JP2016102777A - Magnetic field measuring method and magnetic field measuring device - Google Patents

Magnetic field measuring method and magnetic field measuring device Download PDF

Info

Publication number
JP2016102777A
JP2016102777A JP2015107152A JP2015107152A JP2016102777A JP 2016102777 A JP2016102777 A JP 2016102777A JP 2015107152 A JP2015107152 A JP 2015107152A JP 2015107152 A JP2015107152 A JP 2015107152A JP 2016102777 A JP2016102777 A JP 2016102777A
Authority
JP
Japan
Prior art keywords
magnetic field
artificial
measurement region
measurement
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015107152A
Other languages
Japanese (ja)
Inventor
長坂 公夫
Kimio Nagasaka
公夫 長坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to US14/928,320 priority Critical patent/US9964604B2/en
Priority to CN201510756467.3A priority patent/CN105589048B/en
Priority to EP15193841.2A priority patent/EP3021128A1/en
Publication of JP2016102777A publication Critical patent/JP2016102777A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To propose a new approach to identify an original magnetic field situated within a measurement region.SOLUTION: A light source unit 2 radiates linear polarization light of which the travel direction is a z-axis direction and the vibration direction of the magnetic field is a y-axis direction to a gas cell 3 arranged in a measurement region. A polarimeter 4 detects optical characteristics of light that has passed through the gas cell 3. A magnetic field generator 7 applies an artificial magnetic field in which a z-axis component, a y-axis component, and an x-axis component orthogonal to the z-axis direction and y-axis direction can be varied to the measurement region. An arithmetic control unit 5 has the magnetic field generator 7 generate an artificial magnetic field including a plurality of combinations obtained by changing the x-axis, y-axis and z-axis components, and the z-axis component being periodically changed. The arithmetic control unit calculates a magnetization value on the basis of a detection result by the polarimeter 4, and calculates an original magnetic existing field within the measurement region using the artificial magnetic field when the ratio between the time change of the magnetization value and the time change of the z-axis component meets a prescribed extreme value condition.SELECTED DRAWING: Figure 1

Description

本発明は、磁場を計測する磁場計測方法等に関する。   The present invention relates to a magnetic field measurement method for measuring a magnetic field.

心臓からの磁場(心磁)や脳からの磁場(脳磁)といった生体が発する磁場(生体磁場)等の微弱な磁場を計測するための装置として、アルカリ金属原子が封入されたガスセルに直線偏光を照射し、偏光面の回転によって磁場を計測する光ポンピング式の磁気センサーを用いたものが知られている(例えば、特許文献1を参照)。   As a device for measuring weak magnetic fields such as the magnetic field generated by the living body (biomagnetic field) such as the magnetic field from the heart (magnetomagnetic field) and the magnetic field from the brain (magnetomagnetic field), linear polarization is applied to the gas cell containing alkali metal atoms. And using an optical pumping type magnetic sensor that measures the magnetic field by rotating the polarization plane is known (see, for example, Patent Document 1).

特開2013−108833号公報JP 2013-108833 A

光ポンピング式の磁気センサーを用いた微弱磁場の計測では、ガスセルが配置された計測領域に存在する例えば地磁気や都市ノイズ等の環境による磁場(原磁場と称す)をキャンセルする必要がある。原磁場が存在すると、その影響を受けて計測対象物が発生した磁場に対する感度が低下したり、計測精度の低下を招くためである。   In the measurement of a weak magnetic field using an optical pumping type magnetic sensor, it is necessary to cancel a magnetic field (referred to as an original magnetic field) due to an environment such as geomagnetism or urban noise existing in a measurement region where a gas cell is arranged. This is because the presence of the original magnetic field reduces the sensitivity to the magnetic field generated by the measurement object due to the influence, and causes a decrease in measurement accuracy.

本発明は、こうした事情に鑑みなされたものであり、計測領域に存在する原磁場を特定する新たな手法を提案することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to propose a new method for specifying an original magnetic field existing in a measurement region.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例]本適用例に係る磁場計測方法は、第一方向と第二方向と第三方向とは互いに直交し、直線偏光を出射する光源部と、計測領域に配置されて電場の振動方向が前記第二方向である前記直線偏光が前記第三方向に沿って照射され、磁場に応じて前記直線偏光の光学特性を変化させる媒体と、前記光学特性を検出する光学検出器と、前記計測領域に人工磁場を印加する磁場発生器と、を備えた磁場計測装置が、前記計測領域の磁場を計測する磁場計測方法であって、前記第一方向〜第三方向の人工磁場成分を変えた複数の組み合わせの人工磁場であり、前記第三方向の人工磁場成分を周期的に変化させた人工磁場を前記磁場発生器に発生させることと、前記媒体の磁化ベクトルの前記第一方向の成分である磁化値を前記光学検出器の検出結果に基づいて算出することと、前記磁化値の時間変化と前記第三方向の人工磁場成分の時間変化との比が所定の極値条件を満たしたときの前記人工磁場を用いて、前記計測領域に存在する原磁場を算出することと、を含むことを特徴とする。   [Application Example] In the magnetic field measurement method according to this application example, the first direction, the second direction, and the third direction are orthogonal to each other, the light source unit that emits linearly polarized light, and the vibration direction of the electric field disposed in the measurement region Is a medium that changes the optical characteristics of the linearly polarized light according to a magnetic field, an optical detector that detects the optical characteristics, and the measurement. A magnetic field measurement device comprising a magnetic field generator for applying an artificial magnetic field to a region is a magnetic field measurement method for measuring a magnetic field in the measurement region, wherein the artificial magnetic field components in the first direction to the third direction are changed. A plurality of combinations of artificial magnetic fields, wherein the magnetic field generator is generated by periodically changing the artificial magnetic field component in the third direction, and the first direction component of the magnetization vector of the medium is used. Detection of a certain magnetization value by the optical detector The measurement using the artificial magnetic field when the ratio between the time change of the magnetization value and the time change of the artificial magnetic field component in the third direction satisfies a predetermined extreme value condition. Calculating an original magnetic field existing in the region.

本適用例によれば、計測対象物から発する磁場が存在することになる計測領域における環境に由来する原磁場を求めることができる。   According to this application example, it is possible to obtain the original magnetic field derived from the environment in the measurement region where the magnetic field generated from the measurement target exists.

上記適用例に記載の磁場計測方法において、前記原磁場を算出することは、前記所定の極値条件を満たしたときの前記計測領域の磁場がゼロ磁場であることに基づいて、前記原磁場を算出することを含むことが好ましい。
この方法によれば、原磁場を正確に求めることができる。
In the magnetic field measurement method according to the application example, the calculation of the original magnetic field is based on the fact that the magnetic field in the measurement region when the predetermined extreme value condition is satisfied is a zero magnetic field. It is preferable to include calculating.
According to this method, the original magnetic field can be accurately obtained.

上記適用例に記載の磁場計測方法において、前記人工磁場を発生させることは、前記第三方向の人工磁場成分をカットオフ角振動数以下の周期で変化させることを含むことが好ましい。
この方法によれば、原磁場を簡便且つ正確に求めることができる。
In the magnetic field measurement method according to the application example, it is preferable that generating the artificial magnetic field includes changing the artificial magnetic field component in the third direction at a period equal to or less than a cutoff angular frequency.
According to this method, the original magnetic field can be obtained simply and accurately.

上記適用例に記載の磁場計測方法において、所定のターゲット磁場に対する前記原磁場の差分の磁場を、前記磁場発生器に発生させることと、前記計測領域に磁場を発生する計測対象物を接近させることと、前記差分の磁場を発生させている間の前記光学検出器の検出結果を用いて、前記計測対象物が発生した磁場を計測することと、を更に含むことが好ましい。
この方法によれば、計測領域における原磁場の影響を相殺して、計測対象物が発する磁場を正確に計測することができる。
In the magnetic field measurement method according to the application example, the magnetic field generator generates a magnetic field that is a difference of the original magnetic field with respect to a predetermined target magnetic field, and the measurement target that generates the magnetic field is brought close to the measurement region. And measuring the magnetic field generated by the measurement object using the detection result of the optical detector during the generation of the differential magnetic field.
According to this method, the influence of the original magnetic field in the measurement region can be offset and the magnetic field generated by the measurement object can be accurately measured.

[適用例]本適用例の磁場計測装置は、第一方向と第二方向と第三方向とは互いに直交し、直線偏光を出射する光源部と、電場の振動方向が前記第二方向である前記直線偏光が前記第三方向から照射され、照射された前記直線偏光を透過して、磁場に応じて光学特性が変化する計測領域に配置された媒体と、前記光学特性を検出する光学検出器と、前記第一方向、前記第二方向、前記第三方向の各成分を可変とする人工磁場を前記計測領域に印加する磁場発生器と、前記第一方向〜第三方向の人工磁場成分を変えた複数の組み合わせの人工磁場であり、前記第三方向の人工磁場成分を周期的に変化させた人工磁場を前記磁場発生器に発生させることと、前記媒体の磁化ベクトルの前記第一方向の成分である磁化値を前記光学検出器の検出結果に基づいて算出することと、前記磁化値の時間変化と前記第三方向の人工磁場成分の時間変化との比が所定の極値条件を満たしたときの前記人工磁場を用いて、前記計測領域に存在する原磁場を算出することを実行する演算制御部と、を備えたことを特徴とする。   [Application Example] In the magnetic field measurement apparatus of this application example, the first direction, the second direction, and the third direction are orthogonal to each other, the light source unit that emits linearly polarized light, and the vibration direction of the electric field are the second direction. A medium disposed in a measurement region that is irradiated with the linearly polarized light from the third direction, transmits the irradiated linearly polarized light, and changes in optical characteristics according to a magnetic field, and an optical detector that detects the optical characteristics A magnetic field generator that applies an artificial magnetic field that makes each component in the first direction, the second direction, and the third direction variable to the measurement region, and an artificial magnetic field component in the first direction to the third direction. A plurality of combinations of artificial magnetic fields, wherein the magnetic field generator is configured to generate an artificial magnetic field in which the artificial magnetic field component in the third direction is periodically changed, and the magnetization vector of the medium in the first direction The detection result of the optical detector for the magnetization value as a component Using the artificial magnetic field when the ratio between the time change of the magnetization value and the time change of the artificial magnetic field component in the third direction satisfies a predetermined extreme value condition, And an arithmetic control unit that executes calculation of the existing original magnetic field.

本適用例によれば、計測対象物から発する磁場が存在することになる計測領域における環境に由来する原磁場を求めることが可能な磁場計測装置を提供することができる。   According to this application example, it is possible to provide a magnetic field measurement apparatus capable of obtaining an original magnetic field derived from an environment in a measurement region where a magnetic field generated from a measurement target exists.

上記の課題を解決するための第1の発明は、第三方向に、電場の振動方向が前記第三方向に直交する第二方向である直線偏光を出射する光源部と、前記直線偏光を透過し、磁場に応じて光学特性が変化する計測領域に配置された媒体と、前記光学特性を検出する光学検出器と、前記第三方向、前記第二方向、前記第三方向及び前記第二方向に直交する第一方向の各成分を可変とする人工磁場を前記計測領域に印加する磁場発生器とを備えた装置が、前記計測領域の磁場を計測するための磁場計測方法であって、前記第一方向〜第三方向の人工磁場成分を変えた複数の組み合わせの人工磁場であり、前記第三方向の人工磁場成分を周期的に変化させた人工磁場を前記磁場発生器に発生させることと、前記媒体の磁化ベクトルの前記第一方向の成分である磁化値を前記光学検出器の検出結果に基づいて算出することと、前記磁化値の時間変化と前記第三方向の人工磁場成分の時間変化との比が所定の極値条件を満たしたときの前記人工磁場を用いて、前記計測領域に存在する原磁場を算出することと、を含む磁場計測方法である。   A first invention for solving the above-described problems is a light source unit that emits linearly polarized light that is a second direction in which the vibration direction of the electric field is orthogonal to the third direction in the third direction, and transmits the linearly polarized light. And a medium arranged in a measurement region whose optical characteristics change according to a magnetic field, an optical detector for detecting the optical characteristics, the third direction, the second direction, the third direction, and the second direction. A magnetic field measurement method for measuring a magnetic field in the measurement region, comprising: a magnetic field generator that applies an artificial magnetic field that varies each component in a first direction orthogonal to the measurement region; A plurality of combinations of artificial magnetic fields in which artificial magnetic field components in the first direction to the third direction are changed, and generating an artificial magnetic field in which the artificial magnetic field components in the third direction are periodically changed in the magnetic field generator; , Composition of the magnetization vector of the medium in the first direction. And the ratio between the time change of the magnetization value and the time change of the artificial magnetic field component in the third direction satisfies a predetermined extreme value condition. A magnetic field measurement method including calculating an original magnetic field existing in the measurement region using the artificial magnetic field.

また、他の発明として、第三方向に、電場の振動方向が前記第三方向に直交する第二方向である直線偏光を出射する光源部と、前記直線偏光を透過し、磁場に応じて光学特性が変化する計測領域に配置された媒体と、前記光学特性を検出する光学検出器と、前記第三方向、前記第二方向、前記第三方向及び前記第二方向に直交する第一方向の各成分を可変とする人工磁場を前記計測領域に印加する磁場発生器と、前記第一方向〜第三方向の人工磁場成分を変えた複数の組み合わせの人工磁場であり、前記第三方向の人工磁場成分を周期的に変化させた人工磁場を前記磁場発生器に発生させることと、前記媒体の磁化ベクトルの前記第一方向の成分である磁化値を前記光学検出器の検出結果に基づいて算出することと、前記磁化値の時間変化と前記第三方向の人工磁場成分の時間変化との比が所定の極値条件を満たしたときの前記人工磁場を用いて、前記計測領域に存在する原磁場を算出することとを実行する演算制御部と、を備えた磁場計測装置を構成することとしてもよい。   As another invention, in the third direction, a light source unit that emits linearly polarized light that is a second direction in which the vibration direction of the electric field is orthogonal to the third direction, and transmits the linearly polarized light and is optical in accordance with a magnetic field A medium arranged in a measurement region where the characteristics change, an optical detector for detecting the optical characteristics, and a first direction orthogonal to the third direction, the second direction, the third direction, and the second direction. A magnetic field generator that applies an artificial magnetic field that makes each component variable to the measurement region, and a plurality of combinations of artificial magnetic fields in which the artificial magnetic field components in the first direction to the third direction are changed, and an artificial magnetic field in the third direction Generate an artificial magnetic field in which the magnetic field component is periodically changed in the magnetic field generator, and calculate a magnetization value that is a component in the first direction of the magnetization vector of the medium based on a detection result of the optical detector. And temporal change of the magnetization value Calculation control for calculating the original magnetic field existing in the measurement region using the artificial magnetic field when the ratio of the artificial magnetic field component in the third direction to the time change satisfies a predetermined extreme value condition It is good also as comprising a magnetic field measuring device provided with a part.

この第1の発明等によれば、媒体が配置された計測領域に、第一方向〜第三方向の人工磁場成分を変えた複数の組み合わせの人工磁場であって、第三方向の人工磁場成分を周期的に変化させた人工磁場を発生させる。そして、複数の人工磁場毎に得られた検出結果に基づき媒体の磁化値を算出し、磁化値の時間変化と第三方向の人工磁場成分の時間変化との比が所定の極値条件を満たしたときの人工磁場を用いて計測領域に存在する原磁場を算出することができる。   According to the first invention and the like, a plurality of combinations of artificial magnetic fields in which the artificial magnetic field components in the first direction to the third direction are changed in the measurement region in which the medium is arranged, the artificial magnetic field components in the third direction Generates an artificial magnetic field that is periodically changed. Then, the magnetization value of the medium is calculated based on the detection results obtained for each of the plurality of artificial magnetic fields, and the ratio between the time change of the magnetization value and the time change of the artificial magnetic field component in the third direction satisfies a predetermined extreme value condition. The original magnetic field existing in the measurement region can be calculated using the artificial magnetic field.

また、第2の発明は、第1の発明において、前記原磁場を算出することは、前記所定の極値条件を満たしたときの前記計測領域の磁場がゼロ磁場であることに基づいて、前記原磁場を算出することを含む、磁場計測方法である。   Further, in a second aspect based on the first aspect, the calculation of the original magnetic field is based on the fact that the magnetic field in the measurement region when the predetermined extreme value condition is satisfied is a zero magnetic field. A magnetic field measurement method including calculating an original magnetic field.

この第2の発明によれば、極値条件を満たしたときの計測領域の磁場がゼロ磁場であることに基づいて、計測領域に存在する原磁場を算出することができる。   According to the second aspect of the invention, the original magnetic field existing in the measurement region can be calculated based on the fact that the magnetic field in the measurement region when the extreme value condition is satisfied is a zero magnetic field.

また、第3の発明は、第1又は第2の発明において、前記人工磁場を発生させることは、前記第三方向の人工磁場成分をカットオフ角振動数以下の周期で変化させることを含む、磁場計測方法である。   Further, in a third invention, in the first or second invention, generating the artificial magnetic field includes changing the artificial magnetic field component in the third direction at a period equal to or less than a cutoff angular frequency. This is a magnetic field measurement method.

この第3の発明によれば、第三方向の人工磁場成分をカットオフ角振動数以下の周期で変化させて人工磁場を発生させ、原磁場を算出することができる。   According to the third aspect of the invention, it is possible to calculate the original magnetic field by generating the artificial magnetic field by changing the artificial magnetic field component in the third direction at a period equal to or less than the cutoff angular frequency.

また、第4の発明は、第1〜第3の何れかの発明において、所定のターゲット磁場に対する前記原磁場の差分の磁場を、前記磁場発生器に発生させることと、前記計測領域に磁場を発生する計測対象物を接近させることと、前記差分の磁場を発生させている間の前記光学検出器の検出結果を用いて、前記計測対象物が発生した磁場を計測することと、を更に含む磁場計測方法である。   According to a fourth invention, in any one of the first to third inventions, the magnetic field generator generates a magnetic field that is a difference of the original magnetic field with respect to a predetermined target magnetic field, and a magnetic field is generated in the measurement region. Further including approaching a generated measurement object and measuring a magnetic field generated by the measurement object using a detection result of the optical detector while generating the differential magnetic field. This is a magnetic field measurement method.

この第4の発明によれば、計測領域に存在する原磁場を相殺して計測領域に所定のターゲット磁場を形成した上で、計測対象物を計測領域に接近させて計測対象物が発する磁場を計測することができる。   According to the fourth aspect of the present invention, the original magnetic field existing in the measurement region is canceled to form a predetermined target magnetic field in the measurement region, and then the magnetic field generated by the measurement target is brought close to the measurement region. It can be measured.

磁場計測装置の全体構成例を示す図。The figure which shows the example of whole structure of a magnetic field measuring apparatus. 光源部、ガスセル、及び偏光計の配置関係の概略を示す図。The figure which shows the outline of the arrangement | positioning relationship of a light source part, a gas cell, and a polarimeter. 偏光面の回転を説明する図。The figure explaining rotation of a polarization plane. アライメント方位角とプローブ光の検出結果との関係を示す図。The figure which shows the relationship between alignment azimuth and the detection result of probe light. 微分値∂Mx/∂Bzの3次元の分布を示す図。It shows a three-dimensional distribution of the differential values ∂M x / ∂B z. 微分値∂Mx/∂Bzの2次元の分布を示す図。It shows a two-dimensional distribution of the differential values ∂M x / ∂B z. 計測領域の磁場の座標系と、人工磁場の座標系との関係を示す図。The figure which shows the relationship between the coordinate system of the magnetic field of a measurement area | region, and the coordinate system of an artificial magnetic field. 磁場形成処理の処理手順を示すフローチャート。The flowchart which shows the process sequence of a magnetic field formation process.

以下、本発明の磁場計測方法及び磁場計測装置を実施するための一形態について説明する。なお、以下説明する実施形態によって本発明が限定されるものではなく、本発明を適用可能な形態が以下の実施形態に限定されるものでもない。また、図面の記載において、同一部分には同一の符号を付す。   Hereinafter, an embodiment for carrying out the magnetic field measurement method and the magnetic field measurement apparatus of the present invention will be described. It should be noted that the present invention is not limited to the embodiments described below, and modes to which the present invention can be applied are not limited to the following embodiments. In the description of the drawings, the same parts are denoted by the same reference numerals.

[全体構成]
図1は、本実施形態の磁場計測装置1の全体構成例を示す図である。また、図2は、磁場計測装置1を構成する光源部2、ガスセル3、及び偏光計4の配置関係の概略を示す図である。本実施形態の磁場計測装置1は、心磁を計測する心磁計や脳磁を計測する脳磁計に用いられる。この磁場計測装置1には、光ポンピング式の磁気センサーとして、ポンプ光の照射をプローブ光の照射によって兼ねるいわゆるワンビーム方式の磁気センサーが組み込まれ、非線形磁気光学回転(Nonlinear Magneto Optical Rotation:NMOR)を利用して磁場の計測を行う。なお、ワンビーム方式のものに限らず、ポンプ光を照射するための光源部とプローブ光を照射するための光源部とを分離した、いわゆるツービーム方式の構成としてもよい。
[overall structure]
FIG. 1 is a diagram illustrating an overall configuration example of a magnetic field measurement apparatus 1 according to the present embodiment. FIG. 2 is a diagram showing an outline of the arrangement relationship of the light source unit 2, the gas cell 3, and the polarimeter 4 constituting the magnetic field measuring apparatus 1. The magnetic field measuring apparatus 1 of this embodiment is used for a magnetocardiograph that measures a magnetocardiograph or a magnetoencephalograph that measures a magnetoencephalogram. The magnetic field measuring apparatus 1 incorporates a so-called one-beam type magnetic sensor that combines pump light irradiation with probe light irradiation as an optical pumping type magnetic sensor, and performs non-linear magneto-optical rotation (NMOR). Use this to measure magnetic fields. Note that the configuration is not limited to the one-beam type, and a so-called two-beam type configuration in which a light source unit for irradiating pump light and a light source unit for irradiating probe light may be separated.

図1に示すように、磁場計測装置1は、光源部2と、ガスセル3と、光学検出器としての偏光計4と、演算制御部5と、磁場発生器7とを備える。ここで、図2に示すように、光源部2によってポンプ光及びプローブ光として照射される直線偏光(照射光)の進行方向である第三方向をz軸方向、この直線偏光の電場の振動方向である第二方向をy軸方向、z軸方向及びy軸方向に直交する第一方向をx軸方向と定義し、光源部2、ガスセル3、偏光計4が配置される空間を直交3軸のxyz座標空間として表す。   As shown in FIG. 1, the magnetic field measurement apparatus 1 includes a light source unit 2, a gas cell 3, a polarimeter 4 as an optical detector, an arithmetic control unit 5, and a magnetic field generator 7. Here, as shown in FIG. 2, the third direction, which is the traveling direction of linearly polarized light (irradiated light) irradiated by the light source unit 2 as pump light and probe light, is the z-axis direction, and the vibration direction of the electric field of this linearly polarized light The second direction is defined as the y-axis direction, the first direction orthogonal to the z-axis direction and the y-axis direction is defined as the x-axis direction, and the space in which the light source unit 2, the gas cell 3 and the polarimeter 4 are disposed is defined as three orthogonal axes. Xyz coordinate space.

光源部2は、光源21と偏光板23とで構成され、z軸方向に伝播し、y軸方向に沿って振動する直線偏光を照射光として出射する。光源21は、ガスセル3に封入された気体原子の超微細構造準位の遷移に対応した周波数のレーザービームを発生させるレーザー発生装置である。具体的には、レーザービームの波長は、ガスセル3内の気体原子(例えばセシウムやカリウム、ルビジウム等)のD1線の超微細構造量子数FとF´(=F−1)間の状態遷移に相当する波長である。偏光板23は、光源21からのレーザービームを所定の方向に偏光させ、直線偏光にする素子である。光源部2から出射された照射光は、例えば光ファイバー等により導かれてガスセル3に照射される。   The light source unit 2 includes a light source 21 and a polarizing plate 23, and emits linearly polarized light that propagates in the z-axis direction and vibrates along the y-axis direction as irradiation light. The light source 21 is a laser generator that generates a laser beam having a frequency corresponding to the transition of the ultrafine structure level of gas atoms enclosed in the gas cell 3. Specifically, the wavelength of the laser beam depends on the state transition between the ultrafine structure quantum number F and F ′ (= F−1) of the D1 line of a gas atom (for example, cesium, potassium, rubidium, etc.) in the gas cell 3. Corresponding wavelength. The polarizing plate 23 is an element that polarizes the laser beam from the light source 21 in a predetermined direction to form linearly polarized light. Irradiation light emitted from the light source unit 2 is guided by, for example, an optical fiber or the like and is applied to the gas cell 3.

ガスセル3は、カリウム(K)やルビジウム(Rb)、セシウム(Cs)等のアルカリ金属原子が気体の状態で封入されたガラス製の素子である。アルカリ金属原子は、光源部2からの照射光(ポンプ光)により励起(光ポンピング)され、ガスセル3を透過する光の偏光面を磁場の強さに応じて回転させる媒体としての性質を有する。このガスセル3は、図1中に二点鎖線で示す磁気シールド8の内部に配置される。磁気シールド8は、一定以上の磁気を遮蔽し、磁気シールド8の外部に比べて磁気を低減させた空間を形成するためのものであり、計測に際し、磁気シールド8の内部においてガスセル3が配置された計測領域(ガスセル3の周辺領域)に心臓や脳等の計測対象物としての被検者の部位が位置付けられる。後述する通り、計測領域は、磁気シールド8内に設置された磁場発生器7によって所定のターゲット磁場(例えばゼロ磁場)にすることができる。磁場計測装置1は、計測領域の磁場をターゲット磁場の状態とした後、被検者の測定部位を当該計測領域に配置することで、測定部位が発する磁場を測定する。従って、磁場計測装置1には、磁場形成装置が含まれているとも言える。なお、ガスセル3内の気体原子は磁場の計測時に気体の状態であればよく、常時気体の状態でなくてもよい。また、ガスセル3の材質は、ガラスに限らず照射光を透過する材質であればよく、樹脂等であってもよい。本明細書では、ガスセル3など計測領域に存在する磁場を計測領域の磁場(Bx,By,Bz)と称する。 The gas cell 3 is a glass element in which alkali metal atoms such as potassium (K), rubidium (Rb), and cesium (Cs) are sealed in a gaseous state. The alkali metal atoms are excited (optically pumped) by the irradiation light (pump light) from the light source unit 2 and have a property as a medium that rotates the polarization plane of the light transmitted through the gas cell 3 according to the strength of the magnetic field. The gas cell 3 is disposed inside a magnetic shield 8 indicated by a two-dot chain line in FIG. The magnetic shield 8 is for shielding a certain amount of magnetism and forming a space in which the magnetism is reduced compared to the outside of the magnetic shield 8. For measurement, the gas cell 3 is disposed inside the magnetic shield 8. The region of the subject as the measurement object such as the heart or the brain is positioned in the measured region (the peripheral region of the gas cell 3). As described later, the measurement region can be set to a predetermined target magnetic field (for example, zero magnetic field) by the magnetic field generator 7 installed in the magnetic shield 8. The magnetic field measurement apparatus 1 measures the magnetic field generated by the measurement region by placing the measurement region of the subject in the measurement region after setting the magnetic field of the measurement region to the state of the target magnetic field. Therefore, it can be said that the magnetic field measuring device 1 includes a magnetic field forming device. In addition, the gas atom in the gas cell 3 should just be a gaseous state at the time of the measurement of a magnetic field, and does not need to be always a gaseous state. Further, the material of the gas cell 3 is not limited to glass but may be a material that transmits the irradiation light, and may be a resin or the like. In the present specification, a magnetic field existing in a measurement region such as the gas cell 3 is referred to as a magnetic field (B x , B y , B z ) in the measurement region.

偏光計4は、偏光分離器41と2つの光検出器431,433とで構成され、ガスセル3を透過した照射光(プローブ光)を互いに直交する2つの偏光成分に分離し、それぞれの光強度を検出する。偏光分離器41は、ガスセル3からの照射光を、直交するα軸及びβ軸(図3を参照)の各軸方向の成分に分離する素子である。分離された一方の偏光成分は光検出器431に導かれ、他方の偏光成分は光検出器433に導かれる。この偏光分離器41は、例えばウォラストンプリズムや偏光ビームスプリッター等で構成される。光検出器431,433は、偏光分離器41によって分離された偏光成分を受光し、受光光量に応じた信号を発生して演算制御部5の信号処理部51に出力する。   The polarimeter 4 includes a polarization separator 41 and two photodetectors 431 and 433, and separates the irradiation light (probe light) transmitted through the gas cell 3 into two polarization components orthogonal to each other, and the respective light intensities. Is detected. The polarization separator 41 is an element that separates the irradiation light from the gas cell 3 into components in the directions of the orthogonal α axis and β axis (see FIG. 3). One separated polarization component is guided to the photodetector 431, and the other polarization component is guided to the photodetector 433. The polarization separator 41 is composed of, for example, a Wollaston prism or a polarization beam splitter. The photodetectors 431 and 433 receive the polarization component separated by the polarization separator 41, generate a signal corresponding to the amount of received light, and output the signal to the signal processing unit 51 of the arithmetic control unit 5.

演算制御部5は、CPU(Central Processing Unit)等のマイクロプロセッサー、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)メモリー等を用いて構成され、装置各部の動作を統括的に制御する。この演算制御部5は、信号処理部51と、磁場算出部53と、補正磁場設定部55とを備え、計測領域に所定のターゲット磁場(例えばゼロ磁場)を形成するための磁場形成処理(図8を参照)を行う。また、演算制御部5は、フラッシュメモリーやハードディスク等の記憶部を有し、プログラムを実行することで磁場形成処理を実現する構成とするならば、当該プログラムを当該記憶部に読み出し可能に記憶する。   The arithmetic control unit 5 is configured using a microprocessor such as a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit) memory, and the like, and comprehensively controls the operation of each unit of the apparatus. The arithmetic control unit 5 includes a signal processing unit 51, a magnetic field calculation unit 53, and a correction magnetic field setting unit 55, and forms a predetermined target magnetic field (for example, zero magnetic field) in the measurement region (see FIG. 8). Further, the arithmetic control unit 5 has a storage unit such as a flash memory or a hard disk, and stores the program in the storage unit in a readable manner if the configuration is such that the magnetic field forming process is realized by executing the program. .

また、演算制御部5には、必要な情報を入力するための入力部61や、磁場の計測結果等を表示するための表示部63が適宜接続される。入力部61は、ボタンスイッチやレバースイッチ、ダイヤルスイッチ等の各種スイッチ、タッチパネル、キーボード、マウス等の入力装置で構成される。表示部63は、LCD(Liquid Crystal Display)やELディスプレイ(Electroluminescence display)等の表示装置で構成される。   In addition, an input unit 61 for inputting necessary information and a display unit 63 for displaying magnetic field measurement results and the like are appropriately connected to the arithmetic control unit 5. The input unit 61 includes various switches such as button switches, lever switches, and dial switches, and input devices such as a touch panel, a keyboard, and a mouse. The display unit 63 includes a display device such as an LCD (Liquid Crystal Display) or an EL display (Electroluminescence display).

信号処理部51は、プローブ光がガスセル3を透過することで回転した偏光面の回転角度を算出することによって、計測領域の磁場を計測する。この信号処理部51は、光検出器431,433からの信号を処理し、次式(1),(2)に従ってα軸及びβ軸の各軸方向の成分の二乗和W+と二乗差W-とを算出する。Eαはα軸方向の成分の光強度を表し、Eβはβ軸方向の成分の光強度を表す。 The signal processing unit 51 measures the magnetic field in the measurement region by calculating the rotation angle of the polarization plane rotated by the probe light passing through the gas cell 3. The signal processing unit 51 processes the signals from the photodetectors 431 and 433, and according to the following equations (1) and (2), the square sum W + and the square difference W of the components in the respective axial directions of the α axis and the β axis. - to calculate the and. E α represents the light intensity of the component in the α-axis direction, and E β represents the light intensity of the component in the β-axis direction.

磁場算出部53は、信号処理部51が算出した二乗差W-の振幅が所定の極値条件を満たしたときの人工磁場を用いて、計測領域に存在する原磁場を算出する。この磁場算出部53は、人工磁場制御部531と、振幅検出部533とを有する。人工磁場制御部531は、磁場発生器7を制御し、x軸、y軸、及びz軸の各軸方向の人工磁場成分を変えた複数の組み合わせの人工磁場であって、z軸方向の人工磁場成分(z軸成分と称す)に所定の交流成分を重畳させることでz軸成分を周期的に変化させた人工磁場を、計測領域に順次発生させる。振幅検出部533は、信号処理部51が算出した二乗差W-の時間変化からその振幅及び位相を抽出することによって、二乗差W-の時間変化とz軸成分の時間変化との比を検出する。この振幅検出部533は、ロックインアンプ等を用いて構成できる。 The magnetic field calculation unit 53 calculates an original magnetic field existing in the measurement region using an artificial magnetic field when the amplitude of the square difference W calculated by the signal processing unit 51 satisfies a predetermined extreme value condition. The magnetic field calculation unit 53 includes an artificial magnetic field control unit 531 and an amplitude detection unit 533. The artificial magnetic field control unit 531 controls the magnetic field generator 7 and is a plurality of combinations of artificial magnetic fields obtained by changing the artificial magnetic field components in the x-axis, y-axis, and z-axis directions. An artificial magnetic field in which the z-axis component is periodically changed by superimposing a predetermined AC component on the magnetic field component (referred to as a z-axis component) is sequentially generated in the measurement region. The amplitude detection unit 533 detects the ratio between the time change of the square difference W − and the time change of the z-axis component by extracting the amplitude and phase from the time change of the square difference W calculated by the signal processing unit 51. To do. The amplitude detector 533 can be configured using a lock-in amplifier or the like.

補正磁場設定部55は、磁場算出部53が算出した原磁場を相殺する補正磁場を設定し、磁場発生器7を制御して計測領域に補正磁場を発生させることで計測領域にゼロ磁場を形成する。   The correction magnetic field setting unit 55 sets a correction magnetic field that cancels the original magnetic field calculated by the magnetic field calculation unit 53, and controls the magnetic field generator 7 to generate a correction magnetic field in the measurement region, thereby forming a zero magnetic field in the measurement region. To do.

磁場発生器7は、x軸、y軸、及びz軸の各軸方向に磁場を印加するための3軸ヘルムホルツコイルで構成され、磁気シールド8の内部においてガスセル3を挟んで各軸方向に1組ずつ配置された一対のコイルと、これらコイルに電流を供給する電流供給部とを含む。磁場発生器7は、計測領域に任意の3次元方向の磁場を発生させることができる。本明細書では、磁場発生器7により発生された磁場を人工磁場(Ax,Ay,Az)と称する。 The magnetic field generator 7 is composed of a three-axis Helmholtz coil for applying a magnetic field in each of the x-axis, y-axis, and z-axis directions, and 1 in each axis direction with the gas cell 3 sandwiched inside the magnetic shield 8. It includes a pair of coils arranged in pairs, and a current supply unit that supplies current to these coils. The magnetic field generator 7 can generate a magnetic field in an arbitrary three-dimensional direction in the measurement region. In this specification, the magnetic field generated by the magnetic field generator 7 is referred to as an artificial magnetic field (A x , A y , A z ).

なお、z軸方向は、本発明における第三方向であるが、図2に示すように照射光(ポンプ光)は光源部2から必ずしもz軸方向に出射されることに限定されない。出射後にガスセル3に対してz軸方向から照射光(ポンプ光)が入射すればよい。   The z-axis direction is the third direction in the present invention, but the irradiation light (pump light) is not necessarily emitted from the light source unit 2 in the z-axis direction as shown in FIG. Irradiation light (pump light) may be incident on the gas cell 3 from the z-axis direction after emission.

[原理]
以上のように構成される磁場計測装置1において、光源部2からのポンプ光がガスセル3に照射されると、ガスセル3内の気体原子がスピン偏極する。このスピン偏極によって超微細構造量子数FからF´(=F−1)にエネルギーが遷移した時に生じる磁気モーメントの確率分布は、その直線偏光の振動方向であるy軸方向に沿って伸びる楕円体形状となる。この偏った確率分布を「アライメント」といい、アライメントを生じさせることを「光ポンピングする」という。計測領域がゼロ磁場の場合、生じたアライメントはポンプ光の振動方向であるy軸方向に沿ったままであるが、計測領域に計測対象物である例えば生体が発する心磁や脳磁等の磁場が印加されると、アライメントは歳差運動を行う。その結果、直線偏光の偏光面は、その進行方向であるz軸方向を回転軸として、計測領域の磁場に応じた角度で回転する。
[principle]
In the magnetic field measurement apparatus 1 configured as described above, when the pump light from the light source unit 2 is irradiated to the gas cell 3, the gas atoms in the gas cell 3 are spin-polarized. The probability distribution of the magnetic moment generated when the energy transitions from the hyperfine quantum number F to F ′ (= F−1) by this spin polarization is an ellipse extending along the y-axis direction that is the vibration direction of the linearly polarized light. It becomes a body shape. This biased probability distribution is called “alignment”, and the occurrence of alignment is called “optical pumping”. When the measurement region is a zero magnetic field, the generated alignment remains along the y-axis direction that is the vibration direction of the pump light, but a magnetic field such as a magnetocardiogram or a magnetoencephalogram generated by a living body, which is a measurement object, is present in the measurement region. When applied, the alignment precesses. As a result, the polarization plane of the linearly polarized light rotates at an angle corresponding to the magnetic field in the measurement region, with the z-axis direction as the traveling direction being the rotation axis.

図3は、偏光面の回転を説明する図である。上記したように、アライメントは、計測領域の磁場(ガスセル3が受ける磁場)に応じて歳差運動する。そして、ポンプ光による光ポンピング作用と、気体原子がガスセル3の内壁と衝突する等して起こる緩和作用とが加わることによって、アライメントは、図3中にハッチングを付した楕円体で示すように、y軸に対して磁場の強さに応じた角度(θ)だけ回転した配置で定常状態となる。   FIG. 3 is a diagram for explaining the rotation of the polarization plane. As described above, the alignment precesses according to the magnetic field in the measurement region (the magnetic field received by the gas cell 3). Then, by adding an optical pumping action by the pump light and a relaxation action that occurs when gas atoms collide with the inner wall of the gas cell 3, the alignment is shown by hatched ellipsoids in FIG. A steady state is obtained with the arrangement rotated by an angle (θ) corresponding to the strength of the magnetic field with respect to the y-axis.

このアライメントにより、ガスセル3を通過するプローブ光は線形二色性の作用を受ける。線形二色性とは、アライメントに沿った方向(Θpの方向)と、アライメントに垂直な方向(Θsの方向)とで直線偏光の透過率が異なる性質をいう。具体的には、アライメントに沿った方向よりもアライメントに垂直な方向の成分が多く吸収されるため、プローブ光の偏光面は、アライメントに沿った方向に近づくように回転する。 By this alignment, the probe light passing through the gas cell 3 is subjected to the action of linear dichroism. Linear dichroism refers to the property that the transmittance of linearly polarized light differs between the direction along the alignment (the direction of Θ p ) and the direction perpendicular to the alignment (the direction of Θ s ). Specifically, since the component in the direction perpendicular to the alignment is absorbed more than the direction along the alignment, the polarization plane of the probe light rotates so as to approach the direction along the alignment.

例えば、本実施形態では、ガスセル3に入射するプローブ光は、電場の振動方向がy軸方向であるベクトルE0の直線偏光であり、アライメントは、プローブ光のうちのΘp方向の成分を透過率tpで透過し、Θs方向の成分を透過率tsで透過する。線形二色性によりtp>tsであるため、ガスセル3を透過したプローブ光の偏光面はΘp方向に近づくように回転し、ベクトルE1に沿ったものとなる。具体的に、ベクトルE0のアライメントに沿った成分をE0Pと表記し、ベクトルE0のアライメントと直線偏光の進行方向とに垂直な方向に沿った成分をE0sと表記し、ベクトルE1のアライメントに沿った成分をE1Pと表記し、ベクトルE1のアライメントと直線偏光の進行方向とに垂直な方向に沿った成分をE1sと表記した場合、E1P=tp0PとE1s=ts0sとの関係にある。 For example, in the present embodiment, the probe light incident on the gas cell 3 is linearly polarized light of the vector E 0 whose electric field oscillation direction is the y-axis direction, and the alignment transmits the component in the Θ p direction of the probe light. The light is transmitted at a rate t p and the component in the Θ s direction is transmitted at the transmittance t s . Since t p > t s due to linear dichroism, the polarization plane of the probe light transmitted through the gas cell 3 rotates so as to approach the Θ p direction, and is along the vector E 1 . Specifically, the component along the alignment of the vector E 0 is denoted as E 0P , the component along the direction perpendicular to the alignment of the vector E 0 and the traveling direction of the linearly polarized light is denoted as E 0s, and the vector E 1 the components along the alignment is denoted by E 1P, if a component along the direction perpendicular to the traveling direction of alignment and the linearly polarized light vector E 1 was expressed as E 1s, E 1P = t p E 0P and E 1s = t s E 0s

アライメントに沿った方向と、プローブ光の振動方向とが成す角(以下、「アライメント方位角」という。)をθとすると、ベクトルE1のΘp方向及びΘs方向の各成分は次式(3)によって算出され、(α,β)の座標系における各成分は、次式(4)によって算出される。 If the angle formed by the direction along the alignment and the vibration direction of the probe light (hereinafter referred to as “alignment azimuth angle”) is θ, each component of the vector E 1 in the Θ p direction and the Θ s direction is 3), each component in the coordinate system (α, β) is calculated by the following equation (4).

図4は、アライメント方位角θとプローブ光の検出結果との関係を示す図である。図4において二乗差W-の値に着目すると、二乗差W-は、アライメント方位角θに対して180度を周期として振動する。そして、二乗差W-は、アライメント方位角θが−45度から45度の範囲では、アライメント方位角θに対してほぼ線形変化しているため、高い感度が得られる。また、その線形変化の中心が0度であって、その線形変化の範囲が他(二乗和W+など)と比べて広いため、計測領域に生じる磁場を計測するには好適である。心磁や脳磁等の生体磁場は微弱であり、アライメント方位角θは小さいことから、二乗差W-を用いれば偏光面の回転角度を高感度に観測できる。但し、上記したように、計測領域に原磁場が存在するとその影響を受けて感度が低下し、計測精度の低下を招く。本実施形態では、磁場の計測は、磁気シールド8によって計測領域への磁場の侵入が抑制された環境下で行われるが、磁気シールド8によっては、磁場の侵入を完全には遮蔽できない。完全に磁気を遮蔽できる磁気シールドは、装置が大がかりであり、費用も高額な上、設置コストや運用コストも高い。そこで、本実施形態では、磁気シールド8を用いることとする。但し、そもそも原磁場が低い場合や原磁場が安定している場合には、磁気シールド8すら用いずに本実施形態を構成することもできる。 FIG. 4 is a diagram illustrating the relationship between the alignment azimuth angle θ and the detection result of the probe light. Focusing on the value, the square difference W - - squared difference W 4 vibrates a cycle of 180 degrees with respect to the alignment azimuth theta. Since the square difference W changes substantially linearly with respect to the alignment azimuth angle θ when the alignment azimuth angle θ is in the range of −45 degrees to 45 degrees, high sensitivity can be obtained. Moreover, since the center of the linear change is 0 degree and the range of the linear change is wider than others (such as the sum of squares W + ), it is suitable for measuring the magnetic field generated in the measurement region. Since the biomagnetic field such as the magnetocardiogram and the magnetoencephalogram is weak and the alignment azimuth angle θ is small, the rotation angle of the polarization plane can be observed with high sensitivity by using the square difference W . However, as described above, if an original magnetic field is present in the measurement region, the sensitivity is affected and the measurement accuracy is reduced. In the present embodiment, the magnetic field is measured in an environment where the magnetic shield 8 suppresses the magnetic field from entering the measurement region. However, the magnetic shield 8 cannot completely shield the magnetic field from entering. A magnetic shield that can completely shield magnetism is a large-scale device, is expensive, and is expensive to install and operate. Therefore, in this embodiment, the magnetic shield 8 is used. However, in the first place, when the original magnetic field is low or the original magnetic field is stable, this embodiment can be configured without using even the magnetic shield 8.

ここで、二乗差W-は、ガスセル3内で生じたアライメントのスピン偏極度(Mx,My,Mz)のx軸成分Mx(以下、「スピン偏極度Mx」と表記する。)の値とほぼ比例するため、スピン偏極度Mxを用いて表すことができる。スピン偏極度(Mx,My,Mz)は、ガスセル3内における気体原子の磁化ベクトルに相当する。以下、磁化ベクトルのx軸成分を示す磁化値としてスピン偏極度Mxを用い、計測領域の磁場のx軸成分、y軸成分、及びz軸成分(絶対的な磁束密度Bx,By,Bz)とスピン偏極度Mxとの関係について検討した。 Here, the square difference W - is spin polarization of the alignment produced in the gas cell 3 (M x, M y, M z) of the x-axis component M x (hereinafter referred to as "spin polarization M x". ) Is approximately proportional to the value of), and can be expressed using the spin polarization M x . Spin polarization (M x, M y, M z) corresponds to the magnetization vector of the gas atoms in the gas cell 3. Hereinafter, the spin polarization M x is used as the magnetization value indicating the x-axis component of the magnetization vector, and the x-axis component, the y-axis component, and the z-axis component (absolute magnetic flux densities B x , B y , The relationship between B z ) and the spin polarization M x was examined.

光ポンピングにより生じたアライメントのスピン偏極度(Mx,My,Mz)の時間発展は、次式(5)〜(7)に示すブロッホ方程式(Bloch equations)で近似される。γFは、ガスセル3内の気体原子(アルカリ金属原子)の種類で決まる磁気回転比を表す。また、Γ0はスピン偏極度(Mx,My,Mz)の緩和速度を表し、Γpは光ポンピング速度を表す。スピン偏極度の緩和速度Γ0と光ポンピング速度Γpとは、角振動数と同じ単位系で表され、具体的にはラジアン毎秒(rad/s)の単位を有する。又、カットオフ角振動数ωCはスピン偏極度の緩和速度Γ0と光ポンピング速度Γpとの和である(ωC=Γ0+Γp)。 Time evolution of spin polarization of alignment caused by optical pumping (M x, M y, M z) is approximated by the following equation (5) to Bloch equations shown in (7) (Bloch Equations). γ F represents a gyromagnetic ratio determined by the type of gas atom (alkali metal atom) in the gas cell 3. Also, gamma 0 is spin polarization (M x, M y, M z) represents the rate of relaxation, gamma p represents an optical pumping speed. The relaxation rate Γ 0 of the spin polarization and the optical pumping speed Γ p are expressed in the same unit system as the angular frequency, and specifically have a unit of radians per second (rad / s). The cut-off angular frequency ω C is the sum of the spin polarization relaxation rate Γ 0 and the optical pumping rate Γ pC = Γ 0 + Γ p ).

ポンプ光及びプローブ光は、定常的に一定のパワーでガスセル3に照射されるため、スピン偏極度(Mx,My,Mz)の定常解は、上記式(5)〜(7)の左辺をそれぞれゼロとおいて解くことができる。解は、次式(8)〜(11)で表される。 Pumping light and probe light, for irradiating the gas cell 3 at constant constant power, stationary solutions of spin polarization (M x, M y, M z) , the above equation (5) to (7) It can be solved by setting each left side to zero. The solution is expressed by the following equations (8) to (11).

上記式(8)のスピン偏極度MxをBzで微分した微分値∂Mx/∂Bzは、次式(12)で表される。 Differential value ∂M x / ∂B z of the spin polarization M x and differentiating B z in the formula (8) is expressed by the following equation (12).

上記式(12)にて表される微分値∂Mx/∂Bzは、検出量(磁場のz成分Bz)の変化に対する出力(磁化値Mx)の変化を示しているので、検出感度を意味している。即ち、微分値∂Mx/∂Bzが最大となる条件で、磁場計測装置1の計測感度は最大となる。上記式(12)の分母はBxやByがどんな値であってもこれらの値の4乗で増えて行く。一方、上記式(12)の分子はBxやByの2乗で変化するので、BxとByとに関しては、Bx=By=0のときに微分値∂Mx/∂Bzは最大となる。このときの微分値∂Mx/∂Bzは、次式(13)にて表される。 The differential value ∂M x / ∂B z represented by the above equation (12) indicates the change in the output (magnetization value M x ) with respect to the change in the detection amount (z component B z of the magnetic field). It means sensitivity. That is, the measurement sensitivity of the magnetic field measurement apparatus 1 is maximized under the condition that the differential value ∂M x / ∂B z is maximized. Also the denominator of the equation (12) B x and B y are whatever the value go increasing at the fourth power of these values. On the other hand, since the molecules of the above formula (12) varies with the square of B x and B y, with respect to the the B x and B y, the differential value when the B x = B y = 0 ∂M x / ∂B z is the maximum. The differential value ∂M x / ∂B z at this time is expressed by the following equation (13).

y=0[nT]で、Bx及びBzの各値を変化させると、図5に示される様になる。又、Bx=By=0[nT]で、Bzの各値を変化させると、図6に示される様になる。図5及び図6に示すように、微分値∂Mx/∂Bzの分布には極大値が1つ現れ、微分値∂Mx/∂Bzは、Bx=By=0の場合にBz=0のときに極大(最大)となる。したがって、計測領域がゼロ磁場(Bx,By,Bzの各値がゼロ)の場合に、z軸方向(プローブ光の進行方向)に沿った磁場の変化に対するスピン偏極度Mx(つまりは二乗差W-)の変化が最も大きく、感度は最大となる。逆を言うと、計測領域に於ける外部磁場などの原磁場を最小とするには、微分値∂Mx/∂Bzが最大となる様に人工磁場を調整すれば良いことになる。 When each value of B x and B z is changed with B y = 0 [nT], the result is as shown in FIG. Further, when B x = B y = 0 [nT] and each value of B z is changed, the result is as shown in FIG. As shown in FIGS. 5 and 6, appears one local maximum value in the distribution of the differential values ∂M x / ∂B z, differential value ∂M x / ∂B z in the case of B x = B y = 0 In this case, the maximum (maximum) is obtained when B z = 0. Therefore, when the measurement region is a zero magnetic field (each value of B x , B y , B z is zero), the spin polarization degree M x (that is, the change in the magnetic field along the z-axis direction (progression direction of the probe light)) Has the largest change in the square difference W ), and the sensitivity is maximized. In other words, in order to minimize the original magnetic field such as the external magnetic field in the measurement region, the artificial magnetic field may be adjusted so that the differential value ∂M x / ∂B z is maximized.

ここで、微分値∂Mx/∂Bz(スピン偏極度Mxの時間変化とBzの時間変化との比)は、二乗差W-の時間変化とBzの時間変化との比に置き換えることができる。そこで、本実施形態の磁場形成処理では、x軸成分、y軸成分、及びz軸成分を変えた複数の組み合わせの人工磁場であって、z軸成分を周期的に変化させた人工磁場を計測領域に順次発生させ、スピン偏極度Mxの時間変化とBzの時間変化との比である微分値∂Mx/∂Bzが最大となる人工磁場を探す。この際に、z軸成分の角振動数ωはカットオフ角振動数ωC以下の値とすることが望ましい。カットオフ角振動数ωCはスピン偏極度Mxの緩和速度Γ0と光ポンピング速度Γpとの和であり(ωC=Γ0+Γp)、本実施形態ではおおむね100Hz程度となっている。即ち、人工磁場のz軸成分は、ω<ωC=Γ0+Γpの関係を満たすのが好ましく、本実施形態では、角振動数ωは100Hz以下である。z軸成分の角振動数ωはカットオフ角振動数ωc以下の値とすると、dMx/dtが概ねゼロとみなす事ができ、前述した式(5)の左辺をゼロと近似する事が正当化される。即ち、ω<ωC=Γ0+Γpの関係を満たすと、計測領域に存在する原磁場を正確に計測する事が可能になる。但し、磁場計測装置1は一次のローパスフィルターの様に振る舞うので、カットオフ角度振動数ωC付近のゲインと位相とは角振動数ωの増加と共に緩やかに減少して行く。このため、実際には重畳される周期関数の角振動数ωはカットオフ角振動数ωCよりも一割程度大きくとも構わない。 Here, the differential value ∂M x / ∂B z (ratio between the time change of the spin polarization M x and the time change of B z ) is the ratio between the time change of the square difference W − and the time change of B z. Can be replaced. Therefore, in the magnetic field forming process of the present embodiment, an artificial magnetic field in which the x-axis component, the y-axis component, and the z-axis component are changed and the z-axis component is periodically changed is measured. An artificial magnetic field in which the differential value ∂M x / ∂B z, which is the ratio of the time change of the spin polarization M x to the time change of B z , is maximized is sequentially generated in the region. At this time, the angular frequency ω of the z-axis component is desirably set to a value equal to or lower than the cutoff angular frequency ω C. The cut-off angular frequency ω C is the sum of the relaxation rate Γ 0 of the spin polarization degree M x and the optical pumping speed Γ pC = Γ 0 + Γ p ), and is approximately 100 Hz in this embodiment. . In other words, the z-axis component of the artificial magnetic field preferably satisfies the relationship ω <ω C = Γ 0 + Γ p , and in this embodiment, the angular frequency ω is 100 Hz or less. If the angular frequency ω of the z-axis component is a value less than or equal to the cutoff angular frequency ωc, dM x / dt can be regarded as almost zero, and it is legal to approximate the left side of the above-described equation (5) to zero. It becomes. That is, when the relationship of ω <ω C = Γ 0 + Γ p is satisfied, the original magnetic field existing in the measurement region can be accurately measured. However, since the magnetic field measuring apparatus 1 behaves like a first-order low-pass filter, the gain and phase in the vicinity of the cutoff angular frequency ω C gradually decrease as the angular frequency ω increases. Therefore, in practice, the angular frequency ω of the periodic function to be superimposed may be about 10% larger than the cutoff angular frequency ω C.

具体的な計測方法としては、人工磁場のx軸成分Axとy軸成分Ayとを固定磁場とし、z軸成分は周期関数で表さる磁場を印加して、スピン偏極度Mxの時間変化とBzの時間変化との比を計測する。これを様々な水準で計測し、微分値∂Mx/∂Bzが最大となる人工磁場を特定する。例えば、第1測定として、Ax=0、Ay=0、Azを0の周りの振動磁場として(一例として、Az=sinωt)、第1の微分値∂Mx/∂Bzを計測する。次に、第2測定として、Ax=0、Ay=0、Azを1の周りの振動磁場として(一例として、Az=1+sinωt)、第2の微分値∂Mx/∂Bzを計測する。次に、第3測定として、Ax=0、Ay=0、Azを−1の周りの振動磁場として(一例として、Az=−1+sinωt)、第3の微分値∂Mx/∂Bzを計測する。次に、第4測定として、Ax=0、Ay=1、Azを0の周りの振動磁場として(一例として、Az=sinωt)、第4の微分値∂Mx/∂Bzを計測する。次に、第5測定として、Ax=0、Ay=1、Azを1の周りの振動磁場として(一例として、Az=1+sinωt)、第5の微分値∂Mx/∂Bzを計測する。次に、第6測定として、Ax=0、Ay=1、Azを−1の周りの振動磁場として(一例として、Az=−1+sinωt)、第6の微分値∂Mx/∂Bzを計測する。次に、第7測定として、Ax=0、Ay=−1、Azを0の周りの振動磁場として(一例として、Az=sinωt)、第7の微分値∂Mx/∂Bzを計測する。次に、第8測定として、Ax=0、Ay=−1、Azを1の周りの振動磁場として(一例として、Az=1+sinωt)、第8の微分値∂Mx/∂Bzを計測する。次に、第9測定として、Ax=0、Ay=−1、Azを−1の周りの振動磁場として(一例として、Az=−1+sinωt)、第9の微分値∂Mx/∂Bzを計測する。この様にAy=0を中心として、多くの測定を繰り返し、こうして得られた多くの微分値∂Mx/∂Bzから、微分値∂Mx/∂Bzが最大となる人工磁場を特定する。換言すると、各組み合わせの複数の人工磁場毎に、偏光計4の検出結果に基づき信号処理部51が算出した二乗差W-の周期変化から振幅を抽出することによって、微分値∂Mx/∂Bzを検出する。そして、微分値∂Mx/∂Bzが極大値となる極値条件を満たしたときの人工磁場を用いて原磁場を算出する。人工磁場を変化させながら微分値∂Mx/∂Bzの極大値を求める処理は、公知の最適化処理を用いることで実現できる。上述の如く、微分値∂Mx/∂Bzが最大となる人工磁場を探すには、人工磁場のy軸成分Ayをゼロの近傍から探して行くのが効率性の面から好ましい。 As a specific measurement method, the x-axis component A x and the y-axis component A y of the artificial magnetic field are fixed magnetic fields, the z-axis component is applied with a magnetic field represented by a periodic function, and the time of spin polarization M x is obtained. The ratio between the change and the time change of B z is measured. This is measured at various levels to identify an artificial magnetic field that maximizes the differential value ∂M x / ∂B z . For example, as a first measurement, A x = 0, A y = 0, A z is an oscillating magnetic field around 0 (for example, A z = sin ωt), and the first differential value ∂M x / ∂B z is measure. Next, as a second measurement, A x = 0, A y = 0, and A z as an oscillating magnetic field around 1 (A z = 1 + sinωt as an example), and a second differential value ∂M x / ∂B z Measure. Next, as a third measurement, A x = 0, A y = 0, and A z as an oscillating magnetic field around −1 (for example, A z = −1 + sin ωt), and a third differential value ∂M x / ∂ to measure the B z. Next, as a fourth measurement, A x = 0, A y = 1, and A z as an oscillating magnetic field around 0 (for example, A z = sin ωt), the fourth differential value ∂M x / ∂B z Measure. Next, as a fifth measurement, A x = 0, A y = 1, and A z as an oscillating magnetic field around 1 (A z = 1 + sinωt as an example), the fifth differential value ∂M x / ∂B z Measure. Next, as a sixth measurement, A x = 0, A y = 1, and A z as an oscillating magnetic field around −1 (for example, A z = −1 + sin ωt), the sixth differential value ∂M x / ∂ to measure the B z. Next, as a seventh measurement, A x = 0, A y = −1, A z is set as an oscillating magnetic field around 0 (for example, A z = sin ωt), and a seventh differential value ∂M x / ∂B Measure z . Next, as an eighth measurement, A x = 0, A y = −1, and A z is an oscillating magnetic field around 1 (for example, A z = 1 + sinωt), and an eighth differential value ∂M x / ∂B Measure z . Next, as a ninth measurement, A x = 0, A y = −1, and A z as an oscillating magnetic field around −1 (for example, A z = −1 + sin ωt), the ninth differential value ∂M x / to measure the ∂B z. In this way, many measurements are repeated centering on A y = 0, and an artificial magnetic field that maximizes the differential value ∂M x / ∂B z is obtained from the many differential values ∂M x / ∂B z thus obtained. Identify. In other words, the differential value ∂M x / ∂ is obtained by extracting the amplitude from the period change of the square difference W calculated by the signal processing unit 51 based on the detection result of the polarimeter 4 for each of the plurality of artificial magnetic fields of each combination. B z is detected. Then, the original magnetic field is calculated using the artificial magnetic field when the extreme value condition in which the differential value ∂M x / ∂B z becomes the maximum value is satisfied. The process of obtaining the maximum value of the differential value ∂M x / ∂B z while changing the artificial magnetic field can be realized by using a known optimization process. As described above, in order to search for the artificial magnetic field having the maximum differential value ∂M x / ∂B z , it is preferable from the viewpoint of efficiency to search for the y-axis component A y of the artificial magnetic field from the vicinity of zero.

図7は、計測領域の磁場B=(Bx,By,Bz)の座標系と、磁場発生器7により発生させた人工磁場A=(Ax,Ay,Az)の座標系との関係を示す図である。図7に示すように、計測領域の磁場B=(Bx,By,Bz)の各成分は、原磁場C=(Cx,Cy,Cz)に人工磁場A=(Ax,Ay,Az)の各成分をベクトル加算することで算出できる。算出式を次式(14)に示す。 FIG. 7 shows a coordinate system of the magnetic field B = (B x , B y , B z ) in the measurement region and a coordinate system of the artificial magnetic field A = (A x , A y , A z ) generated by the magnetic field generator 7. It is a figure which shows the relationship. As shown in FIG. 7, each component of the magnetic field B = (B x , B y , B z ) in the measurement region has an artificial magnetic field A = (A x ) in the original magnetic field C = (C x , C y , C z ). , A y , A z ) can be calculated by vector addition. The calculation formula is shown in the following formula (14).

上記したように、微分値∂Mx/∂Bzが極大値となり極値条件を満たしたとき、すなわち、抽出した振幅が最大となったときの計測領域の磁場はゼロ磁場(B=0)であることから、原磁場C(Cx,Cy,Cz)は、上記式(14)の関係から、当該極値条件を満たしたときの人工磁場Ah(Ahx,Ahy,Ahz)を用いて次式(15)〜(17)により表される。 As described above, when the differential value ∂M x / ∂B z becomes a maximum value and satisfies the extreme value condition, that is, when the extracted amplitude becomes maximum, the magnetic field in the measurement region is zero magnetic field (B = 0). Therefore, the original magnetic field C (C x , C y , C z ) is the artificial magnetic field A h (A hx , A hy , A z ) when the extreme value condition is satisfied from the relationship of the above equation (14). hz ) is expressed by the following equations (15) to (17).

[処理の流れ]
図8は、磁場形成処理の処理手順を示すフローチャートである。磁場計測装置1は、磁気シールド8内に被検者を搬入して生体磁場の計測を行う前に、図8に示す磁場形成処理を行う。
[Process flow]
FIG. 8 is a flowchart showing the processing procedure of the magnetic field formation processing. The magnetic field measuring apparatus 1 performs the magnetic field forming process shown in FIG. 8 before bringing the subject into the magnetic shield 8 and measuring the biomagnetic field.

図8に示すように、磁場形成処理では、先ず、磁場算出部53が、計測領域に存在する原磁場Cを算出する(ステップS1)。具体的な処理手順としては、先ず、人工磁場制御部531が、上記した複数の組み合わせの人工磁場を磁場発生器7により計測領域に順次発生させ、振幅検出部533がその都度計測結果として得られる二乗差W-の振幅を抽出する。そして、磁場算出部53は、二乗差W-の振幅が最大となったときの人工磁場Ahを用いて上記式(15)〜(17)により原磁場Cを算出する。 As shown in FIG. 8, in the magnetic field formation process, first, the magnetic field calculation unit 53 calculates the original magnetic field C existing in the measurement region (step S1). As a specific processing procedure, first, the artificial magnetic field control unit 531 sequentially generates a plurality of combinations of artificial magnetic fields in the measurement region by the magnetic field generator 7, and the amplitude detection unit 533 is obtained as a measurement result each time. Extract the amplitude of the square difference W . The magnetic field calculator 53, the square difference W - calculating the original field C by the above formula (15) to (17) using an artificial magnetic field A h when the amplitude is maximized.

続いて、補正磁場設定部55が、ターゲット磁場T(Tx,Ty,Tz)からステップS1で算出した原磁場Cを減算して補正磁場T−Cを設定する(ステップS3)。そして、補正磁場設定部55は、設定した補正磁場T−Cを磁場発生器7に発生させることにより、原磁場Cを相殺して計測領域にターゲット磁場Tを形成する(ステップS5)。本実施形態では、一例としてターゲット磁場T=(0,0,0)として補正磁場T−Cを設定し、計測領域にゼロ磁場を形成する。 Subsequently, the correction magnetic field setting unit 55 sets the correction magnetic field TC by subtracting the original magnetic field C calculated in step S1 from the target magnetic field T ( Tx , Ty , Tz ) (step S3). Then, the correction magnetic field setting unit 55 causes the magnetic field generator 7 to generate the set correction magnetic field TC, thereby canceling the original magnetic field C and forming the target magnetic field T in the measurement region (step S5). In the present embodiment, as an example, the correction magnetic field TC is set as the target magnetic field T = (0, 0, 0), and a zero magnetic field is formed in the measurement region.

以上説明したように、本実施形態によれば、計測領域に存在する原磁場を算出することができる。また、計測領域において原磁場を相殺してゼロ磁場を形成し、その上で磁気シールド8内に被検者を搬入して生体磁場の計測を行うことができる。これによれば、生体磁場を感度良く高精度に計測することが可能となる。   As described above, according to the present embodiment, the original magnetic field existing in the measurement region can be calculated. Further, the zero magnetic field can be formed by canceling the original magnetic field in the measurement region, and then the subject can be carried into the magnetic shield 8 and the biomagnetic field can be measured. This makes it possible to measure the biomagnetic field with high sensitivity and high accuracy.

なお、上記した実施形態では、磁気モーメントに偏極を生じさ、透過する光の偏光面を磁場の強さに応じて回転させる媒体としてアルカリ金属原子が気体の状態で封入されたガスセル3を用いることとしたが、アルカリ金属原子以外の媒体を用いてもよい。例えば、窒素による格子欠陥を設けたダイヤモンドといった固体素子を媒体として用いる構成としてもよい。また、本発明の磁場計測方法及び磁場計測装置は、磁気センサー以外にも、ミリサイズの小型のガスセルを用いた原子発振器にも適用が可能である。   In the above-described embodiment, the gas cell 3 in which alkali metal atoms are sealed in a gaseous state is used as a medium that causes polarization of the magnetic moment and rotates the polarization plane of transmitted light according to the strength of the magnetic field. However, media other than alkali metal atoms may be used. For example, a structure using a solid element such as diamond provided with a lattice defect by nitrogen may be used. Further, the magnetic field measurement method and the magnetic field measurement apparatus of the present invention can be applied to an atomic oscillator using a small gas cell of a millimeter size in addition to a magnetic sensor.

また、ターゲット磁場をゼロ磁場とする実施形態を説明したが、ターゲット磁場はゼロ磁場以外の任意の磁場とすることができる。   Moreover, although embodiment which makes a target magnetic field a zero magnetic field was demonstrated, the target magnetic field can be made into arbitrary magnetic fields other than a zero magnetic field.

1…磁場計測装置、2…光源部、3…ガスセル、4…光学検出器としての偏光計、5…演算制御部、7…磁場発生器、8…磁気シールド、21…光源、23…偏光板、41…偏光分離器、51…信号処理部、53…磁場算出部、55…補正磁場設定部、61…入力部、63…表示部、431,433…光検出器、531…人工磁場制御部、533…振幅検出部。   DESCRIPTION OF SYMBOLS 1 ... Magnetic field measuring apparatus, 2 ... Light source part, 3 ... Gas cell, 4 ... Polarimeter as an optical detector, 5 ... Operation control part, 7 ... Magnetic field generator, 8 ... Magnetic shield, 21 ... Light source, 23 ... Polarizing plate , 41 ... polarization separator, 51 ... signal processing unit, 53 ... magnetic field calculation unit, 55 ... correction magnetic field setting unit, 61 ... input unit, 63 ... display unit, 431, 433 ... photodetector, 531 ... artificial magnetic field control unit 533, an amplitude detector.

Claims (5)

第一方向と第二方向と第三方向とは互いに直交し、直線偏光を出射する光源部と、計測領域に配置されて電場の振動方向が前記第二方向である前記直線偏光が前記第三方向に沿って照射され、磁場に応じて前記直線偏光の光学特性を変化させる媒体と、前記光学特性を検出する光学検出器と、前記計測領域に人工磁場を印加する磁場発生器と、を備えた磁場計測装置が、前記計測領域の磁場を計測する磁場計測方法であって、
前記第一方向〜第三方向の人工磁場成分を変えた複数の組み合わせの人工磁場であり、前記第三方向の人工磁場成分を周期的に変化させた人工磁場を前記磁場発生器に発生させることと、
前記媒体の磁化ベクトルの前記第一方向の成分である磁化値を前記光学検出器の検出結果に基づいて算出することと、
前記磁化値の時間変化と前記第三方向の人工磁場成分の時間変化との比が所定の極値条件を満たしたときの前記人工磁場を用いて、前記計測領域に存在する原磁場を算出することと、
を含む磁場計測方法。
The first direction, the second direction, and the third direction are orthogonal to each other, the light source unit that emits linearly polarized light, and the linearly polarized light that is disposed in the measurement region and the vibration direction of the electric field is the second direction is the third direction. A medium that is irradiated along the direction and changes the optical characteristics of the linearly polarized light according to the magnetic field; an optical detector that detects the optical characteristics; and a magnetic field generator that applies an artificial magnetic field to the measurement region. The magnetic field measurement apparatus is a magnetic field measurement method for measuring the magnetic field in the measurement region,
A plurality of combinations of artificial magnetic fields in which the first to third artificial magnetic field components are changed, and an artificial magnetic field in which the artificial magnetic field components in the third direction are periodically changed is generated in the magnetic field generator. When,
Calculating a magnetization value that is a component in the first direction of the magnetization vector of the medium based on a detection result of the optical detector;
The original magnetic field existing in the measurement region is calculated using the artificial magnetic field when the ratio between the time change of the magnetization value and the time change of the artificial magnetic field component in the third direction satisfies a predetermined extreme value condition. And
Magnetic field measurement method including
前記原磁場を算出することは、前記所定の極値条件を満たしたときの前記計測領域の磁場がゼロ磁場であることに基づいて、前記原磁場を算出することを含む、
請求項1に記載の磁場計測方法。
Calculating the original magnetic field includes calculating the original magnetic field based on the fact that the magnetic field in the measurement region when the predetermined extreme value condition is satisfied is a zero magnetic field,
The magnetic field measurement method according to claim 1.
前記人工磁場を発生させることは、前記第三方向の人工磁場成分をカットオフ角振動数以下の周期で変化させることを含む、
請求項1又は2に記載の磁場計測方法。
Generating the artificial magnetic field includes changing the artificial magnetic field component in the third direction at a period equal to or less than a cutoff angular frequency.
The magnetic field measurement method according to claim 1 or 2.
所定のターゲット磁場に対する前記原磁場の差分の磁場を、前記磁場発生器に発生させることと、
前記計測領域に磁場を発生する計測対象物を接近させることと、
前記差分の磁場を発生させている間の前記光学検出器の検出結果を用いて、前記計測対象物が発生した磁場を計測することと、
を更に含む請求項1〜3の何れか一項に記載の磁場計測方法。
Causing the magnetic field generator to generate a magnetic field that is a difference of the original magnetic field with respect to a predetermined target magnetic field;
Approaching a measurement object that generates a magnetic field to the measurement region;
Using the detection result of the optical detector while generating the difference magnetic field, measuring the magnetic field generated by the measurement object;
The magnetic field measurement method according to any one of claims 1 to 3, further comprising:
第一方向と第二方向と第三方向とは互いに直交し、
直線偏光を出射する光源部と、
電場の振動方向が前記第二方向である前記直線偏光が前記第三方向から照射され、照射された前記直線偏光を透過して、磁場に応じて光学特性が変化する計測領域に配置された媒体と、
前記光学特性を検出する光学検出器と、
前記第一方向、前記第二方向、前記第三方向の各成分を可変とする人工磁場を前記計測領域に印加する磁場発生器と、
前記第一方向〜第三方向の人工磁場成分を変えた複数の組み合わせの人工磁場であり、前記第三方向の人工磁場成分を周期的に変化させた人工磁場を前記磁場発生器に発生させることと、前記媒体の磁化ベクトルの前記第一方向の成分である磁化値を前記光学検出器の検出結果に基づいて算出することと、前記磁化値の時間変化と前記第三方向の人工磁場成分の時間変化との比が所定の極値条件を満たしたときの前記人工磁場を用いて、前記計測領域に存在する原磁場を算出することを実行する演算制御部と、
を備えた磁場計測装置。
The first direction, the second direction, and the third direction are orthogonal to each other,
A light source that emits linearly polarized light;
A medium disposed in a measurement region in which the linearly polarized light whose vibration direction is the second direction is irradiated from the third direction, the irradiated linearly polarized light is transmitted, and the optical characteristics change according to the magnetic field. When,
An optical detector for detecting the optical property;
A magnetic field generator configured to apply an artificial magnetic field that makes each component in the first direction, the second direction, and the third direction variable, to the measurement region;
A plurality of combinations of artificial magnetic fields in which the first to third artificial magnetic field components are changed, and an artificial magnetic field in which the artificial magnetic field components in the third direction are periodically changed is generated in the magnetic field generator. Calculating a magnetization value that is a component in the first direction of the magnetization vector of the medium based on a detection result of the optical detector, and a temporal change in the magnetization value and an artificial magnetic field component in the third direction. An arithmetic control unit that executes calculation of an original magnetic field existing in the measurement region using the artificial magnetic field when a ratio with a time change satisfies a predetermined extreme value condition;
Magnetic field measuring device equipped with.
JP2015107152A 2014-11-12 2015-05-27 Magnetic field measuring method and magnetic field measuring device Pending JP2016102777A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/928,320 US9964604B2 (en) 2014-11-12 2015-10-30 Magnetic field measurement method and magnetic field measurement device for measuring and offsetting original magnetic field
CN201510756467.3A CN105589048B (en) 2014-11-12 2015-11-09 Magnetic field measuring method and magnetic field measuring device
EP15193841.2A EP3021128A1 (en) 2014-11-12 2015-11-10 Magnetic field measurement method and magnetic field measurement device using linearly polarized light

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014229916 2014-11-12
JP2014229916 2014-11-12

Publications (1)

Publication Number Publication Date
JP2016102777A true JP2016102777A (en) 2016-06-02

Family

ID=56088483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015107152A Pending JP2016102777A (en) 2014-11-12 2015-05-27 Magnetic field measuring method and magnetic field measuring device

Country Status (1)

Country Link
JP (1) JP2016102777A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016101473A (en) * 2014-11-12 2016-06-02 セイコーエプソン株式会社 Magnetic field measurement method and magnetic field measurement device
CN112946539A (en) * 2021-01-04 2021-06-11 北京航空航天大学 Single-beam reflection type triaxial magnetic field measuring device based on SERF

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016101473A (en) * 2014-11-12 2016-06-02 セイコーエプソン株式会社 Magnetic field measurement method and magnetic field measurement device
CN112946539A (en) * 2021-01-04 2021-06-11 北京航空航天大学 Single-beam reflection type triaxial magnetic field measuring device based on SERF
CN112946539B (en) * 2021-01-04 2023-09-01 北京航空航天大学 Single-beam reflection type triaxial magnetic field measuring device based on SERF

Similar Documents

Publication Publication Date Title
CN105589048B (en) Magnetic field measuring method and magnetic field measuring device
CN105652223B (en) Magnetic field measuring method and magnetic field measuring apparatus
JP6222974B2 (en) Optical pumping magnetometer and magnetic sensing method
JP5005256B2 (en) Magnetic field measurement system and optical pumping magnetometer
JP5972006B2 (en) Optical pumping magnetometer and magnetic force measuring method
JP6391370B2 (en) Optical pumping magnetometer and magnetic sensing method
US10126379B2 (en) Magnetometer without slaving and with compensation for fluctuations in the resonance gradient in weak field, magnetometers network and measurement method
US20150022200A1 (en) Optically pumped magnetometer and optical pumping magnetic force measuring method
CN104833690A (en) Method for measuring alkali metal atomic polarizability of nuclear magnetic resonance gyro in real time
JP6134092B2 (en) Magnetic field measuring device
CN105929458A (en) Aeromagnetic field vector detecting device and detecting method
JP2017026405A (en) Optical pumping magnetometer and magnetic sensing method
CN103969604A (en) Radio-frequency atom magnetometer and method for measuring nuclear magnetic resonance (NMR) signal by same
CN104215553A (en) Integrated measurement device for atomic density and polarizability of alkali metal vapor
JP2013074994A (en) Nuclear magnetic resonance imaging apparatus and nuclear magnetic resonance imaging method
JP2015163875A (en) nuclear magnetic resonance gyroscope system
US20160154073A1 (en) Magnetic field measurement method and magnetic field measurement apparatus
US10024931B2 (en) Magnetic field measurement method and magnetic field measurement apparatus
RU199631U1 (en) Quantum Mz magnetometer
CN104280023A (en) Coherent layout confinement atomic clock and nuclear magnetic resonance atomic gyroscope integrated system
JP6521248B2 (en) Magnetic field measuring method and magnetic field measuring apparatus
Jiang et al. Techniques for measuring transverse relaxation time of xenon atoms in nuclear-magnetic-resonance gyroscopes and pump-light influence mechanism
CN107490775A (en) A kind of three axial coil constants and non-orthogonal angles integral measurement method
JP2016102777A (en) Magnetic field measuring method and magnetic field measuring device
Yin et al. In-situ relaxation rate measurement in magnetic modulated atomic magnetometers