevent unjust−invasion−operation.
The kind of war crises are recently−specially becoming a grave matter,and the cyber space is called the 5th battlefield next to the 1st〜4th battlefields of land,sea,sky and universe.
なお、この不正侵入操作阻止技術とクラウド・コンピューターとの相性(あいしょう)は抜群に良い。なぜなら、例えば、その「命令(=インストラクション)、プログラム又はコマンド」等が前述の通り3値表現されていても、そのクライアントの要求内容もその処理結果内容も2値で表現できる、からである。
In addition,“this technology to prevent unjust−invasion−operation” fits a cloud−computer extremely well.
Because it’s possible to express both ‘every content for its client to request’ and ‘every result for the computer to have processed’ by using the above−mentioned 2value−expression,even if only “the instructions,programs or commands,etc.” are expressed by the above−mentioned 3value−expression.
また、数値1、0の違いを周波数の違いで表現する場合その通信回線自体を周波数フィルターとして活用することができる、からである。と言うか、その通信手段において数値2に対応する周波数を最初から定義・用意しなければ良い、からである。
And because it’s possible to use its communication−circuits themselves as frequency filters in case of expressing the difference between the two numerical values‘1 and 0’ by the difference between two frequencies.
Or because it’s good neither defining nor preparing a frequency correspondent to the numerical value‘2’ in their communication−means from the beginning.
In addition, there is an “information processing means having an unauthorized intrusion operation blocking function” disclosed in Japanese Patent Application Laid-Open No. 2011-103124 (for the same reason as the above-mentioned invention of the prior application, ◆ under self-collection).
Besides, there is his other prior invitation 'JP2011-103124A' of "Information-processing-means with working to present unjust-inversion-operation".
(But he voluntary with this invention to by the same reason with that of the first prior invitation.)
By using these intrusion prevention methods, it is possible to eliminate the cyberspace wars (land, sea, air, space, and the fifth battlefield) that have recently become particularly serious problems. Absent.
It may be possible to extinguisher every way in cyber space, if using the way how to present unjust-inversion-operation.
The kind of wars are area-specifically, and the first and second, and the cyber space is the first to the next.
The compatibility between this intrusion prevention technology and cloud computers is outstanding. This is because, for example, even if the “command (= instruction), program or command” or the like is expressed in three values as described above, the request contents of the client and the processing result contents can be expressed in binary values.
In addition, “this technology to present unjust-invasion-operation” fits a cloud-computer extrawell.
Because it's possible to express both 'every content for its client to request' and 'every result for the computer to have processed' by using the above-mentioned 2value-expression, even if only "the instructions, programs or commands, etc .. are expressed by the above-mentioned 3value-expression.
Further, when the difference between the numerical values 1 and 0 is expressed by the difference in frequency, the communication line itself can be used as a frequency filter. In other words, it is not necessary to define and prepare a frequency corresponding to the numerical value 2 from the beginning in the communication means.
And because it's possible to use its communication-circuits themselves as frequency filters in case of expressing the difference between the two numerical values'1 and 0 'by the difference between two frequencies.
Or because it's good neigher defining nor preparing a frequency corresponding to the numeric value '2' in the mind communication.
ところで、本発明者が自分の「特開2006−190239(不正侵入操作阻止機能を持つ情報処理手段)」の明細書中に記載した『車載コンピューターの乗っ取り』がその後2010年アメリカの2大学によって実証実験で確認され、論文発表された。
→→ 下記●参考資料1。
By the way,the present inventor described “capture of computers equiped with an automobile” in the description of his invention‘JP2006−190239A’ of “Information−processing−means with working to prevent unjust−invasion−operation”.
After the disclosure,the capture was confirmed through experiments for confirming the possibility of the capture by two American university,and their paper about the capture was presented in 2010year.
⇒⇒ The following Reference data 1.
その為に、国内外の自動車メーカーなど多数の会社が『リアル・タイム性とフェイル・セーフの確保』を目指して国際標準仕様化、国際標準規格化に動き出した。
→→ 下記●参考資料2。
For that reason,‘many companies of interior−&−exterior automobile−makers etc.’ started attempting to make international standard−or−specification in order to ensure both “faster real−time processing” and “stronger fail−safe working”.
⇒⇒ The following Reference data 2.
そんな訳で、前述した新概念コンピューターのリアル・タイム性や上記の不正侵入操作阻止技術が特に役に立つのではないかと本発明者は考えている。
From such a reason,the present inventor thinks the following two things useful for the ensuring.
(1)Very fast real−time processing of the above mentioned new concept computer.
(2)The above mentioned technology to prevent unjust−invasion−operation.
それから、特開2006−190239号に関して誤解の無いよう念のため付け加えると、特開2006−190239号公報には『公序良俗違反の表示』という記載が有るが、本発明者兼本出願人はこの表示に関して特許庁から何の警告も何の罰も受けていない。これは、その明細書中に記載したフロッピー(登録商標)に関して「これが登録商標である」ことを明示する必要が有ることを知らず、明示しなかった為である。
And then,in order to clear misunderstanding with regard to his prior invention‘JP2006−190239A’,the present inventor adds the things mentioned below.
“The indication of having violated public order and morality” is described in its Kokai publication,but the present inventor(=present applicant) has received neither warning nor penalty from Japan Patent Office in relation to the indication.
The indication was caused by that he didn’t know it needful to point out that “Floppy(登録商標)(registered trademark)” was a registered trademark in spite of using the trademark in its description,and by that he didn’t point out so.
By the way, the inventor of the present invention described in the specification of “Japanese Patent Laid-Open No. 2006-190239 (information processing means having an unauthorized intrusion operation blocking function)” was subsequently verified by two American universities in 2010. It was confirmed by an experiment and a paper was published.
→→ The following ● Reference 1.
By the way, the present inventor described "capture of computers equiped with an automobile" in the description of his invention'JP2006-190239A 'of "Information-processing-means with working to prevent unjust-invasion-operation".
After the disclosure, the capture was confirmed through experiments for confirming the possibility of the capture by two American university, and their paper about the capture was presented in 2010year.
⇒⇒ The following Reference data
To that end, a number of companies, including domestic and overseas automakers, have started moving toward international standardization and international standardization with the aim of ensuring real-time performance and fail-safety.
→→ The following ● Reference 2.
