JP2004104093A - Method for manufacturing negative characteristic thermistor - Google Patents

Method for manufacturing negative characteristic thermistor Download PDF

Info

Publication number
JP2004104093A
JP2004104093A JP2003197864A JP2003197864A JP2004104093A JP 2004104093 A JP2004104093 A JP 2004104093A JP 2003197864 A JP2003197864 A JP 2003197864A JP 2003197864 A JP2003197864 A JP 2003197864A JP 2004104093 A JP2004104093 A JP 2004104093A
Authority
JP
Japan
Prior art keywords
powder
negative
thermistor
negative characteristic
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003197864A
Other languages
Japanese (ja)
Other versions
JP4029170B2 (en
Inventor
Tadamasa Miura
三浦 忠将
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003197864A priority Critical patent/JP4029170B2/en
Publication of JP2004104093A publication Critical patent/JP2004104093A/en
Application granted granted Critical
Publication of JP4029170B2 publication Critical patent/JP4029170B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a negative characteristic thermistor comprising a spinel composite oxide having Mn as the main component and including Al, which can be sintered at low temperatures, has small variations in initial characteristic, and hardly causes deterioration of the characteristic over aging. <P>SOLUTION: The method for manufacturing the negative characteristic thermister uses a semiconductor porcelain consisting of the spinel composite oxide including at least Mn and Al. An Al<SB>2</SB>O<SB>3</SB>powder having an average primary grain size of 0.05 to 0.3 μm and a specific surface area of 10 to 80 m<SP>2</SP>/g is used as a starting raw material to add Al. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、温度検知や温度補償などに用いられる負特性サーミスタの製造方法及び負特性サーミスタに関し、より詳細には、負の抵抗温度特性を示す半導体磁器を得る工程が改良された負特性サーミスタの製造方法に関する。
【0002】
【従来の技術】
近年、温度補償や温度検知に用いられる負特性サーミスタにおいて、抵抗偏差を±1%以下に抑制することが求められている。従来、この種の負特性サーミスタを構成する半導体磁器として、Mnと、Ti、V、Fe、Co、Ni、CuなどのMn以外の遷移金属元素と、Mg、Al、Zn及びZrのうち少なくとも1種の元素との固溶体からなるスピネル系複合酸化物が用いられてきた。
【0003】
Mnを主成分とする上記スピネル系複合酸化物の電気伝導性は、スピネル相のAサイト(四面体サイト)と、Bサイト(八面体サイト)のうち、Bサイトにおける隣接するMn3+とMn4+との間でホールがホッピングすることにより生じる。このような複合酸化物にAlが添加されていると、Alはスピネル相のBサイトに選択的に固溶する。従って、Mn3+とMn4+との間のホールの上記ホッピングが阻害される、すなわちホッピングの確率が低下する。
【0004】
よって、従来、Alの添加量を制御することにより、抵抗温度特性を連続的にかつ容易に変化させることが可能であることが知られていた。
上記の理由によりMnを主成分とし、Alを含有するスピネル系複合酸化物が広く用いられている。(特許文献1)
【0005】
【特許文献1】
特開平3−279252号公報
【0006】
【発明が解決しようとする課題】
ところで、Mnを主成分とするスピネル系複合酸化物磁器を得るにあたっては、Alを含有させるためにAl粉末を用いることが一般的だが、Al粉末は混合原料中で高分散化することが困難であり、そのため、焼成前の成形体段階において、Alを高分散させることが非常に困難であった。従って、上記成形体を焼成して得られた半導体磁器では、Alがスピネル相のBサイトに均一に固溶し難く、そのため、特性ばらつきが大きくなったり、信頼性が低下したりするという問題があった。
【0007】
また、Al粉末は、不純物としてNaをわずかに含むのが普通である。そのため、Alを出発原料として用いて得られた上記半導体磁器では、高温高湿度環境下においてNaがイオン化してマイグレーションを起こし、特性変化が大きくなるという問題があった。
【0008】
さらに、Alは難焼結性であるため、Alを含む上記成形体を焼成して半導体磁器を得ようとした場合、焼成温度が高くならざるを得なかった。加えて、密度が十分に高まらず、緻密な半導体磁器を得ることができなかった。
【0009】
本発明の目的は、上述した従来技術の欠点を解消し、Mnを主成分とし、Alを含有するスピネル系複合酸化物からなる半導体磁器を用いた負特性サーミスタの製造方法であって、比較的低温で焼成することにより半導体磁器が得られ、かつ得られた負特性サーミスタの高温下及び高湿度環境下における特性の経時による変化が少ない負特性サーミスタの製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明の広い局面によれば、平均一次粒子径が0.05〜0.3μmであり、比表面積が10〜80m/gであるAl粉末と、Mn化合物粉末とを含む組成物を用意する工程と、前記組成物を焼成し、Mn及びAlを含むスピネル系複合酸化物よりなる半導体磁器を得る工程と、前記半導体磁器の外表面に複数の外部電極を形成する工程とを備える、負特性サーミスタの製造方法が提供される。
【0011】
本発明の製造方法のある特定の局面では、前記Al粉末が、不純物として、NaをNaOに換算して0.01重量%以下の割合で含む。この場合には、不純物としてのNaの含有割合が低くなるため、高温下及び高湿度下における特性の経時変化をより一層小さくすることができる。
【0012】
本発明に係る負特性サーミスタの製造方法は、様々な構造の負特性サーミスタに用いることができるが、本発明のある特定の局面では、上記半導体磁器を得る工程において、複数の内部電極が上記組成物からなる層を介して重なり合っている積層型の成形体が得られ、該成形体を焼成することにより積層型の半導体磁器が得られる。従って、本発明に従って、積層型の負特性サーミスタを提供することができる。
【0013】
以下、本発明の詳細を説明する。
上記のように、本発明の特徴は、少なくともMn及びAlを含有するスピネル系複合酸化物からなる半導体磁器を用いた負特性サーミスタの製造に際し、平均一次粒子径が0.05〜0.3μmであり、かつ比表面積が10〜80m/gであるAlを出発原料の一部として用いることにより、Alを配合することにある。
【0014】
