JP2016109667A - Magnetic field measurement method and magnetic field measurement device - Google Patents
Magnetic field measurement method and magnetic field measurement device Download PDFInfo
- Publication number
- JP2016109667A JP2016109667A JP2015158756A JP2015158756A JP2016109667A JP 2016109667 A JP2016109667 A JP 2016109667A JP 2015158756 A JP2015158756 A JP 2015158756A JP 2015158756 A JP2015158756 A JP 2015158756A JP 2016109667 A JP2016109667 A JP 2016109667A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- measurement
- measurement region
- level
- direction side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/032—Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Biophysics (AREA)
- Power Engineering (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measuring Magnetic Variables (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
本発明は、光を利用した磁場計測方法及び磁場計測装置に関する。 The present invention relates to a magnetic field measurement method and a magnetic field measurement apparatus using light.
光を利用した磁場計測装置は、心臓からの磁場(心磁)や脳からの磁場(脳磁)などの生体から発生する微少な磁場を計測することが可能であり、医療画像診断装置などへの応用が期待されている。かかる磁場計測装置では、アルカリ金属などのガス(気体)を封入したガスセルにポンプ光及びプローブ光を照射する。ガスセル内に封入された原子は、ポンプ光により励起されてスピン偏極し、このガスセルを透過したプローブ光の偏光面は、磁気光学効果により磁場に応じて回転する。このガスセルの透過前後のプローブ光の偏光面の回転角度を測定することで、磁場を計測する(例えば、特許文献1)。 A magnetic field measurement device using light can measure a minute magnetic field generated from a living body such as a magnetic field from the heart (magnetomagnetic field) and a magnetic field from the brain (magnetomagnetic field). The application of is expected. In such a magnetic field measurement apparatus, pump light and probe light are irradiated to a gas cell in which a gas (gas) such as an alkali metal is sealed. The atoms enclosed in the gas cell are excited by pump light and spin-polarized, and the polarization plane of the probe light transmitted through the gas cell is rotated according to the magnetic field by the magneto-optic effect. The magnetic field is measured by measuring the rotation angle of the polarization plane of the probe light before and after transmission through the gas cell (for example, Patent Document 1).
従来の一般的な光ポンピング式の磁場計測装置は、磁場の検出軸は一方向であり、検出軸と磁場の方向が異なる場合には、磁場の検出軸への射影成分が計測される。しかし、実際に空間に分布する磁場は三次元のベクトルであり、より精密に磁場を計測しようとする場合、XYZ直交三軸といった三軸方向の磁場を計測することが望ましい。検出軸はプローブ光の照射方向に応じた方向となるため、単純に、プローブ光の照射方向を増やすことで検出軸を増やす場合、それぞれの照射方向を精密に直交させる必要がある。照射方向が想定する方向に対して傾くと、それに伴って検出軸に傾きが生じ、その結果、三次元ベクトルである磁場の計測値に誤差が生じてしまう。 In the conventional general optical pumping type magnetic field measuring apparatus, the detection axis of the magnetic field is one direction, and when the direction of the detection axis is different from the direction of the magnetic field, the projection component to the detection axis of the magnetic field is measured. However, the magnetic field actually distributed in the space is a three-dimensional vector, and it is desirable to measure a magnetic field in a triaxial direction such as XYZ orthogonal three axes in order to measure the magnetic field more precisely. Since the detection axis is a direction corresponding to the irradiation direction of the probe light, when the detection axis is simply increased by increasing the irradiation direction of the probe light, it is necessary to make the respective irradiation directions accurately orthogonal. When the irradiation direction is inclined with respect to the assumed direction, the detection axis is inclined accordingly, and as a result, an error occurs in the measured value of the magnetic field, which is a three-dimensional vector.
本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、光ポンプ式の磁場計測において、プローブ光が一方向でありながら、複数方向の磁場を計測可能とすること、或いは高精度に磁気計測を行うことである。 The present invention has been made in view of the above circumstances, and the object thereof is to enable measurement of magnetic fields in a plurality of directions while the probe light is in one direction in the optical pump type magnetic field measurement. Alternatively, magnetic measurement is performed with high accuracy.
[適用例1]上記課題を解決するための第1の発明は、第1方向と第2方向と第3方向とは互いに直交し、光を射出する光源と、前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、前記光学特性を検出する光検出器と、前記第1方向の磁場を前記計測領域に印加する第1磁場発生器と、を備えた磁場計測装置が、前記計測領域の磁場を計測するための磁場計測方法であって、前記第1磁場発生器に、前記第1方向の磁場として、前記第1方向側第1水準の一定磁場、前記第1方向側第2水準の一定磁場、及び、前記第1方向側第3水準の一定磁場を発生させることと、前記光検出器の検出結果、及び、前記第1方向の磁場を用いて、前記計測領域の磁場を算出することと、を含む磁場計測方法である。 Application Example 1 In a first invention for solving the above-described problem, a first direction, a second direction, and a third direction are orthogonal to each other, a light source that emits light, and the light in the third direction. A medium that passes along and changes an optical characteristic according to a magnetic field of a measurement region, a photodetector that detects the optical characteristic, and a first magnetic field generator that applies a magnetic field in the first direction to the measurement region; Is a magnetic field measurement method for measuring a magnetic field in the measurement region, and the first magnetic field generator has a first level side first level as a magnetic field in the first direction. A constant magnetic field of the first direction side, a constant magnetic field of the second level, and a constant magnetic field of the first direction side third level, the detection result of the photodetector, and the first direction Calculating a magnetic field in the measurement region using a magnetic field. .
本適用例の磁場計測方法によれば、第3方向(Z方向)といった一方向のみへの光の照射によって、計測領域の磁場ベクトルを算出することができる。すなわち、一方向のみへの光の照射によって、計測領域の磁場の第1方向(X方向)成分と第2方向(Y方向)成分と第3方向(Z方向)成分とを算出することができる。具体的には、計測領域の磁場に応じて光の光学特性を変化させる媒体に対して、光の射出方向である第3方向(Z方向)と直交する第1方向(X方向)の磁場として3つの水準の一定磁場を印加する。そして、光の光学特性の検出結果と、第1方向(X方向)の磁場とを用いて、計測領域の磁場を算出する。 According to the magnetic field measurement method of this application example, the magnetic field vector in the measurement region can be calculated by irradiating light in only one direction such as the third direction (Z direction). That is, the first direction (X direction) component, the second direction (Y direction) component, and the third direction (Z direction) component of the magnetic field in the measurement region can be calculated by light irradiation in only one direction. . Specifically, as a magnetic field in a first direction (X direction) orthogonal to the third direction (Z direction), which is the light emission direction, with respect to a medium that changes the optical characteristics of light according to the magnetic field in the measurement region. Apply three levels of constant magnetic field. And the magnetic field of a measurement area | region is calculated using the detection result of the optical characteristic of light, and the magnetic field of a 1st direction (X direction).
[適用例2]第2の発明として、第1の発明の磁場計測方法であって、前記計測領域の磁場を算出することは、前記媒体の磁化ベクトルの前記第1方向の成分を示す磁化値を前記光検出器の検出結果に基づいて算出することを含み、前記第1方向側第1水準の一定磁場が発生されているときの第1−1の磁化値と、前記第1方向側第2水準の一定磁場が発生されているときの第2−1の磁化値と、前記第1方向側第3水準の一定磁場が発生されているときの第3−1の磁化値と、前記第1方向の磁場と、を用いて、前記計測領域の磁場を算出することである、磁場計測方法を構成しても良い。 Application Example 2 As a second invention, in the magnetic field measurement method according to the first invention, the calculation of the magnetic field in the measurement region includes a magnetization value indicating a component in the first direction of the magnetization vector of the medium. Is calculated based on the detection result of the photodetector, and the first magnetization value when the first direction side first level constant magnetic field is generated, and the first direction side The 2-1 magnetization value when a two-level constant magnetic field is generated, the 3-1 magnetization value when the first direction side third-level constant magnetic field is generated, and the first You may comprise the magnetic field measuring method which is calculating the magnetic field of the said measurement area | region using the magnetic field of one direction.
本適用例の磁場計測方法によれば、媒体の磁化ベクトルの第1方向(X方向)の成分を示す磁化値を、媒体の光学特性の検出結果に基づいて算出し、第1方向(X方向)の磁場として3つの水準の一定磁場それぞれが発生されているときの3つの磁化値と、第1方向(X方向)の磁場とを用いて、計測領域の磁場ベクトル(磁場の第1方向(X方向)成分と第2方向(Y方向)成分と第3方向(Z方向)成分と)を算出する。 According to the magnetic field measurement method of this application example, the magnetization value indicating the component in the first direction (X direction) of the magnetization vector of the medium is calculated based on the detection result of the optical characteristic of the medium, and the first direction (X direction) ) Magnetic field vectors (first direction of the magnetic field (first direction of the magnetic field)) using the three magnetization values when the three levels of constant magnetic fields are generated and the magnetic field in the first direction (X direction). X direction) component, second direction (Y direction) component, and third direction (Z direction) component).
[適用例3]第3の発明として、第2の発明の磁場計測方法であって、前記計測領域の磁場を算出することは、前記第1方向の磁場である前記第1方向側第i水準(i=1,2,3)の一定磁場と、前記第1方向の磁場が発生されているときの磁化値と、の組み合わせのそれぞれに下記数式1を適応させることである、磁場計測方法を構成しても良い。
本適用例の磁場計測方法によれば、第1方向(X方向)の磁場である3つの水準の一定磁場と、この一定磁場が発生されているときの磁化値との組み合わせそれぞれについて、各値を数式1に代入した3つの式からなる連立方程式を解くことで、三次元ベクトルである媒体の計測領域の磁場(Cx,Cy,Cz)を算出することができる。
According to the magnetic field measurement method of this application example, each value for each combination of the three levels of the constant magnetic field that is the magnetic field in the first direction (X direction) and the magnetization value when the constant magnetic field is generated. By solving the simultaneous equations consisting of three equations substituting into
[適用例4]第4の発明として、第1〜第3の何れかの磁場計測方法であって、前記第1方向側第1水準の一定磁場、前記第1方向側第2水準の一定磁場、及び、前記第1方向側第3水準の一定磁場のうち、少なくとも一つはゼロ磁場である、磁場計測方法を構成しても良い。 Application Example 4 As a fourth invention, any one of the first to third magnetic field measurement methods, wherein the first direction side first level constant magnetic field and the first direction side second level constant magnetic field are provided. In addition, a magnetic field measurement method may be configured in which at least one of the first direction side third level constant magnetic fields is a zero magnetic field.
[適用例5]第5の発明は、第1方向と第2方向と第3方向とは互いに直交し、光を射出する光源と、前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、前記光学特性を検出する光検出器と、前記第2方向の磁場を前記計測領域に印加する第2磁場発生器と、を備えた磁場計測装置が、前記計測領域の磁場を計測するための磁場計測方法であって、前記第2磁場発生器に、前記第2方向の磁場として、前記第2方向側第1水準の一定磁場、前記第2方向側第2水準の一定磁場、及び、前記第2方向側第3水準の一定磁場を発生させることと、前記光検出器の検出結果、及び、前記第2方向の磁場を用いて、前記計測領域の磁場を算出することと、を含む磁場計測方法である。 Application Example 5 In the fifth aspect of the invention, the first direction, the second direction, and the third direction are orthogonal to each other, and a light source that emits light, the light passes along the third direction, and a measurement region A magnetic field measurement apparatus comprising: a medium that changes an optical characteristic according to a magnetic field of the light; a photodetector that detects the optical characteristic; and a second magnetic field generator that applies a magnetic field in the second direction to the measurement region. Is a magnetic field measurement method for measuring a magnetic field in the measurement region, wherein the second magnetic field generator has a first level constant magnetic field as the second direction magnetic field, The measurement is performed using the direction-side second level constant magnetic field and the second direction-side third level constant magnetic field, the detection result of the photodetector, and the second direction magnetic field. Calculating a magnetic field in the region.
本適用例の磁場計測方法によれば、第3方向(Z方向)といった一方向のみへの光の照射によって、計測領域の磁場ベクトルを算出することができる。すなわち、一方向のみへの光の照射によって、計測領域の磁場の第1方向(X方向)成分と第2方向(Y方向)成分と第3方向(Z方向)成分とを算出することができる。具体的には、計測領域の磁場に応じて光の光学特性を変化させる媒体に対して、光の射出方向である第3方向(Z方向)と直交する第2方向(Y方向)の磁場として3つの水準の一定磁場を印加する。そして、光の光学特性の検出結果と、第2方向(Y方向)の磁場とを用いて、計測領域の磁場を算出する。 According to the magnetic field measurement method of this application example, the magnetic field vector in the measurement region can be calculated by irradiating light in only one direction such as the third direction (Z direction). That is, the first direction (X direction) component, the second direction (Y direction) component, and the third direction (Z direction) component of the magnetic field in the measurement region can be calculated by light irradiation in only one direction. . Specifically, as a magnetic field in the second direction (Y direction) orthogonal to the third direction (Z direction), which is the light emission direction, with respect to the medium that changes the optical characteristics of light according to the magnetic field in the measurement region. Apply three levels of constant magnetic field. And the magnetic field of a measurement area | region is calculated using the detection result of the optical characteristic of light, and the magnetic field of a 2nd direction (Y direction).
[適用例6]第6の発明として、第5の発明の磁場計測方法であって、前記計測領域の磁場を算出することは、前記媒体の磁化ベクトルの前記第1方向の成分を示す磁化値を前記光検出器の検出結果に基づいて算出することを含み、前記第2方向側第1水準の一定磁場が発生されているときの第1−1の磁化値と、前記第2方向側第2水準の一定磁場が発生されているときの第1−2の磁化値と、前記第2方向側第3水準の一定磁場が発生されているときの第1−3の磁化値と、前記第2方向の磁場と、を用いて、前記計測領域の磁場を算出することである、磁場計測方法を構成しても良い。 Application Example 6 As a sixth invention, in the magnetic field measurement method according to the fifth invention, the calculation of the magnetic field in the measurement region includes a magnetization value indicating a component in the first direction of the magnetization vector of the medium. Is calculated based on the detection result of the photodetector, the first direction magnetization value when the first direction constant magnetic field is generated in the second direction side, and the second direction side The first-second magnetization value when a two-level constant magnetic field is generated, the first-third magnetization value when the second-direction-side third-level constant magnetic field is generated, and the first You may comprise the magnetic field measuring method which is calculating the magnetic field of the said measurement area | region using the magnetic field of 2 directions.
本適用例の磁場計測方法によれば、媒体の磁化ベクトルの第1方向(X方向)の成分を示す磁化値を、媒体の光学特性の検出結果に基づいて算出し、第2方向(Y方向)の磁場として3つの水準の一定磁場それぞれが発生されているときの3つの磁化値と、第2方向(Y方向)の磁場とを用いて、計測領域の磁場ベクトル(磁場の第1方向(X方向)成分と第2方向(Y方向)成分と第3方向(Z方向)成分と)を算出する。 According to the magnetic field measurement method of this application example, the magnetization value indicating the component in the first direction (X direction) of the magnetization vector of the medium is calculated based on the detection result of the optical characteristic of the medium, and the second direction (Y direction) ) Magnetic field vectors (first direction of the magnetic field (first direction of the magnetic field)) using the three magnetization values when the three levels of constant magnetic fields are generated and the magnetic field in the second direction (Y direction). X direction) component, second direction (Y direction) component, and third direction (Z direction) component).
[適用例7]第7の発明として、第6の発明の磁場計測方法であって、前記計測領域の磁場を算出することは、前記第2方向の磁場である前記第2方向側第j水準(j=1,2,3)の一定磁場と、前記第2方向の磁場が発生されているときの磁化値と、の組み合わせのそれぞれに下記数式2を適応させることである、磁場計測方法を構成しても良い。
本適用例の磁場計測方法によれば、第2方向(Y方向)の磁場である3つの水準の一定磁場と、この一定磁場が発生されているときの磁化値との組み合わせそれぞれについて、各値を数式2に代入した3つの式からなる連立方程式を解くことで、三次元ベクトルである媒体の計測領域の磁場(Cx,Cy,Cz)を算出することができる。 According to the magnetic field measurement method of this application example, each value for each combination of the three levels of the constant magnetic field that is the magnetic field in the second direction (Y direction) and the magnetization value when the constant magnetic field is generated. By solving a simultaneous equation consisting of three equations obtained by substituting into the equation 2, the magnetic field (C x , C y , C z ) in the measurement region of the medium, which is a three-dimensional vector, can be calculated.
[適用例8]第8の発明として、第5〜第7の何れかの磁場計測方法であって、前記第2方向側第1水準の一定磁場、前記第2方向側第2水準の一定磁場、及び、前記第2方向側第3水準の一定磁場のうち、少なくとも一つはゼロ磁場である、磁場計測方法を構成しても良い。 Application Example 8 As the eighth invention, any one of the fifth to seventh magnetic field measurement methods, wherein the second direction side first level constant magnetic field and the second direction side second level constant magnetic field are provided. In addition, a magnetic field measurement method may be configured in which at least one of the second direction side third level constant magnetic fields is a zero magnetic field.
[適用例9]第9の発明は、第1方向と第2方向と第3方向とは互いに直交し、光を射出する光源と、前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、前記光学特性を検出する光検出器と、前記第1方向の磁場を前記計測領域に印加する第1磁場発生器と、前記第2方向の磁場を前記計測領域に印加する第2磁場発生器と、を備えた磁場計測装置が、前記計測領域の磁場を計測するための磁場計測方法であって、前記第1磁場発生器に、前記第1方向の磁場として、前記第1方向側第1水準の一定磁場、及び、前記第1方向側第2水準の一定磁場、を発生させることと、前記第2磁場発生器に、前記第2方向の磁場として、前記第2方向側第1水準の一定磁場、及び、前記第2方向側第2水準の一定磁場、を発生させることと、前記光検出器の検出結果、前記第1方向の磁場、及び、前記第2方向の磁場を用いて、前記計測領域の磁場を算出することと、を含む磁場計測方法である。 Application Example 9 In a ninth invention, a first direction, a second direction, and a third direction are orthogonal to each other, a light source that emits light, the light passes along the third direction, and a measurement region A medium that changes the optical characteristics in accordance with the magnetic field, a photodetector that detects the optical characteristics, a first magnetic field generator that applies the magnetic field in the first direction to the measurement region, and a magnetic field in the second direction Is a magnetic field measurement method for measuring a magnetic field in the measurement region, wherein the first magnetic field generator includes the first magnetic field generator. Generating a first level constant magnetic field in the first direction side and a second level constant magnetic field in the first direction side as the direction magnetic field, and causing the second magnetic field generator to As the magnetic field, the second direction side first level constant magnetic field and the second direction side second level Generating a constant magnetic field; and calculating a magnetic field in the measurement region using the detection result of the photodetector, the magnetic field in the first direction, and the magnetic field in the second direction. This is a measurement method.
