JP2016110776A - Method for manufacturing lithium ion secondary battery - Google Patents

Method for manufacturing lithium ion secondary battery Download PDF

Info

Publication number
JP2016110776A
JP2016110776A JP2014245749A JP2014245749A JP2016110776A JP 2016110776 A JP2016110776 A JP 2016110776A JP 2014245749 A JP2014245749 A JP 2014245749A JP 2014245749 A JP2014245749 A JP 2014245749A JP 2016110776 A JP2016110776 A JP 2016110776A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
active material
material layer
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014245749A
Other languages
Japanese (ja)
Other versions
JP6494265B2 (en
Inventor
健一 新明
Kenichi Shinmyo
健一 新明
利絵 寺西
Rie Teranishi
利絵 寺西
豊川 卓也
Takuya Toyokawa
卓也 豊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2014245749A priority Critical patent/JP6494265B2/en
Publication of JP2016110776A publication Critical patent/JP2016110776A/en
Application granted granted Critical
Publication of JP6494265B2 publication Critical patent/JP6494265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method arranged so that a whole electrode laminate is uniformly pre-doped with lithium, which allows a lithium ion secondary battery to exhibit a superior capacity appearance rate and a superior capacity-keeping rate.SOLUTION: A method for manufacturing a lithium ion secondary battery 1 including an electrode laminate arranged by laminating a negative electrode 4 having a first porous conductive plate 2 serving as a negative electrode current collector and a negative electrode active material layer 3 formed on the negative electrode current collector, and a positive electrode 7 having a second porous conductive plate 5 serving as a positive electrode current collector and a positive electrode active material layer 6 formed on the positive electrode current collector comprises the steps of: superposing a third porous conductive plate 9 on the surface 3a of the negative electrode active material layer located in the outermost surface of the negative electrode, and further superposing a lithium-supplying plate 10 thereon through the porous conductive plate, thereby preparing an electrode laminate; and performing lithium pre-doping on the electrode laminate with the electrode laminate put in contact with an electrolyte 14.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a lithium ion secondary battery.

リチウムイオン二次電池の放電容量が初期充電後に低下することが従来から問題になっている。これを解決するために、例えば、電池製造時の初期充電工程の前に、酸化ケイ素(SiO及びSiO2)を負極活物質として用いた負極とリチウム金属とを反応させるリチウムプレドープ工程が従来から行われている(特許文献1、2参照)。プレドープ工程においては、酸化ケイ素中の二酸化ケイ素(SiO2)が予めリチウムシリケート(Li4SiO4)に変わる。この結果、その後の初期充電工程において、リチウムシリケート等の副生成物が生成したり、電解液中のリチウムイオンが失われて放電容量が低下したりする、という不可逆容量の発生を防止することができる。 It has been a problem that the discharge capacity of a lithium ion secondary battery decreases after initial charging. In order to solve this, for example, a lithium pre-doping process in which a negative electrode using silicon oxide (SiO and SiO 2 ) as a negative electrode active material and lithium metal is reacted before an initial charging process at the time of battery manufacture has been conventionally performed. (See Patent Documents 1 and 2). In the pre-doping step, silicon dioxide (SiO 2 ) in silicon oxide is changed into lithium silicate (Li 4 SiO 4 ) in advance. As a result, it is possible to prevent the occurrence of irreversible capacity such that by-products such as lithium silicate are generated in the subsequent initial charging step or the lithium ion in the electrolyte is lost and the discharge capacity is reduced. it can.

特許第4928828号公報Japanese Patent No. 4928828 国際公開第2011/125325号International Publication No. 2011/125325

特許文献1に記載されているように、ドープ用のリチウム金属片を電極積層体の端面(側面)に平行に対面させて配置すると、電極積層体のリチウム金属片に近い部分と遠い部分とで、ドープされるリチウム金属の量およびドープ速度が異なる。このため、電極積層体の全体を均一にドープすることができず、電極活物質層の不均一な膨張およびその膨張に伴う応力破壊が生じる、という問題があった。   As described in Patent Document 1, when the lithium metal piece for doping is disposed so as to face the end face (side surface) of the electrode laminate in parallel, the portion close to the lithium metal piece and the portion far from the lithium metal piece of the electrode laminate are arranged. The amount of lithium metal doped and the doping rate are different. For this reason, the whole electrode laminated body cannot be doped uniformly, but there existed a problem that the stress destruction accompanying the non-uniform expansion | swelling of the electrode active material layer and the expansion | swelling arises.

特許文献2の図15に記載されたように、非導電性のセパレータ(3)を介して負極電極シート(10)の表面に間接的にリチウム金属(7)を載置してリチウムプレドープを行った場合、不可逆容量の発生を充分には抑制できない、という問題が本発明者らによって見出された(後述の比較例2を参照)。   As described in FIG. 15 of Patent Document 2, lithium metal (7) is indirectly placed on the surface of the negative electrode sheet (10) through a non-conductive separator (3) to perform lithium pre-doping. When it did, the present inventors found the problem that generation | occurrence | production of an irreversible capacity | capacitance cannot fully be suppressed (refer the below-mentioned comparative example 2).

本発明は上記事情に鑑みてなされたものであり、電極積層体の全体に対して均一にリチウムプレドープを行い、優れた容量発現率及び容量維持率を発揮し得るリチウムイオン二次電池の製造方法の提供を課題とする。   The present invention has been made in view of the above circumstances, and performs lithium pre-doping uniformly on the entire electrode laminate, and manufacture of a lithium ion secondary battery capable of exhibiting an excellent capacity development rate and capacity maintenance rate. It is an object to provide a method.

[1] 負極集電体としての第一の有孔導電性板上に負極活物質層が形成されてなる負極と、正極集電体としての第二の有孔導電性板上に正極活物質層が形成されてなる正極と、が積層されてなる電極積層体を備えたリチウムイオン二次電池の製造方法であって、前記負極の最外面に位置する負極活物質層の表面に第三の有孔導電性板を重ね置き、該有孔導電性板を介して更にリチウム供給板を重ね置いた電極積層体を得て、この電極積層体が電解質に接した状態でリチウムプレドープを行う工程を有する、リチウムイオン二次電池の製造方法。
[2] 前記第三の有孔導電性板が有する貫通孔の平均孔径が0.1mm以上、0.4mm以下である上記[1]に記載のリチウムイオン二次電池の製造方法。
[3] 前記負極の最外面に位置する負極活物質層の面積と、前記第三の有孔導電性板の面積とが略同等である上記[1]又は[2]に記載のリチウムイオン二次電池の製造方法。
[1] A negative electrode in which a negative electrode active material layer is formed on a first porous conductive plate as a negative electrode current collector, and a positive electrode active material on a second porous conductive plate as a positive electrode current collector A method for producing a lithium ion secondary battery comprising an electrode laminate in which a positive electrode formed with a layer is laminated, wherein a third electrode is formed on the surface of the negative electrode active material layer located on the outermost surface of the negative electrode. A process of obtaining an electrode laminate in which a porous conductive plate is stacked and a lithium supply plate is further stacked via the porous conductive plate, and lithium pre-doping is performed in a state where the electrode stack is in contact with an electrolyte. A method for producing a lithium ion secondary battery.
[2] The method for producing a lithium ion secondary battery according to the above [1], wherein an average hole diameter of the through holes of the third porous conductive plate is 0.1 mm or more and 0.4 mm or less.
[3] The lithium ion secondary material according to the above [1] or [2], wherein the area of the negative electrode active material layer located on the outermost surface of the negative electrode is substantially equal to the area of the third porous conductive plate. A method for manufacturing a secondary battery.

本発明によれば、負極を構成する電極活物質層に正対するように、第三の有孔導電性板を介してリチウム供給板を配置しているため、電極活物質層の表面の凹凸とリチウム供給板との接触の程度のバラつきの影響によるリチウムプレドープの程度のバラつきが発生することを低減できる。また、第三の有孔導電性板は導電性であるため、負極とリチウム供給板に生じる電位差によってリチウムプレドープを速やかに進行させることができる。   According to the present invention, since the lithium supply plate is arranged via the third porous conductive plate so as to face the electrode active material layer constituting the negative electrode, the surface unevenness of the electrode active material layer and The occurrence of variations in the degree of lithium pre-doping due to the effects of variations in the degree of contact with the lithium supply plate can be reduced. In addition, since the third porous conductive plate is conductive, lithium pre-doping can be rapidly advanced by a potential difference generated between the negative electrode and the lithium supply plate.

第一実施形態において製造するリチウムイオン二次電池の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the lithium ion secondary battery manufactured in 1st embodiment.

本発明の第一実施形態は、図1に示す様に、負極集電体としての第一の有孔導電性板2(以下、負極集電体2と呼ぶことがある。)上に負極活物質層3が形成されてなる負極4と、正極集電体としての第二の有孔導電性板5(以下、正極集電体5と呼ぶことがある。)上に正極活物質層6が形成されてなる正極7と、が積層されてなる電極積層体を備えたリチウムイオン二次電池1の製造方法である。   In the first embodiment of the present invention, as shown in FIG. 1, a negative electrode active material is formed on a first porous conductive plate 2 (hereinafter also referred to as a negative electrode current collector 2) as a negative electrode current collector. A positive electrode active material layer 6 is formed on a negative electrode 4 formed with the material layer 3 and a second porous conductive plate 5 (hereinafter, also referred to as a positive electrode current collector 5) as a positive electrode current collector. It is a manufacturing method of the lithium ion secondary battery 1 provided with the electrode laminated body by which the positive electrode 7 formed is laminated | stacked.