なお、本発明における上記スピネル系複合酸化物半導体磁器では、Mnを主成分とし、Alを含む限り、上記のように他の元素が添加されていてもよい。従って、半導体磁器としては、Mn−Ni−Al系、Mn−Ni−Co−Al系、Mn−Ni−Cu−Al系、Mn−Ni−Fe−Al系、Mn−Co−Al系、Mn−Co−Cu−Al系、Mn−Co−Fe−Al系などの半導体磁器が挙げられる。また、上記半導体磁器は、これらの各半導体磁器1種のみから構成されていてもよく、これらの固溶体であってもよく、さらには、1種以上の半導体磁器の混晶であってもよい。
【0015】
本発明においては、その出発原料として、Mn化合物粉末をMn量に換算して10〜95mol%、Al粉末をAl量に換算して0.05〜30mol%含有していることが好ましい。また、副成分としてNiを含んでいることが好ましく、その含有量は0〜45mol%が好ましい。さらに、副成分として、Fe,Co,Cu,Ti,V,Mg,Zn,Zrを含んでいることが好ましく、その含有量は、Feが0〜35mol%、Coが0〜65mol%、Cuが0〜25mol%、Tiが0〜10mol%、Vが0〜10mol%、Mgが0〜10mol%、Znが0〜10mol%、Zrが0〜10mol%が好ましい。これらの各成分が上述した範囲で含有されていると、Al粉末を上述した範囲で微粒子化し、Na含有量を上述した範囲となるように低含有量としたときの効果が顕著に表れる。
【0016】
本発明では、上記のように特定の平均粒子径及び特定の比表面積のAl粉末を出発原料の一部として用いることにより、焼成前の成形体においてAlが高分散され得る。さらに、焼結体中において、Alがスピネル相のBサイトに均一に固溶する。従って、従来の負特性サーミスタに比べて、電気的特性の初期ばらつきが小さくなり、より熱履歴変化を小さくすることができる。また、高湿度環境下及び高温環境下における特性変化も小さくなり、信頼性に優れた負特性サーミスタを得ることができる。
【0017】
さらに、Al粉末の粒径が小さく、かつ比表面積が大きいため、Al粉末の焼結性が高められる。従って、上記Alが分散されている成形体は、1100〜1200℃の低温において焼結されることができ、しかも高密度な焼結体を得ることが可能となる。なお、1200℃以上の温度で焼成した場合であっても、従来のMnを主成分とするスピネル系複合酸化物半導体磁器に比べて空隙率を大幅に少なくすることができ、密度を高めることができる。
【0018】
Al粉末の平均一次粒子径が0.3μmよりも大きい場合には、あるいは比表面積が10m/gよりも小さい場合には、焼成前の成形体中でAlが偏析する。また、例え、平均一次粒子径が0.3μm以下であっても、比表面積が10m/gよりも小さい場合は、Alの粒度分布が広くなり、粗粒が存在することとなる。この場合も、やはり焼成前の成形体中においてAlの偏析が生じる。
【0019】
他方、平均一次粒子径が0.05μmよりも小さい場合、あるいは比表面積が80m/gよりも大きい場合には、一次凝集が強くなり、焼成前の成形体中においてAlが偏析し、同様の問題が生じる。
【0020】
本発明では、先ず、上記Al粉末と、Mn化合物粉末とを含む組成物が用意される。この場合、Mn化合物としては、MnなどのMn酸化物、あるいはMn酸化物以外の他のMn含有化合物を用いることができる。
【0021】
なお、上記Al粉末を構成するAlは、α−Alあるいはγ−Alのいずれを用いてもよい。
上記出発原料としての組成物中には、Al粉末及びMn化合物粉末以外に、他の材料が添加されてもよい。すなわち、前述したように、半導体磁器が、Mn以外の遷移金属元素や、Mg、Zn、Zrなどを含む場合、これらの化合物粉末を上記組成物に添加すればよい。またこれらの元素を添加する場合、これらの元素の酸化物が好適に用いられるが、酸化物以外の化合物を用いてもよい。
【0022】
なお、Al粉末は、通常、不純物としてNaを含んでいる。この場合、Na含有割合が、NaOに換算して0.01重量%以下である場合には、後述の実験例から明らかなように、高湿度下におけるNaのイオン下によるマイグレーションを抑制することができる。従って、負特性サーミスタの信頼性を高めることができる。
【0023】
次に、上記組成物が焼成され、半導体磁器が得られる。焼成温度は1100〜1200℃の比較的低い温度とすることができる。また、前述したように、1200℃以上の温度でも焼成を行ってもよい。
【0024】
本発明において、半導体磁器の外表面に複数の外部電極を形成する工程については、導電ペースト・焼付け、蒸着またはスパッタリングなどの適宜の方法を用いて行ない得る。
【0025】
本発明に係る負特性サーミスタは、本発明に係る製造方法により得られるが、その構造は特に限定されない。すなわち、半導体磁器の外表面に複数の外部電極が形成されているサーミスタであってもよく、あるいは複数の内部電極が半導体磁器内に配置されている積層型のサーミスタであってもよい。積層型のサーミスタを得る場合には、上記半導体磁器を得る工程において、複数の内部電極が上記組成物からなる層を介して積層されている積層体を用意し、該積層体を焼成することにより、複数の内部電極が積層されている積層型の半導体磁器を形成すればよい。
【0026】
【発明の実施の形態】
以下、本発明に係る負特性サーミスタの製造方法の具体的な実施例を説明することにより、本発明を明らかにする。
【0027】
(実施例1)
Mn粉末、Al粉末、NiO粉末を、Mn、Al及びNiの原子比率として、0.75:0.05:0.20の割合となるように秤量し、ボールミルにより24時間湿式混合した。なお、Al粉末としては、平均一次粒子径と比表面積とが異なる表1に示した複数種のAl粉末を用い、表1の試料番号1〜9の各組成物を用意した。
【0028】
但し、各Al粉末に不純物として含まれているNa量は、NaOに換算して0.005重量%含有率となるように予め調整しておいた。
試料番号1〜9の各組成物を、900℃で2時間仮焼し、ボールミルにより再度粉砕した。次に、粉砕された仮焼原料に対し、ポリカルボン酸系分散剤を3重量%混合し、24時間混合した後、アクリル系樹脂からなる有機バインダーを25重量%、可塑材としてポリオキシエチレンを0.75重量%添加し、15時間混合した。このようにして、スラリーを得た。得られたスラリーをドクターブレード法により成形し、厚み40μmのセラミックグリーンシートを得た。
【0029】
上記セラミックグリーンシートを矩形形状に切断した後、Pd電極ペーストをスクリーン印刷し、内部電極パターンを形成した。内部電極パターンが形成されたセラミックグリーンシートを積層し、上下に無地の上記セラミックグリーンシートを積層し、加圧し、マザーの積層体を得た。
【0030】
得られたマザーの積層体を厚み方向に切断し、個々のサーミスタ単位の積層体を得た。上記積層体を大気中にて加熱し、バインダー処理した後、大気中で1100℃で2時間維持するようにして焼成を行った。このようにして、図1に示す焼結体1を得た。焼結体1では、複数の内部電極2,3が半導体セラミック層1aを介して重なり合うように配置されている。すなわち、積層型の焼結体1が構成されている。
【0031】
内部電極2,3は、それぞれ、焼結体1の端面1b,1cに引き出されている。焼結体1の端面1b,1c上に、Agペーストを塗布し、焼付けることにより、外部電極4,5を形成し、それによって図1に示されている、積層型の負特性サーミスタ6を得た。
【0032】
上記のようにして得られた試料番号1〜9の各負特性サーミスタを、それぞれ100個ランダムにサンプリングした。サンプリングされた100個の負特性サーミスタについて、温度25℃における抵抗値(R25)と、50℃における抵抗値(R50)とを測定し、B定数(B25/50)を求めた。なお、B定数は25℃における抵抗値R25と50℃における抵抗値R50とから下記の式(1)により求めた。さらに、B定数B25/50の各ばらつき3CV(%)を式(2)により求めた。
【0033】
B定数(K)=[InR25(Ω)−InR50(Ω)]/(1/298.15  −1/323.15)            ・・・(1)
3CV(%)=300×(標準偏差)/(平均値)      ・・・(2)
次に、125℃の恒温槽の中に1000時間、負特性サーミスタを放置し、自然冷却により冷却し、25℃における抵抗値を求めた。上記125℃に放置する前の25℃における抵抗値R25に対する放置前後の25℃における抵抗値の変化ΔR25の割合、ΔR25/R25を計算した。
【0034】
また、上記試料番号1〜9の負特性サーミスタを、鏡面研磨し、研磨表面をSEM(走査型電子顕微鏡)で観察し、画像解析により空隙の面積の合計を求め、空隙率を計算した。また、試料番号1〜9の比抵抗値ρ(25)の平均値、及び比抵抗値のばらつき3CVを測定した。結果を下記の表1に示す。なお、表1において、*が付された試料は本発明の範囲外の試料であることを示す。
【0035】
【表1】

Figure 2004104093
【0036】
表1から明らかなように、本発明の範囲に属する試料番号3〜7で得られた各負特性サーミスタでは、Al粉末の平均一次粒子径が0.05〜0.3μmの範囲にあり、かつ比表面積が10〜80m/gの範囲にあるため、初期特性のばらつきが小さく、高温放置試験前後の抵抗値変化率ΔR25/R25が1%未満であり、高温下における経時による特性の変化が非常に小さいことがわかる。また、空隙率も、試料番号1,2,8,9の負特性サーミスタに比べて、試料番号3〜7の負特性サーミスタでは低いことがわかる。
【0037】
(実施例2)
実施例1と同様にして、但し、Al粉末の平均一次粒子径及び比表面積並びに焼成温度を下記の表2に示すように変更したことを除いては、実施例1と同様にして表2に示す試料番号10〜19の各負特性サーミスタを得た。
【0038】
このようにして得られた各負特性サーミスタについて、実施例1の場合と同様にして空隙率を求めた。
なお、表2における試料番号10は、表1の試料番号6と同じである。
【0039】
【表2】
Figure 2004104093
【0040】
表2から明らかなように、試料番号10,12,14,16,18では、Al粉末として、本発明の範囲に属する平均一次粒子径及び比表面積を有するものを用いているため、焼成温度が1100℃、1150℃、1200℃、1250℃及び1300℃のいずれにおいても、Al粉末の平均一次粒子径及び比表面積が本発明の範囲外である試料番号11,13,15,17,19に比べて、空隙率を著しく低くし得ることがわかる。すなわち、Alの焼結性が高められているため、本発明によれば高温で焼成した場合であっても、焼結密度の高い半導体磁器の得られることがわかる。
【0041】
(実施例3)
Mn、Al、TiO、VO、Fe、Co、NiO、CuO、MgCO、ZnO及びZrOの各粉末を、表3に示す原子比率となるように秤量し、ボールミルで24時間湿式混合し、試料番号20〜43の各組成物を得た。
【0042】
なお、試料番号20〜31で用いられているAl粉末の平均一次粒子径は0.1μmであり、比表面積は40m/gである。また、これらの試料番号の試料では、Al中のNa量は、NaOに換算して0.001重量%となるように予め調整しておいた。
【0043】
他方、試料番号32〜43では、Al粉末の平均一次粒子径は0.5μmであり、比表面積は6m/gとした。また、Al粉末中のNa量は、全てNaOに換算して0.005重量%となるように調整しておいた。
【0044】
上記のようにして用意された試料番号20〜43の各組成物を用いたことを除いては、実施例1と同様にして負特性サーミスタを得、評価した。結果を下記の表3に示す。
【0045】
【表3】
Figure 2004104093
【0046】
表3から明らかなように、本発明の範囲外に入る試料番号32〜43に比べて、試料番号20〜31では、初期特性のばらつきが小さく、かつ高温放置試験前後の抵抗値変化率ΔR25/R25が1%未満と小さいことがわかる。また、空隙率についても、試料番号32〜43の負特性サーミスタの場合に比べて、試料番号20〜31では1/3〜1/20まで低くなり、従って焼結体の緻密性が高められていることがわかる。
【0047】
(実施例4)
Mn、NiO、Co、Al、Fe及びCuOを、Mn、Ni、Al、Fe、Co及びCuが下記の割合となるように秤量し、ボールミルで24時間湿式混合し、試料番号44〜75の各組成物を得た。
【0048】
なお、Al粉末の平均一次粒子径は0.1μm、比表面積30m/gとした。また、Al粉末中に含まれるNa量は、Alに対して下記の表4に示すように重量%となるよう、調整しておいた。
【0049】
上記各試料番号44〜75の組成物を用いたことを除いては、実施例1と同様にして負特性サーミスタを得、評価した。
もっとも、実施例4では、評価に際して、125℃の恒温槽に代えて、85℃及び相対湿度85%の恒温恒湿槽中に1000時間、負特性サーミスタを放置し、放置前後の温度25℃における抵抗値の変化率ΔR25/R25、比抵抗ρのばらつき、及び空隙率を求めた。結果を下記の表4に示す。
【0050】
【表4】
Figure 2004104093
【0051】
表4から明らかなように、Al粉末のNa含有量が、NaOに換算して0.01重量%以下である、試料番号44,45,48,49,52,53,56,57,60,61,64,65,68,69,72,73では、対応する残りの試料番号の組成物を用いた場合に比べて、初期特性のばらつきが一層小さく、湿中放置試験前後の抵抗値変化率ΔR25/R25が1%未満と小さく、非常に安定していることがわかる。もっとも、Al粉末の平均一次粒子径及び比表面積が本発明の範囲に入るため、試料番号46,47,50,51,54,55,58,59,62,63,66,67,70,71,74,75においても25℃の抵抗値のばらつき3CVは小さく、空隙率も低いことがわかる。
【0052】
(実施例5)
Mn、Al、TiO、VO、Cr、Fe、Co、NiO、CuO、MgCO、ZnO及びZrOの各粉末を、下記の表5に示す原子比率となるように秤量し、ボールミルを用いて24時間湿式混合し、試料番号76〜101の各組成物を得た。
【0053】
なお、Al粉末の平均一次粒子径は0.2μm、比表面積は25m/gとした。また、試料番号76〜88まではAl粉末中のNa含有量は、0.005重量%となるように調整し、試料番号89〜101まではAl粉末中のNa含有量は0.1重量%となるようにし、以下、実施例1と同様にして、負特性サーミスタを得た。上記のようにして得られた負特性サーミスタの評価を実施例4と同様にして行った。結果を下記の表5に示す。
【0054】
【表5】
Figure 2004104093
【0055】
表5から明らかなように、Al粉末中のNa含有量がNaOに換算して0.01重量%より低い場合には、いずれの組成系の試料においても初期特性のはらつきが小さく、かつ湿中放置試験前後の抵抗値変化率(ΔR25/R25)が1%未満であり、非常に安定していることがわかる。
【0056】
【発明の効果】
以上のように、本発明に係る負特性サーミスタの製造方法では、平均一次粒子径が0.05〜0.3μm、かつ比表面積が10〜80m/gの範囲にあるAl粉末を出発原料に添加することにより、焼成前の成形体においてAlが高分散し、焼成後の焼結体においてAlがスピネル相に均一に固溶する。従って、Mnを主成分とするスピネル系複合酸化物からなる半導体磁器を用いた負特性サーミスタの製造に際し、初期特性のばらつきを低減でき、良品率を高めることができる。また、比較的低温で焼成することができるため、負特性サーミスタのコストを低減することができるとともに、電極材料の選択範囲を広げることができ、さらに熱履歴変化を小さくすることができる。さらに、Alが均一に分散するため、焼結性が高められ、より高密度な焼結体を得ることができる。
【0057】
さらに、本発明において、Al粉末中のNa含有量を0.01重量%以下とした場合には、高湿度環境下におかれた場合においても、Naのイオン化によるマイグレーションが生じ難いため、高湿度環境下における経時による特性の変化が少ない負特性サーミスタを提供することができる。これらの効果によって本発明によれば、高温中及び高湿中における抵抗の変化率を1%以下にでき、かつ、空隙率を本発明の範囲外のものと比較して1/3〜1/20程度まで低下させ、高密度化することが可能となる。
【図面の簡単な説明】
【図1】本発明の具体的な実施例で得られる負特性サーミスタの構造を示す断面図。
【符号の説明】
1…焼結体
1a…半導体セラミック層
2,3…内部電極
4,5…外部電極
6…負特性サーミスタ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a negative temperature coefficient thermistor and a negative temperature coefficient thermistor used for temperature detection and temperature compensation, and more particularly, to a negative temperature coefficient thermistor in which a process for obtaining a semiconductor ceramic exhibiting a negative resistance temperature characteristic is improved. It relates to a manufacturing method.
[0002]
[Prior art]
In recent years, it has been required for a negative characteristic thermistor used for temperature compensation and temperature detection to suppress a resistance deviation to ± 1% or less. Conventionally, semiconductor porcelain constituting this type of negative characteristic thermistor includes Mn, a transition metal element other than Mn such as Ti, V, Fe, Co, Ni, Cu, and at least one of Mg, Al, Zn and Zr. Spinel-based composite oxides composed of solid solutions with various elements have been used.
[0003]
The electrical conductivity of the spinel-based composite oxide containing Mn as a main component is such that Mn 3+ and Mn 4+ adjacent to each other at the B site among the A site (tetrahedral site) and the B site (octahedral site) in the spinel phase. This is caused by hopping of a hole between. When Al is added to such a composite oxide, Al selectively forms a solid solution at the B site of the spinel phase. Therefore, the hopping of the hole between Mn 3+ and Mn 4+ is inhibited, that is, the probability of hopping is reduced.
[0004]
Therefore, conventionally, it has been known that the resistance temperature characteristic can be continuously and easily changed by controlling the addition amount of Al.
For the above reasons, spinel-based composite oxides containing Mn as a main component and containing Al are widely used. (Patent Document 1)
[0005]
[Patent Document 1]
JP-A-3-279252 [0006]
[Problems to be solved by the invention]
In order to obtain a spinel-based composite oxide porcelain containing Mn as a main component, Al 2 O 3 powder is generally used to contain Al. However, Al 2 O 3 powder is highly dispersed in a mixed raw material. Therefore, it was very difficult to highly disperse Al 2 O 3 in a molded body stage before firing. Therefore, in the semiconductor porcelain obtained by sintering the above-mentioned molded body, Al is hardly uniformly dissolved in the B site of the spinel phase, and therefore, there is a problem that the characteristic variation becomes large and the reliability is lowered. there were.
[0007]
The Al 2 O 3 powder usually contains a small amount of Na as an impurity. Therefore, in the above-mentioned semiconductor porcelain obtained using Al 2 O 3 as a starting material, there is a problem that Na is ionized in a high-temperature and high-humidity environment and migration occurs, resulting in a large change in characteristics.
[0008]
Furthermore, since Al 2 O 3 is difficult to sinter, when firing the above-mentioned compact containing Al 2 O 3 to obtain a semiconductor porcelain, the firing temperature must be increased. In addition, the density was not sufficiently increased, and a dense semiconductor porcelain could not be obtained.
[0009]
An object of the present invention is to provide a method for manufacturing a negative temperature coefficient thermistor using a semiconductor porcelain made of a spinel-based composite oxide containing Mn as a main component and containing Al, which solves the above-mentioned disadvantages of the prior art. It is an object of the present invention to provide a method for manufacturing a negative temperature coefficient thermistor which can obtain a semiconductor ceramic by firing at a low temperature, and in which the characteristics of the obtained negative temperature coefficient thermistor under an environment of high temperature and high humidity are small with time.