本適用例の磁場計測方法によれば、第3方向(Z方向)といった一方向のみへの光の照射によって、計測領域の磁場ベクトルを算出することができる。具体的には、計測領域の磁場に応じて光の光学特性を変化させる媒体に対して、光の射出方向である第3方向(Z方向)と直交する第1方向(X方向)の磁場として2つの水準の一定磁場を印加し、第3方向(Z方向)及び第1方向(X方向)と直交する第2方向(Y方向)の磁場として2つの水準の一定磁場を印加する。そして、光の光学特性の検出結果と、第1方向(X方向)の磁場と、第2方向(Y方向)の磁場を用いて、計測領域の磁場を算出する。 According to the magnetic field measurement method of this application example, the magnetic field vector in the measurement region can be calculated by irradiating light in only one direction such as the third direction (Z direction). Specifically, as a magnetic field in a first direction (X direction) orthogonal to the third direction (Z direction), which is the light emission direction, with respect to a medium that changes the optical characteristics of light according to the magnetic field in the measurement region. Two levels of constant magnetic fields are applied, and two levels of constant magnetic fields are applied as magnetic fields in the third direction (Z direction) and the second direction (Y direction) orthogonal to the first direction (X direction). And the magnetic field of a measurement area | region is calculated using the detection result of the optical characteristic of light, the magnetic field of a 1st direction (X direction), and the magnetic field of a 2nd direction (Y direction).
[適用例10]第10の発明として、第9の発明の磁場計測方法であって、前記計測領域の磁場を算出することは、前記媒体の磁化ベクトルの前記第1方向の成分を示す磁化値を前記光検出器の検出結果に基づいて算出することを含み、1)前記第1方向側第1水準の一定磁場、及び、前記第2方向側第1水準の一定磁場が発生されているときの第1−1の磁化値と、前記第1方向側第1水準の一定磁場、及び、前記第2方向側第2水準の一定磁場が発生されているときの第1−2の磁化値と、前記第1方向側第2水準の一定磁場、及び、前記第2方向側第1水準の一定磁場が発生されているときの第2−1の磁化値と、前記第1方向側第2水準の一定磁場、及び、前記第2方向側第2水準の一定磁場が発生されているときの第2−2の磁化値と、のうちの3つ以上の磁化値と、2)前記第1方向の磁場と、3)前記第2方向の磁場と、を用いて、前記計測領域の磁場を算出することである、磁場計測方法を構成しても良い。 Application Example 10 As a tenth aspect of the invention, in the magnetic field measurement method according to the ninth aspect of the invention, calculating the magnetic field in the measurement region is a magnetization value indicating a component in the first direction of the magnetization vector of the medium. 1) when a constant magnetic field of the first level side first level and a constant magnetic field of the second direction side first level are generated. 1-1, the first magnetization value of the first direction side, and the first magnetization value of the second direction when the second direction side second level constant magnetic field is generated. , The first direction side second level constant magnetic field, the 2-1 magnetization value when the second direction side first level constant magnetic field is generated, and the first direction side second level. And the 2-2 magnetization when the second direction side second level constant magnetic field is generated. A magnetic field in the measurement region by using three or more magnetization values, 2) the magnetic field in the first direction, and 3) the magnetic field in the second direction. A measurement method may be configured.
本適用例の磁場計測方法によれば、媒体の磁化ベクトルの第1方向(X方向)の成分を示す磁化値を、媒体の光学特性の検出結果に基づいて算出し、第1方向(X方向)の磁場である2つの水準の一定磁場、及び、第2方向(Y方向)の磁場である2つの水準の一定磁場それぞれが発生されているときの4つの磁化値のうちの3つ以上の磁化値と、第1方向(X方向)の磁場と、第2方向(Y方向)の磁場とを用いて、計測領域の磁場を算出する。 According to the magnetic field measurement method of this application example, the magnetization value indicating the component in the first direction (X direction) of the magnetization vector of the medium is calculated based on the detection result of the optical characteristic of the medium, and the first direction (X direction) 3) or more of the four magnetization values when the two levels of the constant magnetic field and the two levels of the constant magnetic field in the second direction (Y direction) are respectively generated. The magnetic field in the measurement region is calculated using the magnetization value, the magnetic field in the first direction (X direction), and the magnetic field in the second direction (Y direction).
[適用例11]第11の発明として、第10の発明の磁場計測方法であって、前記計測領域の磁場を算出することは、前記第1方向の磁場である前記第1方向側第i水準(i=1,2)の一定磁場と、前記第2方向の磁場である前記第2方向側第j水準(j=1,2)の一定磁場と、前記第1方向の磁場及び前記第2方向の磁場が発生されているときの磁化値と、の組み合わせそれぞれが、下記数式3を満たすことに基づいて、前記計測領域の磁場を算出することである、磁場計測方法を構成しても良い。
本適用例の磁場計測方法によれば、第1方向(X方向)の磁場であるX側第i水準の一定磁場と、第2方向(Y方向)の磁場であるY側第j水準の一定磁場と、この第1方向(X方向)の磁場及び第2方向(Y方向)の磁場が発生されているときの磁化値との組み合わせそれぞれについて、各値を数式3に代入した4つの式からなる連立方程式を解くことで、三次元ベクトルである媒体の計測領域の磁場(Cx,Cy,Cz)を算出することができる。 According to the magnetic field measurement method of this application example, the X-side i-level constant magnetic field that is the magnetic field in the first direction (X direction) and the Y-side j-level constant that is the magnetic field in the second direction (Y direction). For each combination of the magnetic field and the magnetization value when the magnetic field in the first direction (X direction) and the magnetic field in the second direction (Y direction) are generated, By solving the simultaneous equations, the magnetic field (C x , C y , C z ) in the measurement region of the medium, which is a three-dimensional vector, can be calculated.
[適用例12]第12の発明として、第9〜第11の何れかの発明の磁場計測方法であって、前記第1方向側第1水準の一定磁場、及び、前記第1方向側第2水準の一定磁場の一方はゼロ磁場であるとともに、前記第2方向側第1水準の一定磁場、及び、前記第2方向側第2水準の一定磁場の一方はゼロ磁場である、磁場計測方法を構成しても良い。 Application Example 12 As a twelfth invention, there is provided a magnetic field measurement method according to any one of the ninth to eleventh inventions, wherein the first direction side first level constant magnetic field and the first direction side second. One of the constant magnetic fields of the level is a zero magnetic field, and one of the constant magnetic fields of the second direction side first level and the constant magnetic field of the second direction side second level is a zero magnetic field. It may be configured.
[適用例13]第13の発明は、第1方向と第2方向と第3方向とは互いに直交し、光を射出する光源と、前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、前記光学特性を検出する光検出器と、前記第1方向の磁場を前記計測領域に印加する第1磁場発生器と、前記第2方向の磁場を前記媒体に印加する第2磁場発生器と、前記第3方向の磁場を前記媒体に印加する第3磁場発生器と、を備えた磁場計測装置が、前記計測領域の磁場を計測するための磁場計測方法であって、前記第1磁場発生器に、前記第1方向の磁場として、第1方向側第1水準の一定磁場を発生させることと、前記光検出器の検出結果、及び、前記第1方向の磁場を用いて、前記計測領域の磁場を原磁場として算出する第一工程と、前記計測領域に測定対象物を配置する第二工程と、前記計測領域に形成したい磁場であるターゲット磁場と前記原磁場との差分の磁場を、前記第1磁場発生器と前記第2磁場発生器と前記第3磁場発生器とに発生させる第三工程と、前記第三工程を行っており前記第二工程が終了している期間に前記光検出器の検出結果を用いて、前記測定対象物が発生した磁場を測定する第四工程と、を含む磁場計測方法である。 Application Example 13 In a thirteenth aspect of the invention, the first direction, the second direction, and the third direction are orthogonal to each other, a light source that emits light, the light passes along the third direction, and a measurement region A medium that changes the optical characteristics in accordance with the magnetic field, a photodetector that detects the optical characteristics, a first magnetic field generator that applies the magnetic field in the first direction to the measurement region, and a magnetic field in the second direction For measuring a magnetic field in the measurement region, comprising: a second magnetic field generator that applies a magnetic field to the medium; and a third magnetic field generator that applies a magnetic field in the third direction to the medium. A magnetic field measurement method, wherein the first magnetic field generator is caused to generate a first magnetic field in a first direction as a magnetic field in the first direction, a detection result of the photodetector, and First calculating the magnetic field of the measurement region as an original magnetic field using the magnetic field in the first direction The second step of arranging the measurement object in the measurement region, the difference magnetic field between the target magnetic field and the original magnetic field to be formed in the measurement region, the first magnetic field generator and the second magnetic field A third step for generating the magnetic field generator and the third magnetic field generator, and using the detection result of the photodetector during a period when the third step is performed and the second step is completed, And a fourth step of measuring the magnetic field generated by the measurement object.
本適用例の磁場計測方法によれば、計測領域を所定のターゲット磁場とした状態において、測定対象物が発生した磁場を測定することができる。例えば、外部から計測領域に漏れ入っている原磁場を相殺すべく、ターゲット磁場をゼロ磁場とすれば、測定対象物が発生する磁場を正確に計測することができる。 According to the magnetic field measurement method of this application example, the magnetic field generated by the measurement object can be measured in a state where the measurement region is a predetermined target magnetic field. For example, if the target magnetic field is set to a zero magnetic field so as to cancel out the original magnetic field leaking into the measurement region from the outside, the magnetic field generated by the measurement object can be accurately measured.
[適用例14]第14の発明は、第1方向と第2方向と第3方向とは互いに直交し、光を射出する光源と、前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、前記光学特性を検出する光検出器と、前記第1方向の磁場を前記媒体に印加する第1磁場発生器と、前記第2方向の磁場を前記媒体に印加する第2磁場発生器と、記第3方向の磁場を前記媒体に印加する第3磁場発生器と、を備えた磁場計測装置が、前記計測領域の磁場を計測するための磁場計測方法であって、前記第1磁場発生器に、前記第1方向の磁場として、第1方向側第1水準の一定磁場を発生させることと、前記光検出器の検出結果、及び、前記第1方向の磁場を用いて、前記計測領域の磁場を原磁場として算出する第一工程と、前記計測領域に測定対象物を配置する第二工程と、前記計測領域に形成したい磁場であるターゲット磁場と前記原磁場との差分の磁場の第1方向の成分を、前記第1方向側第1水準の一定磁場に加えた一定磁場を前記第1磁場発生器に発生させ、前記差分の磁場の第2方向の成分の磁場を前記第2磁場発生器に発生させ、前記差分の磁場の第3方向の成分の磁場を前記第3磁場発生器に発生させる第三工程と、前記第三工程を行っており前記第二工程が終了している期間に前記光検出器の検出結果と第1方向側第4水準の一定磁場を用いて、前記測定対象物が発生した磁場を測定する第四工程と、を含む磁場計測方法である。 Application Example 14 In the fourteenth aspect of the invention, the first direction, the second direction, and the third direction are orthogonal to each other, and a light source that emits light, the light passes along the third direction, and a measurement region A medium that changes an optical characteristic in accordance with a magnetic field, a photodetector that detects the optical characteristic, a first magnetic field generator that applies a magnetic field in the first direction to the medium, and a magnetic field in the second direction. A magnetic field measuring device comprising: a second magnetic field generator that applies to the medium; and a third magnetic field generator that applies a magnetic field in the third direction to the medium. In the measurement method, the first magnetic field generator is configured to generate a first magnetic field in a first direction as a magnetic field in the first direction, a detection result of the photodetector, and the first A first step of calculating a magnetic field in the measurement region as an original magnetic field using a magnetic field in one direction; A second step of placing a measurement object in the measurement region, and a first direction component of a magnetic field that is a difference between a target magnetic field and a source magnetic field that is a magnetic field that is desired to be formed in the measurement region. A constant magnetic field added to a constant level magnetic field is generated in the first magnetic field generator, a magnetic field of a second direction component of the differential magnetic field is generated in the second magnetic field generator, and a third magnetic field of the differential magnetic field is generated. A third step of causing the third magnetic field generator to generate a magnetic field having a directional component; and a detection result of the photodetector and a first direction during a period when the third step is performed and the second step is completed. And a fourth step of measuring the magnetic field generated by the measurement object using a constant fourth level magnetic field.
本適用例の磁場計測方法によれば、計測領域を所定のターゲット磁場とした状態において、測定対象物が発生した磁場を測定することができる。例えば、外部から計測領域に漏れ入っている原磁場を相殺すべく、ターゲット磁場をゼロ磁場とすれば、測定対象物が発生する磁場をベクトル量として正確に計測することができる。 According to the magnetic field measurement method of this application example, the magnetic field generated by the measurement object can be measured in a state where the measurement region is a predetermined target magnetic field. For example, if the target magnetic field is set to zero in order to cancel out the original magnetic field leaking into the measurement region from the outside, the magnetic field generated by the measurement object can be accurately measured as a vector quantity.
[適用例15]第15の発明は、第1方向と第2方向と第3方向とは互いに直交し、光を射出する光源と、前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、前記光学特性を検出する光検出器と、前記第1方向の磁場を前記計測領域に印加する第1磁場発生器と、前記第1磁場発生器に、前記第1方向の磁場として、前記第1方向側第1水準の一定磁場、前記第1方向側第2水準の一定磁場、及び、前記第1方向側第3水準の一定磁場を発生させることと、前記光検出器の検出結果、及び、前記第1方向の磁場を用いて、前記計測領域の磁場を算出することと、を実行する演算制御部と、を備えた磁場計測装置である。 Application Example 15 According to a fifteenth aspect, the first direction, the second direction, and the third direction are orthogonal to each other, a light source that emits light, the light passes along the third direction, and a measurement region A medium that changes an optical characteristic in accordance with a magnetic field, a photodetector that detects the optical characteristic, a first magnetic field generator that applies a magnetic field in the first direction to the measurement region, and the first magnetic field generator In addition, as the first direction magnetic field, the first direction side first level constant magnetic field, the first direction side second level constant magnetic field, and the first direction side third level constant magnetic field are generated. And a calculation control unit that executes calculation of the magnetic field in the measurement region using the detection result of the photodetector and the magnetic field in the first direction. .
本適用例の磁場計測装置によれば、第3方向(Z方向)といった一方向のみへの光の照射によって、計測領域の磁場ベクトルを算出することができる。すなわち、一方向のみへの光の照射によって、計測領域の磁場の第1方向(X方向)成分と第2方向(Y方向)成分と第3方向(Z方向)成分とを算出することができる。具体的には、計測領域の磁場に応じて光の光学特性を変化させる媒体に対して、光の射出方向である第3方向(Z方向)と直交する第1方向(X方向)の磁場として3つの水準の一定磁場を印加する。そして、光の光学特性の検出結果と、第1方向(X方向)の磁場とを用いて、計測領域の磁場を算出する。 According to the magnetic field measurement apparatus of this application example, the magnetic field vector of the measurement region can be calculated by irradiating light in only one direction such as the third direction (Z direction). That is, the first direction (X direction) component, the second direction (Y direction) component, and the third direction (Z direction) component of the magnetic field in the measurement region can be calculated by light irradiation in only one direction. . Specifically, as a magnetic field in a first direction (X direction) orthogonal to the third direction (Z direction), which is the light emission direction, with respect to a medium that changes the optical characteristics of light according to the magnetic field in the measurement region. Apply three levels of constant magnetic field. And the magnetic field of a measurement area | region is calculated using the detection result of the optical characteristic of light, and the magnetic field of a 1st direction (X direction).
[適用例16]第16の発明は、第1方向と第2方向と第3方向とは互いに直交し、光を射出する光源と、前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、前記光学特性を検出する光検出器と、前記第2方向の磁場を前記計測領域に印加する第2磁場発生器と、前記第2磁場発生器に、前記第2方向の磁場として、前記第2方向側第1水準の一定磁場、前記第2方向側第2水準の一定磁場、及び、前記第2方向側第3水準の一定磁場を発生させることと、前記光検出器の検出結果、及び、前記第2方向の磁場を用いて、前記計測領域の磁場を算出することと、を実行する演算制御部と、を備えた磁場計測装置である。 Application Example 16 According to a sixteenth aspect, the first direction, the second direction, and the third direction are orthogonal to each other, a light source that emits light, the light passes along the third direction, and a measurement region A medium that changes an optical characteristic in accordance with a magnetic field, a photodetector that detects the optical characteristic, a second magnetic field generator that applies a magnetic field in the second direction to the measurement region, and the second magnetic field generator In addition, the second direction side first level constant magnetic field, the second direction side second level constant magnetic field, and the second direction side third level constant magnetic field are generated as the second direction magnetic field. And a calculation control unit that executes calculation of the magnetic field in the measurement region using the detection result of the photodetector and the magnetic field in the second direction. .
本適用例の磁場計測装置によれば、第3方向(Z方向)といった一方向のみへの光の照射によって、計測領域の磁場ベクトルを算出することができる。すなわち、一方向のみへの光の照射によって、計測領域の磁場の第1方向(X方向)成分と第2方向(Y方向)成分と第3方向(Z方向)成分とを算出することができる。具体的には、計測領域の磁場に応じて光の光学特性を変化させる媒体に対して、光の射出方向である第3方向(Z方向)と直交する第2方向(Y方向)の磁場として3つの水準の一定磁場を印加する。そして、光の光学特性の検出結果と、第2方向(Y方向)の磁場とを用いて、計測領域の磁場を算出する。 According to the magnetic field measurement apparatus of this application example, the magnetic field vector of the measurement region can be calculated by irradiating light in only one direction such as the third direction (Z direction). That is, the first direction (X direction) component, the second direction (Y direction) component, and the third direction (Z direction) component of the magnetic field in the measurement region can be calculated by light irradiation in only one direction. . Specifically, as a magnetic field in the second direction (Y direction) orthogonal to the third direction (Z direction), which is the light emission direction, with respect to the medium that changes the optical characteristics of light according to the magnetic field in the measurement region. Apply three levels of constant magnetic field. And the magnetic field of a measurement area | region is calculated using the detection result of the optical characteristic of light, and the magnetic field of a 2nd direction (Y direction).
[適用例17]第17の発明は、第1方向と第2方向と第3方向とは互いに直交し、光を射出する光源と、前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、前記光学特性を検出する光検出器と、前記第1方向の磁場を前記計測領域に印加する第1磁場発生器と、前記第2方向の磁場を前記計測領域に印加する第2磁場発生器と、前記第1磁場発生器に、前記第1方向の磁場として、前記第1方向側第1水準の一定磁場、及び、前記第1方向側第2水準の一定磁場、を発生させることと、前記第2磁場発生器に、前記第2方向の磁場として、前記第2方向側第1水準の一定磁場、及び、前記第2方向側第2水準の一定磁場、を発生させることと、前記光検出器の検出結果、前記第1方向の磁場、及び、前記第2方向の磁場を用いて、前記計測領域の磁場を算出することと、を実行する演算制御部と、を備えた磁場計測装置である。 Application Example 17 In a seventeenth aspect, the first direction, the second direction, and the third direction are orthogonal to each other, the light source that emits light, the light passes along the third direction, and the measurement region A medium that changes the optical characteristics in accordance with the magnetic field, a photodetector that detects the optical characteristics, a first magnetic field generator that applies the magnetic field in the first direction to the measurement region, and a magnetic field in the second direction Is applied to the measurement region, and the first magnetic field generator has a first magnetic field in the first direction as a magnetic field in the first direction, and a first magnetic field in the first direction. Generating a constant magnetic field of two levels, and causing the second magnetic field generator to generate a magnetic field in the second direction as a magnetic field in the second direction, the first level constant magnetic field, and the second direction side second level. Generating a constant magnetic field, and a detection result of the photodetector, a magnetic field in the first direction, and , Using a magnetic field of the second direction, a magnetic field measurement apparatus comprising: a calculation control unit, the to perform, and calculating the magnetic field of the measuring region.
