JP2016108639A - Less resulfurization molten pig iron desulfurization method - Google Patents

Less resulfurization molten pig iron desulfurization method Download PDF

Info

Publication number
JP2016108639A
JP2016108639A JP2014249661A JP2014249661A JP2016108639A JP 2016108639 A JP2016108639 A JP 2016108639A JP 2014249661 A JP2014249661 A JP 2014249661A JP 2014249661 A JP2014249661 A JP 2014249661A JP 2016108639 A JP2016108639 A JP 2016108639A
Authority
JP
Japan
Prior art keywords
desulfurization
hot metal
slag
treatment
desulfurizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014249661A
Other languages
Japanese (ja)
Other versions
JP6238019B2 (en
Inventor
中井 由枝
Yoshie Nakai
由枝 中井
内田 祐一
Yuichi Uchida
祐一 内田
三木 祐司
Yuji Miki
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014249661A priority Critical patent/JP6238019B2/en
Publication of JP2016108639A publication Critical patent/JP2016108639A/en
Application granted granted Critical
Publication of JP6238019B2 publication Critical patent/JP6238019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a less resulfurization molten pig iron desulfurization method that can reduce the resulfurization formed during the desulfurization processing of the molten pig iron and caused by the fine desulfurized slag suspended in the molten pig iron.SOLUTION: The method includes using a desulfurizing agent having an average particle size of 50 μm or more and 90 μm or less as a desulfurizing agent when desulfurizing a molten pig iron by adding a desulfurizing agent from above to the bath surface of a molten pig iron 3 within a treatment vessel 2 agitated by an agitation blade 4 of a mechanical agitation type desulfurization equipment.SELECTED DRAWING: Figure 1

Description

本発明は、脱硫処理等の溶銑予備処理を施した溶銑に対して、次工程で脱燐処理や脱炭精錬などを施して溶銑から溶鋼を溶製する製鋼工程において、溶銑の脱硫処理時に生成し、脱硫処理後に溶銑中に懸濁するなどして処理容器内に残留する脱硫スラグに起因する復硫を低減することができる復硫の少ない溶銑脱硫方法に関するものである。   The present invention is produced during the desulfurization treatment of hot metal in a steelmaking process in which molten steel is made from molten iron by performing dephosphorization treatment or decarburization refining in the next step for hot metal subjected to hot metal pretreatment such as desulfurization treatment. In addition, the present invention relates to a hot metal desulfurization method with less resulfurization that can reduce the resulfurization caused by desulfurization slag remaining in the processing vessel by being suspended in the hot metal after the desulfurization treatment.

近年、鋼材の高純度化や高機能化へのニーズの増大により、極低硫および/または極低燐の鋼種の比率が高まっている。このような環境下、鋼を溶製する製鋼工程においては、コスト上昇やスラグ発生量の増加を招くことなく、極低硫および/または極低燐の鋼を溶製する技術の開発が必要となっている。   In recent years, the ratio of steel grades of extremely low sulfur and / or extremely low phosphorus has been increased due to an increase in needs for high purity and high functionality of steel materials. Under such circumstances, in the steelmaking process for melting steel, it is necessary to develop a technology for melting extremely low sulfur and / or extremely low phosphorus steel without causing an increase in cost or an increase in the amount of slag generated. It has become.

低硫鋼や極低硫鋼は、一般に、溶銑段階で脱硫処理を施し、この脱硫処理によって生成した硫黄含有量の高い脱硫スラグを処理容器から排出し、その後、処理容器内の溶銑を、次工程の製鋼工程で脱燐処理や脱炭精錬を施して溶製している。この場合、大部分の脱硫スラグは処理容器から排出されるものの、溶銑中に懸濁している微細な脱硫スラグは、次工程に持ち越されるたり、処理容器の側壁に付着して次工程に持ち越されたりする。脱硫処理は還元反応であるのに対して、次工程の脱燐処理及び脱炭精錬は酸化反応であることから、次工程に持ち越された脱硫スラグに含有される硫黄は、酸化されて溶銑或いは溶鋼に戻り、溶銑中或いは溶鋼中の硫黄濃度を上昇させる、所謂「復硫」が起こる。   In general, low-sulfur steel and ultra-low-sulfur steel are subjected to desulfurization treatment at the hot metal stage, and desulfurization slag having a high sulfur content generated by this desulfurization treatment is discharged from the treatment vessel. Dephosphorization treatment and decarburization refining are performed in the steelmaking process. In this case, most of the desulfurized slag is discharged from the processing vessel, but the fine desulfurized slag suspended in the hot metal is carried over to the next process or attached to the side wall of the processing container and carried over to the next process. Or The desulfurization treatment is a reduction reaction, whereas the dephosphorization treatment and decarburization refining in the next step are oxidation reactions. Therefore, the sulfur contained in the desulfurization slag carried over to the next step is oxidized to the molten iron or Returning to the molten steel, so-called “resulfurization” occurs in which the sulfur concentration in the molten iron or in the molten steel is increased.

復硫によって溶銑中或いは溶鋼中の硫黄濃度が高くなり、硫黄の成分規格を満足できなくなった場合には、転炉での脱炭精錬後、二次精錬して、溶鋼中の硫黄を除去することが必要となる。二次精錬で行う溶鋼の脱硫は、溶銑の脱硫処理に比較して高価であるのみならず、増加した分の硫黄を除去するために精錬時間を延長する必要が生じるため、生産性が低下する。   If the sulfur concentration in hot metal or molten steel becomes high due to sulfidation, and the sulfur component standards cannot be satisfied, secondary definitive refining is performed after decarburization refining in the converter to remove sulfur in the molten steel. It will be necessary. The desulfurization of molten steel performed in secondary refining is not only more expensive than the desulfurization treatment of hot metal, but the productivity is reduced because it is necessary to extend the refining time in order to remove the increased amount of sulfur. .

従来、溶銑の脱硫処理は、CaO系脱硫剤を溶銑中にインジェクションする方法や、機械攪拌式脱硫装置を用いてCaO系脱硫剤と溶銑とを攪拌・混合する方法、或いは、金属Mg系脱硫剤を溶銑中にインジェクションする方法などが一般的である。また、CaO系脱硫剤を、上吹きランスを介して搬送用ガスとともに攪拌羽根によって攪拌されている溶銑の浴面に添加する方法(投射添加)もある。   Conventionally, the hot metal desulfurization treatment includes a method of injecting a CaO-based desulfurizing agent into the hot metal, a method of stirring and mixing the CaO-based desulfurizing agent and the hot metal using a mechanical stirring desulfurization apparatus, or a metal Mg-based desulfurizing agent. In general, a method of injecting into a hot metal is used. There is also a method (projection addition) in which a CaO-based desulfurizing agent is added to the bath surface of hot metal being stirred by a stirring blade together with a carrier gas through an upper blowing lance.

これらの脱硫処理においては、インジェクション或いは機械攪拌によって脱硫剤を溶銑中に分散させている。脱硫反応を促進し、脱硫効率を向上させるために、表面積の大きい小径の脱硫剤を用いることが有効である。そこで、例えば、特許文献1には、インジェクション用の脱硫剤として、粒径30μm以上60μm未満の粉体構成率が50%以上である脱硫剤を用いる方法が開示されている。また、特許文献2には、投射添加を行う際に、粒径150μm以下の微粉が90重量%以上であるCaO粉体を用いる方法が、特許文献3には、石灰系脱硫剤として、粒径30〜400μmのものを用いる方法が開示されている。これらの技術は、それぞれの脱硫方法における脱硫効率向上に最適な粒径を定めたものである。   In these desulfurization treatments, the desulfurizing agent is dispersed in the hot metal by injection or mechanical stirring. In order to promote the desulfurization reaction and improve the desulfurization efficiency, it is effective to use a small-diameter desulfurization agent having a large surface area. Thus, for example, Patent Document 1 discloses a method using a desulfurization agent having a particle size of 30 μm or more and less than 60 μm and having a powder composition ratio of 50% or more as a desulfurization agent for injection. Patent Document 2 discloses a method of using CaO powder in which fine powder having a particle size of 150 μm or less is 90% by weight or more when performing projection addition, and Patent Document 3 discloses a particle size as a lime-based desulfurizing agent. A method using 30 to 400 μm is disclosed. These techniques determine the optimum particle size for improving the desulfurization efficiency in each desulfurization method.

また、脱硫効率を向上させるための媒溶剤として、または、脱酸剤として、アルミ系のフラックスを用いる方法が開示されている。例えば、特許文献4には、CaOとAlの混合比でAlの比率が33〜37.7重量%である脱硫剤が開示されている。また、投射添加の場合に、Alを50重量%以上含むアルミドロスを5〜20質量%添加した脱硫剤を用いることが開示されている。これらのAlの含有量は、脱硫効率向上のために最適な脱硫剤中のAl量を定めたものである。 Also disclosed is a method of using an aluminum-based flux as a medium solvent for improving the desulfurization efficiency or as a deoxidizer. For example, Patent Document 4 discloses a desulfurization agent in which the ratio of Al 2 O 3 is 33 to 37.7% by weight in the mixing ratio of CaO and Al 2 O 3 . Further, it is disclosed that a desulfurizing agent added with 5 to 20% by mass of aluminum dross containing 50% by weight or more of Al 2 O 3 is disclosed in the case of projecting addition. The content of these Al 2 O 3 defines the optimal amount of Al 2 O 3 in the desulfurizing agent for improving the desulfurization efficiency.

特開2006−241502号公報JP 2006-241502 A 特開2008−50659号公報JP 2008-50659 A 特開2011−149087号公報JP 2011-149087 A 特開平09−3515号公報Japanese Patent Application Laid-Open No. 09-3515

上述した従来技術において、脱硫剤の反応効率を向上するには、溶銑中への脱硫剤の分散が重要であり、分散状態が良好な場合には、脱硫反応は効率的に行われる。しかし、分散状態が良好で、微細な脱硫剤が溶銑中に懸濁することになると、粒径の小さいスラグが生成して、溶銑中から浮上し難い状態になるという問題がある。この問題に対しては、脱硫処理後に溶銑を長時間に亘って静置することで、溶銑中に懸濁した微細な脱硫剤を溶銑浴面に浮上させて処理容器から除去することができる。しかし、長時間の静置は、生産性の低下や溶銑温度の低下を招くことから、このような処置は工程的には行われない。   In the prior art described above, in order to improve the reaction efficiency of the desulfurizing agent, it is important to disperse the desulfurizing agent in the hot metal. When the dispersion state is good, the desulfurizing reaction is performed efficiently. However, when the dispersion state is good and the fine desulfurizing agent is suspended in the hot metal, there is a problem that slag having a small particle size is generated and it is difficult to float from the hot metal. With respect to this problem, the hot metal is allowed to stand for a long time after the desulfurization treatment, whereby the fine desulfurization agent suspended in the hot metal can be floated on the hot metal bath surface and removed from the processing vessel. However, standing for a long time leads to a decrease in productivity and a decrease in hot metal temperature, so such a treatment is not performed in a process.

また、溶鋼に攪拌用ガスを吹き込み、溶鋼中に懸濁する非金属介在物の浮上を促進する手法も広く行われている。そこで、脱硫処理後に、溶銑中にガスインジェクションを行い懸濁している微細な脱硫スラグの浮上分離を促進させて、脱硫処理後の溶銑への復硫を低減させる方法も考えられるが、攪拌用ガスを吹き込むためにインジェクションランスを用いる場合には、インジェクションランス浸漬による溶銑温度の低下や溶銑量の低下を招くといった問題が生じる。また、脱硫剤を溶銑中にインジェクションして脱硫処理を定常的に行っている場合には、新たな攪拌用ガスのインジェクションランスは不要であるが、機械撹拌式脱硫装置を用いて脱硫処理を行っている場合には、新たに攪拌用ガスのインジェクションランスが必要となるという問題もある。   In addition, a technique of blowing a stirring gas into molten steel and promoting the floating of nonmetallic inclusions suspended in the molten steel is also widely performed. Therefore, after desulfurization treatment, gas injection is performed in the hot metal to promote floating separation of the fine desulfurization slag that is suspended, and condensing gas to the hot metal after desulfurization treatment can be reduced. When an injection lance is used to blow the hot metal, there arises a problem that the hot metal temperature decreases and the hot metal amount decreases due to the immersion of the injection lance. In addition, when the desulfurization treatment is performed regularly by injecting the desulfurizing agent into the hot metal, a new stirring gas injection lance is not required, but the desulfurization treatment is performed using a mechanical stirring desulfurization device. In such a case, there is a problem that a new injection lance for the stirring gas is required.

したがって、ガスインジェクションを用いずに、脱硫処理後に溶銑中に懸濁している微細な脱硫剤の浮上分離を促進させ、脱硫処理後の溶銑の復硫を低減する技術の開発が望まれている。   Therefore, it is desired to develop a technique for promoting the floating separation of the fine desulfurization agent suspended in the hot metal after the desulfurization treatment and reducing the resulfurization of the hot metal after the desulfurization treatment without using gas injection.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、脱硫処理を施した溶銑に対して、次工程で脱燐工程やの脱炭精錬などを行って溶銑から溶鋼を溶製する製鋼工程において、溶銑の脱硫処理時に生成し、溶銑中に懸濁している微細な脱硫スラグに起因する復硫を低減することができる復流の少ない溶銑脱硫方法を提案することにある。   The present invention has been made in view of the above circumstances. The purpose of the present invention is to perform molten iron from molten iron by performing dephosphorization and decarburization refining in the next step on the molten iron subjected to desulfurization treatment. An object of the present invention is to propose a hot metal desulfurization method with less reflow that can reduce the resulfurization caused by the fine desulfurization slag that is generated during the desulfurization treatment of the hot metal in the steelmaking process to be produced.

発明者らは、従来技術が抱えている前述の課題を克服し、かつ前記目的を実現すべく鋭意検討した。その結果、発明者らは、下記の要旨構成に係る本発明を開発するに到った。すなわち、本発明は、機械攪拌式脱硫装置の撹拌羽根によって撹拌している処理容器内の溶銑の浴面上に、上方から脱硫剤を添加して溶銑を脱硫するにあたり、前記脱硫剤として平均粒径が50μm以上90μm以下である脱硫剤を用いることを特徴とする復硫の少ない溶銑脱硫方法である。   The inventors diligently studied to overcome the above-mentioned problems of the prior art and realize the object. As a result, the inventors have developed the present invention according to the following summary configuration. That is, the present invention adds an average particle as the desulfurizing agent when desulfurizing the hot metal by adding a desulfurizing agent from above onto the bath surface of the hot metal in the processing vessel stirred by the stirring blade of the mechanical stirring desulfurization apparatus. It is a hot metal desulfurization method with little desulfurization characterized by using a desulfurization agent having a diameter of 50 μm or more and 90 μm or less.

また、上記の構成に係る本発明は、さらに、
(1)溶銑の脱硫処理後のスラグ中の石灰(CaO)含有量とアルミナ(Al)含有量の割合が、下記(1)式を満たすように、脱硫処理中に添加するアルミ系脱酸剤の量を決定することを特徴とする請求項1に記載の復硫の少ない溶銑脱硫方法:

Figure 2016108639
ここで、(Al)は、脱硫スラグ中のアルミナ含有量(mass%)、(CaO)は、脱硫スラグ中の石灰(CaO)含有量(mass%)であること、
(2)100μm以下が80mass%以上、かつ、50μm以下が50mass%以上存在している脱硫剤を用いること、
を採用することにより好ましい解決手段を提供できるものと考えられる。 Further, the present invention according to the above configuration further includes
(1) Aluminum system added during desulfurization treatment so that the ratio of the lime (CaO) content and the alumina (Al 2 O 3 ) content in the slag after desulfurization treatment of hot metal satisfies the following formula (1) The method of desulfurizing hot metal desulfurization according to claim 1, wherein the amount of deoxidizer is determined:
Figure 2016108639
Here, (Al 2 O 3 ) is the alumina content (mass%) in the desulfurized slag, (CaO) is the lime (CaO) content (mass%) in the desulfurized slag,
(2) Use a desulfurization agent in which 100 μm or less is present at 80 mass% or more and 50 μm or less is present at 50 mass% or more,
It is considered that a preferable solution can be provided by adopting.

本発明によれば、脱硫処理を施した溶銑に対して、次工程で脱燐処理や脱炭精錬を行って溶銑から溶鋼を溶製する製鋼工程において、溶銑の脱硫処理時に生成し、脱硫処理後に溶銑中に懸濁するなどして処理容器内に残留する脱硫スラグの粒径を増大させ、該スラグの浮上を促進するので、復硫の原因となる脱硫スラグの大半を除去することができ、脱燐処理や脱炭精錬における復硫を確実に阻止することが可能となる。また、これにより、溶鋼段階で二次精錬としての脱硫精錬を施さなくても極低硫鋼の溶製ができるので、従来に比較して大幅に製造コストの削減並びに生産性の向上を図ることが可能となる。   According to the present invention, in the steelmaking process in which molten steel is produced from molten iron by performing dephosphorization treatment or decarburization refining in the next step, the desulfurization treatment is performed on the molten iron subjected to desulfurization treatment. Since the particle size of the desulfurized slag remaining in the processing vessel is increased by suspending it in the hot metal later, and the slag is promoted to float, most of the desulfurized slag that causes resulfurization can be removed. Thus, it is possible to reliably prevent desulfurization in dephosphorization treatment and decarburization refining. This also enables ultra-low sulfur steel to be melted without desulfurization as secondary refining at the molten steel stage, greatly reducing production costs and improving productivity compared to conventional methods. Is possible.

本発明の溶銑脱硫方法を実施する装置の一例を説明する側面概略図である。It is the side schematic diagram explaining an example of the apparatus which enforces the hot metal desulfurization method of this invention.

以下、本発明を具体的に説明する。
CaO系脱硫剤を用いる溶銑の脱硫処理では、反応界面積を高めるために、処理容器内でCaO系脱硫剤と溶銑とを攪拌し、CaO系脱硫剤を溶銑中に分散させることが重要である。この際、溶銑中の硫黄は、溶銑中に分散したCaO系脱硫剤と、「CaO+S→CaS+O」の反応式にそって反応し、CaSを含有する、硫黄濃度の高い脱硫スラグを生成する。この脱硫スラグは、脱硫処理終了時には溶銑浴面上に浮上し、溶銑浴面は脱硫スラグで覆われる。この脱硫スラグは、脱硫処理後にスラグ掻き出し機などで処理容器から排出される(この工程を、以降「脱硫スラグ排滓工程」と呼ぶ)。その後、処理容器内の溶銑は、次工程の脱燐処理工程や脱炭精錬工程に搬送される。
Hereinafter, the present invention will be specifically described.
In hot metal desulfurization treatment using a CaO-based desulfurizing agent, it is important to stir the CaO-based desulfurizing agent and hot metal in a processing vessel and disperse the CaO-based desulfurizing agent in the hot metal in order to increase the reaction interface area. . At this time, the sulfur in the hot metal reacts with the CaO-based desulfurization agent dispersed in the hot metal in accordance with the reaction formula of “CaO + S → CaS + O” to produce desulfurized slag containing CaS and having a high sulfur concentration. The desulfurization slag floats on the hot metal bath surface at the end of the desulfurization process, and the hot metal bath surface is covered with the desulfurization slag. The desulfurized slag is discharged from the processing container by a slag scraper after the desulfurization process (this process is hereinafter referred to as “desulfurization slag discharge process”). Thereafter, the hot metal in the processing vessel is conveyed to the next dephosphorization process or decarburization refining process.

脱硫スラグの溶銑中における浮上速度は、ストークスの法則に則って脱硫スラグの粒径に比例することから、溶銑中に懸濁する微細な脱硫スラグは浮上速度が遅く、溶銑中に懸濁した状態のまま脱硫処理が終了する。また、処理容器内壁に付着した脱硫スラグも浮上しにくく、脱硫処理終了時にはそのまま残留する。そのため、溶銑中に懸濁した微細な脱硫スラグ及び処理容器内壁に付着した脱硫スラグの大半は、上記の脱硫スラグ排滓工程では、処理容器から排出されず処理容器内に残留する。   Since the ascending speed of desulfurized slag in the hot metal is proportional to the particle size of the desulfurized slag in accordance with Stokes' law, the fine desulfurized slag suspended in the hot metal has a slow ascent rate and is suspended in the hot metal. The desulfurization process is finished as it is. Further, the desulfurization slag adhering to the inner wall of the processing vessel is also difficult to float and remains as it is at the end of the desulfurization process. Therefore, most of the fine desulfurization slag suspended in the hot metal and the desulfurization slag adhering to the inner wall of the processing container remain in the processing container without being discharged from the processing container in the desulfurization slag discharging step.

次工程の脱燐処理や脱炭精錬における反応は酸化反応であるので、脱硫スラグ排滓工程で処理容器から排出されずに処理容器内に残留した脱硫スラグが脱燐処理工程や脱炭精錬工程に持ち越されると、脱硫スラグ中のCaSが酸化されてCaOが生成し、CaSから解離した硫黄(S)が溶銑或いは溶鋼に移行し、溶銑中或いは溶鋼中の硫黄濃度が上昇する復硫が起こる。   Since the reaction in the dephosphorization treatment and decarburization refining in the next step is an oxidation reaction, the desulfurization slag remaining in the treatment vessel without being discharged from the treatment vessel in the desulfurization slag discharge step is dephosphorization treatment step or decarburization refining step When it is carried over, CaS in the desulfurized slag is oxidized to produce CaO, sulfur (S) dissociated from CaS is transferred to hot metal or molten steel, and sulfurization occurs in which the sulfur concentration in the molten iron or molten steel increases. .

本発明は、この復硫を防止するためになされたもので、脱硫処理後に生成する脱硫スラグの浮上が促進されるよう、スラグ粒径を最適化するための処理条件を定めるものであり、これにより生成する脱硫スラグの粒径が増大し、溶銑中に懸濁する脱硫スラグをスラグ排滓工程までに溶銑浴面に浮上させることができるので、脱硫スラグの大部分を処理容器から排出することができる。その結果、次工程の脱燐処理工程及び脱炭精錬工程に持ち越される脱硫スラグが減少し、復硫が抑制される。   The present invention has been made to prevent this resulfurization, and defines processing conditions for optimizing the slag particle size so that the rising of the desulfurized slag generated after the desulfurization treatment is promoted. The particle size of the desulfurized slag produced by the process increases, and the desulfurized slag suspended in the hot metal can be floated on the hot metal bath surface by the slag discharging process, so that most of the desulfurized slag is discharged from the processing vessel. Can do. As a result, desulfurization slag carried over to the next dephosphorization process and decarburization refining process is reduced, and resulfurization is suppressed.

溶銑の脱硫処理は、溶銑鍋或いは装入鍋のような取鍋型の処理容器に収容された溶銑にインペラーを浸漬し、このインペラーを回転させて溶銑とCaO系脱硫剤とを攪拌する機械攪拌式脱硫装置を用いて実施する。使用するCaO系脱硫剤としては、生石灰(CaO)、石灰石(CaCO3)、消石灰(Ca(OH)2)、ドロマイト(CaO−MgO)や、これらに蛍石(CaF2)やアルミ滓(Al+Al23)などのCaO滓化促進剤を5〜30mass%程度混合させたものなどを使用することができ、これを例えば上吹きランスを介して搬送用ガスとともに攪拌羽根によって攪拌されている溶銑の浴面に添加する。 Hot metal desulfurization is performed by immersing the impeller in hot metal contained in a ladle-type treatment vessel such as a hot metal ladle or charging pan, and rotating the impeller to agitate the hot metal and the CaO-based desulfurizing agent. This is carried out using a desulfurization apparatus. Examples of the CaO-based desulfurization agent to be used include quick lime (CaO), limestone (CaCO 3 ), slaked lime (Ca (OH) 2 ), dolomite (CaO-MgO), fluorite (CaF 2 ), and aluminum soot (Al + Al). 2 O 3 ) or the like mixed with about 5 to 30 mass% of CaO hatching accelerator can be used, and this is, for example, molten iron stirred by a stirring blade with a carrier gas via an upper blowing lance. Add to the bath surface.

発明者らは、脱硫剤の粒径と生成する脱硫スラグの粒径との関係を調査した結果、脱硫剤の平均粒径が小さいほど、生成する脱硫スラグの粒径が大きくなることを見出した。しかし、脱硫剤の平均粒径を減少させていくと、脱硫剤の歩留が低下し、脱硫率が悪くなることも確認できた。   As a result of investigating the relationship between the particle size of the desulfurizing agent and the particle size of the generated desulfurized slag, the inventors found that the smaller the average particle size of the desulfurized agent, the larger the particle size of the generated desulfurized slag. . However, it was also confirmed that when the average particle size of the desulfurizing agent was decreased, the yield of the desulfurizing agent was lowered and the desulfurization rate was deteriorated.

さらに、脱硫剤の組成と生成する脱硫スラグの粒径との関係を調査した結果、脱硫剤中に生成したアルミナ(Al)と石灰(CaO)の比(以降、「アルミナ比率」という)が増加するほど、生成する脱硫スラグの粒径が大きくなることを見出した。しかし、アルミナ比率が大きくなりすぎると、スラグ中の溶融相が増大し、スラグ粒径が大きくなりすぎて、反応界面積が低下し、脱硫率が低下することも確認できた。一方、アルミナ比率が低下しすぎると、脱酸不足により溶銑中の酸素濃度が増加し、脱硫率が低下することがわかった。 Furthermore, as a result of investigating the relationship between the composition of the desulfurizing agent and the particle size of the generated desulfurizing slag, the ratio of alumina (Al 2 O 3 ) and lime (CaO) generated in the desulfurizing agent (hereinafter referred to as “alumina ratio”) It has been found that the particle size of the desulfurized slag to be generated increases as the number of However, it was also confirmed that when the alumina ratio becomes too large, the melt phase in the slag increases, the slag particle size becomes too large, the reaction interfacial area decreases, and the desulfurization rate decreases. On the other hand, it was found that when the alumina ratio was too low, the oxygen concentration in the hot metal increased due to insufficient deoxidation, and the desulfurization rate decreased.

これらの結果から、機械攪拌式脱硫装置によって撹拌されている溶銑の浴面上に、上吹きランスを介して運搬用ガスと共に石灰系の脱硫剤を上吹き添加する溶銑の脱硫方法において、脱硫効率が高くしかも処理後のスラグ粒径をスラグ排滓工程までに溶銑表面まで浮上可能な粒径まで増大することが可能となる脱硫剤には、最適な粒径が存在することを見出した。すなわち、本発明では、平均粒径が50μm以上90μm以下である脱硫剤を用いることを規定している。   From these results, the desulfurization efficiency in the hot metal desulfurization method, in which the lime-based desulfurization agent is added to the hot metal bath surface that is being stirred by the mechanical stirring type desulfurization apparatus through the upper blowing lance together with the transport gas. In addition, the present inventors have found that there is an optimum particle size for a desulfurizing agent that can increase the particle size of slag after treatment to a particle size that can rise to the hot metal surface by the slag discharging process. That is, in the present invention, it is specified that a desulfurizing agent having an average particle size of 50 μm or more and 90 μm or less is used.

なお、脱硫剤の粒径と生成する脱硫スラグの粒径は、脱硫剤の添加方法に依存し、CaO系脱硫剤を溶銑中にインジェクションする方法では、小径の脱硫剤を用いても脱硫剤の歩留は悪化しないが、機械攪拌式溶銑脱硫方法と比較して、添加された脱硫剤の凝集が進行しないため、同じ小径の脱硫剤を用いても得られるスラグ粒径は大きくならない。   The particle size of the desulfurizing agent and the particle size of the desulfurizing slag to be generated depend on the method of adding the desulfurizing agent. In the method of injecting the CaO-based desulfurizing agent into the hot metal, the desulfurizing agent can be used even when a small-diameter desulfurizing agent is used. Although the yield does not deteriorate, the slag particle size obtained does not increase even when the same small-diameter desulfurization agent is used because the added desulfurization agent does not agglomerate as compared with the mechanical stirring type hot metal desulfurization method.

また、機械攪拌式脱硫装置を用いた場合、攪拌中の溶銑上へ投入口から脱硫剤を添加する方法(上置き添加)と、上吹きランスを介して搬送用ガスとともに攪拌羽根によって攪拌されている溶銑の浴面に添加する方法(投射添加)では、同じ粒径の脱硫剤を用いても、脱硫剤の歩留や得られるスラグ粒径は異なる。具体的には、上置き添加の場合には、小径の脱硫剤を用いたときには、脱硫剤の添加歩留が低下し、脱硫に悪影響を及ぼす。一方、投射添加の場合には、小径の脱硫剤を溶銑中へ添加することが可能となり、かつ、機械攪拌式脱硫装置を用いているため、脱硫剤の凝集が進行し、得られる脱硫スラグは大径化する。したがって、本発明の好適例では、機械攪拌式脱硫装置を用いて脱硫剤を投射添加する。   In addition, when a mechanical stirring type desulfurization apparatus is used, a method of adding a desulfurizing agent from the charging port onto the molten iron being stirred (upper addition) and a stirring blade with a carrier gas through an upper blowing lance In the method of adding to the hot metal bath surface (projection addition), even if a desulfurizing agent having the same particle size is used, the yield of the desulfurizing agent and the obtained slag particle size are different. Specifically, in the case of addition over the top, when a small-diameter desulfurizing agent is used, the addition yield of the desulfurizing agent is lowered, and desulfurization is adversely affected. On the other hand, in the case of projection addition, it is possible to add a small-diameter desulfurizing agent into the hot metal, and since a mechanically stirred desulfurization apparatus is used, the desulfurizing agent is agglomerated and the resulting desulfurized slag is Increase diameter. Therefore, in a preferred embodiment of the present invention, the desulfurization agent is projected and added using a mechanical stirring desulfurization apparatus.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明の脱硫処理の1実施形態を示す側面概略図であり、溶銑を収容する処理容器として取鍋型の溶銑鍋を使用した例を示している。処理容器については、機械攪拌式脱硫装置で脱硫処理を行うことから、図1に示すように取鍋型の処理容器が最適であるが、トーピードカーも使用可能である。以下、処理容器として溶銑鍋を使用した例で説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic side view showing an embodiment of the desulfurization treatment of the present invention, and shows an example in which a ladle type hot metal ladle is used as a processing container for containing hot metal. As the processing vessel, since a desulfurization process is performed by a mechanical stirring type desulfurization apparatus, a ladle type processing vessel is optimal as shown in FIG. 1, but a torpedo car can also be used. Hereinafter, an example in which a hot metal ladle is used as the processing container will be described.

図1に示す例において、高炉から出銑し、溶銑3を台車1に搭載された溶銑鍋2で受銑し、受銑した溶銑3を機械攪拌式脱硫装置に搬送する。なお、トーピードカーで受銑した場合には、脱硫処理に先立ち、取鍋型の処理容器に移し替えることが望ましい。本発明の脱硫処理の対象となる溶銑3は、どのような成分であっても構わず、例えば、予め脱珪処理や脱燐処理が施されていてもよい。上記の脱珪処理とは、脱燐処理を効率良く行うために脱燐処理に先立ち、溶銑3に酸素ガスや鉄鉱石などの酸素源を添加して主に溶銑中のSiを除去する処理のことをいう。   In the example shown in FIG. 1, the hot metal is discharged from the blast furnace, the hot metal 3 is received by the hot metal ladle 2 mounted on the carriage 1, and the received hot metal 3 is conveyed to a mechanical stirring type desulfurization apparatus. In addition, when receiving with a torpedo car, it is desirable to transfer to a ladle type processing container prior to the desulfurization process. The hot metal 3 to be subjected to the desulfurization treatment of the present invention may be any component, and for example, desiliconization treatment or dephosphorization treatment may be performed in advance. The above desiliconization treatment is a treatment of mainly removing Si in the hot metal by adding an oxygen source such as oxygen gas or iron ore to the molten iron 3 prior to the dephosphorization treatment in order to efficiently perform the dephosphorization treatment. That means.

機械攪拌式脱硫装置は、溶銑鍋2内に収容された溶銑3に浸漬・埋没し、旋回して溶銑3を攪拌するための耐火物製の攪拌羽根4を備えており、この攪拌羽根4は、昇降装置(図示せず)によってほぼ鉛直方向に昇降し、且つ、回転装置(図示せず)によって旋回するようになっている。また、機械攪拌式脱硫装置には、脱硫剤および/または脱酸剤を溶銑鍋2内の溶銑3に向けて上吹きして添加するための上吹きランス5と、脱硫剤および/または脱酸剤を溶銑鍋2内の溶銑3の浴面に上置き添加するための投入口6とが設置されている。更に、溶銑鍋2の上方位置には、集塵機(図示せず)に接続する排気ダクト口(図示せず)が備えられ、脱硫処理中に発生するガスやダストが排出されるようになっている。   The mechanical stirring type desulfurization apparatus is equipped with a stirring blade 4 made of refractory for immersing and burying in a hot metal 3 accommodated in a hot metal ladle 2 and rotating to stir the hot metal 3. The elevating device (not shown) moves up and down in a substantially vertical direction, and the rotating device (not shown) turns. Further, in the mechanical stirring type desulfurization apparatus, an upper blowing lance 5 for adding a desulfurizing agent and / or a deoxidizing agent by blowing up toward the hot metal 3 in the hot metal ladle 2, a desulfurizing agent and / or a deoxidizing agent. A charging port 6 is provided for adding the agent on the bath surface of the hot metal 3 in the hot metal pan 2. Further, an exhaust duct port (not shown) connected to a dust collector (not shown) is provided at an upper position of the hot metal ladle 2 so that gas and dust generated during the desulfurization process are discharged. .

上吹きランス5は、脱硫剤を収容するホッパー7とホッパー7から定量切り出すためのロータリーフィーダー11とからなる供給装置、脱酸剤を収容するホッパー9とホッパー9から定量切り出すためのロータリーフィーダー12とからなる供給装置と接続しており、上吹きランス5から、搬送用ガスと共に、脱硫剤および/または脱酸剤を任意のタイミングで各々独立して供給できる構造になっている。当然ながら、同時に供給することも、また、搬送用ガスのみを上吹きすることもできる構造になっている。   The top blowing lance 5 includes a hopper 7 containing a desulfurizing agent and a rotary feeder 11 for quantitatively cutting out from the hopper 7, a hopper 9 containing deoxidizer and a rotary feeder 12 for quantitatively cutting out from the hopper 9 The desulfurizing agent and / or the deoxidizing agent can be independently supplied at an arbitrary timing together with the carrier gas from the upper blowing lance 5. Of course, it has the structure which can supply simultaneously and can also blow up only the gas for conveyance.

同様に、投入口6は、脱硫剤を収容するホッパー9とホッパー9から定量切り出すためのロータリーフィーダー13とからなる供給装置、脱酸剤を収容するホッパー10とホッパー10から定量切り出すためのロータリーフィーダー12とからなる供給装置と接続しており、投入口6から、脱硫剤および/または脱酸剤を任意のタイミングで各々独立して供給できる構造になっている。   Similarly, the charging port 6 includes a hopper 9 that contains the desulfurizing agent and a rotary feeder 13 for quantitatively cutting out from the hopper 9, and a hopper 10 that contains the deoxidizer and the rotary feeder for quantitatively cutting out from the hopper 10. The desulfurizing agent and / or the deoxidizing agent can be supplied independently from each other at an arbitrary timing from the charging port 6.

脱硫剤としては、CaO系の脱硫剤のみならず、カルシウムカーバイド系の脱硫剤、ソーダ系の脱硫剤、及び金属Mgなど種々の脱硫剤を用いることができるが、安価であることから、CaO系の脱硫剤を使用することが好ましい。また、環境対策や発生するスラグの再利用が容易であることから、蛍石などのフッ素源を併用せずに、CaO系の脱硫剤のみを使用することが好ましい。CaO系の脱硫剤としては、生石灰(CaO)、ドロマイト(MgCO・CaCO)、消石灰(Ca(OH))、石灰石(CaCO)などを使用することができる。本発明において、脱硫剤を上吹き添加する或いは上吹きガスにより脱硫剤を強制的に溶銑3中に巻き込む場合は、フッ素源を使用しなくても、十分に脱硫することができる。但し、フッ素が不純物成分として不可避的に混入した脱硫剤は使用しても構わない。 As the desulfurizing agent, not only a CaO-based desulfurizing agent but also various desulfurizing agents such as a calcium carbide-based desulfurizing agent, a soda-based desulfurizing agent, and metallic Mg can be used. It is preferable to use a desulfurizing agent. In addition, it is preferable to use only a CaO-based desulfurization agent without using a fluorine source such as fluorite, because environmental measures and the reuse of generated slag are easy. As the CaO-based desulfurization agent, quick lime (CaO), dolomite (MgCO 3 · CaCO 3 ), slaked lime (Ca (OH) 2 ), limestone (CaCO 3 ) and the like can be used. In the present invention, when the desulfurizing agent is added by top blowing or when the desulfurizing agent is forcibly entrained in the hot metal 3 by the top blowing gas, sufficient desulfurization can be achieved without using a fluorine source. However, a desulfurization agent in which fluorine is inevitably mixed as an impurity component may be used.

ここで、上吹きするCaO系の脱硫剤のサイズは、用いる上吹きランス5の寸法や上吹き条件などに応じて最適な粒度を選択することができるが、添加歩留が低下しない範囲で、反応界面積を増加させ、かつ、脱硫スラグの粒径を大きくできるように、100μm以下が80mass%以上であり、かつ、50μm以下が50mass%以上存在している石灰系脱硫剤を用いることが好ましい。   Here, the size of the CaO-based desulfurization agent to be blown up can be selected according to the size of the top blowing lance 5 to be used, the top blowing condition, etc., but in the range where the addition yield does not decrease, In order to increase the reaction interfacial area and increase the particle size of the desulfurized slag, it is preferable to use a lime-based desulfurizing agent in which 100 µm or less is 80 mass% or more and 50 µm or less is present in 50 mass% or more. .

脱酸剤としては、Al系のものを用いることが好ましく、例えば、金属Alや安価に入手できるアルミドロス粉末が望ましい。また、アルミニウム融液をガスでアトマイズして得られるアトマイズ粉末や、アルミニウム合金を研磨、切削する際に発生する切削粉などであってもよい。これらは、搬送用ガスと共に溶銑3の表面へ上吹き添加してもよく、石灰系脱硫剤とは別に、投入口から添加しても良い。このAl系の脱酸剤が脱硫処理中に酸化されて生成したAlや、添加前に脱酸剤中に含有されていたAl、前処理工程において発生し、処理容器内に残留していたスラグ中のAlの総和が脱硫スラグ中のAlとなる。この脱硫スラグ中のAl量とCaOの量が、生成する脱硫スラグの粒径を決定する重要な要素となるため、脱硫処理後のスラグ中の石灰(CaO)含有量とアルミナ(Al)含有量の割合が、下記(1)式を満たすように、脱硫処理中のアルミ系脱酸剤の添加量を決定することが好ましい。

Figure 2016108639
As the deoxidizer, it is preferable to use an Al-based one, and for example, metal Al or aluminum dross powder available at low cost is desirable. Further, it may be atomized powder obtained by atomizing an aluminum melt with gas, or cutting powder generated when an aluminum alloy is polished and cut. These may be added by spraying on the surface of the hot metal 3 together with the carrier gas, or may be added from the inlet separately from the lime-based desulfurizing agent. The Al-based, Al 2 O 3, or the deoxidation agent is generated by oxidation during desulfurization process, Al 2 O 3 was contained in the deoxidizing agent prior to the addition, occurs in the pretreatment step, the processing vessel The total of Al 2 O 3 in the slag remaining in the slag becomes Al 2 O 3 in the desulfurized slag. Since the amount of Al 2 O 3 and the amount of CaO in the desulfurized slag is an important factor for determining the particle size of the desulfurized slag to be generated, the lime (CaO) content and the alumina (Al It is preferable to determine the addition amount of the aluminum-based deoxidizer during the desulfurization treatment so that the ratio of the 2 O 3 ) content satisfies the following formula (1).
Figure 2016108639

機械攪拌脱硫装置を用いて脱硫処理を行うに当たっては、まず、攪拌羽根4の位置が溶銑鍋2のほぼ中心になるように、溶銑鍋2を搭載した台車1の位置を調整し、次いで、攪拌羽根4を下降させて溶銑3に浸漬させる。攪拌羽根4が溶銑3中に浸漬したならば、攪拌羽根4の旋回を開始し、所定の回転数まで昇速する。攪拌羽根4の回転数が所定の回転数に達したならば、ロータリーフィーダー11を起動させて、ホッパー7内の脱硫剤を、搬送用ガスと共に上吹きランス5から溶銑3の浴面に向けて吹き付けて添加する。搬送用ガスとしては、還元性のガス、不活性ガスまたは非酸化性ガスを使用することができる。溶銑3の表面に吹き付ける速度が速いほど、脱硫反応が促進されるので、溶銑3の浴面に衝突する搬送用ガスの流速が10m/秒以上となるように、搬送用ガスの流量を調整することが好ましい。   In performing the desulfurization treatment using the mechanical stirring desulfurization apparatus, first, the position of the carriage 1 on which the hot metal ladle 2 is mounted is adjusted so that the position of the stirring blade 4 is approximately the center of the hot metal ladle 2, and then the stirring is performed. The blade 4 is lowered and immersed in the hot metal 3. If the stirring blade 4 is immersed in the molten iron 3, the stirring blade 4 starts to turn, and the speed is increased to a predetermined rotational speed. When the rotational speed of the stirring blade 4 reaches a predetermined rotational speed, the rotary feeder 11 is started, and the desulfurizing agent in the hopper 7 is directed from the upper blowing lance 5 to the bath surface of the hot metal 3 together with the conveying gas. Add by spraying. As the carrier gas, a reducing gas, an inert gas, or a non-oxidizing gas can be used. Since the desulfurization reaction is promoted as the speed of spraying on the surface of the hot metal 3 is increased, the flow rate of the transport gas is adjusted so that the flow velocity of the transport gas colliding with the bath surface of the hot metal 3 becomes 10 m / sec or more. It is preferable.

ホッパー8内の脱酸剤は、脱硫反応を促進させるために、上記の脱硫剤の上吹き添加と並行して、または、上吹き添加の前後に、若しくは脱硫処理期間の全期間にわたって、ロータリーフィーダー12の駆動により上吹きランス5から溶銑鍋2内に供給することが好ましい。なお、上述した例では、脱硫剤および/または脱酸剤を上吹きランス5から溶銑3に供給しているが、ホッパー9内の脱硫剤およびホッパー10内の脱酸剤をロータリーフィーダー13、14の駆動により投入口6を介して行うこともできる。   In order to accelerate the desulfurization reaction, the deoxidizer in the hopper 8 is a rotary feeder in parallel with the above-described top blowing addition, before or after top blowing addition, or over the entire duration of the desulfurization treatment period. 12 is preferably supplied from the top blowing lance 5 into the hot metal ladle 2. In the above-described example, the desulfurizing agent and / or deoxidizing agent is supplied from the top blowing lance 5 to the hot metal 3, but the desulfurizing agent in the hopper 9 and the deoxidizing agent in the hopper 10 are used as the rotary feeders 13, 14. It can also be performed through the insertion port 6 by driving.

所定時間の攪拌を行なったら、攪拌羽根4の回転数を減少して停止させた後、攪拌羽根4を上昇させ、溶銑鍋2の上方に待機させる。生成したスラグが浮上して溶銑表面を覆い、静止した状態で溶銑3の脱硫処理を終了する。脱硫処理後、生成したスラグを溶銑鍋2内から排出し、次の精錬工程に溶銑鍋2を搬送する。   After stirring for a predetermined time, the number of revolutions of the stirring blade 4 is decreased and stopped, and then the stirring blade 4 is raised and placed on the hot metal ladle 2 on standby. The generated slag floats to cover the hot metal surface, and the desulfurization process of the hot metal 3 is finished in a stationary state. After the desulfurization treatment, the generated slag is discharged from the hot metal ladle 2 and conveyed to the next refining process.

このようにして溶銑3に対して脱硫処理を施すことで、細粒の脱硫剤であっても、添加時の飛散が少なくなり、脱硫剤の添加歩留まりが向上する。また、細粒の脱硫剤は、反応界面積が大きいため、脱硫反応が促進され、脱硫率が向上する。更に、生成する脱硫スラグの粒径が大きく、脱硫処理後のスラグ浮上が促進されることから、溶銑中に分散していたスラグが脱硫スラグの排滓までの間に溶銑表面に浮上し、除去される。脱硫スラグの処理容器からの除去方法としては、処理容器を溶銑が流出しない程度に傾動させ、スラグ掻き出し機などを用いて機械的に描き出す方法、或いは、真空式スラグ除去装置を用いて吸引・除去する方法などを用いることができる。脱硫スラグを排出した後は、溶銑温度の低下を防止するために、処理容器内に保温剤を添加することが好ましい。   By performing the desulfurization treatment on the hot metal 3 in this manner, even when a fine-grain desulfurization agent is used, scattering during addition is reduced and the addition yield of the desulfurization agent is improved. Further, since the fine-grain desulfurization agent has a large reaction interface area, the desulfurization reaction is promoted and the desulfurization rate is improved. Furthermore, since the particle size of the desulfurized slag to be generated is large and the slag floating after the desulfurization process is promoted, the slag dispersed in the hot metal floats on the hot metal surface before the desulfurized slag is discharged and removed. Is done. The desulfurization slag can be removed from the processing container by tilting the processing container to the extent that molten iron does not flow out and drawing it mechanically using a slag scraper or by suction / removal using a vacuum slag removing device. Or the like can be used. After the desulfurization slag is discharged, it is preferable to add a heat retaining agent in the processing container in order to prevent the hot metal temperature from decreasing.

尚、使用する溶銑は、高炉やシャフト炉で溶製された溶銑であることが好ましく、脱硫処理を施す前に、脱珪処理や脱燐処理が施されていても構わない。脱燐処理が予め施された溶銑の場合には、次工程が転炉での脱炭精錬工程であるので、脱硫スラグ除去処理後の溶銑を脱炭精錬を行う転炉に搬送する。また、脱硫処理後に予備処理として溶銑の脱燐処理を施す場合には、次工程が脱燐処理工程であるので、脱硫スラグ除去処理後の溶銑を脱燐処理を実施する設備に搬送する。なお、次工程の処理直前に脱硫スラグの除去処理を行ってもよい。   In addition, it is preferable that the hot metal to be used is a hot metal melted in a blast furnace or a shaft furnace, and desiliconization treatment or dephosphorization treatment may be performed before the desulfurization treatment. In the case of hot metal previously subjected to dephosphorization, the next process is a decarburization refining process in the converter, and therefore, the hot metal after the desulfurization slag removal process is transported to the converter that performs decarburization refining. In addition, when the hot metal dephosphorization treatment is performed as a preliminary treatment after the desulfurization treatment, since the next step is a dephosphorization treatment step, the hot metal after the desulfurization slag removal treatment is transported to a facility for performing the dephosphorization treatment. In addition, you may perform the removal process of desulfurization slag just before the process of the following process.

以上説明したように、本発明によれば、脱硫処理を施した溶銑に対して次工程で脱燐処理や脱炭精錬を行って溶銑から溶鋼を溶製する工程において、溶銑の脱硫処理時に生成し、脱硫処理後に溶銑中に懸濁するなどして処理容器内に残留する脱硫スラグをスラグ除去処理実施までに浮上させ、浮上させた脱硫スラグを処理容器から排出した溶銑を次工程の脱燐処理や脱炭精錬に供するので、脱燐処理や脱炭精錬を実施する際には復硫の原因となる脱硫スラグの大半が除去されており、脱燐処理や脱炭精錬における復硫を低減することができる。   As described above, according to the present invention, in the process of producing molten steel from hot metal by performing dephosphorization treatment and decarburization refining in the next step on the hot metal subjected to desulfurization treatment, it is generated at the time of desulfurization treatment of hot metal. The desulfurization slag remaining in the processing vessel is suspended by suspending in the hot metal after the desulfurization treatment, etc. until the slag removal processing is carried out, and the hot metal discharged from the processing vessel is dephosphorized in the next step. Since it is used for treatment and decarburization refining, most of the desulfurization slag that causes resulfurization is removed when dephosphorization treatment and decarburization refining, reducing resulfurization in dephosphorization treatment and decarburization refining. can do.

溶銑に脱硫処理を施し、生成した脱硫スラグを溶銑鍋から除去した後、次工程の転炉で脱燐処理及び脱炭精錬を施して、製品の硫黄濃度規格が0.0024mass%以下である低硫鋼を溶製した。具体的には、溶銑鍋に収容した溶銑を脱硫処理し、生成した脱硫スラグを溶銑鍋から除去した後、該溶銑を溶銑鍋から装入鍋へ装入し、さらに装入鍋から転炉へ装入し、転炉で脱燐処理を施した後、再度装入鍋へ出湯し、装入鍋から転炉へ再装入し、転炉で脱炭精錬を行った。   After desulfurizing the hot metal and removing the generated desulfurized slag from the hot metal ladle, dephosphorization and decarburization refining are performed in the converter of the next process, and the product sulfur concentration standard is 0.0024 mass% or less. Sulfur steel was melted. Specifically, the hot metal contained in the hot metal ladle is desulfurized, and after the generated desulfurized slag is removed from the hot metal hot pot, the hot metal is charged from the hot metal hot pot into the charging pan, and further from the charging pan to the converter. After charging and dephosphorizing in the converter, the hot water was again discharged into the charging pot, the charging pot was recharged into the converter, and decarburization refining was performed in the converter.

上記の脱硫処理においては、平均粒径の異なる石灰系脱硫剤(平均粒径:比較例1(40μm)、発明例1(50μm)、発明例2(60μm)、発明例3(90μm)、比較例2(100μm)、比較例3(250μm))を用いて、それぞれ150チャージずつ脱硫処理を行い、脱燐処理後のスラグを採取し、脱硫スラグの平均粒径を求めるとともに、脱硫率、復硫量を調査した。   In the above desulfurization treatment, lime-based desulfurization agents having different average particle sizes (average particle size: Comparative Example 1 (40 μm), Invention Example 1 (50 μm), Invention Example 2 (60 μm), Invention Example 3 (90 μm), Comparison Using Example 2 (100 μm) and Comparative Example 3 (250 μm), the desulfurization treatment was performed for 150 charges each, and the slag after the dephosphorization treatment was collected to obtain the average particle size of the desulfurization slag, and the desulfurization rate, The amount of sulfur was investigated.

ここで、脱硫剤の平均粒径は、45μm以下、45〜75μm、75〜100μm、100〜125μm、125〜150μm、150〜300μm、300〜500μm、500〜1000μm、1000μm以上、の9段階に篩い分けし、粒度分布を測定した。平均粒径は、(2)式により求めた。

Figure 2016108639
ここで、Da:平均粒径(mm)、di : それぞれの粒径範囲における平均粒子径(篩目中央値)(mm)但し「45μm以下」の篩目中央値は22.5μmとし、「1000μm以上」は(2)式計算に算入しない。また、wi :それぞれの篩上の脱硫剤重量(kg)である。 Here, the average particle size of the desulfurizing agent is 45 μm or less, 45 to 75 μm, 75 to 100 μm, 100 to 125 μm, 125 to 150 μm, 150 to 300 μm, 300 to 500 μm, 500 to 1000 μm, 1000 μm or more. The particle size distribution was measured. The average particle size was determined by the formula (2).
Figure 2016108639
Here, D a : average particle diameter (mm), d i : average particle diameter in each particle size range (medium screen average value) (mm) However, the median screen size of “45 μm or less” is 22.5 μm, “1000 μm or more” is not included in the calculation of equation (2). W i is the weight (kg) of the desulfurizing agent on each sieve.

具体的な溶銑の脱硫処理方法は、機械攪拌式脱硫装置を用いて行い、添加するCaO系脱硫剤としてCaO−CaFを使用した。使用したインペラーは、すべて、回転直径が1.4mで、高さが0.8mの羽根を4枚有し、羽根に傾斜角度のないものである。 A specific hot metal desulfurization treatment method was performed using a mechanical stirring desulfurization apparatus, and CaO—CaF 2 was used as a CaO-based desulfurization agent to be added. All the impellers used have four blades with a rotating diameter of 1.4 m and a height of 0.8 m, and the blades have no inclination angle.

用いた溶銑の脱硫処理前の化学成分は、C:3.5〜5.0mass%、Si:0.1〜0.3mass%、S:0.025〜0.035mass%、P:0.10〜0.15mass%で、脱硫処理前の溶銑温度は1250〜1350℃の範囲であった。脱硫処理は、処理容器として250〜350トンの溶銑を収納可能な溶銑鍋を用い、処理する溶銑量は約300トンとした。用いた脱硫剤の添加量は5.0〜7.5kg/溶銑−tonとした。攪拌時間は一定とした。脱酸剤として、アルミドロス粉末を、脱硫剤添加前に溶銑中へ添加した。この際、アルミドロス粉末の添加量は、処理後スラグ中のアルミナ比率が0.1〜0.15の範囲となるように決定した。また、どの脱硫剤を用いた場合においても、脱燐処理中は、溶銑中S濃度の増加の原因となるような副原料は添加しなかった。脱硫スラグの溶銑鍋からの除去工程後と、脱燐処理後に溶銑サンプルを採取し、溶銑中の硫黄濃度を分析した。   The chemical components before desulfurization treatment of the hot metal used were C: 3.5 to 5.0 mass%, Si: 0.1 to 0.3 mass%, S: 0.025 to 0.035 mass%, P: 0.10. The hot metal temperature before desulfurization treatment was in the range of 1250 to 1350 ° C. at ˜0.15 mass%. In the desulfurization treatment, a hot metal ladle capable of storing 250 to 350 tons of hot metal as a processing vessel was used, and the amount of hot metal to be processed was about 300 tons. The amount of desulfurizing agent used was 5.0 to 7.5 kg / molten iron-ton. The stirring time was constant. As a deoxidizer, aluminum dross powder was added into the hot metal before the desulfurizer was added. At this time, the amount of aluminum dross powder added was determined so that the alumina ratio in the slag after treatment was in the range of 0.1 to 0.15. In addition, no desulfurizing agent was used, and during the dephosphorization process, no auxiliary material was added which would cause an increase in the S concentration in the hot metal. After the removal process of the desulfurization slag from the hot metal ladle and after the dephosphorization treatment, a hot metal sample was taken and the sulfur concentration in the hot metal was analyzed.

用いた脱硫剤の平均粒径と処理後に得られたスラグの粒径指数、脱硫率、復硫量を表1に示す。ここで、上記の復硫量は、脱燐処理後の硫黄濃度と溶銑鍋から脱硫スラグ除去後の硫黄濃度の差である。また、平均スラグ粒径指数は、平均粒径250μmの脱硫剤を用いた処理における平均スラグ粒径を1.0とした場合の指数である。結果を以下の表1に示す。   Table 1 shows the average particle size of the desulfurizing agent used, the particle size index of the slag obtained after the treatment, the desulfurization rate, and the amount of resulfurization. Here, the above-mentioned amount of resulfurization is the difference between the sulfur concentration after the dephosphorization treatment and the sulfur concentration after removing the desulfurized slag from the hot metal ladle. The average slag particle size index is an index when the average slag particle size in the treatment using a desulfurizing agent having an average particle size of 250 μm is 1.0. The results are shown in Table 1 below.

Figure 2016108639
Figure 2016108639

表1の結果から以下のことがわかる。すなわち、用いた脱硫剤の平均粒径が小さくなるほど、処理後のスラグ粒径は大きくなる傾向にあり、脱硫剤の平均粒径が90μm以下の発明例1〜3では、平均粒径250μmの脱硫剤を用いた場合(比較例4)のスラグよりも2.9倍以上にスラグ粒径が大きくなっており、復硫量も0.0008mass%以下と低位であった。一方、平均粒径100μm以上の脱硫剤を用いた場合(比較例2、3)では、復硫量はそれぞれ0.0025mass%、0.0052mass%となり、転炉出鋼時の硫黄濃度が規格値を上回ったチャージがあり、転炉からの出鋼後、取鍋精錬設備(LF設備)において取鍋内の溶鋼に対して脱硫精錬を実施する必要が生じた。また、平均粒径40μmの脱硫剤を用いた場合(比較例1)では、スラグ粒径は大きく、また、復硫量は0.0005mass%と低位であったが、脱硫率が77.1%と低位であった。これは、脱硫剤の粒径が細かすぎて、添加歩留りが低下したためである。   From the results in Table 1, the following can be understood. That is, the smaller the average particle size of the desulfurizing agent used, the larger the slag particle size after treatment. In Invention Examples 1 to 3, in which the average particle size of the desulfurizing agent is 90 μm or less, the desulfurization having an average particle size of 250 μm. When the agent was used (Comparative Example 4), the slag particle size was 2.9 times or more larger than that of the slag, and the amount of resulfurization was as low as 0.0008 mass% or less. On the other hand, in the case of using a desulfurizing agent having an average particle size of 100 μm or more (Comparative Examples 2 and 3), the amount of resulfurization is 0.0025 mass% and 0.0052 mass%, respectively, and the sulfur concentration at the time of converter steel is standard value. There was a need to carry out desulfurization refining on the molten steel in the ladle in the ladle refining equipment (LF equipment) after the steel was discharged from the converter. When a desulfurizing agent having an average particle size of 40 μm was used (Comparative Example 1), the slag particle size was large and the amount of resulfurization was as low as 0.0005 mass%, but the desulfurization rate was 77.1%. And low. This is because the particle size of the desulfurizing agent is too fine and the yield of addition is reduced.

平均粒径が60μmおよび90μmといずれも本発明の範囲内の石灰系脱硫剤を用い、脱酸剤としてのアルミドロス粉末の添加量を変化させることにより、処理後スラグ中のアルミナ比率を変化させた脱硫処理し、その後、転炉において、脱燐処理し、脱炭精錬して、低硫鋼を溶製する実験を、それぞれ50チャージずつ行った。その際、脱硫処理後のスラグを採取し、脱硫スラグの平均粒径を求めるとともに、脱硫率、復硫量を調査した。なお、精錬処理の順、及び、脱硫処理方法は、実施例1と同じである。また、脱燐処理中は溶銑中S濃度の増加の原因となるような副原料は添加しなかった。溶銑鍋から脱硫スラグ除去後と、脱燐処理後に、溶銑サンプルを採取し、溶鋼中の硫黄濃度を分析した。脱硫処理後に得られたスラグのアルミナ比率、および、スラグの粒径指数、脱硫率、復硫量を以下の表2に示す。なお、スラグの平均粒径指数は、実施例1と同様に平均粒径250μmの脱硫剤を用いた処理におけるスラグ粒径を1.0とした場合の指数である。   The average particle size is 60 μm and 90 μm, both using a lime-based desulfurization agent within the scope of the present invention, and changing the addition amount of aluminum dross powder as a deoxidizer, thereby changing the alumina ratio in the slag after treatment. The desulfurization treatment was carried out, followed by dephosphorization treatment in a converter, decarburization refining, and experiments for melting low-sulfur steel were carried out for 50 charges each. At that time, the slag after the desulfurization treatment was collected, the average particle diameter of the desulfurized slag was obtained, and the desulfurization rate and the amount of sulfurization were investigated. The order of the refining treatment and the desulfurization treatment method are the same as those in the first embodiment. Further, during the dephosphorization process, no auxiliary material that causes an increase in the S concentration in the hot metal was added. After removing the desulfurized slag from the hot metal ladle and after the dephosphorization treatment, a hot metal sample was taken and analyzed for the sulfur concentration in the molten steel. Table 2 below shows the alumina ratio of the slag obtained after the desulfurization treatment, the particle size index of the slag, the desulfurization rate, and the amount of sulfurization. In addition, the average particle diameter index of slag is an index when the slag particle diameter in the treatment using the desulfurizing agent having an average particle diameter of 250 μm is 1.0 as in the case of Example 1.

Figure 2016108639
Figure 2016108639

表2の結果から以下のことがわかる。すなわち、脱硫剤の平均粒径が60μmおよび90μmのいずれの場合においても、脱硫処理後のスラグ粒径は、平均粒径250μmの脱硫剤を用いた場合よりも大きくなる傾向にあり、いずれも2.5倍以上にスラグ粒径が増大している。また、復硫量も0.001mass%以下と低位であった。特に、脱硫処理後のスラグ中のアルミナ比率が0.05〜0.2の範囲である発明例5〜8、12〜15では、脱硫処理後の[S]が10mass ppm(0.0001mass%)以下まで低減しており、脱硫率も97.2%以上と高位であった。しかし、処理後スラグ中のアルミナ比率が0.05未満、および、0.25以上の発明例4、9〜11、16、17では、脱硫処理後の[S]が0.0013〜0.0018mass%であり、脱硫率も95%を下回っていた。この理由は、脱硫処理後のスラグ中のアルミナ比率が0.05未満の場合には、脱硫処理中の溶銑中の酸素濃度が高い傾向があり、脱酸不足のために、脱硫率がやや悪化したものと考えられる。一方、アルミナ比率が0.25以上の発明例9、10、16、17では、処理後のスラグ粒径指数が6倍以上とかなり粒径が大きなスラグが生成しているため、反応界面積が減少して、脱硫率が低下したものと考えられる。   The following can be seen from the results in Table 2. That is, in both cases where the average particle size of the desulfurizing agent is 60 μm and 90 μm, the slag particle size after the desulfurization treatment tends to be larger than when a desulfurizing agent having an average particle size of 250 μm is used. The particle size of slag is increased more than 5 times. Further, the amount of sulfurization was as low as 0.001 mass% or less. In particular, in Invention Examples 5 to 8 and 12 to 15 in which the alumina ratio in the slag after the desulfurization treatment is in the range of 0.05 to 0.2, [S] after the desulfurization treatment is 10 mass ppm (0.0001 mass%). The desulfurization rate was as high as 97.2% or more. However, in Invention Examples 4, 9 to 11, 16, and 17 in which the alumina ratio in the treated slag is less than 0.05 and 0.25 or more, [S] after the desulfurization treatment is 0.0013 to 0.0018 mass. % And the desulfurization rate was below 95%. The reason for this is that when the alumina ratio in the slag after the desulfurization treatment is less than 0.05, the oxygen concentration in the hot metal during the desulfurization treatment tends to be high, and the desulfurization rate is slightly deteriorated due to insufficient deoxidation. It is thought that. On the other hand, in the inventive examples 9, 10, 16, and 17 in which the alumina ratio is 0.25 or more, since the slag particle size index after treatment is 6 times or more and slag having a considerably large particle size is generated, the reaction interface area is It is considered that the desulfurization rate decreased due to the decrease.

この結果から、脱硫処理後のスラグ中のアルミナ比率が0.05〜0.2の範囲でより脱硫率の高い脱硫処理を行いつつ、復硫防止を図ることができることがわかった。   From this result, it has been found that resulfurization can be prevented while performing desulfurization treatment with a higher desulfurization rate when the alumina ratio in the slag after desulfurization treatment is in the range of 0.05 to 0.2.

平均粒径は55〜70μmだが、粒度分布の異なる石灰系脱硫剤を用いて、溶銑に脱硫処理を施した後、転炉で脱燐処理と脱炭精錬して、S濃度が0.0024mass%以下の低硫鋼を溶製する実験を、それぞれ50チャージずつ行った。この際、脱硫処理後のスラグを採取し、脱硫スラグの平均粒径を求めるとともに、脱硫率、復硫量を調査した。なお、精錬処理の順、及び、試験方法は、実施例1と同じである。また、脱燐処理中は溶銑中のS濃度の増加の原因となるような副原料は添加しなかった。脱硫スラグの溶銑鍋からの除去工程後と、脱燐処理後に溶銑サンプルを採取し、溶銑(溶鋼)中の硫黄濃度を分析した。脱硫処理後のスラグ中のアルミナ比率は、0.09〜0.16の範囲であった。脱硫処理後に得られた平均スラグ粒径指数、平均脱硫率、平均復硫量を表3に示す。なお、スラグの平均粒径は、実施例1と同様に、平均粒径250μmの脱硫剤を用いた処理におけるスラグ粒径を1.0とした場合の指数として示した。   The average particle size is 55 to 70 μm, but after desulfurizing the hot metal using lime-based desulfurizing agents with different particle size distribution, dephosphorization and decarburization refining in the converter, the S concentration is 0.0024 mass% Experiments for melting the following low-sulfur steel were performed 50 charges each. At this time, the slag after the desulfurization treatment was collected, the average particle diameter of the desulfurization slag was obtained, and the desulfurization rate and the amount of sulfurization were investigated. The order of the refining treatment and the test method are the same as those in Example 1. Further, during the dephosphorization process, no auxiliary material that causes an increase in the S concentration in the hot metal was added. After the removal process of the desulfurization slag from the hot metal ladle and after the dephosphorization process, hot metal samples were collected and analyzed for the sulfur concentration in the hot metal (molten steel). The alumina ratio in the slag after the desulfurization treatment was in the range of 0.09 to 0.16. Table 3 shows the average slag particle size index, the average desulfurization rate, and the average amount of resulfurization obtained after the desulfurization treatment. In addition, the average particle diameter of slag was shown as an index when the particle diameter of slag in the treatment using a desulfurizing agent having an average particle diameter of 250 μm was set to 1.0, as in Example 1.

Figure 2016108639
Figure 2016108639

表3の結果から以下のことがわかる。すなわち、いずれの場合においても、スラグ粒径は、平均粒径250μmの脱硫剤を用いた場合のスラグよりも、2.5倍以上に大きくなっており、復硫量も0.0009mass%以下と低位であった。なかでも、100μm以下が80mass%以上、かつ、50μm以下が50mass%以上存在している脱硫剤を用いた場合(発明例18、19)には、脱硫率が98.0%以上と高位で、かつ、復硫量も0.0005mass%と低位であり、最も良い結果となっていた。   The following can be understood from the results of Table 3. That is, in any case, the slag particle size is 2.5 times or more larger than the slag when the desulfurizing agent having an average particle size of 250 μm is used, and the amount of sulfurization is 0.0009 mass% or less. It was low. In particular, when using a desulfurization agent in which 100 μm or less is 80 mass% or more and 50 μm or less is present in 50 mass% or more (Invention Examples 18 and 19), the desulfurization rate is as high as 98.0% or more, And the amount of resulfurization was as low as 0.0005 mass%, which was the best result.

以上のように、本発明の溶銑脱硫方法では、全チャージで脱炭精錬後の溶鋼中硫黄濃度を、低硫鋼種の規格値の0.0024mass%以下に制御できることが確認できた。従って、本発明の溶銑脱硫方法では、出鋼後の取鍋精錬設備(LF設備)における脱硫精錬を完全に省略することが可能であった。   As described above, in the hot metal desulfurization method of the present invention, it was confirmed that the sulfur concentration in the molten steel after decarburization refining can be controlled to 0.0024 mass% or less of the standard value of the low-sulfur steel type with full charge. Therefore, in the hot metal desulfurization method of the present invention, desulfurization refining in a ladle refining facility (LF facility) after steelmaking can be completely omitted.

本発明の復流の少ない溶銑脱硫方法によれば、転炉での脱燐処理や脱炭精錬における復硫を低減することができ、これにより、溶鋼段階で二次精錬としての脱硫精錬を施さなくても極低硫鋼の溶製が可能となり、ひいては従来に比較して大幅に製造コストの削減並びに生産性の向上を図ることができるので、復硫を低減する必要がある種々の製鋼の精錬に好適に適用することができる。   According to the hot metal desulfurization method of the present invention with less recirculation, desulfurization treatment in a converter and desulfurization in decarburization refining can be reduced, whereby desulfurization refining as secondary refining is performed in the molten steel stage. Without this, it is possible to melt ultra-low-sulfurized steel, and as a result, it is possible to significantly reduce production costs and improve productivity compared to conventional steelmaking. It can be suitably applied to refining.

1 台車
2 溶銑鍋
3 溶銑
4 攪拌羽根
5 上吹きランス
6 投入口
7、8、9、10 ホッパー
11、12、13、14 ロータリーフィーダー
1 Cart 2 Hot metal ladle 3 Hot metal 4 Stirrer blade 5 Top blowing lance 6 Input port 7, 8, 9, 10 Hopper 11, 12, 13, 14 Rotary feeder

Claims (3)

機械攪拌式脱硫装置の撹拌羽根によって撹拌している処理容器内の溶銑の浴面上に、上方から脱硫剤を添加して溶銑を脱硫するにあたり、前記脱硫剤として平均粒径が50μm以上90μm以下である脱硫剤を用いることを特徴とする復硫の少ない溶銑脱硫方法。   When desulfurizing the hot metal by adding a desulfurizing agent from above onto the bath surface of the hot metal in the processing vessel agitated by the stirring blades of the mechanical stirring desulfurization apparatus, the average particle size of the desulfurizing agent is 50 μm or more and 90 μm or less. A hot metal desulfurization method with less resulfurization, characterized by using a desulfurization agent. 溶銑の脱硫処理後のスラグ中の石灰(CaO)含有量とアルミナ(Al)含有量の割合が、下記の(1)式を満たすように、脱硫処理中に添加するアルミ系脱酸剤の添加量を決定することを特徴とする請求項1に記載の復硫の少ない溶銑脱硫方法:
Figure 2016108639
ここで、(Al)は、脱硫スラグ中のアルミナ含有量(mass%)、(CaO)は、脱硫スラグ中の石灰(CaO)含有量(mass%)である。
Aluminum-based deoxidation added during desulfurization treatment so that the ratio of lime (CaO) content and alumina (Al 2 O 3 ) content in the slag after desulfurization treatment of hot metal satisfies the following formula (1) The hot metal desulfurization method with less resulfurization according to claim 1, wherein the additive amount of the agent is determined:
Figure 2016108639
Here, (Al 2 O 3 ) is the alumina content (mass%) in the desulfurized slag, and (CaO) is the lime (CaO) content (mass%) in the desulfurized slag.
100μm以下が80mass%以上、かつ、50μm以下が50mass%以上である脱硫剤を用いることを特徴とする請求項1または2に記載の復硫の少ない溶銑脱硫方法。   3. The hot metal desulfurization method with less resulfurization according to claim 1 or 2, wherein a desulfurizing agent having 100 μm or less of 80 mass% or more and 50 μm or less of 50 mass% or more is used.
JP2014249661A 2014-12-10 2014-12-10 Hot metal desulfurization method with less recuperation Active JP6238019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249661A JP6238019B2 (en) 2014-12-10 2014-12-10 Hot metal desulfurization method with less recuperation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014249661A JP6238019B2 (en) 2014-12-10 2014-12-10 Hot metal desulfurization method with less recuperation

Publications (2)

Publication Number Publication Date
JP2016108639A true JP2016108639A (en) 2016-06-20
JP6238019B2 JP6238019B2 (en) 2017-11-29

Family

ID=56123473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249661A Active JP6238019B2 (en) 2014-12-10 2014-12-10 Hot metal desulfurization method with less recuperation

Country Status (1)

Country Link
JP (1) JP6238019B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI789121B (en) 2020-12-16 2023-01-01 美商泰勒梅高爾夫有限公司 Multi-piece golf club head

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583908A (en) * 1981-06-29 1983-01-10 Sumitomo Metal Ind Ltd Desulfurizing agent for molten iron
US4738715A (en) * 1987-01-02 1988-04-19 Hart Metals, Inc. Desulfurizing reagent for hot metal
JP2006161086A (en) * 2004-12-06 2006-06-22 Sumitomo Metal Ind Ltd Method for desulfurizing molten iron
JP2008031537A (en) * 2006-07-31 2008-02-14 Jfe Steel Kk CaO-BASED DESULFURIZING AGENT AND METHOD FOR DESULFURIZING MOLTEN IRON
JP2009108344A (en) * 2007-10-26 2009-05-21 Nippon Steel Corp Desulfurizing agent for molten metal
JP2013023738A (en) * 2011-07-22 2013-02-04 Jfe Steel Corp Method for reusing slag in ladle
JP2013189688A (en) * 2012-03-14 2013-09-26 Jfe Steel Corp Method for removing sulfur from desulfurization slag

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583908A (en) * 1981-06-29 1983-01-10 Sumitomo Metal Ind Ltd Desulfurizing agent for molten iron
US4738715A (en) * 1987-01-02 1988-04-19 Hart Metals, Inc. Desulfurizing reagent for hot metal
JP2006161086A (en) * 2004-12-06 2006-06-22 Sumitomo Metal Ind Ltd Method for desulfurizing molten iron
JP2008031537A (en) * 2006-07-31 2008-02-14 Jfe Steel Kk CaO-BASED DESULFURIZING AGENT AND METHOD FOR DESULFURIZING MOLTEN IRON
JP2009108344A (en) * 2007-10-26 2009-05-21 Nippon Steel Corp Desulfurizing agent for molten metal
JP2013023738A (en) * 2011-07-22 2013-02-04 Jfe Steel Corp Method for reusing slag in ladle
JP2013189688A (en) * 2012-03-14 2013-09-26 Jfe Steel Corp Method for removing sulfur from desulfurization slag

Also Published As

Publication number Publication date
JP6238019B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
CN1061381C (en) Method of refining of high purity steel
JP5573424B2 (en) Desulfurization treatment method for molten steel
WO2011002094A1 (en) Method of desulfurization of molten iron
JP4998676B2 (en) Method of stirring molten metal using impeller
JP5045031B2 (en) Hot metal desulfurization agent and desulfurization treatment method
JP5195737B2 (en) Hot metal desulfurization method
JP4715369B2 (en) Hot metal desulfurization treatment method
JP2006219695A (en) Desulfurizing treatment method for molten iron
JP2007247045A (en) Method for desulfurizing molten iron
JP6024192B2 (en) Method for preventing hot metal after desulphurization
JP2011042815A (en) Method for desulfurizing molten iron
JP6238019B2 (en) Hot metal desulfurization method with less recuperation
JP5888194B2 (en) Desulfurization method for molten steel
JP4998677B2 (en) Reuse method of desulfurization slag
JP5066923B2 (en) Hot metal desulfurization treatment method
JP5458499B2 (en) Hot metal desulfurization treatment method
JP4984928B2 (en) Hot metal desulfurization method
JP2006265623A (en) Method for pre-treating molten iron
JP5446300B2 (en) Hot metal desulfurization treatment method
JP2010116612A (en) Method for desulfurizing molten iron
JP6416634B2 (en) Desiliconization and desulfurization methods in hot metal ladle
JP2018172719A (en) Desulfurization method of molten pig iron
JP5418248B2 (en) Hot metal desulfurization method
JP6443192B2 (en) Slag reforming method using FeSi alloy grains
JP6649639B2 (en) Method of adding desulfurizing agent into hot metal processing vessel and method of refining hot metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171017

R150 Certificate of patent or registration of utility model

Ref document number: 6238019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250