JP2016108812A - Connection structure for bridge using reinforced concrete floor slab, and connection method for existing bridge using reinforced concrete floor slab - Google Patents

Connection structure for bridge using reinforced concrete floor slab, and connection method for existing bridge using reinforced concrete floor slab Download PDF

Info

Publication number
JP2016108812A
JP2016108812A JP2014246881A JP2014246881A JP2016108812A JP 2016108812 A JP2016108812 A JP 2016108812A JP 2014246881 A JP2014246881 A JP 2014246881A JP 2014246881 A JP2014246881 A JP 2014246881A JP 2016108812 A JP2016108812 A JP 2016108812A
Authority
JP
Japan
Prior art keywords
floor slab
reinforced concrete
bridge
concrete floor
bridge axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014246881A
Other languages
Japanese (ja)
Other versions
JP6066981B2 (en
Inventor
肇 肥田
Hajime Hida
肇 肥田
幸郎 足立
Yukiro Adachi
幸郎 足立
井上 晋
Susumu Inoue
晋 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Josho Gakuen Educational Foundation
Hanshin Expressway Co Ltd
Original Assignee
Josho Gakuen Educational Foundation
Hanshin Expressway Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Josho Gakuen Educational Foundation, Hanshin Expressway Co Ltd filed Critical Josho Gakuen Educational Foundation
Priority to JP2014246881A priority Critical patent/JP6066981B2/en
Publication of JP2016108812A publication Critical patent/JP2016108812A/en
Application granted granted Critical
Publication of JP6066981B2 publication Critical patent/JP6066981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Road Paving Structures (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a connection structure for a bridge using a reinforced concrete floor slab and a connection method for an existing bridge using the reinforced concrete floor slab that may be installed simply and readily and offers sufficient load bearing ability.SOLUTION: A floor slab connecting part 10 is used with an existing concrete floor slab bridge 100 that uses a reinforced concrete floor slab 100a, and includes: a connecting upper reinforcing bar 50 that connects upper reinforcing bars 5a on both sides, so as to cover a work section X between separated edge parts of the reinforced concrete floor slabs 100a; a fixing part 21 on both ends connected to upper flanges 2a that face each other over a joint gap between separated edge parts of steel main girders 2 and an upper flange 3a of an end cross girder 3; a formed steel plate 20 disposed to cover the work section X and having a raised part 22 raised in a height direction above the fixing part 21; and a concrete part 60 cast on the work section X.SELECTED DRAWING: Figure 1

Description

この発明は、橋軸方向の上鉄筋と下鉄筋とを有する鉄筋コンクリート床版と、フランジとウェブとを有する橋軸方向の鋼製主桁及び橋軸直角方向の端横桁とを備え、橋軸方向に配置した鉄筋コンクリート床版の離間する対向部同士を連結する鉄筋コンクリート床版を用いた橋梁における連結構造及び鉄筋コンクリート床版を用いた既設橋梁における連結工法に関する。   The present invention includes a reinforced concrete floor slab having an upper rebar and a lower rebar in a bridge axis direction, a steel main girder in a bridge axis direction having a flange and a web, and an end cross girder in a direction perpendicular to the bridge axis. TECHNICAL FIELD The present invention relates to a connection structure in a bridge using a reinforced concrete floor slab that connects opposed portions of reinforced concrete floor slabs arranged in a direction and a connection method in an existing bridge using a reinforced concrete floor slab.

従来より、橋軸方向の鋼製主桁及び橋軸直角方向の端横桁と、鉄筋コンクリート床版とを備えた道路橋において、隣接する桁材の端部同士の間には、これまで特許文献1に示すような伸縮装置が設けられていたが、走行性を改善するため、耐力を備えながら鉄筋コンクリート床版のみを連結して連続化する床版連結工法が採用されている。   Conventionally, in road bridges equipped with steel main girders in the bridge axis direction and end cross girders in the direction perpendicular to the bridge axis, and reinforced concrete floor slabs, there is a patent document so far between the ends of adjacent girder materials. Although the expansion / contraction device as shown in FIG. 1 was provided, a floor slab connection method in which only a reinforced concrete floor slab is connected and continuous is provided in order to improve running performance.

上述のような床版連結工法として、例えば、特許文献2における図7に示すような耐久性を確保できるノージョイント化工法があるが、床版の連結部分の耐力を確保するため、連結部材における橋軸方向の鉄筋と、床版における橋軸方向の鉄筋とを構造的に連続化する必要があり、構造が複雑化していた。   As a floor slab connection method as described above, for example, there is a no-joint method that can ensure durability as shown in FIG. 7 in Patent Document 2, but in order to ensure the strength of the connection part of the floor slab, It was necessary to structurally connect the reinforcing bars in the bridge axis direction and the reinforcing bars in the bridge axis direction on the floor slab, and the structure was complicated.

また、仮に、供用中の鉄筋コンクリート床版を用いた既設橋梁において、床版の端部同士を連結する場合、既設の床版の橋軸直角方向に亘って施工する必要があることから、通行止め等の交通規制を要するにも関わらず床版における橋軸方向の上鉄筋及び下鉄筋すべての端部を十分な継手長さが確保できる程度に露出させるための工数を要するとともに、上鉄筋及び下鉄筋同士をそれぞれ溶接するなどの連結するための手間がかかるため、施工期間が制限された既設の鉄筋コンクリート床版を用いた橋梁の改修工事として実施は困難であった。   Also, if the ends of the slabs are to be connected to each other in an existing bridge using a reinforced concrete floor slab that is in service, it is necessary to construct it in the direction perpendicular to the bridge axis of the existing floor slab. Despite the need for traffic regulation, it requires man-hours to expose the ends of all the upper and lower rebars in the bridge axis direction on the floor slab so that a sufficient joint length can be secured. It would be difficult to carry out the repair work for bridges using existing reinforced concrete slabs, which had a limited construction period.

特開平10−159023号公報JP-A-10-159023 特開2008−190130号公報JP 2008-190130 A

そこで、この発明は、単純で簡単に施工できるとともに、十分な耐力を有する鉄筋コンクリート床版を用いた橋梁における連結構造及び鉄筋コンクリート床版を用いた既設橋梁における連結工法を提供することを目的とする。   Therefore, an object of the present invention is to provide a connection structure in a bridge using a reinforced concrete floor slab that can be simply and easily constructed and has sufficient proof strength, and a connection method in an existing bridge using a reinforced concrete floor slab.

この発明は、橋軸方向の上鉄筋と下鉄筋とを有する鉄筋コンクリート床版と、フランジとウェブとを有する橋軸方向の鋼製主桁及び橋軸直角方向の端横桁とを備え、橋軸方向に配置した前記鉄筋コンクリート床版の離間する対向部同士を連結する鉄筋コンクリート床版を用いた橋梁における連結構造であって、前記鉄筋コンクリート床版の離間する端部同士の間の被連結空間を跨ぐように両側の前記上鉄筋と連結した連結上鉄筋と、前記鋼製主桁の離間する端部同士の間の遊間において対向する上フランジまたは前記端横桁の上フランジに接続する橋軸方向両側のフランジ接続部と、前記被連結空間を跨ぐように配置し、前記フランジ接続部に対して、高さ方向に嵩上げされた嵩上げ部とを備えた成形鋼板と、前記被連結空間に打設したコンクリート部とで構成したことを特徴とする。   The present invention includes a reinforced concrete floor slab having an upper rebar and a lower rebar in a bridge axis direction, a steel main girder in a bridge axis direction having a flange and a web, and an end cross girder in a direction perpendicular to the bridge axis. It is a connection structure in a bridge using a reinforced concrete floor slab that connects spaced apart facing parts of the reinforced concrete floor slab arranged in a direction so as to straddle the connected space between the spaced apart ends of the reinforced concrete floor slab On both sides in the direction of the bridge axis connected to the upper flange or the upper flange of the end cross beam opposite to each other in the play between the spaced apart ends of the steel main girder A molded steel plate provided with a flange connecting portion and a raised portion raised in the height direction with respect to the flange connecting portion, and a controller placed in the connected space. Characterized by being composed of a discrete unit.

上述のフランジとウェブとを有する橋軸方向の鋼製主桁及び橋軸直角方向の端横桁は、ウェブの上下端にそれぞれフランジを備えたI型鋼、H型鋼、ウェブの上端にフランジを備えたT型鋼、あるいは鋼製箱桁などとすることができ、さらには、それぞれ複数配置されている。   The steel main girder in the bridge axis direction and the end cross girder in the direction perpendicular to the bridge axis having the flange and the web described above are provided with I-shaped steel and H-shaped steel having flanges at the upper and lower ends of the web, respectively, and flanges at the upper end of the web T-shaped steel or steel box girders can be used, and a plurality of them are arranged.

上述の前記被連結空間を跨ぐように両側の前記上鉄筋と連結した連結上鉄筋は、重ね継手や機械式継ぎ手、あるいは溶接継ぎ手などによって構造的に連続すると評価できる方法で連結した鉄筋とすることができ、連結構造として十分な耐力が評価できれば上鉄筋と同径、あるいは異径の鉄筋を含むものとする。   The connected upper rebar connected to the upper rebar on both sides so as to straddle the above-mentioned connected space shall be a rebar connected by a method that can be evaluated to be structurally continuous by a lap joint, a mechanical joint, or a welded joint. If a sufficient proof stress can be evaluated as a connecting structure, a reinforcing bar having the same diameter as that of the upper reinforcing bar or a different diameter should be included.

この発明により、単純な構造であるため、簡単に施工できるとともに、十分な耐力を有する連結構造を実現することができる。
詳しくは、鉄筋コンクリート床版を用いた橋梁における連結構造として、鉄筋コンクリート床版の離間する端部同士の間の被連結空間を跨ぐように、両側の前記鋼製主桁の上フランジの対向部同士または端横桁の上フランジの対向部同士を連結した成形鋼板と、前記被連結空間を跨ぐように両側の前記上鉄筋と連結した連結上鉄筋を既設橋梁の構造部材と直接連結するだけの構造であるため、例えば、鉄筋コンクリート床版の上鉄筋及び下鉄筋のそれぞれと直接連結する従来の連結構造に比べ、所要の耐力を有する連結構造を簡単な施工で実現することができる。
According to this invention, since it is a simple structure, it can be easily constructed and a connection structure having sufficient strength can be realized.
Specifically, as a connection structure in a bridge using a reinforced concrete floor slab, the opposing portions of the upper flanges of the steel main girders on both sides, so as to straddle the connected space between the spaced apart ends of the reinforced concrete floor slab, or With a structure that directly connects the formed steel plate that connects the facing parts of the upper flanges of the end cross-girder and the connected upper reinforcing bars connected to the upper reinforcing bars on both sides so as to straddle the connected space with the structural members of the existing bridge Therefore, for example, compared with the conventional connection structure directly connected to each of the upper and lower reinforcing bars of the reinforced concrete floor slab, a connection structure having a required proof stress can be realized by simple construction.

なお、上述の成形鋼板は、例えば、SM鋼板やSS鋼板などが用いられ、前記鋼製主桁に対して垂直方向に、かつ端横桁を橋軸直角方向に覆うように隙間なく配置され、コンクリート打設の際の型枠となるとともに、コンクリート部と一体的に挙動することで、外力を効果的に伝達することができる。したがって、簡単に施工できるとともに、十分な耐力を有する連結構造を実現することができる。   In addition, the above-mentioned formed steel plate is, for example, SM steel plate or SS steel plate is used, and is arranged without gap so as to cover the steel main girder in a direction perpendicular to the steel main girder and in a direction perpendicular to the bridge axis, It becomes a formwork for placing concrete and behaves integrally with the concrete part, so that external force can be transmitted effectively. Accordingly, it is possible to realize a connection structure that can be easily constructed and has sufficient strength.

また、成形鋼板の嵩上げ部の形状は、断面凸型であり、より好ましくは断面台形、あるいは、断面半円形としてもよい。さらには、鋼製主桁及び端横桁への成形鋼板の接続は、ボルトを用いた接続のほか、溶接や接着材など構造的に一体として評価できる方法で接続してもよい。   Further, the raised portion of the formed steel plate has a convex cross section, and more preferably a trapezoidal cross section or a semicircular cross section. Furthermore, the connection of the formed steel plate to the steel main girder and the end cross girder may be performed by a method that can be evaluated structurally integrally, such as welding or an adhesive, in addition to the connection using bolts.

なお、対向する鋼製主桁同士が橋軸方向に直線状に配置されていない場合であっても、両側の鋼製主桁及び端横桁の上フランジの高さが同じであれば、適用することができる。また成形鋼板は、スプライスプレート又は合成床版における底鋼板と連結することもできる。   Even if the opposing steel main girders are not arranged in a straight line in the direction of the bridge axis, if the height of the upper flange of the steel main girders on both sides and the end horizontal girders is the same can do. The formed steel plate can also be connected to a bottom steel plate in a splice plate or a synthetic floor slab.

この発明の態様として、前記成形鋼板に、前記コンクリート部との付着性を向上するスタッドボルトを備えることができる。
この発明により、スタッドボルトを介して、成形鋼板とコンクリート部とが一体化し、連結構造における所要の耐力を確実に発現させることができる。
As an aspect of this invention, the shaped steel plate can be provided with a stud bolt that improves adhesion to the concrete part.
By this invention, a molded steel plate and a concrete part can be integrated via a stud bolt, and the required proof stress in a connection structure can be expressed reliably.

また、この発明の態様として、前記嵩上げ部に配置した前記スタッドボルトの頭部を、前記下鉄筋に対応する高さに配置することができる。
この発明により、コンクリート部に外力が作用して変形した場合であっても、前記下鉄筋に対応する高さにスタッドボルトの頭部を配置しているため、コンクリート部へのクラックや、舗装表面へのリフレクションクラックなどの損傷が生じることを抑制することができる。
Moreover, as an aspect of the present invention, the head of the stud bolt disposed in the raised portion can be disposed at a height corresponding to the lower reinforcing bar.
According to this invention, even when the external force acts on the concrete part and deforms, the stud bolt head is arranged at a height corresponding to the lower reinforcing bar, so that cracks in the concrete part and the pavement surface It is possible to suppress the occurrence of damage such as reflection cracks.

また、この発明の態様として、前記被連結空間を跨ぐように、両側の前記鋼製主桁のフランジの対向部同士を連結した連結板を備えることができる。
この発明により、簡単な構造で所要の耐力を有する連結構造を実現することができる。
Moreover, as an aspect of the present invention, it is possible to provide a connecting plate that connects opposite portions of the flanges of the steel main girders on both sides so as to straddle the connected space.
According to the present invention, it is possible to realize a connection structure having a required strength with a simple structure.