本適用例の磁場計測装置によれば第3方向(Z方向)といった一方向のみへの光の照射によって、計測領域の磁場ベクトルを算出することができる。具体的には、計測領域の磁場に応じて光の光学特性を変化させる媒体に対して、光の射出方向である第3方向(Z方向)と直交する第1方向(X方向)の磁場として2つの水準の一定磁場を印加し、第3方向(Z方向)及び第1方向(X方向)と直交する第2方向(Y方向)の磁場として2つの水準の一定磁場を印加する。そして、光の光学特性の検出結果と、第1方向(X方向)の磁場と、第2方向(Y方向)の磁場を用いて、計測領域の磁場を算出する。 According to the magnetic field measurement apparatus of this application example, the magnetic field vector in the measurement region can be calculated by irradiating light in only one direction such as the third direction (Z direction). Specifically, as a magnetic field in a first direction (X direction) orthogonal to the third direction (Z direction), which is the light emission direction, with respect to a medium that changes the optical characteristics of light according to the magnetic field in the measurement region. Two levels of constant magnetic fields are applied, and two levels of constant magnetic fields are applied as magnetic fields in the third direction (Z direction) and the second direction (Y direction) orthogonal to the first direction (X direction). And the magnetic field of a measurement area | region is calculated using the detection result of the optical characteristic of light, the magnetic field of a 1st direction (X direction), and the magnetic field of a 2nd direction (Y direction).
以下、実施形態について図面に従って説明する。
なお、各図面における各部材は、各図面上で認識可能な程度の大きさとするため、各部材毎に縮尺を異ならせて図示している。
Hereinafter, embodiments will be described with reference to the drawings.
In addition, in order to make each member in each drawing into a size that can be recognized on each drawing, the members are illustrated with different scales.
[磁場計測装置の構成]
まず、本実施形態に係る磁場計測装置の構成例を説明する。図1は、本実施形態に係る磁場計測装置の構成の一例を示す概略側面図である。図2は、本実施形態に係る磁場発生器の構成を説明する図であり、具体的には、Y方向から見た図である。図3は、本実施形態に係る磁場発生器の構成を説明する図であり、具体的には、X方向から見た図である。図4は、本実施形態に係る磁場発生器の構成を説明する図であり、具体的には、Z方向から見た図である。図5は、本実施形態に係る磁気センサーの構成を説明する模式図であり、具体的には、Y方向から見た平面図である。図6は、本実施形態に係る磁気センサーの構成を説明する模式図であり、具体的には、Y方向から見た側面図である。図7は、本実施形態に係る演算制御部の機能構成図である。
[Configuration of magnetic field measurement device]
First, a configuration example of the magnetic field measurement apparatus according to this embodiment will be described. FIG. 1 is a schematic side view showing an example of the configuration of the magnetic field measurement apparatus according to the present embodiment. FIG. 2 is a diagram illustrating the configuration of the magnetic field generator according to the present embodiment, and specifically, is a diagram viewed from the Y direction. FIG. 3 is a diagram illustrating the configuration of the magnetic field generator according to the present embodiment, and specifically, is a diagram viewed from the X direction. FIG. 4 is a diagram illustrating the configuration of the magnetic field generator according to the present embodiment, and specifically, is a diagram viewed from the Z direction. FIG. 5 is a schematic diagram for explaining the configuration of the magnetic sensor according to the present embodiment, specifically, a plan view seen from the Y direction. FIG. 6 is a schematic diagram illustrating the configuration of the magnetic sensor according to the present embodiment, and specifically, is a side view seen from the Y direction. FIG. 7 is a functional configuration diagram of the arithmetic control unit according to the present embodiment.
図1に示す磁場計測装置1は、計測対象物が発生する磁場をベクトル量として計測する計測装置である。なお、計測対象物が発生する磁場に関する一部の情報(例えば、その一成分や大きさ、有無など)を計測する装置は磁気計測装置と称するものとする。本実施形態では、計測対象物を人体(被検体)とし、計測対象物が発する磁場を心磁(心臓の電気生理学的な活動から発生する磁場)や脳磁とする。ここでは、磁場計測装置1が心磁をベクトル量として計測する計測装置である場合を例に説明する。
A magnetic
磁場計測装置1は、光ポンピング法を用いて磁場を計測する装置であり、ポンプ光とプローブ光とを兼用する、いわゆるワンビーム方式である。なお、ワンビーム方式のものに限らず、ポンプ光を照射するための光源とプローブ光を照射するための光源とを分離した、いわゆるツービーム方式の構成としてもよい。図1に示すように、磁場計測装置1は、土台3と、テーブル4と、磁気シールド装置6と、磁場発生器8と、磁気センサー10と、演算制御部30(図7参照)とを備えている。
The magnetic
図6に示す磁気センサー10において、光源18から射出されるレーザー光(照射光ともいう)18aがガスセル12を通過する方向(照射方向)を第3方向(本実施形態ではZ方向)とする。照射光の直線偏光成分の振動方向を第2方向(本実施形態ではY方向)とする。第2方向(Y方向)及び第3方向(Z方向)と直交する方向を第1方向(本実施形態ではX方向)とする。そして、第1方向(X方向)、第2方向(Y方向)、第3方向(Z方向)を直交座標系の軸方向とし、以下ではそれぞれX軸方向、Y軸方向、Z軸方向と呼称する。
In the
図1において、Z軸方向は鉛直方向であり、磁場計測装置1の高さ方向(図1における上下方向)である。X軸方向及びY軸方向は水平方向であり、土台3、テーブル4の上面が延在する方向である。横たわった状態の被検体9の身長方向(図1における左右方向)はX軸方向に沿っているものとする。従って、被検体9の身長方向と交差する方向(図1における奥から手前に向かう方向)がY軸方向である。
In FIG. 1, the Z-axis direction is a vertical direction, which is the height direction of the magnetic field measuring apparatus 1 (up and down direction in FIG. 1). The X-axis direction and the Y-axis direction are horizontal directions, and are the directions in which the
土台3は磁気シールド装置6(本体部6a)の内側の底面上に配置され、本体部6aの外側まで、被検体9の移動可能方向であるX軸方向に沿って延在している。テーブル4は、第1テーブル4aと、第2テーブル4bと、第3テーブル4cとを有している。土台3上には、直動機構3aによりX軸方向に沿って移動する第1テーブル4aが設置されている。第1テーブル4aの上には、図示しない昇降装置によりZ軸方向に沿って昇降する第2テーブル4bが設置されている。第2テーブル4bの上には、図示しない直動機構によりレール上をY軸方向に沿って移動する第3テーブル4cが設置されている。
The
磁気シールド装置6は、開口部6bを有する角筒状の本体部6aを備えている。本体部6aの内部は空洞となっており、Y軸方向及びZ軸方向で構成される面(Y−Z断面でX軸方向に直交した平面)の断面形状は概ね四角形になっている。心磁を計測する際は、本体部6aの内部に被検体9がテーブル4上に横たわった状態で収容される。本体部6aはX軸方向に延在しており、これ自体でパッシブ磁気シールドとして機能する。
The
本体部6aの開口部6bから+X方向に土台3が突出している。磁気シールド装置6の大きさは、例えば、X軸方向における長さが約200cm程度であり、開口部6bの一辺が90cm程度である。そして、開口部6bから、磁気シールド装置6内に、テーブル4に横たわった被検体9がテーブル4と共に土台3上をX軸方向に沿って移動して出入することができる。
The
磁気シールド装置6の本体部6aは、比透磁率が例えば数千以上の強磁性体、または、高伝導率の導体によって形成される。強磁性体にはパーマロイ、フェライト、または鉄、クロムもしくはコバルト系のアモルファス等を用いることができる。高伝導率の導体には、例えば、アルミニウム等で、渦電流効果によって磁場低減効果を有するものを用いることができる。なお、強磁性体と高伝導率の導体とを交互に積層して本体部6aを形成することも可能である。
The
本体部6aの内部には、磁場発生器8が設置されている。磁場発生器8は、3軸ヘルムホルツコイルで構成され、計測領域5に対して、X軸、Y軸及びZ軸の各軸方向に所定磁場を発生させることができる。つまり、磁場発生器8は、少なくとも、X軸方向の磁場を発生させる第1磁場発生器8Xと、Y軸方向の磁場を発生させる第2磁場発生器8Yとを含み、さらに、Z軸方向の磁場を発生させる第3磁場発生器8Zを含むことが好ましい。
A
本実施形態では、磁場発生器8は、第1磁場発生器(X軸方向に沿って対向する一対のヘルムホルツコイル)8Xと、第2磁場発生器(Y軸方向に沿って対向する一対のヘルムホルツコイル)8Yと、第3磁場発生器(Z軸方向に沿って対向する一対のヘルムホルツコイル)8Zとを含んでいる。磁気シールド装置6の本体部6a内の、磁場計測装置1が心磁を計測する対象となる領域が計測領域5である。被検体9における計測位置である胸部9aと磁気センサー10とは、計測領域5内に配置される。
In the present embodiment, the
図2、図3、及び図4に示すように、磁場発生器8が含むヘルムホルツコイル8X、ヘルムホルツコイル8Y、及びヘルムホルツコイル8Zの直径は、計測領域5の径よりも大きい。すなわち、計測領域5は、第1磁場発生器8Xと第2磁場発生器8Yと第3磁場発生器8Zとで囲まれた領域に内包される。これらヘルムホルツコイル8X,8Y,8Zの中心と、計測領域5の中心と、磁気センサー10の中心とがほぼ一致することが好ましい。このようにすれば、計測領域5において、三次元ベクトルである磁場を精度良く計測することができる。
As shown in FIGS. 2, 3, and 4, the diameters of the
また、対向する一対のヘルムホルツコイル同士の間の距離は、他のヘルムホルツコイルの径よりも大きいことが好ましい。例えば、図2、図3、及び図4に示すように、対向する一対のヘルムホルツコイル8X同士の間の距離がヘルムホルツコイル8Y及びヘルムホルツコイル8Zの径よりも大きいことが好ましい。このようにすれば、一対のヘルムホルツコイル8Y(または8Z)により、Y軸(またはZ軸)に沿って平行で均一な磁場を発生させることができる。同様に、一対のヘルムホルツコイル8Y(または8Z)同士の間の距離も、他のヘルムホルツコイルの径よりも大きいことが好ましい。
Moreover, it is preferable that the distance between a pair of opposing Helmholtz coils is larger than the diameter of other Helmholtz coils. For example, as shown in FIGS. 2, 3, and 4, it is preferable that the distance between a pair of opposing
図2、図3、及び図4において、仮に一対のヘルムホルツコイル8X同士の間の距離(例えば図2の場合、左側のヘルムホルツコイル8Xと右側のヘルムホルツコイル8XとのX軸に沿った距離)が他のヘルムホルツコイル8Y及びヘルムホルツコイル8Zの径よりも小さいとする。この場合、一対のヘルムホルツコイル8Y(または8Z)を底面とする円柱状の領域の内側にヘルムホルツコイル8Xが入り込むこととなる。そうすると、一対のヘルムホルツコイル8Y(または8Z)により形成される磁場に歪みが生じてしまい、計測領域5付近においてY軸(またはZ軸)に沿って平行で均一な磁場を発生させることが困難となる。
2, 3, and 4, a distance between a pair of
これに対して、一対のヘルムホルツコイル8X同士の間の距離が他のヘルムホルツコイル8Y及びヘルムホルツコイル8Zの径よりも大きい場合、一対のヘルムホルツコイル8Y(または8Z)を底面とする円柱状の領域の外側にヘルムホルツコイル8Xが配置されることとなる。そうすると、ヘルムホルツコイル8Xにより、一対のヘルムホルツコイル8Y(または8Z)により形成される磁場の歪みが抑制され、計測領域5付近においてY軸(またはZ軸)に沿って平行で均一な磁場を発生させることが可能となる。
On the other hand, when the distance between the pair of
このように、一対のヘルムホルツコイル8Xを底面とする円柱状の領域の外側に、一対のヘルムホルツコイル8Yと一対のヘルムホルツコイル8Zとが配置されることが好ましい。そして、一対のヘルムホルツコイル8Yを底面とする円柱状の領域の外側に一対のヘルムホルツコイル8Zと一対のヘルムホルツコイル8Xとが配置され、一対のヘルムホルツコイル8Zを底面とする円柱状の領域の外側に一対のヘルムホルツコイル8Xと一対のヘルムホルツコイル8Yとが配置されることが好ましい。
As described above, it is preferable that the pair of
なお、本実施形態ではヘルムホルツコイルの形状を円形として説明しているが、ヘルムホルツコイルの形状は円形に限定されず、四角形などの多角形であっても構わない。ヘルムホルツコイルの形状が多角形である場合、一対のヘルムホルツコイルを底面とする角柱状の領域外に、その角柱の高さ方向と直交する他のヘルムホルツコイルが配置されることになる。 In this embodiment, the Helmholtz coil is described as having a circular shape, but the Helmholtz coil is not limited to a circular shape, and may be a polygon such as a quadrangle. When the shape of the Helmholtz coil is a polygon, another Helmholtz coil perpendicular to the height direction of the prism is disposed outside the prismatic region having the pair of Helmholtz coils as the bottom surface.
磁気センサー10は、本体部6aの天井に支持部材7を介して固定されている。磁気センサー10は、計測領域5のZ軸方向における磁場の強度成分を計測する。磁気センサー10は、光ポンピング法を用いて磁場を計測する。被検体9の心磁を計測する際は、被検体9における計測位置である胸部9aが磁気センサー10と対向する位置になるように第1テーブル4a及び第3テーブル4cを移動させ、胸部9aが磁気センサー10に接近するように第2テーブル4bを上昇させる。
The
光ポンピング式の磁気センサー10を用いた微弱磁場の計測では、ガスセル12が配置された計測領域5に存在する、例えば地磁気や都市ノイズ等の環境により外部から流入する磁場(原磁場)を打ち消すことが好ましい。原磁場が存在すると、その影響を受けて、計測対象物(被検体9)が発生した磁場に対する感度の低下や、計測精度の低下を招くためである。本実施形態では、磁気シールド装置6により外部から計測領域5への磁場の流入が抑制されている。そして、本体部6aの内部に配置された磁場発生器8により計測領域5付近をゼロ磁場に近い低磁場に保つことができる。
In the measurement of a weak magnetic field using the optical pumping type
図5に示すように、磁気センサー10は、光源18と、ガスセル12と、光検出器14,15とを有する。光源18は、セシウムの吸収線に応じた波長のレーザー光18aを出力する。レーザー光18aの波長は特に限定されないが、本実施形態では、例えば、D1線に相当する894nmの波長に設定している。光源18はチューナブルレーザーであり、光源18から出力されるレーザー光18aは一定の光量を有する連続光である。
As shown in FIG. 5, the
本実施形態では、光源18は、演算制御部30に設置されている。光源18から発せられたレーザー光18aは、光ファイバー19を通って磁気センサー10の本体に供給される。磁気センサー10の本体と光ファイバー19とは、光コネクター20を介して接続されている。光コネクター20を介して供給されたレーザー光18aは、−Y方向に進行して偏光板21に入射する。偏光板21を通過したレーザー光18aは、直線偏光になっている。そして、レーザー光18aは、第1ハーフミラー22、第2ハーフミラー23、第3ハーフミラー24、第1反射ミラー25に順次入射する。
In the present embodiment, the
第1ハーフミラー22、第2ハーフミラー23及び第3ハーフミラー24は、レーザー光18aの一部を反射して+X方向に進行させ、一部のレーザー光18aを通過させて−Y方向に進行させる。第1反射ミラー25は、入射したレーザー光18aを全て+X方向に反射する。第1ハーフミラー22、第2ハーフミラー23、第3ハーフミラー24、第1反射ミラー25により、レーザー光18aは4つの光路に分割される。各光路のレーザー光18aの光強度が同じ光強度になるように、各ミラーの反射率が設定されている。
The
次に、図6に示すように、レーザー光18aは第4ハーフミラー26、第5ハーフミラー27、第6ハーフミラー28、第2反射ミラー29に順次照射入射する。第4ハーフミラー26、第5ハーフミラー27及び第6ハーフミラー28は、レーザー光18aの一部を反射して+Z方向に進行させ、一部のレーザー光18aを通過させて+X方向に進行させる。第2反射ミラー29は、入射したレーザー光18aを全て+Z方向に反射する。
Next, as shown in FIG. 6, the
第4ハーフミラー26、第5ハーフミラー27、第6ハーフミラー28、第2反射ミラー29により、1つの光路のレーザー光18aは4つの光路に分割される。各光路のレーザー光18aの光強度が同じ光強度になるように、各ミラーの反射率が設定されている。したがって、レーザー光18aは16個の光路に分離される。そして、各光路のレーザー光18aの光強度が同じ強度になるように、各ミラーの反射率が設定されている。
The
第4ハーフミラー26、第5ハーフミラー27、第6ハーフミラー28、第2反射ミラー29の+Z方向側には、レーザー光18aの各光路に、4行4列の16個のガスセル12が設置されている。そして、第4ハーフミラー26、第5ハーフミラー27、第6ハーフミラー28、第2反射ミラー29にて反射したレーザー光18aは、ガスセル12を通過する。
On the + Z direction side of the
ガスセル12は、内部に空隙を有する箱であり、この空隙には、計測領域5(図1参照)の磁場に応じて光の光学特性を変化させる媒体としてのアルカリ金属のガスが封入されている。アルカリ金属は特に限定されず、カリウム、ルビジウムまたはセシウムを用いることができる。本実施形態では、例えばアルカリ金属にセシウムを用いている。
The
各ガスセル12の+Z方向側には、偏光分離器13が設置されている。偏光分離器13は、入射したレーザー光18aを、互いに直交する2つの偏光成分のレーザー光18aに分離する素子である。偏光分離器13には、例えば、ウォラストンプリズムまたは偏光ビームスプリッターを用いることができる。
A
偏光分離器13の+Z方向側には光検出器14が設置され、偏光分離器13の+X方向側には光検出器15が設置されている。偏光分離器13を通過したレーザー光18aは光検出器14に入射し、偏光分離器13にて反射したレーザー光18aは光検出器15に入射する。光検出器14及び光検出器15は、入射したレーザー光18aの受光光量に応じた信号を演算制御部30に出力する。
A
光検出器14,15が磁場を発生すると測定に影響を与える可能性があるので、光検出器14,15は非磁性の材料で構成されることが望ましい。磁気センサー10は、X軸方向の両面及びY軸方向の両面に設置されたヒーター16を有している。ヒーター16は磁界を発生しない構造であることが好ましく、例えば、流路中に蒸気や熱風を通過させて加熱する方式のヒーターを用いることができる。ヒーターの代わりに、高周波電圧によりガスセル12を誘電加熱してもよい。
It is desirable that the