本実施形態においては、第一の負極4A(4)の最外面に位置する負極活物質層3aの表面に第三の有孔導電性板9を重ね置き、該有孔導電性板9を介して更にリチウム供給板10を重ね置いた電極積層体を得て、この電極積層体が電解液14に接した状態でリチウムプレドープを行う工程を有する。   In the present embodiment, a third porous conductive plate 9 is placed on the surface of the negative electrode active material layer 3a located on the outermost surface of the first negative electrode 4A (4), and the porous conductive plate 9 is interposed therebetween. In addition, the method further includes a step of obtaining an electrode laminate on which the lithium supply plate 10 is further placed, and performing lithium pre-doping while the electrode laminate is in contact with the electrolytic solution 14.

本明細書及び特許請求の範囲において、「導電性板」の用語は、板状の導電体であることを意味し、導電性材料からなる板材だけに限られず、導電性線材が編まれた布(網)、導電性フィルム、導電性シートを含む用語である。さらに、「金属板」の用語は、板状の金属体であることを意味し、金属製の板材だけに限られず、金属線材が編まれた板状の金属布(金属網)、金属板を薄く延した金属箔、金属フィルム、金属膜を含む用語である。   In the present specification and claims, the term “conductive plate” means a plate-like conductor, and is not limited to a plate made of a conductive material, but a cloth in which a conductive wire is knitted. It is a term including (net), conductive film, and conductive sheet. Furthermore, the term “metal plate” means a plate-like metal body, and is not limited to a metal plate material, but a plate-like metal cloth (metal net) knitted with a metal wire, and a metal plate. It is a term that includes thinly stretched metal foil, metal film, and metal film.

<負極について>
負極4を構成する第一の有孔導電性板2の材料、面積、及び厚みは特に制限されず、公知のリチウムイオン二次電池の負極集電体と同じ材料、面積、及び厚みが適用可能である。例えば、有孔金属板が好適である。具体的には、例えば、面積40×20cm、厚み5〜50μmのパンチング加工を施した圧延銅箔や電解銅箔等が挙げられる。金属板を構成する金属の種類は特に限定されず、例えば、銅、チタン、ニッケル、ステンレス鋼等の金属が挙げられる。
<About negative electrode>
The material, area, and thickness of the first porous conductive plate 2 constituting the negative electrode 4 are not particularly limited, and the same material, area, and thickness as the negative electrode current collector of a known lithium ion secondary battery can be applied. It is. For example, a perforated metal plate is suitable. Specifically, for example, rolled copper foil or electrolytic copper foil subjected to punching with an area of 40 × 20 cm and a thickness of 5 to 50 μm can be given. The kind of metal which comprises a metal plate is not specifically limited, For example, metals, such as copper, titanium, nickel, stainless steel, are mentioned.

本実施形態で使用する有孔導電性板2には、電解液が板を通過することを可能にする貫通孔が複数設けられている。複数の貫通孔の形状、大きさ、個数、相対配置は特に制限されない。個々の孔は互いに独立していてもよいし、互いに連結していてもよい。貫通孔の個数が多過ぎたり、偏って配置されたりしていると、有孔導電性板2の表面に負極活物質層3を保持することが難しくなる場合がある。この場合を考慮して、貫通孔の個数や配置等を適宜調整する。
リチウムプレドープを行う際に、負極集電体2の片面又は両面に形成された負極活物質層3に対して均一にリチウム金属を拡散させる観点から、負極活物質層3を形成した集電体の領域の全面に亘って均一になるべく多数の貫通孔が配置されていることが好ましい。
The perforated conductive plate 2 used in the present embodiment is provided with a plurality of through holes that allow the electrolytic solution to pass through the plate. The shape, size, number, and relative arrangement of the plurality of through holes are not particularly limited. The individual holes may be independent from each other or may be connected to each other. If the number of through-holes is too large or arranged unevenly, it may be difficult to hold the negative electrode active material layer 3 on the surface of the porous conductive plate 2. Considering this case, the number and arrangement of the through holes are appropriately adjusted.
From the viewpoint of uniformly diffusing lithium metal to the negative electrode active material layer 3 formed on one side or both sides of the negative electrode current collector 2 when performing lithium pre-doping, the current collector formed with the negative electrode active material layer 3 It is preferable that as many through-holes as possible be arranged over the entire surface of the region.

負極集電体2に設けられた複数の貫通孔の形状や大きさは、互いに同じであっても良いし、異なっていても良い。貫通孔の貫通方向(中心軸線方向)に見たときに、貫通孔の内壁を構成する枠の一部が欠けていても構わない。つまり、「貫通孔」の用語は、導電性板に設けられた切れ込みを含む用語である。   The shapes and sizes of the plurality of through holes provided in the negative electrode current collector 2 may be the same as or different from each other. When viewed in the through direction of the through hole (the direction of the central axis), a part of the frame constituting the inner wall of the through hole may be missing. That is, the term “through hole” is a term including a notch provided in the conductive plate.

負極集電体2の片面又は両面に負極活物質層3を形成する。負極活物質層3の構成材料(負極材)としては、リチウムイオンを吸蔵及び放出可能な負極活物質を含む材料であって、初期充電前におけるリチウムプレドープ工程においてリチウムと不可逆的な反応を起こす負極活物質を含む材料であれば特に制限されず、公知の負極材が適用可能である。   The negative electrode active material layer 3 is formed on one side or both sides of the negative electrode current collector 2. The constituent material (negative electrode material) of the negative electrode active material layer 3 is a material containing a negative electrode active material capable of occluding and releasing lithium ions, and causes an irreversible reaction with lithium in the lithium pre-doping step before initial charging. The material is not particularly limited as long as it includes a negative electrode active material, and a known negative electrode material is applicable.

好適な負極活物質として例えば金属酸化物が挙げられる。前記金属酸化物としては、例えば酸化ケイ素等のリチウムと合金化可能な金属酸化物が挙げられる。酸化ケイ素としては、一般式「SiO(式中、zは0.5〜1.5のいずれかの数である。)」で表されるものが例示できる。ここで酸化ケイ素を「SiO」単位で見た場合、このSiOは、アモルファス状のSiOであるか、又はSi:SiOのモル比が約1:1となるように、ナノクラスターのSiの周囲にSiOが存在する、Si及びSiOの複合物である。SiOは、充放電時におけるSiの膨張及び収縮に対して緩衝作用を有すると推測される。 Examples of suitable negative electrode active materials include metal oxides. Examples of the metal oxide include metal oxides that can be alloyed with lithium such as silicon oxide. Examples of the silicon oxide include those represented by the general formula “SiO z (wherein z is any number from 0.5 to 1.5)”. Here, when the silicon oxide is viewed in “SiO” units, this SiO is amorphous SiO, or around the Si of the nanocluster so that the molar ratio of Si: SiO 2 is about 1: 1. This is a composite of Si and SiO 2 in which SiO 2 exists. SiO 2 is presumed to have a buffering action against the expansion and contraction of Si during charging and discharging.

酸化ケイ素は、粉末状又は粒子状であることが好ましい。粒子状の酸化ケイ素の平均粒子径は特に制限されず、例えば1〜30μmであることが好ましい。   The silicon oxide is preferably in the form of powder or particles. The average particle diameter of the particulate silicon oxide is not particularly limited, and is preferably 1 to 30 μm, for example.

負極活物質層3の形成方法は特に限定されず、例えば、負極集電体2上に負極活物質を含む負極材を5〜100μm程度の厚みで塗布した後、負極材に含まれる溶媒を乾燥除去することによって、集電体2上に負極活物質層を形成することができる。負極材としては、酸化ケイ素等の前記負極活物質の他に、PVDF、SBR等のバインダー樹脂(結着剤)及び炭素材料、金属粒子等の導電助剤を含むことが好ましい。これらの負極活物質、バインダー樹脂及び導電助剤の種類及び組み合わせは特に限定されず、公知のリチウムイオン二次電池の負極活物質層を構成する材料の組み合わせが適用できる。   The method for forming the negative electrode active material layer 3 is not particularly limited. For example, a negative electrode material containing a negative electrode active material is applied on the negative electrode current collector 2 with a thickness of about 5 to 100 μm, and then the solvent contained in the negative electrode material is dried. By removing, the negative electrode active material layer can be formed on the current collector 2. In addition to the negative electrode active material such as silicon oxide, the negative electrode material preferably contains a binder resin (binder) such as PVDF and SBR, and a conductive aid such as a carbon material and metal particles. The types and combinations of these negative electrode active materials, binder resins, and conductive assistants are not particularly limited, and combinations of materials constituting the negative electrode active material layers of known lithium ion secondary batteries can be applied.

負極集電体2上に負極活物質層3を直接形成する方法を採用してもよいし、他の基材上に負極活物質層3を形成してから、負極集電体2上に負極活物質層3を転写して、さらに圧着する方法も採用してもよい。負極集電体2上に負極活物質層3を直接形成する場合においても、負極集電体2上に負極活物質層3を圧着する処理を行ってもよい。   A method of directly forming the negative electrode active material layer 3 on the negative electrode current collector 2 may be adopted, or after forming the negative electrode active material layer 3 on another base material, the negative electrode on the negative electrode current collector 2 is formed. A method in which the active material layer 3 is transferred and further crimped may be employed. Even when the negative electrode active material layer 3 is directly formed on the negative electrode current collector 2, a process of pressure bonding the negative electrode active material layer 3 on the negative electrode current collector 2 may be performed.

<正極について>
正極7を構成する第二の有孔導電性板5の材料、面積、及び厚みは特に制限されず、公知のリチウムイオン二次電池の正極集電体と同じ材料、面積、及び厚みが適用可能である。例えば、有孔金属板が好適である。具体的には、例えば、面積40×20cm、厚み5〜50μmのパンチング加工を施した圧延アルミニウム箔等が挙げられる。金属板を構成する金属の種類は特に限定されず、例えば、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の金属が挙げられる。正極7と負極4の面積が等しいことが好ましいため、第二の有孔導電性板5の面積は、第一の有孔導電性板2の面積と略同等であることが好ましい。
<About positive electrode>
The material, area, and thickness of the second porous conductive plate 5 constituting the positive electrode 7 are not particularly limited, and the same material, area, and thickness as those of the positive electrode current collector of a known lithium ion secondary battery can be applied. It is. For example, a perforated metal plate is suitable. Specifically, for example, rolled aluminum foil subjected to punching with an area of 40 × 20 cm and a thickness of 5 to 50 μm can be used. The kind of metal which comprises a metal plate is not specifically limited, For example, metals, such as copper, aluminum, titanium, nickel, stainless steel, are mentioned. Since the areas of the positive electrode 7 and the negative electrode 4 are preferably equal, the area of the second perforated conductive plate 5 is preferably substantially equal to the area of the first perforated conductive plate 2.

本実施形態で使用する第二の有孔導電性板5には、電解液が板の表面と裏面を通過可能な貫通孔が複数設けられている。複数の貫通孔の形状、大きさ、個数、相対配置の説明は、前述した第一の有孔導電性板2に設けられた貫通孔の説明と同様である。   The second porous conductive plate 5 used in the present embodiment is provided with a plurality of through-holes through which the electrolytic solution can pass through the front and back surfaces of the plate. The description of the shape, size, number, and relative arrangement of the plurality of through holes is the same as the description of the through holes provided in the first perforated conductive plate 2 described above.

正極集電体の片面又は両面に正極活物質層6を形成する。正極活物質層6の構成材料(正極材)としては、リチウムイオンを吸蔵及び放出可能な正極活物質を含む材料であれば特に限定されず、公知のリチウムイオン二次電池の正極材が適用可能である。   The positive electrode active material layer 6 is formed on one side or both sides of the positive electrode current collector. The constituent material (positive electrode material) of the positive electrode active material layer 6 is not particularly limited as long as the material includes a positive electrode active material capable of occluding and releasing lithium ions, and a positive electrode material of a known lithium ion secondary battery can be applied. It is.

好適な正極活物質として、例えば、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物等の金属酸リチウム化合物が挙げられる。金属酸リチウム化合物として、一般式「LiM(式中、Mは金属であり;x及びyは、金属Mと酸素Oとの組成比である。)」で表される金属酸リチウム化合物が例示できる。具体的には、例えば、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)等が例示できる。また、類似の組成であるオリビン型リン酸鉄リチウム(LiFePO4)が挙げられる。 Examples of suitable positive electrode active materials include lithium metal acid compounds such as lithium composite cobalt oxide, lithium composite nickel oxide, and lithium composite manganese oxide. As a metal acid lithium compound, a metal acid lithium compound represented by the general formula “LiM x O y (wherein M is a metal; x and y are composition ratios of metal M and oxygen O)” Can be illustrated. Specific examples include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and the like. Also include a composition similar olivine-type lithium iron phosphate (LiFePO 4).

前記一般式において、Mが複数種の金属であってもよい。このような金属酸リチウム化合物としては、例えば一般式「LiM (式中、M、M及びMは互いに異なる種類の金属であり;p、q、r及びyは、金属M、M及びMと酸素Oとの組成比である。)」で表されるものが例示できる。ここで、p+q+r=xである。前記一般式で表される金属酸リチウム化合物としては、LiNi0.33Mn0.33Co0.33等が例示できる。 In the general formula, M may be a plurality of kinds of metals. As such a metal acid lithium compound, for example, the general formula “LiM 1 p M 2 q M 3 r O y (wherein M 1 , M 2 and M 3 are different kinds of metals; p, q, r and y are the composition ratios of the metals M 1 , M 2 and M 3 and oxygen O.) ”. Here, p + q + r = x. Examples of the lithium metalate compound represented by the general formula include LiNi 0.33 Mn 0.33 Co 0.33 O 2 and the like.

正極活物質層6の形成方法は特に限定されず、例えば、正極集電体5上に正極活物質6を含む正極材を5〜100μm程度の厚みで塗布した後、正極材に含まれる溶媒を乾燥除去することによって、正極集電体5上に正極活物質層6を形成することができる。正極材としては、前記金属酸リチウム化合物等の正極活物質の他に、バインダー樹脂(結着剤)及び導電助剤を含むことが好ましい。これらの正極活物質、バインダー樹脂及び導電助剤の種類及び組み合わせは特に限定されず、公知のリチウムイオン二次電池の正極活物質層を構成する材料の組み合わせが適用できる。   The method for forming the positive electrode active material layer 6 is not particularly limited. For example, after the positive electrode material containing the positive electrode active material 6 is applied on the positive electrode current collector 5 with a thickness of about 5 to 100 μm, the solvent contained in the positive electrode material is changed. By removing by drying, the positive electrode active material layer 6 can be formed on the positive electrode current collector 5. The positive electrode material preferably contains a binder resin (binder) and a conductive additive in addition to the positive electrode active material such as the lithium metal acid compound. The types and combinations of these positive electrode active materials, binder resins and conductive additives are not particularly limited, and combinations of materials constituting the positive electrode active material layers of known lithium ion secondary batteries can be applied.

正極集電体5上に正極活物質層6を直接形成する方法を採用してもよいし、他の基材上に正極活物質層6を形成してから、正極集電体5上に正極活物質層6を転写して、さらに圧着させる方法も採用してもよい。正極集電体5上に正極活物質層6を直接形成する場合においても、正極集電体5上に正極活物質層6を圧着させる処理を行ってもよい。   A method of directly forming the positive electrode active material layer 6 on the positive electrode current collector 5 may be adopted, or the positive electrode active material layer 6 may be formed on another substrate and then the positive electrode current collector 5 may be formed on the positive electrode current collector 5. A method of transferring the active material layer 6 and further press-bonding may also be employed. Even when the positive electrode active material layer 6 is directly formed on the positive electrode current collector 5, a process of pressure bonding the positive electrode active material layer 6 on the positive electrode current collector 5 may be performed.

<電極積層体について>
負極4と正極7を対面配置して両電極の短絡を防ぐ目的及び電解液を保持する目的で、両電極の間にセパレータ8を配置して、第一の負極4A(4)、セパレータ8、正極7、セパレータ8、第二の負極4B(4)の順で積層した電極積層体を得る。積層前又は積層後に負極4及び正極7をプレスして、各電極を構成する電極活物質層の体積密度を調整してもよい。
<About electrode laminate>
For the purpose of preventing the short circuit between the two electrodes by placing the negative electrode 4 and the positive electrode 7 facing each other and maintaining the electrolyte, a separator 8 is disposed between the two electrodes, and the first negative electrode 4A (4), separator 8, An electrode laminate in which the positive electrode 7, the separator 8, and the second negative electrode 4B (4) are laminated in this order is obtained. You may press the negative electrode 4 and the positive electrode 7 before or after lamination | stacking, and may adjust the volume density of the electrode active material layer which comprises each electrode.

セパレータ8は絶縁性を有し、電解液を保持又は通過させることが可能なものであれば特に限定されず、公知のリチウムイオン二次電池で使用されるセパレータが適用可能である。例えば、オレフィン系樹脂からなる多孔質膜又は不織布、絶縁性粒子からなる多孔性絶縁膜等が挙げられる。絶縁性粒子を含む組成物を負極又は正極の表面に塗布して、セパレータ8としての絶縁性膜を前記表面に形成する公知方法も採用できる。セパレータ8の厚みは、絶縁性が保たれる厚みであれば特に限定されず、例えば5〜50μm程度の厚みが挙げられる。   The separator 8 is not particularly limited as long as it has insulating properties and can hold or pass the electrolytic solution, and a separator used in a known lithium ion secondary battery is applicable. For example, a porous film or non-woven fabric made of an olefin resin, a porous insulating film made of insulating particles, and the like can be given. A known method in which a composition containing insulating particles is applied to the surface of the negative electrode or positive electrode to form an insulating film as the separator 8 on the surface can also be employed. The thickness of the separator 8 will not be specifically limited if it is the thickness by which insulation is maintained, For example, the thickness of about 5-50 micrometers is mentioned.

本実施形態においては、電極積層体の最外面に位置する各負極活物質層3の表面3aに、第三の有孔導電性板9と第四の有孔導電性板11とを重ね置き、これらの有孔導電性板9,11を介して更にリチウム供給板10,12を積層する。以下、第三の有孔導電性板9及びリチウム供給板10について説明するが、第四の有孔導電性板11及びリチウム供給板12の説明もこれと同じであるため省略する。   In the present embodiment, the third porous conductive plate 9 and the fourth porous conductive plate 11 are stacked on the surface 3a of each negative electrode active material layer 3 located on the outermost surface of the electrode laminate, Lithium supply plates 10 and 12 are further laminated through these perforated conductive plates 9 and 11. Hereinafter, the third porous conductive plate 9 and the lithium supply plate 10 will be described. However, the description of the fourth porous conductive plate 11 and the lithium supply plate 12 is also the same, and the description thereof will be omitted.

リチウム供給板10を負極活物質層の表面3aに接触させず、第三の有孔導電性板9を介在させることによって、後で行うリチウムプレドープの際に、負極活物質層3の全体に亘って均一にドープすることができる。仮に、表面3aにリチウム供給板10を直接に配置した場合、表面3aの凹凸の影響及びリチウム供給板10(例えばリチウム金属箔)の皺の影響を受けて、リチウム供給板10が密着する箇所と浮き上がる箇所とが生じる。この場合、密着する箇所が濃くドープされて、浮き上がる箇所が薄くドープされるため、負極活物質層3の全体に亘って均一にドープすることが難しくなる。   The lithium supply plate 10 is not brought into contact with the surface 3a of the negative electrode active material layer, and the third porous conductive plate 9 is interposed so that the whole of the negative electrode active material layer 3 is formed during lithium pre-doping performed later. It is possible to dope uniformly throughout. If the lithium supply plate 10 is directly disposed on the surface 3a, the lithium supply plate 10 is in close contact with the surface 3a due to the unevenness of the surface 3a and the effect of wrinkles on the lithium supply plate 10 (for example, lithium metal foil). A floating part is generated. In this case, since the portion to be in close contact is heavily doped, and the floating portion is lightly doped, it is difficult to dope uniformly throughout the negative electrode active material layer 3.

第三の有孔導電性板9には、電解液が板を通過することを可能にする貫通孔が複数設けられている。複数の貫通孔の形状、大きさ、個数、相対配置は特に制限されない。個々の孔は互いに独立していてもよいし、互いに連結していてもよい。リチウムプレドープを行う際に、リチウム供給板10から溶出したリチウム金属又はリチウムイオンが、第三の有孔導電性板9を通過して、負極活物質層3に対して均一に拡散する観点から、有孔導電性板9の負極活物質層3に載置する領域の全面に亘って均一になるべく多数の貫通孔が配置されていることが好ましい。   The third porous conductive plate 9 is provided with a plurality of through holes that allow the electrolyte to pass through the plate. The shape, size, number, and relative arrangement of the plurality of through holes are not particularly limited. The individual holes may be independent from each other or may be connected to each other. From the viewpoint of lithium metal or lithium ions eluted from the lithium supply plate 10 passing through the third porous conductive plate 9 and uniformly diffusing into the negative electrode active material layer 3 when performing lithium pre-doping. In addition, it is preferable that as many through holes as possible be arranged over the entire surface of the region of the porous conductive plate 9 placed on the negative electrode active material layer 3.

第三の有孔導電性板9が有する貫通孔の平均孔径(穴径)は、例えば、0.001mm〜1.0mmが好ましく、0.01mm〜0.7mmがより好ましく、0.1mm〜0.4mmが更に好ましい。
第三の有孔導電性板9の空孔率は、例えば、5〜50%が好ましく、10〜35%がより好ましく、10〜20%が更に好ましい。
前記空孔率は、有孔を形成した導電性板と有孔を形成する前の導電性板との質量比から算出する方法で求められる。例えば、前記質量比が1/2である場合の空孔率は50%である。
The average hole diameter (hole diameter) of the through holes of the third porous conductive plate 9 is, for example, preferably 0.001 mm to 1.0 mm, more preferably 0.01 mm to 0.7 mm, and 0.1 mm to 0. More preferably, 4 mm.
For example, the porosity of the third porous conductive plate 9 is preferably 5 to 50%, more preferably 10 to 35%, and still more preferably 10 to 20%.
The porosity is obtained by a method of calculating from a mass ratio between the conductive plate in which the holes are formed and the conductive plate before the holes are formed. For example, the porosity when the mass ratio is 1/2 is 50%.

第三の有孔導電性板9を構成する材料は、導電性材料であれば特に限定されず、リチウム金属およびリチウムイオンを吸着し難い材料であることが好ましい。このような導電性材料としては、例えば、前述した電極集電体としても利用可能な銅、アルミニウム、チタン等の金属、合金、導電性ポリマーを含有する多孔質性樹脂又は導電性布等が挙げられる。より具体的には、金属製のパンチング箔(板)、板状のメッシュ等が例示できる。このうち、表面の凹凸が少なく平面性が高い、金属製のパンチング箔を使用することが好ましい。   The material constituting the third porous conductive plate 9 is not particularly limited as long as it is a conductive material, and is preferably a material that hardly adsorbs lithium metal and lithium ions. Examples of such a conductive material include metals such as copper, aluminum, and titanium that can also be used as the above-described electrode current collector, alloys, porous resins or conductive cloths containing a conductive polymer, and the like. It is done. More specifically, a metal punching foil (plate), a plate-like mesh, and the like can be exemplified. Among these, it is preferable to use a metal punching foil with less surface irregularities and high flatness.

第三の有孔導電性板9の面積は、リチウム供給板10と略同等又はそれよりも一回り大きい程度の面積であることが好ましい。この面積であると、リチウム供給板10が直接に負極活物質層の表面3aに接触することを防止することができる。また、リチウム供給板10から溶出したリチウム金属又はリチウムイオンが負極活物質層の表面3aにアクセスする容易さを、表面3aの全面においてほぼ均一にする観点から、第三の有孔性導電性板9の面積は、表面3aと略同等又はそれよりも一回り小さい程度の面積であることが好ましい(図1参照)。   The area of the third perforated conductive plate 9 is preferably the same as that of the lithium supply plate 10 or an area that is slightly larger than that. With this area, the lithium supply plate 10 can be prevented from directly contacting the surface 3a of the negative electrode active material layer. Further, from the viewpoint of making the ease of access of the lithium metal or lithium ions eluted from the lithium supply plate 10 to the surface 3a of the negative electrode active material layer substantially uniform over the entire surface 3a, the third porous conductive plate The area 9 is preferably the same as the surface 3a or slightly smaller than the surface 3a (see FIG. 1).

第三の有孔導電性板9の厚みは特に限定されず、リチウム供給板10から溶出したリチウム金属又はリチウムイオンが容易に通過して拡散し易くなる観点から、薄い方が好ましい。例えば、5μm〜50μm程度の厚みが好適である。   The thickness of the third porous conductive plate 9 is not particularly limited, and is preferably thinner from the viewpoint that lithium metal or lithium ions eluted from the lithium supply plate 10 can easily pass through and diffuse. For example, a thickness of about 5 μm to 50 μm is suitable.

リチウム供給板10を構成する材料は、接触した電解液にリチウム金属又はリチウムイオンが溶出する材料であれば特に限定されず、公知のリチウムプレドープに使用されるリチウム金属含有材料が適用できる。例えば、リチウム金属又はリチウム合金からなる金属箔、リチウム金属又はリチウム合金を含む多孔性樹脂材料、リチウム金属又はリチウム合金を含む多孔性無機材料等、が挙げられる。リチウム供給板10がリチウム金属箔であると、リチウムプレドープの進行とともにリチウム金属箔が溶解して無くなる。   The material which comprises the lithium supply board 10 will not be specifically limited if lithium metal or a lithium ion elutes into the electrolyte solution which contacted, The lithium metal containing material used for well-known lithium pre dope is applicable. Examples thereof include a metal foil made of lithium metal or a lithium alloy, a porous resin material containing lithium metal or a lithium alloy, a porous inorganic material containing lithium metal or a lithium alloy, and the like. If the lithium supply plate 10 is a lithium metal foil, the lithium metal foil dissolves and disappears with the progress of lithium pre-doping.

リチウム供給板10の形状は、第三の有孔性導電板9の表面9aに対して載置可能な平面を有する形状であれば特に限定されず、「板材」だけに限られず、線材が編まれた平面状の布、薄く延した箔、第三の有孔性導電板9の表面9a上に形成された膜等の形状を含む。リチウム供給板10は、第三の有孔性導電板9と同様の複数の貫通孔を有していてもよいし、有していなくてもよい。   The shape of the lithium supply plate 10 is not particularly limited as long as it has a flat surface that can be placed on the surface 9a of the third porous conductive plate 9, and is not limited to the “plate material”. It includes shapes such as a thin flat cloth, a thinly stretched foil, and a film formed on the surface 9a of the third porous conductive plate 9. The lithium supply plate 10 may or may not have a plurality of through holes similar to the third porous conductive plate 9.

リチウム供給板10の厚みは特に限定されず、負極4の不可逆容量を補償する量のリチウム金属を供給可能な厚みを適宜設定すればよい。例えば、リチウム金属箔を使用する場合、10μm〜200μm程度の厚みが好適である。   The thickness of the lithium supply plate 10 is not particularly limited, and a thickness capable of supplying an amount of lithium metal that compensates for the irreversible capacity of the negative electrode 4 may be set as appropriate. For example, when lithium metal foil is used, a thickness of about 10 μm to 200 μm is suitable.