For that reason, 'many companies of interior-&-exterior automobile-makers etc. 'started attempting to make international standard-or-specification in order to ensemble both “faster real-time processing” and “stronger fail-safe working.”
⇒⇒ The following Reference data
For this reason, the present inventor believes that the above-described real-time property of the new concept computer and the above-described unauthorized intrusion operation prevention technology are particularly useful.
From such a reason, the present inventor thinks the following two things to use for the ensuing.
(1) Very fast real-time processing of the above-mented new concept computer.
(2) The above intentioned technology to present unjust-invasion-operation.
Then, to make sure that there is no misunderstanding regarding Japanese Patent Laid-Open No. 2006-190239, Japanese Patent Laid-Open No. 2006-190239 has a description of “indication of violation of public order and morals”. There has been no warning or punishment from the JPO regarding. This is because the floppy (registered trademark) described in the specification is not known because it is not necessary to clearly indicate that it is a registered trademark.
And then, in order to clear messenger standing with the reg to to prior inventor 'JP2006-190239A', the present inventor the thesmented bellow.
"The indication of having violated public order and morality" is described in its Kokai publication, but the present inventor (= present applicant) has received neither warning nor penalty from Japan Patent Office in relation to the indication.
The indication was caused by that he did not know it needful to point out that "Floppy (registered trademark) (registered trademark)" was a registered trademark in spite of using the trademark in its description, and by that he did not point out so.
●参考資料1(Reference data 1):
“Experimental Security Analysis of a Modern Automobile”,2010 IEEE Symposium on Security and Privacy.
●参考資料2(Reference data 2):
日経エレクトロニクス・第1088号(2012年8月6日号)のp.49〜p.57の『Ethernet(登録商標)がクルマに載る リアル・タイム性とフェイル・セーフを確保へ』。日経BP社が2012年8月6日に発行。
‘Ethernet(登録商標)(registered trademark) is equiped for automobiles, In order to ensure both “faster real−time processing” and “stronger fail−safe function” ’.
NIKKEI ELECTRONICS No.1088(the 6th August 2012year number) at page 49〜57,published by Nikkei Business Publications,Inc.(in Japan) on the 6th August in 2012year
●参考資料3(Reference data 3):
日本経済新聞・朝刊(東京版)(2014年8月8日発行)のp.38、『自動運転の車 乗っ取り?』、「サイバー攻撃 新たな脅威」、「遠隔操作、米の会議で『実演』」。
● Reference data 1 (Reference data 1):
“Experimental Security Analysis of a Modern Automobile”, 2010 IEEE Symposium on Security and Privacy.
● Reference data 2 (Reference data 2):
Nikkei Electronics No. 1088 (August 6, 2012 issue) p. 49-p. 57 “Ethernet (registered trademark) is on the car to ensure real time and fail-safe”. Published by Nikkei BP on August 6, 2012.
'Ethernet (registered trade mark) is equiped for automobiles, In order to ensemble “Faster real-time processing” and “stranger failure-safe.”
NIKKEI ELECTRONICS No. 1088 (the 6th August 2012 year number) at page 49-57, published by Nikkei Business Publications, Inc. (In Japan) on the 6th August in 2012year
● Reference data 3 (Reference data 3):
P. Of Nihon Keizai Shimbun, morning edition (Tokyo edition) (issued on August 8, 2014) 38, “Automatic car takeover? ”,“ Cyber attack new threat ”,“ Remote operation, “demonstration” at a US conference ”.
◆◆◆*********** 電源の課題を解決 ***********◆◆◆
***
●●35)電位モード(又は電圧モード)の多値論理回路では各・直流電圧供給が大きな課題(参照:非特許文献9)であるが、以下の通り、既にDC−DCコンバーター回路などに関する技術が有る。さらに精密な定電圧制御が必要ならば「定電圧制御されたDC−DCコンバーター回路」等の後段に3端子レギュレーター等のアナログ型定電圧手段を接続すれば良い。
◇◆◇特許文献25◇◆◇ 特許第2,717,963号
☆a)シュミット・トリガー回路を使用した間欠発振制御による定電圧制御。
☆b)自己発振式DC−DCコンバーター回路(非共振型)とシュミット・トリガー回路を組み合せる点が「この発明以前のヒステリシス制御(参照:後述する・非特許文献17)」と全く違う点である。
☆c)シュミット・トリガー回路が引き起こす「異常発振、異常過熱および異常な電力損失の増大」を防ぐ工夫が為されている。
☆d)出願日:1987年5月19日、優先日:1986年6月25日、同年8月25日。
◆◆◆ *********** Resolve power supply issues *********** ◆◆◆
***
●● 35) In the potential mode (or voltage mode) multi-value logic circuit, each DC voltage supply is a big problem (refer to Non-Patent Document 9). There is. If more precise constant voltage control is required, an analog type constant voltage means such as a three-terminal regulator may be connected to the subsequent stage of the “constant voltage controlled DC-DC converter circuit” or the like.
◇ ◆ ◇ Patent Document 25 ◇ ◆ ◇ Patent No. 2,717,963 ☆ a) Constant voltage control by intermittent oscillation control using Schmitt trigger circuit.
☆ b) The point that the self-oscillation type DC-DC converter circuit (non-resonant type) and the Schmitt trigger circuit are combined is completely different from “Hysteresis control before this invention (see: Non-patent document 17) described later”. is there.
☆ c) The device is designed to prevent "abnormal oscillation, abnormal overheating and abnormal power loss" caused by the Schmitt trigger circuit.
☆ d) Application date: May 19, 1987, Priority date: June 25, 1986, August 25, the same year.