磁気センサー10は、被検体9(図1参照)の+Z方向側に配置される。磁気センサー10が計測領域5にて検出する磁場ベクトルB(測定対象物が発生する対象磁場ベクトルを含む)は、−Z方向側から磁気センサー10に入る。磁場ベクトルBは、第4ハーフミラー26〜第2反射ミラー29を通過し、ガスセル12を通過した後、偏光分離器13を通過して磁気センサー10から出る。
The
磁気センサー10は、光ポンピング式磁気センサーや光ポンピング原子磁気センサーと称されるセンサーである。ガスセル12内のセシウムは、加熱されてガス状態になっている。そして、直線偏光になったレーザー光18aをセシウムガスに照射することにより、セシウム原子が励起され磁気モーメントの向きが揃えられる。この状態でガスセル12に磁場ベクトルBが通過するとき、セシウム原子の磁気モーメントが磁場ベクトルBの磁場により歳差運動する。この歳差運動をラーモア歳差運動と称する。
The
ラーモア歳差運動の大きさは、磁場ベクトルBの強さと正の相関を有している。ラーモア歳差運動は、レーザー光18aの偏向面を回転させる。ラーモア歳差運動の大きさとレーザー光18aの偏向面の回転角の変化量とは、正の相関を有する。したがって、磁場ベクトルBの強さとレーザー光18aの偏向面の回転角の変化量とは、正の相関を有している。磁気センサー10の感度は、磁場ベクトルBのZ軸方向において高く、Z軸方向と直交する方向において低くなっている。
The magnitude of the Larmor precession has a positive correlation with the strength of the magnetic field vector B. The Larmor precession rotates the deflection surface of the
偏光分離器13は、ガスセル12を透過したレーザー光18aを互いに直交する軸方向(図11に示すα軸及びβ軸)の2成分の直線偏光に分離する。分離された一方の直線偏光は光検出器14に導かれ、他方の直線偏光は光検出器15に導かれる。そして、光検出器14及び光検出器15は、直交する2成分それぞれの直線偏光を受光し、受光光量に応じた信号を発生して演算制御部30に出力する。それぞれの直線偏光の強さを検出することにより、レーザー光18aの偏向面の回転角を検出することができる。そして、レーザー光18aの偏向面の回転角の変化から、磁場ベクトルBの強さを検出することができる。
The
ガスセル12、偏光分離器13、光検出器14、及び光検出器15からなる素子をセンサー素子11と称する。本実施形態では、磁気センサー10には、センサー素子11が4行4列の16個配置されている。磁気センサー10におけるセンサー素子11の個数及び配置は特に限定されない。センサー素子11は、3行以下でもよく5行以上でもよい。同様にセンサー素子11は、3列以下でもよく5列以上でもよい。センサー素子11の個数が多い程空間分解能を高くすることができる。
An element including the
図7に示すように、演算制御部30は、操作部31と、表示部32と、通信部33と、処理部40と、記憶部50とを有する。操作部31は、ボタンスイッチやタッチパネル、キーボード、各種センサー等の入力装置であり、なされた操作に応じた操作信号を処理部40に出力する。この操作部31によって、磁場計測の開始指示等の各種指示入力が行われる。
As illustrated in FIG. 7, the
表示部32は、LCD(Liquid Crystal Display)等の表示装置であり、処理部40からの表示信号に基づく各種表示を行う。この表示部32に、計測結果等が表示される。通信部33は、無線通信機やモデム、有線用の通信ケーブルのジャックや制御回路等の通信装置であり、所与の通信回線と接続して外部との通信を実現する。
The
処理部40は、例えばCPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のマイクロプロセッサーや、ASIC(特定用途向け集積回路:Application Specific Integrated Circuit)、IC(Integrated Circuit)メモリー等の電子部品によって実現される。処理部40は、所定のプログラムやデータ、操作部31からの操作信号、磁気センサー10からの計測信号等に基づいて各種の演算処理を実行して、演算制御部30の動作を制御する。
The
処理部40は、照射制御部41と、磁場発生制御部42と、原磁場算出部43と、バイアス磁場決定部44と、対象磁場算出部45と、を有する。処理部40は、記憶部50に記憶された磁場計測プログラム51に従った磁気計測処理(図13に示すフローチャート参照)を実行する。
The
本実施形態に係る磁気計測処理では、例えば人体の心臓や脳といった測定対象物が発生する磁場の測定を行う前に、初期設定として、測定対象物が置かれていない状態の計測領域5の原磁場Cxを算出する。そして、原磁場Cxを打ち消すようなバイアス磁場を磁場発生器8に発生させた状態で、測定対象物が発生する磁場の測定を行う。すなわち、測定対象物(被検体9)が発生する磁場の計測は、計測領域5に流入する外部磁場(原磁場)を低減した状態で実施する。
In the magnetic measurement processing according to the present embodiment, for example, before measurement of a magnetic field generated by a measurement object such as a human heart or brain, as an initial setting, the
照射制御部41は、磁気センサー10の光源18による照射光の照射を制御する。具体的には、照射制御部41は、光源18による照射光の照射の開始や終了のほか、照射光の光強度、照射光に含まれる直線偏光面の向きなどを制御する。
The
磁場発生制御部42は、磁場発生器8(8X,8Y,8Z)に対して、X,Y,Z軸方向それぞれに所定の磁場を発生させるように制御する。具体的には、磁場発生制御部42は、初期設定時には、所定の人工磁場A(Ax,Ay,Az)を、磁場発生器8(8X,8Y,8Z)に発生させる。詳細は後述するが、人工磁場Aは、その第1方向(X方向)成分及び第2方向(Y方向)成分が、振幅及び周期が同一であって位相が異なる交番磁場f(ωt)であり、その第3方向(Z方向)成分がゼロ(Az=0)である磁場ベクトルである。人工磁場A(Ax,Ay,Az)は、人工磁場データ52として記憶部50に記憶される。
The magnetic field
また、磁場発生制御部42は、測定時には、バイアス磁場決定部44によって決定されたバイアス磁場Bb(Bbx,Bby,Bbz)と、人工磁場A(Ax,Ay,Az)との合成磁場(Bb+A)を、磁場発生器8(8X,8Y,8Z)に発生させる。
Further, the magnetic field
なお、磁場発生器8Xに、人工磁場AのX軸方向成分Axとして、X側第1水準の一定磁場、X側第2水準の一定磁場、及び、X側第3水準の一定磁場を順次発生させることとしてもよい。同様に、磁場発生器8Yに、人工磁場AのY軸方向成分Ayとして、Y側第1水準の一定磁場、Y側第2水準の一定磁場、及び、Y側第3水準の一定磁場を順次発生させることとしてもよい。また、磁場発生器8Xに、人工磁場AのX軸方向成分Axとして、X側第1水準の一定磁場、及び、X側第2水準の一定磁場を順次発生させ、磁場発生器8Yに、人工磁場AのY軸方向成分Ayとして、Y側第1水準の一定磁場、及び、Y側第2水準の一定磁場を順次発生させることとしてもよい。
The X-axis direction component A x of the artificial magnetic field A is sequentially supplied to the
原磁場算出部43は、磁場発生器8(8X,8Y,8Z)が人工磁場ベクトルA(Ax,Ay,Az)を発生している状態において、磁気センサー10から出力される信号に基づいて、原磁場ベクトルC(Cx,Cy,Cz)を算出する。具体的には、磁気センサー10から出力される信号に基づいて得られる磁気センサー計測値(二乗差W-)をスピン偏極度Mxとし、ある時刻tにおける、人工磁場ベクトルAのX軸方向成分Axの値Ax(t)、及び、Y軸方向成分Ayの値Ay(t)と、スピン偏極度Mx(t)との組み合わせであって、スピン偏極度Mxが異なる3つ以上の組み合わせを取得する。
Original
そして、取得した組み合わせそれぞれを、後述する数式17に代入して得られる3つ以上の式からなる連立方程式を定義し、この連立方程式を解く所定の算術演算処理を実行することで、原磁場ベクトルC(Cx,Cy,Cz)を算出する。算出した原磁場C(Cx,Cy,Cz)は、原磁場データ53として記憶部50に記憶される。
Then, by defining a simultaneous equation consisting of three or more equations obtained by substituting each of the acquired combinations into Equation 17 to be described later, and executing a predetermined arithmetic operation process for solving the simultaneous equations, the original magnetic field vector C (C x , C y , C z ) is calculated. The calculated original magnetic field C (C x , C y , C z ) is stored in the
バイアス磁場決定部44は、原磁場算出部43によって算出された原磁場ベクトルC(Cx,Cy,Cz)を打ち消すようなバイアス磁場Bb(Bbx,Bby,Bbz)を決定する。決定したバイアス磁場Bb(Bbx,Bby,Bbz)は、バイアス磁場データ54として記憶部50に記憶される。
The bias magnetic
対象磁場算出部45は、測定対象物が配置され、磁場発生器8がバイアス磁場Bbを発生している状態において、磁気センサー10から出力される信号に基づいて、この測定対象物が発生する対象磁場ベクトルB(Bx,By,Bz)を算出する。具体的には、磁気センサー10から出力される信号に基づいて得られる計測値(二乗差W-)をスピン偏極度Mxとし、ある時刻tにおける、人工磁場ベクトルAのX軸方向成分Axの値Ax(t)、及び、Y軸方向成分Ayの値Ay(t)と、スピン偏極度Mx(t)との組み合わせであって、スピン偏極度Mxが異なる3つ以上の組み合わせを取得する。
The target magnetic
そして、取得した組み合わせそれぞれを、数式17に代入して得られる3つ以上の式からなる連立方程式を定義し、この連立方程式を解く所定の算術演算処理を実行することで、原磁場ベクトルC(Cx,Cy,Cz)を、測定対象物が発生する対象磁場B(Bx,By,Bz)として算出する。算出した対象磁場ベクトルB(Bx,By,Bz)は、測定磁場データ55として記憶部50に記憶される。また、磁気センサー10から出力される信号に基づいて得られる磁気センサー計測値(二乗差W-)は、磁気センサー計測データ56として記憶部50に記憶される。
Then, by defining a simultaneous equation consisting of three or more equations obtained by substituting each of the acquired combinations into Equation 17, and executing a predetermined arithmetic operation process for solving the simultaneous equations, the original magnetic field vector C ( C x , C y , C z ) is calculated as a target magnetic field B (B x , B y , B z ) generated by the measurement object. The calculated target magnetic field vector B (B x , B y , B z ) is stored in the
記憶部50は、ROM(Read Only Memory)やRAM(Random Access Memory)、ハードディスク等の記憶装置で構成される。記憶部50は、処理部40が演算制御部30を統合的に制御するためのプログラムやデータ等を記憶するとともに、処理部40の作業領域として用いられ、処理部40が実行した演算結果や、操作部31からの操作データ等が一時的に格納される。本実施形態では、記憶部50には、磁場計測プログラム51と、人工磁場データ52と、原磁場データ53と、バイアス磁場データ54と、測定磁場データ55と、磁気センサー計測データ56と、が記憶される。
The
[原理]
磁場計測装置1における磁場の計測原理について説明する。図8は、磁場が無い場合のアライメントを説明する図である。図9は、磁場によるアライメントの変化を説明する図である。図10及び図11は、ガスセルを透過することによる直線偏光の偏光面の変化を説明する図である。図12は、アライメント方位角θとプローブ光の検出結果との関係を示す図である。
[principle]
The measurement principle of the magnetic field in the magnetic
なお、以下の説明では、原理を分かり易くするために時系列的な記述をしているが、実際には、(A)光ポンピング及び(C)プロービングは、本実施形態のワンビーム方式では同時に生じ得る。 In the following description, a time-series description is given to make the principle easy to understand, but in reality, (A) optical pumping and (C) probing occur simultaneously in the one-beam system of this embodiment. obtain.
(A)光ポンピング
ガスセル12に封入されたアルカリ金属原子の気体は、D1線の超微細構造量子数FからF’(=F−1)の状態の遷移に相当する波長に調整されたポンプ光(本実施形態では、ガスセル12を通過する光)が照射されることで、スピンがほぼ反平行(逆方向)に向いた(スピン偏極した)原子がほぼ同数混在する集団となる。この状態をアライメントと呼ぶ。なお、一つの原子のスピン偏極は時間の経過とともに緩和するが、ポンプ光がCW(continuous wave)光であるので、スピン偏極の形成と緩和は同時並行的且つ連続的に繰り返され、その結果、原子の集団全体としてみれば定常的なスピン偏極が形成される。
(A) Optical pumping The gas of alkali metal atoms sealed in the
計測領域5がゼロ磁場である場合、アライメントは、原子の磁気モーメントの確率分布で表される。本実施形態のようにポンプ光が直線偏光の場合、その形状は、図8に示すように、X−Y平面において、ポンプ光の直線偏光の電場の振動方向(本実施形態では、Y軸方向)に沿って伸びた2つの楕円を連結した領域Rの形状となる。
When the
(B)磁場の作用
計測領域5に何らかの磁場が存在すると、その磁場ベクトル(ガスセル12が受ける磁場)の方向を回転軸としてアルカリ金属原子が歳差運動を始める。そして、図9に示すように、ポンプ光による光ポンピング作用と、気体原子がガスセル12の内壁と衝突する等して起こる緩和作用とが加わることによって、アライメントの方向(楕円の長径に沿った方向)が、原点Oを中心として回転するように変化する。
(B) Action of magnetic field When a certain magnetic field exists in the
アライメントの方向は、Y軸に対して磁場の強さに応じた角度(θ)だけ回転した配置で定常状態となる。ここで、アライメント方向をθpとし、その直交方向をθsとする。また、ポンプ光の電場の振動方向であるY軸方向に対してアライメント方向θpがなす角θを、アライメント方位角θとする。このアライメント方位角θは、主としてZ軸方向の磁場強度に応じて増加する。 The alignment direction is in a steady state with an arrangement rotated by an angle (θ) corresponding to the strength of the magnetic field with respect to the Y axis. Here, the alignment direction is θp, and the orthogonal direction is θs. Further, an angle θ formed by the alignment direction θp with respect to the Y-axis direction that is the vibration direction of the electric field of the pump light is defined as an alignment azimuth angle θ. The alignment azimuth angle θ increases mainly according to the magnetic field strength in the Z-axis direction.
(C)プロービング
この状態の原子集団を、Y軸方向に電場ベクトルE0で振動する直線偏光成分を有するプローブ光(本実施形態では、ガスセル12を通過する光)が通過する状況を考える。つまり、図10に示すように、プローブ光の電場の振動方向がY軸方向に沿った直線偏光を、+Z方向に向けてガスセル12を通過させる。図10において、原点Oが原子集団(ガスセル12に封入されている気体原子)の位置に相当し、この原子集団が光ポンピングされていることで、Y軸方向に沿った領域に分布するアライメントが生じている。Z軸方向において、−Z方向側は原子集団を透過する前の直線偏光を示し、+Z方向は原子集団を透過した直線偏光(透過光)を示している。
(C) Probing Consider a situation where probe light having a linearly polarized component that vibrates in the Y-axis direction with an electric field vector E 0 (light that passes through the
直線偏光が原子集団を透過すると、線形二色性により直線偏光の偏光面は回転し、その電場ベクトルはE1に変化する。線形二色性とは、アライメントに沿った方向θp(図9参照)と、アライメントに垂直な方向θs(図9参照)とで直線偏光の透過率が異なる性質である。具体的には、アライメントに沿った方向θpよりもアライメントに垂直な方向θsの成分が多く吸収されるため、プローブ光の偏光面は、アライメントに沿った方向θpに近づくように回転する。 When linearly polarized light is transmitted through the atomic group, the polarization plane of the linearly polarized light is rotated due to linear dichroism, and its electric field vector changes to E 1 . The linear dichroism is a property in which the transmittance of linearly polarized light differs between a direction θp along the alignment (see FIG. 9) and a direction θs perpendicular to the alignment (see FIG. 9). Specifically, since the component in the direction θs perpendicular to the alignment is absorbed more than the direction θp along the alignment, the polarization plane of the probe light rotates so as to approach the direction θp along the alignment.
図11は、直線偏光が原子集団を透過する前後の偏光面の回転の様子を、プローブ光の照射方向であるZ軸方向に垂直なX−Y平面に示した図である。本実施形態では、ガスセル12に入射するプローブ光は、電場の振動方向がY軸方向である電場ベクトルE0の直線偏光である。アライメントにより、プローブ光のうちの方向θpの成分は透過率tpで透過し、方向θsの成分は透過率tsで透過する。線形二色性によりtp>tsであるため、ガスセル12を透過したプローブ光の偏光面は、方向θpに近づくように回転する。こうしてガスセル12を通過した光は、電場ベクトルE1を有するものとなる。
FIG. 11 is a diagram showing the state of rotation of the polarization plane before and after the linearly polarized light passes through the atomic group on the XY plane perpendicular to the Z-axis direction that is the irradiation direction of the probe light. In the present embodiment, the probe light incident on the
具体的に、電場ベクトルE0のアライメントに沿った成分をE0Pと表記し、電場ベクトルE0のアライメントと直線偏光の進行方向とに垂直な方向に沿った成分をE0sと表記する。また、電場ベクトルE1のアライメントに沿った成分をE1Pと表記し、電場ベクトルE1のアライメントと直線偏光の進行方向とに垂直な方向に沿った成分をE1sと表記する。この場合、E1P=tpE0Pと、E1s=tsE0sとの関係となる。 Specifically, a component along the alignment of the electric field vector E 0 is expressed as E 0P, and a component along the direction perpendicular to the alignment of the electric field vector E 0 and the traveling direction of the linearly polarized light is expressed as E 0s . Further, a component along the alignment of the electric field vector E 1 is expressed as E 1P, and a component along a direction perpendicular to the alignment of the electric field vector E 1 and the traveling direction of the linearly polarized light is expressed as E 1s . In this case, there is a relationship between E 1P = t p E 0P and E 1s = t s E 0s .
