JP2016108502A - Molded article having good hue and method for producing the same - Google Patents

Molded article having good hue and method for producing the same Download PDF

Info

Publication number
JP2016108502A
JP2016108502A JP2014249407A JP2014249407A JP2016108502A JP 2016108502 A JP2016108502 A JP 2016108502A JP 2014249407 A JP2014249407 A JP 2014249407A JP 2014249407 A JP2014249407 A JP 2014249407A JP 2016108502 A JP2016108502 A JP 2016108502A
Authority
JP
Japan
Prior art keywords
light
styrene
molded article
resin
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014249407A
Other languages
Japanese (ja)
Other versions
JP6614767B2 (en
Inventor
佐藤 誠
Makoto Sato
佐藤  誠
雅史 塚田
Masashi Tsukada
雅史 塚田
悠平 宮島
Yuhei Miyajima
悠平 宮島
高橋 哲也
Tetsuya Takahashi
哲也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Styrene Co Ltd
Original Assignee
Toyo Styrene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Styrene Co Ltd filed Critical Toyo Styrene Co Ltd
Priority to JP2014249407A priority Critical patent/JP6614767B2/en
Publication of JP2016108502A publication Critical patent/JP2016108502A/en
Application granted granted Critical
Publication of JP6614767B2 publication Critical patent/JP6614767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molded article that achieves further improvement in optical characteristics as compared with a molded article formed from the conventional thermoplastic resin and to provide a method for producing the molded article.SOLUTION: A light-irradiated molded article produced by irradiating a molded article formed from a styrene-based thermoplastic resin mainly with light including a component having a wavelength of 340 to 575 nm is brought into a molded article having good hue as compared with a molded article which is not irradiated with light. The production method can be utilized as a means for bringing a molded article formed from the conventional thermoplastic resin into a molded article having further improved good hue. The styrene-based resin is a copolymer of a styrene-based monomer and a (meth)acrylic acid ester monomer and is a styrene/(meth)acrylic acid ester copolymer containing 40.0 to 99.0 wt% of the styrene-based monomer and 60.0 to 1.0 wt% of the (meth)acrylic acid ester monomer.SELECTED DRAWING: None

Description

本発明は、良色相の成形品およびその製造方法に関する。 The present invention relates to a molded article having a good hue and a method for producing the same.

熱可塑性樹脂は、雑貨や包材、自動車、電気機器、医療機器等、今日では多くの産業分野に用いられている。   Thermoplastic resins are used in many industrial fields such as sundries, packaging materials, automobiles, electrical equipment, and medical equipment today.

スチレン系樹脂は、透明性、剛性、低吸水性、寸法安定性などの特性に優れ、成形加工性に優れることから、射出成形、押出成形、ブロー成形などの各種成形方法により、電気製品や各種工業材料、食品包装容器、雑貨等として広く用いられている。また、透明性を生かした用途として、導光板や拡散板などの光学部材にも用いられている。   Styrenic resins have excellent properties such as transparency, rigidity, low water absorption, and dimensional stability, and are excellent in molding processability. Therefore, various types of molding methods such as injection molding, extrusion molding, blow molding, etc. Widely used as industrial materials, food packaging containers, miscellaneous goods and the like. Moreover, it is used also for optical members, such as a light-guide plate and a diffuser plate, as an application using transparency.

スチレン系樹脂の特徴として透明性が挙げられるが、例えば、透明性がとりわけ重要な光学用途などでは、必ずしも要求を満足しない場合もあるため、様々な手法で透明性の改善がなされている。スチレン系樹脂の透明性改善と黄変防止に関する方法として、酸化防止剤を配合する方法や、スチレン系樹脂中の特定の成分を制御するなどの方法が知られている。   Transparency can be mentioned as a characteristic of styrene-based resins. For example, in optical applications where transparency is particularly important, there are cases where the requirements are not always satisfied, and thus the transparency is improved by various methods. Known methods for improving the transparency of styrene-based resins and preventing yellowing include a method of adding an antioxidant and a method of controlling specific components in the styrene-based resin.

特開2012−149156JP2012-149156 特開2014−173034JP 2014-173034 A

本発明は、従来の熱可塑性樹脂からなる成形品に比べ、更に光学特性が改善された成形品およびその成形品を得るための製造方法を提供することを課題とする。   An object of the present invention is to provide a molded product having further improved optical characteristics as compared with a molded product made of a conventional thermoplastic resin, and a manufacturing method for obtaining the molded product.

本発明者らは上記目的を達成するため、検討を進めたところ、熱可塑性樹脂からなる成形品に光照射をする事で、従来に比べ、光学特性を改善できる事を見出した。本発明はかかる知見に基づくもので、以下の要旨を有する。
1.熱可塑性樹脂からなる成形品に主として波長340nm〜575nmの成分を含む光を照射し、光照射成形品を得る製造方法、およびその製造方法により得られた光照射成形品。
2.好ましくは、上記1項記載の光が、主として波長370〜510nmの成分を含む光である製造方法、およびその製造方法により得られた光照射成形品。
3.上記1項または2項記載の光の光源がLEDである製造方法、その製造方法により得られた光照射成形品。
4.上記1項〜3項のいずれか1項に記載の熱可塑性樹脂がスチレン系樹脂である光照射成形品。
5.上記4項記載のスチレン系樹脂がスチレン系単量体と(メタ)アクリル酸系単量体とを共重合して得られるスチレン−(メタ)アクリル酸共重合樹脂である光照射成形品。
6.上記4項記載のスチレン系樹脂が、スチレン系単量体と(メタ)アクリル酸エステル系単量体とを共重合して得られるスチレン−(メタ)アクリル酸エステル共重合樹脂である光照射成形品。
7.上記1項〜6項のいずれか1項に記載の熱可塑性樹脂が、熱可塑性樹脂と酸化防止剤とを含む熱可塑性樹脂組成物である光照射成形品。
8.上記1項〜7項のいずれか1項に記載の光照射成形品を利用した光学用部材。
9.上記1項〜8項のいずれか1項に記載の光照射成形品を利用した導光板。
As a result of studies to achieve the above object, the present inventors have found that optical properties can be improved by irradiating a molded product made of a thermoplastic resin with light. The present invention is based on such knowledge and has the following gist.
1. A production method for obtaining a light-irradiated molded article by irradiating a molded article comprising a thermoplastic resin with light mainly containing a component having a wavelength of 340 nm to 575 nm, and a light-irradiated molded article obtained by the production method.
2. Preferably, the light described in the above item 1 is light mainly containing a component having a wavelength of 370 to 510 nm, and a light irradiation molded product obtained by the manufacturing method.
3. 3. A production method in which the light source of light described in 1 or 2 is an LED, and a light irradiation molded product obtained by the production method.
4). The light irradiation molded article whose thermoplastic resin of any one of said 1-3 is a styrene resin.
5. 5. A light irradiation molded article, which is a styrene- (meth) acrylic acid copolymer resin obtained by copolymerizing the styrene resin according to the above item 4 with a styrene monomer and a (meth) acrylic acid monomer.
6). 5. Light irradiation molding in which the styrene resin described in the above item 4 is a styrene- (meth) acrylate copolymer resin obtained by copolymerizing a styrene monomer and a (meth) acrylate monomer. Goods.
7). The light irradiation molded article whose thermoplastic resin of any one of said 1-6 is a thermoplastic resin composition containing a thermoplastic resin and antioxidant.
8). The optical member using the light irradiation molded article of any one of said 1-7.
9. The light-guide plate using the light irradiation molded article of any one of said 1-8.

本発明者らは、光照射をすることで熱可塑性樹脂からなる成形品の光学特性が改善すること、更に改善のためには、特定の波長範囲の光が有効である事を見出した。このような効果が得られる原因は必ずしも明らかになっていないが、成形品に含まれる有色の成分が起因しており、光照射によってそれが無色の成分へ変化するためと推察される。更に、この反応が特定の波長範囲の光によって引き起こされているためと推察される。   The present inventors have found that the optical properties of a molded article made of a thermoplastic resin are improved by light irradiation, and that light in a specific wavelength range is effective for further improvement. The reason why such an effect is obtained is not necessarily clarified, but it is presumed that the colored component contained in the molded product is attributed to a colorless component due to light irradiation. Furthermore, it is assumed that this reaction is caused by light in a specific wavelength range.

本発明の製造方法は熱可塑性樹脂に等しく利用でき、光学特性を改善するための手法として採用できる。また、本発明の光照射成形品は、従来に比べ光学特性が改善されたものであるため、色相などの光学特性が重要な用途や、透明性がとりわけ重要な光学用途において、好適に用いることができる。   The production method of the present invention is equally applicable to thermoplastic resins and can be employed as a technique for improving optical characteristics. In addition, since the light irradiation molded product of the present invention has improved optical characteristics as compared with the conventional ones, it should be used suitably in applications where optical properties such as hue are important and optical applications where transparency is particularly important. Can do.

<<成形品に照射する光>>
本発明の光照射成形品とは、成形品に光を照射したものを言う。本発明において、成形品に照射する光は主として波長340nm〜575nmの成分を含む光である。340nm以下では、成形品を構成する樹脂やその他の種々の成分の劣化により、光学特性や機械特性等の物性が悪化する傾向にあるが、340nm以上とすることでこれを抑制でき、また、光学特性の改善効果が高くなる。また、575nm以下の光が、光学特性の改善に対して効果がある。好ましくは、370〜510nmであり、この波長領域では、更に高い効果が得られることが実験的に確認された。
<< Light to irradiate molded products >>
The light irradiation molded product of the present invention refers to a product irradiated with light. In the present invention, the light irradiated to the molded product is mainly light containing a component having a wavelength of 340 nm to 575 nm. If it is 340 nm or less, physical properties such as optical properties and mechanical properties tend to deteriorate due to deterioration of the resin constituting the molded product and other various components, but this can be suppressed by setting it to 340 nm or more. The effect of improving the characteristics is increased. In addition, light of 575 nm or less is effective for improving optical characteristics. Preferably, it is 370 to 510 nm, and it has been experimentally confirmed that a higher effect can be obtained in this wavelength region.

<<光源>>
本発明に用いる光源には特に制限はないが、光学特性改善に寄与する光の波長は340nm〜575nmであるため、エネルギーの利用効率の観点から、全波長領域における光エネルギーに対し、該波長領域の光エネルギーの割合が高い方が、より高効率の光源となる。なお、本願において「主として」とは、本願で定める波長領域の光エネルギーが、全波長領域の光エネルギーに対し50%以上である事を意味する。このような光として、例えばLED(無機ELを利用した無機LEDや、有機ELを利用したO−LEDも含む)は、特定の波長範囲の光を選択的に利用できるため、本願の要求を満たす光源として特に効果的である。それ以外にも種々の光源を利用可能である。
本願で定める波長領域の光エネルギーは全波長領域の光エネルギーに対し、例えば、60%、70%、80%、90%、100%と割合を高めることで、エネルギーの浪費を抑制できるため、ここで示した数値以上とすることで、より好ましい光源となる。
<< light source >>
The light source used in the present invention is not particularly limited, but the wavelength of light contributing to the improvement of optical characteristics is 340 nm to 575 nm. Therefore, from the viewpoint of energy utilization efficiency, the wavelength region is compared with the light energy in the entire wavelength region. The higher the light energy ratio, the higher the efficiency of the light source. In the present application, “mainly” means that the light energy in the wavelength region defined in the present application is 50% or more of the light energy in the entire wavelength region. As such light, for example, an LED (including an inorganic LED using an inorganic EL and an O-LED using an organic EL) can selectively use light in a specific wavelength range, and therefore satisfies the requirements of the present application. It is particularly effective as a light source. In addition, various light sources can be used.
The light energy in the wavelength region defined in the present application can be reduced by, for example, increasing the ratio of 60%, 70%, 80%, 90%, and 100% to the light energy in the entire wavelength region. It becomes a more preferable light source by setting it as the numerical value shown by.

また、各種光源に対しても、特定の波長の光を選択的に成形品に照射するような措置をとることで、擬似的に本願の要求を満たす光源とすることも可能である。そのような手法としては例えば、特定の波長をカットするフィルターを使用する方法や、分光して照射する方法などが挙げられる。光源に制限はないが、例えばLED以外にも、蛍光灯や太陽光、水銀灯、白熱電球、キセノンランプ、カーボンアーク等様々な光源に対して適用可能である。   In addition, various light sources can be made to be a light source that satisfies the requirements of the present application in a pseudo manner by taking measures to selectively irradiate the molded product with light having a specific wavelength. Examples of such a method include a method using a filter that cuts off a specific wavelength, a method of performing spectroscopic irradiation, and the like. Although there is no restriction | limiting in a light source, For example, besides LED, it is applicable with respect to various light sources, such as a fluorescent lamp, sunlight, a mercury lamp, an incandescent lamp, a xenon lamp, a carbon arc.

放射照度は、放射源から平面状の物体に照射された単位面積あたりの放射束の両を表す物理量であるが、本願では放射源は光源である。放射照度は任意に選択可能であるが、放射照度が高い方が、反応速度が速くなるため、短時間で色相を変化させることができる。放射照度は、光源の光の強度(電流、電圧や光変換効率によって異なる)や光源と成形品の距離によって変更可能である。   Irradiance is a physical quantity representing both the radiant flux per unit area irradiated on a planar object from a radiation source. In this application, the radiation source is a light source. The irradiance can be arbitrarily selected, but the higher the irradiance, the faster the reaction speed, so that the hue can be changed in a short time. The irradiance can be changed by the light intensity of the light source (which varies depending on the current, voltage, and light conversion efficiency) and the distance between the light source and the molded product.

光源と成形品の距離は任意に選択可能であるが、光源と成形品の距離が長くなると、光の拡散のため、光源から放たれる光を効率的に利用できない場合がある。距離が短い場合も、光源の出力によっては、光源の熱により成形品が変形や劣化を起こす場合がある。光源と成形品の距離は、成形品に光源を密着させる場合の0mmから、光源から放たれる光の影響がなくなる距離(光源の放射強度あるいは放射エネルギーや外部環境に依存する)までの中から選択できる。   The distance between the light source and the molded product can be arbitrarily selected. However, if the distance between the light source and the molded product is increased, the light emitted from the light source may not be efficiently used due to light diffusion. Even when the distance is short, depending on the output of the light source, the molded product may be deformed or deteriorated by the heat of the light source. The distance between the light source and the molded product is from 0 mm when the light source is in close contact with the molded product to a distance (depending on the radiant intensity or energy of the light source or the external environment) that eliminates the influence of the light emitted from the light source. You can choose.

成形品への光照射の方向は、成形品に対して任意の方向から照射することができ、限定されない。しかしながら、成形品に対して充分な面積(あるいは体積)を照射できるような光源を使用する場合、光源から放たれる光が成形品内部を通る距離が短い方が、より短時間で成形品全体の色相を変化させることができるため、エネルギー消費の観点から、成形品の形状に適した照射方向を選択することが好ましい。例えば、本願実施例に記載するような板状の成形品(115×127×3mm)であれば、光源からの光が成形品の127mmや115mm部分を通過するような方向から照射するよりも、3mm部分を通過するような方向から照射することで、より短時間で色相を変化させることができるため、効率的である。   The direction of light irradiation to the molded product is not limited, and the molded product can be irradiated from any direction. However, when using a light source that can irradiate a sufficient area (or volume) to the molded product, the shorter the distance that the light emitted from the light source passes through the molded product, the shorter the entire molded product. From the viewpoint of energy consumption, it is preferable to select an irradiation direction suitable for the shape of the molded product. For example, if it is a plate-shaped molded product (115 × 127 × 3 mm) as described in the present application example, rather than irradiating from the direction in which the light from the light source passes through the 127 mm or 115 mm portion of the molded product, Since the hue can be changed in a shorter time by irradiating from a direction that passes through the 3 mm portion, it is efficient.

光照射する時間は、任意の時間とすることができる。成形品の色相は光照射をすることで、経時変化するが、ある時間T以降は色相が変化しない挙動となる。図1に光照射する事での色相値YIの変化の一例を示した。T以内で照射をやめると、色相が変化しなくなるまでの任意の色相とすることができ、T以降の照射は、T時点からの色相変化に対して実質的に効果がない。エネルギーの浪費になるため、T以内で光照射をやめる方が好ましい。Tは光エネルギー全体に対する波長340nm〜575nmまたは370〜510nmの成分の割合、放射照度、成形品と光源の距離、成形品への光照射方向、等の光照射の条件、また、樹脂の種類、添加剤等の含有成分の種類や量、等の成形品を構成する材料によっても変化する。 The light irradiation time can be any time. Hue of the molded article by the light irradiation, but change over time, after a certain time T s is the behavior hue is not changed. FIG. 1 shows an example of a change in the hue value YI due to light irradiation. When the irradiation is stopped within T s , the hue can be set to an arbitrary hue until the hue does not change, and irradiation after T s has substantially no effect on the hue change from the time point T s . To become a waste of energy, it is preferable to stop the irradiation within T s. T s is the ratio of the component having a wavelength of 340 nm to 575 nm or 370 to 510 nm with respect to the entire light energy, the irradiance, the distance between the molded product and the light source, the light irradiation direction to the molded product, the light irradiation conditions, and the type of resin. The type and amount of components such as additives vary depending on the material constituting the molded product.

Figure 2016108502
Figure 2016108502

光照射は、実質的に動かない成形品に対して実施できる他(回分式)、動いている成形品に対しても実施可能である(連続式)。成形品を継続して生産する設備、例えば、連続の押出成形設備や、ベルトコンベア等を利用して成形品を流すような設備の場合、光照射を途中で実施することで、光照射成形品を継続して得る事ができる。   The light irradiation can be performed on a molded product that does not move substantially (batch type), and can also be performed on a moving molded product (continuous type). In the case of equipment that continuously produces molded products, for example, continuous extrusion equipment or equipment that uses a belt conveyor, etc. Can be obtained continuously.

<<熱可塑性樹脂>>
本願発明に用いる成形品の材料としては、種々の熱可塑性樹脂が利用でき、限定されない。熱可塑性樹脂としては、例えば、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂などが挙げられる。
熱可塑性樹脂組成物は、熱可塑性樹脂と、各種添加剤とで構成されていることが好ましく、熱可塑性樹脂組成物100質量%中の熱可塑性樹脂の割合は、例えば90〜99.9質量%であり、95〜99.9質量%が好ましい。熱可塑性樹脂の割合は、具体的には例えば、90、91、92、93、94、95、96、97、98、99、99.5、99.9質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<< Thermoplastic resin >>
As the material of the molded product used in the present invention, various thermoplastic resins can be used and are not limited. Examples of the thermoplastic resin include an olefin resin, a styrene resin, an acrylic resin, a cyclic polyolefin resin, and a polycarbonate resin.
The thermoplastic resin composition is preferably composed of a thermoplastic resin and various additives, and the ratio of the thermoplastic resin in 100% by mass of the thermoplastic resin composition is, for example, 90 to 99.9% by mass. And 95-99.9 mass% is preferable. Specifically, the ratio of the thermoplastic resin is, for example, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.5, 99.9% by mass, and the numerical values exemplified here It may be within the range between any two.

<<スチレン系樹脂>>
スチレン系樹脂は、スチレン系単量体を重合して得ることができる樹脂である。スチレン系単量体とは、芳香族ビニル系モノマーであるが、例えば、スチレン、α−メチルスチレン、o−メチルスチレン、p−メチルスチレン等が挙げられ、これらの単独または2種以上の混合物であり、好ましくはスチレンである。また、本発明の特徴を損ねない範囲でスチレン系単量体と共重合してもよく、アクリル酸、メタクリル酸等のアクリル酸モノマー、アクリロニトリル、メタクリロニトリル等のシアン化ビニルモノマー、アクリル酸ブチル、アクリル酸エチル、アクリル酸メチル、メタクリル酸メチル等のアクリル系モノマーや無水マレイン酸、フマル酸等のα,β−エチレン不飽和カルボン酸類、フェニルマレイミド、シクロヘキシルマレイミド等のイミド系モノマー類が挙げられる。
スチレン系樹脂組成物は、スチレン系樹脂と、各種添加剤とで構成されていることが好ましく、スチレン系樹脂組成物100質量%中のスチレン系樹脂の割合は、例えば90〜99.9質量%であり、95〜99.9質量%が好ましい。スチレン系樹脂の割合は、具体的には例えば、90、91、92、93、94、95、96、97、98、99、99.5、99.9質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<< Styrenic resin >>
The styrene resin is a resin that can be obtained by polymerizing a styrene monomer. The styrene monomer is an aromatic vinyl monomer, and examples thereof include styrene, α-methyl styrene, o-methyl styrene, p-methyl styrene, and the like. These may be used alone or as a mixture of two or more thereof. Yes, preferably styrene. Further, it may be copolymerized with a styrene monomer within the range not impairing the characteristics of the present invention, acrylic acid monomers such as acrylic acid and methacrylic acid, vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, and butyl acrylate. , Acrylic monomers such as ethyl acrylate, methyl acrylate, and methyl methacrylate; and α, β-ethylenically unsaturated carboxylic acids such as maleic anhydride and fumaric acid; and imide monomers such as phenyl maleimide and cyclohexyl maleimide. .
The styrene resin composition is preferably composed of a styrene resin and various additives, and the ratio of the styrene resin in 100% by mass of the styrene resin composition is, for example, 90 to 99.9% by mass. And 95-99.9 mass% is preferable. Specifically, the ratio of the styrene resin is, for example, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.5, 99.9% by mass, and the numerical values exemplified here It may be within the range between any two.

スチレン系樹脂が、スチレン系単量体と(メタ)アクリル酸系単量体とを共重合して得られるスチレン−(メタ)アクリル酸共重合樹脂である場合、スチレン系樹脂のスチレン系単量体単位の含有量が90.0〜99.9質量%、(メタ)アクリル酸系単量体単位の含有量が0.1〜15.0質量%であることが好ましい。ただし、スチレン系単量体単位と(メタ)アクリル酸単位の含有量の合計を100質量%とする。(メタ)アクリル酸系単量体とは、アクリル酸、メタクリル酸等であり、メタクリル酸が好ましい。なお、スチレン系単量体単位とは、スチレン−(メタ)アクリル酸共重合樹脂を構成する分子構造の中で、スチレン系単量体に由来する構造単位のことであり、(メタ)アクリル酸系単量体単位とは、(メタ)アクリル酸系単量体に由来する構造単位のことである。 When the styrene resin is a styrene- (meth) acrylic acid copolymer resin obtained by copolymerizing a styrene monomer and a (meth) acrylic acid monomer, the styrene resin of the styrene resin The body unit content is preferably 90.0 to 99.9% by mass, and the (meth) acrylic acid monomer unit content is preferably 0.1 to 15.0% by mass. However, the total content of styrene monomer units and (meth) acrylic acid units is 100% by mass. The (meth) acrylic acid monomer is acrylic acid, methacrylic acid or the like, and methacrylic acid is preferable. The styrene monomer unit is a structural unit derived from a styrene monomer in the molecular structure constituting the styrene- (meth) acrylic acid copolymer resin, and (meth) acrylic acid. A monomer unit is a structural unit derived from a (meth) acrylic acid monomer.

スチレン−(メタ)アクリル酸共重合樹脂中の(メタ)アクリル酸系単量体単位の含有量の測定は室温で実施する。スチレン−(メタ)アクリル酸共重合樹脂0.5gを秤量し、トルエン/エタノール=8/2(体積比)の混合溶液に溶解後、水酸化カリウム0.1mol/Lエタノール溶液にて中和滴定を行い、終点を検出し、水酸化カリウムエタノール溶液の使用量より、(メタ)アクリル酸単位の質量基準の含有量を算出する。なお、電位差自動滴定装置を使用することができ、京都電子工業株式会社製AT−510により測定を行うことができる。スチレン−(メタ)アクリル酸共重合樹脂中の(メタ)アクリル酸系単量体単位の含有量は、スチレン−(メタ)アクリル酸共重合樹脂の重合時における原料のスチレン系単量体と(メタ)アクリル酸系単量体との組成比によって調整することができるが、相溶する範囲において(メタ)アクリル酸系単量体単位を含有するスチレン−(メタ)アクリル酸共重合樹脂と(メタ)アクリル酸系単量体単位を含有しないスチレン系樹脂とをブレンドして調整することもできる。   The content of the (meth) acrylic acid monomer unit in the styrene- (meth) acrylic acid copolymer resin is measured at room temperature. 0.5 g of styrene- (meth) acrylic acid copolymer resin is weighed and dissolved in a mixed solution of toluene / ethanol = 8/2 (volume ratio), and then neutralized with a 0.1 mol / L ethanol solution of potassium hydroxide. The end point is detected, and the mass-based content of (meth) acrylic acid units is calculated from the amount of potassium hydroxide ethanol solution used. In addition, a potentiometric automatic titration apparatus can be used and it can measure by AT-510 by Kyoto Electronics Industry Co., Ltd. The content of the (meth) acrylic acid monomer unit in the styrene- (meth) acrylic acid copolymer resin is the same as that of the raw material styrene monomer at the time of polymerization of the styrene- (meth) acrylic acid copolymer resin ( It can be adjusted by the composition ratio with the (meth) acrylic acid monomer, but within a compatible range, a styrene- (meth) acrylic acid copolymer resin containing a (meth) acrylic acid monomer unit and ( It can also be adjusted by blending with a styrene resin not containing a (meth) acrylic acid monomer unit.

スチレン系樹脂が、スチレン系単量体と(メタ)アクリル酸エステル系単量体とを共重合して得られるスチレン−(メタ)アクリル酸エステル共重合樹脂である場合、スチレン系樹脂のスチレン系単量体単位の含有量が40.0〜99.0質量%、(メタ)アクリル酸エステル系単量体単位の含有量が1.0〜60.0質量%であることが好ましい。ただし、スチレン系単量体単位と(メタ)アクリル酸エステル系単量体単位の含有量の合計を100質量%とする。(メタ)アクリル酸エステル系単量体とは、メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸エステル、アクリル酸メチル、アクリル酸エチル等のアクリル酸エステル等である。なお、スチレン系単量体単位とは、スチレン−(メタ)アクリル酸エステル共重合樹脂を構成する分子構造の中で、スチレン系単量体に由来する構造単位のことであり、(メタ)アクリル酸エステル系単量体単位とは、(メタ)アクリル酸エステル系単量体に由来する構造単位のことである。   When the styrene resin is a styrene- (meth) acrylate copolymer resin obtained by copolymerizing a styrene monomer and a (meth) acrylate monomer, the styrene resin of the styrene resin The monomer unit content is preferably 40.0 to 99.0% by mass, and the (meth) acrylic acid ester monomer unit content is preferably 1.0 to 60.0% by mass. However, the total content of the styrene monomer unit and the (meth) acrylate monomer unit is 100% by mass. The (meth) acrylic acid ester monomer is a methacrylic acid ester such as methyl methacrylate or ethyl methacrylate, or an acrylic acid ester such as methyl acrylate or ethyl acrylate. The styrene monomer unit is a structural unit derived from a styrene monomer in the molecular structure constituting the styrene- (meth) acrylic acid ester copolymer resin, and is a (meth) acrylic. An acid ester monomer unit is a structural unit derived from a (meth) acrylic acid ester monomer.

スチレン−(メタ)アクリル酸エステル共重合樹脂中の(メタ)アクリル酸エステル系単量体単位の含有量は熱分解ガスクロマトグラフィーで以下の条件にて測定できる。
熱分解炉:PYR−2A(株式会社島津製作所製)
熱分解炉温度設定:525℃
ガスクロマトグラフ:GC−14A(株式会社島津製作所製)
カラム:ガラス製3mm径×3m
充填剤:FFAP Chromsorb WAW 10%
インジェクション、ディテクター温度:250℃
カラム温度:120℃
キャリアーガス:窒素
The content of the (meth) acrylate monomer unit in the styrene- (meth) acrylate copolymer resin can be measured by pyrolysis gas chromatography under the following conditions.
Pyrolysis furnace: PYR-2A (manufactured by Shimadzu Corporation)
Pyrolysis furnace temperature setting: 525 ° C
Gas chromatograph: GC-14A (manufactured by Shimadzu Corporation)
Column: Glass 3mm diameter x 3m
Filler: FFAP Chromsorb WAW 10%
Injection, detector temperature: 250 ° C
Column temperature: 120 ° C
Carrier gas: Nitrogen

スチレン系樹脂の重合方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等公知のスチレン重合方法が挙げられる。品質面や生産性の面では、塊状重合法、溶液重合法が好ましく、連続重合であることが好ましい。溶媒として例えばベンゼン、トルエン、エチルベンゼン及びキシレン等のアルキルベンゼン類やアセトンやメチルエチルケトン等のケトン類、ヘキサンやシクロヘキサン等の脂肪族炭化水素等が使用できる。   Examples of the polymerization method of the styrene resin include known styrene polymerization methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. In terms of quality and productivity, bulk polymerization and solution polymerization are preferable, and continuous polymerization is preferable. Examples of the solvent include alkylbenzenes such as benzene, toluene, ethylbenzene and xylene, ketones such as acetone and methyl ethyl ketone, and aliphatic hydrocarbons such as hexane and cyclohexane.

スチレン系樹脂の重合時に、必要に応じて重合開始剤、連鎖移動剤を使用することができる。重合開始剤としては、ラジカル重合開始剤が好ましく、公知慣用の例えば、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、2,2−ジ(t−ブチルパーオキシ)ブタン、2,2−ジ(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、1,1−ジ(t−アミルパーオキシ)シクロヘキサン等のパーオキシケタール類、クメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド等のハイドロパーオキサイド類、t−ブチルパーオキシアセテート、t−アミルパーオキシイソノナノエート等のアルキルパーオキサイド類、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、ジ−t−ヘキシルパーオキサイド等のジアルキルパーオキサイド類、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシイソプロピルモノカーボネート等のパーオキシエステル類、t−ブチルパーオキシイソプロピルカーボネート、ポリエーテルテトラキス(t-ブチルパーオキシカーボネート)等のパーオキシカーボネート類、N,N’−アゾビス(シクロヘキサン−1−カルボニトリル)、N,N’−アゾビス(2−メチルブチロニトリル)、N,N’−アゾビス(2,4−ジメチルバレロニトリル)、N,N’−アゾビス[2−(ヒドロキシメチル)プロピオニトリル]等が挙げられ、これらの1種あるいは2種以上を組み合わせて使用することができる。連鎖移動剤としては、脂肪族メルカプタン、芳香族メルカプタン、ペンタフェニルエタン、α−メチルスチレンダイマー及びテルピノーレン等が挙げられる。   A polymerization initiator and a chain transfer agent can be used as needed during the polymerization of the styrene resin. As the polymerization initiator, a radical polymerization initiator is preferable. For example, 1,1-di (t-butylperoxy) cyclohexane, 2,2-di (t-butylperoxy) butane, 2,2- Peroxyketals such as di (4,4-di-t-butylperoxycyclohexyl) propane, 1,1-di (t-amylperoxy) cyclohexane, cumene hydroperoxide, t-butyl hydroperoxide, etc. Alkyl peroxides such as hydroperoxides, t-butylperoxyacetate, t-amylperoxyisononanoate, t-butylcumyl peroxide, di-t-butyl peroxide, dicumyl peroxide, di-t -Dialkyl peroxides such as hexyl peroxide, t-butylperoxyacetate Peroxyesters such as t-butyl peroxybenzoate and t-butylperoxyisopropyl monocarbonate, peroxycarbonates such as t-butyl peroxyisopropyl carbonate and polyether tetrakis (t-butyl peroxycarbonate) N, N′-azobis (cyclohexane-1-carbonitrile), N, N′-azobis (2-methylbutyronitrile), N, N′-azobis (2,4-dimethylvaleronitrile), N, N '-Azobis [2- (hydroxymethyl) propionitrile] and the like can be mentioned, and these can be used alone or in combination. Examples of chain transfer agents include aliphatic mercaptans, aromatic mercaptans, pentaphenylethane, α-methylstyrene dimer, terpinolene, and the like.

連続重合の場合、まず重合工程にて公知の完全混合槽型攪拌槽や塔型反応器等を用い、目標の分子量、分子量分布、反応転化率となるよう、重合温度調整等により重合反応が制御される。重合工程を出た重合体を含む重合溶液は、脱揮工程に移送され、未反応の単量体及び重合溶媒が除去される。脱揮工程は加熱器付きの真空脱揮槽やベント付き脱揮押出機などで構成される。脱揮工程を出た溶融状態の重合体は造粒工程へ移送される。造粒工程では、多孔ダイよりストランド状に溶融樹脂を押出し、コールドカット方式や空中ホットカット方式、水中ホットカット方式にてペレット形状に加工される。   In the case of continuous polymerization, the polymerization reaction is first controlled by adjusting the polymerization temperature to achieve the target molecular weight, molecular weight distribution, and reaction conversion rate using a well-known complete mixing tank type stirring tank or tower reactor in the polymerization process. Is done. The polymerization solution containing the polymer exiting the polymerization step is transferred to the devolatilization step, and unreacted monomers and polymerization solvent are removed. The devolatilization process includes a vacuum devolatilization tank with a heater, a vented devolatilization extruder, and the like. The polymer in the molten state that has exited the devolatilization step is transferred to the granulation step. In the granulation step, the molten resin is extruded in a strand form from a porous die and processed into a pellet shape by a cold cut method, an air hot cut method, or an underwater hot cut method.

本発明のスチレン系樹脂の重量平均分子量は特に制限はないが、15万〜70万であると、成形品としての特性や成形性が良好となる。15万未満では成形品の強度が不十分となり、70万を超えると成形性が著しく低下する。また、18万〜50万であることが好ましい。スチレン系樹脂の重量平均分子量は、重合工程の反応温度、滞留時間、重合開始剤の種類及び添加量、連鎖移動剤の種類及び添加量、重合時に使用する溶媒の種類及び量等によって制御することができる。
重量平均分子量(Mw)及びZ平均分子量(Mz)、数平均分子量(Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)を用いて、次の条件で測定した。
GPC機種:昭和電工株式会社製Shodex GPC−101
カラム:ポリマーラボラトリーズ社製 PLgel 10μm MIXED−B
移動相:テトラヒドロフラン
試料濃度:0.2質量%
温度:オーブン40℃、注入口35℃、検出器35℃
検出器:示差屈折計
本発明の分子量は単分散ポリスチレンの溶出曲線より各溶出時間における分子量を算出し、ポリスチレン換算の分子量として算出したものである。
The weight average molecular weight of the styrene-based resin of the present invention is not particularly limited, but when it is 150,000 to 700,000, the properties and moldability as a molded product are improved. If it is less than 150,000, the strength of the molded product becomes insufficient, and if it exceeds 700,000, the moldability is remarkably lowered. Moreover, it is preferable that it is 180,000-500,000. The weight average molecular weight of the styrenic resin should be controlled by the reaction temperature of the polymerization process, the residence time, the type and amount of polymerization initiator, the type and amount of chain transfer agent, the type and amount of solvent used during polymerization, etc. Can do.
The weight average molecular weight (Mw), the Z average molecular weight (Mz), and the number average molecular weight (Mn) were measured using gel permeation chromatography (GPC) under the following conditions.
GPC model: Shodex GPC-101 manufactured by Showa Denko KK
Column: Polymer Laboratories PLgel 10 μm MIXED-B
Mobile phase: Tetrahydrofuran Sample concentration: 0.2% by mass
Temperature: 40 ° C oven, 35 ° C inlet, 35 ° C detector
Detector: Differential refractometer The molecular weight of the present invention is calculated as the molecular weight in terms of polystyrene by calculating the molecular weight at each elution time from the elution curve of monodisperse polystyrene.

<<成形品>>
本願記載の成形品の成形方法に特に制限はないが、例えば射出成形、押出成形、ブロー成形、圧縮成形などの目的に応じた各種成形方法で成形品を得ることができる。成形品の形状は目的に応じた形状とすることができ、限定されるものではない。例えば板状成形品であれば、導光板として用いることができる。導光板とする方法として、板状成形品の背面(光を出射する面の反対側)にドットパターンなどの反射パターンを設けることが知られている。樹脂板から導光板に加工する際、光の入射面あるいは樹脂板の端面全面を研磨処理して、鏡面とすることが好ましい。また、出射光の均一性を高めるために、板状成形品の表面(光が出射される面)にプリズムパターンを設けることができる。板状成形品の表面あるいは背面のパターンは、板状成形品の成形時に形成させることができ、例えば射出成形では金型形状、押出成形ではロール転写などによって、パターン形成させることができる。
<< Molded product >>
Although there is no restriction | limiting in particular in the shaping | molding method of the molded article described in this application, For example, a molded article can be obtained with various shaping | molding methods according to the objectives, such as injection molding, extrusion molding, blow molding, and compression molding. The shape of the molded product can be a shape according to the purpose, and is not limited. For example, if it is a plate-shaped molded article, it can be used as a light guide plate. As a method for forming a light guide plate, it is known to provide a reflection pattern such as a dot pattern on the back surface of the plate-shaped molded product (the side opposite to the light emitting surface). When processing from the resin plate to the light guide plate, it is preferable to polish the light incident surface or the entire end surface of the resin plate to make a mirror surface. In addition, in order to improve the uniformity of the emitted light, a prism pattern can be provided on the surface (surface from which light is emitted) of the plate-shaped molded product. The pattern on the front surface or the back surface of the plate-shaped molded product can be formed at the time of molding the plate-shaped molded product. For example, the pattern can be formed by a mold shape in injection molding or roll transfer in extrusion molding.

<<添加剤・酸化防止剤>>
本願に示す成形品には、滑剤や酸化防止剤などの各種添加剤が含まれていても良い。例えば、ミネラルオイル、ステアリン酸、エチレンビスステアリン酸アミド等の内部潤滑剤やヒンダードフェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、ラクトン系酸化防止剤、ヒンダードアミン系安定剤、紫外線吸収剤、帯電防止剤等の添加剤が挙げられる。また、外部潤滑剤としては、エチレンビスステアリン酸アミドが好適であり、含有量としては樹脂組成物中に30〜200ppmであることが好ましい。
<< Additives / Antioxidants >>
The molded article shown in the present application may contain various additives such as a lubricant and an antioxidant. For example, internal lubricants such as mineral oil, stearic acid, ethylenebisstearic acid amide, hindered phenol antioxidants, phosphorus antioxidants, sulfur antioxidants, lactone antioxidants, hindered amine stabilizers, Examples thereof include additives such as ultraviolet absorbers and antistatic agents. As the external lubricant, ethylene bis stearamide is preferable, and the content is preferably 30 to 200 ppm in the resin composition.

特に、酸化防止剤を含む成形品においては、成形品中の酸化防止剤由来の着色成分が光照射によって無色の成分に変化したと推測される結果が実験的に確認されたため、本願の製造方法、あるいは用いる成形品として効果的である。   In particular, in a molded article containing an antioxidant, the production method of the present application was confirmed because the result of the assumption that the coloring component derived from the antioxidant in the molded article was changed to a colorless component by light irradiation was experimentally confirmed. Or as a molded product to be used.

リン系酸化防止剤とは、三価のリン化合物である亜リン酸エステル類であり、種々の物が使用できる。リン系酸化防止剤は、例えば、トリス(2,4−ジ−tert−ブチルフェニル)フォスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチル−1−フェニルオキシ)(2−エチルヘキシルオキシ)ホスホラス、ビス(2,4−ジクミルフェニル)ペンタエリスリトールジホスファイト、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、3,9−ビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)−2,4,8,10−テトラオキサ−3,9−ジホスファスピロ〔5.5〕ウンデカン、サイクリックネオペンタンテトライルビス(2,4−ジ−t−ブチルフェニルフォスファイト)、ジステアリルペンタエリスリトールジフォスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス−[2−メチル−4,6−ビス−(1,1−ジメチルエチル)フェニル]エチルフォスファイト、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、テトラキス(2,4−ジ−tert−ブチル−5−メチルフェニル)−4,4’−ビフェニレンジホスホナイト等が挙げられる。リン系酸化防止剤としては、耐加水分解性に優れたものが好ましく、トリス(2,4−ジ−tert−ブチルフェニル)フォスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチル−1−フェニルオキシ)(2−エチルヘキシルオキシ)ホスホラス、ビス(2,4−ジクミルフェニル)ペンタエリスリトールジホスファイト、3,9−ビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)−2,4,8,10−テトラオキサ−3,9−ジホスファスピロ〔5.5〕ウンデカンであることが好ましい。特に好ましくは、トリス(2,4−ジ−tert−ブチルフェニル)フォスファイトである。リン系酸化防止剤は、単独でもよいが二種以上を併用してもよい。   Phosphorous antioxidants are phosphites that are trivalent phosphorus compounds, and various substances can be used. Phosphorus antioxidants include, for example, tris (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butyl-1-phenyloxy) (2- Ethylhexyloxy) phosphorus, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, 4,4′-biphenylenediphosphinic acid tetrakis (2,4-di-tert-butylphenyl), 3,9-bis (2 , 6-Di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, cyclic neopentanetetraylbis (2,4-di -T-butylphenyl phosphite), distearyl pentaerythritol diphosphite, bis (nonylphenyl) Intererythritol diphosphite, bis- [2-methyl-4,6-bis- (1,1-dimethylethyl) phenyl] ethyl phosphite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10 -Oxide, tetrakis (2,4-di-tert-butyl-5-methylphenyl) -4,4'-biphenylenediphosphonite and the like. As the phosphorus-based antioxidant, those excellent in hydrolysis resistance are preferred, such as tris (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-). Butyl-1-phenyloxy) (2-ethylhexyloxy) phosphorus, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, 3,9-bis (2,6-di-tert-butyl-4-methyl) Phenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane is preferred. Particularly preferred is tris (2,4-di-tert-butylphenyl) phosphite. Phosphorous antioxidants may be used alone or in combination of two or more.

ヒンダードフェノール系酸化防止剤とは、基本骨格にフェノール性水酸基を持つ酸化防止剤であり、種々の物が使用できる。ヒンダードフェノール系酸化防止剤は、例えば、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、3,9−ビス[2−〔3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ〕−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、エチレンビス(オキシエチレン)ビス〔3−(5−tert−ブチル−4−ヒドロキシ−m−トリル)プロピオネート〕、4,6−ビス(オクチルチオメチル)−o−クレゾール、4,6−ビス〔(ドデシルチオ)メチル〕−o−クレゾール、2,4−ジメチル−6−(1−メチルペンタデシル)フェノール、テトラキス〔メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕メタン、DL−α−トコフェロール、2−t−ブチル−6−(3−t−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、2−〔1−(2−ヒドロキシ−3,5−ジ−t−ペンチルフェニル)エチル〕−4,6−ジ−t−ペンチルフェニルアクリレート、4,4’−チオビス(6−t−ブチル−3−メチルフェノール)、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、ビス−[3,3−ビス−(4’−ヒドロキシ−3’−tert―ブチルフェニル)−ブタン酸]−グリコールエステル等が挙げられる。好ましくは、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、3,9−ビス]2−〔3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ〕−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、エチレンビス(オキシエチレン)ビス〔3−(5−tert−ブチル−4−ヒドロキシ−m−トリル)プロピオネート〕である。ヒンダードフェノール系酸化防止剤は、単独でもよいが二種以上を併用してもよい。   The hindered phenol-based antioxidant is an antioxidant having a phenolic hydroxyl group in the basic skeleton, and various products can be used. Examples of the hindered phenol antioxidant include octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 3,9-bis [2- [3- (3-tert-butyl). -4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate], 4,6-bis (octylthiomethyl) -o-cresol, 4,6-bis [(dodecylthio) methyl] -o-cresol, 2, , 4-Dimethyl-6- (1-methylpentadecyl) phenol, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphene) L) propionate] methane, DL-α-tocopherol, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2- [1- (2 -Hydroxy-3,5-di-t-pentylphenyl) ethyl] -4,6-di-t-pentylphenyl acrylate, 4,4'-thiobis (6-t-butyl-3-methylphenol), 1, 1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), bis- [3,3-bis- (4′-hydroxy-3′-tert-butylphenyl) -butanoic acid] -glycol ester and the like. Preferably, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 3,9-bis] 2- [3- (3-tert-butyl-4-hydroxy-5-methyl) Phenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4 -Hydroxy-m-tolyl) propionate]. Hindered phenolic antioxidants may be used alone or in combination of two or more.

各種添加剤の添加方法は特に限定されないが、例えば、スチレン系樹脂の重合工程、脱揮工程、造粒工程で添加混合する方法や成形加工時の押出機や射出成形機などで添加混合する方法、これらの添加剤を高濃度に調整した樹脂組成物を無添加あるいは濃度の薄いスチレン系樹脂によって目的の含有量に希釈混合する方法などが挙げられる。   The method for adding various additives is not particularly limited. For example, a method of adding and mixing in the polymerization step, devolatilization step, and granulating step of a styrene resin, or a method of adding and mixing in an extruder or an injection molding machine at the time of molding. And a method of diluting and mixing a resin composition prepared by adjusting these additives to a high concentration to a target content with a styrene-based resin having no addition or a low concentration.

紫外線吸収剤は、紫外線による劣化や着色を抑制する機能を有するものであって、例えば、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、ベンゾエート系、サリシレート系、シアノアクリレート系、蓚酸アニリド系、マロン酸エステル系、ホルムアミジン系などの紫外線吸収剤が挙げられる。これらは、単独又は2種以上組み合わせて用いることができ、ヒンダートアミン等の光安定剤を併用してもよい。   The ultraviolet absorber has a function of suppressing deterioration and coloring caused by ultraviolet rays. UV absorbers such as those of formaldehyde and formamidine. These can be used alone or in combination of two or more thereof, and a light stabilizer such as hindered amine may be used in combination.

本発明の光照射成形品は従来の成形品に比べ、優れた透明性のものであるため、雑貨等の用途以外にも、色相や透明性がとりわけ重要な光学用途などにも好適に使用できる。光学用部材として例えば、導光板や光拡散板、レンズ、カバーなどが挙げられる。なお、導光板や拡散板などは板状成形品のみならず、棒状や筒状等あらゆる形状の、広義の導光体、拡散体をいう。   Since the light irradiation molded product of the present invention is superior in transparency compared to conventional molded products, it can be suitably used for optical applications where hue and transparency are particularly important in addition to miscellaneous goods. . Examples of the optical member include a light guide plate, a light diffusion plate, a lens, and a cover. In addition, a light guide plate, a diffuser plate, and the like refer to not only plate-shaped molded products but also light guides and diffusers in a broad sense having various shapes such as a rod shape and a cylindrical shape.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples.

<<試験1>>
(スチレン系樹脂A−1〜A−3の製造)
完全混合型撹拌槽である第1反応器と第2反応器及び静的混合器付プラグフロー型反応器である第3反応器を直列に接続して重合工程を構成し、表1に示す条件によりスチレン系樹脂の製造を実施した。各反応器の容量は、第1反応器を39リットル、第2反応器を39リットル、第3反応器を16リットルとした。表1に記載の原料組成にて、原料溶液を作成し、第1反応器に原料溶液を表1に記載の流量にて連続的に供給した。重合開始剤は、第1反応器の入口で表1に記載の添加濃度(原料スチレン及びメタクリル酸、メタクリル酸メチルの合計量に対する質量基準の濃度)となるように原料溶液に添加し、均一混合した。表1に記載の重合開始剤は次の通り。
重合開始剤−1: 2,2−ジ(4,4−t−ブチルパーオキシシクロヘキシル)プロパン(日油株式会社製パーテトラAを使用した。)
重合開始剤−2: 1,1−ジ(t−ブチルパーオキシ)シクロヘキサン(日油株式会社製パーヘキサCを使用した。)
なお、第3反応器では、流れの方向に沿って温度勾配をつけ、中間部分、出口部分で表1の温度となるよう調整した。
続いて、第3反応器より連続的に取り出した重合体を含む溶液を直列に2段より構成される予熱器付き真空脱揮槽に導入し、表1に記載の樹脂温度となるよう予熱器の温度を調整し、表1に記載の圧力に調整することで、未反応スチレン及びエチルベンゼンを分離した後、多孔ダイよりストランド状に押し出しして、コールドカット方式にて、ストランドを冷却および切断しペレット化した。
表1に記載のPMAA含有量は、メタクリル酸単量体単位の含有量を表し、PMMA含有量はメタクリル酸メチル単量体単位の含有量を表す。
<< Test 1 >>
(Production of styrene resins A-1 to A-3)
The polymerization reactor is configured by connecting a first reactor, which is a complete mixing tank, a second reactor, and a third reactor, which is a plug flow reactor with a static mixer. The styrene resin was manufactured by the above. The capacity of each reactor was 39 liters for the first reactor, 39 liters for the second reactor, and 16 liters for the third reactor. A raw material solution was prepared with the raw material composition described in Table 1, and the raw material solution was continuously supplied to the first reactor at a flow rate described in Table 1. The polymerization initiator is added to the raw material solution at the inlet of the first reactor so as to have the addition concentration shown in Table 1 (concentration based on mass relative to the total amount of raw material styrene, methacrylic acid, and methyl methacrylate). did. The polymerization initiators listed in Table 1 are as follows.
Polymerization initiator-1: 2,2-di (4,4-t-butylperoxycyclohexyl) propane (Pertetra A manufactured by NOF Corporation was used.)
Polymerization initiator-2: 1,1-di (t-butylperoxy) cyclohexane (Perhexa C manufactured by NOF Corporation was used.)
In the third reactor, a temperature gradient was provided along the flow direction, and the temperature was adjusted so that the temperature shown in Table 1 was obtained at the intermediate part and the outlet part.
Subsequently, the solution containing the polymer continuously taken out from the third reactor was introduced into a vacuum devolatilization tank with a preheater constituted by two stages in series, and the preheater was adjusted to the resin temperature shown in Table 1. By adjusting the temperature and adjusting to the pressure shown in Table 1, unreacted styrene and ethylbenzene are separated and then extruded into a strand form from a perforated die, and the strand is cooled and cut by a cold cut method. Pelletized.
The PMAA content shown in Table 1 represents the content of methacrylic acid monomer units, and the PMMA content represents the content of methyl methacrylate monomer units.

<MFR>
スチレン系樹脂組成物のMFR(メルトマスフローレート)は、200℃、49N荷重の条件で、JIS K 7210に基づき測定した。
<MFR>
The MFR (melt mass flow rate) of the styrene resin composition was measured based on JIS K 7210 under the conditions of 200 ° C. and 49 N load.

<ビカット軟化温度>
ビカット軟化温度については、JIS K−7206により、昇温速度50℃/hr、試験荷重50Nで求めた。
<Vicat softening temperature>
The Vicat softening temperature was determined according to JIS K-7206 at a heating rate of 50 ° C / hr and a test load of 50N.

Figure 2016108502
Figure 2016108502

得られたペレットを用いて、シリンダー温度230℃、金型温度50℃にて射出成形を行い、127×127×3mm厚みの板状成形品を成形した。 Using the obtained pellets, injection molding was performed at a cylinder temperature of 230 ° C. and a mold temperature of 50 ° C. to form a plate-shaped molded article having a thickness of 127 × 127 × 3 mm.

樹脂A−4、A−5として、以下に示す市販品のPMMA、PC樹脂を使用した。また、樹脂A−4はシリンダー温度230℃、金型温度50℃にて射出成形を行い、樹脂A−5はシリンダー温度250℃、金型温度50℃にて射出成形を行い、127×127×3mm厚みの板状成形品を成形した。
樹脂名称A−4:三菱レイヨン株式会社製PMMA樹脂、VH5−000
樹脂名称A−5:三菱エンジニアリングプラスチック製PC樹脂、HL−4000
Commercially available PMMA and PC resins shown below were used as the resins A-4 and A-5. Resin A-4 is injection molded at a cylinder temperature of 230 ° C. and a mold temperature of 50 ° C., and resin A-5 is injection molded at a cylinder temperature of 250 ° C. and a mold temperature of 50 ° C., 127 × 127 ×. A plate-shaped molded product having a thickness of 3 mm was molded.
Resin name A-4: PMMA resin manufactured by Mitsubishi Rayon Co., Ltd., VH5-000
Resin name A-5: Mitsubishi engineering plastic PC resin, HL-4000

<色相評価>
得られた板状成形品からメガロテクニカ株式会社製ゲート加工機GCPB−500を用いて115×127×3mmに切削、研磨し、端面に鏡面を有する板状成形品を得た。得られた板状成形品について、日本分光株式会社製の紫外線可視分光光度計V−670を用いて、大きさ20×1.6mm、広がり角度0°の入射光において、光路長115mmでの波長350nm〜800nmの分光透過率を測定し、C光源における、視野2°でのYI値をJIS K7105に倣い算出した。得られた値が表2のYIである。また、表2に示す透過率とは、波長380nm〜780nmの平均透過率を表す。
ΔYIは、光を照射する前の成形品のYIと光を照射した後の成形品のYIの差を表す(式1)。
ΔYI=(光照射後の成形品のYI)−(光照射前の成形品のYI) (式1)
実施例1−1を例にとると、YI=3.1であり、照射する前のYIは比較例1−1のYI=3.5となるため、ΔYI=−0.4となる。ΔYIが負に大きい方が、色相改善効果が大きい。
<Hue evaluation>
The obtained plate-like molded product was cut and polished to 115 × 127 × 3 mm using a gate processing machine GCPB-500 manufactured by Megaro Technica Co., Ltd. to obtain a plate-shaped molded product having a mirror surface on the end face. About the obtained plate-shaped molded article, using an ultraviolet-visible spectrophotometer V-670 manufactured by JASCO Corporation, the incident light having a size of 20 × 1.6 mm and a spread angle of 0 ° has a wavelength at an optical path length of 115 mm. Spectral transmittances from 350 nm to 800 nm were measured, and the YI value at a visual field of 2 ° with a C light source was calculated according to JIS K7105. The obtained value is YI in Table 2. Moreover, the transmittance | permeability shown in Table 2 represents the average transmittance | permeability with a wavelength of 380 nm-780 nm.
ΔYI represents the difference between the YI of the molded product before irradiation with light and the YI of the molded product after irradiation with light (Formula 1).
ΔYI = (YI of molded product after light irradiation) − (YI of molded product before light irradiation) (Formula 1)
Taking Example 1-1 as an example, YI = 3.1, and YI before irradiation is YI = 3.5 in Comparative Example 1-1, so ΔYI = −0.4. The hue improvement effect is greater when ΔYI is negatively larger.

<試験に使用した光源>
試験では、以下の光源を利用した。なお、各光源は特定の分光放射分布を有しており、極大波長とは、分光放射分布のグラフが極大値となる波長のことであり、波長範囲とは、放射エネルギー>0となる波長の最も短い波長から最も長い波長までの領域を示す。
緑色LED:日動工業株式会社製、LED照明、LEN−30D−DB−G、極大波長520nm、波長範囲465nm〜605nm
青色LED:日動工業株式会社製、LED照明、LEN−30D−DB−B、極大波長450nm、波長範囲415nm〜505nm
白色LED:日動工業株式会社製、LED照明、LEN−30D−ES−W、極大波長450nm、565nm、波長範囲415nm〜760nm
紫色LED:アイグラフィックス株式会社製、LED照明、極大波長405nm波長範囲385nm〜430nm
紫外LED(1):アイグラフィックス株式会社製、LED照明、極大波長395nm波長範囲375nm〜420nm
紫外LED(2):アイグラフィックス株式会社製、LED照明、極大波長385nm波長範囲365nm〜410nm
紫外LED(3):アイグラフィックス株式会社製、LED照明、極大波長365nm波長範囲345nm〜390nm
赤色LED:日動工業株式会社製、LED照明、LEN−30D−DB−R、極大波長630nm、波長範囲575nm〜670nm
ここで、本試験で使用した白色LEDは、青色LEDと黄色蛍光体を用いた擬似白色LEDであり、それぞれに由来する二つの極大波長がある。
また、分光放射分布に対して、340nm、345nm、・・・のように、5nm毎の値をとり、全ての光エネルギーをE、340nm〜575nmの光のエネルギーをE、370〜510nmの光エネルギーをEとして、それぞれの比であるE/EおよびE/Eを求めた。数学的にはE、EおよびEは、各光源における、それぞれの範囲でのエネルギーの積算値である。例として図2にE、Eの一例を網掛け部で図示した。
また、蛍光灯、太陽光、高圧水銀灯は、それぞれの照明の室内、あるいは屋外に成形品を設置した。
<Light source used for testing>
In the test, the following light sources were used. Each light source has a specific spectral radiation distribution, and the maximum wavelength is a wavelength at which the graph of the spectral radiation distribution has a maximum value, and the wavelength range is a wavelength having a radiation energy> 0. The region from the shortest wavelength to the longest wavelength is shown.
Green LED: manufactured by Nichido Kogyo Co., Ltd., LED lighting, LEN-30D-DB-G, maximum wavelength 520 nm, wavelength range 465 nm to 605 nm
Blue LED: manufactured by Nichido Kogyo Co., Ltd., LED lighting, LEN-30D-DB-B, maximum wavelength 450 nm, wavelength range 415 nm to 505 nm
White LED: manufactured by Nichido Kogyo Co., Ltd., LED lighting, LEN-30D-ES-W, maximum wavelength 450 nm, 565 nm, wavelength range 415 nm to 760 nm
Purple LED: manufactured by Eye Graphics Co., Ltd., LED illumination, maximum wavelength 405 nm, wavelength range 385 nm to 430 nm
Ultraviolet LED (1): manufactured by Eye Graphics Co., Ltd., LED illumination, maximum wavelength 395 nm, wavelength range 375 nm to 420 nm
Ultraviolet LED (2): manufactured by Eye Graphics Co., Ltd., LED illumination, maximum wavelength 385 nm wavelength range 365 nm to 410 nm
UV LED (3): manufactured by Eye Graphics Co., Ltd., LED illumination, maximum wavelength 365 nm wavelength range 345 nm to 390 nm
Red LED: manufactured by Nichido Kogyo Co., Ltd., LED lighting, LEN-30D-DB-R, maximum wavelength 630 nm, wavelength range 575 nm to 670 nm
Here, the white LED used in this test is a pseudo white LED using a blue LED and a yellow phosphor, and has two maximum wavelengths derived from each.
Further, the spectral radiation distribution takes values every 5 nm, such as 340 nm, 345 nm,..., All light energy is E A , light energy of 340 nm to 575 nm is E 1 , 370 to 510 nm. light energy as E 2, it was determined E 1 / E a and E 2 / E a is the respective ratios. Mathematically, E A , E 1 and E 2 are integrated values of energy in the respective ranges for each light source. As an example, an example of E A and E 1 is shown in FIG.
For fluorescent lamps, sunlight, and high-pressure mercury lamps, molded products were installed indoors or outdoors.

Figure 2016108502
Figure 2016108502

<放射照度の測定>
放射照度は、日置電機株式会社製照度計Lux HiTESTER3423、またはアイグラフィックス株式会社製UV METER UVPF−A1 PD−405(紫色LED、紫外LED(1)〜紫外LED(3)のみ)で照度を計測し、照度計の可視域相対分光応答度特性またはUV METERの分光感度特性、および光源の分光放射分布より放射照度を計算した。
<Measurement of irradiance>
Irradiance is measured with Hioki Denki Co., Ltd.'s illuminance meter Lux HiTESTER 3423, or Eye Graphics Co., Ltd. UV METER UVPF-A1 PD-405 (purple LED, ultraviolet LED (1) to ultraviolet LED (3) only). The irradiance was calculated from the visible relative spectral response characteristics of the illuminometer or the spectral sensitivity characteristics of UV METER and the spectral radiation distribution of the light source.

<実施例1>
樹脂A−1の成形品に、表2に示す光学特性の光源を120分照射し、光照射成形品を得た。照射は115×127mmの面に対して行ったため、光が成形品中を通過する距離は3mmである。この時の放射照度は100W/mであった。また、光照射成形品の透過率、YIの測定を実施した。
<Example 1>
The resin A-1 molded product was irradiated with a light source having optical characteristics shown in Table 2 for 120 minutes to obtain a light irradiated molded product. Since the irradiation was performed on a 115 × 127 mm surface, the distance that light passes through the molded product is 3 mm. The irradiance at this time was 100 W / m 2 . Moreover, the transmittance | permeability and YI of the light irradiation molded product were implemented.

<実施例1−2〜1−19>
実施例1−1同様に樹脂A−1〜A−5からなる成形品に、表2に示す光学特性の光源、照射時間、放射照度で光照射し、光照射成形品を得た。また、光照射成形品の透過率、YIの測定を実施した。
<Examples 1-2 to 1-19>
In the same manner as in Example 1-1, the molded product made of the resins A-1 to A-5 was irradiated with light with the optical characteristics shown in Table 2, the irradiation time, and the irradiance to obtain a light irradiated molded product. Moreover, the transmittance | permeability and YI of the light irradiation molded product were implemented.

<比較例1−1〜1−5>
比較例1−2は、表2に示す光学特性の光源、それ以外の比較例は樹脂A−1〜A−5からなる成形品に光照射せず、透過率、YIの測定を実施した。
<Comparative Examples 1-1 to 1-5>
Comparative Example 1-2 measured the transmittance and YI without irradiating the light source having the optical characteristics shown in Table 2 and the other comparative examples without irradiating the molded product made of Resin A-1 to A-5.

<参考例1−1〜1−3>
樹脂A−1からなる成形品に、太陽光、蛍光灯、高圧水銀灯、および白熱電球の光を所定の時間照射した。また、照射後の成形品の透過率、YIの測定を実施した。
<Reference Examples 1-1 to 1-3>
The molded article made of the resin A-1 was irradiated with sunlight, fluorescent light, high-pressure mercury lamp, and incandescent light for a predetermined time. Further, the transmittance and YI of the molded product after irradiation were measured.

Figure 2016108502
Figure 2016108502

参考例1−1や1−2の様に、各波長のエネルギーが万遍ない、所謂白色光においてYIが負に変化し、色相が改善される挙動が見られたが、波長340nm〜575nmの光エネルギーの割合が高い光において、ΔYIが負に大きく、色相改善の効果が大きいことが判った。比較例1−2を参照すると、575nm以上の光では色相改善の効果が見られなかった。また、特に波長370〜510nmの光エネルギーの割合が高いものは、より高い効果であった。参考例1−3ではΔYIが正の値となっているが、これは水銀灯の光に含まれる紫外線が悪影響を及ぼし、成形品が劣化したためだと考えられる。
実施例1−7や実施例1−13〜1−15を参照すると、340nm〜575nmの光エネルギーの割合が比較的高くない光でも高い効果が得られているが、これは、この白色LEDが青色LEDと黄色蛍光体を用いた擬似白色LEDであり、青色LED由来の光である、波長415nm〜505nm光の影響が大きいためと考えられる。
As in Reference Examples 1-1 and 1-2, the energy of each wavelength is not uniform, YI changes negatively in so-called white light, and the behavior in which the hue is improved was observed, but the wavelength of 340 nm to 575 nm It was found that ΔYI is negatively large in light having a high ratio of light energy, and the effect of improving the hue is large. Referring to Comparative Example 1-2, the effect of improving the hue was not observed with light of 575 nm or more. In particular, those having a high ratio of light energy having a wavelength of 370 to 510 nm were more effective. In Reference Example 1-3, ΔYI has a positive value. This is considered to be because the ultraviolet rays contained in the light from the mercury lamp had an adverse effect and the molded product was deteriorated.
Referring to Example 1-7 and Examples 1-13 to 1-15, a high effect is obtained even with light whose ratio of light energy of 340 nm to 575 nm is not relatively high. It is a pseudo-white LED using a blue LED and a yellow phosphor, and is considered to be due to the large influence of light having a wavelength of 415 nm to 505 nm, which is light derived from the blue LED.

<<試験2>>
樹脂A−1は、試験1と同様の方法で得た。次に表3に示す含有量となるよう、上記で得られたスチレン系樹脂のペレットと添加剤として酸化防止剤をスクリュー径40mmの単軸押出機を用いて、シリンダー温度230℃、スクリュー回転数100rpmで溶融混錬してペレットを得た。使用した添加剤を以下に示す。なお、実施例2−1、比較例2−1で用いた樹脂は添加剤を添加せずに溶融混練した。
添加剤1:オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート(BASFジャパン株式会社製 Irganox 1076)
添加剤2:トリス(2,4−ジ−tert−ブチルフェニル)フォスファイト(BASFジャパン株式会社製 Irgafos 168)
得られたペレットは、試験1と同様の条件で射出成形、切削・研磨を行い、端面に鏡面を有する板状成形品を得た。色相評価や放射照度の測定等も試験1と同様の方法で実施した。
<< Test 2 >>
Resin A-1 was obtained in the same manner as in Test 1. Next, using a single screw extruder having a screw diameter of 40 mm as an additive, pellets of the styrenic resin obtained above and an additive as an additive so that the contents shown in Table 3 were used, a cylinder temperature of 230 ° C., and a screw rotation speed Pellets were obtained by melting and kneading at 100 rpm. The additives used are shown below. In addition, the resin used in Example 2-1 and Comparative Example 2-1 was melt-kneaded without adding an additive.
Additive 1: Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (Irganox 1076, manufactured by BASF Japan Ltd.)
Additive 2: Tris (2,4-di-tert-butylphenyl) phosphite (Irgafos 168 manufactured by BASF Japan Ltd.)
The obtained pellets were injection-molded, cut and polished under the same conditions as in Test 1 to obtain a plate-like molded product having a mirror surface on the end surface. Hue evaluation, irradiance measurement, and the like were performed in the same manner as in Test 1.

<実施例2−1〜2−4>
表3に記載の樹脂A−1、添加剤1、添加剤2からなるそれぞれの樹脂組成物の成形品に、表Xに記載の光学特性を有する光源の光を照射し、光照射成形品を得た。照射は115×127mmの面に対して行ったため、光が成形品中を通過する距離は3mmである。照射時間は60分であり、放射照度は630W/mであった。また、照射後の成形品の透過率、YIの測定を実施した。
<Examples 2-1 to 2-4>
The molded product of each resin composition consisting of the resin A-1, the additive 1 and the additive 2 described in Table 3 is irradiated with light from a light source having the optical characteristics described in Table X, and the light irradiated molded product is obtained. Obtained. Since the irradiation was performed on a 115 × 127 mm surface, the distance that light passes through the molded product is 3 mm. The irradiation time was 60 minutes, and the irradiance was 630 W / m 2 . Further, the transmittance and YI of the molded product after irradiation were measured.

<比較例2−1〜2−4>
表3に記載の樹脂A−1、添加剤1、添加剤2からなるそれぞれの樹脂組成物の成形品に光照射せず、透過率、YIの測定を実施した。
<Comparative Examples 2-1 to 2-4>
The transmittance and YI were measured without irradiating the molded product of each resin composition comprising the resin A-1, the additive 1 and the additive 2 shown in Table 3 with light.

Figure 2016108502
Figure 2016108502

表3の通り、酸化防止剤を含む場合においても試験1同様に、光照射によってYIの低下が確認された。実施例2−1では溶融混練しない場合(実施例1−1)と比較し、ΔYIが負に大きくなっているが、これは、溶融混練により樹脂組成物中に熱酸化劣化による着色成分が生成し、これが光照射により無色の成分に変化したためだと考えられる。また、酸化防止剤を含まない場合に比べ、ΔYIが負に大きくなっているが、これは、成形品中に酸化防止剤に由来する着色成分があり、これが光照射により無色の成分に変化したためだと考えられる。   As shown in Table 3, even when the antioxidant was included, the decrease in YI was confirmed by light irradiation as in Test 1. In Example 2-1, compared to the case where melt kneading is not performed (Example 1-1), ΔYI is negatively increased. This is because a colored component due to thermal oxidative degradation is generated in the resin composition by melt kneading. However, this is thought to be due to the change to a colorless component by light irradiation. In addition, ΔYI is negatively larger than when no antioxidant is included, but this is because there is a colored component derived from the antioxidant in the molded product, and this has changed to a colorless component by light irradiation. It is thought that.

本発明の光照射成形品は、従来の成形品に比べ、無色透明性が改善されたものであり、透明性と色相に優れることから、従来の用途以外にも透明性がとりわけ要求される光学用途でも、好適に用いることができる。光学用部材として例えば、レンズや拡散板、カバー、導光板といった用途に適用可能である。
また、本発明の製造方法は、従来の熱可塑性樹脂からなる成形品を更に良色相の成形品とするための手段として活用できる。
The light irradiation molded article of the present invention has an improved colorless transparency compared to conventional molded articles, and is excellent in transparency and hue. It can be suitably used also for applications. For example, the optical member can be applied to applications such as a lens, a diffusion plate, a cover, and a light guide plate.
Further, the production method of the present invention can be used as a means for making a molded product made of a conventional thermoplastic resin into a molded product having a better hue.

Claims (12)

熱可塑性樹脂からなる成形品に、主として波長340nm〜575nmの成分を含む光を照射することで得られる光照射成形品。 A light irradiation molded product obtained by irradiating a molded product made of a thermoplastic resin with light mainly containing a component having a wavelength of 340 nm to 575 nm. 照射する光が主として波長370〜510nmの成分を含む光である、請求項1記載の光照射成形品。 The light irradiation molded article according to claim 1, wherein the light to be irradiated is light mainly containing a component having a wavelength of 370 to 510 nm. 照射する光の光源がLEDである、請求項1または請求項2記載の光照射成形品。 The light irradiation molded article of Claim 1 or Claim 2 whose light source of the light to irradiate is LED. 熱可塑性樹脂がスチレン系樹脂である、請求項1〜3のいずれか1項に記載の光照射成形品。 The light irradiation molded product of any one of Claims 1-3 whose thermoplastic resin is a styrene resin. スチレン系樹脂が、スチレン系単量体と(メタ)アクリル酸系単量体とを共重合して得られるスチレン−(メタ)アクリル酸共重合樹脂であって、スチレン系樹脂のスチレン系単量体単位の含有量が90.0〜99.9質量%、(メタ)アクリル酸系単量体単位の含有量が0.1〜15.0質量%である請求項4に記載の光照射成形品。ただし、スチレン系樹脂のスチレン系単量体単位と(メタ)アクリル酸系単量体単位の含有量の合計を100質量%とする。 A styrene resin is a styrene- (meth) acrylic acid copolymer resin obtained by copolymerizing a styrene monomer and a (meth) acrylic acid monomer, wherein the styrene resin is a styrene resin. The light irradiation molding according to claim 4, wherein the content of the body unit is 90.0 to 99.9% by mass, and the content of the (meth) acrylic acid monomer unit is 0.1 to 15.0% by mass. Goods. However, the total content of styrene monomer units and (meth) acrylic acid monomer units in the styrene resin is 100% by mass. スチレン系樹脂が、スチレン系単量体と(メタ)アクリル酸エステル系単量体とを共重合して得られるスチレン−(メタ)アクリル酸エステル共重合樹脂であって、スチレン系樹脂のスチレン系単量体単位の含有量が40.0〜99.0質量%、(メタ)アクリル酸エステル系単量体単位の含有量が1.0〜60.0質量%である請求項4に記載の光照射成形品。ただし、スチレン系樹脂のスチレン系単量体単位と(メタ)アクリル酸エステル系単量体単位の含有量の合計を100質量%とする。 A styrene resin is a styrene- (meth) acrylate copolymer resin obtained by copolymerizing a styrene monomer and a (meth) acrylate monomer, and the styrene resin is a styrene resin The content of the monomer unit is 40.0 to 99.0 mass%, and the content of the (meth) acrylic acid ester monomer unit is 1.0 to 60.0 mass%. Light irradiation molded product. However, the total content of styrene monomer units and (meth) acrylate monomer units in the styrene resin is 100% by mass. 上記熱可塑性樹脂が、熱可塑性樹脂と酸化防止剤とを含む熱可塑性樹脂組成物である、請求項1〜6のいずれか1項に記載の光照射成形品。 The light irradiation molded article of any one of Claims 1-6 whose said thermoplastic resin is a thermoplastic resin composition containing a thermoplastic resin and antioxidant. 請求項1〜7のいずれか1項に記載の光照射成形品を利用した光学用部材。 The optical member using the light irradiation molded article of any one of Claims 1-7. 請求項1〜8のいずれか1項に記載の光照射成形品を利用した導光板。 The light-guide plate using the light irradiation molded article of any one of Claims 1-8. 熱可塑性樹脂からなる成形品に主として波長340nm〜575nmの成分を含む光を照射し、光照射成形品を得る製造方法。 A production method for obtaining a light-irradiated molded article by irradiating a molded article comprising a thermoplastic resin with light mainly containing a component having a wavelength of 340 nm to 575 nm. 照射する光が主として波長370〜510nmの成分を含む光である、請求項10記載の製造方法。 The manufacturing method of Claim 10 whose light to irradiate is a light mainly containing the component of wavelength 370-510 nm. 照射する光の光源がLEDである、請求項10または請求項11記載の製造方法。 The manufacturing method of Claim 10 or Claim 11 whose light source of the light to irradiate is LED.
JP2014249407A 2014-12-09 2014-12-09 Good hue molded product and method for producing the same Active JP6614767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249407A JP6614767B2 (en) 2014-12-09 2014-12-09 Good hue molded product and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014249407A JP6614767B2 (en) 2014-12-09 2014-12-09 Good hue molded product and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019200991A Division JP7004694B2 (en) 2019-11-05 2019-11-05 Good hue molded products and their manufacturing methods

Publications (2)

Publication Number Publication Date
JP2016108502A true JP2016108502A (en) 2016-06-20
JP6614767B2 JP6614767B2 (en) 2019-12-04

Family

ID=56123126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249407A Active JP6614767B2 (en) 2014-12-09 2014-12-09 Good hue molded product and method for producing the same

Country Status (1)

Country Link
JP (1) JP6614767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132801A (en) * 2019-02-22 2020-08-31 旭化成株式会社 Method for producing molding

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292936A (en) * 1988-09-30 1990-04-03 Kuraray Co Ltd Production of transparent resin or molded product
JPH08333463A (en) * 1995-06-07 1996-12-17 Biomedical Sensors Ltd Reduction of discoloration in plastic material
JP2003089126A (en) * 2001-09-18 2003-03-25 Teijin Ltd Method for manufacturing optical film
JP2007119567A (en) * 2005-10-27 2007-05-17 Konica Minolta Opto Inc Method for producing plastic optical element
JP2007299560A (en) * 2006-04-28 2007-11-15 Hitachi Displays Ltd Led backlight, and liquid crystal display device using it
JP2010260230A (en) * 2009-05-01 2010-11-18 Cmet Inc Method of treating optical solid shaped article
JP2012201743A (en) * 2011-03-24 2012-10-22 Sumitomo Chemical Co Ltd Method for treating polysulfone molded article, and molded article
WO2013094642A1 (en) * 2011-12-20 2013-06-27 東洋スチレン株式会社 Styrene-based optical resin composition, molded product, and light guide plate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292936A (en) * 1988-09-30 1990-04-03 Kuraray Co Ltd Production of transparent resin or molded product
JPH08333463A (en) * 1995-06-07 1996-12-17 Biomedical Sensors Ltd Reduction of discoloration in plastic material
JP2003089126A (en) * 2001-09-18 2003-03-25 Teijin Ltd Method for manufacturing optical film
JP2007119567A (en) * 2005-10-27 2007-05-17 Konica Minolta Opto Inc Method for producing plastic optical element
JP2007299560A (en) * 2006-04-28 2007-11-15 Hitachi Displays Ltd Led backlight, and liquid crystal display device using it
JP2010260230A (en) * 2009-05-01 2010-11-18 Cmet Inc Method of treating optical solid shaped article
JP2012201743A (en) * 2011-03-24 2012-10-22 Sumitomo Chemical Co Ltd Method for treating polysulfone molded article, and molded article
WO2013094642A1 (en) * 2011-12-20 2013-06-27 東洋スチレン株式会社 Styrene-based optical resin composition, molded product, and light guide plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132801A (en) * 2019-02-22 2020-08-31 旭化成株式会社 Method for producing molding
JP7177724B2 (en) 2019-02-22 2022-11-24 旭化成株式会社 Molded body manufacturing method

Also Published As

Publication number Publication date
JP6614767B2 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
KR101961675B1 (en) Styrene-based optical resin composition, molded product, and light guide plate
JP6496339B2 (en) Styrenic resin composition for optics, molded product and light guide plate
JP7367114B2 (en) Optical styrenic resin compositions, molded products, and light guides
JP6614767B2 (en) Good hue molded product and method for producing the same
JP7129430B2 (en) Styrene resin composition, molded article and light guide plate
JPWO2017094748A1 (en) Transparent high heat resistant styrenic copolymer
JP7004694B2 (en) Good hue molded products and their manufacturing methods
JP5715829B2 (en) Styrenic resin composition for light guide plate and light guide plate
WO2020217718A1 (en) Styrene resin composition, molded article, and light guide plate
JP6310219B2 (en) Styrenic resin composition for optics
KR20220162743A (en) Optical styrenic resin composition, light guide plate and edge light type surface light source unit
JP7229226B2 (en) Optical styrene resin composition and optical parts
JP2014031491A (en) Styrene-based resin composition, planar molded article and light guide plate
JP7344961B2 (en) Edge light type light guide plate and edge light type surface light source unit
JP7177724B2 (en) Molded body manufacturing method
JP6585742B2 (en) Styrenic resin composition for optics
JP2021147561A (en) Styrenic resin composition and method for producing the same, molding and light guide plate
CN114730022A (en) Light diffusion plate and direct type surface light source unit
JP2016190425A (en) Optical styrene-based multilayer molded article and light guide plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181127

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191105

R150 Certificate of patent or registration of utility model

Ref document number: 6614767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250