[0010]
[Means for Solving the Problems]
According to a broad aspect of the present invention, a composition comprising an Al 2 O 3 powder having an average primary particle diameter of 0.05 to 0.3 μm and a specific surface area of 10 to 80 m 2 / g, and a Mn compound powder Preparing a semiconductor ceramic made of a spinel-based composite oxide containing Mn and Al, and a step of forming a plurality of external electrodes on an outer surface of the semiconductor ceramic. And a method of manufacturing a negative characteristic thermistor.
[0011]
In a specific aspect of the production method of the present invention, the Al 2 O 3 powder contains Na as an impurity in a proportion of 0.01% by weight or less in terms of Na 2 O. In this case, since the content ratio of Na as an impurity is reduced, a change with time in characteristics under high temperature and high humidity can be further reduced.
[0012]
Although the method for manufacturing a negative temperature coefficient thermistor according to the present invention can be used for negative temperature coefficient thermistors having various structures, in a specific aspect of the present invention, in the step of obtaining the semiconductor ceramic, a plurality of internal electrodes have the above composition. A laminate-type molded body overlapping with a layer made of a product is obtained, and the laminate is fired to obtain a laminate-type semiconductor ceramic. Therefore, according to the present invention, a stacked negative temperature coefficient thermistor can be provided.
[0013]
Hereinafter, details of the present invention will be described.
As described above, the feature of the present invention is that, when manufacturing a negative temperature coefficient thermistor using a semiconductor ceramic made of a spinel-based composite oxide containing at least Mn and Al, the average primary particle diameter is 0.05 to 0.3 μm. Al is compounded by using Al 2 O 3 having a specific surface area of 10 to 80 m 2 / g as a part of the starting material.
[0014]
In the spinel-based composite oxide semiconductor ceramic according to the present invention, other elements may be added as described above as long as Mn is the main component and Al is included. Therefore, as semiconductor porcelain, Mn-Ni-Al, Mn-Ni-Co-Al, Mn-Ni-Cu-Al, Mn-Ni-Fe-Al, Mn-Co-Al, Mn- Semiconductor ceramics such as Co-Cu-Al-based and Mn-Co-Fe-Al-based are exemplified. Further, the semiconductor porcelain may be composed of only one kind of each of these semiconductor porcelains, may be a solid solution thereof, or may be a mixed crystal of one or more kinds of semiconductor porcelains.
[0015]
In the present invention, as a starting material, 10~95Mol% in terms of Mn compound powder in the amount of Mn, preferably contains 0.05~30Mol% in terms of Al 2 O 3 powder in the amount of Al . Further, it is preferable that Ni is contained as a subcomponent, and the content is preferably 0 to 45 mol%. Further, it is preferable that Fe, Co, Cu, Ti, V, Mg, Zn, and Zr are contained as subcomponents, and the contents are as follows: Fe is 0 to 35 mol%, Co is 0 to 65 mol%, and Cu is 0-25 mol%, Ti is 0-10 mol%, V is 0-10 mol%, Mg is 0-10 mol%, Zn is 0-10 mol%, and Zr is preferably 0-10 mol%. When each of these components is contained in the above-described range, the effect when the Al 2 O 3 powder is finely divided in the above-described range and the Na content is reduced to be in the above-described range is remarkable. appear.
[0016]
In the present invention, by using Al 2 O 3 powder having a specific average particle diameter and a specific specific surface area as a part of the starting material as described above, Al can be highly dispersed in the molded body before firing. Further, in the sintered body, Al is uniformly dissolved in the B site of the spinel phase. Therefore, compared to the conventional negative characteristic thermistor, the initial variation of the electrical characteristics is reduced, and the change in the thermal history can be further reduced. Further, the change in characteristics under a high humidity environment and a high temperature environment is small, and a highly reliable negative characteristic thermistor can be obtained.
[0017]
Further, since the particle size of the Al 2 O 3 powder is small and the specific surface area is large, the sinterability of the Al 2 O 3 powder is enhanced. Therefore, the compact in which Al 2 O 3 is dispersed can be sintered at a low temperature of 1100 to 1200 ° C., and a high-density sintered body can be obtained. In addition, even when firing at a temperature of 1200 ° C. or more, the porosity can be significantly reduced as compared with the conventional spinel-based composite oxide semiconductor ceramic containing Mn as a main component, and the density can be increased. it can.
[0018]
When the average primary particle diameter of the Al 2 O 3 powder is larger than 0.3 μm, or when the specific surface area is smaller than 10 m 2 / g, Al segregates in the compact before firing. Also, even if the average primary particle diameter is 0.3 μm or less, if the specific surface area is smaller than 10 m 2 / g, the particle size distribution of Al 2 O 3 becomes wide, and coarse particles are present. . Also in this case, Al segregation also occurs in the compact before firing.
[0019]
On the other hand, when the average primary particle size is smaller than 0.05 μm, or when the specific surface area is larger than 80 m 2 / g, the primary agglomeration becomes strong, Al segregates in the molded body before firing, and the same Problems arise.
[0020]
In the present invention, first, a composition containing the Al 2 O 3 powder and a Mn compound powder is prepared. In this case, as the Mn compound, a Mn oxide such as Mn 3 O 4 or a Mn-containing compound other than the Mn oxide can be used.
[0021]
Incidentally, Al 2 O 3 constituting the Al 2 O 3 powder may be any of α-Al 2 O 3 or γ-Al 2 O 3.
In the composition as the starting material, other materials may be added in addition to the Al 2 O 3 powder and the Mn compound powder. That is, as described above, when the semiconductor porcelain contains a transition metal element other than Mn, Mg, Zn, Zr, etc., these compound powders may be added to the composition. When these elements are added, oxides of these elements are preferably used, but compounds other than oxides may be used.
[0022]
Note that the Al 2 O 3 powder usually contains Na as an impurity. In this case, when the Na content ratio is 0.01% by weight or less in terms of Na 2 O, as apparent from an experimental example described later, migration under Na ions under high humidity is suppressed. be able to. Therefore, the reliability of the negative characteristic thermistor can be improved.
[0023]
Next, the composition is fired to obtain a semiconductor porcelain. The firing temperature can be a relatively low temperature of 1100 to 1200 ° C. Further, as described above, firing may be performed at a temperature of 1200 ° C. or higher.
[0024]
In the present invention, the step of forming a plurality of external electrodes on the outer surface of the semiconductor porcelain can be performed using an appropriate method such as conductive paste, baking, vapor deposition or sputtering.
[0025]
The negative temperature coefficient thermistor according to the present invention is obtained by the manufacturing method according to the present invention, but the structure is not particularly limited. That is, the thermistor may be a thermistor having a plurality of external electrodes formed on the outer surface of the semiconductor porcelain, or may be a stacked thermistor having a plurality of internal electrodes disposed in the semiconductor porcelain. In the case of obtaining a laminated thermistor, in the step of obtaining the semiconductor ceramic, a laminate in which a plurality of internal electrodes are laminated via a layer made of the composition is prepared, and the laminate is fired. In this case, a stacked semiconductor ceramic in which a plurality of internal electrodes are stacked may be formed.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be clarified by describing specific examples of a method for manufacturing a negative characteristic thermistor according to the present invention.
[0027]
(Example 1)
Mn 3 O 4 powder, Al 2 O 3 powder, and NiO powder were weighed so that the atomic ratio of Mn, Al, and Ni was 0.75: 0.05: 0.20, and the ball mill was used for 24 hours. Wet mixed. In addition, as the Al 2 O 3 powder, a plurality of types of Al 2 O 3 powders shown in Table 1 having different average primary particle diameters and specific surface areas were used, and respective compositions of Sample Nos. 1 to 9 in Table 1 were prepared. did.
[0028]
However, the amount of Na contained as an impurity in each Al 2 O 3 powder was previously adjusted so as to be 0.005% by weight in terms of Na 2 O.
Each composition of Sample Nos. 1 to 9 was calcined at 900 ° C. for 2 hours and pulverized again by a ball mill. Next, 3% by weight of a polycarboxylic acid-based dispersant was mixed with the ground calcined raw material and mixed for 24 hours. Then, 25% by weight of an organic binder made of an acrylic resin and polyoxyethylene as a plasticizer were added. 0.75% by weight was added and mixed for 15 hours. Thus, a slurry was obtained. The obtained slurry was formed by a doctor blade method to obtain a ceramic green sheet having a thickness of 40 μm.
[0029]
After cutting the ceramic green sheet into a rectangular shape, a Pd electrode paste was screen-printed to form an internal electrode pattern. The ceramic green sheets on which the internal electrode patterns were formed were laminated, and the plain ceramic green sheets were laminated vertically and pressed to obtain a mother laminate.
[0030]
The obtained mother laminate was cut in the thickness direction to obtain a laminate of individual thermistor units. After heating the above-mentioned laminated body in air | atmosphere and performing a binder process, baking was performed so that it may be maintained at 1100 degreeC in air | air for 2 hours. Thus, the sintered body 1 shown in FIG. 1 was obtained. In the sintered body 1, a plurality of internal electrodes 2 and 3 are arranged so as to overlap with each other via a semiconductor ceramic layer 1a. That is, the laminated sintered body 1 is configured.
[0031]
The internal electrodes 2 and 3 are drawn out to end surfaces 1b and 1c of the sintered body 1, respectively. The external electrodes 4 and 5 are formed by applying and baking an Ag paste on the end surfaces 1b and 1c of the sintered body 1, thereby forming the laminated negative characteristic thermistor 6 shown in FIG. Obtained.
[0032]
Each of the negative characteristic thermistors of Sample Nos. 1 to 9 obtained as described above was randomly sampled. The resistance value (R 25 ) at a temperature of 25 ° C. and the resistance value (R 50 ) at a temperature of 50 ° C. were measured for the 100 sampled negative characteristic thermistors, and the B constant (B 25/50 ) was obtained. Incidentally, B constant was determined by the equation (1) below from the resistance value R 50 Metropolitan in resistance R 25 and 50 ° C. at 25 ° C.. Further, a variation 3CV (%) of each of the B constant B 25/50 was determined by the equation (2).
[0033]
B constant (K) = [InR 25 (Ω) −InR 50 (Ω)] / (1 / 298.15−1 / 323.15) (1)
3CV (%) = 300 × (standard deviation) / (average value) (2)
Next, the negative characteristic thermistor was left in a thermostat at 125 ° C. for 1000 hours, cooled by natural cooling, and the resistance value at 25 ° C. was determined. The ratio of the change ΔR 25 in resistance value at 25 ° C. before and after standing to the resistance value R 25 at 25 ° C. before leaving at 125 ° C., ΔR 25 / R 25 was calculated.
[0034]
The negative characteristic thermistors of Sample Nos. 1 to 9 were mirror-polished, the polished surface was observed with a scanning electron microscope (SEM), and the total area of the voids was obtained by image analysis to calculate the porosity. Further, the average value of the specific resistance values ρ (25) of the sample numbers 1 to 9 and the variation 3 CV of the specific resistance values were measured. The results are shown in Table 1 below. In Table 1, a sample marked with * indicates a sample outside the scope of the present invention.
[0035]
[Table 1]
Figure 2004104093
[0036]
As is clear from Table 1, in each of the negative characteristic thermistors obtained in Sample Nos. 3 to 7 belonging to the range of the present invention, the average primary particle diameter of the Al 2 O 3 powder is in the range of 0.05 to 0.3 μm. And the specific surface area is in the range of 10 to 80 m 2 / g, the variation in initial characteristics is small, the rate of change in resistance ΔR 25 / R 25 before and after the high-temperature storage test is less than 1%, and the aging at high temperatures It can be seen that the change in the characteristics due to is very small. Further, it can be seen that the porosity is lower in the negative thermistors of Sample Nos. 3 to 7 than in the negative thermistors of Sample Nos. 1, 2, 8, and 9.
[0037]
(Example 2)
As in Example 1, except that the average primary particle diameter and specific surface area of Al 2 O 3 powder and the sintering temperature were changed as shown in Table 2 below. The respective negative characteristic thermistors of Sample Nos. 10 to 19 shown in Table 2 were obtained.
[0038]
The porosity of each of the negative thermistors thus obtained was determined in the same manner as in Example 1.
The sample number 10 in Table 2 is the same as the sample number 6 in Table 1.
[0039]
[Table 2]
Figure 2004104093
[0040]
As is clear from Table 2, in Sample Nos. 10, 12, 14, 16, and 18, Al 2 O 3 powders having an average primary particle diameter and a specific surface area belonging to the range of the present invention are used. Sample Nos. 11, 13, and 15 in which the average primary particle diameter and the specific surface area of the Al 2 O 3 powder were out of the range of the present invention at any of the firing temperatures of 1100 ° C., 1150 ° C., 1200 ° C., 1250 ° C., and 1300 ° C. , 17, and 19, the porosity can be significantly reduced. That is, since the sinterability of Al 2 O 3 is enhanced, it can be seen that according to the present invention, a semiconductor ceramic having a high sintered density can be obtained even when firing at a high temperature.
[0041]
(Example 3)
Each powder of Mn 3 O 4 , Al 2 O 3 , TiO 2 , VO 2 , Fe 2 O 3 , Co 3 O 4 , NiO, CuO, MgCO 3 , ZnO and ZrO 2 has an atomic ratio shown in Table 3. And weighed in a ball mill for 24 hours to obtain the compositions of Sample Nos. 20 to 43.
[0042]
The average primary particle diameter of the Al 2 O 3 powder used in Sample Nos. 20 to 31 was 0.1 μm, and the specific surface area was 40 m 2 / g. In the samples of these sample numbers, the amount of Na in Al 2 O 3 was adjusted in advance to be 0.001% by weight in terms of Na 2 O.
[0043]
On the other hand, in sample numbers 32 to 43, the average primary particle diameter of the Al 2 O 3 powder was 0.5 μm, and the specific surface area was 6 m 2 / g. Further, the amount of Na in the Al 2 O 3 powder was all adjusted to be 0.005% by weight in terms of Na 2 O.
[0044]
A negative-characteristic thermistor was obtained and evaluated in the same manner as in Example 1, except that the compositions of Sample Nos. 20 to 43 prepared as described above were used. The results are shown in Table 3 below.
[0045]
[Table 3]
Figure 2004104093
[0046]
As apparent from Table 3, compared to Sample No. 32 to 43 falling outside the scope of the present invention, Sample No. 20-31, variations in initial characteristics is small and before and after the high temperature storage test resistance change rate [Delta] R 25 / R 25 it can be seen that the less than 1% smaller. Also, the porosity is reduced to 1/3 to 1/20 in the sample numbers 20 to 31 as compared with the case of the negative characteristic thermistors of the sample numbers 32 to 43, so that the denseness of the sintered body is increased. You can see that there is.
[0047]
(Example 4)
Mn 3 O 4 , NiO, Co 3 O 4 , Al 2 O 3 , Fe 2 O 3 and CuO were weighed so that Mn, Ni, Al, Fe, Co and Cu had the following ratios, and were weighed with a ball mill. After wet mixing for hours, each composition of sample numbers 44 to 75 was obtained.
[0048]
The average primary particle diameter of the Al 2 O 3 powder was 0.1 μm, and the specific surface area was 30 m 2 / g. In addition, the amount of Na contained in the Al 2 O 3 powder was adjusted so as to be weight% with respect to Al 2 O 3 as shown in Table 4 below.
[0049]
A negative temperature coefficient thermistor was obtained and evaluated in the same manner as in Example 1 except that the compositions of Sample Nos. 44 to 75 were used.
However, in Example 4, at the time of evaluation, the negative characteristic thermistor was left for 1000 hours in a constant temperature and humidity chamber of 85 ° C. and 85% relative humidity instead of the constant temperature of 125 ° C. The rate of change of the resistance value ΔR 25 / R 25 , the variation in the specific resistance ρ, and the porosity were determined. The results are shown in Table 4 below.
[0050]
[Table 4]
Figure 2004104093
[0051]
As is clear from Table 4, Sample Nos. 44, 45, 48, 49, 52, 53, 56 in which the Na content of the Al 2 O 3 powder is 0.01% by weight or less in terms of Na 2 O. , 57, 60, 61, 64, 65, 68, 69, 72, and 73, the variation in the initial characteristics was smaller than when the compositions of the corresponding remaining sample numbers were used. It can be seen that the resistance change rate ΔR 25 / R 25 is small, less than 1%, and is very stable. However, since the average primary particle diameter and the specific surface area of the Al 2 O 3 powder fall within the range of the present invention, sample numbers 46, 47, 50, 51, 54, 55, 58, 59, 62, 63, 66, 67, 70, 71, 74, and 75 also show that the resistance value variation 3CV at 25 ° C. is small and the porosity is low.
[0052]
(Example 5)
Each powder of Mn 3 O 4 , Al 2 O 3 , TiO 2 , VO 2 , Cr 2 O 3 , Fe 2 O 3 , Co 3 O 4 , NiO, CuO, MgCO 3 , ZnO and ZrO 2 was prepared by using the following table. 5 were weighed so as to have an atomic ratio shown in FIG. 5, and wet-mixed using a ball mill for 24 hours to obtain each composition of Sample Nos. 76 to 101.
[0053]
The average primary particle diameter of the Al 2 O 3 powder was 0.2 μm, and the specific surface area was 25 m 2 / g. Further, the Na content in the Al 2 O 3 powder was adjusted to be 0.005% by weight for sample numbers 76 to 88, and the Na content in the Al 2 O 3 powder was adjusted for sample numbers 89 to 101. Was set to 0.1% by weight, and a negative thermistor was obtained in the same manner as in Example 1. The negative characteristic thermistor obtained as described above was evaluated in the same manner as in Example 4. The results are shown in Table 5 below.
[0054]
[Table 5]
Figure 2004104093
[0055]
As is apparent from Table 5, when the Na content in the Al 2 O 3 powder is lower than 0.01% by weight in terms of Na 2 O, the initial characteristics of the samples of any composition system vary. Is small, and the rate of change in resistance (ΔR 25 / R 25 ) before and after the wet test is less than 1%, indicating that the sample is extremely stable.
[0056]
【The invention's effect】
As described above, in the method for producing a negative temperature coefficient thermistor according to the present invention, the Al 2 O 3 powder having an average primary particle diameter of 0.05 to 0.3 μm and a specific surface area of 10 to 80 m 2 / g is used. By adding to the starting material, Al is highly dispersed in the molded body before firing, and Al is uniformly dissolved in the spinel phase in the sintered body after firing. Therefore, when manufacturing a negative-characteristic thermistor using a semiconductor ceramic made of a spinel-based composite oxide containing Mn as a main component, variation in initial characteristics can be reduced, and the yield rate can be increased. Further, since the firing can be performed at a relatively low temperature, the cost of the negative temperature coefficient thermistor can be reduced, the selection range of the electrode material can be widened, and the change in the thermal history can be further reduced. Furthermore, since Al is uniformly dispersed, sinterability is enhanced, and a higher density sintered body can be obtained.
[0057]
Furthermore, in the present invention, when the Na content in the Al 2 O 3 powder is set to 0.01% by weight or less, migration due to Na ionization hardly occurs even in a high humidity environment. In addition, it is possible to provide a negative-characteristic thermistor having a small change in characteristics over time in a high-humidity environment. Due to these effects, according to the present invention, the rate of change of resistance in high temperature and high humidity can be made 1% or less, and the porosity is 1/3 to 1 / The density can be reduced to about 20 and the density can be increased.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a structure of a negative temperature coefficient thermistor obtained in a specific embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sintered body 1a ... Semiconductor ceramic layer 2, 3 ... Internal electrode 4, 5 ... External electrode 6 ... Negative characteristic thermistor

Claims (4)

平均一次粒子径が0.05〜0.3μmであり、比表面積が10〜80m/gであるAl粉末と、Mn化合物粉末とを含む組成物を用意する工程と、
前記組成物を焼成し、Mn及びAlを含むスピネル系複合酸化物よりなる半導体磁器を得る工程と、
前記半導体磁器の外表面に複数の外部電極を形成する工程とを備える、負特性サーミスタの製造方法。
A step of preparing a composition comprising an Al 2 O 3 powder having an average primary particle diameter of 0.05 to 0.3 μm and a specific surface area of 10 to 80 m 2 / g, and a Mn compound powder;
Baking the composition to obtain a semiconductor porcelain made of a spinel-based composite oxide containing Mn and Al;
Forming a plurality of external electrodes on an outer surface of the semiconductor porcelain.
前記Al粉末が、不純物として、NaをNaOに換算して0.01重量%以下の割合で含む、請求項1に記載の負特性サーミスタの製造方法。The Al 2 O 3 powder, as impurities, containing Na in a proportion of 0.01 wt% or less in terms of Na 2 O, The method of preparing a negative temperature coefficient thermistor of claim 1. 前記半導体磁器を得る工程において、複数の内部電極が前記組成物からなる層を介して積層されている積層体を用意し、該積層体を焼成することにより、複数の内部電極が積層されている積層型の半導体磁器が得られる、請求項1または2に記載の負特性サーミスタの製造方法。In the step of obtaining the semiconductor ceramic, a plurality of internal electrodes are stacked by preparing a laminate in which a plurality of internal electrodes are laminated via a layer made of the composition, and firing the laminate. 3. The method for manufacturing a negative characteristic thermistor according to claim 1, wherein a laminated semiconductor ceramic is obtained. 請求項1〜3のいずれかの製造方法により得られた負特性サーミスタ。A negative characteristic thermistor obtained by the method according to claim 1.
JP2003197864A 2002-07-16 2003-07-16 Manufacturing method of negative characteristic thermistor Expired - Lifetime JP4029170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003197864A JP4029170B2 (en) 2002-07-16 2003-07-16 Manufacturing method of negative characteristic thermistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002206876 2002-07-16
JP2003197864A JP4029170B2 (en) 2002-07-16 2003-07-16 Manufacturing method of negative characteristic thermistor

Publications (2)

Publication Number Publication Date
JP2004104093A true JP2004104093A (en) 2004-04-02
JP4029170B2 JP4029170B2 (en) 2008-01-09

Family

ID=32300246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197864A Expired - Lifetime JP4029170B2 (en) 2002-07-16 2003-07-16 Manufacturing method of negative characteristic thermistor

Country Status (1)

Country Link
JP (1) JP4029170B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032855A (en) * 2004-07-21 2006-02-02 Tdk Corp Thermistor composite and thermistor element
US7548149B2 (en) 2005-02-08 2009-06-16 Murata Manufacturing Co., Ltd. Surface-mount negative-characteristic thermistor
JP2013209278A (en) * 2012-02-29 2013-10-10 Covalent Materials Corp Porous ceramic
JP2013229633A (en) * 2011-06-28 2013-11-07 Samsung Electro-Mechanics Co Ltd Gap layer composition of multilayered power inductor
JP5846305B2 (en) * 2012-05-28 2016-01-20 株式会社村田製作所 NTC thermistor element and manufacturing method thereof
WO2016129300A1 (en) * 2015-02-12 2016-08-18 株式会社村田製作所 Negative temperature coefficient thermistor and method for manufacturing same
CN112334430A (en) * 2018-06-27 2021-02-05 Tdk电子股份有限公司 NTC material, thermistor and method for producing the thermistor
CN114207747A (en) * 2019-12-06 2022-03-18 Tdk株式会社 NTC thermistor element

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492234B2 (en) * 2004-07-21 2010-06-30 Tdk株式会社 Thermistor composition and thermistor element
JP2006032855A (en) * 2004-07-21 2006-02-02 Tdk Corp Thermistor composite and thermistor element
US7548149B2 (en) 2005-02-08 2009-06-16 Murata Manufacturing Co., Ltd. Surface-mount negative-characteristic thermistor
EP2546840A2 (en) 2005-02-08 2013-01-16 Murata Manufacturing Co., Ltd. Surface-mountable negative-characteristic ceramic thermistor based on Mn, Co, Ni and Ti compounds
EP2549491A1 (en) 2005-02-08 2013-01-23 Murata Manufacturing Co., Ltd. Surface mountable negative coefficient characteristic ceramic thermistor based on Mn, Co and Ti
US9460837B2 (en) 2011-06-28 2016-10-04 Samsung Electro-Mechanics Co., Ltd. Gap composition of multi layered power inductor and multi layered power inductor including gap layer using the same
JP2013229633A (en) * 2011-06-28 2013-11-07 Samsung Electro-Mechanics Co Ltd Gap layer composition of multilayered power inductor
JP2013209278A (en) * 2012-02-29 2013-10-10 Covalent Materials Corp Porous ceramic
JP5846305B2 (en) * 2012-05-28 2016-01-20 株式会社村田製作所 NTC thermistor element and manufacturing method thereof
TWI584309B (en) * 2015-02-12 2017-05-21 Murata Manufacturing Co Negative characteristic thermal resistance and its manufacturing method
WO2016129300A1 (en) * 2015-02-12 2016-08-18 株式会社村田製作所 Negative temperature coefficient thermistor and method for manufacturing same
JPWO2016129300A1 (en) * 2015-02-12 2017-09-14 株式会社村田製作所 Negative characteristic thermistor and manufacturing method thereof
CN107210106A (en) * 2015-02-12 2017-09-26 株式会社村田制作所 Negative-characteristic thermistor device and its manufacture method
CN107210106B (en) * 2015-02-12 2018-12-28 株式会社村田制作所 Negative-characteristic thermistor device and its manufacturing method
CN112334430A (en) * 2018-06-27 2021-02-05 Tdk电子股份有限公司 NTC material, thermistor and method for producing the thermistor
JP2021520073A (en) * 2018-06-27 2021-08-12 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag NTC material, thermistor, and manufacturing method of the thermistor
JP7114739B2 (en) 2018-06-27 2022-08-08 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト NTC material, thermistor, and manufacturing method of the thermistor
US11929193B2 (en) 2018-06-27 2024-03-12 Tdk Electronics Ag NTC compound, thermistor and method for producing the thermistor
CN114207747A (en) * 2019-12-06 2022-03-18 Tdk株式会社 NTC thermistor element
US20220301749A1 (en) * 2019-12-06 2022-09-22 Tdk Corporation Ntc thermistor element
US11967445B2 (en) * 2019-12-06 2024-04-23 Tdk Corporation NTC thermistor element

Also Published As

Publication number Publication date
JP4029170B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
JP4726890B2 (en) Surface mount negative thermistor
US5248640A (en) Non-reducible dielectric ceramic composition
JP3470703B2 (en) Non-reducing dielectric ceramic, multilayer ceramic capacitor using the same, and method for producing non-reducing dielectric ceramic
JP4345071B2 (en) Multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor
TWI433827B (en) NTC thermal resistors for semiconductor porcelain compositions and NTC thermal resistors
JP5476344B2 (en) Dielectric porcelain composition, capacitor, and method for producing dielectric porcelain composition
JP4029170B2 (en) Manufacturing method of negative characteristic thermistor
JP2004323315A (en) Dielectric ceramic composition, its production method, and multilayer ceramic capacitor obtained by using the same
JP7327065B2 (en) Dielectric compositions and electronic components
KR101884104B1 (en) Layered body, layered device, and methods for producing same
JP2006045046A (en) Dielectric ceramic composition and multilayer ceramic part
JP2003238248A (en) Piezoelectric porcelain composition and piezoelectric device
JP4771842B2 (en) Electronic component and its manufacturing method
JP6034017B2 (en) Piezoelectric ceramics and multilayer piezoelectric elements
WO2020008731A1 (en) Ceramic member and electronic element
JP6539589B2 (en) Dielectric ceramic composition, dielectric device and method for manufacturing them
JP5000088B2 (en) Method for manufacturing dielectric ceramic composition and method for manufacturing ceramic capacitor
JP2001278662A (en) Method for manufacturing dielectric ceramic
JP2005032996A (en) Method for manufacturing thermistor element
WO2004008466A1 (en) Method for manufacturing negative temperature coefficient thermistor and negative temperature coefficient thermistor
JP2008162818A (en) Dielectric ceramic composition and laminated ceramic capacitor, and method of manufacturing dielectric ceramic composition
JP2006160531A (en) Dielectric ceramic composition, ceramic capacitor, and their production methods
JP2004311588A (en) Method of manufacturing negative characteristic thermistor and negative characteristic thermistor
JP2008156182A (en) Sintering aid, sintered article and ceramic capacitor
JP2005035843A (en) Piezoelectric ceramics, sintering aid, and laminated piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070924

R150 Certificate of patent or registration of utility model

Ref document number: 4029170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

EXPY Cancellation because of completion of term