◇◆◇特許文献26◇◆◇ 特許第3,187,470号
◆a)複合共振型DC−DCコンバーター回路(完全・電流ゼロ・スイッチング、オン・オフ切換え時のスイッチング損失ゼロ)。この発明技術以前、スイッチング・ノイズ低減(電波ノイズ対策など。)やスイッチング損失低減(⇒電力変換効率の向上。)の為に完全な「電流ゼロ・スイッチング動作または電圧ゼロ・スイッチング動作」の実現・実用化が極めて大きな、解決すべき技術課題であった。
→→後述する非特許文献13(日経産業新聞[東京版]のスイッチング電源広告特集)
◆b)普通、直列共振電流は電流ゼロを中心に減衰振動するので、その共振電流がその極小値または極大値でゼロになることは有り得ない。しかし、本発明者は「直列共振回路、並列共振回路および双方向性定電圧手段の組合せが持つ独特な作用効果」を実験しながら検討・考察して発見した。その独特な作用効果とはその共振電流がその極小値または極大値でゼロになる様に設定できることである。
参照:この特許公告公報・図2の電流波形。
⇒⇒これによって、その主スイッチのターン・オフ時その共振電流がゼロ又はゼロ近辺に留まっている時間が長くなる為、そのターン・オフ時に電流ゼロ・スイッチングし易くなる。一方、その共振電流はそのターン・オンと共に電流ゼロから流れ始めるので、自然に電流ゼロ・スイッチングとなる。
このとき、独特なフィルター・スイッチング作用(又はインピーダンス・スイッチング作用)の様なものが働き、それによる効果が現われていると考えられる。
なお、その使用半導体スイッチのオン・オフ切換え時のスイッチング損失は(そのスイッチ両端電圧)×(その主電流)の時間積分を「そのターン・オフ開始からターン・オフ完了まで」や「そのターン・オン開始からターン・オン完了まで」行うことによって求まるので、そのターン・オフ動作期間中とそのターン・オン動作期間中ずーっと「そのスイッチ両端電圧」又は「その主電流」はできるだけゼロである方が良い。ただ単に「そのターン・オフ動作期間中」と「そのターン・オン動作期間中」にその共振電流が瞬間的にゼロになれば良い訳ではない。
◆c)例えば、その双方向性定電圧手段として「2つのパワー・ダイオードを逆並列接続したもの」を使う場合、その双方向性定電圧手段とその並列共振回路は並列接続されている為、その各ダイオードの順方向電圧とその並列共振コンデンサ電圧は同じなるので、その各・順方向電圧−順方向電流特性に基づいてその並列共振コンデンサ電圧が直接その各・順方向電流を制御することになる。一方、その双方向性定電圧手段の方もその定電圧作用によりその並列共振コンデンサ電圧の振幅の大きさを抑制する、クランプする。
ここで単純に考えて、その直列共振周波数とその並列共振周波数がもし同じなら、その並列共振回路はその直列共振電圧に対してインピーダンス∞(理想動作時)なので、それが単独なら普通その直列共振電流を全く通さない筈である。反対に、「2つのパワー・ダイオードを逆並列接続したもの」は単独なら普通その定電圧特性に基づいて双方向にいくらでも電流を通す筈である。
ところが、その並列共振コンデンサ電圧が各・順方向電流を制御する為に、「その並列共振回路とその双方向性定電圧手段の並列回路」のインピーダンスはその直列共振電圧に対して「その各・順方向電圧−順方向電流特性に基づいて決まる各電流値(=1方向の電流値とその逆方向の電流値)」を境にして「ゼロから∞へ切り換わったり」、「∞からゼロへ切り換わったり」して、その『フィルター・スイッチング作用(又はインピーダンス・スイッチング作用)みたいなもの』がその直列共振電圧に対して働くと考えられる。
その各電流値はその並列共振コンデンサ電圧と共に変化し、そのプラス、マイナスの両電流ではその直列共振電流はその並列回路を通過することができる。それは『●何か合金みたいな新作用・新効果』である。その直列共振電流に対して互いに正反対の性質を持つ回路構成手段2つを組み合わせて新しい性質の回路構成手段が創り出された様な感じである。
もし、これ(直列共振回路、並列共振回路および双方向性定電圧手段の組合せ回路)に敢(あ)えて名前を付けるとしたら『合金回路(Alloy Circuit)』であろうか!?
→→ ●可変型定電流手段(?!?)。
その新作用・新効果のせいで『その直列共振電流が電流ゼロを中心にして減衰振動しない』のではないかと本発明者は考えている。
なお、この複合共振型DC−DCコンバーター回路の電源線を直流電源から切り放したとき、その回路の電源コンデンサ電圧の低下と共に前述した直流共振電流の大きさも当然小さくなって行くのだが、その直流共振電流波形中の第2の極値がゼロを保持し続けるのを本発明者はオシロスコープ波形を目で観て観測した。この事はその『合金回路(Alloy Circuit)』の新作用・新効果がその電源電圧の大きさの変化に左右されないことを意味するから、交流電源でもその合金回路を活用できるかもしれない。
◇ ◆ ◇ Patent Document 26 ◇ ◆ ◇ Patent No. 3,187,470 ◆ a) Composite resonance type DC-DC converter circuit (complete, zero current switching, zero switching loss at ON / OFF switching). Prior to this invention technology, the realization of a complete “zero current switching operation or zero voltage switching operation” to reduce switching noise (such as countermeasures against radio wave noise) and switching loss (⇒ improve power conversion efficiency). It was a technical problem to be solved that was extremely practical.
→→ Non-Patent Document 13 (Nikkei Sangyo Shimbun [Tokyo edition])
B) Normally, a series resonant current oscillates around a zero current, so that the resonant current cannot be zero at its minimum or maximum value. However, the present inventor has discovered by examining and considering "a unique effect of the combination of the series resonant circuit, the parallel resonant circuit, and the bidirectional constant voltage means" through experiments. The unique effect is that the resonance current can be set to zero at the minimum value or the maximum value.
Reference: Current waveform shown in this patent publication and FIG.
⇒⇒ This increases the time that the resonance current stays at or near zero when the main switch is turned off, so that it becomes easier to perform zero current switching when the main switch is turned off. On the other hand, since the resonance current starts to flow from zero current with the turn-on, the current is naturally switched to zero.
At this time, it seems that a unique filter switching action (or impedance switching action) works, and the effect due to this action appears.
The switching loss when switching on / off of the semiconductor switch used is the time integral of (the voltage across the switch) x (the main current) "from the start of turn-off to the completion of turn-off" or " From the start of turn-on to the completion of turn-on ”, the“ voltage across the switch ”or“ the main current ”should be zero as much as possible during the turn-off operation and the turn-on operation. good. However, it does not mean that the resonance current instantaneously becomes zero during “the turn-off operation period” and “the turn-on operation period”.
◆ c) For example, when using "bi-directional power supply with anti-parallel connection of two power diodes" as the bidirectional constant voltage means, the bidirectional constant voltage means and the parallel resonant circuit are connected in parallel. Since the forward voltage of each diode and the parallel resonant capacitor voltage are the same, the parallel resonant capacitor voltage directly controls each forward current based on the forward voltage-forward current characteristics. Become. On the other hand, the bidirectional constant voltage means also suppresses and clamps the magnitude of the amplitude of the parallel resonant capacitor voltage by the constant voltage action.
Considering simply here, if the series resonant frequency and the parallel resonant frequency are the same, the parallel resonant circuit has impedance ∞ (during ideal operation) with respect to the series resonant voltage. It should pass no current at all. On the other hand, “two power diodes connected in anti-parallel” normally would allow any amount of current to flow in both directions based on its constant voltage characteristics.
However, since the parallel resonant capacitor voltage controls each forward current, the impedance of the “parallel circuit of the parallel resonant circuit and the bidirectional constant voltage means” is “Switching from zero to ∞” or “From ∞ to zero” with each current value (= current value in one direction and current value in the opposite direction) determined based on forward voltage-forward current characteristics as a boundary It is thought that the “thing like a filter switching action (or impedance switching action)” acts on the series resonance voltage.
Each current value changes with the parallel resonant capacitor voltage, and for both the positive and negative currents, the series resonant current can pass through the parallel circuit. It is “● something new and new like an alloy”. It seems that a circuit configuration means having a new property has been created by combining two circuit configuration means having properties opposite to each other with respect to the series resonance current.
If we dare to name this (combination circuit of series resonant circuit, parallel resonant circuit and bidirectional constant voltage means), would it be an “alloy circuit”? ?
→→ ● Variable type constant current means (?!?).
The present inventor thinks that the series resonance current does not dampen and oscillate around zero current because of the new action and the new effect.
Note that when the power line of the composite resonance type DC-DC converter circuit is disconnected from the DC power source, the above-mentioned DC resonance current naturally decreases as the power supply capacitor voltage of the circuit decreases. The inventor visually observed the oscilloscope waveform as the second extreme value in the current waveform kept holding zero. This means that the new action and effect of the “Alloy Circuit” are not influenced by the change in the magnitude of the power supply voltage, so the alloy circuit may be used even with an AC power supply.
◆d)○●○以上の説明はその直列共振周波数とその並列共振周波数が同じ場合であるが、実際には一方の共振周波数を固定したままで、他方の共振周波数を変化させて行くと、その直列共振電流の極小値(2番目の極値)はプラス値からゼロになって、さらにマイナス値へと変化して行く。あるいは、その正反対に変化して行く。一方、その直列共振電流のプラス・マイナスが正反対なら、その直列共振電流の極大値(2番目の極値)がマイナス値からゼロになって、さらにプラス値へと変化して行く。あるいは、その正反対に変化して行く。
その結果、その両共振周波数を調整することによってその直列共振電流の極小値あるいは極大値(2番目の極値)がゼロになる様に設定することができる。
その様な電流ゼロ・スイッチングのせいか!? その主スイッチのオン・オフ切換え時に電圧サージも電流サージも発生せず、そのオン・オフ切換えが穏やかにスムーズに行われる。また、他の電流ゼロ・スイッチング方式と違ってそのターン・オフ時その共振電流がゼロ又はゼロ近辺に留まっている時間が長くなるので、その主スイッチのターン・オフ開始からターン・オフ終了までを余裕を持って行うことができる。この事は次のターン・オン動作に好影響を与える。
しかも、そのスイッチング損失は「その主スイッチの主電流」と「その主スイッチの両端電圧」の積の時間積分で表わされるから、そのオン・オフ切換え時にその共振電流がゼロ又はゼロ近辺に留まっている時間が長くなることはそのオン・オフ切換え時のスイッチング損失の面で他の電流ゼロ・スイッチング方式に比べて極めて有利になる。ただし、前記ゼロ設定を保持する様に両共振周波数を常に調整制御する必要が有る。
参照:特許第3,187,470号公報・図2の電流波形(第1閉回路の電流波形)。
◆ d) The explanation above is the case where the series resonance frequency and the parallel resonance frequency are the same, but in practice, when one resonance frequency is fixed and the other resonance frequency is changed, The minimum value (second extreme value) of the series resonance current changes from a positive value to zero, and further changes to a negative value. Or it changes in the opposite direction. On the other hand, if the plus / minus of the series resonance current is opposite, the maximum value (second extreme value) of the series resonance current becomes zero from the minus value and further changes to a plus value. Or it changes in the opposite direction.
As a result, the minimum value or the maximum value (second extreme value) of the series resonance current can be set to zero by adjusting both resonance frequencies.
Is it because of such zero current switching? ? No voltage surge or current surge occurs when the main switch is switched on and off, and the on / off switching is performed smoothly and smoothly. Also, unlike other current zero switching methods, the time that the resonant current stays at or near zero at the time of turn-off becomes longer, so the time from the start of turn-off to the end of turn-off of the main switch It can be done with a margin. This has a positive effect on the next turn-on action.
Moreover, since the switching loss is expressed by the time integral of the product of “the main current of the main switch” and “the voltage across the main switch”, the resonance current stays at or near zero when switching on and off. Longer time is extremely advantageous in comparison with other current zero switching systems in terms of switching loss during on / off switching. However, it is necessary to always adjust and control both resonance frequencies so as to maintain the zero setting.
Reference: Japanese Patent No. 3,187,470, current waveform of FIG. 2 (current waveform of the first closed circuit).
◆e)この特許公報に記載の回路定数と使用部品などは「有り合わせの部品を用いたので、ベストな選択ではない」が、第三者はその回路動作を検証し易い。
◆f)普通の共振型DC−DCコンバーター回路の場合そのスイッチング●半周期は通常ほぼ1/2共振周期(例えると正弦波の0〜πの期間)になるが、この発明技術の場合そのスイッチング●半周期はほぼ3/4共振周期(例えると正弦波の0〜3π/2の期間)になる為、その分そのスイッチング周波数が低くて済み、例えば「使用パワーMOS・FETの『ドレイン、ソース、ゲート各間の静電容量』それぞれの充放電に伴うスイッチング損失」が有っても少なくなるので、そのスイッチング損失低減の面からも有利である。
◆g)ついでながら、一般的なダイオードのオン・オフ動作で考えると、上記・使用パワー・ダイオードのメーカー仕様書(後述する非特許文献14)には『そのターン・オン遅れ』と『そのターン・オフ遅れ』について、その実測方法・実測条件とその実測値(順回復時間と逆回復時間)が記載されている。しかし、この複合共振型DC−DCコンバーター回路の場合、その逆並列接続されたダイオード2つはアナログ的に動作するので、そのオン・オフ動作的な事はこの回路には当てはまらない。
もし仮に、この回路をオン・オフ動作的に考えても、その使用条件はかなり緩(ゆる)い。例えば1キロ・ヘルツの「Vmax1ボルトの交流電圧とVmax100ボルトの交流電圧」を比較すると、その各・瞬時値がゼロである時の電圧変化率(=交流電圧波形の傾き)は前者の方がかなり小さい。しかも、その並列共振コンデンサ電圧に関してその各パワー・ダイオードの電圧クランプ作用によって「正弦波で言えばπ/2、3π/2の場合のプラスのピーク値付近とマイナスのピーク値付近ではその傾きはゼロかほぼゼロ」な為、つまり、その電圧変化が極めて小さい為、その電圧が変化するのに時間が掛かり、その各パワー・ダイオードがターン・オンしたり、ターン・オフしたりするのに充分な時間が与えられると考えられる。
◆h)下記・非特許文献15、16もこの発明技術の確かさと有用性を裏付ける。
◆i)出願日:1991年6月1日、優先日:1990年6月1日。
◆j)その共振電流のプラス側波形(第1閉回路の電流波形)とマイナス側波形(第2閉回路の電流波形)が対称的である必要が有る。さもないと、「プラス側の2番目の極値」と「マイナス側の2番目の極値」の一方しか電流ゼロに設定することができない。他方は電流ゼロからずれてしまう。
E) The circuit constants and parts used in this patent publication are “not the best choice because of the use of available parts”, but it is easy for a third party to verify the circuit operation.
◆ f) Switching in the case of a normal resonance type DC-DC converter circuit ● A half cycle is usually approximately ½ resonance cycle (for example, a period of 0 to π of a sine wave). ● Since the half period is almost 3/4 resonance period (for example, a period of 0 to 3π / 2 of a sine wave), the switching frequency can be lowered accordingly. , “Capacitance between gates” and “switching loss due to charge / discharge of each” are reduced, which is advantageous from the viewpoint of reducing the switching loss.
◆ g) By the way, when considering on / off operation of a general diode, the above-mentioned manufacturer specifications of the power diode (non-patent document 14 to be described later) include “the turn-on delay” and “the turn “Off delay” describes the actual measurement method, actual measurement conditions, and actual measurement values (forward recovery time and reverse recovery time). However, in the case of this complex resonance type DC-DC converter circuit, the two diodes connected in reverse parallel operate in an analog manner, and the on / off operation is not applied to this circuit.
Even if this circuit is considered as an on / off operation, the use conditions are considerably loose. For example, comparing 1 kilohertz “V max 1 volt AC voltage and V max 100 volt AC voltage”, the voltage change rate (= slope of the AC voltage waveform) when each of the instantaneous values is zero is The former is much smaller. In addition, with respect to the parallel resonant capacitor voltage, the voltage clamp action of each power diode indicates that the slope is zero near the positive peak value and near the negative peak value in the case of π / 2 and 3π / 2 in terms of sine waves. Is almost zero, that is, the voltage change is so small that it takes time for the voltage to change, enough for each power diode to turn on and off. It is thought that time will be given.
◆ h) The following and non-patent documents 15 and 16 also confirm the certainty and usefulness of the technology of the present invention.
I) Application date: June 1, 1991, Priority date: June 1, 1990.
J) The positive side waveform (current waveform of the first closed circuit) and the negative side waveform (current waveform of the second closed circuit) of the resonance current must be symmetrical. Otherwise, only one of “the second extreme value on the positive side” and “the second extreme value on the negative side” can be set to zero. The other will deviate from zero current.
◇◆◇特許文献29◇◆◇ 特許第3,477,136号
◆a)シュミット・トリガー回路を用いた間欠発振制御による定電圧制御。
◆b)共振型・自己発振式DC−DCコンバーター回路とシュミット・トリガー回路を組み合わせる点が「この発明以前のヒステリシス制御(参照:下記・非特許文献17)」と全く違う点である。
◆c)このため、その共振周期とその間欠周期は互いに独立しているので、そのスイッチング周波数はその共振動作によって一定のスイッチング周波数となる。
◆d)電流ゼロ・スイッチングがもたらす効用により上記・特許文献25の発明技術において必要な工夫・構成手段を必要とせず、回路構成や入出力電圧関係の自由度が高い。
◆e)特許文献26の原出願の分割出願。
◆f)この発明技術以前、共振型DC−DCコンバーター回路の「定電圧制御と無負荷時の待機電力低減」が極めて大きな、解決すべき技術課題であったが、この発明技術によって両課題を同時に解決することができた。
→→後述する非特許文献13(日経産業新聞[東京版]のスイッチング電源広告特集)
◇ ◆ ◇ Patent Document 29 ◇ ◆ ◇ Patent No. 3,477,136 ◆ a) Constant voltage control by intermittent oscillation control using a Schmitt trigger circuit.
B) The combination of a resonant / self-oscillating DC-DC converter circuit and a Schmitt trigger circuit is completely different from “Hysteresis control before the present invention (see: Non-patent document 17)”.
C) For this reason, the resonance period and the intermittent period are independent of each other, so that the switching frequency becomes a constant switching frequency by the resonance operation.
D) The effect brought about by zero current switching eliminates the need for contrivance and configuration means required in the inventive technique of the above-mentioned Patent Document 25, and has a high degree of freedom in circuit configuration and input / output voltage relationships.
E) Divisional application of the original application of Patent Document 26.
◆ f) Before this invention technology, “constant voltage control and standby power reduction during no load” of the resonance type DC-DC converter circuit was a very big technical problem to be solved. We were able to solve it at the same time.
→→ Non-Patent Document 13 (Nikkei Sangyo Shimbun [Tokyo edition])
多値論理回路を実現する際に入力信号のオーバーシューティングやアンダーシューティング等の不要振動を抑制する際に生じる(駆動)電力損失を低減できる。
When realizing a multi-value logic circuit, it is possible to reduce (driving) power loss that occurs when suppressing unnecessary vibration such as overshooting or undershooting of the input signal.
Claims (1)
「『第1定電位から第N定電位まで番号順にこれらの定電位が高くなって行くか、又は、低くなって行くN個の定電位』を供給し、その各定電位と0〜(N−1)の各整数がその第1定電位とその整数0から順々に1対1ずつ対応すると定義された第1定電位供給手段〜第N定電位供給手段」と、
「S個の入力電位信号の入口となる第1の入口手段〜第Sの入口手段」と、
「『S=1の場合は1つの前記入力電位信号に対応する入力整数、S≧2の場合は[S個の前記入力電位信号のそれぞれと1対1ずつ対応するS個の入力整数のすべて]か[S個の前記入力電位信号のそれぞれと1対1ずつ対応するS個の入力整数のうち、少なくとも1つ]』が『[整数0〜(N−1)の中であらかじめ決められた1つの入力用特定整数と等しいかそうでないか]、[整数0〜(N−2)の中であらかじめ決められた1つの入力用特定整数より大きいかそうでないか]、[整数1〜(N−1)の中であらかじめ決められた1つの入力用特定整数より小さいかそうでないか]、[整数0〜(N−1)の中であらかじめ決められた、その差が少なくとも2である2つの入力用特定整数の間に有るかそうでないか]のいずれか1つ』について、それに適用する『下記2つ又は4つのしきい値電位』に基づいて肯定か否定かを判別し、その判別結果を判別結果信号として出力する数値判別手段」を有し、
その第1〜第Sの入口手段のうち、少なくとも1つに「その出力定常時に出力する出力電位が高電位側と低電位側の2種類だけであり、前記数値判別手段がその一方の出力電位を前記肯定と判別する一方、その他方の出力電位を前記否定と判別する前段回路」が接続されている場合に、
「その前段回路が接続されている前記入口手段が1つならそこから内側に、複数個ならその入口手段ごとにそこから内側に」その入力電位信号を「前記N個の定電位のうち、その高電位側出力電位に一番近い高電位側定電位」と「前記N個の定電位のうち、その低電位側出力電位に一番近い低電位側定電位」それぞれにクランプする「電位クランプ・ダイオード又は電位クランプ手段」を1つずつ接続したフージ代数の原則に基づく多値論理回路用の数値判別回路において、
前記高電位側定電位と前記低電位側定電位のうち、一方を「他方と同じにすることなく」自由に選択できるときに前記高電位側定電位と前記低電位側定電位の関係が前記N個の定電位の中で隣り同士となる様に設定したことを特徴とするフージ代数の原則に基づく多値論理回路用の数値判別回路。
ただし、前述した「1つの入力用特定整数より小さい」という意味にはその1つの入力用特定整数は含まれないし、前述した「1つの入力用特定整数より大きい」という意味にはその1つの入力用特定整数は含まれないし、前述した「2つの入力用特定整数の間に有る」という意味にはその2つの入力用特定整数は含まれない。
■■ その2つ又は4つのしきい値電位 ■■
■(1)その第1定電位から第N定電位まで番号順にこれらの定電位が高くなって行く場合で、さらに、
●a)「等しいかそうでないか」の場合:
*「等しいか」では「『前記入力用特定整数に対応する入力用特定定電位』を基準にしてあらかじめ決められたプラス側しきい値電位とマイナス側しきい値電位」。ただし、前記入力用特定整数が0のときは前記プラス側しきい値電位だけで、前記入力用特定整数が(N−1)のときは前記マイナス側しきい値電位だけである。
*「そうでないか」では「その第1定電位〜第N定電位のうち、前記入力用特定定電位より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」と「その第1定電位〜第N定電位のうち、前記入力用特定定電位より1つ下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。ただし、前記入力用特定整数が0のときは前記マイナス側しきい値電位だけで、前記入力用特定整数が(N−1)のときは前記プラス側しきい値電位だけである。
●b)「大きいかそうでないか」の場合:
*「大きいか」では「その第1定電位〜第N定電位のうち、『前記入力用特定整数に対応する入力用特定定電位』より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
*「そうでないか」では「前記入力用特定定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
●c)「小さいかそうでないか」の場合:
*「小さいか」では「その第1定電位〜第N定電位のうち、『前記入力用特定整数に対応する入力用特定定電位』より1つ下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
*「そうでないか」では「前記入力用特定定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
●d)「2つの前記入力用特定整数の間に有るかそうでないか」の場合:
*「その2つの間に有るか」では「その第1定電位〜第N定電位のうち、『その2つの入力用特定整数に対応する2つの入力用特定定電位のうち、低い方の定電位』より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」と「その第1定電位〜第N定電位のうち、『その2つの入力用特定定電位のうち、高い方の定電位』より1つ下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
*「そうでないか」では「その2つの入力用特定定電位のうち、低い方の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」と「その2つの入力用特定定電位のうち、高い方の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
■(2)その第1定電位から第N定電位まで番号順にこれらの定電位が低くなって行く場合で、さらに、
●a)「等しいかそうでないか」の場合:
*「等しいか」では「『前記入力用特定整数に対応する入力用特定定電位』を基準にしてあらかじめ決められたプラス側しきい値電位とマイナス側しきい値電位」。ただし、前記入力用特定整数が0のときは前記マイナス側しきい値電位だけで、前記入力用特定整数が(N−1)のときは前記プラス側しきい値電位だけである。
*「そうでないか」では「その第1定電位〜第N定電位のうち、前記入力用特定定電位より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」と「その第1定電位〜第N定電位のうち、前記入力用特定定電位より1つ下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。ただし、前記入力用特定整数が0のときは前記プラス側しきい値電位だけで、前記入力用特定整数が(N−1)のときは前記マイナス側しきい値電位だけである。
●b)「大きいかそうでないか」の場合:
*「大きいか」では「その第1定電位〜第N定電位のうち、『前記入力用特定整数に対応する入力用特定定電位』より1つした下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
*「そうでないか」では「前記入力用特定定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
●c)「小さいかそうでないか」の場合:
*「小さいか」では「その第1定電位〜第N定電位のうち、『前記入力用特定整数に対応する入力用特定定電位』より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
*「そうでないか」では「前記入力用特定定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
●d)「2つの前記入力用特定整数の間に有るかそうでないか」の場合:
*「その2つの間に有るか」では「その第1定電位〜第N定電位のうち、『その2つの入力用特定整数に対応する2つの入力用特定定電位のうち、低い方の定電位』より1つ上の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」と「その第1定電位〜第N定電位のうち、『その2つの入力用特定定電位のうち、高い方の定電位』より1つ下の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」。
*「そうでないか」では「その2つの入力用特定定電位のうち、低い方の定電位を基準にしてあらかじめ決められたプラス側しきい値電位」と「その2つの入力用特定定電位のうち、高い方の定電位を基準にしてあらかじめ決められたマイナス側しきい値電位」。
When a predetermined plural number of 3 or 3 is represented by N and a predetermined natural number is represented by S,
“N constant potentials that increase or decrease in numerical order from the first constant potential to the Nth constant potential” are supplied, and each constant potential and 0 to (N -1), the first constant potential supply means to the Nth constant potential supply means defined as one-to-one correspondence with the first constant potential in order from the integer 0, "
“First to Sth Inlet Means for Incoming S Input Potential Signals”,
““ When S = 1, an input integer corresponding to one of the input potential signals, and when S ≧ 2, [all of the S input integers corresponding one-to-one with each of the S input potential signals. ] Or [At least one of S input integers corresponding one-to-one with each of the S input potential signals] ”is determined in advance in [integer 0 to (N−1)]. It is equal to or not equal to one input specific integer], [is greater than one input specific integer predetermined in integer 0 to (N−2)], or [integer 1 to (N -1) smaller than or not one input specific integer predetermined in advance], [two predetermined in integer 0 to (N-1), the difference of which is at least 2 Any one of the input integers or not] For, to determine positive or negative based on "following two or four threshold potential" to be applied to it, has a numerical value determination means "for outputting the determination result as a determination result signal,
At least one of the first to S-th inlet means indicates that “the output potential to be output at the time of steady output is only two types of the high potential side and the low potential side, and the numerical discrimination means has one of the output potentials. Is connected to a pre-stage circuit that determines that the other output potential is determined to be negative.
"If the number of the inlet means connected to the preceding circuit is one, the inside thereof, and if there are a plurality of the inlet means, the inside of the inlet means from the inside." High potential side constant potential closest to the high potential side output potential ”and“ Low potential side constant potential closest to the low potential side output potential among the N constant potentials ” In the numerical discriminating circuit for a multi-value logic circuit based on the principle of the Fuji algebra in which “diodes or potential clamping means” are connected one by one,
When one of the high potential side constant potential and the low potential side constant potential can be freely selected “without making it the same as the other”, the relationship between the high potential side constant potential and the low potential side constant potential is A numerical discriminating circuit for a multi-value logic circuit based on the principle of the Fuji algebra, which is set to be adjacent to each other among N constant potentials.
However, the meaning of “less than one input specific integer” does not include the one input specific integer, and the meaning of “greater than one input specific integer” means that one input. The specific integer for use is not included, and the meaning of “between two input specific integers” does not include the two input specific integers.
■■ Two or four threshold potentials ■■
(1) When these constant potentials increase in numerical order from the first constant potential to the Nth constant potential,
● a) “Equal or not”:
* In the case of “equal to”, “a positive threshold potential and a negative threshold potential determined in advance with reference to an input specific constant potential corresponding to the input specific integer”. However, when the specific integer for input is 0, only the positive threshold potential is obtained, and when the specific integer for input is (N-1), only the negative threshold potential is obtained.
* In the case of “not so”, “a negative threshold potential determined in advance with reference to a constant potential one of the first constant potential to the Nth constant potential that is one higher than the specific constant potential for input” “A positive threshold potential determined in advance with reference to a constant potential one lower than the specific constant potential for input among the first constant potential to the Nth constant potential”. However, when the specific integer for input is 0, only the negative threshold potential is obtained, and when the specific integer for input is (N-1), only the positive threshold potential is obtained.
● b) If “Large or not”:
* In the case of “larger”, “the predetermined constant of the first constant potential to the Nth constant potential is determined in advance with reference to a constant potential that is one higher than the“ specific constant potential for input corresponding to the specific integer for input ”. Negative threshold potential ”.
* In the case of “not so”, “a positive threshold potential determined in advance on the basis of the specific constant potential for input”.
● c) “Small or not”:
* “It is small” is “predetermined on the basis of a constant potential one lower than the“ specific constant potential for input corresponding to the specific integer for input ”among the first constant potential to the Nth constant potential”. “Positive side threshold potential”.
* "If not" is "a negative threshold potential determined in advance with reference to the input specific constant potential".
D) In the case of “whether or not between two specific integers for input”:
* “Is it between the two?” Means that “of the first constant potential to the Nth constant potential, the lower constant of the two input specific constant potentials corresponding to the two input specific integers. Among the first constant potential to the Nth constant potential, “of the two input specific constant potentials”. “Higher constant potential” is a positive threshold potential determined in advance based on a constant potential one level lower than “the higher constant potential”.
* In the case of “not”, “the positive threshold potential determined in advance with respect to the lower constant potential of the two input specific constant potentials” and “the two specific input constant potentials” The negative threshold potential determined in advance based on the higher constant potential.
(2) When these constant potentials decrease in numerical order from the first constant potential to the Nth constant potential,
● a) “Equal or not”:
* In the case of “equal to”, “a positive threshold potential and a negative threshold potential determined in advance with reference to an input specific constant potential corresponding to the input specific integer”. However, when the specific integer for input is 0, only the negative threshold potential is obtained, and when the specific integer for input is (N-1), only the positive threshold potential is obtained.
* In the case of “not so”, “a negative threshold potential determined in advance with reference to a constant potential one of the first constant potential to the Nth constant potential that is one higher than the specific constant potential for input” “A positive threshold potential determined in advance with reference to a constant potential one lower than the specific constant potential for input among the first constant potential to the Nth constant potential”. However, when the specific integer for input is 0, only the positive threshold potential is obtained, and when the specific integer for input is (N-1), only the negative threshold potential is obtained.
● b) If “Large or not”:
* In the case of “larger”, “it is determined in advance from the first constant potential to the Nth constant potential based on a constant potential that is one lower than the“ input specific constant potential corresponding to the input specific integer ”. Plus threshold potential.
* "If not" is "a negative threshold potential determined in advance with reference to the input specific constant potential".
● c) “Small or not”:
* In the case of “smaller”, “it is determined in advance from the first constant potential to the Nth constant potential, based on a constant potential one level higher than“ the specific constant potential for input corresponding to the specific integer for input ”. Negative threshold potential ”.
* In the case of “not so”, “a positive threshold potential determined in advance on the basis of the specific constant potential for input”.
D) In the case of “whether or not between two specific integers for input”:
* “Is it between the two?” Means that “of the first constant potential to the Nth constant potential, the lower constant of the two input specific constant potentials corresponding to the two input specific integers. Among the first constant potential to the Nth constant potential, “of the two input specific constant potentials”. “Higher constant potential” is a positive threshold potential determined in advance based on a constant potential one level lower than “the higher constant potential”.
* In the case of “not”, “the positive threshold potential determined in advance with respect to the lower constant potential of the two input specific constant potentials” and “the two specific input constant potentials” The negative threshold potential determined in advance based on the higher constant potential.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014239397 | 2014-11-26 | ||
JP2014239397 | 2014-11-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016111698A true JP2016111698A (en) | 2016-06-20 |
Family
ID=56125105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015230146A Pending JP2016111698A (en) | 2014-11-26 | 2015-11-25 | Numerical value discrimination circuit for multivalued logical circuit based on principle of hooji algebra |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016111698A (en) |
-
2015
- 2015-11-25 JP JP2015230146A patent/JP2016111698A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2023078182A (en) | Arithmetic device | |
US7999590B2 (en) | Level-converting flip-flop and pulse generator for clustered voltage scaling | |
CN109687850A (en) | A kind of latch that any three nodes overturning is tolerated completely | |
CN104425002A (en) | Clocked all-spin logic circuit | |
JP2016029796A (en) | Circuit for distinguishing numerical value for multiple values, circuit for distinguishing multivalued or logic based on principle of hooji algebra, circuit for distinguishing multivalued and logic based on principle of hooji algebra, and circuit for distinguishing numerical value for multi values having numerical value holding function | |
JP2015122743A (en) | Numerical determination circuit for multivalued logical circuit based on principle of hooji algebra, multivalued logical two-stage connectin circuit based on principle of hooji algebra having function for suppressing unnecessary vibration of input signal, and multi-level potential clamp means | |
JP2016029796A5 (en) | ||
CN109921770A (en) | A kind of motor drive circuit and terminal device | |
JP2016111698A (en) | Numerical value discrimination circuit for multivalued logical circuit based on principle of hooji algebra | |
CN106169921A (en) | Conditional pulse-generator circuit for the trigger of low powder pulsed triggering | |
Lim et al. | Reversible energy recovery logic circuits and its 8-phase clocked power generator for ultra-low-power applications | |
JP2015026878A (en) | Multi-value logic means having synchronization latching function, multi-value hazard removal means, multi-value logic means, and numerical value discrimination means | |
JP2016140047A (en) | Multivalued not-logic two-stage connection means based on principles of hooji algebra, multivalued not-logic and even-logic two-stage connection means based on principles of hooji algebra, multivalued even-logic two-stage connection means based on principles of hooji algebra, multivalued even-logic and not-logic two-stage connection means based on principles of hooji algebra, multivalued logic completeness circuit based on principles of hooji algebra, multivalued buffer circuit, and circuit for discriminating numerical value used in multiple value | |
JP2017092578A (en) | Multivalued not-logic two-stage connection means based on principles of hooji algebra, multivalued not-logic and even-logic two-stage connection means based on principles of hooji algebra, multivalued even-logic two-stage connection means based on principles of hooji algebra, multivalued even-logic and not-logic two-stage connection means based on principles of hooji algebra, multivalued logic completeness circuit based on principles of hooji algebra, multivalued buffer circuit, and circuit for discriminating numerical value used in multiple value | |
CN109217860A (en) | Semiconductor devices with electric power gating scheme | |
Anderson et al. | On the local connectivity of limit sets of Kleinian groups | |
US8390369B2 (en) | Electronic circuit and method for operating a module in a functional mode and in an idle mode | |
JP6167258B2 (en) | Multilevel logic circuit and multilevel hazard elimination circuit with synchronous latching function | |
JP2015181209A (en) | Multivalue not-logic two-stage connection means based on principles of hooji algebra, multivalue not-logic and even-logic two-stage connection means based on principles of hooji algebra, multivalue even-logic two-stage connection means based on principles of hooji algebra, multivalue even-logic and not-logic two-stage connection means based on principles of hooji algebra, multivalue completeness of completeness circuit based on principles of hooji algebra, and multivalue buffer circuit | |
JP2014179977A (en) | Multivalued not two-stage connection means based on hooji algebra, multivalued not even two-stage connection means based on hooji algebra, multivalued even two-stage connection means based on hooji algebra, and multivalued even not two-stage connection means based on hooji algebra | |
JP2014135709A6 (en) | Multi-value logic means having a synchronous latching function, multi-value hazard removal means, multi-value EVEN means, multi-value NEVEN means, multi-value AND means, multi-value NAND means, multi-value OR means, multi-value NOR means, multi-value OVER means , Multi-valued NOVER means, multi-valued AND / OVER means, multi-valued NAND / OVER means, multi-valued OR / OVER means, multi-valued NOR / OVER means, multi-valued UNDER means, multi-valued NUNDER means, multi-valued AND / UNDER means Multi-value NAND / UNDER means, Multi-value OR / UNDER means, Multi-value NOR / UNDER means, Multi-value AND / NUNDER means, Multi-value NAND / NUNDER means, Multi-value OR / NUNDER means, Multi-value NOR / NUNDER means, Multi-value AND / NOVER means, multi-value NAND / NOVER means, multi-value OR / NOVER means, multi-value OR / NOVER means, multi-value IN means, multi-value NIN means, multi-value AND / IN means, multi-value NAND / IN means, multi-value OR / IN means, multi-value NOR / IN means, multi-value OUT means, multi-value NOUT means, multi-value AND / OUT means, multi-value NAND / OUT means, multi-value OR / OUT means, multi-value NOR / OUT means, value AND / NIN means, multi-value NAND / NIN means, multi-value OR / NIN means Multi-value NOR / NIN means, multi-value AND / NOUT means, multi-value NAND / NOUT means, multi-value OR / NOUT means, and multi-value NOR / NOUT means | |
JP2014135709A5 (en) | Multi-value logic means having a synchronous latching function, multi-value hazard removal means, multi-value EVEN means, multi-value NEVEN means, and multi-value AND means | |
CN1169292C (en) | Clock input circuit | |
WO2021024083A1 (en) | Semiconductor device | |
Takahashi et al. | Carry propagation free adder/subtracter using adiabatic dynamic CMOS logic circuit technology |