詳述すると、前記連結板を、両側の前記鋼製主桁の上フランジの対向部のそれぞれと連結することによって、連結構造に作用する曲げ応力を鋼製主桁に伝達することができる。したがって、簡単な構造でありながら、所要の耐力を有する連結構造を実現することができる。   More specifically, by connecting the connecting plate to each of the opposing portions of the upper flanges of the steel main girders on both sides, bending stress acting on the connecting structure can be transmitted to the steel main girders. Therefore, it is possible to realize a connection structure having a required proof stress while having a simple structure.

また、この発明の態様として、前記連結板を、前記鋼製主桁のフランジ幅に対応する幅で構成することができる。
この発明により、橋軸直角方向における全面に亘って連結板を設ける場合に比べて鋼材量を削減することができるとともに、容易に搬入して設置する、つまり施工性を向上することができる。
As an aspect of the present invention, the connecting plate can be configured with a width corresponding to the flange width of the steel main beam.
According to the present invention, the amount of steel material can be reduced as compared with the case where the connecting plate is provided over the entire surface in the direction perpendicular to the bridge axis, and can be easily carried in and installed, that is, the workability can be improved.

また、この発明は、橋軸方向の上鉄筋と下鉄筋とを有する鉄筋コンクリート床版と、フランジとウェブとを有する橋軸方向の鋼製主桁及び橋軸直角方向の端横桁とを備え、橋軸方向に配置した前記鉄筋コンクリート床版の離間する対向部同士を連結する前記鉄筋コンクリート床版を用いた橋梁における連結構造であって、前記鉄筋コンクリート床版の離間する端部同士の間の被連結空間を跨ぐとともに、橋軸直角方向の全幅に亘って配置し、両側の前記鋼製主桁の上フランジ及び前記端横桁の上フランジの対向部同士を連結した連結板と、前記被連結空間を跨ぐように両側の前記上鉄筋と連結した連結上鉄筋と、前記下鉄筋に対応して、前記橋軸方向に配置した連結下鉄筋と、前記被連結空間に打設したコンクリート部とで構成したことを特徴とする。   The present invention also includes a reinforced concrete floor slab having an upper rebar and a lower rebar in the bridge axis direction, a steel main girder in the bridge axis direction having a flange and a web, and an end cross girder in a direction perpendicular to the bridge axis, It is a connection structure in a bridge using the reinforced concrete floor slab that connects the opposing portions of the reinforced concrete floor slabs arranged in the bridge axis direction, and is a connected space between the spaced apart ends of the reinforced concrete floor slabs A connecting plate that is disposed over the entire width in the direction perpendicular to the bridge axis and connects the opposing portions of the upper flange of the steel main girder and the upper flange of the end horizontal girder on both sides, and the connected space. It was composed of a connected upper rebar connected to the upper rebar on both sides so as to straddle, a connected lower rebar arranged in the bridge axis direction corresponding to the lower rebar, and a concrete portion placed in the connected space Special To.

上述のフランジとウェブとを有する橋軸方向の鋼製主桁及び橋軸直角方向の端横桁は、ウェブの上下端にそれぞれフランジを備えたI型鋼、H型鋼、ウェブの上端にフランジを備えたT型鋼、あるいは鋼製箱桁などとすることができ、さらには複数配置されている。   The steel main girder in the bridge axis direction and the end cross girder in the direction perpendicular to the bridge axis having the flange and the web described above are provided with I-shaped steel and H-shaped steel having flanges at the upper and lower ends of the web, and flanges at the upper end of the web, respectively. T-shaped steel or steel box girders can be used, and a plurality of them are arranged.

上述の前記被連結空間を跨ぐように両側の前記上鉄筋と連結した連結上鉄筋は、重ね継手や機械式継ぎ手、あるいは溶接継ぎ手などによって構造的に連続すると評価できる方法で連結した鉄筋とすることができ、連結構造として十分な耐力が評価できれば上鉄筋と同径、あるいは異径の鉄筋を含むものとする。   The connected upper rebar connected to the upper rebar on both sides so as to straddle the above-mentioned connected space shall be a rebar connected by a method that can be evaluated to be structurally continuous by a lap joint, a mechanical joint, or a welded joint. If a sufficient proof stress can be evaluated as a connecting structure, a reinforcing bar having the same diameter as that of the upper reinforcing bar or a different diameter should be included.

また、上述の前記下鉄筋に対応して、前記橋軸方向に配置した連結下鉄筋は、下鉄筋と構造的に連結させる必要はなく、下鉄筋と連結下鉄筋の先端部分が橋軸直角方向に重なるように略平行に配置してもよく、下鉄筋と対応する高さに配置すること、あるいは下鉄筋と同数、あるいは異なる本数を配置することを含むものとする。   In addition, the connected lower reinforcing bar arranged in the direction of the bridge axis corresponding to the lower reinforcing bar described above does not need to be structurally connected to the lower reinforcing bar, and the tip of the lower reinforcing bar and the connected lower reinforcing bar is perpendicular to the bridge axis. It may be arranged substantially in parallel with each other and includes arranging at a height corresponding to the lower reinforcing bar, or arranging the same or different number as the lower reinforcing bar.

この発明により、単純な構造であるため、簡単に施工できるとともに、十分な耐力を有する連結構造を実現することができる。
詳しくは、鉄筋コンクリート床版を用いた橋梁における連結構造として、鉄筋コンクリート床版の離間する端部同士の間の被連結空間を跨ぐとともに、橋軸直角方向の全幅に亘って配置し、両側の前記鋼製主桁の上フランジ及び前記端横桁の上フランジの対向部同士を連結した連結板と、前記被連結空間を跨ぐように両側の前記上鉄筋と連結した連結上鉄筋とにより既設橋梁の構造部材と直接連結し、前記下鉄筋に対応する高さにおいて前記橋軸方向に連結下鉄筋を配置するだけの構造であるため、例えば、鉄筋コンクリート床版の上鉄筋及び下鉄筋のそれぞれと直接連結する従来の連結構造に比べ、所要の耐力を有する連結構造を簡単な施工で実現することができる。
According to this invention, since it is a simple structure, it can be easily constructed and a connection structure having sufficient strength can be realized.
Specifically, as a connecting structure in a bridge using a reinforced concrete floor slab, it straddles the connected space between the spaced apart ends of the reinforced concrete floor slab, and is arranged over the entire width in the direction perpendicular to the bridge axis. Structure of an existing bridge by a connecting plate that connects opposing portions of the upper flange of the main girder and the upper flange of the end horizontal girder, and a connecting upper rebar connected to the upper rebar on both sides so as to straddle the connected space Since it is a structure that is directly connected to a member and has a structure in which the connected lower rebar is arranged in the bridge axis direction at a height corresponding to the lower rebar, for example, it is directly connected to each of the upper rebar and lower rebar of the reinforced concrete floor slab Compared with the conventional connection structure, the connection structure which has required proof stress can be implement | achieved by simple construction.

なお、対向する鋼製主桁同士が橋軸方向に直線状に配置されていない場合であっても、両側の鋼製主桁及び端横桁の上フランジの高さが同じであれば、適用することができる。   Even if the opposing steel main girders are not arranged in a straight line in the direction of the bridge axis, if the height of the upper flange of the steel main girders on both sides and the end horizontal girders is the same can do.

また、この発明の態様として、前記連結板を、前記両側の鋼製主桁のフランジの対向部のそれぞれを上下方向に挟み込んで連結した挟み込み連結板で構成することができる。
この発明により、簡単な構造で所要の耐力を有する連結構造を得ることができる。
Moreover, as an aspect of the present invention, the connecting plate can be constituted by a sandwiched connecting plate in which the opposing portions of the flanges of the steel main girders on both sides are sandwiched and connected in the vertical direction.
According to the present invention, it is possible to obtain a connection structure having a required strength with a simple structure.

詳述すると、前記連結板を、前記両側の鋼製主桁のフランジの対向部のそれぞれを上下方向に挟み込んで連結した挟み込み連結板で構成することによって、フランジと連結板との接地面積が狭い場合であっても、連結構造に作用する曲げ応力を鋼製主桁に伝達させることができる。したがって、簡単な構造でありながら、所要の耐力を有する連結構造を実現することができる。   More specifically, the grounding area between the flange and the coupling plate is narrow by configuring the coupling plate with a sandwiching coupling plate in which the opposing portions of the flanges of the steel main girders on both sides are sandwiched in the vertical direction. Even in this case, the bending stress acting on the connecting structure can be transmitted to the steel main beam. Therefore, it is possible to realize a connection structure having a required proof stress while having a simple structure.

また、この発明の態様として、前記コンクリート部を、繊維補強速硬コンクリートで構成することができる。
この発明により、繊維補強速硬コンクリートは早期に強度が発現するため、短期施工であっても、確実に耐力を有する連結構造を構築することができる。
As an aspect of the present invention, the concrete portion can be composed of fiber-reinforced fast-hardening concrete.
According to this invention, since the fiber-reinforced fast-hardening concrete develops strength at an early stage, it is possible to reliably construct a connection structure having proof strength even in a short-term construction.

また、曲げ耐力や靱性を高めることが可能である繊維補強コンクリートを用いることで、成形鋼板や連結上鉄筋、あるいは連結下鉄筋や連結板と一体的に、被連結空間に作用する外力を効果的に伝達することができるとともに、連結構造に発生するクラックが分散されることが期待できる。   In addition, by using fiber reinforced concrete that can increase bending strength and toughness, external forces acting on the connected space can be effectively integrated with the formed steel plate, the connected upper rebar, or the connected lower rebar and the connecting plate. It can be expected that cracks generated in the connection structure are dispersed.

また、この発明は、橋軸方向の上鉄筋と下鉄筋とを有する鉄筋コンクリート床版と、フランジとウェブとを有する橋軸方向の鋼製主桁及び橋軸直角方向の端横桁とを備え、橋軸方向に配置した既設の鉄筋コンクリート床版の離間する対向部同士を連結する鉄筋コンクリート床版を用いた既設橋梁における連結工法であって、前記鋼製主桁の上フランジの対向部と端横桁の上フランジを露出させるとともに、前記鉄筋コンクリート床版の前記対向部を、継手可能となるように前記上鉄筋の端部が露出するまで斫るハツリ工程と、橋軸方向に離間する前記鋼製主桁同士及び前記端横桁同士の間を跨ぐように配置し、高さ方向に嵩上げされた嵩上げ部を有する成形鋼板におけるフランジ接続部を前記鋼製主桁の前記上フランジ及び前記端横桁の前記上フランジに固定して前記成形鋼板を設置する成形鋼板設置工程と、露出した前記上鉄筋の両方と連結上鉄筋を連結する鉄筋連結工程と、前記鉄筋コンクリート床版の前記対向部同士の間に、コンクリートを打設するコンクリート打設工程とを行うことを特徴とする。   The present invention also includes a reinforced concrete floor slab having an upper rebar and a lower rebar in the bridge axis direction, a steel main girder in the bridge axis direction having a flange and a web, and an end cross girder in a direction perpendicular to the bridge axis, A connecting method for an existing bridge using a reinforced concrete floor slab that connects opposing facing portions of existing reinforced concrete floor slabs arranged in the direction of the bridge axis, wherein the opposing part of the upper flange of the steel main girder and the end cross girder The steel main body which exposes the upper flange of the reinforced concrete floor slab until the end portion of the upper reinforcing bar is exposed so that the opposite portion of the reinforced concrete floor slab is exposed, and is separated in the bridge axis direction. The flange connecting portion in the formed steel sheet having a raised portion raised in the height direction is arranged so as to straddle between the girders and the end cross girders, and the upper flange of the steel main girders and the end cross girders Said Between the facing parts of the reinforced concrete floor slab, a formed steel plate installation step for fixing the flanged steel plate to the flange, a rebar connection step for connecting both the exposed upper rebar and the connected upper rebar, and the facing portions of the reinforced concrete floor slab And a concrete placing process for placing the material.

さらにまた、この発明は、橋軸方向の上鉄筋と下鉄筋とを有する鉄筋コンクリート床版と、フランジとウェブとを有する橋軸方向の鋼製主桁及び橋軸直角方向の端横桁とを備え、橋軸方向に配置した既設の鉄筋コンクリート床版の対向部同士を連結する鉄筋コンクリート床版を用いた既設橋梁における連結工法であって、前記鋼製主桁の上フランジの対向部と端横桁の上フランジを露出させるとともに、前記鉄筋コンクリート床版の前記対向部を、継手可能となるように前記上鉄筋の端部を露出させ、かつ、前記下鉄筋に対応する高さまで斫るハツリ工程と、橋軸方向に離間する前記鋼製主桁同士及び前記端横桁同士の間を跨ぐとともに、橋軸直角方向の全幅に亘って配置するように、露出した前記鋼製主桁の前記上フランジ及び前記端横桁の前記上フランジの対向部を連結板で連結する連結板設置工程と、端部が露出した両側の前記下鉄筋に対応する高さにおいて、連結下鉄筋を前記橋軸方向に配置する連結下鉄筋配置工程と、露出した前記上鉄筋の両方と連結上鉄筋を連結する連結上鉄筋連結工程と、前記鉄筋コンクリート床版の前記対向部同士の間に、コンクリートを打設するコンクリート打設工程とを行うことを特徴とする。   Furthermore, the present invention includes a reinforced concrete floor slab having an upper rebar and a lower rebar in the bridge axis direction, a steel main girder in the bridge axis direction having a flange and a web, and an end cross girder in a direction perpendicular to the bridge axis. , A connecting method for an existing bridge using a reinforced concrete floor slab that connects opposing portions of an existing reinforced concrete floor slab arranged in the direction of the bridge axis, wherein the opposing portion of the upper flange of the steel main girder and A chipping process for exposing an upper flange, exposing an end of the upper rebar so that the opposing portion of the reinforced concrete floor slab can be jointed, and rolling up to a height corresponding to the lower rebar; and a bridge The upper flange of the exposed steel main girder and the straddle between the steel main girders spaced apart in the axial direction and between the end cross beams and across the entire width in the direction perpendicular to the bridge axis Edge girder A connecting plate installing step of connecting the opposing portions of the upper flange with a connecting plate, and a connecting lower reinforcing bar arrangement in which the connecting lower reinforcing bar is arranged in the bridge axis direction at a height corresponding to the lower reinforcing bar on both sides where the end portions are exposed. Performing a process, a connecting upper reinforcing bar connecting process for connecting both the exposed upper reinforcing bars and the connecting upper reinforcing bar, and a concrete placing process for placing concrete between the facing portions of the reinforced concrete floor slab. It is characterized by.

これらの発明により、十分な耐力を有する連結構造を、単純で簡単に施工できるため、例えば、施工期間が制限された供用中の鉄筋コンクリート床版を用いた既設の橋梁に対する改修工事であっても、実施することができる。   By these inventions, it is possible to simply and easily construct a connection structure having sufficient proof strength.For example, even for repair work on an existing bridge using a reinforced concrete slab in service with a limited construction period, Can be implemented.

また、この発明の態様として、前記コンクリート打設工程において、繊維補強速硬コンクリートで打設することができる。
この発明により、早期に強度が発現するため、例えば、施工期間が制限された供用中の鉄筋コンクリート床版を用いた橋梁に対する改修工事であっても、確実に耐力を有する連結部を構築することができる。
Moreover, as an aspect of this invention, in the said concrete placement process, it can cast with fiber reinforced quick-hardening concrete.
With this invention, since strength develops at an early stage, for example, it is possible to reliably construct a connecting portion having a proof strength even in a repair work for a bridge using a reinforced concrete floor slab in service with a limited construction period. it can.

また、曲げ耐力や靱性を高めることが可能である繊維補強コンクリートを用いることで、成形鋼板や連結上鉄筋、あるいは連結下鉄筋や連結板と一体的に、被連結空間に作用する外力を効果的に伝達することができるとともに、連結構造に発生するクラックが分散されることが期待できる。   In addition, by using fiber reinforced concrete that can increase bending strength and toughness, external forces acting on the connected space can be effectively integrated with the formed steel plate, the connected upper rebar, or the connected lower rebar and the connecting plate. It can be expected that cracks generated in the connection structure are dispersed.

この発明により、単純で簡単に施工できるとともに、十分な耐力を有する鉄筋コンクリート床版を用いた橋梁における連結構造及び鉄筋コンクリート床版を用いた既設橋梁における連結工法を提供することができる。   According to the present invention, it is possible to provide a connection structure in a bridge using a reinforced concrete floor slab that has a sufficient proof strength and a connection method in an existing bridge using a reinforced concrete floor slab that can be simply and easily constructed.

床版連結部の橋軸方向の断面図による説明図。Explanatory drawing by sectional drawing of the bridge axis direction of a floor slab connection part. 床版連結部の説明図。Explanatory drawing of a floor slab connection part. 床版連結部の概略斜視図。The schematic perspective view of a floor slab connection part. 床版連結部の施工フロー図。Construction flow diagram of floor slab connection. 床版連結部の施工説明図。Construction explanatory drawing of the floor slab connection part. 床版連結部の施工説明図。Construction explanatory drawing of the floor slab connection part. 床版連結部の施工説明図。Construction explanatory drawing of the floor slab connection part. 床版連結部の施工説明図。Construction explanatory drawing of the floor slab connection part. 床版連結部の施工説明図。Construction explanatory drawing of the floor slab connection part. 床版連結部の施工説明図。Construction explanatory drawing of the floor slab connection part. 床版連結部の性能確認試験の結果のグラフ。The graph of the result of the performance confirmation test of a floor slab connection part. 別の実施形態の床版連結部の橋軸方向の断面図による説明図。Explanatory drawing by sectional drawing of the bridge axis direction of the floor slab coupling | bond part of another embodiment. 別の実施形態の床版連結部の施工フロー図。The construction flow figure of the floor slab connection part of another embodiment. 別の実施形態の床版連結部の施工説明図。The construction explanatory drawing of the floor slab connection part of another embodiment. 別の実施形態の床版連結部の施工説明図。The construction explanatory drawing of the floor slab connection part of another embodiment. 別の実施形態の床版連結部の施工説明図。The construction explanatory drawing of the floor slab connection part of another embodiment. 別の実施形態の床版連結部の施工説明図。The construction explanatory drawing of the floor slab connection part of another embodiment. 鉄筋コンクリート床版を用いた改修前の橋梁の概略斜視図。The schematic perspective view of the bridge before repair using a reinforced concrete floor slab.

この発明の一実施形態を以下図面に基づいて詳述する。
図1は床版連結部10の橋軸方向の断面図による説明図を示し、図2は床版連結部10の説明図を示し、図3は床版連結部10の概略斜視図を示し、図4は床版連結部10の施工フロー図を示している。
An embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an explanatory view of a cross section of the slab connecting portion 10 in the bridge axis direction, FIG. 2 shows an explanatory view of the floor slab connecting portion 10, FIG. 3 shows a schematic perspective view of the floor slab connecting portion 10, FIG. 4 shows a construction flow diagram of the floor slab connecting portion 10.

詳述すると、図1(a)は鋼製主桁2を通る橋軸方向Lの床版連結部10の断面図を示し、図1(b)は隣接する鋼製主桁2同士の間を通る橋軸方向Lの床版連結部10の断面図を示し、図2(a)は床版連結部10の橋軸直角方向Wの断面図を示し、図2(b)は床版連結部10の平面図の断面図を示し、図3は鉄筋コンクリート床版を用いた既設橋梁100(以下において、既設コンクリート床版橋100という)における鉄筋コンクリート部5の図示を省略するとともに、床版連結部10における成形鋼板20、挟込連結板30、スタッドボルト40及び連結上鉄筋50を取付けた状態の斜視図を示すとともに、上鉄筋5aを破線で図示している。また、図2(b)において連結上鉄筋50の図示を省略している。   Specifically, FIG. 1 (a) shows a cross-sectional view of the floor slab connecting portion 10 in the bridge axis direction L passing through the steel main girder 2, and FIG. 1 (b) shows between adjacent steel main girders 2. FIG. 2A is a cross-sectional view of the floor slab connecting portion 10 in the direction perpendicular to the bridge axis W, and FIG. 2B is a floor slab connecting portion. FIG. 3 is a cross-sectional view of the plan view of FIG. 10, and FIG. 3 omits the illustration of the reinforced concrete portion 5 in the existing bridge 100 using the reinforced concrete floor slab (hereinafter referred to as the existing concrete floor slab bridge 100). The perspective view of the state which attached the shaping | molding steel plate 20, the pinching connection board 30, the stud bolt 40, and the connection upper rebar 50 in FIG. 5 is shown, and the upper rebar 5a is shown with the broken line. Moreover, illustration of the connection upper reinforcement 50 is abbreviate | omitted in FIG.2 (b).

また、図5乃至図10は床版連結部10の橋軸方向Lの断面図による施工説明図を示しているが、詳しくは、図5(a)は既設コンクリート床版橋100における表層撤去工程についての床版連結部10の断面図を示し、図5(b)は床版連結部10を施工する箇所X(以下において施工箇所Xという)におけるカッター切断工程についての断面図を示している。   FIGS. 5 to 10 show construction explanatory views by cross-sectional views in the bridge axis direction L of the floor slab connecting portion 10. Specifically, FIG. 5A is a surface layer removal process in the existing concrete floor slab bridge 100. FIG. 5B shows a cross-sectional view of a cutter cutting process at a location X where the floor slab connection portion 10 is constructed (hereinafter referred to as construction location X).

また、図6(a)は施工箇所Xにおける手斫り工程の断面図を示し、図6(b)は挟込連結板取付け工程についての断面図を示し、図7(a)は改修前の施工箇所Xの一部拡大平面図を示し、図7(b)は挟込連結板取付け工程についての施工箇所Xの一部拡大平面図を示している。   FIG. 6A shows a cross-sectional view of the hand turning process at the construction site X, FIG. 6B shows a cross-sectional view of the sandwiching connecting plate mounting process, and FIG. A partially enlarged plan view of the construction site X is shown, and FIG. 7B shows a partially enlarged plan view of the construction site X for the sandwiching connecting plate mounting step.

さらに、図8(a)は成形鋼板取付工程についての断面図を示し、図8(b)は連結上鉄筋配筋工程についての断面図を示し、図9(a)は成形鋼板取付工程についての施工箇所Xの一部拡大平面図を示し、図9(b)は連結上鉄筋配筋工程についての施工箇所Xの一部拡大平面図を示している。なお、図9(b)では連結上鉄筋50を破線で示すとともに、床版主筋51の図示を省略している。   Further, FIG. 8 (a) shows a cross-sectional view of the formed steel plate attaching step, FIG. 8 (b) shows a cross-sectional view of the connecting upper reinforcing bar arranging step, and FIG. 9 (a) shows the formed steel plate attaching step. A partially enlarged plan view of the construction location X is shown, and FIG. 9B shows a partially enlarged plan view of the construction location X for the connection upper reinforcing bar arranging step. In addition, in FIG.9 (b), while connecting upper reinforcement 50 is shown with a broken line, illustration of the floor slab main reinforcement 51 is abbreviate | omitted.

また、図10はコンクリート打設工程についての断面図を示している。なお、図5乃至図10においては、図示を簡略化するため、断面を示すハッチングの図示は省略している。
また、図11は、床版連結部10の性能確認試験の結果のグラフを示している。
FIG. 10 shows a sectional view of the concrete placing process. Note that in FIGS. 5 to 10, hatching showing a cross section is omitted to simplify the illustration.
Further, FIG. 11 shows a graph of the result of the performance confirmation test of the floor slab connecting portion 10.

図18に示す既設コンクリート床版橋100は、橋軸直角方向Wに所定間隔を隔てるとともに、橋軸方向Lに沿って配置する複数本の鋼製主桁2と、鋼製主桁2同士の間を橋軸直角方向Wに連結する横桁4とで平面視格子状を構成するとともに、鋼製主桁2及び横桁4の上部に配置した鉄筋コンクリート部5とで構成する所定長さの鉄筋コンクリート床版100aを橋軸方向Lに並べて構成している。   The existing concrete floor slab bridge 100 shown in FIG. 18 has a predetermined interval in the direction W perpendicular to the bridge axis and a plurality of steel main girders 2 arranged along the bridge axis direction L, and the steel main girders 2. Reinforced concrete of a predetermined length composed of a steel girder 2 and a reinforced concrete part 5 arranged on the upper part of the cross beam 4 while forming a lattice shape in plan view with the cross beams 4 connected in the direction W perpendicular to the bridge axis. The floor slabs 100a are arranged in the bridge axis direction L.

なお、鉄筋コンクリート部5は、橋軸方向Lに沿って配置された上鉄筋5a及び下鉄筋5b、並びにそれぞれに対して橋軸直角方向Wに配置された床版主筋5cと、鉄筋コンクリート部5を構成するコンクリートと鋼製主桁2や横桁4と一体化するために植設されたスタッドボルト7を備えている。そして、下鉄筋5bは、スタッドボルト7の先端部と連結されている。   The reinforced concrete portion 5 includes an upper rebar 5a and a lower rebar 5b arranged along the bridge axis direction L, a floor slab main reinforcement 5c arranged in the direction perpendicular to the bridge axis with respect to each, and a reinforced concrete portion 5. A concrete bolt and a stud bolt 7 are provided so as to be integrated with the steel main girder 2 and the horizontal girder 4. The lower reinforcing bar 5 b is connected to the tip of the stud bolt 7.

また、鋼製主桁2及び横桁4は、縦方向に長い断面I型鋼で構成し、横桁4は、鋼製主桁2に比べて半分程度の高さに形成し、横桁4の上フランジ4aと鋼製主桁2の上フランジ2aとが面一となるように構成されている。   Further, the steel main girder 2 and the cross girder 4 are made of a long section I-shaped steel in the vertical direction, and the cross girder 4 is formed to be about half the height of the steel main girder 2. The upper flange 4a and the upper flange 2a of the steel main girder 2 are configured to be flush with each other.

また、橋軸方向Lに並べて既設コンクリート床版橋100を構成する鉄筋コンクリート床版100a同士の対向部における鉄筋コンクリート部5にはジョイント治具6を備えている。また、鉄筋コンクリート床版100a同士の対向部では、鋼製主桁2は橋軸方向Lに離間しており、対向部近傍の横桁4を端横桁3としている。   Further, the reinforced concrete portion 5 at the facing portion of the reinforced concrete floor slabs 100 a that are arranged in the bridge axis direction L and constitute the existing concrete floor slab bridge 100 is provided with a joint jig 6. Moreover, in the opposing part of reinforced concrete floor slabs 100a, the steel main girder 2 is spaced apart in the bridge axis direction L, and the cross girder 4 in the vicinity of the opposing part is the end cross girder 3.

本発明の床版連結部10は、図5に示すようなジョイント治具6を撤去し、鉄筋コンクリート床版100a同士の離間する対向部を構造的に一体化して連結するための構造、つまりノージョイント化する構造であり、図2に示すように、鉄筋コンクリート床版100aの全幅に亘って構成される。   The floor slab connecting portion 10 according to the present invention is a structure for removing the joint jig 6 as shown in FIG. 5 and structurally integrating and connecting the opposed portions of the reinforced concrete floor slabs 100a, that is, no joint. As shown in FIG. 2, the structure is formed over the entire width of the reinforced concrete slab 100a.

したがって、床版連結部10は、図1(a)に示すように、鋼製主桁2に沿った断面構造となる部分と、図1(b)に示すように、鋼製主桁2同士の間における断面構造となる部分とがある。詳述すると、橋軸直角方向Wの全幅に亘って構成される床版連結部10は、成形鋼板20の固定部21を鋼製主桁2の上フランジ2aに接続する構造(図1(a))と、成形鋼板20の固定部21を端横桁3の上フランジ3aに接続する構造(図1(b))との二種類の断面構造があるが、以下では、図1(a)に示す鋼製主桁2に通る断面構造の床版連結部10について以下で説明する。   Accordingly, the floor slab connecting portion 10 includes a portion having a cross-sectional structure along the steel main girder 2 as shown in FIG. 1 (a) and a steel main girder 2 as shown in FIG. 1 (b). And a portion having a cross-sectional structure between the two. More specifically, the floor slab connecting portion 10 configured over the entire width in the direction W perpendicular to the bridge axis connects the fixed portion 21 of the formed steel plate 20 to the upper flange 2a of the steel main girder 2 (FIG. 1 (a )) And a structure (FIG. 1 (b)) for connecting the fixed portion 21 of the formed steel plate 20 to the upper flange 3a of the end cross beam 3 (FIG. 1 (a)). The floor slab connecting portion 10 having a cross-sectional structure passing through the steel main girder 2 shown in FIG.

具体的には、鉄筋コンクリート床版100a同士の離間する対向部、つまり施工箇所Xを連結する構造である床版連結部10は、施工箇所Xの両側の鋼製主桁2の上フランジ2aを連結する挟込連結板30と、施工箇所Xを跨いで、両側の鋼製主桁2の上フランジ2aのそれぞれ、あるいは端横桁3の上フランジ3aのそれぞれと固定する成形鋼板20と、成形鋼板20に植設したスタッドボルト40と、施工箇所Xの両側の鉄筋コンクリート部5の上鉄筋5aのそれぞれと橋軸方向Lに連結する連結上鉄筋50と、施工箇所Xに打設するコンクリート部60とで構成している。   Specifically, the facing portion between the reinforced concrete floor slabs 100a, that is, the floor slab connecting portion 10 having a structure for connecting the construction location X, connects the upper flanges 2a of the steel main girders 2 on both sides of the construction location X. The sandwiched connecting plate 30, the formed steel plate 20 that is fixed to each of the upper flanges 2 a of the steel main girders 2 on both sides or the upper flanges 3 a of the end cross girders 3, and the shaped steel plate, straddling the construction site X 20, stud bolts 40 planted on the upper part, upper reinforcing bars 5a on both sides of the reinforced concrete part 5 on the both sides of the construction site X, connecting upper reinforcing bars 50 connected in the bridge axis direction L, and a concrete part 60 placed on the construction site X It consists of.

挟込連結板30は、鋼製主桁2の上フランジ2aを上下から挟み込むように、橋軸方向Lに離間する鋼製主桁2の上フランジ2aを連結する連結板であり、図6(b)図7(b)に示すように、鋼製主桁2の上フランジ2aの上面側に配置する上連結板31と、上フランジ2aの底面側に配置する下連結板32とで構成し、上連結板31と下連結板32とで鋼製主桁2の上フランジ2aを上下に挟み込んだ状態で、図示省略するボルトで接合している。   The sandwiching connection plate 30 is a connection plate that connects the upper flanges 2a of the steel main girders 2 spaced apart in the bridge axis direction L so as to sandwich the upper flange 2a of the steel main girders 2 from above and below. b) As shown in FIG. 7B, the upper connecting plate 31 is disposed on the upper surface side of the upper flange 2a of the steel main girder 2, and the lower connecting plate 32 is disposed on the bottom surface side of the upper flange 2a. The upper connecting plate 31 and the lower connecting plate 32 are joined with bolts (not shown) in a state where the upper flange 2a of the steel main beam 2 is sandwiched vertically.

なお、上連結板31は、鋼製主桁2の上フランジ2aと同じ程度の幅を有する橋軸方向Lに長い平面視長方形状の板材であり、下連結板32は、鋼製主桁2の上フランジ2aに対して半分以下の幅で形成した板材であり、鋼製主桁2の上フランジ2aの底面側においてウェブに対して両側に配置している。   Note that the upper connecting plate 31 is a plate member having a rectangular shape in plan view that is long in the bridge axis direction L and having the same width as the upper flange 2a of the steel main girder 2, and the lower connecting plate 32 is a steel main girder 2 It is the board | plate material formed with the width below half with respect to the upper flange 2a, and is arrange | positioned on both sides with respect to a web in the bottom face side of the upper flange 2a of the steel main girder 2. FIG.

成形鋼板20は、SM鋼板で構成され、鋼製主桁2の上フランジ2a及び端横桁3の上フランジ3aに対して図示省略するボルトで固定される固定部21と、橋軸直角方向Wから見て固定部21に対して略台形状に嵩上げされた嵩上げ部22とで一体構成され、嵩上げ部22には、スタッドボルト40を平面視格子状に配置して植設している。なお、成形鋼板20はSS鋼板で構成してもよい。また、スタッドボルト40を平面視千鳥状に配置して植設してもよい。   The formed steel plate 20 is composed of an SM steel plate, and includes a fixing portion 21 fixed with bolts (not shown) to the upper flange 2a of the steel main girder 2 and the upper flange 3a of the end cross girder 3, and a bridge axis perpendicular direction W. And a raised portion 22 raised substantially in a trapezoidal shape with respect to the fixed portion 21, and stud bolts 40 are arranged and planted in the raised portion 22 in a lattice shape in a plan view. In addition, you may comprise the formed steel plate 20 with SS steel plate. Alternatively, the stud bolts 40 may be arranged in a zigzag shape in plan view.

なお、台形状の嵩上げ部22の裾部の間隔、つまり、固定部21同士の橋軸方向Lの間隔は挟込連結板30の橋軸方向Lの長さより長く形成している。また、成形鋼板20は、図2に示すように、既設コンクリート床版橋100における施工箇所Xの全幅に亘る全範囲に装着している。したがって、成形鋼板20は、鋼製主桁2の上フランジ2aに対して固定されるとともに、鋼製主桁2同士の間においては、端横桁3の上フランジ3aに接続固定されている。   The interval between the skirts of the trapezoidal raised portions 22, that is, the interval between the fixing portions 21 in the bridge axis direction L is longer than the length of the sandwiched connecting plate 30 in the bridge axis direction L. Further, as shown in FIG. 2, the formed steel plate 20 is attached to the entire range over the entire width of the construction site X in the existing concrete floor slab bridge 100. Accordingly, the formed steel plate 20 is fixed to the upper flange 2a of the steel main girder 2 and is connected and fixed to the upper flange 3a of the end cross girder 3 between the steel main girders 2.

さらに、成形鋼板20は、床版連結部10の全幅に亘って配置されるが、鋼製主桁2同士に接続する成形鋼板20と、橋軸直角方向Wに隣接する鋼製主桁2同士の間の端横桁3の上フランジ3aに接続する成形鋼板20とは別体で構成し、このような別体構成の成形鋼板20を複数枚、橋軸直角方向Wに並べて、橋軸直角方向Wの全幅に亘って配置される。   Further, the formed steel plate 20 is arranged over the entire width of the floor slab connecting portion 10, but the formed steel plate 20 connected to the steel main girders 2 and the steel main girders 2 adjacent to each other in the direction W perpendicular to the bridge axis. It is constituted separately from the formed steel plate 20 connected to the upper flange 3a of the end cross girder 3 between them, and a plurality of such formed steel plates 20 are arranged in the direction W perpendicular to the bridge axis so as to be perpendicular to the bridge axis. It is arranged over the entire width in the direction W.

このように橋軸直角方向Wの全幅に亘って配置される成形鋼板20は、施工箇所Xにコンクリートを打設する際の下面側の型枠としても機能するように構成している。
なお、同幅で形成された成形鋼板20を複数枚、橋軸直角方向Wに並べて橋軸直角方向Wの全幅に亘って配置してもよい。
In this way, the formed steel plate 20 disposed over the entire width in the direction W perpendicular to the bridge axis is configured to function as a form on the lower surface side when placing concrete in the construction site X.
A plurality of the formed steel plates 20 having the same width may be arranged in the direction W perpendicular to the bridge axis and arranged over the entire width in the direction W perpendicular to the bridge axis.

スタッドボルト40は、成形鋼板20の嵩上げ部22において格子状に配置するともに、上方に突出する向きで植設されている。なお、嵩上げ部22の上面側に配置されたスタッドボルト40の先端頭部41は、鉄筋コンクリート部5において配置された下鉄筋5bに対応する高さの位置となるように形成している。   The stud bolts 40 are arranged in a grid pattern in the raised portion 22 of the formed steel plate 20 and are planted in a direction protruding upward. The tip head 41 of the stud bolt 40 disposed on the upper surface side of the raised portion 22 is formed so as to be at a height corresponding to the lower rebar 5 b disposed in the reinforced concrete portion 5.

連結上鉄筋50は、橋軸方向Lに沿って配置し、施工箇所Xの両側の上鉄筋5aのそれぞれと接続して連結する、上鉄筋5aと同径の鉄筋であるが、両側の上鉄筋5aと連結上鉄筋50とは、所定の継手長さの重ね継手で接続してもよく、さらには、機械式継ぎ手を用いたり、溶接継ぎ手等で接続してもよい。   The connection upper rebar 50 is a rebar having the same diameter as the upper rebar 5a, which is arranged along the bridge axis direction L and connected to and connected to each of the upper rebar 5a on both sides of the construction site X. 5a and the connection upper rebar 50 may be connected by a lap joint having a predetermined joint length, or may be connected by a mechanical joint or a welded joint.

また、連結上鉄筋50に直交するように橋軸方向Lの所定間隔を隔てて、橋軸直角方向Wの床版主筋51を設けている。
さらに、スタッドボルト40に対して橋軸直角方向Wのせん断補強鉄筋52を取付けている。せん断補強鉄筋52は、橋軸直角方向Wに並べられた成形鋼板20がずれることを防止するために設けられ、橋軸直角方向Wに並べられた成形鋼板20同士の境界を跨ぐように配置されている。なお、せん断補強鉄筋52は、設けなくてもよい。
Further, the floor slab main bars 51 in the direction perpendicular to the bridge axis W are provided at predetermined intervals in the bridge axis direction L so as to be orthogonal to the connection upper reinforcing bars 50.
Further, a shear reinforcement bar 52 in the direction W perpendicular to the bridge axis is attached to the stud bolt 40. The shear reinforcing reinforcing bars 52 are provided to prevent the formed steel plates 20 arranged in the bridge axis perpendicular direction W from shifting and are arranged so as to straddle the boundary between the formed steel plates 20 arranged in the bridge axis perpendicular direction W. ing. In addition, the shear reinforcement bar 52 does not need to be provided.

コンクリート部60は、繊維補強超速硬コンクリートで構成している。繊維補強超速硬コンクリートで構成するコンクリート部60は、一般的なコンクリートで構成する場合に比べて、早期に強度が発現するとともに、硬化後における曲げ耐力・靱性を向上することができる。   The concrete part 60 is composed of fiber-reinforced super-hard hard concrete. The concrete portion 60 made of fiber reinforced ultra-high-hardness concrete exhibits strength at an early stage and can improve the bending strength and toughness after hardening, as compared with the case where the concrete portion 60 is made of general concrete.

このような構造で構成された床版連結部10の施工方法について、図4乃至図10とともに説明する。
床版連結部10を構築するためには、図5(a)に示すように表層8の一部を撤去するとともに(ステップs1)、ジョイント治具6を跨ぐように、施工箇所Xを設定し、施工箇所Xの橋軸方向Lの両側を鋼製主桁2及び端横桁3が露出するように上下方向に切断するとともに、施工箇所Xのコンクリートを撤去する(ステップs2)。
A construction method of the floor slab connecting portion 10 configured as described above will be described with reference to FIGS.
In order to construct the floor slab linking part 10, a part of the surface layer 8 is removed as shown in FIG. 5A (step s 1), and the construction location X is set so as to straddle the joint jig 6. Then, both sides of the construction site X in the bridge axis direction L are cut vertically so that the steel main girder 2 and the end cross beam 3 are exposed, and the concrete at the construction site X is removed (step s2).

このとき、施工箇所Xの橋軸方向Lの両側を橋軸直角方向Wの全幅に亘って、鉄筋コンクリート部5のコンクリートのみならず、上鉄筋5a及び下鉄筋5bを切断して、施工箇所Xのコンクリート及びジョイント治具6を撤去する(図5(b)参照)。また、このステップで、施工箇所Xに位置するスタッドボルト7を撤去する。   At this time, not only the concrete of the reinforced concrete part 5 but also the upper rebar 5a and the lower rebar 5b are cut on both sides of the construction site X in the bridge axis direction L over the entire width in the bridge axis perpendicular direction W. The concrete and the joint jig 6 are removed (see FIG. 5B). Moreover, the stud bolt 7 located in the construction location X is removed at this step.

そして、連結上鉄筋50と接続するために上鉄筋5aの端部が所定長さ露出するように手斫りによって、鉄筋コンクリート部5(図6(a)において破線のハッチングで示す部分)を斫る(ステップs3)。   And in order to connect with the connection upper reinforcement 50, the reinforced concrete part 5 (part shown with the broken-line hatching in Fig.6 (a)) is beaten by hand so that the edge part of the upper reinforcement 5a may expose predetermined length. (Step s3).

このようにして、コンクリートの切断・撤去及び手斫りが完成した施工箇所Xにおいて、上連結板31及び下連結板32で鋼製主桁2の上フランジ2aを上下方向から挟み込むように装着する(図6(b),図7(b)参照:ステップs4)。   In this way, in the construction site X where the concrete cutting / removal and hand-grip are completed, the upper connecting plate 31 and the lower connecting plate 32 are mounted so that the upper flange 2a of the steel main girder 2 is sandwiched from above and below. (See FIG. 6B and FIG. 7B: Step s4).

挟込連結板30の取付完了後、スタッドボルト40が予め植設された成形鋼板20を装着する(図8(a),図9(a)参照:ステップs5)。このとき、図9(a)に示すように、成形鋼板20の固定部21を鋼製主桁2の上フランジ2aに、図示省略するボルトで取り付け固定する。さらに、スタッドボルト40に対して、橋軸直角方向Wのせん断補強鉄筋52を配筋する。   After completion of the attachment of the sandwiching connection plate 30, the formed steel plate 20 in which the stud bolts 40 are previously planted is mounted (see FIG. 8A and FIG. 9A: step s5). At this time, as shown to Fig.9 (a), the fixing | fixed part 21 of the shaping | molding steel plate 20 is attached and fixed to the upper flange 2a of the steel main girder 2 with the volt | bolt which is not illustrated. Further, a shear reinforcing bar 52 in the direction perpendicular to the bridge axis W is arranged with respect to the stud bolt 40.

成形鋼板20の取付完了後、橋軸方向Lの両側で端部が露出する上鉄筋5aに対して、連結上鉄筋50を連結するとともに、床版主筋51を配筋する(ステップs6)。なお、図8(b)で図示するように、本実施形態では、鉄筋コンクリート部5の上鉄筋5aと連結上鉄筋50とは重ね継手としての所定の継手長さ以上の長さを上鉄筋5aと連結上鉄筋50と重ねて連結するが、機械式継ぎ手を用いたり、溶接継ぎ手などによって上鉄筋5aと連結上鉄筋50を連結してもよい。   After the completion of the attachment of the formed steel plate 20, the upper connecting reinforcing bar 50 is connected to the upper reinforcing bar 5a whose ends are exposed on both sides in the bridge axis direction L, and the floor slab main reinforcing bar 51 is arranged (step s6). As shown in FIG. 8B, in this embodiment, the upper rebar 5a and the connection upper rebar 50 of the reinforced concrete portion 5 have a length equal to or longer than a predetermined joint length as a lap joint with the upper rebar 5a. Although it connects with the connection upper rebar 50 in piles, you may connect the upper rebar 5a and the connection upper rebar 50 using a mechanical joint or a welding joint.

このように、挟込連結板30及び成形鋼板20の設置及び連結上鉄筋50及び床版主筋51の配筋が完了した後、施工箇所Xに繊維補強超速硬コンクリートを打設する(ステップs7)。   As described above, after the installation of the sandwiched connecting plate 30 and the formed steel plate 20 and the arrangement of the connection upper reinforcing bar 50 and the floor slab main reinforcing bar 51 are completed, the fiber reinforced super-hard-hardened concrete is placed in the construction location X (step s7). ).

繊維補強超速硬コンクリートは、いわゆる超速硬コンクリートに、鋼繊維やポリプロピレン繊維などの添加材を添加して構成されたコンクリートである。
そして、施工箇所Xに打設された繊維補強超速硬コンクリートの養生後、床版連結部10の施工は完了する。
The fiber-reinforced super fast-hardening concrete is concrete formed by adding an additive such as steel fiber or polypropylene fiber to so-called super-fast-hardening concrete.
And after the curing of the fiber reinforced super hard concrete cast in the construction site X, the construction of the floor slab connecting portion 10 is completed.

なお、橋軸直角方向Wに隣接する鋼製主桁2同士の間における床版連結部10の場合も、挟込連結板30を設置しない、成形鋼板20の固定部21を端横桁3の上フランジ3aに接続するなどの相違点はあるがその他の構成及び方法は同じであり、その施工も鋼製主桁2を通る断面と同時施工を行うことができる。   In addition, also in the case of the floor slab connecting portion 10 between the steel main girders 2 adjacent to each other in the direction perpendicular to the bridge axis W, the fixed connecting portion 21 of the formed steel plate 20 without the sandwiched connecting plate 30 is used as the end cross beam 3 Although there are differences such as connection to the upper flange 3a, other configurations and methods are the same, and the construction can be performed simultaneously with the cross section passing through the steel main beam 2.

このような施工方法で構築するとともに、上述のような構成の床版連結部10の性能を確認するために行った性能確認試験について図11とともに説明する。
床版連結部10の性能確認試験では、図11(a)に示すように、床版連結部10をモデル化した供試体に対して荷重Pを作用させた際の鉛直変位等を計測した。
A performance confirmation test performed in order to confirm the performance of the floor slab connecting portion 10 having the above-described configuration while being constructed by such a construction method will be described with reference to FIG.
In the performance confirmation test of the floor slab connecting portion 10, as shown in FIG. 11A, vertical displacement and the like when a load P is applied to a specimen modeled on the floor slab connecting portion 10 were measured.

その結果、図11(b)に示すように、床版連結部10は設計回転角を与えても構造は良好に保持されており、ひび割れ発生以降の挙動が従来の連結構造に比べ、緩やかで安定していることが確認できた。また、従来の連結構造に比べ終局点が後であったことから従来の連結構造に比べ変形性能が優れていることが確認できた。さらに、床版連結部10は柔構造を形成しているため、良好に鉄筋コンクリート部5と合成しており、たとえ終局に至っても床版連結部10の耐荷力が低下することなく、貫通ひび割れが発生する程度であることが確認できた。   As a result, as shown in FIG. 11B, the structure of the floor slab connecting portion 10 is maintained well even when the design rotation angle is given, and the behavior after the occurrence of cracking is slower than the conventional connecting structure. It was confirmed that it was stable. Moreover, since the final point was later than that of the conventional connection structure, it was confirmed that the deformation performance was superior to that of the conventional connection structure. Further, since the floor slab connecting portion 10 forms a flexible structure, it is well synthesized with the reinforced concrete portion 5, and even if it reaches the final stage, the load bearing capacity of the floor slab connecting portion 10 does not decrease, and through cracks are generated. It was confirmed that it was an extent to be generated.

このように、従来の連結構造と比べ、所要の耐力を有することが確認された床版連結部10は、鉄筋コンクリート床版100aの離間する端部同士の間の施工箇所Xを跨ぐように両側の上鉄筋5aと連結した連結上鉄筋50と、鋼製主桁2の離間する端部同士の間の遊間において対向する上フランジ2a及び端横桁3の上フランジ3aに接続する両端の固定部21と、施工箇所Xを跨ぐように配置し、固定部21に対して、高さ方向に嵩上げされた嵩上げ部22とを備えた成形鋼板20と、施工箇所Xに打設したコンクリート部60とで構成したことにより、単純な構造であるため、簡単に施工することができる。   Thus, compared with the conventional connection structure, the floor slab connecting part 10 that has been confirmed to have the required yield strength is provided on both sides so as to straddle the construction site X between the spaced apart ends of the reinforced concrete floor slab 100a. Fixing portions 21 at both ends connected to the upper flange 2a and the upper flange 3a of the end cross beam 3 facing each other in the play between the connecting upper rebar 50 connected to the upper rebar 5a and the spaced apart ends of the steel main beam 2 And the formed steel plate 20 provided with the raised portion 22 raised in the height direction with respect to the fixed portion 21, and the concrete portion 60 placed in the applied location X. Since it has a simple structure, it can be easily constructed.

詳しくは、鉄筋コンクリート床版100aを用いた橋梁における床版連結部10として、鉄筋コンクリート床版100aの離間する端部同士の間の施工箇所Xを跨ぐように、両側の鋼製主桁2の上フランジ2aの対向部同士及び端横桁3の上フランジ3a同士を連結した成形鋼板20と、施工箇所Xを跨ぐように両側の上鉄筋5aと連結した連結上鉄筋50を鉄筋コンクリート床版100aの構造部材と直接連結し、繊維補強超速硬コンクリートを打設してコンクリート部60を構成するだけの構造であるため、例えば、鉄筋コンクリート床版100aの上鉄筋5a及び下鉄筋5bのそれぞれと直接連結する従来の連結構造に比べ、所要の耐力を有する床版連結部10を簡単な施工で実現することができる。   Specifically, as the floor slab connecting portion 10 in the bridge using the reinforced concrete floor slab 100a, the upper flanges of the steel main girders 2 on both sides so as to straddle the construction site X between the spaced apart ends of the reinforced concrete floor slab 100a. The structural member of the reinforced concrete floor slab 100a includes the formed steel plate 20 in which the opposing portions of 2a and the upper flanges 3a of the end cross beams 3 are connected to each other, and the connected upper reinforcing bars 50 connected to the upper reinforcing bars 5a on both sides so as to straddle the construction site X Since it is a structure that is directly connected to the reinforced concrete floor and the concrete portion 60 is formed by placing fiber reinforced super fast hard concrete, for example, the conventional reinforced concrete floor slab 100a is directly connected to each of the upper rebar 5a and the lower rebar 5b. Compared to the connecting structure, the floor slab connecting portion 10 having a required yield strength can be realized by simple construction.

なお、上述の成形鋼板20は、鋼製主桁2に対して直交するように、かつ端横桁3を橋軸直角方向Wに覆うように隙間なく配置され、コンクリート打設の際の型枠となるとともに、連結上鉄筋50と一体的に挙動することで、外力を効果的に伝達することができる。したがって、簡単に施工できるとともに、十分な耐力を有する床版連結部10を実現することができる。   In addition, the above-mentioned formed steel plate 20 is arranged without a gap so as to be orthogonal to the steel main girder 2 and to cover the end cross girder 3 in the direction W perpendicular to the bridge axis. In addition, the external force can be effectively transmitted by acting integrally with the rebar 50 on the connection. Therefore, the floor slab connecting portion 10 that can be easily constructed and has sufficient proof strength can be realized.

なお、対向する鋼製主桁2同士が橋軸方向Lに直線状に配置されていない場合であっても、両側の鋼製主桁2及び端横桁3の上フランジ2a,3aの高さが同じであれば、適用することができる。また成形鋼板20は、スプライスプレート又は合成床版における底鋼板と連結することもできる。   Even if the opposing steel main girders 2 are not arranged linearly in the bridge axis direction L, the height of the upper flanges 2a, 3a of the steel main girders 2 and the end cross girders 3 on both sides Can be applied if they are the same. Further, the formed steel plate 20 can be connected to a bottom steel plate in a splice plate or a synthetic floor slab.

また、コンクリート部60との付着性を向上するスタッドボルト40を成形鋼板20に備えているため、スタッドボルト40を介して、成形鋼板20とコンクリート部60とが一体化し、床版連結部10における耐力を確実に発現させることができる。   Moreover, since the stud bolt 40 which improves the adhesiveness with the concrete part 60 is provided in the molded steel plate 20, the molded steel plate 20 and the concrete part 60 are integrated via the stud bolt 40, and in the floor slab connecting part 10 Yield strength can be surely expressed.

また、嵩上げ部22に配置したスタッドボルト40の先端頭部41を、下鉄筋5bに対応する高さに配置することにより、コンクリート部60に外力が作用して変形した場合であっても、コンクリート部60へのクラックや、舗装表面へのリフレクションクラックなどの損傷が生じることを抑制することができる。   Further, by disposing the tip head portion 41 of the stud bolt 40 disposed on the raised portion 22 at a height corresponding to the lower reinforcing bar 5b, even if the concrete portion 60 is deformed by an external force, the concrete It can suppress that damage, such as a crack to the part 60 and a reflection crack to a pavement surface, arises.

また、施工箇所Xを跨ぐように、両側の鋼製主桁2の上フランジ2aの対向部同士を連結した挟込連結板30を備えることにより、簡単な構造で所要の耐力を有する床版連結部10を実現することができる。   Moreover, the floor slab connection which has the required proof stress with a simple structure is provided by providing the pinching connection board 30 which connected the opposing parts of the upper flange 2a of the steel main girder 2 of both sides so that the construction location X might be straddled. Part 10 can be realized.

詳述すると、挟込連結板30を、両側の鋼製主桁2の上フランジ2aの対向部のそれぞれと連結することによって、床版連結部10に作用する曲げ応力を鋼製主桁2に伝達することができる。したがって、簡単な構造でありながら、所要の耐力を有する床版連結部10を実現することができる。   More specifically, the bending stress acting on the floor slab connecting portion 10 is applied to the steel main girder 2 by connecting the sandwiching connecting plate 30 to each of the opposing portions of the upper flange 2a of the steel main girder 2 on both sides. Can communicate. Therefore, it is possible to realize the floor slab connecting portion 10 having a required proof stress while having a simple structure.

また、挟込連結板30を、鋼製主桁2の上フランジ2aの幅に対応する幅で構成することにより、橋軸直角方向Wにおける全面に亘って挟込連結板30を設ける場合に比べて鋼材量を削減することができるとともに、容易に搬入して設置する、つまり施工性を向上することができる。   Further, by configuring the sandwiching connection plate 30 with a width corresponding to the width of the upper flange 2a of the steel main girder 2, the sandwiching connection plate 30 is provided over the entire surface in the direction W perpendicular to the bridge axis. Therefore, it is possible to reduce the amount of steel material and to easily carry in and install, that is, to improve the workability.

また、両側の鋼製主桁2の上フランジ2aの対向部のそれぞれを上連結板31と下連結板32とで上下方向に挟み込む構成としたことにより、簡単な構造で所要の耐力を有する床版連結部10を得ることができる。   In addition, since each of the opposing portions of the upper flange 2a of the steel main girders 2 on both sides is sandwiched between the upper connecting plate 31 and the lower connecting plate 32 in the vertical direction, the floor has a simple structure and a required strength. The plate connecting part 10 can be obtained.

詳述すると、両側の鋼製主桁2の上フランジ2a対向部のそれぞれを上連結板31及び下連結板32で上下方向に挟み込んで連結したことによって、上フランジ2aと挟込連結板30との接地面積が狭い場合であっても、床版連結部10に作用する曲げ応力を鋼製主桁2に伝達させることができる。したがって、簡単な構造でありながら、所要の耐力を有する床版連結部10を実現することができる。   More specifically, the upper flange 2a and the sandwiched coupling plate 30 are connected to each other by sandwiching the upper flange 2a facing portions of the steel main girders 2 on both sides with the upper coupling plate 31 and the lower coupling plate 32 in the vertical direction. Even when the ground contact area is small, the bending stress acting on the floor slab connecting portion 10 can be transmitted to the steel main girder 2. Therefore, it is possible to realize the floor slab connecting portion 10 having a required proof stress while having a simple structure.

また、繊維補強速硬コンクリートを打設してコンクリート部60を構成することにより、繊維補強速硬コンクリートは早期に強度が発現するため、短期施工であっても、確実に耐力を有する床版連結部10を構築することができる。また、曲げ耐力や靱性を高めることが可能である繊維補強コンクリートを用いることで、成形鋼板20や連結上鉄筋50、あるいは挟込連結板30と一体的に、施工箇所Xに作用する外力を効果的に伝達することができるとともに、床版連結部10に発生するクラックが分散されることが期待できる。   In addition, since the fiber-reinforced fast-hardening concrete exhibits strength at an early stage by placing the fiber-reinforced quick-hardening concrete to form the concrete portion 60, the floor slab connection surely has proof strength even in a short-term construction. Part 10 can be constructed. Further, by using fiber reinforced concrete capable of increasing the bending strength and toughness, the external force acting on the construction location X is integrated with the formed steel plate 20, the connection upper rebar 50, or the sandwiched connection plate 30. It can be expected that the cracks generated in the floor slab connecting portion 10 are dispersed.

また、橋軸方向Lの上鉄筋5aと下鉄筋5bとを有する鉄筋コンクリート床版100aと、上フランジ2a,3aとウェブとを有する橋軸方向Lの鋼製主桁2及び橋軸直角方向Wの端横桁3とを備え、橋軸方向Lに配置した既設の鉄筋コンクリート床版100aの離間する対向部同士を連結する鉄筋コンクリート床版100aを用いた既設コンクリート床版橋100において、鋼製主桁2の上フランジ2aの対向部と端横桁3の上フランジ3aを露出させるとともに、鉄筋コンクリート床版100aの対向部を、継手可能となるように上鉄筋5aの端部が露出するまで斫る手斫り工程(ステップs3)と、橋軸方向Lに離間する鋼製主桁2同士の間を跨ぐように配置し、高さ方向に嵩上げされた嵩上げ部22を有する成形鋼板20における固定部21を鋼製主桁2及び端横桁3の上フランジ2a,3aに固定して成形鋼板20を設置する成形鋼板取付工程(ステップs5)と、露出した上鉄筋5aの両方と連結上鉄筋50を連結する連結上鉄筋配筋工程(ステップs6)と、鉄筋コンクリート床版100aの対向部同士の間に、繊維補強速硬コンクリートを打設してコンクリート部60を構成するコンクリート打設工程(ステップs7)とを行うことにより、コンクリート部60を構成する繊維補強速硬コンクリートは早期に強度が発現するため、例えば、施工期間が制限された供用中の鉄筋コンクリート床版100aを用いた橋梁に対する改修工事であっても、確実に耐力を有する連結部を構築することができる。   Further, a steel reinforced concrete floor slab 100a having an upper rebar 5a and a lower rebar 5b in the bridge axis direction L, a steel main girder 2 in the bridge axis direction L having upper flanges 2a and 3a and a web, and a direction W perpendicular to the bridge axis W. In the existing concrete floor slab bridge 100 using the reinforced concrete floor slab 100a that connects the opposing facing portions of the existing reinforced concrete floor slab 100a arranged in the bridge axis direction L, with the end cross girder 3, the steel main girder 2 A method of exposing the opposing portion of the upper flange 2a and the upper flange 3a of the end cross girder 3 and rolling the opposing portion of the reinforced concrete floor slab 100a until the end of the upper reinforcing bar 5a is exposed so that it can be joined. In the formed steel sheet 20 having a raised portion 22 that is disposed so as to straddle between the steel main girders 2 spaced apart in the bridge axis direction L and the steel main girder 2 separated in the bridge axis direction L. A formed steel plate attaching step (step s5) in which the portion 21 is fixed to the upper flanges 2a, 3a of the steel main girder 2 and the end cross girder 3 and the shaped steel plate 20 is installed, and both the exposed upper rebar 5a and the connected upper rebar 50 on the connecting upper reinforcing bar arranging step (step s6), and the concrete placing step (step) for placing the fiber reinforced fast-hardening concrete between the opposing portions of the reinforced concrete floor slab 100a. By carrying out s7), the fiber-reinforced fast-hardening concrete constituting the concrete part 60 develops strength at an early stage. For example, repair work for a bridge using a reinforced concrete floor slab 100a with a limited construction period. Even so, it is possible to reliably construct a connecting portion having a yield strength.

また、曲げ耐力や靱性を高めることが可能である繊維補強コンクリートを用いることで、成形鋼板20や連結上鉄筋50、あるいは挟込連結板30と一体的に、施工箇所Xに作用する外力を効果的に伝達することができるとともに、床版連結部10に発生するクラックが分散されることが期待できる。   Further, by using fiber reinforced concrete capable of increasing the bending strength and toughness, the external force acting on the construction location X is integrated with the formed steel plate 20, the connection upper rebar 50, or the sandwiched connection plate 30. It can be expected that the cracks generated in the floor slab connecting portion 10 are dispersed.

なお、橋軸直角方向Wに複数のせん断補強鉄筋52を配置しているため、成形鋼板20のずれ止めとして機能することができる。
また、床版連結部10は、対向する鋼製主桁2同士が橋軸方向Lに直線状に配置されていない場合であっても、両側の鋼製主桁2及び端横桁3の上フランジ2a,3aの高さが同じであれば、適用することができる。
Since the plurality of shear reinforcing bars 52 are arranged in the direction W perpendicular to the bridge axis, it can function as a stopper for the formed steel sheet 20.
Further, the floor slab connecting portion 10 is provided on the steel main girders 2 and the end cross girders 3 on both sides even when the opposing steel main girders 2 are not arranged linearly in the bridge axis direction L. If the heights of the flanges 2a and 3a are the same, it can be applied.

上述のように、従来の連結構造に比べ、所要の耐力を有する床版連結部10において、上述の説明では、成形鋼板20の嵩上げ部22を、橋軸直角方向Wから見て固定部21に対して、略台形状に嵩上げして構成したが、例えば断面半円形などの適宜の凸形状で構成してもよい。さらには、固定部21を鋼製主桁2や端横桁3に対してボルト接続したが、溶接や接着材など構造的に一体として評価できる方法で接続してもよい。   As described above, in the floor slab connecting portion 10 having a required yield strength as compared with the conventional connecting structure, in the above description, the raised portion 22 of the formed steel plate 20 is fixed to the fixed portion 21 when viewed from the direction W perpendicular to the bridge axis. On the other hand, it is configured to be raised in a substantially trapezoidal shape, but may be configured to have an appropriate convex shape such as a semicircular cross section. Furthermore, although the fixing | fixed part 21 was bolt-connected with respect to the steel main beam 2 and the end cross beam 3, you may connect by the method which can evaluate structurally integrally, such as welding and an adhesive material.

さらには、成形鋼板20を用いずに、連結下鉄筋70を用いて床版連結部10aを構成してもよい。以下において、図12乃至図17とともに、連結下鉄筋70を用いた床版連結部10aについて説明する。   Furthermore, you may comprise the floor slab coupling | bond part 10a using the connection lower reinforcement 70, without using the shaping | molding steel plate 20. FIG. Hereinafter, the floor slab connecting portion 10a using the connecting lower rebar 70 will be described with reference to FIGS.

なお、図12は別の実施形態の床版連結部10aの橋軸方向Lの断面図による説明図を示し、図13は床版連結部10aの施工フロー図を示し、図14乃至図17は床版連結部10aの施工説明図を示している。   FIG. 12 is an explanatory diagram showing a cross-sectional view in the bridge axis direction L of a floor slab coupling portion 10a of another embodiment, FIG. 13 is a construction flow diagram of the floor slab coupling portion 10a, and FIGS. The construction explanatory drawing of the floor slab connection part 10a is shown.

詳述すると、図12(a)は鋼製主桁2を通る橋軸方向Lの床版連結部10aの断面図を示し、図12(b)は隣接する鋼製主桁2同士の間を通る橋軸方向Lの床版連結部10aの断面図を示している。   Specifically, FIG. 12 (a) shows a cross-sectional view of the floor slab connecting portion 10a in the bridge axis direction L passing through the steel main girder 2, and FIG. 12 (b) shows between adjacent steel main girders 2. Sectional drawing of the floor slab coupling | bond part 10a of the bridge-axis direction L which passes is shown.

また、詳しくは、図14(a)は改修前の床版連結部10aの断面図を示し、図14(b)は床版連結部10aを施工する箇所X(以下において施工箇所Xという)における表層撤去工程についての断面図を示している。   Further, in detail, FIG. 14 (a) shows a cross-sectional view of the floor slab connecting portion 10a before the repair, and FIG. 14 (b) is a location X (hereinafter referred to as construction location X) where the floor slab connecting portion 10a is constructed. Sectional drawing about the surface removal process is shown.

図15(a)は施工箇所Xにおけるカッター切断工程についての断面図を示し、図15(b)は施工箇所Xにおける手斫り工程の断面図を示し、図16(a)は連結板取付け工程についての断面図を示し、図16(b)は連結鉄筋配筋工程についての断面図を示し、図17はコンクリート打設工程についての断面図を示している。なお、図15乃至図17においては、図示を簡略化するため、断面を示すハッチングの図示は省略している。   15A shows a cross-sectional view of the cutter cutting process at the construction site X, FIG. 15B shows a cross-sectional view of the hand-working process at the construction site X, and FIG. 16A shows the connecting plate mounting process. FIG. 16B shows a cross-sectional view of the connecting reinforcing bar arranging step, and FIG. 17 shows a cross-sectional view of the concrete placing step. In FIGS. 15 to 17, hatching showing a cross section is omitted for the sake of simplicity.

図12に示す床版連結部10aは、上述の床版連結部10と比べ、成形鋼板20を備えず、下鉄筋5bと同径の連結下鉄筋70を配置していること、挟込連結板30の代わりに連結板33を橋軸直角方向Wの全幅に亘って配置していることが大きく異なっている。   The floor slab connecting portion 10a shown in FIG. 12 does not include the formed steel plate 20 as compared with the above-described floor slab connecting portion 10, and the connecting lower rebar 70 having the same diameter as the lower rebar 5b is disposed. The difference is that the connecting plate 33 is arranged over the entire width in the direction W perpendicular to the bridge axis instead of 30.

なお、上述の床版連結部10においても、床版連結部10aにおいても新設する連結上鉄筋50は、鉄筋コンクリート部5の上鉄筋5aと重ね継手によって連結して一体化しているが、連結下鉄筋70は、鉄筋コンクリート部5の下鉄筋5bに対応する高さに配置するものの、鉄筋コンクリート部5の下鉄筋5bと連結下鉄筋70とは連結せず、連結下鉄筋70は独立して配置している。そして、連結上鉄筋50と同様に、連結下鉄筋70も床版主筋51を配筋する。   In addition, in the above-mentioned floor slab connecting portion 10 and the floor slab connecting portion 10a, the newly connected upper rebar 50 is connected and integrated with the upper rebar 5a of the reinforced concrete portion 5 by a lap joint. 70 is arranged at a height corresponding to the lower reinforcing bar 5b of the reinforced concrete part 5, but the lower reinforcing bar 5b of the reinforced concrete part 5 and the lower connecting reinforcing bar 70 are not connected, and the lower connecting reinforcing bar 70 is arranged independently. . Then, similarly to the upper connection reinforcing bar 50, the lower connection reinforcing bar 70 also arranges the floor slab main reinforcement 51.

また、下鉄筋5bに対応する高さにおいて橋軸方向Lに配置した連結下鉄筋70は、下鉄筋5bと構造的に連結させる必要はないが、下鉄筋5bと連結下鉄筋70の先端部分が橋軸直角方向Wに重なるように略平行に配置している。
なお、このように構成する床版連結部10aは、鋼製主桁2を通る断面と、隣り合う鋼製主桁2同士の間の断面においても、その構造に大差はない。
Further, the connected lower rebar 70 arranged in the bridge axis direction L at a height corresponding to the lower rebar 5b does not need to be structurally connected to the lower rebar 5b, but the tip of the lower rebar 5b and the connected lower rebar 70 is They are arranged substantially in parallel so as to overlap the direction W perpendicular to the bridge axis.
In addition, the structure of the floor slab connecting portion 10a configured in this way is not greatly different in the cross section passing through the steel main girders 2 and the cross section between the adjacent steel main girders 2.

次に、このように構成する床版連結部10aの施工方法について、図13乃至図17とともに説明する。
床版連結部10aを構築するためには、図14(a)に示す当初断面に対して、ジョイント治具6を跨ぐように、施工箇所Xを設定し、図14(b)に示すように表層8を撤去するとともに(ステップt1)、施工箇所Xの橋軸方向Lの両側を上下方向に切断するとともに、施工箇所Xのコンクリートを撤去する(ステップt2)。
Next, a construction method of the floor slab connecting portion 10a configured as described above will be described with reference to FIGS.
In order to construct the floor slab connecting portion 10a, the construction location X is set so as to straddle the joint jig 6 with respect to the initial cross section shown in FIG. 14 (a), as shown in FIG. 14 (b). While removing the surface layer 8 (step t1), the both sides of the construction site X in the bridge axis direction L are cut vertically, and the concrete at the construction site X is removed (step t2).

このとき、施工箇所Xの橋軸方向L両側を橋軸直角方向Wの全幅に亘って、鉄筋コンクリート部5のコンクリートのみならず、上鉄筋5a及び5bを切断して、施工箇所Xのコンクリート及びジョイント治具6を撤去する(図15(a)参照)。   At this time, not only the concrete of the reinforced concrete part 5 but also the upper rebars 5a and 5b are cut across the entire width of the bridge axis perpendicular direction W on both sides of the bridge axis direction L of the construction site X, and the concrete and joint of the construction site X The jig 6 is removed (see FIG. 15A).

そして、図15(b)に示すように、連結上鉄筋50と接続するために上鉄筋5aの端部が所定長さ露出するように手斫りによって、鉄筋コンクリート部5のコンクリート部を斫る(ステップt3)。また、このステップで露出したスタッドボルト7を撤去する。   And as shown in FIG.15 (b), in order to connect with the connection upper rebar 50, the concrete part of the reinforced concrete part 5 is beaten by hand so that the end part of the upper rebar 5a may be exposed for a predetermined length ( Step t3). Further, the stud bolt 7 exposed in this step is removed.

このようにして、コンクリートの切断・撤去及び手斫りが完成した施工箇所Xにおいて、鋼製主桁2の上フランジ2a及び端横桁3の上フランジ3aに対して連結板33を、橋軸直角方向Wの全面に亘って装着する(図16(a)参照:ステップt4)。   In this way, in the construction site X where the concrete cutting / removal and the hand wrench have been completed, the connecting plate 33 is connected to the upper flange 2a of the steel main girder 2 and the upper flange 3a of the end cross girder 3 with the bridge shaft. It is mounted over the entire surface in the perpendicular direction W (see FIG. 16A: step t4).

連結板33の取付完了後、橋軸方向Lの両側で端部が露出する上鉄筋5aに対して、連結上鉄筋50を連結するとともに、連結下鉄筋70を所定位置に配置して、床版主筋51を配筋する(ステップt5)。なお、図15(b)で図示するように、本実施形態では、鉄筋コンクリート部5の上鉄筋5aと連結上鉄筋50とは重ね継手としての所定の継手長以上の長さを上鉄筋5aと連結上鉄筋50と重ねて連結するが、機械式継ぎ手を用いて上鉄筋5aと連結上鉄筋50を連結してもよい。   After completing the attachment of the connecting plate 33, the connecting upper reinforcing bar 50 is connected to the upper reinforcing bar 5a whose ends are exposed on both sides in the bridge axis direction L, and the connecting lower reinforcing bar 70 is arranged at a predetermined position, and the floor slab The main reinforcement 51 is arranged (step t5). As shown in FIG. 15B, in this embodiment, the upper rebar 5a and the connection upper rebar 50 of the reinforced concrete portion 5 are connected to the upper rebar 5a with a length equal to or longer than a predetermined joint length as a lap joint. The upper rebar 50 is overlapped and connected, but the upper rebar 5a and the connected upper rebar 50 may be connected using a mechanical joint.

このように、連結板33の設置及び連結上鉄筋50、連結下鉄筋70及び床版主筋51の配筋が完了した後、施工箇所Xに繊維補強超速硬コンクリートを打設し(ステップt6)、繊維補強超速硬コンクリートの養生後、床版連結部10aの施工は完了する。   Thus, after the installation of the connecting plate 33 and the arrangement of the connecting upper reinforcing bar 50, the connecting lower reinforcing bar 70, and the floor slab main reinforcing bar 51 are completed, the fiber-reinforced super-hard-hardened concrete is placed in the construction location X (step t6). Then, after curing the fiber reinforced super hard concrete, the construction of the floor slab connecting portion 10a is completed.

このように、鉄筋コンクリート床版100aの離間する端部同士の間の施工箇所Xを跨ぐとともに、橋軸直角方向Wの全幅に亘って配置し、両側の鋼製主桁2の上フランジ2a及び端横桁3の上フランジ3aの対向部同士を連結した連結板33と、施工箇所Xを跨ぐように両側の上鉄筋5aと連結した連結上鉄筋50と、下鉄筋5bに対応する高さにおいて橋軸方向Lに配置した連結下鉄筋70と、施工箇所Xに繊維補強超速硬コンクリートを打設して構成したコンクリート部60とで構成する床版連結部10aは、単純な構造であるため、簡単に施工できるとともに、十分な耐力を有する床版連結部10aを実現することができる。   In this way, the construction portion X between the spaced apart ends of the reinforced concrete slab 100a is straddled and arranged over the entire width in the direction W perpendicular to the bridge axis, and the upper flange 2a and the end of the steel main girder 2 on both sides. At the height corresponding to the connecting plate 33 which connected the opposing parts of the upper flange 3a of the cross girder 3, the connecting upper rebar 50 connected to the upper rebar 5a on both sides so as to straddle the construction site X, and the height corresponding to the lower rebar 5b Since the floor slab connecting part 10a composed of the connected lower reinforcing bar 70 arranged in the axial direction L and the concrete part 60 constructed by placing fiber reinforced super hard concrete at the construction site X has a simple structure, it is easy. The floor slab connecting portion 10a having sufficient proof stress can be realized.

詳しくは、鉄筋コンクリート床版100aを用いた橋梁における床版連結部10aとして、鉄筋コンクリート床版100aの離間する端部同士の間の施工箇所Xを跨ぐとともに、橋軸直角方向Wの全幅に亘って配置し、両側の鋼製主桁2の上フランジ2a及び端横桁3の上フランジ3aの対向部同士を連結した連結板33と、施工箇所Xを跨ぐように両側の上鉄筋5aと連結した連結上鉄筋50とにより鉄筋コンクリート床版100aの構造部材と直接連結し、下鉄筋5bに対応する高さにおいて橋軸方向Lに連結下鉄筋70を配置し、施工箇所Xに繊維補強超速硬コンクリートを打設してコンクリート部60を構成するだけの構造であるため、例えば、鉄筋コンクリート床版100aの上鉄筋5a及び下鉄筋5bのそれぞれと直接連結する従来の連結構造に比べ、所要の耐力を有する床版連結部10aを簡単な施工で実現することができる。   Specifically, as the floor slab connecting portion 10a in the bridge using the reinforced concrete floor slab 100a, the construction portion X between the spaced apart ends of the reinforced concrete floor slab 100a is straddled and arranged over the entire width in the direction W perpendicular to the bridge axis. And the connection plate 33 which connected the opposing parts of the upper flange 2a of the steel main girder 2 of both sides, and the upper flange 3a of the end cross girder 3, and the connection connected with the upper rebar 5a of both sides so that the construction location X might be straddled The upper rebar 50 is directly connected to the structural member of the reinforced concrete floor slab 100a, the connected lower rebar 70 is arranged in the bridge axis direction L at the height corresponding to the lower rebar 5b, and the fiber reinforced super high-speed hard concrete is hit at the construction location X. Since it is a structure that is simply provided and constitutes the concrete portion 60, for example, it is directly connected to each of the upper rebar 5a and the lower rebar 5b of the reinforced concrete floor slab 100a. Compared to the coupling structure of years, it is possible to realize a floor plate connecting portion 10a having a required strength with a simple construction.

なお、床版連結部10aは、対向する鋼製主桁2同士が橋軸方向Lに直線状に配置されていない場合であっても、両側の鋼製主桁2及び端横桁3の上フランジ2a,3aの高さが同じであれば、適用することができる。   The floor slab connecting portion 10a is provided on the steel main girders 2 and the end cross girders 3 on both sides even when the opposing steel main girders 2 are not arranged linearly in the bridge axis direction L. If the heights of the flanges 2a and 3a are the same, it can be applied.

さらにまた、鋼製主桁2の上フランジ2aの対向部と端横桁3の上フランジ3aを露出させるとともに、鉄筋コンクリート床版100aの対向部を、継手可能となるように上鉄筋5aの端部を露出させ、かつ、下鉄筋5bに対応する高さまで斫る手斫り工程(ステップt3)と、橋軸方向Lに離間する鋼製主桁2同士の間を跨ぐとともに、橋軸直角方向Wの全幅に亘って配置するように、露出した鋼製主桁2の上フランジ2a及び端横桁3の上フランジ3aの対向部を連結板33で連結する連結板取付工程(ステップt4)と、端部が露出した両側の下鉄筋5bに対応する高さにおいて、連結下鉄筋70を橋軸方向Lに配置するとともに、露出した上鉄筋5aの両方と連結上鉄筋50を連結する連結鉄筋配筋工程(ステップt5)と、鉄筋コンクリート床版100aの対向部同士の間に、繊維補強超速硬コンクリートを打設してコンクリート部60を構成するコンクリート打設工程(ステップt6)とを行うことにより、十分な耐力を有する床版連結部10aを、単純で簡単に施工できるため、例えば、施工期間が制限された供用中の鉄筋コンクリート床版100aを用いた既設の既設コンクリート床版橋100に対する改修工事であっても、実施することができる。   Furthermore, the opposing part of the upper flange 2a of the steel main girder 2 and the upper flange 3a of the end cross girder 3 are exposed, and the opposing part of the reinforced concrete floor slab 100a is connected to the end of the upper reinforcing bar 5a so that it can be jointed. And spanning between the steel main girders 2 spaced apart in the bridge axis direction L, and the bridge axis perpendicular direction W A connecting plate attaching step (step t4) for connecting the exposed portions of the upper flange 2a of the exposed steel main beam 2 and the upper flange 3a of the end cross beam 3 with the connecting plate 33 so as to cover the entire width of At the height corresponding to the lower rebar 5b on both sides where the ends are exposed, the connected lower rebar 70 is arranged in the bridge axial direction L, and the connected rebar reinforcement connecting both the exposed upper rebar 5a and the connected upper rebar 50 Process (step t5) and rebar The floor slab connection having sufficient strength is achieved by performing a concrete placing step (step t6) in which the fiber reinforced super fast hard concrete is placed between the opposing portions of the cleat floor slab 100a to form the concrete portion 60. Since the part 10a can be constructed simply and easily, for example, even if it is a renovation work for the existing concrete floor slab bridge 100 using the reinforced concrete floor slab 100a in service with a limited construction period. it can.

この発明の構成と、実施形態との対応において、この発明のフランジは上フランジ2a,3aに対応し、
以下同様に、
連結構造は床版連結部10,10aに対応し、
被連結空間は施工箇所Xに対応し、
フランジ接続部は固定部21に対応し、
頭部は先端頭部41に対応し、
ハツリ工程は手斫り工程(ステップs3,t3)に対応し、
成形鋼板設置工程は成形鋼板取付工程(ステップs5)に対応し、
鉄筋連結工程は連結上鉄筋配筋工程(ステップs6)に対応し、
連結板設置工程は連結板取付工程(ステップs4,ステップt4)に対応し、
連結下鉄筋配置工程及び連結上鉄筋連結工程は連結鉄筋配筋工程(ステップt5)に対応するも、
この発明は、上述の実施形態の構成のみに限定されるものではなく、請求項に示される技術思想に基づいて応用することができ、多くの実施の形態を得ることができる。
In the correspondence between the configuration of the present invention and the embodiment, the flange of the present invention corresponds to the upper flanges 2a and 3a.
Similarly,
The connection structure corresponds to the floor slab connection part 10, 10a,
The connected space corresponds to the construction point X,
The flange connection part corresponds to the fixing part 21,
The head corresponds to the tip head 41,
The chipping process corresponds to the handwork process (steps s3 and t3).
The formed steel plate installation process corresponds to the formed steel plate installation process (step s5),
The reinforcing bar connecting process corresponds to the connecting upper reinforcing bar arranging process (step s6).
The connecting plate installation process corresponds to the connecting plate mounting process (step s4, step t4),
The connected lower reinforcing bar arranging step and the connecting upper reinforcing bar connecting step correspond to the connected reinforcing bar arranging step (step t5).
The present invention is not limited to the configuration of the above-described embodiment, but can be applied based on the technical idea shown in the claims, and many embodiments can be obtained.

例えば、上述の説明では、既設コンクリート床版橋100における鉄筋コンクリート床版100aの対向部に床版連結部10,10aを構成したが、新設の鉄筋コンクリート床版を用いた橋梁に設けてもよい。
また、フランジとウェブとを有する橋軸方向Lの鋼製主桁2及び橋軸直角方向Wの端横桁3は、ウェブの上下端にそれぞれフランジを備えたI型鋼で構成したが、H型鋼、ウェブの上端にフランジを備えたT型鋼、あるいは鋼製箱桁などで構成してもよい。
For example, in the above description, the floor slab connecting portions 10 and 10a are configured at the opposing portion of the reinforced concrete floor slab 100a in the existing concrete floor slab bridge 100, but may be provided on a bridge using a newly-installed reinforced concrete floor slab.
Further, the steel main girder 2 in the bridge axis direction L having the flange and the web and the end cross girder 3 in the direction perpendicular to the bridge axis W are made of I-shaped steel having flanges on the upper and lower ends of the web, respectively. , T-shaped steel provided with a flange at the upper end of the web, or a steel box girder may be used.

また、床版連結部10において、成形鋼板20の嵩上げ部22上に配置したスタッドボルト40の先端頭部41を鉄筋コンクリート部5の下鉄筋5bの高さに対応するように構成したが、コンクリート厚が確保できる場合はスタッドボルト40の先端頭部41は下鉄筋5bより高くてもよく、反対にコンクリート厚が確保できない場合はスタッドボルト40の先端頭部41は下鉄筋5bより低く配置してもよい。   Further, in the floor slab connecting portion 10, the tip head portion 41 of the stud bolt 40 disposed on the raised portion 22 of the shaped steel plate 20 is configured to correspond to the height of the lower rebar 5 b of the reinforced concrete portion 5. Can be secured, the tip head 41 of the stud bolt 40 may be higher than the lower reinforcing bar 5b. Conversely, if the concrete thickness cannot be secured, the tip head 41 of the stud bolt 40 may be arranged lower than the lower reinforcing bar 5b. Good.

また、上述の床版連結部10,10aでは、上鉄筋5aと同径の連結上鉄筋50を用い、また、床版連結部10aでは下鉄筋5bと同径の連結下鉄筋70を用いたが、床版連結部10,10aとして十分な耐力が評価できれば上鉄筋5aや下鉄筋5bと異径の鉄筋を用いてもよい。
さらには、床版連結部10aにおける鋼製主桁2の上フランジ2aに対して、連結板33と下連結板32とで上下方向に挟み込んで固定してもよい。
In the above-described floor slab connecting portions 10 and 10a, the connected upper rebar 50 having the same diameter as the upper rebar 5a is used, and in the floor slab connecting portion 10a, the connected lower rebar 70 having the same diameter as the lower rebar 5b is used. If sufficient proof stress can be evaluated as the floor slab connecting portions 10 and 10a, reinforcing bars having different diameters from the upper reinforcing bar 5a and the lower reinforcing bar 5b may be used.
Further, the upper and lower flanges 2a of the steel main girder 2 in the floor slab connecting portion 10a may be sandwiched and fixed between the connecting plate 33 and the lower connecting plate 32 in the vertical direction.

また、ステップs2のカッター工程において、施工箇所Xの橋軸方向Lの両側を鋼製主桁2及び端横桁3が露出するように上下方向に切断したが、施工箇所Xより橋軸方向Lの長さを短く切断し、手斫り工程(ステップs3)において、所定の施工箇所Xとなるように手斫りしてもよい。さらには、手斫り工程において、連結上鉄筋50と接続するために上鉄筋5aの端部が所定長さ露出するように手斫りしたが、下鉄筋5bの端部が露出する程度まで手斫りし、ステップs7のコンクリート打設工程においてコンクリート部60と一体化するようにしてもよい。なお、この場合、下鉄筋5bの露出長さは上鉄筋5aの露出長さより短くするとよい。   Moreover, in the cutter process of step s2, both sides of the construction site X in the bridge axis direction L were cut vertically so that the steel main girder 2 and the end cross beam 3 were exposed. The length may be cut short, and may be manually handed to a predetermined construction location X in the hand turning process (step s3). Further, in the hand turning process, the end of the upper rebar 5a is hand-exposed for a predetermined length so as to be connected to the connected upper rebar 50, but the hand is touched until the end of the lower rebar 5b is exposed. You may make it integrate with the concrete part 60 in the concrete placement process of step s7. In this case, the exposed length of the lower reinforcing bar 5b is preferably shorter than the exposed length of the upper reinforcing bar 5a.

2…鋼製主桁
2a,3a…上フランジ
3…端横桁
5a…上鉄筋
5b…下鉄筋
10,10a…床版連結部
20…成形鋼板
21…固定部
22…嵩上げ部
30…挟込連結板
33…連結板
40…スタッドボルト
41…先端頭部
50…連結上鉄筋
60…コンクリート部
70…連結下鉄筋
100a…鉄筋コンクリート床版
L…橋軸方向
X…施工箇所
W…橋軸直角方向
2 ... steel main girders 2a, 3a ... upper flange 3 ... end cross girder 5a ... upper rebar 5b ... lower rebar 10, 10a ... floor slab connecting part 20 ... shaped steel plate 21 ... fixed part 22 ... raised part 30 ... sandwiched connection Plate 33 ... Connection plate 40 ... Stud bolt 41 ... Tip head 50 ... Connection upper rebar 60 ... Concrete part 70 ... Connection lower rebar 100a ... Reinforced concrete floor slab L ... Bridge axis direction X ... Construction site W ... Bridge axis perpendicular direction

Claims (11)

橋軸方向の上鉄筋と下鉄筋とを有する鉄筋コンクリート床版と、フランジとウェブとを有する橋軸方向の鋼製主桁及び橋軸直角方向の端横桁とを備え、橋軸方向に配置した前記鉄筋コンクリート床版の離間する対向部同士を連結する鉄筋コンクリート床版を用いた橋梁における連結構造であって、
前記鉄筋コンクリート床版の離間する端部同士の間の被連結空間を跨ぐように両側の前記上鉄筋と連結した連結上鉄筋と、
前記鋼製主桁の離間する端部同士の間の遊間において対向する上フランジまたは前記端横桁の上フランジに接続する橋軸方向両側のフランジ接続部と、前記被連結空間を跨ぐように配置し、前記フランジ接続部に対して、高さ方向に嵩上げされた嵩上げ部とを備えた成形鋼板と、
前記被連結空間に打設したコンクリート部とで構成した
鉄筋コンクリート床版を用いた橋梁における連結構造。
Reinforced concrete floor slab having upper and lower rebars in the bridge axis direction, steel main girder in the bridge axis direction having flanges and webs, and end transverse girders in the direction perpendicular to the bridge axis, and arranged in the bridge axis direction A connection structure in a bridge using a reinforced concrete floor slab that connects the opposed portions of the reinforced concrete floor slabs,
A connected upper rebar connected to the upper rebar on both sides so as to straddle the connected space between the spaced apart ends of the reinforced concrete floor slab,
Arranged so as to straddle the to-be-connected space, and the flange connecting portions on both sides of the bridge axial direction connected to the upper flange or the upper flange of the end cross beam facing each other between the spaced apart ends of the steel main girder And, with respect to the flange connection portion, a formed steel plate provided with a raised portion raised in the height direction, and
A connecting structure in a bridge using a reinforced concrete floor slab composed of a concrete portion placed in the connected space.
前記成形鋼板に、前記コンクリート部との付着性を向上するスタッドボルトを備えた
請求項1に記載の鉄筋コンクリート床版を用いた橋梁における連結構造。
The connection structure in the bridge using the reinforced concrete floor slab of Claim 1 provided with the stud bolt which improves the adhesiveness with the said concrete part in the said formed steel plate.
前記嵩上げ部に配置した前記スタッドボルトの頭部を、前記下鉄筋に対応する高さに配置した
請求項2に記載の鉄筋コンクリート床版を用いた橋梁における連結構造。
The connection structure in the bridge using the reinforced concrete floor slab according to claim 2, wherein the head of the stud bolt disposed in the raised portion is disposed at a height corresponding to the lower rebar.
前記被連結空間を跨ぐように、両側の前記鋼製主桁のフランジの対向部同士を連結した連結板を備えた
請求項1乃至3のうちいずれかに記載の鉄筋コンクリート床版を用いた橋梁における連結構造。
In the bridge using the reinforced concrete floor slab in any one of Claims 1 thru | or 3 provided with the connection board which connected the opposing parts of the flange of the said steel main girder of both sides so that the said to-be-connected space might be straddled. Connected structure.
前記連結板を、
前記鋼製主桁のフランジ幅に対応する幅で構成した
請求項4に記載の鉄筋コンクリート床版を用いた橋梁における連結構造。
The connecting plate,
The connection structure in the bridge using the reinforced concrete floor slab of Claim 4 comprised by the width | variety corresponding to the flange width of the said steel main girder.
橋軸方向の上鉄筋と下鉄筋とを有する鉄筋コンクリート床版と、フランジとウェブとを有する橋軸方向の鋼製主桁及び橋軸直角方向の端横桁とを備え、橋軸方向に配置した前記鉄筋コンクリート床版の離間する対向部同士を連結する鉄筋コンクリート床版を用いた橋梁における連結構造であって、
前記鉄筋コンクリート床版の離間する端部同士の間の被連結空間を跨ぐとともに、橋軸直角方向の全幅に亘って配置し、両側の前記鋼製主桁の上フランジ及び前記端横桁の上フランジの対向部同士を連結した連結板と、
前記被連結空間を跨ぐように両側の前記上鉄筋と連結した連結上鉄筋と、
前記下鉄筋に対応して、前記橋軸方向に配置した連結下鉄筋と、
前記被連結空間に打設したコンクリート部とで構成した
鉄筋コンクリート床版を用いた橋梁における連結構造。
Reinforced concrete floor slab having upper and lower rebars in the bridge axis direction, steel main girder in the bridge axis direction having flanges and webs, and end transverse girders in the direction perpendicular to the bridge axis, and arranged in the bridge axis direction A connection structure in a bridge using a reinforced concrete floor slab that connects the opposed portions of the reinforced concrete floor slabs,
The upper flange of the steel main girder on both sides and the upper flange of the end cross girder are arranged across the coupled space between the spaced apart ends of the reinforced concrete floor slab and over the entire width in the direction perpendicular to the bridge axis. A connecting plate that connects the opposing parts of each other,
Connected upper reinforcing bars connected to the upper reinforcing bars on both sides so as to straddle the connected space;
Corresponding to the lower reinforcing bar, the connected lower reinforcing bar arranged in the bridge axis direction,
A connecting structure in a bridge using a reinforced concrete floor slab composed of a concrete portion placed in the connected space.
前記連結板を、前記両側の鋼製主桁のフランジの対向部のそれぞれを上下方向に挟み込んで連結した挟み込み連結板で構成した
請求項4乃至6のうちいずれかに記載の鉄筋コンクリート床版を用いた橋梁における連結構造。
The reinforced concrete floor slab according to any one of claims 4 to 6, wherein the connection plate is constituted by a sandwiched connection plate in which the opposing portions of the flanges of the steel main girders on both sides are sandwiched and connected in the vertical direction. Connection structure in a bridge.
前記コンクリート部を、繊維補強速硬コンクリートで構成した
請求項1乃至7のうちいずれかに記載の鉄筋コンクリート床版を用いた橋梁における連結構造。
The connection structure in the bridge using the reinforced concrete floor slab in any one of Claims 1 thru | or 7 which comprised the said concrete part with the fiber reinforced quick-hardening concrete.
橋軸方向の上鉄筋と下鉄筋とを有する鉄筋コンクリート床版と、フランジとウェブとを有する橋軸方向の鋼製主桁及び橋軸直角方向の端横桁とを備え、橋軸方向に配置した既設の鉄筋コンクリート床版の離間する対向部同士を連結する鉄筋コンクリート床版を用いた既設橋梁における連結工法であって、
前記鋼製主桁の上フランジの対向部と端横桁の上フランジを露出させるとともに、前記鉄筋コンクリート床版の前記対向部を、継手可能となるように前記上鉄筋の端部が露出するまで斫るハツリ工程と、
橋軸方向に離間する前記鋼製主桁同士及び前記端横桁同士の間を跨ぐように配置し、高さ方向に嵩上げされた嵩上げ部を有する成形鋼板におけるフランジ接続部を前記鋼製主桁の前記上フランジ及び前記端横桁の前記上フランジに固定して前記成形鋼板を設置する成形鋼板設置工程と、
露出した前記上鉄筋の両方と連結上鉄筋を連結する鉄筋連結工程と、前記鉄筋コンクリート床版の前記対向部同士の間に、コンクリートを打設するコンクリート打設工程とを行う
鉄筋コンクリート床版を用いた既設橋梁における連結工法。
Reinforced concrete floor slab having upper and lower rebars in the bridge axis direction, steel main girder in the bridge axis direction having flanges and webs, and end transverse girders in the direction perpendicular to the bridge axis, and arranged in the bridge axis direction It is a connection method in an existing bridge using a reinforced concrete floor slab that connects opposing facing parts of an existing reinforced concrete floor slab,
While exposing the opposing part of the upper flange of the steel main girder and the upper flange of the end horizontal girder, the opposing part of the reinforced concrete floor slab is exposed until the end of the upper reinforcing bar is exposed so that it can be joined. Rubbing process,
The steel main girder has a flange connection portion in a formed steel plate that is disposed so as to straddle between the steel main girders and the end cross girders that are separated in the bridge axis direction and has a raised portion raised in the height direction. A formed steel plate installation step of installing the formed steel plate fixed to the upper flange and the upper flange of the end cross beam,
Reinforced concrete floor slab is used to perform a reinforcing bar connecting step for connecting the upper reinforcing bar to both exposed upper reinforcing bars, and a concrete placing step for placing concrete between the opposing portions of the reinforced concrete floor slab. A connecting method for existing bridges.
橋軸方向の上鉄筋と下鉄筋とを有する鉄筋コンクリート床版と、フランジとウェブとを有する橋軸方向の鋼製主桁及び橋軸直角方向の端横桁とを備え、橋軸方向に配置した既設の鉄筋コンクリート床版の対向部同士を連結する鉄筋コンクリート床版を用いた既設橋梁における連結工法であって、
前記鋼製主桁の上フランジの対向部と端横桁の上フランジを露出させるとともに、前記鉄筋コンクリート床版の前記対向部を、継手可能となるように前記上鉄筋の端部を露出させ、かつ、前記下鉄筋に対応する高さまで斫るハツリ工程と、
橋軸方向に離間する前記鋼製主桁同士及び前記端横桁同士の間を跨ぐとともに、橋軸直角方向の全幅に亘って配置するように、露出した前記鋼製主桁の前記上フランジ及び前記端横桁の前記上フランジの対向部を連結板で連結する連結板設置工程と、
端部が露出した両側の前記下鉄筋に対応する高さにおいて、連結下鉄筋を前記橋軸方向に配置する連結下鉄筋配置工程と、
露出した前記上鉄筋の両方と連結上鉄筋を連結する連結上鉄筋連結工程と、
前記鉄筋コンクリート床版の前記対向部同士の間に、コンクリートを打設するコンクリート打設工程とを行う
鉄筋コンクリート床版を用いた既設橋梁における連結工法。
Reinforced concrete floor slab having upper and lower rebars in the bridge axis direction, steel main girder in the bridge axis direction having flanges and webs, and end transverse girders in the direction perpendicular to the bridge axis, and arranged in the bridge axis direction It is a connection method in an existing bridge using a reinforced concrete floor slab that connects opposite parts of an existing reinforced concrete floor slab,
Exposing the upper flange of the steel main girder and the upper flange of the end cross girder, and exposing the end of the upper rebar so that the opposing portion of the reinforced concrete floor slab can be joined; and A chipping process for rolling up to a height corresponding to the lower reinforcing bar,
The upper flange of the exposed steel main girder so as to straddle between the steel main girders spaced apart in the bridge axis direction and between the end cross beams and across the entire width in the direction perpendicular to the bridge axis, and A connecting plate installation step of connecting the opposing portion of the upper flange of the end cross beam with a connecting plate;
In a height corresponding to the lower reinforcing bars on both sides where the ends are exposed, a connecting lower reinforcing bar arrangement step of arranging the connecting lower reinforcing bars in the bridge axis direction,
A connecting upper rebar connecting step of connecting both the exposed upper rebar and the connecting upper rebar;
A connecting method in an existing bridge using a reinforced concrete floor slab for performing a concrete placing step of placing concrete between the facing portions of the reinforced concrete floor slab.
前記コンクリート打設工程において、繊維補強速硬コンクリートで打設する
請求項9または10に記載の鉄筋コンクリート床版を用いた既設橋梁における連結工法。
The connection method in the existing bridge using the reinforced concrete floor slab according to claim 9 or 10, wherein in the concrete placing step, the fiber reinforced fast-hardening concrete is placed.
JP2014246881A 2014-12-05 2014-12-05 Connection structure in bridges using reinforced concrete slabs and connection method in existing bridges using reinforced concrete slabs Active JP6066981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014246881A JP6066981B2 (en) 2014-12-05 2014-12-05 Connection structure in bridges using reinforced concrete slabs and connection method in existing bridges using reinforced concrete slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014246881A JP6066981B2 (en) 2014-12-05 2014-12-05 Connection structure in bridges using reinforced concrete slabs and connection method in existing bridges using reinforced concrete slabs

Publications (2)

Publication Number Publication Date
JP2016108812A true JP2016108812A (en) 2016-06-20
JP6066981B2 JP6066981B2 (en) 2017-01-25

Family

ID=56123520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014246881A Active JP6066981B2 (en) 2014-12-05 2014-12-05 Connection structure in bridges using reinforced concrete slabs and connection method in existing bridges using reinforced concrete slabs

Country Status (1)

Country Link
JP (1) JP6066981B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110130220A (en) * 2019-06-21 2019-08-16 浙江省交通规划设计研究院有限公司 A kind of new concrete bridge floor continuous structure applied on beam bridge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110552285A (en) * 2019-09-12 2019-12-10 广东高恩高速公路有限公司 Steel-ultrahigh-performance concrete combined cast-in-place wet joint structure and construction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527104U (en) * 1991-09-18 1993-04-09 建設省北陸地方建設局長 Bridge extender
JP2007309032A (en) * 2006-05-22 2007-11-29 Kajima Corp Serial structure of bridge joint part
JP2008190130A (en) * 2007-02-01 2008-08-21 Kajima Corp Continuous structure of bridge joint section
JP2011006873A (en) * 2009-06-24 2011-01-13 Sumitomo Mitsui Construction Co Ltd Main girder connecting structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527104U (en) * 1991-09-18 1993-04-09 建設省北陸地方建設局長 Bridge extender
JP2007309032A (en) * 2006-05-22 2007-11-29 Kajima Corp Serial structure of bridge joint part
JP2008190130A (en) * 2007-02-01 2008-08-21 Kajima Corp Continuous structure of bridge joint section
JP2011006873A (en) * 2009-06-24 2011-01-13 Sumitomo Mitsui Construction Co Ltd Main girder connecting structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110130220A (en) * 2019-06-21 2019-08-16 浙江省交通规划设计研究院有限公司 A kind of new concrete bridge floor continuous structure applied on beam bridge
CN110130220B (en) * 2019-06-21 2024-03-05 浙江数智交院科技股份有限公司 Novel concrete bridge surface continuous structure applied to beam bridge

Also Published As

Publication number Publication date
JP6066981B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP5266291B2 (en) Construction method of bridge deck and joint structure of precast deck
JP3867149B2 (en) Steel slab structure of bridge and steel slab reinforcement method
JP5718133B2 (en) Precast floor slab and its joint structure
JP2009041227A (en) Structure and method for joining precast floor slabs together
JP5937898B2 (en) Construction method of box girder bridge
KR101703798B1 (en) Prestressed Concrete Beam with curve implementation possible connection structure and Constructing Method thereof
JP5203277B2 (en) Precast floor slab panel joint
JP6066981B2 (en) Connection structure in bridges using reinforced concrete slabs and connection method in existing bridges using reinforced concrete slabs
JP2014105547A (en) Structure for fixing precast floor slab
JP2008088634A (en) Composite steel-concrete floor slab
KR100816003B1 (en) Continuing method for composite girder
KR100631029B1 (en) Precasted concrete plate assembly and the construction method using thereof
JP2019199711A (en) Method for rebuilding bridge
KR101752285B1 (en) Hybrid beam with wide PSC lower flange and enlarged section upper flange and structure frame using the same
KR102327700B1 (en) Girder structure and construction method for continuity of supporting portion of girder using the same
JP2008231688A (en) Bridge structure using composite floor slab, its construction method, and form for composite floor slab
JP6232190B2 (en) Joint components, concrete placement methods, concrete structures
JP2017203298A (en) Floor slab joint structure and floor slab renewal method
JP5729566B2 (en) Method for forming shear reinforcement of concrete slab, road slab and flat slab
JP5973295B2 (en) Column head construction method
KR100730018B1 (en) Prestressed steel-concrete composite and method for constructing the same
KR102375439B1 (en) Pc slab structure using horizontal connecting reinforcement
JP7444714B2 (en) Joint structure of precast steel concrete composite deck slab and slab replacement method
JP7452284B2 (en) Floor slab replacement method
KR102625599B1 (en) Bridge upper structure with uniform stress transfer and penetration-hole type precast support block used therein

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R150 Certificate of patent or registration of utility model

Ref document number: 6066981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250