本実施形態においては、図1に示す様に、正極7の両側に第一の負極4A(4)と第二の負極4B(4)が備えられ、第一の負極4Aの外側の表面に第三の有孔性導電板9を介してリチウム供給板10が積層され、第二の負極4Bの外側の表面に第四の有孔性導電板11を介してリチウム供給板12が積層されている。   In the present embodiment, as shown in FIG. 1, the first negative electrode 4A (4) and the second negative electrode 4B (4) are provided on both sides of the positive electrode 7, and the first negative electrode 4A has a first electrode on the outer surface. The lithium supply plate 10 is laminated via the three porous conductive plates 9, and the lithium supply plate 12 is laminated on the outer surface of the second negative electrode 4B via the fourth porous conductive plate 11. .

本実施形態の構成に代えて、負極4A及び負極4Bのどちらか一方の負極だけにリチウム供給板を配置しても構わないが、リチウムプレドープの処理効率を高める観点から、両方の負極に対してリチウム供給板を配置することが好ましい。   In place of the configuration of the present embodiment, the lithium supply plate may be disposed only on one of the negative electrode 4A and the negative electrode 4B, but from the viewpoint of increasing the processing efficiency of lithium pre-doping, It is preferable to arrange a lithium supply plate.

本実施形態の変形例として、負極4/セパレータ8/正極7を1つの積層ユニットとして、複数の積層ユニットが間にセパレータを挟んで積層された電極積層体を備えたリチウムイオン二次電池が挙げられる。この変形例においても、前述したように、電極積層体の最上面および最下面を構成する負極に、それぞれ有孔導電性板9,11を介してリチウム供給板10,12を配置することによって、同様にリチウムプレドープを行うことができる。   As a modification of the present embodiment, there is a lithium ion secondary battery including an electrode stack in which a negative electrode 4 / separator 8 / positive electrode 7 are used as one stacked unit and a plurality of stacked units are stacked with a separator interposed therebetween. It is done. Also in this modification example, as described above, by disposing the lithium supply plates 10 and 12 via the porous conductive plates 9 and 11 respectively on the negative electrodes constituting the uppermost surface and the lowermost surface of the electrode laminate, Similarly, lithium pre-doping can be performed.

例えば20層程度の多数の正極及び負極が積層された電極積層体を備えている場合、当該電極積層体の中間層としてリチウム供給板及び有孔性導電板を配置してもよい。この場合、非導電性のセパレータとリチウム供給板とが接触しないように配置することが好ましく、リチウム供給板を有孔導電性板で挟んだ配置がより好ましい。例えば、「負極―・・・―負極―(有孔性導電板−リチウム供給板―有孔性導電板)―セパレータ―正極―セパレータ―負極―「有孔性導電板−リチウム供給板―有孔性導電板」―セパレータ―正極―セパレータ―・・・―負極」の様に積層することができる。   For example, when an electrode laminate in which a large number of positive and negative electrodes of about 20 layers are laminated, a lithium supply plate and a porous conductive plate may be arranged as an intermediate layer of the electrode laminate. In this case, the non-conductive separator and the lithium supply plate are preferably arranged so as not to contact each other, and more preferably, the lithium supply plate is sandwiched between the perforated conductive plates. For example, "Negative electrode -...-Negative electrode-(Perforated conductive plate-Lithium supply plate-Perforated conductive plate)-Separator-Positive electrode-Separator-Negative electrode-" Perforated conductive plate-Lithium supply plate-Perforated Can be laminated like “conductive plate” -separator-positive electrode-separator --- negative electrode.

<電池の組み立てについて>
電極積層体を構成する負極4A,4Bにリチウム供給板10,12を配置した後、電極積層体を外装体13で仮封止する。外装体13の種類は特に限定されず、公知のリチウムイオン二次電池に使用される金属製又は樹脂製の外装体が適用できる。電池の形態は特に限定されず、箱型、コイン型、巻回し型(筒型)、シート型等、公知の電池形態を採用できる。本実施形態においては、外装体13として樹脂フィルムを使用して、電極積層体をラミネートしたシート型のラミネートセルを得る。セルを仮封止する際、負極集電体2及び正極集電体5にそれぞれ電気的に接続された引出配線2z,5z(タブ配線)を外装体13の外部に突出させる。各引出配線は、外部回路へ接続するための電極端子として機能する。
<Battery assembly>
After the lithium supply plates 10 and 12 are arranged on the negative electrodes 4A and 4B constituting the electrode laminate, the electrode laminate is temporarily sealed with the outer package 13. The kind of the exterior body 13 is not specifically limited, The metal or resin exterior body used for a well-known lithium ion secondary battery is applicable. The form of the battery is not particularly limited, and a known battery form such as a box type, a coin type, a wound type (cylinder type), a sheet type, or the like can be adopted. In the present embodiment, a resin film is used as the exterior body 13 to obtain a sheet-type laminate cell in which the electrode laminate is laminated. When temporarily sealing the cell, lead-out wirings 2z and 5z (tab wiring) electrically connected to the negative electrode current collector 2 and the positive electrode current collector 5 are projected to the outside of the outer package 13. Each lead-out wiring functions as an electrode terminal for connecting to an external circuit.

ラミネートセルの仮封止を部分的に解いて、電解質14を注入した後で完全に封止する。電解質14は、ゲル状又は液状であることが好ましく、液状の電解液であることがより好ましい。ゲル状又は液状であると、リチウム供給体10から溶出したリチウム金属又はリチウムイオンの電解質14内における拡散効率が高まり、リチウムプレドープの処理効率が向上する。   The laminated cell is partially unsealed and completely sealed after the electrolyte 14 is injected. The electrolyte 14 is preferably in the form of a gel or liquid, and more preferably a liquid electrolyte. When it is in a gel or liquid state, the diffusion efficiency of lithium metal or lithium ions eluted from the lithium supply body 10 in the electrolyte 14 is increased, and the processing efficiency of lithium pre-doping is improved.

<電解液について>
本実施形態においては、リチウム供給体にリチウム金属が含まれるので、電解質14としては、水分が実質的に含まれない(例えば、100ppm未満)非水系電解液が好ましい。非水系電解液としては、例えば、非水系溶媒にリチウム塩が溶解された公知の非水系電解液が挙げられる。具体的には、例えば、LiPF6、LiBF4、LiClO4等のリチウム塩が、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチル等の有機溶媒に溶解された電解液が挙げられる。電解液のリチウム塩濃度は特に限定されず、例えば、0.5〜2mol/L程度が挙げられる。
<About electrolyte>
In this embodiment, since lithium metal is contained in the lithium supply body, the electrolyte 14 is preferably a non-aqueous electrolyte solution that does not substantially contain moisture (for example, less than 100 ppm). Examples of the non-aqueous electrolyte include known non-aqueous electrolytes in which a lithium salt is dissolved in a non-aqueous solvent. Specifically, for example, lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, methyl acetate, methyl formate, etc. And an electrolytic solution dissolved in the organic solvent. The lithium salt concentration of the electrolytic solution is not particularly limited, and examples thereof include about 0.5 to 2 mol / L.

<リチウムプレドープについて>
封止したラミネートセルを所定温度において放置することによって、リチウムプレドープを自然に進行させることができる。この際、ラミネートセルを加圧することにより、リチウムプレドープを更に促進することができる。リチウム供給体10,12から電解液14に溶出したリチウム金属又はリチウムイオンは、有孔導電性板9,11の貫通孔および電極集電体2,5の貫通孔を通過して、各負極活物質層3に拡散及び浸透する。負極活物質層3においては、リチウムシリケート等の副生成物が生成して、不可逆容量の原因物質が不活化されてもよい。
<About lithium pre-dope>
By leaving the sealed laminate cell at a predetermined temperature, the lithium pre-dope can be allowed to proceed naturally. At this time, the lithium pre-dope can be further promoted by pressurizing the laminate cell. Lithium metal or lithium ions eluted from the lithium supply bodies 10 and 12 into the electrolyte solution 14 pass through the through holes of the perforated conductive plates 9 and 11 and the through holes of the electrode current collectors 2 and 5, respectively. It diffuses and penetrates into the material layer 3. In the negative electrode active material layer 3, a by-product such as lithium silicate may be generated, and the causative substance of irreversible capacity may be inactivated.

本実施形態においては、各負極活物質層の表面3aに直接リチウム供給体10,12を貼り付けず、有孔導電性板9,11を介在させているため、リチウム金属(リチウムイオン)が各負極活物質層3の内部に均一に拡散及び浸透し得る。このメカニズムを以下に考察する。   In this embodiment, since the lithium supply bodies 10 and 12 are not directly attached to the surface 3a of each negative electrode active material layer, and the porous conductive plates 9 and 11 are interposed, lithium metal (lithium ions) is each The anode active material layer 3 can be uniformly diffused and penetrated inside. This mechanism is considered below.

各負極活物質層の表面(電極表面)に直接リチウム供給体を貼り付けた場合、電極表面が不均一に反応する。これは、ミクロの視点において、電極表面とリチウム供給体とが接触する部分のみが反応し易いためである。反応が先行して進む部分は、リチウムが結合したことにより物理的に膨張する。このため、不均一な反応は、負極活物質層の剥がれ、不均一な膨れによるシワ及びうねりの発生を引き起こす。   When a lithium supply body is directly attached to the surface (electrode surface) of each negative electrode active material layer, the electrode surface reacts unevenly. This is because only the portion where the electrode surface and the lithium supplier are in contact with each other easily reacts from a microscopic viewpoint. The portion where the reaction proceeds is physically expanded due to the bonding of lithium. For this reason, the non-uniform reaction causes peeling of the negative electrode active material layer, and generation of wrinkles and waviness due to non-uniform swelling.

一方、パンチング箔等の有孔導電性板9,11を間に介在させる本実施形態の場合、基本的には、有孔導電性板9,11の所定位置に設けられた複数の貫通孔を通して、リチウム金属(リチウムイオン)が電極表面に供給される。つまり、各貫通孔がリチウム金属の供給源になるため、各貫通孔の相対的な配置を制御することによって、電極表面上にリチウム金属の供給源を均一に配置することができる。この結果、各負極活物質層に均一にリチウム金属をドープすることができる。さらに、有孔導電性板9,11が電極表面を押さえているため、電極表面における活物質層の剥がれ、膨れ、シワの発生等を抑制することができる。   On the other hand, in the case of this embodiment in which perforated conductive plates 9 and 11 such as punching foil are interposed, basically, a plurality of through holes provided at predetermined positions of the perforated conductive plates 9 and 11 are passed through. Lithium metal (lithium ions) is supplied to the electrode surface. That is, since each through-hole becomes a lithium metal supply source, the lithium metal supply source can be uniformly arranged on the electrode surface by controlling the relative arrangement of each through-hole. As a result, each negative electrode active material layer can be uniformly doped with lithium metal. Furthermore, since the porous conductive plates 9 and 11 hold the electrode surface, the active material layer on the electrode surface can be prevented from being peeled off, swollen, or wrinkled.

本実施形態で使用する有孔導電性板9,11は、導電性であるため、負極表面とリチウム供給体の間に電位差が発生し得る。この電位差があることによってリチウム供給体からリチウム金属(リチウムイオン)が溶出することが促進されると考えられる。この理由は、次のように考えられる。まず、電解液中のリチウムイオンが拡散及び浸透して、負極活物質層内で還元されてリチウム金属になる。これにより電解液中のリチウムイオン濃度が低下する。この濃度低下に伴って、リチウム供給体のリチウム金属がイオン化して電解液中に溶解し、上記濃度低下を抑制する方向に働くと推測される。この一連のプロセスが繰り返されることによってリチウムプレドープが進行するならば、上記の電位差がリチウム金属の溶出及びイオン化に寄与する可能性がある。事実、後述する比較例2の実験結果で示すように、有孔導電性板9,11に代えて非導電性の多孔質セパレータを使用した場合、上記電位差は発生せず、リチウムプレドープが促進されないことが確かめられた。   Since the perforated conductive plates 9 and 11 used in this embodiment are conductive, a potential difference may be generated between the negative electrode surface and the lithium supply body. It is considered that the presence of this potential difference promotes the elution of lithium metal (lithium ions) from the lithium supplier. The reason is considered as follows. First, lithium ions in the electrolytic solution diffuse and permeate, and are reduced in the negative electrode active material layer to become lithium metal. Thereby, the lithium ion concentration in electrolyte solution falls. Along with this decrease in concentration, it is presumed that the lithium metal of the lithium supplier is ionized and dissolved in the electrolytic solution, and works to suppress the concentration decrease. If lithium pre-doping proceeds by repeating this series of processes, the above-described potential difference may contribute to elution and ionization of lithium metal. In fact, as shown in the experimental results of Comparative Example 2 described later, when a non-conductive porous separator is used instead of the porous conductive plates 9 and 11, the above potential difference does not occur, and lithium pre-doping is accelerated. It was confirmed that it was not done.

以下、実施例を示して本発明についてさらに詳しく説明する。ただし、本発明は以下に示す実施例に何ら限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(1)使用した原料
本実施例で使用した原料を以下に示す。
・導電助剤
アセチレンブラック(電気化学工業社製「HS−100」、平均粒子径(48nm))
カーボンナノチューブ(保土谷化学社製「NT−7」、平均繊維径(65nm)、平均繊維長(6um以上))
・バインダー
スチレン−ブタジエン樹脂(以下、「SBR」と略記する)(JSR社製)
・(C)有機溶媒
エチレンカーボネート(以下、「EC」と略記する)(キシダ化学社製)
プロピレンカーボネート(以下、「PC」と略記する)(キシダ化学社製)
(1) Used raw materials The raw materials used in this example are shown below.
-Conductive auxiliary agent acetylene black ("HS-100" manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (48 nm))
Carbon nanotube ("NT-7" manufactured by Hodogaya Chemical Co., Ltd., average fiber diameter (65nm), average fiber length (6um or more))
Binder Styrene-butadiene resin (hereinafter abbreviated as “SBR”) (manufactured by JSR)
(C) Organic solvent Ethylene carbonate (hereinafter abbreviated as “EC”) (Kishida Chemical Co., Ltd.)
Propylene carbonate (hereinafter abbreviated as “PC”) (manufactured by Kishida Chemical Co., Ltd.)

[実施例1]
(負極材の製造)
一酸化ケイ素(SiO、平均粒子径1μm、69質量部)、アセチレンブラック(10質量部)、カーボンナノチューブ(6質量部)、ポリアクリル酸リチウム(全酸基の30モル%がリチウム塩とされたもの、以下、「PAALi」と略記することがある、12質量部)、及びSBR(3質量部)を試薬瓶に入れ、さらにここに蒸留水を添加して濃度調整した後、ディスパーを用いて、この濃度調整したものを3000rpmで90分間混合した。次いで、超音波ホモジナイザーを用いてこの混合物を10分間分散処理した後、再度、自公転ミキサーを用いてこの分散物を2000rpmで3分間混合することにより、負極材を得た。ここまでの操作は、すべて25℃で行った。
[Example 1]
(Manufacture of negative electrode materials)
Silicon monoxide (SiO, average particle diameter 1 μm, 69 parts by mass), acetylene black (10 parts by mass), carbon nanotube (6 parts by mass), lithium polyacrylate (30 mol% of all acid groups were converted to lithium salts) In the following, 12 parts by mass, which may be abbreviated as “PAALi”, and SBR (3 parts by mass) are placed in a reagent bottle, and after adding distilled water to adjust the concentration, use a disper. The solution whose concentration was adjusted was mixed at 3000 rpm for 90 minutes. Next, this mixture was subjected to a dispersion treatment for 10 minutes using an ultrasonic homogenizer, and then this dispersion was again mixed for 3 minutes at 2000 rpm using a self-revolving mixer to obtain a negative electrode material. All the operations so far were performed at 25 ° C.

(負極の製造)
ダイヘッドが装着された塗工機を用いて、厚さ10μmのパンチング銅箔(穴径0.3mm、空孔率16.7%、福田金属箔粉工業社製)の両面に、上記で得られた負極材を塗布した。この際の条件は、塗工速度2m/min、乾燥温度100℃であった。その後、ロールプレス機を用いて、25℃、3トンの加圧条件でプレスすることによって、集電体である銅箔上の両面に厚さ、それぞれ25μmの負極活物質層を形成して、負極を得た。得られた負極は、負極活物質層部分(104×62mm)と、未塗工部分(タブ部分、2×2cm)の寸法であった。
(Manufacture of negative electrode)
Using a coating machine equipped with a die head, the above is obtained on both sides of a 10 μm-thick punched copper foil (hole diameter: 0.3 mm, porosity: 16.7%, manufactured by Fukuda Metal Foil Powder Co., Ltd.) A negative electrode material was applied. The conditions at this time were a coating speed of 2 m / min and a drying temperature of 100 ° C. Then, using a roll press machine, by pressing at 25 ° C. under a pressure of 3 tons, a negative electrode active material layer having a thickness of 25 μm is formed on each side of the copper foil as a current collector, A negative electrode was obtained. The obtained negative electrode had dimensions of a negative electrode active material layer portion (104 × 62 mm) and an uncoated portion (tab portion, 2 × 2 cm).

(正極材の製造)
ニッケル・コバルト・マンガン酸リチウム(Ni:Co:Mn=1:1:1、LiNMC)(93質量部)と、ポリフッ化ビニリデン(PVDF)(4質量部)と、導電助剤であるカーボンブラック(3質量部)とを混合して正極混合材を調製し、これをN−メチルピロリドン(NMP)中に分散させて、正極材(スラリー)を得た。
(Manufacture of positive electrode material)
Nickel, cobalt, lithium manganate (Ni: Co: Mn = 1: 1: 1, LiNMC) (93 parts by mass), polyvinylidene fluoride (PVDF) (4 parts by mass), and carbon black ( 3 parts by mass) was mixed to prepare a positive electrode mixed material, which was dispersed in N-methylpyrrolidone (NMP) to obtain a positive electrode material (slurry).

(正極の製造)
負極の製造工程と同様に、ダイヘッドが装着された塗工機を用いて、厚さ15μmのパンチングAl箔(穴径0.3mm、空孔率16.7%、福田金属箔粉工業社製)の両面に、上記で得られた正極材を塗布した。この際の条件は、塗工速度2m/min、乾燥温度140℃であった。その後、ロールプレス機を用いて、25℃、5トンの加圧条件にてプレスすることによって、集電体である銅箔上の両面に厚さ、それぞれ60μmの正極活物質層を形成して、正極を得た。得られた正極は、正極活物質層部分(102×60mm)と、未塗工部分(タブ部分、2×2cm)の寸法であった。
(Manufacture of positive electrode)
Similar to the negative electrode manufacturing process, using a coating machine equipped with a die head, a punching Al foil with a thickness of 15 μm (hole diameter: 0.3 mm, porosity: 16.7%, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.) The positive electrode material obtained above was applied to both sides of the above. The conditions at this time were a coating speed of 2 m / min and a drying temperature of 140 ° C. Thereafter, by using a roll press machine and pressing at 25 ° C. under a pressure of 5 tons, a positive electrode active material layer having a thickness of 60 μm is formed on both surfaces of the copper foil as a current collector. A positive electrode was obtained. The obtained positive electrode had dimensions of a positive electrode active material layer portion (102 × 60 mm) and an uncoated portion (tab portion, 2 × 2 cm).

(電解液の製造)
有機溶媒として、EC及びPCの混合溶媒(EC:PC=30:70(体積比))をポリ容器に量り取り、ここにシュウ酸リチウム−三フッ化ホウ素錯体を加えて、シュウ酸リチウム−三フッ化ホウ素錯体中のリチウム原子の濃度が1.0モル/kgとなるようにし、23℃で混合することにより、電解液を得た。
(Manufacture of electrolyte)
As an organic solvent, a mixed solvent of EC and PC (EC: PC = 30: 70 (volume ratio)) is weighed into a plastic container, to which a lithium oxalate-boron trifluoride complex is added, and lithium oxalate-3 The concentration of lithium atoms in the boron fluoride complex was adjusted to 1.0 mol / kg and mixed at 23 ° C. to obtain an electrolytic solution.

(リチウムイオン二次電池の製造)
上記で得られた負極及び正極の間にセルロース製セパレータフィルム(日本高度紙工業社製、TBL‐4620)を、第一の負極―セパレータ―正極―セパレータ―第二の負極の順に重ね合せて配置し、各電極の端子用タブを超音波溶接により接合して、各タブを負極及び正極の外方に突出させて、電極積層体を得た(図1参照)。
(Manufacture of lithium ion secondary batteries)
A separator film made of cellulose (manufactured by Nippon Kogyo Paper Industries Co., Ltd., TBL-4620) is placed between the negative electrode and the positive electrode obtained above in the order of first negative electrode-separator-positive electrode-separator-second negative electrode. And the tab for terminals of each electrode was joined by ultrasonic welding, and each tab was made to protrude outward of a negative electrode and a positive electrode, and the electrode laminated body was obtained (refer FIG. 1).

(リチウムドープ工程)
上記で得られた電極積層体の両方の外面を構成する負極の各々に、106×64mmにカットしたパンチング銅箔を、負極活物質層部分を覆うように重ね置き、さらにその上に、負極の不可逆容量を補償するのに必要な量のリチウム金属箔(104×62mm)を設置した。
次いで、この電極積層体の負極及び正極から突出させた前記端子用タブが外部へ突出するように、アルミニウムラミネートフィルムを配置し、電極積層体に電解液を注液後、このフィルムの外周をラミネート加工して電極積層体を真空封止した。その後、得られたセルを加圧治具にセットし、セルを2kNの力で加圧状態とし、25℃の恒温槽中にて、48h静置することによりリチウムプレドープ処理を行い、ラミネートセルを製造した。作製した電池の定格容量は1000mAhである。
(Lithium doping process)
On each of the negative electrodes constituting the outer surfaces of both of the electrode laminates obtained above, a punched copper foil cut to 106 × 64 mm is overlaid so as to cover the negative electrode active material layer portion, and further on the negative electrode active material layer portion, An amount of lithium metal foil (104 × 62 mm) necessary to compensate for the irreversible capacity was installed.
Next, an aluminum laminate film is arranged so that the terminal tabs protruding from the negative electrode and the positive electrode of the electrode laminate are projected to the outside, and an electrolyte is poured into the electrode laminate, and the outer periphery of the film is laminated. The electrode laminate was processed and vacuum sealed. Thereafter, the obtained cell is set in a pressure jig, the cell is brought into a pressurized state with a force of 2 kN, and is left in a constant temperature bath at 25 ° C. for 48 hours to perform a lithium pre-dope treatment, and a laminate cell. Manufactured. The rated capacity of the manufactured battery is 1000 mAh.

[実施例2]
実施例1で使用したパンチング箔の仕様を穴径0.35mm、空孔率16%にしたこと以外は実施例1と同様の方法にてラミネートセルを作製した。
[実施例3]
実施例1で使用したパンチング箔の仕様を穴径0.12mm、空孔率16%にしたこと以外は実施例1と同様の方法にてラミネートセルを作製した。
[Example 2]
A laminate cell was produced in the same manner as in Example 1 except that the punching foil used in Example 1 had a hole diameter of 0.35 mm and a porosity of 16%.
[Example 3]
A laminate cell was produced in the same manner as in Example 1 except that the punching foil used in Example 1 had a hole diameter of 0.12 mm and a porosity of 16%.

[比較例1]
パンチング箔を使用せずに、電極積層体の両方の外面を構成する負極活物質層の上に直接、リチウム金属箔を設置したこと以外は実施例1と同様の方法にてラミネートセルを作製した。
[比較例2]
パンチング箔を使用せずに、電極積層体の両方の外面を構成する負極活物質層の上にセルロース製セパレータフィルム(日本高度紙工業社製、TBL‐4620)を重ね合せて、さらにその上にリチウム金属箔を設置したこと以外は実施例1と同様の方法にてラミネートセルを作製した。なお、本実験においては、48時間のリチウムドープ後にセルを開放すると、リチウム金属箔が残っていることが確認された。このセルを再度封止し、性能評価に供した。
[Comparative Example 1]
A laminate cell was produced in the same manner as in Example 1 except that the lithium metal foil was directly placed on the negative electrode active material layer constituting both outer surfaces of the electrode laminate without using the punching foil. .
[Comparative Example 2]
Without using a punching foil, a cellulose separator film (manufactured by Nippon Kogyo Paper Industries Co., Ltd., TBL-4620) is layered on the negative electrode active material layer constituting both outer surfaces of the electrode laminate, and further on it. A laminate cell was produced in the same manner as in Example 1 except that a lithium metal foil was installed. In this experiment, when the cell was opened after 48 hours of lithium doping, it was confirmed that the lithium metal foil remained. This cell was sealed again and subjected to performance evaluation.

(電極外観の評価)
上記各実施例および比較例において、それぞれ4つずつラミネートセルを作製した。作製した一部のラミネートセルを開封し、負極の外観を目視で検査した。10段階の評価基準を設定し、リチウムドープ前と比べて外観の変化がない良品を「10」と判定し、リチウムドープ後に負極活物質層の剥がれや膨らみが激しかった不良品を「0」と判定した。この評価において、評価が10に近い数値である程外観が優れており、評価が0に近い数値である程外観が傷んでいることを意味する。
(Evaluation of electrode appearance)
In each of the above examples and comparative examples, four laminate cells were produced. Some of the produced laminate cells were opened, and the appearance of the negative electrode was visually inspected. Establishing 10-step evaluation criteria, determining that a non-defective product with no change in appearance compared to before lithium doping is “10”, and that a defective product in which the negative electrode active material layer is severely peeled and swollen after lithium doping is “0” Judged. In this evaluation, the closer the evaluation is to 10, the better the appearance is, and the closer the evaluation is to 0, the more damaged the appearance is.

(リチウムイオン二次電池の充放電特性の評価)
上記各実施例及び比較例で得られたリチウムイオン二次電池について、25℃において0.1Cの定電流定電圧充電を、上限電圧4.2Vとして電流値が0.05Cに収束するまで行った後、0.1Cの定電流放電を2.5Vまで行った。次いで、充放電電流を0.5Cとして同様の方法で、充放電サイクルを3回繰り返し行い、リチウムイオン二次電池の状態を安定させた。次いで、充放電電流を0.2Cとして同様の方法で、充放電を行い、容量発現率({[1サイクル目の放電容量(mAh)]/[定格容量(mAh)]}×100)(%)、充放電電流を1Cとして同様の方法で、充放電サイクルを繰り返し行い、100サイクルでの容量維持率({[100サイクル目の放電容量(mAh)]/[1サイクル目の放電容量(mAh)]}×100)(%)を算出した。
(Evaluation of charge / discharge characteristics of lithium ion secondary battery)
About the lithium ion secondary battery obtained by each said Example and comparative example, constant current constant voltage charge of 0.1C was performed at 25 degreeC until the electric current value converged to 0.05C with the upper limit voltage of 4.2V. Thereafter, a constant current discharge of 0.1 C was performed up to 2.5V. Subsequently, the charge / discharge current was set to 0.5 C, and the charge / discharge cycle was repeated three times in the same manner to stabilize the state of the lithium ion secondary battery. Next, charging / discharging was performed in the same manner with a charging / discharging current of 0.2 C, and a capacity expression rate ({[discharge capacity (mAh) of the first cycle) / [rated capacity (mAh)]} × 100) (% ), The charge / discharge current is set to 1 C in the same manner, the charge / discharge cycle is repeated, and the capacity retention rate at 100 cycles ({[discharge capacity at the 100th cycle (mAh)] / [discharge capacity at the first cycle (mAh) )]} × 100) (%).

Figure 2016110776
Figure 2016110776

上記の結果から、実施例1〜3のリチウムプレドープ方法によれば、負極活物質層をほとんど傷めずに優れた外観(即ち、優れた構造的強度)の電極が得られること、並びに、容量発現率および容量維持率が優れたリチウムイオン二次電池が製造できることが明らかである。
一方、比較例1においては、電極外観の評価が悪いことから、リチウムプレドープによる負極活物質層の損傷が生じていることが分かる。損傷した負極を使用した比較例1のリチウムイオン二次電池を使用して、100サイクルを超える充放電サイクルを更に継続した場合には、負極の損傷が更に進み、容量発現率及び容量維持率の低下が進行すると考えられる。また、比較例2においては、電極外観の評価が良いことから、リチウムプレドープによる負極活物質層の損傷は起きていないが、容量発現率が悪いことから、目的のリチウムプレドープが充分に達成されていないことが分かる。リチウムプレドープが充分に行われなかった理由として、比較例2で使用したセパレータが非導電性のセルロース製セパレータであったため、リチウム金属箔と負極活物質層の間に電位差が発生せず、リチウムプレドープの効率が落ちたためと考えられる。
From the above results, according to the lithium pre-doping methods of Examples 1 to 3, an electrode having an excellent appearance (that is, excellent structural strength) can be obtained with almost no damage to the negative electrode active material layer, and the capacity It is clear that a lithium ion secondary battery having an excellent expression rate and capacity retention rate can be manufactured.
On the other hand, in Comparative Example 1, it was found that the negative electrode active material layer was damaged by the lithium pre-doping because the evaluation of the electrode appearance was poor. When the lithium ion secondary battery of Comparative Example 1 using the damaged negative electrode was used and the charge / discharge cycle exceeding 100 cycles was further continued, the negative electrode was further damaged, and the capacity development rate and the capacity maintenance rate were reduced. The decline is thought to progress. Further, in Comparative Example 2, the negative electrode active material layer was not damaged by the lithium pre-doping because the evaluation of the electrode appearance was good, but the target lithium pre-doping was sufficiently achieved because the capacity expression rate was poor. You can see that it was not done. The reason why lithium pre-doping was not sufficiently performed was that the separator used in Comparative Example 2 was a non-conductive cellulose separator, and therefore no potential difference occurred between the lithium metal foil and the negative electrode active material layer. This is probably because the efficiency of pre-doping has decreased.

本発明は、リチウムイオン二次電池の分野で広く利用可能である。   The present invention can be widely used in the field of lithium ion secondary batteries.

1…リチウムイオン二次電池、2…第一の有孔導電性板(負極集電体)、3…負極活物質層、3a…負極活物質層の表面、4A,4B,4…負極、5…第二の有孔導電性板(正極集電体)、6…正極活物質層、6a…正極活物質層の表面、7…正極、8…セパレータ、9…第三の有孔導電性板、10…リチウム供給板、11…第四の有孔導電性板、12…リチウム供給板、13…外装体、14…電解質 DESCRIPTION OF SYMBOLS 1 ... Lithium ion secondary battery, 2 ... 1st porous electroconductive board (negative electrode collector), 3 ... Negative electrode active material layer, 3a ... Surface of negative electrode active material layer, 4A, 4B, 4 ... Negative electrode, 5 2nd porous conductive plate (positive electrode current collector), 6 ... positive electrode active material layer, 6a ... surface of positive electrode active material layer, 7 ... positive electrode, 8 ... separator, 9 ... 3rd porous conductive plate DESCRIPTION OF SYMBOLS 10 ... Lithium supply board, 11 ... 4th perforated electroconductive board, 12 ... Lithium supply board, 13 ... Exterior body, 14 ... Electrolyte

Claims (3)

負極集電体としての第一の有孔導電性板上に負極活物質層が形成されてなる負極と、
正極集電体としての第二の有孔導電性板上に正極活物質層が形成されてなる正極と、
が積層されてなる電極積層体を備えたリチウムイオン二次電池の製造方法であって、
前記負極の最外面に位置する負極活物質層の表面に第三の有孔導電性板を重ね置き、該有孔導電性板を介して更にリチウム供給板を重ね置いた電極積層体を得て、この電極積層体が電解質に接した状態でリチウムプレドープを行う工程を有する、リチウムイオン二次電池の製造方法。
A negative electrode in which a negative electrode active material layer is formed on a first porous conductive plate as a negative electrode current collector;
A positive electrode in which a positive electrode active material layer is formed on a second porous conductive plate as a positive electrode current collector;
A method for producing a lithium ion secondary battery comprising an electrode laminate in which is laminated,
A third porous conductive plate is placed on the surface of the negative electrode active material layer located on the outermost surface of the negative electrode, and an electrode laminate in which a lithium supply plate is further placed over the porous conductive plate is obtained. A method for producing a lithium ion secondary battery, comprising a step of performing lithium pre-doping while the electrode laminate is in contact with an electrolyte.
前記第三の有孔導電性板が有する貫通孔の平均孔径が0.1mm以上、0.4mm以下である請求項1に記載のリチウムイオン二次電池の製造方法。   The method for producing a lithium ion secondary battery according to claim 1, wherein an average hole diameter of the through holes of the third porous conductive plate is 0.1 mm or more and 0.4 mm or less. 前記負極の最外面に位置する負極活物質層の面積と、前記第三の有孔導電性板の面積とが略同等である請求項1又は2に記載のリチウムイオン二次電池の製造方法。   3. The method of manufacturing a lithium ion secondary battery according to claim 1, wherein an area of the negative electrode active material layer located on the outermost surface of the negative electrode is substantially equal to an area of the third porous conductive plate.
JP2014245749A 2014-12-04 2014-12-04 Method for producing lithium ion secondary battery Active JP6494265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014245749A JP6494265B2 (en) 2014-12-04 2014-12-04 Method for producing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014245749A JP6494265B2 (en) 2014-12-04 2014-12-04 Method for producing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016110776A true JP2016110776A (en) 2016-06-20
JP6494265B2 JP6494265B2 (en) 2019-04-03

Family

ID=56124554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014245749A Active JP6494265B2 (en) 2014-12-04 2014-12-04 Method for producing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6494265B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173615A (en) * 2005-12-22 2007-07-05 Fuji Heavy Ind Ltd Lithium metal foil for cell or capacitor
JP2008047458A (en) * 2006-08-18 2008-02-28 Kri Inc Electrode for power storage device, and power storage device using it
JP2010199281A (en) * 2009-02-25 2010-09-09 Fuji Heavy Ind Ltd Electric storage device and method of manufacturing the same
JP2011199210A (en) * 2010-03-24 2011-10-06 Fuji Heavy Ind Ltd Rolled energy storage device
JP2012079943A (en) * 2010-10-01 2012-04-19 Shin Kobe Electric Mach Co Ltd Lithium ion power storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173615A (en) * 2005-12-22 2007-07-05 Fuji Heavy Ind Ltd Lithium metal foil for cell or capacitor
JP2008047458A (en) * 2006-08-18 2008-02-28 Kri Inc Electrode for power storage device, and power storage device using it
JP2010199281A (en) * 2009-02-25 2010-09-09 Fuji Heavy Ind Ltd Electric storage device and method of manufacturing the same
JP2011199210A (en) * 2010-03-24 2011-10-06 Fuji Heavy Ind Ltd Rolled energy storage device
JP2012079943A (en) * 2010-10-01 2012-04-19 Shin Kobe Electric Mach Co Ltd Lithium ion power storage device

Also Published As

Publication number Publication date
JP6494265B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6448336B2 (en) Method for producing lithium ion secondary battery
EP3188298B1 (en) Stacked cell and production method for same
JP4665931B2 (en) Anode and lithium ion secondary battery
JP4665930B2 (en) Anode and lithium ion secondary battery
JP5365107B2 (en) Method for producing electrode for electrochemical device
JP2008277120A (en) Composite particle, its manufacturing method, and electrochemical device
JP2017021888A (en) Manufacturing method of negative electrode for nonaqueous electrolyte secondary battery
JP2015037008A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP2010135361A (en) Negative electrode, lithium ion capacitor, and manufacturing method of them
WO2008026358A1 (en) Electrode for nonaqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
JP2005243455A (en) Electrochemical device
JP6610692B2 (en) Electrode and storage element
WO2015046394A1 (en) Negative-electrode active material, negative electrode using same, and lithium-ion secondary battery
JP2012256544A (en) Manufacturing method of electrode for secondary battery
WO2013180083A1 (en) Lithium ion secondary battery
JP6083289B2 (en) Lithium ion secondary battery
JP6535261B2 (en) Method of manufacturing lithium ion secondary battery and electrode structure of lithium ion secondary battery
JP6494265B2 (en) Method for producing lithium ion secondary battery
JP2010003614A (en) Manufacturing method of current collector for electrode
JP2023048950A (en) High capacity lithium ion secondary battery
JP2013058362A (en) Method for manufacturing electrode for secondary battery
JP2010278300A (en) Method of manufacturing lithium ion capacitor
JP2016219285A (en) Negative electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2015103432A (en) Method for manufacturing all solid state battery
JP6628485B2 (en) Method for producing lithium ion secondary battery and precursor of lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190305

R151 Written notification of patent or utility model registration

Ref document number: 6494265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151