アライメントに沿った方向と、プローブ光の電場の振動方向とが成す角(以下、「アライメント方位角」という。)をθとすると、上述の関係から、電場ベクトルE1の方向θp及び方向θsの各成分は以下の数式4によって算出される。
Assuming that the angle formed by the direction along the alignment and the vibration direction of the electric field of the probe light (hereinafter referred to as “alignment azimuth angle”) is θ, the direction θp and the direction θs of the electric field vector E 1 are Each component is calculated by the following
上述したように、ガスセル12を透過したプローブ光は、偏光分離器13により、プローブ光の照射方向であるY軸方向に対して+45度をなすα軸と、Y軸方向に対して−45度をなすβ軸との2つの偏光成分に分離される。ガスセル12を透過した電場ベクトルE1の直線偏光のα軸方向成分Eαとβ軸方向成分Eβとは、数式5によって算出される。
As described above, the probe light that has passed through the
光検出器14,15は、α軸とβ軸との2つの偏光成分それぞれの光強度を計測し、受光光量に応じた信号を演算制御部30に出力する。演算制御部30は、光検出器14,15からの信号を処理し、以下の数式6、数式7に従ってα軸及びβ軸の各軸方向の成分の二乗和W+と二乗差W-とを算出する。Eαはα軸方向の成分の光強度を表し、Eβはβ軸方向の成分の光強度を表す。
The
図12には、アライメント方位角θに対する、電場ベクトルE1の直線偏光のα軸及びβ軸方向成分Eα,Eβ、及びそれぞれの二乗値Eα 2,Eβ 2と、α軸及びβ軸の各軸方向の成分の二乗和W+と二乗差W-と、を示している。なお、アライメント方位角θ=0とは、計測領域5がゼロ磁場の状態(図8参照)である。但し、方向θpの成分の透過率tp=1、方向θsの成分の透過率ts=0.8、としている。
In FIG. 12, the α-axis and β-axis direction components E α and E β of the linearly polarized light of the electric field vector E 1 with respect to the alignment azimuth angle θ, and their square values E α 2 and E β 2, and the α-axis and β A square sum W + and a square difference W − of the components in the respective axial directions of the axes are shown. The alignment azimuth angle θ = 0 means that the
図12において、二乗差W-の値に着目すると、二乗差W-は、アライメント方位角θに対して180度を周期として振動する。そして、二乗差W-は、アライメント方位角θが−45度から+45度の範囲では、アライメント方位角θに対してほぼ線形変化しているため、高い感度が得られる。また、その線形変化の中心が0度であって、その線形変化の範囲が他(二乗和W+など)と比べて広いため、計測領域5に生じる磁場を計測するには好適である。心磁や脳磁等の生体磁場は微弱であり、アライメント方位角θは小さいことから、二乗差W-を用いれば偏光面の回転角度を高感度に観測できる。
12, squared difference W - Focusing on the value, the square difference W - vibrates a cycle of 180 degrees with respect to the alignment azimuth theta. Since the square difference W − changes substantially linearly with respect to the alignment azimuth angle θ when the alignment azimuth angle θ is in the range of −45 degrees to +45 degrees, high sensitivity can be obtained. Further, since the center of the linear change is 0 degree and the range of the linear change is wider than others (such as the sum of squares W + ), it is suitable for measuring the magnetic field generated in the
但し、上述したように、計測領域5に計測対象の磁場とは異なる不要な磁場が存在するとその影響を受けて感度が低下し、計測精度の低下を招く。通常は、心磁や脳磁等の計測対象の磁場を計測するには、磁気シールド装置6によって計測領域5への外部からの磁場の侵入が抑制された環境下(外部磁場が小さい状態)で行われるが、磁気シールド装置6によっては、外部磁場を測定に影響しない程度に十分に低減することが困難である。言い換えれば、外部磁場の侵入を磁気シールド装置6によって完全には遮蔽できないことが多い。完全に磁気を遮蔽できる磁気シールドは、装置が大がかりであり、費用も高額な上、設置コストや運用コストも高い。
However, as described above, if an unnecessary magnetic field different from the magnetic field to be measured exists in the
そこで、本実施形態では、磁気シールド装置6を用いた上で、磁気シールド装置6内に漏れ入っている外部磁場(原磁場Cと称する)を計測し、これを磁場発生器8で低減した状態で計測対象の磁場を計測することとする。但し、そもそも外部磁場が低い場合や外部磁場が安定している場合には、磁気シールド装置6すら用いずに本実施形態を構成することもできる。
Therefore, in the present embodiment, after using the
図12によれば、アライメント方位角θが−45度から+45度の範囲では、二乗差W-は、スピン偏極度(Mx,My,Mz)のX軸方向成分Mx(以下、スピン偏極度Mxと表記する)にほぼ比例する。このスピン偏極度Mxは、原子の磁気モーメントを合成した磁化ベクトルのX軸方向成分である磁化値に相当する。このため、以下では、二乗差W-を、スピン偏極度Mxであるとして扱う。本実施形態では、このスピン偏極度Mxに着目し、スピン偏極度Mxの値が、ガスセル12に印加される磁場ベクトルBの各成分Bx,By,Bzに応じてどのように変化するかを表す関係式を導出することにする。
According to FIG 12, in a range alignment azimuth θ of +45 °, the square difference W - is spin polarization (M x, M y, M z) in the X-axis direction component M x (hereinafter, Is approximately proportional to the spin polarization M x ). This spin polarization M x corresponds to the magnetization value that is the X-axis direction component of the magnetization vector that combines the magnetic moments of the atoms. For this reason, hereinafter, the square difference W − is treated as the spin polarization degree M x . In the present embodiment, focusing on the spin polarization M x, the value of the spin polarization M x is the component B x of a magnetic field vector B to be applied to the
光ポンピングにより生じたアライメントのスピン偏極度(Mx,My,Mz)の時間発展は、以下の数式8〜数式10に示すブロッホ方程式(Bloch equations)で近似される。γFは、ガスセル12内の媒体気体(アルカリ金属原子気体)の種類で決まる磁気回転比を表す。また、Γ0はスピン偏極度(Mx,My,Mz)の緩和速度を表し、Γpは光ポンピング速度を表す。Mpは、アルカリ金属原子集団のスピンが全て一方向に揃った際の最大磁化である。
Time evolution of alignment caused by optical pumping spin polarization (M x, M y, M z) is approximated by Bloch equations (Bloch Equations) shown in
ポンピング光及びプローブ光は、定常的に一定のパワーでガスセル12に照射されるので、スピン偏極度(Mx,My,Mz)の定常解は、上記の数式8〜数式10の左辺をそれぞれゼロとおいて解くことができる。解は、数式11〜数式13により得られる。
Pumping light and probe light, because it is irradiated to the
数式11〜数式13において、a,cは定数であり、以下の数式14で与えられる。
In
(D)磁場の計測
さて、磁場発生器8(8X,8Y,8Z)により、ガスセル12に対して、X,Y,Z軸方向それぞれに、人工磁場A(Ax,Ay,Az)を発生・印加させる場合を考える。この場合、磁気センサー10が検出する磁場ベクトルB(Bx,By,Bz)は、数式15に示すように、磁場発生器8が発生する人工磁場ベクトルA(Ax,Ay,Az)と、原磁場ベクトルC(Cx,Cy,Cz)とのベクトル和となる。原磁場Cとは、人工磁場Aがゼロの際に計測領域5に存在する磁場である。
(D) Measurement of magnetic field By the magnetic field generator 8 (8X, 8Y, 8Z), the artificial magnetic field A (A x , A y , A z ) is respectively applied to the
ここで、人工磁場ベクトルAのZ軸方向成分Azをゼロ(Az=0)とする。また、人工磁場ベクトルAのX軸方向成分Axを振幅A10を有する関数A10f(t)とし、Y軸方向成分Ayを振幅A20を有する関数A20g(t)とする。従って、磁気センサー10が計測領域5にて検出する磁場ベクトルB(Bx,By,Bz)は、次の数式16となる。なお、振幅A10と振幅A20とは磁場のディメンジョンを有する係数で、関数f(t)と関数g(t)とはノンディメンジョン(無次元)関数である。
Here, the Z-axis direction component A z of the artificial magnetic field vector A is set to zero (A z = 0). Further, let the X-axis direction component A x of the artificial magnetic field vector A be a function A 10 f (t) having an amplitude A 10 and the Y-axis direction component A y be a function A 20 g (t) having an amplitude A 20 . Therefore, the magnetic field vector B (B x , B y , B z ) detected by the
この数式16を数式11のスピン偏極度Mxに代入すると、数式17が得られる。
Substituting
なお、A10=A20=A0とすると制御と計算とが容易となり、これらの数式は次の数式18となる。
Note that if A 10 = A 20 = A 0 , control and calculation are facilitated, and these mathematical expressions become the following
この数式18を数式11のスピン偏極度Mxに代入すると、数式19が得られる。
By substituting
そして、数式19を用いて、未知数である原磁場ベクトルCの各成分(Cx,Cy,Cz)の3つの値を、次のように算出する。すなわち、磁場計測装置1を用いた計測を行って、ある時刻tにおける、磁場発生器8による人工磁場AのX軸方向成分Ax(t)、及び、Y軸方向成分Ay(t)と、スピン偏極度Mx(t)(すなわち、磁気センサー10の出力値W-)と、の組み合わせであって、スピン偏極度Mx(t)が異なる3以上の組み合わせを取得する。
Then, using
そして、それぞれの組み合わせ毎に、人工磁場Ax(t),Ay(t)、及び、スピン偏極度Mx(t)を、数式19に代入して得られる3つの式でなる連立方程式を生成する。この連立方程式を解くことで、未知数である原磁場ベクトルCの各成分(Cx,Cy,Cz)を算出することができる。
For each combination, a simultaneous equation consisting of three equations obtained by substituting the artificial magnetic fields A x (t), A y (t) and the spin polarization M x (t) into
なお、数式19において、定数a,cも未知数としてもよい。つまり、数式19には、原磁場ベクトルCの各成分(Cx,Cy,Cz)と、定数a,cとの5つの未知数が含まれるとする。この場合、磁場計測装置1を用いた計測を行って、ある時刻tにおける人工磁場Ax(t),Ay(t)と、スピン偏極度Mx(t)との組み合わせであって、スピン偏極度Mx(t)が異なる5つの組み合わせを取得する。そして、それぞれの組み合わせ毎に各値を数式19に代入して得られる5つの式でなる連立方程式を生成する。この連立方程式を解くことで、未知数である原磁場ベクトルCの各成分(Cx,Cy,Cz)、及び、定数a,cを算出することができる。
In
更には、人工磁場Ax(t),Ay(t)と、スピン偏極度Mx(t)との組み合わせであって、スピン偏極度Mx(t)が異なる6つ以上の組み合わせを取得し、数式19のフィッティングをかけてもよい。具体的には、数式19を用いて算出したスピン偏極度Mxと、磁気センサー10の計測値であるMxとの偏差が最小となるように、未知数である原磁場ベクトルCの各成分(Cx,Cy,Cz)と、定数a,cを算出する。
Furthermore, obtaining the artificial magnetic field A x (t), A y (t), a combination of a spin polarization M x (t), the spin polarization M x (t) is different from six or more combinations However, the fitting of
また、人工磁場Ax,Ayとする時間関数f(t),g(t)の振幅A0を、原磁場CのX軸方向成分Cx、及び、Y軸方向成分Cyに比べて充分小さいとすると(概ね1/10以下。A0<(Cx/10)、A0<(Cy/10))、数式19は、数式20へと簡略化され、更に計測が容易となる。
Further, the amplitudes A 0 of the time functions f (t) and g (t), which are the artificial magnetic fields A x and A y , are compared with the X-axis direction component C x and the Y-axis direction component Cy of the original magnetic field C. If it is sufficiently small (approximately 1/10 or less. A 0 <(C x / 10), A 0 <(C y / 10)),
このように、数式19、数式20を用いて、磁場発生器8による人工磁場A(Ax,Ay,Az)と、そのときのスピン偏極度Mx(すなわち、二乗差W-)とから、原磁場ベクトルC(Cx,Cy,Cz)を算出することができる。
In this way, using
(E)人工磁場A
人工磁場A(Ax,Ay,Az)は、次のように定められる。すなわち、人工磁場AのX軸方向成分Axの時間関数f(t)が、それぞれ異なるn個の水準である固定値fi(i=1,・・,n)を取り、人工磁場AのY軸方向成分Ayの時間関数g(t)が、それぞれ異なるm個の水準である固定値gj(j=1,・・,m)を取る。それとともに、時間関数g(t),f(t)それぞれの固定値fi,gjの全ての組み合わせに対応する合計n×m個の計測期間τk(k=i,・・,n×m)が存在するように、時間関数f(t),g(t)が定められる。
(E) Artificial magnetic field A
The artificial magnetic field A (A x , A y , A z ) is determined as follows. That is, the time function f (t) of the X-axis direction component A x of the artificial magnetic field A takes n different levels, i.e., fixed values f i (i = 1,..., N). The time function g (t) of the Y-axis direction component A y takes a fixed value g j (j = 1,..., M) which is m different levels. At the same time, a total of n × m measurement periods τk (k = i,..., N × m) corresponding to all combinations of the fixed values f i and g j of the time functions g (t) and f (t), respectively. ) Are defined so that time functions f (t) and g (t) exist.
本実施形態では、上述のように、原磁場ベクトルCの各成分(Cx,Cy,Cz)を算出するために、ある時刻tにおける人工磁場Ax(t),Ay(t)とスピン偏極度Mx(t)との組み合わせであって、スピン偏極度Mx(t)が異なる3以上の組み合わせを取得する必要がある。つまり、3以上の計測期間τk(k≧3)が存在するように、時間関数f(t),g(t)それぞれが取る固定値fi,gjを定める必要がある。 In the present embodiment, as described above, the artificial magnetic fields A x (t) and A y (t) at a certain time t are used to calculate the components (C x , C y , C z ) of the original magnetic field vector C. And the spin polarization degree M x (t), and it is necessary to obtain three or more combinations having different spin polarization degrees M x (t). That is, it is necessary to determine the fixed values f i and g j that the time functions f (t) and g (t) take so that there are three or more measurement periods τk (k ≧ 3).
そして、人工磁場Ax,Ayそれぞれの時間関数f(t),g(t)の固定値fi,giの組み合わせに対応する計測期間τkにおけるスピン偏極度Mxは、数式19,数式20のそれぞれから、次の数式21、数式22となる。なお、ここでは、f(t)=fi、g(t)=gjとなる際のスピン偏極度Mx(t)をMxijにて表記している。
Then, the spin polarization degree M x in the measurement period τk corresponding to the combination of the fixed values f i and g i of the time functions f (t) and g (t) of the artificial magnetic fields A x and A y is expressed by
未知数はCx,Cy,Czの3個なので、3個以上のMxijを計測する。従って、X側とY側の両者を変化させる際には、nは2以上の整数で、mは2以上の整数で、合計4個以上のMxijを計測する。X側だけを変化させる際には、nは3以上の整数で、3個以上のMxijを計測する。Y側だけを変化させる際には、mは3以上の整数で、3個以上のMxijを計測する。 Since there are three unknowns C x , C y , and C z , three or more M xij are measured. Therefore, when changing both the X side and the Y side, n is an integer of 2 or more, m is an integer of 2 or more, and a total of 4 or more M xij is measured. When changing only the X side, n is an integer of 3 or more, and 3 or more M xij are measured. When changing only the Y side, m is an integer of 3 or more, and 3 or more M xij are measured.
係数aとcとをともに未知数とする場合には、未知数は5個になるので、3個以上のMxijを計測する。従って、X側とY側の両者を変化させる際には、n又はmの一方は2以上の整数で、n又はmの他方は3以上の整数で、合計6個以上のMxijを計測する。X側だけを変化させる際には、nは5以上の整数で、5個以上のMxijを計測する。Y側だけを変化させる際には、mは5以上の整数で、5個以上のMxijを計測する。 When the coefficients a and c are both unknown numbers, the number of unknowns is five, so three or more M xij are measured. Therefore, when changing both the X side and the Y side, one of n or m is an integer of 2 or more, the other of n or m is an integer of 3 or more, and a total of 6 or more M xij is measured. . When changing only the X side, n is an integer of 5 or more and 5 or more M xij are measured. When only the Y side is changed, m is an integer of 5 or more, and 5 or more M xij are measured.
なお、先と同様にA10=A20=A0とすると制御と計算とが容易となり、数式21、数式22はそれぞれ次の数式23、数式24となる。
As in the previous case, if A 10 = A 20 = A 0 , control and calculation are facilitated, and
[処理の流れ]
図13及び図14は、本実施形態に係る磁場計測処理の流れを説明するフローチャートである。この処理は、図7に示す処理部40の各部が磁場計測プログラム51を実行することで実現される処理である。また、測定対象物を人体(被検体9)とし、心磁(心臓の電気生理学的な活動から発生する磁場)や脳磁を測定する場合を例に説明する。
[Process flow]
13 and 14 are flowcharts for explaining the flow of magnetic field measurement processing according to the present embodiment. This process is a process realized by each part of the
図13に示すように、まず、照射制御部41が、光源18に、ポンプ光及びプローブ光を兼ねた直線偏光成分を含む照射光の照射を開始させる(ステップS01)。次いで、原磁場Cを測定する。具体的には、磁場発生制御部42が、磁場発生器8に、対象の組み合わせ(i,j)に対応する人工磁場A(Ax=A0fi,Ay=A0gj,0)を発生させる(ステップS02)。そして、この状態において磁気センサー10から出力される信号に基づいて得られる計測値(二乗差W-)を取得する(ステップS03)。
As shown in FIG. 13, first, the
ステップS02及びステップS03の処理は、人工磁場のX軸方向成分Axである時間関数f(t)の固定値fの数i(i=1〜n)と、Y軸方向成分Ayである時間関数g(t)の固定値gの数j(j=1〜m)との組み合わせそれぞれを対象として繰り返し実行される(ステップS04)。すなわち、(i,j)の全ての組み合わせについて終了していない場合(ステップS04:NO)には、処理が実行されていない(i,j)の組み合わせを対象としてステップS02及びステップS03の処理が実行される。 The processes in steps S02 and S03 are the number i (i = 1 to n) of the fixed value f of the time function f (t) that is the X-axis direction component A x of the artificial magnetic field and the Y-axis direction component A y . It is repeatedly executed for each combination with the number j (j = 1 to m) of the fixed value g of the time function g (t) (step S04). That is, when all the combinations of (i, j) have not been completed (step S04: NO), the processes of step S02 and step S03 are performed on the combination of (i, j) for which processing has not been executed. Executed.
(i,j)の全ての組み合わせについてステップS02及びステップS03の処理が終了すると(ステップS04:YES)、原磁場算出部43が、人工磁場Ax,Ayと、取得した計測値(二乗差W-)との組み合わせを用いて、原磁場ベクトルC(Cx,Cy,Cz)を算出する(ステップS05)。続いて、バイアス磁場決定部44が、算出された原磁場Cを打ち消すような、バイアス磁場Bbを決定する(ステップS06)。
When the processing of step S02 and step S03 is completed for all combinations of (i, j) (step S04: YES), the original magnetic
次に、図14に示すように、測定対象物を、磁気センサー10に接近させて配置する(ステップS07)。そして、この測定対象物が発生する磁場Bを測定する。具体的には、磁場発生制御部42が、対象の組み合わせ(i,j)に対応する人工磁場A(Ax=A0fi,Ay=A0gj,0)と、バイアス磁場Bbとの合成磁場を、磁場発生器8に発生させる(ステップS08)。そして、この状態において磁気センサー10から出力される信号に基づいて得られる計測値(二乗差W-)を取得する(ステップS09)。
Next, as shown in FIG. 14, the measurement object is placed close to the magnetic sensor 10 (step S07). And the magnetic field B which this measuring object generate | occur | produces is measured. Specifically, the magnetic field
ステップS08及びステップS09の処理は、人工磁場のX軸方向成分Axである時間関数f(t)の固定値fの数i(i=1〜n)と、Y軸方向成分Ayである時間関数g(t)の固定値gの数j(j=1〜m)との組み合わせそれぞれを対象として繰り返し実行される(ステップS10)。すなわち、(i,j)の全ての組み合わせについて終了していない場合(ステップS10:NO)には、処理が実行されていない(i,j)の組み合わせを対象としてステップS08及びステップS09の処理が実行される。 The processes in steps S08 and S09 are the number i (i = 1 to n) of the fixed value f of the time function f (t), which is the X-axis direction component A x of the artificial magnetic field, and the Y-axis direction component A y . It is repeatedly executed for each combination with the number j (j = 1 to m) of the fixed value g of the time function g (t) (step S10). That is, when all the combinations of (i, j) are not completed (step S10: NO), the processes of steps S08 and S09 are performed on the combination of (i, j) for which processing is not executed. Executed.
(i,j)の全ての組み合わせについてステップS08及びステップS09の処理が終了すると(ステップS10:YES)、対象磁場算出部45が、人工磁場Ax,Ayと、取得した計測値(二乗差W-)との組み合わせを用いて、測定対象物が発生する磁場B(Bx,By,Bz)を算出する(ステップS11)。その後、照射制御部41が、光源18による照射光の照射を終了させる(ステップS12)。以上の処理を行うと、処理部40は磁気計測処理を終了する。
When the processing of step S08 and step S09 is completed for all combinations of (i, j) (step S10: YES), the target magnetic
このように構成される磁場計測装置1における具体的な実施例として、以下、人工磁場A(Ax,Ay,Az)を具体的に示した3つの実施例を説明する。
As specific examples of the magnetic
[第1実施例]
第1実施例は、人工磁場AのX軸方向成分Axとする時間関数f(t)が2つの固定値f1,f2を取る実施例である(適用例9に対応)。第1実施例では、この2つの固定値f1,f2のうち少なくとも1つがゼロであるとともに、Y軸方向成分Ayとする時間関数g(t)が2つの固定値g1,g2をとり、この2つの固定値g1,g2のうち少なくとも1つがゼロである。
[First embodiment]
The first embodiment is an embodiment in which the time function f (t) having the X-axis direction component A x of the artificial magnetic field A takes two fixed values f 1 and f 2 (corresponding to Application Example 9). In the first embodiment, at least one of the two fixed values f 1 and f 2 is zero, and the time function g (t) with the Y-axis direction component A y is two fixed values g 1 and g 2. And at least one of the two fixed values g 1 and g 2 is zero.
図15は、第1実施例における、人工磁場Ax,Ay、及び、スピン偏極度Mxの一例を示すグラフである。同図では、横軸を共通の時刻tとして、上から順に、人工磁場Ax,Ay、及び、スピン偏極度Mxのグラフを示している。 FIG. 15 is a graph showing an example of the artificial magnetic fields A x and A y and the spin polarization M x in the first embodiment. In the figure, a graph of the artificial magnetic fields A x , A y and the spin polarization degree M x is shown in order from the top with the horizontal axis as the common time t.
時間関数f(t)は、固定値fiとして、f1=0,f2=1、を取り、時間関数g(t)は、固定値gjとして、g1=0,g2=1、を取る。従って、人工磁場AのX軸方向成分Axは、X側第1水準の一定磁場である「A0f1=0」と、X側第2水準の一定磁場である「A0f2=A0」と、の二値を取る。Y軸方向成分Ayは、Y側第1水準の一定磁場である「A0g1=0」と、Y側第2水準の一定磁場である「A0g2=A0」と、の二値を取る。 The time function f (t) takes f 1 = 0, f 2 = 1 as a fixed value f i , and the time function g (t) takes g 1 = 0, g 2 = 1 as a fixed value g j. ,I take the. Therefore, the X-axis direction component A x of the artificial magnetic field A is “A 0 f 1 = 0”, which is a constant magnetic field of the X side first level, and “A 0 f 2 =, which is a constant magnetic field of the X side second level. A 0 ”is taken. The Y-axis direction component A y is expressed as “A 0 g 1 = 0”, which is a constant magnetic field of the Y side first level, and “A 0 g 2 = A 0 ”, which is a constant magnetic field of the Y side second level. Take binary.
そして、時間関数f(t)の固定値f1,f2、及び、時間関数g(t)の固定値g1,g2の全ての組み合わせに対応する4つの計測期間τ1〜τ4が存在する。計測期間τ1〜τ4それぞれにおけるスピン偏極度Mx1〜Mx4は、それぞれ異なっている。つまり、数式19を用いた原磁場ベクトルC(Cx,Cy,Cz)の算出に必要な、人工磁場AのX軸方向成分AxであるX側第i水準(i=1,2)の一定磁場と、Y軸方向成分AyであるY側第j水準(j=1,2)の一定磁場と、磁化値であるスピン偏極度Mxとの組み合わせであって、スピン偏極度Mxが異なる3個以上の組み合わせを取得することができる。
There are four measurement periods τ1 to τ4 corresponding to all combinations of the fixed values f 1 and f 2 of the time function f (t) and the fixed values g 1 and g 2 of the time function g (t). . The spin polarizations M x1 to M x4 in the measurement periods τ1 to τ4 are different from each other. That is, the X-side i-th level (i = 1, 2), which is the X-axis direction component A x of the artificial magnetic field A necessary for calculating the original magnetic field vector C (C x , C y , C z ) using
具体的には、i=j=1、である第1の計測期間τ1では、時間関数f(τ1)=f1=0,g(τ1)=g1=0、である。つまり、人工磁場AのX軸方向成分AxとしてX側第1水準の一定磁場が、Y軸方向成分AyとしてY側第1水準の一定磁場が、それぞれ発生されている。従って、ガスセル12に印加される磁場Bの数式16は、次の数式25となる。
Specifically, in the first measurement period τ1 in which i = j = 1, the time function f (τ1) = f 1 = 0 and g (τ1) = g 1 = 0. That is, an X-side first level constant magnetic field is generated as the X-axis direction component A x of the artificial magnetic field A, and a Y-side first level constant magnetic field is generated as the Y-axis direction component A y . Therefore,
そして、第1−1の磁化値であるスピン偏極度Mxの数式23は、次の数式26となる。
Then,
また、i=2,j=1、である第2の計測期間τ2では、時間関数f(τ2)=f2=1,g(τ2)=g1=0、である。つまり、人工磁場AのX軸方向成分AxとしてX側第2水準の一定磁場が、Y軸方向成分AyとしてY側第1水準の一定磁場が、それぞれ発生されている。従って、ガスセル12に印加される磁場Bの数式16は、次の数式27となる。
In the second measurement period τ2 where i = 2 and j = 1, the time function f (τ2) = f 2 = 1 and g (τ2) = g 1 = 0. That is, an X-side second level constant magnetic field is generated as the X-axis direction component A x of the artificial magnetic field A, and a Y-side first level constant magnetic field is generated as the Y-axis direction component A y . Therefore,
そして、第2−1の磁化値であるスピン偏極度Mxの数式23は、次の数式28となる。
Then,
また、i=1,J=2、である第3の計測期間τ3では、時間関数f(τ3)=f1=0,g(τ3)=g2=1、である。つまり、人工磁場AのX軸方向成分AxとしてX側第1水準の一定磁場が、Y軸方向成分AyとしてY側第2水準の一定磁場が、それぞれ発生されている。従って、ガスセル12に印加される磁場Bの数式16は、次の数式29となる。
In the third measurement period τ3 in which i = 1 and J = 2, the time function f (τ3) = f 1 = 0 and g (τ3) = g 2 = 1. That is, an X-side first level constant magnetic field is generated as the X-axis direction component A x of the artificial magnetic field A, and a Y-side second level constant magnetic field is generated as the Y-axis direction component A y . Therefore,
そして、第1−2の磁化値であるスピン偏極度Mxの数式23は、次の数式30となる。
Then,
また、i=j=2、である第4の計測期間τ4では、時間関数f(τ4)=f2=1,g(τ4)=g2=1、である。つまり、人工磁場AのX軸方向成分AxとしてX側第2水準の一定磁場が、Y軸方向成分AyとしてY側第2水準の一定磁場が、それぞれ発生されている。従って、ガスセル12に印加される磁場Bの数式16は、次の数式31となる。
In the fourth measurement period τ4 where i = j = 2, the time function f (τ4) = f 2 = 1 and g (τ4) = g 2 = 1. That is, an X-side second level constant magnetic field is generated as the X-axis direction component A x of the artificial magnetic field A, and a Y-side second level constant magnetic field is generated as the Y-axis direction component A y . Therefore,
そして、第2−2の磁化値であるスピン偏極度Mxの数式23は、次の数式32となる。
Then,
第1の計測期間τ1に磁場計測装置1から得られた磁化値(Mx1)を、数式26の左辺に代入して第1の方程式を得る。第2の計測期間τ2に磁場計測装置1から得られた磁化値(Mx2)を、数式28の左辺に代入して第2の方程式を得る。第3の計測期間τ3に磁場計測装置1から得られた磁化値(Mx3)を、数式30の左辺に代入して第3の方程式を得る。第4の計測期間τ4に磁場計測装置1から得られた磁化値(Mx4)を、数式32の左辺に代入して第4の方程式を得る。そして、これら4つの方程式を連立させて、未知数である原磁場ベクトルC(Cx,Cy,Cz)を算出する。
The first equation is obtained by substituting the magnetization value (M x1 ) obtained from the magnetic
[第2実施例]
第2実施例は、人工磁場AのX軸方向成分Axとする時間関数f(t)が3つの固定値f1,f2,f3を取る実施例である。第2実施例では、この3つの固定値f1,f2,f3のうち少なくとも1つがゼロであるとともに、Y軸方向成分Ayとする時間関数g(t)が3つの固定値g1,g2,g3をとり、この3つの固定値g1,g2,g3のうち少なくとも1つがゼロである。
[Second Embodiment]
In the second embodiment, the time function f (t) with the X-axis direction component A x of the artificial magnetic field A takes three fixed values f 1 , f 2 , and f 3 . In the second embodiment, at least one of the three fixed values f 1 , f 2 , f 3 is zero, and the time function g (t) as the Y-axis direction component A y has three fixed values g 1. , G 2 , g 3 , and at least one of the three fixed values g 1 , g 2 , g 3 is zero.
図16は、第2実施例における、人工磁場Ax,Ay、及び、スピン偏極度Mxの一例を示すグラフである。同図は、横軸を時刻tとして、人工磁場Ax,Ay、及び、スピン偏極度Mxのグラフを示している。また、スピン偏極度Mxの変化を分かり易くするため、上のグラフの一部を、縦軸方向を拡大して示したものが下の図である。 FIG. 16 is a graph showing an example of the artificial magnetic fields A x and A y and the spin polarization M x in the second embodiment. This figure shows a graph of the artificial magnetic fields A x and A y and the spin polarization M x with the horizontal axis as time t. Further, in order to make it easy to understand the change of the spin polarization degree M x , the lower graph shows a part of the upper graph enlarged in the vertical axis direction.
時間関数f(t)は、固定値fiとして、f1=0,f2=1,f3=−1、を取り、時間関数g(t)は、固定値gjとして、g1=0,g2=1,g3=−1、を取る。従って、人工磁場Ax,Ayは、ともに三値(0,A0,−A0)を取る。そして、時間関数f(t)の固定値f1〜f3、及び、時間関数g(t)の固定値g1〜g3の全ての組み合わせに対応する9つの計測期間τ1〜τ9が存在する。 The time function f (t) takes f 1 = 0, f 2 = 1, f 3 = −1 as a fixed value f i , and the time function g (t) has a fixed value g j and g 1 = Take 0, g 2 = 1, g 3 = -1. Therefore, the artificial magnetic fields A x and A y both take ternary values (0, A 0 , −A 0 ). Then, fixed value f 1 ~f 3 of time function f (t), and, there is a fixed value g 1 corresponds to all combinations of to g 3 9 single measurement period τ1~τ9 time function g (t) .
計測期間τ1〜τ9それぞれにおけるスピン偏極度Mx1〜Mx9は、それぞれ異なっている。つまり、数式19を用いた原磁場ベクトルC(Cx,Cy,Cz)の算出に必要な、人工磁場Ax,Ayと、スピン偏極度Mxとの組み合わせであって、スピン偏極度Mxが異なる3個以上の組み合わせを取得することができる。
Spin polarization M x1 ~M x9 in the measurement period τ1~τ9 respectively, it is different. That is, it is a combination of the artificial magnetic fields A x , A y and the spin polarization degree M x necessary for calculating the original magnetic field vector C (C x , C y , C z ) using
具体的には、i=j=1、である第1の計測期間τ1では、時間関数f(τ1)=f1=0,g(τ1)=g1=0、である。従って、ガスセル12に印加される磁場Bの数式16は、次の数式33となる。
Specifically, in the first measurement period τ1 in which i = j = 1, the time function f (τ1) = f 1 = 0 and g (τ1) = g 1 = 0. Therefore,
そして、スピン偏極度Mxの数式23は、次の数式34となる。
Then,
また、i=2,j=1、である第2の計測期間τ2では、時間関数f(τ2)=f2=1,g(τ2)=g1=0、である。従って、ガスセル12に印加される磁場Bの数式16は、次の数式35となる。
In the second measurement period τ2 where i = 2 and j = 1, the time function f (τ2) = f 2 = 1 and g (τ2) = g 1 = 0. Therefore,
そして、スピン偏極度Mxの数式23は、次の数式36となる。
Then,
また、i=3,j=1、である第3の計測期間τ3では、時間関数f(τ3)=f3=−1,g(τ3)=g1=0、である。従って、ガスセル12に印加される磁場Bの数式16は、次の数式37となる。
In the third measurement period τ3 where i = 3 and j = 1, the time function f (τ3) = f 3 = −1 and g (τ3) = g 1 = 0. Therefore,
そして、スピン偏極度Mxの数式23は、次の数式38となる。
Then,
また、i=1,j=2、である第4の計測期間τ4では、時間関数f(τ4)=f1=0,g(τ4)=g2=1、である。従って、ガスセル12に印加される磁場Bの数式16は、次の数式39となる。
In the fourth measurement period τ4 where i = 1 and j = 2, the time function f (τ4) = f 1 = 0 and g (τ4) = g 2 = 1. Therefore,
そして、スピン偏極度Mxの数式23は、次の数式40となる。
Then,
また、i=j=2、である第5の計測期間τ5では、時間関数f(τ5)=f2=1,g(τ5)=g2=1、である。従って、ガスセル12に印加される磁場Bの数式16は、次の数式41となる。
In the fifth measurement period τ5 in which i = j = 2, the time function f (τ5) = f 2 = 1 and g (τ5) = g 2 = 1. Therefore,
そして、スピン偏極度Mxの数式23は、次の数式42となる。
Then,
また、i=3,j=2、である第6の計測期間τ6では、時間関数f(τ6)=f3=−1,g(τ6)=g2=1、である。従って、ガスセル12に印加される磁場Bの数式16は、次の数式43となる。
In the sixth measurement period τ6 where i = 3 and j = 2, the time function f (τ6) = f 3 = −1 and g (τ6) = g 2 = 1. Therefore,
そして、スピン偏極度Mxの数式23は、次の数式44となる。
Then,
また、i=1,j=3、である第7の計測期間τ7では、時間関数f(τ7)=f1=0,g(τ7)=g3=−1、である。従って、ガスセル12に印加される磁場Bの数式16は、次の数式45となる。
In the seventh measurement period τ7 where i = 1 and j = 3, the time function f (τ7) = f 1 = 0 and g (τ7) = g 3 = −1. Therefore,
そして、スピン偏極度Mxの数式23は、次の数式46となる。
Then,
また、i=2,j=3、である第8の計測期間τ8では、時間関数f(τ8)=f2=1,g(τ8)=g3=−1、である。従って、ガスセル12に印加される磁場Bの数式16は、次の数式47となる。
In the eighth measurement period τ8 where i = 2 and j = 3, the time function f (τ8) = f 2 = 1 and g (τ8) = g 3 = −1. Therefore,
そして、スピン偏極度Mxの数式23は、次の数式48となる。
Then,
また、i=j=3、である第9の計測期間τ9では、時間関数f(τ9)=f3=−1,g(τ9)=g3=−1、である。従って、ガスセル12に印加される磁場Bの数式16は、次の数式49となる。
In the ninth measurement period τ9 where i = j = 3, the time function f (τ9) = f 3 = −1 and g (τ9) = g 3 = −1. Therefore,
そして、スピン偏極度Mxの数式23は、次の数式50となる。
Then,
第1の計測期間τ1に磁場計測装置1から得られた磁化値(Mx1)を、数式34の左辺に代入して第1の方程式を得る。第2の計測期間τ2に磁場計測装置1から得られた磁化値(Mx2)を、数式36の左辺に代入して第2の方程式を得る。第3の計測期間τ3に磁場計測装置1から得られた磁化値(Mx3)を、数式38の左辺に代入して第3の方程式を得る。
The first equation is obtained by substituting the magnetization value (M x1 ) obtained from the magnetic
第4の計測期間τ4に磁場計測装置1から得られた磁化値(Mx4)を、数式40の左辺に代入して第4の方程式を得る。第5の計測期間τ5に磁場計測装置1から得られた磁化値(Mx5)を、数式42の左辺に代入して第5の方程式を得る。第6の期間τ6に磁場計測装置1から得られた磁化値(Mx6)を、数式44の左辺に代入して第6の方程式を得る。
The fourth equation is obtained by substituting the magnetization value (M x4 ) obtained from the magnetic
第7の計測期間τ7に磁場計測装置1から得られた磁化値(Mx7)を、数式46の左辺に代入して第7の方程式を得る。第8の計測期間τ8に磁場計測装置1から得られた磁化値(Mx8)を、数式48の左辺に代入して第8の方程式を得る。第9の計測期間τ9に磁場計測装置1から得られた磁化値(Mx9)を、数式50の左辺に代入して第9の方程式を得る。そして、これら9つの方程式を連立させて、未知数である原磁場ベクトルC(Cx,Cy,Cz)を算出する。
The seventh equation is obtained by substituting the magnetization value (M x7 ) obtained from the magnetic
[第3実施例]
第3実施例は、人工磁場Aとして、一軸方向成分(X軸方向成分)のみを発生・印加する実施例である(適用例2に対応)。つまり、スピン偏極度Mxの数式17において、g(t)=0、とした場合に相当する。また、人工磁場AのX軸方向成分Axとする時間関数f(t)が3つの固定値f1,f2,f3を取り、この3つの固定値f1,f2,f3のうち、1つがゼロである。
[Third embodiment]
The third embodiment is an embodiment that generates and applies only the uniaxial component (X-axis component) as the artificial magnetic field A (corresponding to Application Example 2). In other words, this corresponds to the case where g (t) = 0 in Expression 17 of the spin polarization M x . Further, the time function f (t) as the X-axis direction component A x of the artificial magnetic field A takes three fixed values f 1 , f 2 , f 3 , and these three fixed values f 1 , f 2 , f 3 Of these, one is zero.
つまり、例えば、人工磁場AのX軸方向成分Axは、X側第1水準の一定磁場である「A0fi=0」と、X側第2水準の一定磁場である「A0f2=A0」と、X側第3水準の一定磁場である「A0f3=−A0」との三値を取る。従って、スピン偏極度Mxの数式21、数式22は、それぞれ、次の数式51、数式52となる。
That is, for example, X-axis direction component A x of the artificial magnetic field A is constant magnetic field of the X-side first level "A 0 f i = 0" as an X-side constant magnetic field of the second level, "A 0 f “2 = A 0 ” and “A 0 f 3 = −A 0 ”, which is a constant magnetic field of the third level on the X side. Accordingly,
この場合、人工磁場Aの固定値f1〜f3それぞれに対応する3つの計測期間τ1〜τ3が存在する。例えば、時間関数f(t)は、固定値fiとして、f1=0,f2=1,f3=−1、を取ることとする。すると、これらの3つの計測期間τ1〜τ3は、上述の実施例2における計測期間τ1〜τ3と同一である。
In this case, a fixed value f 1 ~
つまり、i=1、j=1(g1=0)、である第1の計測期間τ1では、人工磁場AのX軸方向成分AxとしてX側第1水準の一定磁場が発生されている。そして、ガスセル12に印加される磁場Bは数式33であり、第1−1の磁化値であるスピン偏極度Mxは数式34である。
That is, in the first measurement period τ1 where i = 1 and j = 1 (g 1 = 0), the X-side first level constant magnetic field is generated as the X-axis direction component A x of the artificial magnetic field A. . The magnetic field B applied to the
また、i=2、j=1(g1=0)、である第2の計測期間τ2では、人工磁場AのX軸方向成分AxとしてX側第2水準の一定磁場が発生されている。そして、ガスセル12に印加される磁場Bは数式35であり、第2−1の磁化値であるスピン偏極度Mxは数式36である。
Further, in the second measurement period τ2 in which i = 2 and j = 1 (g 1 = 0), the X-side second level constant magnetic field is generated as the X-axis direction component A x of the artificial magnetic field A. . The magnetic field B applied to the
また、i=3、j=1(g1=0)である第3の計測期間τ3では、人工磁場AのX軸方向成分AxとしてX側第3水準の一定磁場が発生されている。そして、ガスセル12に印加される磁場Bは数式37であり、第3−1の磁化値であるスピン偏極度Mxは数式38である。
In the third measurement period τ3 in which i = 3 and j = 1 (g 1 = 0), the X-side third level constant magnetic field is generated as the X-axis direction component A x of the artificial magnetic field A. Then, the magnetic field B applied to the
このように、計測期間τ1〜τ3それぞれにおけるスピン偏極度Mxは、それぞれ異なっている。従って、数式17を用いた原磁場ベクトルC(Cx,Cy,Cz)の算出に必要な、人工磁場Ax,Ayと、スピン偏極度Mxとの組み合わせであって、スピン偏極度Mxが異なる3個以上の組み合わせを取得することができる。 Thus, spin polarization M x in the measurement period τ1~τ3 respectively, are different. Therefore, it is a combination of the artificial magnetic fields A x , A y and the spin polarization degree M x necessary for calculating the original magnetic field vector C (C x , C y , C z ) using Expression 17, can be extreme M x acquires three or more different combinations.
[第4実施例]
第4実施例は、人工磁場Aとして、一軸方向成分(Y軸方向成分)のみを発生・印加する実施例である(適用例6に対応)。つまり、スピン偏極度Mxの数式17において、f(t)=0、とした場合に相当する。また、人工磁場AのY軸方向成分Ayとする時間関数g(t)が3つの固定値g1,g2,g3を取り、この3つの固定値g1,g2,g3のうち、1つがゼロである。
[Fourth embodiment]
The fourth embodiment is an embodiment in which only the uniaxial component (Y-axis component) is generated and applied as the artificial magnetic field A (corresponding to Application Example 6). In other words, this corresponds to the case where f (t) = 0 in Formula 17 of the spin polarization degree M x . Further, the time function g (t) as the Y-axis direction component A y of the artificial magnetic field A takes three fixed values g 1 , g 2 , g 3 , and these three fixed values g 1 , g 2 , g 3 Of these, one is zero.
つまり、例えば、人工磁場AのY軸方向成分Ayは、Y側第1水準の一定磁場である「A0gi=0」と、Y側第2水準の一定磁場である「A0g2=A0」と、Y側第3水準の一定磁場である「A0g3=−A0」との三値を取る。従って、スピン偏極度Mxの数式21、数式22は、それぞれ、次の数式53、数式54となる。
That is, for example, Y-axis direction component A y of the artificial magnetic field A is constant magnetic field in the Y-side first level "A 0 g i = 0" and a Y-side constant magnetic field of the second level, "A 0 g “2 = A 0 ” and “A 0 g 3 = −A 0 ”, which is a constant magnetic field of the third level on the Y side. Accordingly,
この場合、人工磁場Aの固定値g1〜g3それぞれに対応する3つの計測期間τ1〜τ3が存在する。例えば、時間関数g(t)は、固定値gjとして、g1=0,g2=1,g3=−1、を取ることとする。すると、これらの3つの計測期間τ1〜τ3は、上述の実施例2における計測期間τ1〜τ3と同一である。
In this case, a fixed value g 1 to
つまり、i=1(f1=0)、j=1、である第1の計測期間τ1では、人工磁場AのY軸方向成分AyとしてY側第1水準の一定磁場が発生されている。そして、ガスセル12に印加される磁場Bは数式33であり、第1−1の磁化値であるスピン偏極度Mxは数式34である。
That is, in the first measurement period τ1 in which i = 1 (f 1 = 0) and j = 1, a Y-side first level constant magnetic field is generated as the Y-axis direction component A y of the artificial magnetic field A. . The magnetic field B applied to the
また、i=1(f1=0)、j=2、である第2の計測期間τ2では、人工磁場AのY軸方向成分AyとしてY側第2水準の一定磁場が発生されている。そして、ガスセル12に印加される磁場Bは数式39であり、第1−2の磁化値であるスピン偏極度Mxは数式40である。
Further, in the second measurement period τ2 in which i = 1 (f 1 = 0) and j = 2, a Y-side second level constant magnetic field is generated as the Y-axis direction component A y of the artificial magnetic field A. . The magnetic field B applied to the
また、i=1(f1=0)、j=3、である第3の計測期間τ3では、人工磁場AのY軸方向成分AyとしてY側第3水準の一定磁場が発生されている。そして、ガスセル12に印加される磁場Bは数式45であり、第1−3の磁化値であるスピン偏極度Mxは数式46である。
Further, in the third measurement period τ3 where i = 1 (f 1 = 0) and j = 3, a Y-side third level constant magnetic field is generated as the Y-axis direction component A y of the artificial magnetic field A. . Then, the magnetic field B applied to the
このように、計測期間τ1〜τ3それぞれにおけるスピン偏極度Mxは、それぞれ異なっている。従って、数式17を用いた原磁場ベクトルC(Cx,Cy,Cz)の算出に必要な、人工磁場Ax,Ayと、スピン偏極度Mxとの組み合わせであって、スピン偏極度Mxが異なる3個以上の組み合わせを取得することができる。 Thus, spin polarization M x in the measurement period τ1~τ3 respectively, are different. Therefore, it is a combination of the artificial magnetic fields A x , A y and the spin polarization degree M x necessary for calculating the original magnetic field vector C (C x , C y , C z ) using Expression 17, can be extreme M x acquires three or more different combinations.
[第5実施例]
第5実施例は、測定対象物が置かれていない状態の計測領域5を上述の実施例のようにゼロ磁場とするのではなく、計測領域5に所定の磁場を作る場合の実施例である。測定対象物が置かれていない状態の計測領域5に作りたい磁場を、ターゲット磁場と称する。ターゲット磁場をゼロ磁場ではなく所定の磁場としたい場合は、図13に示すステップS03にて磁気センサー10から出力される信号に基づいて得られる計測値(二乗差W-)と、そのときの人工磁場Ax,Ayの値との組み合わせを取得した後、以下の処理を行う。
[Fifth embodiment]
The fifth embodiment is an embodiment in which a predetermined magnetic field is created in the
第一工程として、取得した計測値(二乗差W-)と、人工磁場Ax,Ayとの組み合わせを用いて、計測領域5の磁場を、原磁場Cとして算出する(ステップS05に相当)。続いて、第二工程として、測定対象物(被検体9)を計測領域5に配置する(ステップS07に相当)。なお、第5実施例では、ターゲット磁場をゼロ磁場ではなく所定の磁場とするため、算出された原磁場Cを打ち消すようなバイアス磁場Bbを計測領域5に印加すること(ステップS06及びステップS08)は行わない。
As a first step, the magnetic field in the
続いて、第三工程として、計測領域5に形成したい所定の磁場であるターゲット磁場と原磁場Cとの差分の磁場を、第1磁場発生器8Xと第2磁場発生器8Yと第3磁場発生器8Zとに発生させる(ステップS08に相当)。これにより、磁場発生器8(8X,8Y,8Z)により印加される人工磁場Aと原磁場Cとが合成され、計測領域5にターゲット磁場として所定の磁場を作ることができる。なお、第二工程と第三工程との順番が入れ替わってもよい。
Subsequently, as a third step, the first
そして、第四工程として、第三工程を行っており第二工程が終了している期間に磁気センサー10から出力される信号に基づいて得られる計測値(二乗差W-)を用いて、測定対象物が発生した磁場Bを測定する(ステップS11に相当)。これにより、計測領域5を所定のターゲット磁場とした状態において、測定対象物が発生した磁場Bを測定することができる。
And as a 4th process, it is measured using the measured value (square difference W < - >) obtained based on the signal output from the
上述の第1実施例〜第4実施例に対しても、計測領域5に形成したい所定の磁場であるターゲット磁場と原磁場Cとの差分の磁場を発生させることにより、計測領域5にターゲット磁場として所定の磁場を作ることができる。なお、第5実施例において、外部から計測領域5に漏れ入っている原磁場Cを相殺すべく、ターゲット磁場をゼロ磁場とすれば、測定対象物が発生する磁場B(厳密には、磁場のZ方向の成分)を正確に計測することができる。
Also in the first to fourth embodiments described above, a target magnetic field that is a difference between the target magnetic field and the original magnetic field C, which is a predetermined magnetic field to be formed in the
[第6実施例]
第6実施例は、第5実施例に対して、計測領域5にターゲット磁場として所定の三次元ベクトルの磁場を作る場合の実施例である。第6実施例において、第一工程及び第二工程は、第5実施例と同様である。
[Sixth embodiment]
6th Example is an Example in the case of making the magnetic field of a predetermined three-dimensional vector as a target magnetic field in the measurement area |
第三工程として、計測領域5に形成した所定の磁場であるターゲット磁場と原磁場C(Cx,Cy,Cz)との差分の磁場のX方向の成分をX側第1水準の一定磁場に加えた一定磁場を第1磁場発生器8Xに発生させ、差分の磁場のY方向の成分の磁場を第2磁場発生器8Yに発生させ、差分の磁場のZ方向の成分の磁場を第3磁場発生器8Zに発生させる(ステップS08に相当)。これにより、磁場発生器8(8X,8Y,8Z)により印加される人工磁場A(Ax,Ay,Az)と原磁場C(Cx,Cy,Cz)とが合成され、計測領域5にターゲット磁場として所定の三次元ベクトルの磁場を作ることができる。なお、第二工程と第三工程との順番が入れ替わってもよい。
As a third step, the X-direction component of the difference magnetic field between the target magnetic field C (C x , C y , C z ), which is a predetermined magnetic field formed in the
そして、第四工程として、第三工程を行っており第二工程が終了している期間に磁気センサー10から出力される信号に基づいて得られる計測値(二乗差W-)と第3交番磁場と第4交番磁場とを用いて、測定対象物が発生した磁場B(Bx,By,Bz)を測定する(ステップS11に相当)。これにより、計測領域5を所定の三次元ベクトルのターゲット磁場とした状態において、測定対象物が発生した磁場Bを測定することができる。
And as a 4th process, the measured value (square difference W < - >) and 3rd alternating magnetic field which are obtained based on the signal output from the
上述の第1実施例〜第4実施例に対しても、計測領域5に形成したい所定の磁場であるターゲット磁場と原磁場C(Cx,Cy,Cz)との差分の磁場のX,Y,Z方向の成分の磁場を発生させることにより、計測領域5にターゲット磁場として所定の磁場を作ることができる。なお、第6実施例において、外部から計測領域5に漏れ入っている原磁場C(Cx,Cy,Cz)を相殺すべく、ターゲット磁場をゼロ磁場とすれば、測定対象物が発生する磁場Bをベクトル量として正確に計測することができる。
Also for the first to fourth embodiments described above, the X of the magnetic field of the difference between the target magnetic field C (C x , C y , C z ) that is a predetermined magnetic field to be formed in the
[作用効果]
このように、本実施形態の磁場計測装置1によれば、アルカリ金属原子等の気体(ガス)が封入されたガスセル12に対して、一方向(Z軸方向)の照射光(プローブ光)の照射によって、計測領域5の磁場ベクトル(Cx,Cy,Cz)を算出することができる。
[Function and effect]
Thus, according to the magnetic
具体的には、照射光(プローブ光)の照射方向(Z軸方向)に直交するX、Y軸方向それぞれに、n個の固定値fi(i=1,・・,n)を取る振幅A0の時間関数f(t)である磁場Ax、及び、m個の固定値gj(j=1,・・,m)を取る振幅A0の時間関数g(t)である磁場Ayを印加する。そして、人工磁場Ax,Ayと、磁気センサー10から出力される信号に基づいて得られる計測値(二乗差W-)に相当するスピン偏極度Mxとの組み合わせであって、スピン偏極度Mxが異なる3以上の組み合わせを取得する。そして、これらの組み合わせ、及び、スピン偏極度Mxと、人工磁場Ax,Ayとを用いて、数式17から、磁場C(Cx,Cy,Cz)を算出する。
Specifically, the amplitude takes n fixed values f i (i = 1,..., N) in the X and Y axis directions orthogonal to the irradiation direction (Z axis direction) of the irradiation light (probe light). field a x is a time function f of a 0 (t), and, m-number of fixed values g j a (j = 1, ··, m ) times a function of the amplitude a 0 take g (t) field a Apply y . A combination of the artificial magnetic fields A x and A y and the spin polarization M x corresponding to the measured value (square difference W − ) obtained based on the signal output from the
[変形例]
なお、本発明の適用可能な実施形態は上述の実施例に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能なことは勿論である。
[Modification]
It should be noted that embodiments to which the present invention can be applied are not limited to the above-described embodiments, and can of course be changed as appropriate without departing from the spirit of the present invention.
(A)バイアス磁場Bb
上述の実施形態では、原磁場Cを打ち消すようなバイアス磁場Bbを磁場発生器8に発生させて、測定対象物が発生する磁場B(Bx,By,Bz)を測定することとしたが、バイアス磁場Bbを発生させずに測定を行うこととしてもよい。具体的には、先ず上述の実施形態と同様に、予め、測定対象物が無い状態で原磁場Cxを計測する。その後、測定対象物を磁気センサー10に接近させて当該測定対象物の発生する磁場を計測するが、そのとき、磁場発生器8に人工磁場Aのみを発生させる。この場合、計測領域5に印加される磁場は、原磁場Cと、測定対象物の磁場Bと、磁場発生器8による人工磁場Aとの合成磁場となる。従って、このときに数式17を用いて算出した磁場Cxから、予め測定した原磁場Cxを差し引いた磁場が、測定対象物が発生する磁場Bとなる。
(A) Bias magnetic field B b
In the above-described embodiment, the
(B)測定対象物
また、上述の実施形態では、測定対象物を人体とし、心臓からの磁場(心磁)や脳からの磁場(脳磁)を計測することとしたが、測定対象物はこれ以外でもよい。そして、測定対象物によっては、上述の実施形態のように磁気センサー10に測定対象物を接近させるのではなく、磁気センサー10を測定対象物に接近させて、当該測定対象物が発生する磁場を計測するようにすることも可能である。
(B) Measurement object In the above-described embodiment, the measurement object is a human body, and the magnetic field from the heart (magnetomagnetic field) or the magnetic field from the brain (magnetomagnetic field) is measured. Other than this may be used. And depending on the measurement object, the
1…磁場計測装置、5…計測領域、8…磁場発生器、8X…第1磁場発生器(ヘルムホルツコイル)、8Y…第2磁場発生器(ヘルムホルツコイル)、8Z…第3磁場発生器(ヘルムホルツコイル)、9…被検体(測定対象物)、10…磁気センサー、12…ガスセル(媒体)、14,15…光検出器、18…光源、30…演算制御部。
DESCRIPTION OF
Claims (17)
光を射出する光源と、
前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、
前記光学特性を検出する光検出器と、
前記第1方向の磁場を前記計測領域に印加する第1磁場発生器と、
を備えた磁場計測装置が、前記計測領域の磁場を計測するための磁場計測方法であって、
前記第1磁場発生器に、前記第1方向の磁場として、前記第1方向側第1水準の一定磁場、前記第1方向側第2水準の一定磁場、及び、前記第1方向側第3水準の一定磁場を発生させることと、
前記光検出器の検出結果、及び、前記第1方向の磁場を用いて、前記計測領域の磁場を算出することと、
を含む磁場計測方法。 The first direction, the second direction, and the third direction are orthogonal to each other,
A light source that emits light;
A medium through which the light passes along the third direction and changes an optical characteristic according to a magnetic field in a measurement region;
A photodetector for detecting the optical property;
A first magnetic field generator for applying a magnetic field in the first direction to the measurement region;
Is a magnetic field measurement method for measuring the magnetic field in the measurement region,
In the first magnetic field generator, as the first direction magnetic field, the first direction side first level constant magnetic field, the first direction side second level constant magnetic field, and the first direction side third level. Generating a constant magnetic field of
Calculating the magnetic field of the measurement region using the detection result of the photodetector and the magnetic field in the first direction;
Magnetic field measurement method including
請求項1に記載の磁場計測方法。 Calculating the magnetic field in the measurement region includes calculating a magnetization value indicating a component in the first direction of the magnetization vector of the medium based on a detection result of the photodetector, A 1-1 magnetization value when a constant magnetic field of 1 level is generated, a 2-1 magnetization value when a constant magnetic field of the second direction side second level is generated, and the first Calculating the magnetic field of the measurement region using the 3-1 magnetization value when the constant magnetic field of the third level on the one direction side is generated and the magnetic field in the first direction;
The magnetic field measurement method according to claim 1.
請求項2に記載の磁場計測方法。
The magnetic field measurement method according to claim 2.
請求項1〜3の何れか一項に記載の磁場計測方法。 At least one of the first direction side first level constant magnetic field, the first direction side second level constant magnetic field, and the first direction side third level constant magnetic field is a zero magnetic field,
The magnetic field measurement method according to any one of claims 1 to 3.
光を射出する光源と、
前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、
前記光学特性を検出する光検出器と、
前記第2方向の磁場を前記計測領域に印加する第2磁場発生器と、
を備えた磁場計測装置が、前記計測領域の磁場を計測するための磁場計測方法であって、
前記第2磁場発生器に、前記第2方向の磁場として、前記第2方向側第1水準の一定磁場、前記第2方向側第2水準の一定磁場、及び、前記第2方向側第3水準の一定磁場を発生させることと、
前記光検出器の検出結果、及び、前記第2方向の磁場を用いて、前記計測領域の磁場を算出することと、
を含む磁場計測方法。 The first direction, the second direction, and the third direction are orthogonal to each other,
A light source that emits light;
A medium through which the light passes along the third direction and changes an optical characteristic according to a magnetic field in a measurement region;
A photodetector for detecting the optical property;
A second magnetic field generator for applying a magnetic field in the second direction to the measurement region;
Is a magnetic field measurement method for measuring the magnetic field in the measurement region,
In the second magnetic field generator, the second direction side first level constant magnetic field, the second direction side second level constant magnetic field, and the second direction side third level as the second direction magnetic field. Generating a constant magnetic field of
Calculating the magnetic field of the measurement region using the detection result of the photodetector and the magnetic field in the second direction;
Magnetic field measurement method including
請求項5に記載の磁場計測方法。 Calculating the magnetic field of the measurement region includes calculating a magnetization value indicating a component in the first direction of the magnetization vector of the medium based on a detection result of the photodetector, The 1-1 magnetization value when a constant magnetic field of 1 level is generated, the 1-2 magnetization value when a constant magnetic field of the second direction side second level is generated, and the first Calculating the magnetic field in the measurement region using the first to third magnetization values when the third direction constant magnetic field is generated in the two directions and the magnetic field in the second direction;
The magnetic field measurement method according to claim 5.
請求項6に記載の磁場計測方法。
The magnetic field measurement method according to claim 6.
請求項5〜7の何れか一項に記載の磁場計測方法。 At least one of the second direction side first level constant magnetic field, the second direction side second level constant magnetic field, and the second direction side third level constant magnetic field is a zero magnetic field,
The magnetic field measurement method according to any one of claims 5 to 7.
光を射出する光源と、
前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、
前記光学特性を検出する光検出器と、
前記第1方向の磁場を前記計測領域に印加する第1磁場発生器と、
前記第2方向の磁場を前記計測領域に印加する第2磁場発生器と、
を備えた磁場計測装置が、前記計測領域の磁場を計測するための磁場計測方法であって、
前記第1磁場発生器に、前記第1方向の磁場として、前記第1方向側第1水準の一定磁場、及び、前記第1方向側第2水準の一定磁場、を発生させることと、
前記第2磁場発生器に、前記第2方向の磁場として、前記第2方向側第1水準の一定磁場、及び、前記第2方向側第2水準の一定磁場、を発生させることと、
前記光検出器の検出結果、前記第1方向の磁場、及び、前記第2方向の磁場を用いて、前記計測領域の磁場を算出することと、
を含む磁場計測方法。 The first direction, the second direction, and the third direction are orthogonal to each other,
A light source that emits light;
A medium through which the light passes along the third direction and changes an optical characteristic according to a magnetic field in a measurement region;
A photodetector for detecting the optical property;
A first magnetic field generator for applying a magnetic field in the first direction to the measurement region;
A second magnetic field generator for applying a magnetic field in the second direction to the measurement region;
Is a magnetic field measurement method for measuring the magnetic field in the measurement region,
Causing the first magnetic field generator to generate, as the first direction magnetic field, the first direction side first level constant magnetic field and the first direction side second level constant magnetic field;
Causing the second magnetic field generator to generate the second direction side first level constant magnetic field and the second direction side second level constant magnetic field as the second direction magnetic field;
Calculating the magnetic field of the measurement region using the detection result of the photodetector, the magnetic field in the first direction, and the magnetic field in the second direction;
Magnetic field measurement method including
1)前記第1方向側第1水準の一定磁場、及び、前記第2方向側第1水準の一定磁場が発生されているときの第1−1の磁化値と、前記第1方向側第1水準の一定磁場、及び、前記第2方向側第2水準の一定磁場が発生されているときの第1−2の磁化値と、前記第1方向側第2水準の一定磁場、及び、前記第2方向側第1水準の一定磁場が発生されているときの第2−1の磁化値と、前記第1方向側第2水準の一定磁場、及び、前記第2方向側第2水準の一定磁場が発生されているときの第2−2の磁化値と、のうちの3つ以上の磁化値と、
2)前記第1方向の磁場と、
3)前記第2方向の磁場と、
を用いて、前記計測領域の磁場を算出することである、
請求項9に記載の磁場計測方法。 Calculating the magnetic field of the measurement region includes calculating a magnetization value indicating a component in the first direction of the magnetization vector of the medium based on a detection result of the photodetector;
1) The first direction-side first level constant magnetic field and the second direction-side first level constant magnetic field when the first-direction magnetization value is generated; Level constant magnetic field, and the second direction side second level constant magnetic field when being generated, the first-second magnetization value, the first direction side second level constant magnetic field, and the first direction magnetic field The 2-1 magnetization value when the two-direction first level constant magnetic field is generated, the first direction side second level constant magnetic field, and the second direction side second level constant magnetic field. 2-2 of the magnetization value when three are generated, and three or more magnetization values thereof,
2) the magnetic field in the first direction;
3) the magnetic field in the second direction;
Is to calculate the magnetic field of the measurement region,
The magnetic field measurement method according to claim 9.
請求項10に記載の磁場計測方法。
The magnetic field measurement method according to claim 10.
請求項9〜11の何れか一項に記載の磁場計測方法。 One of the first direction side first level constant magnetic field and the first direction side second level constant magnetic field is a zero magnetic field, the second direction side first level constant magnetic field, and the first direction side magnetic field One of the two-direction second level constant magnetic fields is a zero magnetic field,
The magnetic field measurement method according to any one of claims 9 to 11.
光を射出する光源と、
前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、
前記光学特性を検出する光検出器と、
前記第1方向の磁場を前記媒体に印加する第1磁場発生器と、
前記第2方向の磁場を前記媒体に印加する第2磁場発生器と、
前記第3方向の磁場を前記媒体に印加する第3磁場発生器と、を備えた磁場計測装置が、前記計測領域の磁場を計測するための磁場計測方法であって、
前記第1磁場発生器に、前記第1方向の磁場として、第1方向側第1水準の一定磁場を発生させることと、
前記光検出器の検出結果、及び、前記第1方向の磁場を用いて、前記計測領域の磁場を原磁場として算出する第一工程と、
前記計測領域に測定対象物を配置する第二工程と、
前記計測領域に形成したい磁場であるターゲット磁場と前記原磁場との差分の磁場を、前記第1磁場発生器と前記第2磁場発生器と前記第3磁場発生器とに発生させる第三工程と、
前記第三工程を行っており前記第二工程が終了している期間に前記光検出器の検出結果を用いて、前記測定対象物が発生した磁場を測定する第四工程と、を含む磁場計測方法。 The first direction, the second direction, and the third direction are orthogonal to each other,
A light source that emits light;
A medium through which the light passes along the third direction and changes an optical characteristic according to a magnetic field in a measurement region;
A photodetector for detecting the optical property;
A first magnetic field generator for applying a magnetic field in the first direction to the medium;
A second magnetic field generator for applying a magnetic field in the second direction to the medium;
A magnetic field measurement apparatus comprising: a third magnetic field generator that applies a magnetic field in the third direction to the medium; and a magnetic field measurement method for measuring a magnetic field in the measurement region,
Causing the first magnetic field generator to generate a first level constant magnetic field as a magnetic field in the first direction;
A first step of calculating the magnetic field of the measurement region as an original magnetic field using the detection result of the photodetector and the magnetic field in the first direction;
A second step of placing a measurement object in the measurement region;
A third step of causing the first magnetic field generator, the second magnetic field generator, and the third magnetic field generator to generate a difference magnetic field between the target magnetic field and the original magnetic field, which are magnetic fields to be formed in the measurement region, ,
A fourth step of measuring a magnetic field generated by the measurement object using a detection result of the photodetector during a period when the third step is performed and the second step is completed. Method.
光を射出する光源と、
前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、
前記光学特性を検出する光検出器と、
前記第1方向の磁場を前記媒体に印加する第1磁場発生器と、
前記第2方向の磁場を前記媒体に印加する第2磁場発生器と、
前記第3方向の磁場を前記媒体に印加する第3磁場発生器と、を備えた磁場計測装置が、前記計測領域の磁場を計測するための磁場計測方法であって、
前記第1磁場発生器に、前記第1方向の磁場として、第1方向側第1水準の一定磁場を発生させることと、
前記光検出器の検出結果、及び、前記第1方向の磁場を用いて、前記計測領域の磁場を原磁場として算出する第一工程と、
前記計測領域に測定対象物を配置する第二工程と、
前記計測領域に形成したい磁場であるターゲット磁場と前記原磁場との差分の磁場の第1方向の成分を、前記第1方向側第1水準の一定磁場に加えた一定磁場を前記第1磁場発生器に発生させ、前記差分の磁場の第2方向の成分の磁場を前記第2磁場発生器に発生させ、前記差分の磁場の第3方向の成分の磁場を前記第3磁場発生器に発生させる第三工程と、
前記第三工程を行っており前記第二工程が終了している期間に前記光検出器の検出結果と第1方向側第4水準の一定磁場を用いて、前記測定対象物が発生した磁場を測定する第四工程と、を含む磁場計測方法。 The first direction, the second direction, and the third direction are orthogonal to each other,
A light source that emits light;
A medium through which the light passes along the third direction and changes an optical characteristic according to a magnetic field in a measurement region;
A photodetector for detecting the optical property;
A first magnetic field generator for applying a magnetic field in the first direction to the medium;
A second magnetic field generator for applying a magnetic field in the second direction to the medium;
A magnetic field measurement apparatus comprising: a third magnetic field generator that applies a magnetic field in the third direction to the medium; and a magnetic field measurement method for measuring a magnetic field in the measurement region,
Causing the first magnetic field generator to generate a first level constant magnetic field as a magnetic field in the first direction;
A first step of calculating the magnetic field of the measurement region as an original magnetic field using the detection result of the photodetector and the magnetic field in the first direction;
A second step of placing a measurement object in the measurement region;
The first magnetic field is generated by adding a component in the first direction of the difference between the target magnetic field and the original magnetic field to be formed in the measurement region to the first level constant magnetic field on the first direction side. And generating a magnetic field of the second direction component of the difference magnetic field in the second magnetic field generator and generating a magnetic field of the third direction component of the differential magnetic field in the third magnetic field generator. The third step;
The magnetic field generated by the measurement object is obtained by using the detection result of the photodetector and the constant magnetic field of the fourth level in the first direction during the period in which the third process is performed and the second process is completed. A magnetic field measurement method comprising: a fourth step of measuring.
光を射出する光源と、
前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、
前記光学特性を検出する光検出器と、
前記第1方向の磁場を前記計測領域に印加する第1磁場発生器と、
前記第1磁場発生器に、前記第1方向の磁場として、前記第1方向側第1水準の一定磁場、前記第1方向側第2水準の一定磁場、及び、前記第1方向側第3水準の一定磁場を発生させることと、前記光検出器の検出結果、及び、前記第1方向の磁場を用いて、前記計測領域の磁場を算出することと、を実行する演算制御部と、
を備えた磁場計測装置。 The first direction, the second direction, and the third direction are orthogonal to each other,
A light source that emits light;
A medium through which the light passes along the third direction and changes an optical characteristic according to a magnetic field in a measurement region;
A photodetector for detecting the optical property;
A first magnetic field generator for applying a magnetic field in the first direction to the measurement region;
In the first magnetic field generator, as the first direction magnetic field, the first direction side first level constant magnetic field, the first direction side second level constant magnetic field, and the first direction side third level. Generating a constant magnetic field, and calculating the magnetic field of the measurement region using the detection result of the photodetector and the magnetic field in the first direction,
Magnetic field measuring device equipped with.
光を射出する光源と、
前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、
前記光学特性を検出する光検出器と、
前記第2方向の磁場を前記計測領域に印加する第2磁場発生器と、
前記第2磁場発生器に、前記第2方向の磁場として、前記第2方向側第1水準の一定磁場、前記第2方向側第2水準の一定磁場、及び、前記第2方向側第3水準の一定磁場を発生させることと、前記光検出器の検出結果、及び、前記第2方向の磁場を用いて、前記計測領域の磁場を算出することと、を実行する演算制御部と、
を備えた磁場計測装置。 The first direction, the second direction, and the third direction are orthogonal to each other,
A light source that emits light;
A medium through which the light passes along the third direction and changes an optical characteristic according to a magnetic field in a measurement region;
A photodetector for detecting the optical property;
A second magnetic field generator for applying a magnetic field in the second direction to the measurement region;
In the second magnetic field generator, the second direction side first level constant magnetic field, the second direction side second level constant magnetic field, and the second direction side third level as the second direction magnetic field. Generating a constant magnetic field, and calculating the magnetic field of the measurement region using the detection result of the photodetector and the magnetic field in the second direction;
Magnetic field measuring device equipped with.
光を射出する光源と、
前記光が前記第3方向に沿って通過し、計測領域の磁場に応じて光学特性を変化させる媒体と、
前記光学特性を検出する光検出器と、
前記第1方向の磁場を前記計測領域に印加する第1磁場発生器と、
前記第2方向の磁場を前記計測領域に印加する第2磁場発生器と、
前記第1磁場発生器に、前記第1方向の磁場として、前記第1方向側第1水準の一定磁場、及び、前記第1方向側第2水準の一定磁場、を発生させることと、
前記第2磁場発生器に、前記第2方向の磁場として、前記第2方向側第1水準の一定磁場、及び、前記第2方向側第2水準の一定磁場、を発生させることと、
前記光検出器の検出結果、前記第1方向の磁場、及び、前記第2方向の磁場を用いて、前記計測領域の磁場を算出することと、を実行する演算制御部と、
を備えた磁場計測装置。 The first direction, the second direction, and the third direction are orthogonal to each other,
A light source that emits light;
A medium through which the light passes along the third direction and changes an optical characteristic according to a magnetic field in a measurement region;
A photodetector for detecting the optical property;
A first magnetic field generator for applying a magnetic field in the first direction to the measurement region;
A second magnetic field generator for applying a magnetic field in the second direction to the measurement region;
Causing the first magnetic field generator to generate, as the first direction magnetic field, the first direction side first level constant magnetic field and the first direction side second level constant magnetic field;
Causing the second magnetic field generator to generate the second direction side first level constant magnetic field and the second direction side second level constant magnetic field as the second direction magnetic field;
A calculation control unit that executes the detection result of the photodetector, the magnetic field in the first direction, and the magnetic field in the second direction using the magnetic field in the second direction;
Magnetic field measuring device equipped with.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510854441.2A CN105640552B (en) | 2014-12-02 | 2015-11-30 | Magnetic field measuring method and magnetic field measuring apparatus |
US14/955,732 US10254356B2 (en) | 2014-12-02 | 2015-12-01 | Magnetic field measurement method and magnetic field measurement apparatus |
EP15197517.4A EP3029481A1 (en) | 2014-12-02 | 2015-12-02 | Magnetic field measurement method and magnetic field measurement apparatus |
US16/260,510 US10725127B2 (en) | 2014-12-02 | 2019-01-29 | Magnetic field measurement method and magnetic field measurement apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014243867 | 2014-12-02 | ||
JP2014243867 | 2014-12-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016109667A true JP2016109667A (en) | 2016-06-20 |
JP6521248B2 JP6521248B2 (en) | 2019-05-29 |
Family
ID=56122136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015158756A Active JP6521248B2 (en) | 2014-12-02 | 2015-08-11 | Magnetic field measuring method and magnetic field measuring apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6521248B2 (en) |
CN (1) | CN105640552B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108392195A (en) * | 2018-01-23 | 2018-08-14 | 上海交通大学 | Active magnetic protected type laser pump (ing) magnetometer for magnetocardiogram measurement |
CN110927634B (en) * | 2019-12-06 | 2022-05-31 | 杭州量磁科技有限公司 | Flux weakening vector measurement method based on scalar magnetometer |
CN111025202B (en) * | 2019-12-23 | 2021-10-19 | 之江实验室 | Scanning type three-dimensional magnetic field detection method and device |
CN111000549A (en) * | 2019-12-30 | 2020-04-14 | 扬州大学 | Magnetocardiogram measuring system |
CN113876327B (en) * | 2021-11-22 | 2023-05-26 | 北京航空航天大学 | High-spatial-resolution magnetocardiogram imaging method based on SERF atomic magnetometer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5245280A (en) * | 1990-06-14 | 1993-09-14 | Commissariat A L'energie Atomique | Magnetic resonance magnetometer with multiplexed exciting windings |
JPH08131419A (en) * | 1994-11-14 | 1996-05-28 | Hitachi Medical Corp | Magnetic resonance imaging system |
JP2007167616A (en) * | 2005-11-28 | 2007-07-05 | Hitachi High-Technologies Corp | Magnetic field measuring system, and optical pumping fluxmeter |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6528993B1 (en) * | 1999-11-29 | 2003-03-04 | Korea Advanced Institute Of Science & Technology | Magneto-optical microscope magnetometer |
DE60314493T2 (en) * | 2003-01-10 | 2008-02-21 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Device for determining the location and orientation of an invasive device |
JP5640335B2 (en) * | 2009-06-26 | 2014-12-17 | セイコーエプソン株式会社 | Magnetic sensor |
JP6171355B2 (en) * | 2013-01-21 | 2017-08-02 | セイコーエプソン株式会社 | Magnetic field measuring device |
-
2015
- 2015-08-11 JP JP2015158756A patent/JP6521248B2/en active Active
- 2015-11-30 CN CN201510854441.2A patent/CN105640552B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5245280A (en) * | 1990-06-14 | 1993-09-14 | Commissariat A L'energie Atomique | Magnetic resonance magnetometer with multiplexed exciting windings |
JPH08131419A (en) * | 1994-11-14 | 1996-05-28 | Hitachi Medical Corp | Magnetic resonance imaging system |
JP2007167616A (en) * | 2005-11-28 | 2007-07-05 | Hitachi High-Technologies Corp | Magnetic field measuring system, and optical pumping fluxmeter |
Also Published As
Publication number | Publication date |
---|---|
JP6521248B2 (en) | 2019-05-29 |
CN105640552A (en) | 2016-06-08 |
CN105640552B (en) | 2020-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6597034B2 (en) | Magnetic field measurement method and magnetic field measurement apparatus | |
US10725127B2 (en) | Magnetic field measurement method and magnetic field measurement apparatus | |
CN103033781B (en) | NMR imaging equipment and magnetic resonance imaging method employing | |
JP6521248B2 (en) | Magnetic field measuring method and magnetic field measuring apparatus | |
CN105589048B (en) | Magnetic field measuring method and magnetic field measuring device | |
CN103033774B (en) | Magnetic resonance imaging device and magnetic resonance imaging method employing | |
US8760159B2 (en) | Method and apparatus for implementing EIT magnetometry | |
US10024931B2 (en) | Magnetic field measurement method and magnetic field measurement apparatus | |
JP5539099B2 (en) | Magnetic gradient meter and magnetic sensing method | |
JP2018004462A (en) | Magnetic field measurement device, adjustment method of magnetic field measurement device and method of manufacturing magnetic field measurement device | |
CN106166064A (en) | Magnetic measurement system | |
JP2009236598A (en) | Atomic magnetometer and magnetic force measuring method | |
JP2017191039A (en) | Magnetic field measurement device and calibration method for the same | |
US20180128886A1 (en) | Magnetic sensor and cell unit | |
Bevilacqua et al. | Electromagnetic induction imaging: signal detection based on tuned-dressed optical magnetometry | |
Jie et al. | Calibration of the coil constants and nonorthogonal angles of triaxial NMR coils based on in-situ EPR magnetometers | |
US10768250B2 (en) | Techniques for operating magnetic resonance imagers to crush returns from unwanted coherence pathways | |
JP2016102777A (en) | Magnetic field measuring method and magnetic field measuring device | |
JP6550925B2 (en) | Magnetic field measuring method and magnetic field measuring apparatus | |
Cohen et al. | Nano-NMR based flow meter | |
Qi et al. | Femtotesla spin-exchange relaxation-free atomic magnetometer with a multi-pass cell | |
Chen et al. | Research on Optimization Method of Beam Shaping Based on Ultra High Sensitivity Magnetic Field Measurement | |
US20150042330A1 (en) | Determining the form of rf pulses for selective excitation in magnetic resonance imaging | |
Liu et al. | Accurate Determination of Spin-Exchange Relaxation in a Self-Compensated Atomic Comagnetometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180613 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20180613 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20180919 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190416 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6521248 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |