JP2016108194A - Piezoelectric ceramic composition and method of producing piezoelectric ceramic composition - Google Patents
Piezoelectric ceramic composition and method of producing piezoelectric ceramic composition Download PDFInfo
- Publication number
- JP2016108194A JP2016108194A JP2014248007A JP2014248007A JP2016108194A JP 2016108194 A JP2016108194 A JP 2016108194A JP 2014248007 A JP2014248007 A JP 2014248007A JP 2014248007 A JP2014248007 A JP 2014248007A JP 2016108194 A JP2016108194 A JP 2016108194A
- Authority
- JP
- Japan
- Prior art keywords
- mgo
- base material
- piezoelectric
- piezoelectric ceramic
- ceramic composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 79
- 239000000919 ceramic Substances 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 143
- 239000002245 particle Substances 0.000 claims abstract description 27
- 239000000654 additive Substances 0.000 claims abstract description 10
- 230000000996 additive effect Effects 0.000 claims abstract description 9
- 239000002994 raw material Substances 0.000 claims description 23
- 238000002156 mixing Methods 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 239000000843 powder Substances 0.000 claims description 7
- 239000011230 binding agent Substances 0.000 claims description 3
- 238000010304 firing Methods 0.000 description 16
- 239000013078 crystal Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000000635 electron micrograph Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 4
- 238000001354 calcination Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
本発明は圧電磁器組成物とその製造方法に関する。 The present invention relates to a piezoelectric ceramic composition and a method for producing the same.
圧電磁器組成物は焼結体であり、粉体からなる原材料を型に入れて目的とする形状に成形するとともにその成形体を焼成することで形成される。圧電磁器組成物(以下、圧電材料とも言う)としてはPZTがよく知られており、このPZTあるいはPZTを主成分とした圧電材料(以下、PZT系圧電材料とも言う)は、圧電フィルター、超音波振動子、圧電アクチュエータ、圧電ブザーなどの種々の圧電素子に広く使用されている。 The piezoelectric ceramic composition is a sintered body, and is formed by putting raw materials made of powder into a mold and molding the material into a target shape and firing the molded body. PZT is well known as a piezoelectric ceramic composition (hereinafter also referred to as a piezoelectric material). This piezoelectric material containing PZT or PZT as a main component (hereinafter also referred to as a PZT piezoelectric material) is a piezoelectric filter, ultrasonic wave Widely used in various piezoelectric elements such as vibrators, piezoelectric actuators, and piezoelectric buzzers.
ところで圧電材料の特性として、電気機械結合係数K(以下、K定数とも言う)、比誘電率(εr)、機械的品質係数(Qm)がある。そして圧電材料はQmが300以上のHighQ材とQmが300未満のLowQ材とがあり、HighQ材に分類されるPZT系圧電材料ではK定数が若干低く、LowQ材のPZT系圧電材料では高いK定数を示すことが知られている。なお以下の非特許文献1には、圧電材料に関する一般的な技術説明、各種特性についての説明、および特性の評価方法などについて詳しく記載されている。また非特許文献2には本発明に関連する技術について記載されている。 By the way, characteristics of the piezoelectric material include an electromechanical coupling coefficient K (hereinafter also referred to as K constant), a relative dielectric constant (ε r ), and a mechanical quality factor (Qm). The piezoelectric material includes a HighQ material having a Qm of 300 or more and a LowQ material having a Qm of less than 300. The PZT piezoelectric material classified as the HighQ material has a slightly low K constant, and the PZT piezoelectric material of the LowQ material has a high K. It is known to show constants. Non-Patent Document 1 below describes in detail a general technical explanation regarding piezoelectric materials, explanations of various characteristics, evaluation methods of characteristics, and the like. Non-Patent Document 2 describes a technique related to the present invention.
現時点で最も広く使用されている圧電材料であるPZT系圧電材料には、HighQ材に属しつつかつ高いK定数を備えたものがない。周知のごとくQmは圧電体が固有振動を起こしたときの共振周波数付近における機械的な振動の鋭さを示す定数でHighQ材に属する圧電材料は低損失である。K定数は圧電材料に加えた電気エネルギーを機械的エネルギーに変換する効率を表す定数であり、このKの値が高ければ高いほど高効率の圧電材料となる。そして現在の圧電素子にはさらなる高性能化が求められており、その要求に応えるためにはHighQ材に属しながら高いK定数を備えた圧電材料が必要となる。そこで本発明はHighQ材でかつK定数の高い圧電磁器組成物およびその製造方法を提供することを目的としている。 None of the PZT piezoelectric materials, which are the most widely used piezoelectric materials at the present time, belong to the HighQ material and have a high K constant. As is well known, Qm is a constant indicating the sharpness of mechanical vibration in the vicinity of the resonance frequency when the piezoelectric body causes natural vibration, and the piezoelectric material belonging to the HighQ material has low loss. The K constant is a constant representing the efficiency of converting electrical energy applied to the piezoelectric material into mechanical energy. The higher the value of K, the higher the efficiency of the piezoelectric material. Further, higher performance is required for the current piezoelectric element, and in order to meet the demand, a piezoelectric material having a high K constant belonging to the HighQ material is required. Therefore, an object of the present invention is to provide a piezoelectric ceramic composition that is a HighQ material and has a high K constant, and a method for producing the same.
上記目的を達成するための本発明は、
一般式A[Pb1−xSrx(Zr1−yTiy)]+(1−A)[Pb{Mn1/3(Sb1−zNbz)2/3}O3]で表される母材に添加剤としてMgOを含み、前記一般式における前記A、x、y、zが、それぞれ
0.9≦A<1.0
0.02≦x≦0.10
0.45≦y≦0.53
0.00≦z≦1.00
を満たすとともに、
前記MgOが0.25wt%以下の割合で含まれている、
ことを特徴とする圧電磁器組成物としている。
To achieve the above object, the present invention provides:
Is represented by the general formula A [Pb 1-x Sr x (Zr 1-y Ti y)] + (1-A) [Pb {Mn 1/3 (Sb 1-z Nb z) 2/3} O 3] The base material contains MgO as an additive, and the A, x, y, and z in the general formula are 0.9 ≦ A <1.0, respectively.
0.02 ≦ x ≦ 0.10
0.45 ≦ y ≦ 0.53
0.00 ≦ z ≦ 1.00
While satisfying
MgO is contained at a ratio of 0.25 wt% or less,
The piezoelectric ceramic composition is characterized by that.
またラインインターセプト法で測定した平均粒子径が、前記母材の組成が同じでMgOを含まない圧電磁器組成物の平均粒子径以上である圧電磁器組成物としてもよい。 Moreover, it is good also as a piezoelectric ceramic composition whose average particle diameter measured by the line intercept method is more than the average particle diameter of the piezoelectric ceramic composition which the composition of the said base material is the same and does not contain MgO.
本発明は圧電磁器組成物の製造方法にも及んでおり、当該製造方法は、
一般式A[Pb1−xSrx(Zr1−yTiy)]+(1−A)[Pb{Mn1/3(Sb1−zNbz)2/3}O3]で表される母材に添加剤としてMgOを含む圧電磁器組成物の製造方法であって、
前記母材の原材料を0.9≦A<1.0、0.02≦x≦0.10、0.45≦y≦0.53、0.00≦z≦1.00となるように混合する第1混合ステップと、
前記第1混合ステップにより混合された前記母材の原材料を仮焼成する仮焼成ステップと、
前記仮焼成ステップにより得られた前記原材料の粉体と前記MgOを0.25wt%以下の割合で混合する第2混合ステップと、
前記第2混合ステップにより得た混合されたものにバインダーを添加して造粒したものを所定の形状に成形した上で焼成する焼成ステップと、
を含むことを特徴としている。
The present invention also extends to a method for producing a piezoelectric ceramic composition,
Is represented by the general formula A [Pb 1-x Sr x (Zr 1-y Ti y)] + (1-A) [Pb {Mn 1/3 (Sb 1-z Nb z) 2/3} O 3] A method for producing a piezoelectric ceramic composition containing MgO as an additive in a base material,
The raw materials of the base material are mixed so that 0.9 ≦ A <1.0, 0.02 ≦ x ≦ 0.10, 0.45 ≦ y ≦ 0.53, and 0.00 ≦ z ≦ 1.00. A first mixing step,
A pre-baking step of pre-baking the raw material of the base material mixed in the first mixing step;
A second mixing step of mixing the raw material powder obtained by the preliminary baking step and the MgO at a ratio of 0.25 wt% or less;
A baking step of baking the mixture obtained by adding the binder to the mixture obtained in the second mixing step and then forming the granulated product into a predetermined shape;
It is characterized by including.
本発明に係る圧電磁器組成物によれば、HighQ材でかつK定数の高いPZT圧電材料とすることができる。また本発明に係る圧電磁器材料の製造方法によればHighQ材でかつK定数の高いPZT圧電材料を効率よく製造することができる。なおその他の効果については以下の記載で明らかにする。 The piezoelectric ceramic composition according to the present invention can be a PZT piezoelectric material that is a HighQ material and has a high K constant. Further, according to the method for manufacturing a piezoelectric ceramic material according to the present invention, a PZT piezoelectric material that is a HighQ material and has a high K constant can be efficiently manufactured. Other effects will be clarified in the following description.
===本発明に想到する過程===
本発明者はHighQ材でかつK定数の高いPZT系圧電材料を開発する過程で、A[Pb1−xSrx(Zr1−yTiy)]+(1−A)[Pb{Mn1/3(Sb1−zNbz)2/3}O3]の一般式で記述される化合物(以下、母材とも言う)に着目したところ、HighQ材で、円板の広がり振動モードにおけるK定数(Kp)が50%程度の圧電材料を得ることができた。しかしこの母材の組成を調整してもHighQ材であることを維持しつつ、さらにK定数を向上させることが難しかった。とくにQmとしては充分に高いQm≧1000を維持しつつ、母材よりもKp定数を大きくすることが難しかった。そこで上記の母材に対して多種多様な添加剤について検討したところMgOを添加するとHighQ材に属しつつK定数を向上させることを知見した。そして本発明は、このような知見に基づいて鋭意研究を重ねた結果想到したものである。
=== The process of conceiving the present invention ===
In the process of developing a PZT-based piezoelectric material having a high K constant and a high K constant, the inventor has developed A [Pb 1-x Sr x (Zr 1-y Ti y )] + (1-A) [Pb {Mn 1 / 3 (Sb 1-z Nb z) 2/3} O 3 generally compounds described formula (hereinafter, also referred to as base material) was focused on, in HighQ material, K in spreading vibration mode of the disc A piezoelectric material having a constant (Kp) of about 50% could be obtained. However, even if the composition of the base material is adjusted, it is difficult to further improve the K constant while maintaining the HighQ material. In particular, it was difficult to make the Kp constant larger than that of the base material while maintaining a sufficiently high Qm ≧ 1000 as Qm. Therefore, when a wide variety of additives were examined with respect to the above base material, it was found that addition of MgO improves the K constant while belonging to the HighQ material. The present invention has been conceived as a result of intensive studies based on such knowledge.
===本発明に係る実施例===
本発明に係る実施例は、上記の母材にMgOが適量添加されており、それによって上記母材の優れた圧電性能を大きく損なうことなく十分なK定数を有するものとなっている。そして、本発明の実施例に係る圧電磁器組成物の特性を評価するために、上記母材の組成(A、x、y、zの値)とMgOの添加量を変えた各種圧電材料をサンプルとして作製し、各サンプルの圧電特性を評価した。
=== Example according to the present invention ===
In the embodiment according to the present invention, an appropriate amount of MgO is added to the above-mentioned base material, thereby having a sufficient K constant without greatly deteriorating the excellent piezoelectric performance of the above-mentioned base material. Then, in order to evaluate the characteristics of the piezoelectric ceramic composition according to the example of the present invention, various piezoelectric materials in which the composition of the base material (values of A, x, y, and z) and the added amount of MgO are changed are sampled. And the piezoelectric characteristics of each sample were evaluated.
===サンプルの製造手順===
図1にサンプルの製造手順を具体的に示した。この図に示したように、まず、母材の原材料となる一般式A[Pb1−xSrx(Zr1−yTiy)]+(1−A)[Pb{Mn1/3(Sb1−zNbz)2/3}O3]に含まれる各金属元素の酸化物を秤量する(s1)。このとき、各原材料の量や割合を変えると、上記一般式中のA、x、y、zの値が変わる。次に、母材の原材料をボールミル中で溶媒となる純水を入れて24時間(h)湿式混合する(s2)。それによって、母材の原材料の混合物が粉体状に粉砕される。そして、この粉体状の混合物を大気中にて800℃〜950℃の温度で3h仮焼成する(s3)。
=== Procedure for Sample Production ===
FIG. 1 specifically shows a sample manufacturing procedure. As shown in this figure, first, the general formula becomes a raw material of the base material A [Pb 1-x Sr x (Zr 1-y Ti y)] + (1-A) [Pb {Mn 1/3 (Sb 1-z Nb z ) 2/3 } O 3 ] is weighed (s1). At this time, if the amount and ratio of each raw material are changed, the values of A, x, y, and z in the above general formula change. Next, the raw material of the base material is wet mixed for 24 hours (h) by adding pure water as a solvent in a ball mill (s2). Thereby, the raw material mixture of the base material is pulverized into powder. Then, this powdery mixture is temporarily fired in the air at a temperature of 800 ° C. to 950 ° C. for 3 hours (s3).
さらに、サンプルに応じて添加剤であるMgOを秤量し、仮焼成によって得た粉体状の母材の原材料と秤量後のMgOをボールミルによって純水中で5h混合しながら粉砕する。(s4→s5、s6)。なおMgOを添加しないサンプルについてはこれらの混合工程(s5)と粉砕工程(s6)を省略する。 Further, MgO as an additive is weighed according to the sample, and the raw material of the powdery base material obtained by pre-baking and the weighed MgO are pulverized while mixing in pure water for 5 h by a ball mill. (S4 → s5, s6). In addition, about the sample which does not add MgO, these mixing processes (s5) and a grinding | pulverization process (s6) are abbreviate | omitted.
そして、仮焼成を経た母材の原材料と添加剤との混合物、あるいは仮焼成を経た母材の原材料にバインダーとなるPVA水溶液を加えて混合し、適宜な大きさの粒子径(例えば1μm)の粉末となるように造粒する(s7)。その後、この造粒された粉末を目的とする形状に成形する(s8)。圧電特性を評価するためのサンプルについては、250MPaの圧力で、直径Φ=17mm、厚さt=1.0mmとなる円板状に加工する。そして、その成形物を大気中で1130〜1310℃で3h焼成し、円板状の圧電磁器組成物とする(s9)。さらにこの円板状の圧電磁器組成物の両面にAg電極を形成した(s10)。Ag電極の形成は、Agペーストが塗布された圧電磁器組成物を680℃の温度中で1min保持することで行った。そして2.5Kv/mmの電界を120℃のシリコンオイル中で30min印加することで分極処理を施して圧電素子を完成した(s11)。そしてこの圧電素子を圧電磁器組成物(圧電材料)の特性を評価するためのサンプルとした。 Then, a mixture of the raw material of the base material and the additive that has undergone preliminary firing, or a raw material of the base material that has undergone the preliminary firing is added and mixed with a PVA aqueous solution serving as a binder, and an appropriate particle size (for example, 1 μm) Granulate to form powder (s7). Thereafter, the granulated powder is formed into a desired shape (s8). A sample for evaluating piezoelectric characteristics is processed into a disk shape having a diameter Φ = 17 mm and a thickness t = 1.0 mm at a pressure of 250 MPa. And the molding is baked at 1130-1310 degreeC in air | atmosphere for 3 hours, and it is set as a disk shaped piezoelectric ceramic composition (s9). Furthermore, Ag electrodes were formed on both surfaces of the disk-shaped piezoelectric ceramic composition (s10). The Ag electrode was formed by holding the piezoelectric ceramic composition coated with the Ag paste at a temperature of 680 ° C. for 1 min. Then, a polarization process was performed by applying an electric field of 2.5 Kv / mm for 30 min in 120 ° C. silicone oil to complete a piezoelectric element (s11). This piezoelectric element was used as a sample for evaluating the characteristics of the piezoelectric ceramic composition (piezoelectric material).
===特性評価===
組成が異なる各種サンプルについて、周知のインピーダンスアナライザを用い、電気機械結合係数Kp(%)、比誘電率εr(=ε33 T/ε0)、および機械的品質係数Qmを測定した。なお圧電特性の評価には全て同じ温度(1280℃)で焼成したサンプルを用いた。
=== Characteristic evaluation ===
For various samples having different compositions, the electromechanical coupling coefficient Kp (%), the relative dielectric constant ε r (= ε 33 T / ε 0 ), and the mechanical quality factor Qm were measured using a known impedance analyzer. For the evaluation of piezoelectric characteristics, samples fired at the same temperature (1280 ° C.) were used.
ところで本発明の目的はHighQ材に属するPZT系圧電材料のK定数を向上させることにある。そこで作製した各サンプルの圧電特性について、HighQ材の条件であるQm≧300に対して必要充分なQm>1000であれば優れたQm特性を有している物として、このQm>1000を合格基準とした。また誘電率εrにおいても実用上十分なεr>1000を合格基準とした。 By the way, an object of the present invention is to improve the K constant of the PZT piezoelectric material belonging to the HighQ material. Therefore, regarding the piezoelectric characteristics of each sample produced, if Qm> 1000, which is necessary and sufficient for Qm ≧ 300, which is the condition of the HighQ material, this Qm> 1000 is regarded as an acceptable standard as having excellent Qm characteristics. It was. Also, in terms of permittivity ε r , ε r > 1000, which is practically sufficient, was set as a pass criterion.
表1に各サンプルの組成と各種圧電特性の測定結果を示した。 Table 1 shows the composition of each sample and the measurement results of various piezoelectric characteristics.
<MgOの効果>
まず表1に示した各サンプルの特性測定結果に基づいてMgOの添加することによる効果について検討した。表1においてサンプル1、16、17はMgOが添加されていない母材のみからなる圧電材料であり、これらのサンプル1、16、17と同じ組成の母材に対してのMgOが添加されているサンプルの圧電特性について見てみる。
<Effect of MgO>
First, the effect of adding MgO was examined based on the characteristic measurement results of each sample shown in Table 1. In Table 1, Samples 1, 16, and 17 are piezoelectric materials composed only of a base material to which no MgO is added, and MgO is added to a base material having the same composition as those of Samples 1, 16, and 17. Let's look at the piezoelectric properties of the sample.
まずサンプル1と母材の組成が同じ圧電材料はサンプル19〜21である。サンプル19〜21の圧電特性を見ると、サンプル19、20、21はMgOの添加率が0.05wt%、0.25wt%、0.26wt%であり、MgOの添加率を0.26%としたサンプル21は、εr>1000、Qm>1000を満たすことができなかった。しかしMgOの添加率が0.05wt%のサンプル19と、添加量が0.25wt%のサンプル20では、εr>1000、Qm>1000の合格条件を満たしつつ、サンプル1よりもKpが高かった。したがってサンプル1、19〜21からMgOの添加量の上限を0.25wt%と規定することができる。 First, samples 19 to 21 are piezoelectric materials having the same base material composition as sample 1. Looking at the piezoelectric characteristics of Samples 19 to 21, Samples 19, 20, and 21 have MgO addition rates of 0.05 wt%, 0.25 wt%, and 0.26 wt%, and the MgO addition rate is 0.26%. The sample 21 did not satisfy ε r > 1000 and Qm> 1000. However, Sample 19 with an MgO addition rate of 0.05 wt% and Sample 20 with an addition amount of 0.25 wt% had a higher Kp than Sample 1 while satisfying the passing conditions of ε r > 1000 and Qm> 1000. . Therefore, the upper limit of the added amount of MgO can be defined as 0.25 wt% from Samples 1 and 19-21.
またサンプル16および17と母材の組成が同じでMgOが添加されているサンプルは、それぞれサンプル14およびサンプル18である。そしてサンプル14およびサンプル18はMgOが規定範囲の上限である0.25wt%添加されている。ここでサンプル16と14、およびサンプル17と18を比較すると、サンプル14およびサンプル18はMgOを添加することによって母材の組成が同じサンプル16および17に対してKpが増加していることが分かる。またサンプル14と18は母材の組成が異なるもののサンプル1に対してもKpが増加している。すなわち母材の組成に依らずMgOを添加することによってKpが増加することが確認できた。 Samples 14 and 18 have the same base material composition as Samples 16 and 17 and added with MgO. Samples 14 and 18 have MgO added at 0.25 wt%, which is the upper limit of the specified range. When samples 16 and 14 and samples 17 and 18 are compared here, it can be seen that samples 14 and 18 have an increase in Kp with respect to samples 16 and 17 having the same base material composition by adding MgO. . Samples 14 and 18 also have a higher Kp than sample 1 although the compositions of the base materials are different. That is, it was confirmed that Kp was increased by adding MgO regardless of the composition of the base material.
さらに母材の組成が同じでMgOの添加量が異なるサンプル18と23、あるいはサンプル14と22を比較すると、母材の組成が同じ場合ではMgOの添加量が少なくなるのにしたがってKpが大きくなっていることがわかる。すなわちMgOは極微量含まれていることが望ましいといえる。したがってMgOの最適添加量は先に規定した上限値0.25wt%を超えなければ0wt%より多い割合で含まれていればよいと言える。このように母材に対してMgOが適量添加されている圧電材料は、母材の組成がどのようなものであってもεrとQmが上記の合格基準を満たし、かつ母材のみの圧電材料よりも高いKpを示す。 Further, comparing Samples 18 and 23 or Samples 14 and 22 with the same base material composition but different MgO addition amounts, Kp increases as the MgO addition amount decreases with the same base material composition. You can see that That is, it can be said that MgO is desirably contained in a very small amount. Therefore, it can be said that the optimum addition amount of MgO only needs to be included at a ratio higher than 0 wt% unless the upper limit 0.25 wt% specified above is exceeded. The piezoelectric material MgO relative to the base material is added in an appropriate amount as is What is a also epsilon r and Qm is the composition of the base material satisfy the the above acceptance criteria, and Hahazai only the piezoelectric of It shows a higher Kp than the material.
<母材の組成について>
つぎに表1に示した結果に基づいて、母剤の組成を決定する上記一般式におけるA、x、y、zの各値の適正値について検討する。ここではまずzの適正値について検討する。母材の組成を表す上記一般式における第2項目の化学式で表される組成[Pb{Mn1/3(Sb1−zNbz)2/3}O3](以下、Bサイトともいう、また第1項目{Pb1-xSrx(Zr1-yTiy)O3}で表される組成をAサイトとも言う)に含まれるSbとNbは互いにzの値によって相補的に増減する。したがってz=0のサンプル1は母材の組成にNbが含まれていないことになる。そこでサンプル1と同様に母材のみからなるサンプル16と17の圧電特性について検討してみると、サンプル16はz=0.5、サンプル17はz=1であり、それぞれSbの半分あるいは全部がNbに置換されている。そしてサンプル16と17の圧電特性からNbの割合が増える(zが大きくなる)のに従ってεrの値が徐々に減少し、Qmの値が徐々に増加していることがわかる。しかしサンプル16と17はいずれもεr>1000、Qm>1000を満たしている。そしてKpについてはNbの増減に伴って大きな差異は見受けられなかった。すなわちBサイトにSbとNbの少なくとも一方が含まれていればよいことになり、zの適正値は0≦z≦1となる。
<About composition of base material>
Next, based on the results shown in Table 1, the appropriate values of the values of A, x, y, and z in the above general formula for determining the composition of the base material will be examined. Here, first, an appropriate value of z will be examined. Composition [Pb {Mn 1/3 (Sb 1-z Nb z ) 2/3 } O 3 ] (hereinafter also referred to as B site) represented by the chemical formula of the second item in the above general formula representing the composition of the base material. In addition, Sb and Nb contained in the first item {Pb 1-x Sr x (Zr 1-y Ti y ) O 3 }, which is also referred to as A site) increase or decrease in a complementary manner depending on the value of z. . Therefore, Sample 1 with z = 0 does not contain Nb in the composition of the base material. Accordingly, when the piezoelectric characteristics of samples 16 and 17 made of only the base material are examined as in sample 1, sample 16 is z = 0.5, sample 17 is z = 1, and half or all of Sb is respectively. Substituted with Nb. The samples 16 and 17 the proportion of Nb is increased from the piezoelectric characteristics of the (z increases) the value of epsilon r gradually decreases in accordance with the, it can be seen that the value of Qm is increasing gradually. However, samples 16 and 17 both satisfy ε r > 1000 and Qm> 1000. As for Kp, no significant difference was observed with the increase or decrease of Nb. That is, it is sufficient that at least one of Sb and Nb is included in the B site, and an appropriate value of z is 0 ≦ z ≦ 1.
つぎに母材におけるAの値、すなわちAサイトとBサイトの割合については、サンプル11〜15の圧電特性を見ると、A=0.89のサンプル11ではεrとQmについては合格条件を満たしていたが、Kp=47%でサンプル1におけるKp=52%に対して低下した。サンプル15はA=1.00であり母材がAサイトの成分のみで構成されている。すなわちBサイトが存在しない。したがって表1におけるサンプル15の組成のzの欄では、Bサイトに含まれるNbの割合を示すzの値そのものが無意味であるので「―」と記載している。そしてこのサンプル15ではεrとQmが合格条件を満たしていたが、Kp=52%でサンプル1と同じであり、Kpの向上が認められなかった。したがってAの適正範囲は0.90≦A<1.00と規定できる。そしてxの値についてはサンプル2〜6より0.02≦x≦0.10と規定することができ、yの値についてはサンプル7〜10より0.45≦y≦0.53と規定することができる。 Then the value of A in the base material, i.e. the ratio of the A site and B site, looking at the piezoelectric characteristics of samples 11 to 15 satisfy the acceptance criteria for the sample 11, epsilon r and Qm of A = of 0.89 However, it decreased with respect to Kp = 52% in Sample 1 at Kp = 47%. Sample 15 has A = 1.00, and the base material is composed of only the component of A site. That is, the B site does not exist. Therefore, in the column of z of the composition of the sample 15 in Table 1, “-” is described because the value of z indicating the ratio of Nb contained in the B site is meaningless. And although this Sample 15 epsilon r and Qm is met the acceptance criteria are the same as Sample 1 with Kp = 52%, improvement in Kp was observed. Therefore, the appropriate range of A can be defined as 0.90 ≦ A <1.00. The value of x can be defined as 0.02 ≦ x ≦ 0.10 from samples 2 to 6, and the value of y should be defined as 0.45 ≦ y ≦ 0.53 from samples 7 to 10. Can do.
<粒子径について>
上述したように母材にMgOが適量添加された圧電材料は、Qmが充分に大きなHighQ材(Qm>1000)で、かつ実用的なεr(>1000)を有しつつ同じ組成の母材のみからなる圧電材料に対して高いKpを示す。そこでMgOを添加することによってKpが増加するメカニズムについて、結晶構造の変化という観点から検討してみた。具体的には表1におけるサンプル1および19と同じ組成としつつ焼成温度が異なる各種圧電材料を作製し、その各種圧電材料の結晶構造を電子顕微鏡にて観察した。図2に作製した各種圧電材料のうち、1190℃、1250℃、および1310℃で焼成した圧電材料の電子顕微鏡写真を示した。図2(A)、(B)、および(C)は組成がサンプル1と同じでMgOを含まない圧電材料である。そして図(A)、(B)、および(C)はそれぞれ焼成温度を1190℃、1250℃、および1310℃としたときの圧電材料の結晶構造を示している。また図2(D)、(E)、および(F)は組成がサンプル19と同じでMgOを含む圧電材料であり、焼成温度がそれぞれ1190℃、1250℃、および1310℃のときの結晶構造を示している。
<About particle size>
As described above, the piezoelectric material in which an appropriate amount of MgO is added to the base material is a high-Q material having a sufficiently large Qm (Qm> 1000) and a base material having the same composition while having a practical εr (> 1000). A high Kp is shown for a piezoelectric material made of Therefore, the mechanism of increasing Kp by adding MgO was examined from the viewpoint of change in crystal structure. Specifically, various piezoelectric materials having the same composition as Samples 1 and 19 in Table 1 but different firing temperatures were produced, and the crystal structures of the various piezoelectric materials were observed with an electron microscope. FIG. 2 shows electron micrographs of piezoelectric materials fired at 1190 ° C., 1250 ° C., and 1310 ° C. among various piezoelectric materials produced. 2A, 2B, and 2C are piezoelectric materials that have the same composition as sample 1 and do not contain MgO. Figures (A), (B), and (C) show the crystal structures of the piezoelectric material when the firing temperatures are 1190 ° C, 1250 ° C, and 1310 ° C, respectively. 2 (D), (E), and (F) are piezoelectric materials containing the same composition as sample 19 and containing MgO, and the crystal structures when the firing temperatures are 1190 ° C., 1250 ° C., and 1310 ° C., respectively. Show.
図2(A)と(D)、(B)と(E)、および(C)と(F)を比較すると、焼成温度が同じ場合ではMgOを添加することで結晶の粒子径が大きくなっていることが分かる。すなわち粒成長が促進されている。このことからMgOは焼結助剤あるいは粒成長促進剤として作用していると考えられる。言い換えればMgOを添加することによりKpが増加した原因は、粒成長が促進された結果によるものと考えることができる。 2 (A) and (D), (B) and (E), and (C) and (F) are compared, when the firing temperature is the same, the addition of MgO increases the crystal particle size. I understand that. That is, grain growth is promoted. From this, MgO is considered to act as a sintering aid or a grain growth accelerator. In other words, the cause of the increase in Kp due to the addition of MgO can be considered as a result of the accelerated grain growth.
確かに図2(C)に示したように、1310℃の高温で焼成すればMgOを添加しなくても粒成長が促進される。しかしこの焼成温度では母在中のPbが揮発する可能性がある。Pbが揮発すれば、圧電材料を製造する際に混合した母材の原料混合比と実際に焼成された圧電材料における母材の組成比とがずれてしまう。もちろんPZT系圧電材料における主要な成分であるPbの割合が相対的に減少すれば圧電特性が大きく低下する。そこで各種圧電材料のそれぞれにおける焼成温度と粒子径との関係を調べてみた。図3にMgOを添加している圧電材料と添加していない圧電材料における焼成温度と粒子径の関係を示した。なお粒子径は周知のラインインターセプト法によって特定した平均粒子径としている。この図3に示したように、MgOを添加していない圧電材料では焼成温度が1300℃近辺から急激に粒子径が増加している。一方MgOを添加した圧電材料では焼成温度の上昇とともに粒子径も徐々に増加している。すなわちMgOを添加することでPbを揮発させることなく確実に粒成長を促進させることができることが確認された。 Certainly, as shown in FIG. 2C, if it is fired at a high temperature of 1310 ° C., grain growth is promoted without adding MgO. However, Pb in the mother may be volatilized at this firing temperature. If Pb volatilizes, the raw material mixing ratio of the base material mixed at the time of manufacturing the piezoelectric material will deviate from the composition ratio of the base material in the actually fired piezoelectric material. Of course, if the ratio of Pb, which is the main component in the PZT-based piezoelectric material, is relatively reduced, the piezoelectric characteristics are greatly deteriorated. Therefore, the relationship between the firing temperature and the particle diameter of each piezoelectric material was examined. FIG. 3 shows the relationship between the firing temperature and the particle diameter in the piezoelectric material with and without MgO added. The particle diameter is the average particle diameter specified by a well-known line intercept method. As shown in FIG. 3, in the piezoelectric material to which MgO is not added, the particle diameter increases rapidly from the firing temperature of around 1300 ° C. On the other hand, in the piezoelectric material to which MgO is added, the particle diameter gradually increases as the firing temperature increases. That is, it was confirmed that by adding MgO, grain growth can be surely promoted without volatilizing Pb.
ところでMgOを添加することによりKpが増加した原因が粒成長の促進にあると考えると、母材の組成による圧電特性の差異が専ら元素自体の特性に左右されているのに対し、MgOを添加することによる圧電特性の差異は粒子径の大きさに左右されていると考えることができる。そこで母材の組成が同じでMgOの添加量が異なる各種圧電材料の粒子径を調べてみた。図4は表1におけるサンプル1と同じ組成の母材に対してMgOの添加量が異なる各種圧電材料の結晶構造を示す電子顕微鏡写真である。なお図4に示した各種圧電材料は全て1280℃で焼成したものであり、表1におけるサンプル1、19、20とMgOを0.20wt%添加した圧電材料である。図4(A)、(B)、(C)および(D)はそれぞれサンプル1、サンプル19、MgOを0.20wt%添加した圧電材料、およびサンプル20に対応している。また図5は図4に示した電子顕微鏡写真に基づいて特定したMgOの添加量と粒子径との関係を示す図である。図5における粒子径もラインインターセプト法に基づく平均粒子径である。図4(A)、(D)や図5に示したように母材にMgOを上限(0.25wt%)まで添加した圧電材料(サンプル20)と母材のみの圧電材料(サンプル1)とではほとんど粒子径が同じである。これは母材の組成が同じであれば、MgOを添加したときの粒子径がMgOを添加していないときの粒子径以上であれば母材のみの圧電材料よりも高いKpが得られることを示唆している。したがって母材の組成を規定した上で、その母材にMgOを0.25wt%以下の割合で添加した圧電材料の粒子径がその母材のみからなる圧電材料の粒子径以上であれば、そのMgOを添加した圧電材料はより確実にHighQ材に属しつつ高いK定数を有するものとなる。 By the way, considering that the increase in Kp due to the addition of MgO is due to the promotion of grain growth, the difference in piezoelectric properties due to the composition of the base material is mainly influenced by the characteristics of the element itself, while the addition of MgO It can be considered that the difference in the piezoelectric characteristics due to this depends on the size of the particle diameter. Therefore, the particle diameters of various piezoelectric materials having the same base material composition and different MgO addition amounts were examined. FIG. 4 is an electron micrograph showing crystal structures of various piezoelectric materials having different amounts of MgO added to the base material having the same composition as Sample 1 in Table 1. The various piezoelectric materials shown in FIG. 4 are all fired at 1280 ° C., and are piezoelectric materials to which samples 1, 19, and 20 in Table 1 and 0.20 wt% of MgO are added. 4A, 4 </ b> B, 4 </ b> C, and 4 </ b> D correspond to sample 1, sample 19, piezoelectric material to which 0.20 wt% of MgO is added, and sample 20, respectively. FIG. 5 is a diagram showing the relationship between the added amount of MgO specified based on the electron micrograph shown in FIG. 4 and the particle diameter. The particle size in FIG. 5 is also an average particle size based on the line intercept method. As shown in FIGS. 4A and 4D and FIG. 5, a piezoelectric material (sample 20) in which MgO is added to the base material up to the upper limit (0.25 wt%), and a piezoelectric material with only the base material (sample 1) The particle size is almost the same. This means that if the composition of the base material is the same, if the particle diameter when adding MgO is equal to or larger than the particle diameter when not adding MgO, a higher Kp can be obtained than the piezoelectric material of the base material alone. Suggests. Therefore, after defining the composition of the base material, if the particle diameter of the piezoelectric material in which MgO is added to the base material at a ratio of 0.25 wt% or less is equal to or larger than the particle diameter of the piezoelectric material consisting only of the base material, The piezoelectric material to which MgO is added has a high K constant while belonging to the HighQ material more reliably.
===製造方法について===
表1に示した各サンプルは図1に示した手順によって作成されたものである。すなわちまず母材の原材料を混合したものを仮焼成し、その仮焼成によって得られた粉体に添加剤であるMgOを添加してから焼成していた。しかし圧電材料の製造手順としては最初に母材の原料と添加剤を混合しその混合物を成形して焼成するとう手順(以下、原料混合法とも言う)もある。そこで表1におけるサンプル19、20、22、23とおなじ組成としつつ製造手順に原料混合法を採用したサンプルを作製し、各サンプルの圧電特性を調べてみた。
=== About Manufacturing Method ===
Each sample shown in Table 1 was created by the procedure shown in FIG. That is, first, a mixture of raw materials of a base material is temporarily fired, and MgO as an additive is added to the powder obtained by the temporary firing, followed by firing. However, as a manufacturing procedure of the piezoelectric material, there is also a procedure (hereinafter, also referred to as a raw material mixing method) in which a raw material of a base material and an additive are first mixed, and the mixture is molded and fired. Therefore, samples having the same composition as Samples 19, 20, 22, and 23 in Table 1 and employing a raw material mixing method in the production procedure were prepared, and the piezoelectric characteristics of each sample were examined.
表2に原料混合法で作製したサンプルの圧電特性を示した。 Table 2 shows the piezoelectric characteristics of the samples prepared by the raw material mixing method.
<仮焼成による作用と効果>
上述したように本発明の実施例に係る圧電材料では母材にMgOを適量添加することで高いK定数を有しているが、製造方法によって圧電特性に差異が生じることも事実である。そこで製造方法と圧電特性との関係について考察してみる。一般的にはPZTへMgOを添加するとMg2+がアクセプタイオンとして働き、Bサイトへの固溶により酸素空孔を生じる。その結果εrが減少し、結晶構造におけるドメイン壁の動きが限定されてQmが増大する。その一方でモルフォロトピック層境界(MPB)近傍の組成に対してアクセプタイオンとなりうる酸化物を添加するとK定数が減少することが知られている。しかし本発明の実施例に係る圧電材料では、MgOをアクセプタイオンとして作用させずに母材中に導入することが容易になったものと思われる。すなわちPZT系の母材に対するMgOの反応性が乏しく、MgOがPZT系の母材に対して固溶し難い状態となり、その結果としてK定数が改善されたものと思われる。
<Action and effect by temporary firing>
As described above, the piezoelectric material according to the embodiment of the present invention has a high K constant by adding an appropriate amount of MgO to the base material. However, it is also a fact that the piezoelectric characteristics vary depending on the manufacturing method. Therefore, consider the relationship between the manufacturing method and the piezoelectric characteristics. In general, when MgO is added to PZT, Mg 2+ acts as an acceptor ion, and oxygen vacancies are generated by solid solution at the B site. Consequently epsilon r decreases, limited movement of the domain wall in the crystal structure is Qm is increased. On the other hand, it is known that the K constant decreases when an oxide that can be an acceptor ion is added to the composition near the morphotopic layer boundary (MPB). However, in the piezoelectric material according to the example of the present invention, it seems that it is easy to introduce MgO into the base material without acting as an acceptor ion. That is, the reactivity of MgO to the PZT base material is poor, and MgO is hardly dissolved in the PZT base material. As a result, the K constant is considered to be improved.
さらに母材の原料を仮焼成した後にMgOを添加し、その上で焼成するという製造方法では、仮焼成により順安定状態となった母材へ適量のMgOを添加することであり、MgOをアクセプタイオンとして作用させずにより確実に母材中に導入することができると考えられる。 Furthermore, in the manufacturing method in which MgO is added after calcining the raw material of the base material and then calcined thereon, an appropriate amount of MgO is added to the base material that has become a pre-stable state by the temporary firing, and MgO is accepted as an acceptor. It is considered that it can be introduced into the base material more reliably without acting as ions.
s1 母材原材料秤量工程、s2 混合粉砕工程、s3 仮焼成工程、s5 MgO混合工程、s7 造粒工程、s8 成形工程、s9 焼成工程、s11 分極工程 s1 base material raw material weighing step, s2 mixing and pulverizing step, s3 pre-baking step, s5 MgO mixing step, s7 granulating step, s8 forming step, s9 baking step, s11 polarization step
Claims (3)
0.9≦A<1.0
0.02≦x≦0.10
0.45≦y≦0.53
0.00≦z≦1.00
を満たすとともに、
前記MgOが0.25wt%以下の割合で含まれている、
ことを特徴とする圧電磁器組成物。 Is represented by the general formula A [Pb 1-x Sr x (Zr 1-y Ti y)] + (1-A) [Pb {Mn 1/3 (Sb 1-z Nb z) 2/3} O 3] The base material contains MgO as an additive, and the A, x, y, and z in the general formula are 0.9 ≦ A <1.0, respectively.
0.02 ≦ x ≦ 0.10
0.45 ≦ y ≦ 0.53
0.00 ≦ z ≦ 1.00
While satisfying
MgO is contained at a ratio of 0.25 wt% or less,
A piezoelectric ceramic composition characterized by that.
前記母材の原材料を0.9≦A<1.0、0.02≦x≦0.10、0.45≦y≦0.53、0.00≦z≦1.00となるように混合する第1混合ステップと、
前記第1混合ステップにより混合された前記母材の原材料を仮焼成する仮焼成ステップと、
前記仮焼成ステップにより得られた前記原材料の粉体と前記MgOを0.25wt%以下の割合で混合する第2混合ステップと、
前記第2混合ステップにより得た混合されたものにバインダーを添加して造粒したものを所定の形状に成形した上で焼成する焼成ステップと、
を含むことを特徴とする圧電磁器組成物の製造方法。 Is represented by the general formula A [Pb 1-x Sr x (Zr 1-y Ti y)] + (1-A) [Pb {Mn 1/3 (Sb 1-z Nb z) 2/3} O 3] A method for producing a piezoelectric ceramic composition containing MgO as an additive in a base material,
The raw materials of the base material are mixed so that 0.9 ≦ A <1.0, 0.02 ≦ x ≦ 0.10, 0.45 ≦ y ≦ 0.53, and 0.00 ≦ z ≦ 1.00. A first mixing step,
A pre-baking step of pre-baking the raw material of the base material mixed in the first mixing step;
A second mixing step of mixing the raw material powder obtained by the preliminary baking step and the MgO at a ratio of 0.25 wt% or less;
A baking step of baking the mixture obtained by adding the binder to the mixture obtained in the second mixing step and then forming the granulated product into a predetermined shape;
The manufacturing method of the piezoelectric ceramic composition characterized by including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014248007A JP6438755B2 (en) | 2014-12-08 | 2014-12-08 | Piezoelectric ceramic composition and method for producing the piezoelectric ceramic composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014248007A JP6438755B2 (en) | 2014-12-08 | 2014-12-08 | Piezoelectric ceramic composition and method for producing the piezoelectric ceramic composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016108194A true JP2016108194A (en) | 2016-06-20 |
JP6438755B2 JP6438755B2 (en) | 2018-12-19 |
Family
ID=56123284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014248007A Active JP6438755B2 (en) | 2014-12-08 | 2014-12-08 | Piezoelectric ceramic composition and method for producing the piezoelectric ceramic composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6438755B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111348913A (en) * | 2020-03-29 | 2020-06-30 | 贵州振华红云电子有限公司 | High bandwidth piezoelectric ceramic and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4880614A (en) * | 1972-02-02 | 1973-10-29 | ||
JPH08310862A (en) * | 1995-05-12 | 1996-11-26 | Murata Mfg Co Ltd | Piezoelectric porcelain composition |
JPH08310861A (en) * | 1995-05-12 | 1996-11-26 | Murata Mfg Co Ltd | Piezoelectric porcelain composition |
JPH10167821A (en) * | 1996-12-16 | 1998-06-23 | Matsushita Electric Ind Co Ltd | Piezoelectric ceramic composition |
JP2001181033A (en) * | 1999-12-28 | 2001-07-03 | Tdk Corp | Piezoelectric ceramic composition |
JP2002255644A (en) * | 2000-12-28 | 2002-09-11 | Bosch Automotive Systems Corp | Ceramic material and piezoelectric element using the same |
JP2004203629A (en) * | 2002-10-31 | 2004-07-22 | Murata Mfg Co Ltd | Piezoelectric ceramic composition, piezoelectric transformer, piezoelectric transformer inverter circuit, and process for manufacturing piezoelectric ceramic composition |
-
2014
- 2014-12-08 JP JP2014248007A patent/JP6438755B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4880614A (en) * | 1972-02-02 | 1973-10-29 | ||
JPH08310862A (en) * | 1995-05-12 | 1996-11-26 | Murata Mfg Co Ltd | Piezoelectric porcelain composition |
JPH08310861A (en) * | 1995-05-12 | 1996-11-26 | Murata Mfg Co Ltd | Piezoelectric porcelain composition |
JPH10167821A (en) * | 1996-12-16 | 1998-06-23 | Matsushita Electric Ind Co Ltd | Piezoelectric ceramic composition |
JP2001181033A (en) * | 1999-12-28 | 2001-07-03 | Tdk Corp | Piezoelectric ceramic composition |
JP2002255644A (en) * | 2000-12-28 | 2002-09-11 | Bosch Automotive Systems Corp | Ceramic material and piezoelectric element using the same |
JP2004203629A (en) * | 2002-10-31 | 2004-07-22 | Murata Mfg Co Ltd | Piezoelectric ceramic composition, piezoelectric transformer, piezoelectric transformer inverter circuit, and process for manufacturing piezoelectric ceramic composition |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111348913A (en) * | 2020-03-29 | 2020-06-30 | 贵州振华红云电子有限公司 | High bandwidth piezoelectric ceramic and preparation method thereof |
CN111348913B (en) * | 2020-03-29 | 2022-05-17 | 贵州振华红云电子有限公司 | High bandwidth piezoelectric ceramic and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6438755B2 (en) | 2018-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001508753A (en) | Low loss PZT ceramic compositions that can be fired with silver at low sintering temperatures and methods for making the same | |
US9105845B2 (en) | Piezoelectric ceramic comprising an oxide and piezoelectric device | |
JP3282576B2 (en) | Piezoelectric ceramic composition | |
Wang et al. | Low-Temperature Sintering Li 3 Mg 1.8 Ca 0.2 NbO 6 Microwave Dielectric Ceramics with LMZBS Glass | |
KR20130086093A (en) | Lead-free piezoelectric ceramics composition | |
JP6438755B2 (en) | Piezoelectric ceramic composition and method for producing the piezoelectric ceramic composition | |
JP5967532B2 (en) | Piezoelectric ceramics | |
JP4756629B2 (en) | Piezoelectric ceramic composition | |
JP5914081B2 (en) | Piezoelectric material and method for manufacturing piezoelectric material | |
WO2012114938A1 (en) | Alkaline niobate piezoelectric material and production method for alkaline niobate piezoelectric material | |
JPWO2017006984A1 (en) | Piezoelectric ceramic electronic component and method for manufacturing piezoelectric ceramic electronic component | |
JP2004104093A (en) | Method for manufacturing negative characteristic thermistor | |
JP5830252B2 (en) | Piezoelectric material | |
JP6913547B2 (en) | Piezoelectric composition and method for manufacturing the piezoelectric composition | |
JP3781317B2 (en) | Piezoelectric ceramic material | |
JP6310775B2 (en) | Piezoelectric ceramic composition and method for producing the piezoelectric ceramic composition | |
JP2007217233A (en) | Piezoelectric ceramic | |
JP2015224175A (en) | Piezoelectric ceramic composition and production method thereof | |
JP4179029B2 (en) | Method for manufacturing piezoelectric ceramic | |
JP2012254912A (en) | Piezoelectric ceramic, and stacked piezoelectric device | |
JP5662731B2 (en) | Piezoelectric ceramic composition | |
JP6076058B2 (en) | Piezoelectric material and method for manufacturing piezoelectric material | |
JP4442467B2 (en) | Piezoelectric ceramic composition | |
JP5468984B2 (en) | Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics and manufacturing method thereof | |
JP2012162408A (en) | Piezoelectric material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180814 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181002 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181119 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6438755 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |