WO2004008466A1 - Method for manufacturing negative temperature coefficient thermistor and negative temperature coefficient thermistor - Google Patents

Method for manufacturing negative temperature coefficient thermistor and negative temperature coefficient thermistor Download PDF

Info

Publication number
WO2004008466A1
WO2004008466A1 PCT/JP2003/008261 JP0308261W WO2004008466A1 WO 2004008466 A1 WO2004008466 A1 WO 2004008466A1 JP 0308261 W JP0308261 W JP 0308261W WO 2004008466 A1 WO2004008466 A1 WO 2004008466A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
negative
composition
temperature coefficient
semiconductor porcelain
Prior art date
Application number
PCT/JP2003/008261
Other languages
French (fr)
Japanese (ja)
Inventor
Tadamasa Miura
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to AU2003246122A priority Critical patent/AU2003246122A1/en
Publication of WO2004008466A1 publication Critical patent/WO2004008466A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/041Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient formed as one or more layers or coatings

Definitions

  • the present invention relates to a method for manufacturing a negative characteristic thermistor used for temperature detection and temperature compensation and the like, a negative characteristic thermistor, and a method for manufacturing a semiconductor ceramic having a negative resistance temperature characteristic used for a negative characteristic thermistor.
  • the present invention relates to a method for manufacturing a negative characteristic thermistor having a step of obtaining a semiconductor ceramic exhibiting improved negative resistance temperature characteristics.
  • the electrical conductivity of the above spinel-based composite oxide containing Mn as a main component is that the A site (tetrahedral site) of the spinel phase and the B site (octahedral site) of the B site are adjacent to each other. It is caused by hobbing of holes between Mn3 + and IVln4 + .
  • AI selectively dissolves in the B site of the spinel phase. Therefore, 1 ⁇ 1 ⁇ 3 + and 1 ⁇ ⁇ 4 + a hole of the hobbing between is inhibited, i.e. the probability of hobbing is reduced.
  • the resistance temperature characteristic can be continuously and easily changed by controlling the addition amount of AI.
  • Te is Atatsu to obtain spinel composite oxide ceramics as a main component M n, it is but common to use AI 2 0 3 powder in order to incorporate AI, AI 2 0 3 powder particle size distribution wide, therefore, the moldings in a stage before firing, it is very difficult to highly disperse the AI 2 0 3. Therefore, in the semiconductor porcelain obtained by sintering the above compact, AI is uniformly dissolved in the B site of the spinel phase. Therefore, there has been a problem that characteristic variations are increased and reliability is reduced.
  • AI 2 0 3 powder it is common slightly including TN a and impurities. Therefore, in the semiconductor ceramic obtained by using the AI 2 0 3 powder as the starting material, N a in high-temperature and high-humidity environment to Oko migration ionized, there is a problem that the characteristic change is large.
  • AI 2 0 3 powder is sintering-resistant, when obtaining a semiconductor ceramic by firing the formed configuration comprising AI 2 0 3 powder, the firing temperature is inevitably high. In addition, the density did not increase sufficiently, and a dense semiconductor porcelain could not be obtained.
  • An object of the present invention is a method for producing a negative temperature coefficient thermistor using a semiconductor ceramic composed of a spinel-based composite oxide containing Mn as a main component and containing AI. It is another object of the present invention to provide a method for manufacturing a negative temperature coefficient thermistor that has little change with time in characteristics of the obtained negative temperature coefficient thermistor under high temperature and high humidity environment. Disclosure of the invention
  • the present invention has an average primary particle size of 0.05 to 0.
  • a step of preparing a composition a step of baking the composition to obtain a semiconductor porcelain made of a spinel-based composite oxide containing Mn and AI; and a step of forming a plurality of external electrodes on an outer surface of the semiconductor porcelain.
  • a method for manufacturing a negative characteristic thermistor comprising:
  • the AI 2 0 3 powder as not neat, those containing N a N a 2 0 in terms at a rate of 0.0 1% by weight or less It may be. That is, when the N a content in AI 2 0 3 powder was N a 2 0 to conversion calculation to 0 to 0.01 wt%, the content of N a as impurities is low, high temperature In addition, it is possible to reduce the time-dependent change in characteristics under high humidity conditions.
  • the method for manufacturing a negative temperature coefficient thermistor according to the present invention can be used for negative temperature coefficient thermistors having various structures.However, in the step of obtaining the semiconductor ceramic, a plurality of internal electrodes overlap with each other via a layer made of the composition. A laminated laminated body is obtained, and the laminated body is fired to obtain a laminated semiconductor ceramic. Therefore, according to the present invention, it is possible to provide a stacked negative temperature coefficient thermistor. Further, the present invention has an average a primary particle size of 0. 05 ⁇ 0.
  • AI 2 0 3 powder specific surface area is 1 0 ⁇ 80m 2 Zg, set formed comprising a Mn compound powder Preparing a semiconductor porcelain made of a spinel-based composite oxide containing Mn and AI, and a step of firing the composition to obtain a semiconductor porcelain having a negative resistance temperature characteristic.
  • the average primary particle diameter is 0.05 to 0.3 m, and the specific surface area is 10 to 80 m.
  • AI 2 0 3 powder in the range of 2 Zg AI is highly dispersed in the molded body before firing, AI is uniformly dissolved in the spinel phase in the sintered body after firing. Therefore, when manufacturing a negative-characteristic thermistor using semiconductor porcelain made of a spinel-based composite oxide containing Mn as a main component, it is possible to reduce variations in initial characteristics and increase the yield rate.
  • the firing can be performed at a relatively low temperature, the cost of the negative characteristic thermistor can be reduced, the selection range of the electrode material can be widened, and the change in the thermal history can be further reduced. Furthermore, since the AI is uniformly dispersed, the sinterability is enhanced, and a higher density sintered body can be obtained.
  • FIG. 1 is a sectional view showing a structure of a negative temperature coefficient thermistor obtained in a specific example of the present invention.
  • the main feature of the present invention is that when producing a negative characteristic thermistor using a semiconductor porcelain composed of a spinel-based composite oxide containing at least Mn and AI, the average primary particle diameter: 0.05 to 0. 3 m, specific surface area: by using 1 0 ⁇ 80m 2 Zg AI 2 0 3 powder as part of the starting material, is to blend the AI.
  • Mn may be the main component and other elements may be added as described above as long as it contains AI. Therefore, as semiconductor porcelain, Mn-N i -AI system, Mn- ⁇ ⁇ -Co-A I system, Mn—Ni—Cu—AI system, Mn—Ni—Fe—Al system, Mn—Co—AI system, 1 ⁇ 1 1 ") ⁇ 00— ⁇ Li-1 system , Mn-Co-Fe-AI-based semiconductor porcelain, etc. Further, the semiconductor porcelain may be composed of only one kind of each of these semiconductor porcelains, or may be a solid solution thereof. Alternatively, it may be a mixed crystal of one or more semiconductor porcelains.
  • M n compound powder M n amount converted to 1 0 ⁇ 95mo l%, AI 2 0 3 powder converted to 0. 05 ⁇ 30 mo I% contained in AI amount
  • N it is preferable to contain N as an accessory component, and the content thereof is preferably 0 to 45 mol%.
  • Fe, Co, Cu, Ti, V, Mg, ⁇ , and Zr are contained as accessory components, and the content of Fe is 0 to 35 moI%, Co is 0 to 65 mol%, Cu is 0 to 25 mol%, Ti is 0 to 10 mol%, V is 0 to 10 mol%, Mg is 0 to 10 mol%, Z n is 0 ⁇ "!
  • AI in molded body before firing can be highly dispersed. Furthermore, in the sintered body, the AI is uniformly dissolved in the B site of the spinel phase. Therefore, compared to the conventional negative temperature coefficient thermistor, the initial variation of the electric characteristics is reduced, and the change in the reheat history can be further reduced. In addition, it is possible to obtain a highly reliable negative-characteristic thermistor with a small change in characteristics under a high humidity environment and a high temperature environment.
  • AI 2 0 3 particle size of the powder is small and since the specific surface area is large, sinterability of AI 2 0 3 powder is enhanced. Therefore, features that the AI 2 0 3 are dispersed, 1 1 00 ⁇ 1 200 ° C in can be sintered at low temperatures, it is possible to deer also obtain a high-density sintered body . Even when firing at a temperature of 1200 ° C or higher, the porosity can be significantly reduced and the density can be reduced as compared with the conventional spinel-based composite oxide semiconductor porcelain containing Mn as a main component. Can be enhanced.
  • AI 2 0 3 powder having an average primary particle strange is greater than 0. 3 JU m is had when the specific surface area is less than 1 0 m 2 Zg is AI segregation in molded body before firing I do. Further, even though the average primary particle diameter of 0. 3 m or less, when the specific surface area is less than 1 0 m 2 Zg are that AI 2 0 3 of particle size distribution widely Li, coarse grains present Become. Also in this case, also in the compact before firing AI biased prayer occurs.
  • the average primary particle size is smaller than 0.05 / m or the specific surface area is larger than 80 m 2 g, the primary agglomeration will be strong, and AI will be biased in the compact before firing. And a similar problem arises.
  • a composition comprising the above-described AI 2 0 3 powder, and a M n compound powder is prepared.
  • the M n compounds can be used M n 3 0 4 M n oxide such as, or other M n-containing compounds other than M n oxide.
  • AI 2 0 3 that constitutes the AI 2 0 3 powder is one AI 2 o 3 or r - may be either of AI 2 0 3.
  • the AI 2 0 3 powder and M n compound powder other than, other materials may be added. That is, as described above, when the semiconductor ceramic contains a transition metal element other than Mn, Mg, Zn, Zr, etc., these compound powders may be added to the composition. When these elements are added, oxides of these elements are preferably used, but compounds other than oxides may be used.
  • AI 2 0 3 powder typically contains a N a as an impurity.
  • the composition is fired to obtain a semiconductor porcelain.
  • the firing temperature can be a relatively low temperature of 110-1200 ° C. Further, as described above, firing may be performed at a temperature of 1200 ° C. or higher.
  • the step of forming a plurality of external electrodes on the outer surface of the semiconductor porcelain can be performed using an appropriate method such as conductive paste, baking, vapor deposition or sputtering.
  • the negative characteristic thermistor according to the present invention can be obtained by the manufacturing method according to the present invention, but the structure is not particularly limited. That is, it may be a thermistor in which a plurality of external electrodes are formed on the outer surface of the semiconductor porcelain, or may be a stacked thermistor in which a plurality of internal electrodes are arranged in the semiconductor porcelain.
  • a laminated thermistor is obtained, in the step of obtaining the semiconductor ceramic, a laminated body in which a plurality of internal electrodes are laminated via a layer made of the composition is prepared, and the laminated body is fired. Accordingly, a stacked semiconductor ceramic in which a plurality of internal electrodes are stacked may be formed.
  • M n 3 0 4 powder, AI 2 0 3 powder, the N i O powder, as M n, the atomic ratio of AI and N i, O. 75: 0. 05 : were weighed such that a ratio of 0.20 The mixture was wet-mixed with a ball mill for 24 hours.
  • AI 2 0 3 powder the average - using a plurality of AI 2 0 3 powder shown in Table 1 in which the following particle diameter and specific surface area different, each composition of the sample No. 1-8 of Table 1 Prepared.
  • N a quantity which is included as an impurity in the AI 2 0 3 powder was adjusted in advance to be converted into N a 2 0 a 0.005 wt% content.
  • Each composition of Sample Nos. 1 to 8 was calcined at 900 ° C. for 2 hours and pulverized again by a Paul mill. Next, 3% by weight of a polycarboxylic acid-based dispersant was mixed with the pulverized calcined raw material, and after mixing for 24 hours, 25% by weight of an organic binder made of an acrylic resin was used. 0.75% by weight of ethylene was added and mixed for 15 hours. Thus, a slurry was obtained. The obtained slurry was formed by a doctor blade method to obtain a ceramic green sheet having a thickness of 40 / m.
  • a Pd electrode paste was screen-printed to form an internal electrode pattern.
  • the ceramic green sheets on which the internal electrode patterns were formed were laminated, and the plain ceramic green sheets were laminated on the upper and lower sides and pressed to obtain a mother laminate.
  • the obtained mother laminate was cut in the thickness direction to obtain a laminate of individual thermistor units.
  • the laminate was heated in the air and subjected to a binder treatment, and then fired in the air at 110 ° C. for 2 hours.
  • a sintered body 1 shown in FIG. 1 was obtained.
  • a plurality of internal electrodes 2 and 3 are arranged so as to overlap via the semiconductor ceramic layer 1a. That is, a laminated sintered body 1 (semiconductor porcelain) is formed.
  • the internal electrodes 2 and 3 are drawn out to end faces 1 b and 1 c of the sintered body 1, respectively.
  • the external electrodes 4 and 5 are formed by applying and baking an Ag paste on the end surfaces 1 b and 1 c of the sintered body 1, whereby the laminated type shown in FIG. 1 is formed.
  • the negative characteristic thermistor 6 was obtained.
  • Each of the negative characteristic thermistors of Sample Nos. 1 to 8 obtained as described above was sampled at random 100 pieces.
  • the resistance (R 25 ) at 25 ° C and 50 ° C Resistance and (R 50) were measured in to obtain the B constant (B 25/50).
  • B constant was determined by the equation (1) below SL from the resistance value R 50 Metropolitan in resistance R 25 and 50 ° C at 25 ° C.
  • 3 CV (%) of each variation of the resistance value R 25 and the B constant B 25/50 was obtained by the equation (2).
  • the negative characteristic thermistors of Sample Nos. 1 to 8 were mirror-polished, the polished surface was observed with a scanning electron microscope (SEM), and the total area of the voids was obtained by image analysis to calculate the porosity.
  • SEM scanning electron microscope
  • the results are shown in Table 1 below. Incidentally, have you in the following table, the samples * is attached, average primary particle diameter:. 0.05 to 0 3 ⁇ M, specific surface area: AI 2 0 3 in the range of 1 0 ⁇ 80m 2 Zg This indicates that the sample does not use powder as a starting material.
  • each of the negative characteristic thermistors of Sample Nos. 3 to 6 has an average primary particle diameter in the range of 0.05 to 0.3 j «m and a specific surface area of 10 to 80 m 2. since the AI 2 0 3 powder in the range of Zg are used as starting materials, small variations in the initial characteristics, the resistance value change rate delta R 25 Roh R 25 before and after high-temperature exposure test was less than 1%, a high temperature The change in characteristics with time under I understand. Further, the void rate, average primary particle size and specific surface area of the AI 2 0 3 powder as compared with the negative characteristics mono- thermistor of Sample No. 1, 2, 7, 8 is outside the above range, the sample No. 3 It turns out that it is low in the negative characteristic thermistor of 6.
  • Example 2 In the same manner as in Example 1, except, except, except that changing the AI 2 0 3 having an average primary particle size and specific surface area and the firing temperature of the powder as shown in Table 2 below, in the same manner as in Example 1 Thus, the negative characteristic thermistors of sample numbers 9 to 18 shown in Table 2 were obtained.
  • the uniform uniform particle size was in the range of 0.05 to 0.3 / m and the specific surface area was 1 0 to 80 m 2 for the AI 2 0 3 powder in the range of Zg is used as a starting material
  • the baking temperature is 1 1 00 ° C, 1 1 50 ° C, 1 200 ° C, 1 250 ° C and 1 300 in either ° C also
  • the average primary particle ⁇ Pi specific surface area of AI 2 0 3 powder as compared with sample No. 1 0, 1 2, 1 4, 1 6, 1 8 is outside the above range, the porosity It can be seen that can be significantly reduced. That, AI 2 0 3 in order not sinterability is improved, even when fired at a high temperature, it can be seen that are obtained these high semiconducting ceramic having a sintered density.
  • the average primary particle diameter of AI 2 0 3 powder used in sample No. 1 9-30 is 0.5, a specific surface area of 40 m 2 Zg. Further, the specimen of the sample No., N a content in AI 2 0 3 was in advance adjusted to so that Do and 0.001 wt 0/0 in terms of N a 2 0.
  • the negative characteristic thermistor of Sample No. 1930 has smaller initial characteristic variation than the negative thermistor of Sample No. 3 142, and before and after the high-temperature storage test.
  • the resistance value change ratio ⁇ R 25 ZR 25 it can be seen that the less than 1% smaller.
  • the porosity of the negative thermistors of Sample Nos. 19 to 30 is lower than that of the negative thermistors of Sample No. 3 "! It can be seen that the denseness has been improved.
  • M n N i A to F e C o and C u is the following ratio
  • the mixture was wet-mixed in a ball mill for 24 hours to obtain each composition of Sample No. 6798.
  • the average primary particle diameter of AI 2 0 3 powder is 0. 1 m, a specific surface area 3 Om 2 g. Further, N a content in the AI 2 0 3 powder was allowed to urchin adjusted by shown in Table 4 below.
  • a negative-characteristic thermistor was obtained and evaluated in the same manner as in Example 1, except that the compositions of Sample Nos. 67 to 98 were used.
  • Example 4 in the evaluation, the negative characteristic thermistor was left for 1,000 hours in a constant temperature / humidity chamber at 85 ° C and 85% relative humidity instead of a constant temperature chamber at 125 ° C, and before and after leaving.
  • the resistance change rate ⁇ R 25 R 25 at a temperature of 25 ° C. was determined. The results are shown in Table 4 below.
  • N a content in AI 2 0 3 powder is less than 0 1 wt% 0.1 in terms of N a 2 0,
  • Sample No. 67, 68, 71, 72, 7 5 , 76, 7 980, 83, 84, 87, 88, 91, 92, 95, and 96 have lower initial thermistors than the corresponding thermistors using the compositions of the remaining sample numbers. characteristics even smaller variations in, the middle shelf test 'before and after the resistance change rate ⁇ 13 ⁇ 4 25 13 ⁇ 4 25 moisture as small as less than 10/0, it is found to be very stable.
  • the average primary particle size is 0.05-0.3 / m
  • specific surface area AI 2 0 3 powder is 1 0 ⁇ 80 m 2 Zg
  • the average primary particle diameter of AI 2 0 3 powder is 0. 2 j (im, specific surface area was 25 m 2 Zg. Furthermore, a content of AI 2 0 3 powder is 0.005 wt% and I Thereafter, a negative characteristic thermistor was obtained in the same manner as in Example 1. The evaluation of the negative characteristic thermistor obtained as described above was performed in the same manner as in Example 4. The results are shown in Table 5B below.
  • a negative-characteristic thermistor using a semiconductor ceramic made of a spinel-based composite oxide containing Mn as a main component, variation in initial characteristics can be reduced, and the yield rate can be increased. Also, it can be fired at a relatively low temperature. Therefore, the cost of the negative characteristic thermistor can be reduced, the selection range of the electrode material can be expanded, and the change in the thermal history can be further reduced. Furthermore, since the AI is uniformly dispersed, the sinterability is enhanced, and a higher density sintered body can be obtained.
  • the method for manufacturing a negative temperature coefficient thermistor according to the present invention is useful for manufacturing a negative temperature coefficient thermistor used for temperature detection and temperature compensation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermistors And Varistors (AREA)

Abstract

A method for manufacturing a negative temperature coefficient thermistor, which uses a semiconductor ceramic made of a spinel composite oxide that essentially comprises Mn and contains Al. An Al2O3 powder having an average primary particle diameter of 0.05 to 0.3 μm and a specific surface area of 10 to 80 m2/g are used as a starting material. The negative temperature coefficient thermistor is able to be sintered at a low temperature, is small in variation of the initial properties, and hardly deteriorates in characteristics with time.

Description

明細書 負特性サーミスタの製造方法および負特性サーミスタ 技術分野  Description Method for manufacturing negative characteristic thermistor and negative characteristic thermistor
本発明は、 温度検知ゃ温度補償などに用いられる負特性サーミスタの製造 方法及び負特性サーミスタ、 ならびに、 負特性サ一ミスタに用いられる負の 抵抗温度特性を有する半導体磁器の製造方法に関し、 より詳細には、 改良さ れた負の抵抗温度特性を示す半導体磁器を得る工程を有する負特性サーミス タの製造方法に関する。 背景技術  The present invention relates to a method for manufacturing a negative characteristic thermistor used for temperature detection and temperature compensation and the like, a negative characteristic thermistor, and a method for manufacturing a semiconductor ceramic having a negative resistance temperature characteristic used for a negative characteristic thermistor. The present invention relates to a method for manufacturing a negative characteristic thermistor having a step of obtaining a semiconductor ceramic exhibiting improved negative resistance temperature characteristics. Background art
近年、 温度補償や温度検知に用いられる負特性サ一ミス夕において、 抵抗 偏差を ± 1 %以下に抑制することが求められている。 従来、 この種の負特性 サーミスタを構成する半導体磁器として、 M nと、 T i 、 V、 F e、 C o、 N i 、 C uなどの M n以外の遷移金属元素と、 M g、 A I 、 Z n及び Z rの うち少なくとも 1種の元素との固溶体からなるスピネル系複合酸化物が用い られてきた。  In recent years, it has been required to suppress the resistance deviation to ± 1% or less in the case of negative characteristics that are used for temperature compensation and temperature detection. Conventionally, as semiconductor porcelain constituting this kind of negative characteristic thermistor, Mn, transition metal elements other than Mn such as Ti, V, Fe, Co, Ni, Cu, and Mg, AI A spinel-based composite oxide composed of a solid solution with at least one element of Zn, Zn and Zr has been used.
M nを主成分とする上記スピネル系複合酸化物の電気伝導性は、 スピネル 相の Aサイト (四面体サイ ト) と、 Bサイ卜 (八面体サイ 卜) のうち、 Bサ ィ卜における隣接する M n 3 +と IVl n 4 +との間でホールがホッビングするこ とにより生じる。 このような複合酸化物に A Iが添加されていると、 A Iは スピネル相の Bサイ トに選択的に固溶する。 従って、 1\ 1门 3 +と1\ ^ 4 +との間 のホールの上記ホッビングが阻害される、 すなわちホッビングの確率が低下 する。 The electrical conductivity of the above spinel-based composite oxide containing Mn as a main component is that the A site (tetrahedral site) of the spinel phase and the B site (octahedral site) of the B site are adjacent to each other. It is caused by hobbing of holes between Mn3 + and IVln4 + . When AI is added to such a composite oxide, AI selectively dissolves in the B site of the spinel phase. Therefore, 1 \ 1门3 + and 1 \ ^ 4 + a hole of the hobbing between is inhibited, i.e. the probability of hobbing is reduced.
よって、 従来、 A Iの添加量を制御することにより、 抵抗温度特性を連続 的にかつ容易に変化させることが可能であることが知られていた。  Therefore, conventionally, it has been known that the resistance temperature characteristic can be continuously and easily changed by controlling the addition amount of AI.
上記の理由によリ、 たとえば特開平 3— 2 7 9 2 5 2号公報に記載されて いるように、 M nを主成分とし、 A I を含有するスピネル系複合酸化物が広 く用いられている。  For the above reasons, for example, as described in Japanese Patent Application Laid-Open No. 3-279252, spinel-based composite oxides containing Mn as a main component and containing AI have been widely used. I have.
ところで、 M nを主成分とするスピネル系複合酸化物磁器を得るにあたつ ては、 A I を含有させるために A I 2 0 3粉末を用いることが一般的だが、 A I 2 0 3粉末は粒度分布が広く、 そのため、 焼成前の成形体段階において、 A I 2 0 3を高分散させることが非常に困難であった。 従って、 上記成形体を焼 成して得られた半導体磁器では、 A Iがスピネル相の Bサイ 卜に均一に固溶 し難く、 そのため、 特性ばらつきが大きくなつたり、 信頼性が低下したりす るという問題があった。 However, Te is Atatsu to obtain spinel composite oxide ceramics as a main component M n, it is but common to use AI 2 0 3 powder in order to incorporate AI, AI 2 0 3 powder particle size distribution wide, therefore, the moldings in a stage before firing, it is very difficult to highly disperse the AI 2 0 3. Therefore, in the semiconductor porcelain obtained by sintering the above compact, AI is uniformly dissolved in the B site of the spinel phase. Therefore, there has been a problem that characteristic variations are increased and reliability is reduced.
また、 A I 203粉末は、不純物とし T N aをわずかに含むのが普通である。 そのため、 A I 203粉末を出発原料として用いて得られた上記半導体磁器で は、 高温高湿度環境下において N aがイオン化してマイグレーションを起こ し、 特性変化が大きくなるという問題があった。 Also, AI 2 0 3 powder, it is common slightly including TN a and impurities. Therefore, in the semiconductor ceramic obtained by using the AI 2 0 3 powder as the starting material, N a in high-temperature and high-humidity environment to Oko migration ionized, there is a problem that the characteristic change is large.
さらに、 A I 203粉末は難焼結性であるため、 A I 203粉末を含む上記成 形体を焼成して半導体磁器を得ようとした場合、 焼成温度が高くならざるを 得なかった。 加えて、 密度が十分に高まらず、 緻密な半導体磁器を得ること ができなかった。 Furthermore, since AI 2 0 3 powder is sintering-resistant, when obtaining a semiconductor ceramic by firing the formed configuration comprising AI 2 0 3 powder, the firing temperature is inevitably high. In addition, the density did not increase sufficiently, and a dense semiconductor porcelain could not be obtained.
本発明の目的は、 Mnを主成分とし、 A I を含有するスピネル系複合酸化 物からなる半導体磁器を用いた負特性サーミスタの製造方法であって、 比較 的低温で焼成することにより半導体磁器が得られ、 かつ得られた負特性サー ミスタの高温下及び高湿度環境下における特性の経時による変化が少ない負 特性サーミスタの製造方法を提供することにある。 発明の開示  An object of the present invention is a method for producing a negative temperature coefficient thermistor using a semiconductor ceramic composed of a spinel-based composite oxide containing Mn as a main component and containing AI. It is another object of the present invention to provide a method for manufacturing a negative temperature coefficient thermistor that has little change with time in characteristics of the obtained negative temperature coefficient thermistor under high temperature and high humidity environment. Disclosure of the invention
すなわち、 本発明は、 平均一次粒子径が 0. 05〜0. 3 j«mであり、 比 表面積が 1 0〜80m2Zgである A I 203粉末と、 M n化合物粉末とを含 む組成物を用意する工程と、 前記組成物を焼成し、 Mn及び A I を含むスピ ネル系複合酸化物よりなる半導体磁器を得る工程と、 前記半導体磁器の外表 面に複数の外部電極を形成する工程とを備える、 負特性サーミスタの製造方 法を提供するものである。 That is, the present invention has an average primary particle size of 0.05 to 0. A 3 j «m, and AI 2 0 3 powder having a specific surface area of 1 0~80m 2 Zg, including a M n compound powder A step of preparing a composition; a step of baking the composition to obtain a semiconductor porcelain made of a spinel-based composite oxide containing Mn and AI; and a step of forming a plurality of external electrodes on an outer surface of the semiconductor porcelain. A method for manufacturing a negative characteristic thermistor comprising:
本発明の負特性サーミスタの製造方法にお.いて、 前記 A I 203粉末は、 不 純物として、 N aを N a 20に換算して 0. 0 1重量%以下の割合で含むもの であってよい。 すなわち、 A I 203粉末における N a含有量を N a 20に換 算して 0〜0. 01重量%とした場合には、 不純物としての N aの含有割合 が低くなるため、 高温下及び高湿度下における特性の経時変化をよリー層小 さくすることができる。 Contact. There are a method of preparing a negative temperature coefficient thermistor of the present invention, the AI 2 0 3 powder as not neat, those containing N a N a 2 0 in terms at a rate of 0.0 1% by weight or less It may be. That is, when the N a content in AI 2 0 3 powder was N a 2 0 to conversion calculation to 0 to 0.01 wt%, the content of N a as impurities is low, high temperature In addition, it is possible to reduce the time-dependent change in characteristics under high humidity conditions.
本発明に係る負特性サーミスタの製造方法は、 様々な構造の負特性サーミ スタに用いることができるが、 上記半導体磁器を得る工程において、 複数の 内部電極が上記組成物からなる層を介して重なり合つている積層型の成形体 が得られ、 該成形体を焼成することによリ積層型の半導体磁器が得られる。 従って、 本発明に従って、 積層型の負特性サーミスタを提供することができ る。 また、 本発明は、 平均一次粒子径が 0. 05〜0. 3j«mであり、 比表面 積が 1 0〜80m2Zgである A I 203粉末と、 Mn化合物粉末とを含む組 成物を用意する工程と、 前記組成物を焼成し、 Mn及び A I を含むスピネル 系複合酸化物よりなる半導体磁器を得る工程と、 を備える、 負の抵抗温度特 性を示す半導体磁器の製造方法を提供するものである。 The method for manufacturing a negative temperature coefficient thermistor according to the present invention can be used for negative temperature coefficient thermistors having various structures.However, in the step of obtaining the semiconductor ceramic, a plurality of internal electrodes overlap with each other via a layer made of the composition. A laminated laminated body is obtained, and the laminated body is fired to obtain a laminated semiconductor ceramic. Therefore, according to the present invention, it is possible to provide a stacked negative temperature coefficient thermistor. Further, the present invention has an average a primary particle size of 0. 05~0. 3j «m, and AI 2 0 3 powder specific surface area is 1 0~80m 2 Zg, set formed comprising a Mn compound powder Preparing a semiconductor porcelain made of a spinel-based composite oxide containing Mn and AI, and a step of firing the composition to obtain a semiconductor porcelain having a negative resistance temperature characteristic. To provide.
本発明に係る負特性サーミスタの製造方法および負の抵抗温度特性を有す る半導体磁器の製造方法では、 平均一次粒子径が 0. 05〜0. 3 m、 か つ比表面積が 1 0〜80m2Zgの範囲にある A I 203粉末を出発原料とし て用いることにより、 焼成前の成形体において A Iが高分散し、 焼成後の焼 結体において A Iがスピネル相に均一に固溶する。 従って、 Mnを主成分と するスピネル系複合酸化物からなる半導体磁器を用いた負特性サーミスタの 製造に際し、初期特性のばらつきを低減でき、 良品率を高めることができる。 また、 比較的低温で焼成することができるため、 負特性サーミスタのコスト を低減することができるとともに、電極材料の選択範囲を広げることができ、 さらに熱履歴変化を小さくすることができる。 さらに、 A Iが均一に分散す るため、 焼結性が高められ、 より高密度な焼結体を得ることができる。 In the method for producing a negative temperature coefficient thermistor and the method for producing a semiconductor porcelain having a negative resistance temperature characteristic according to the present invention, the average primary particle diameter is 0.05 to 0.3 m, and the specific surface area is 10 to 80 m. the use of AI 2 0 3 powder in the range of 2 Zg as a starting material, AI is highly dispersed in the molded body before firing, AI is uniformly dissolved in the spinel phase in the sintered body after firing. Therefore, when manufacturing a negative-characteristic thermistor using semiconductor porcelain made of a spinel-based composite oxide containing Mn as a main component, it is possible to reduce variations in initial characteristics and increase the yield rate. In addition, since the firing can be performed at a relatively low temperature, the cost of the negative characteristic thermistor can be reduced, the selection range of the electrode material can be widened, and the change in the thermal history can be further reduced. Furthermore, since the AI is uniformly dispersed, the sinterability is enhanced, and a higher density sintered body can be obtained.
さらに、 A I 203粉末中の N a含有量を 0. 0 1重量%以下とした場合に は、 高湿度環境下におかれた場合においても、 N aのイオン化によるマイグ レーシヨンが生じ難いため、 高湿度環境下における経時 Jこよる特性の変化が 少ない負特性サーミスタを提供することができる。 図面の簡単な説明 Further, when the the N a content of AI 2 0 3 powder 0.0 1 wt% or less, when placed in a high humidity environment, since it is difficult occur migrated Reshiyon by ionization of N a In addition, it is possible to provide a thermistor with a negative characteristic in which the characteristic changes little due to aging in a high humidity environment. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の具体的な実施例で得られる負特性サーミスタの構造を示 す断面図である。 発明を実施するための最良の形態  FIG. 1 is a sectional view showing a structure of a negative temperature coefficient thermistor obtained in a specific example of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の詳細を説明する。  Hereinafter, details of the present invention will be described.
上記のように、 本発明の主たる特徴は、 少なくとも Mn及び A I を含有す るスピネル系複合酸化物からなる半導体磁器を用いた負特性サーミスタを製 造するに際し、 平均一次粒子径: 0. 05〜0. 3 m、 比表面積: 1 0〜 80m2Zgの A I 203粉末を出発原料の一部として用いることにより、 A I を配合することにある。 As described above, the main feature of the present invention is that when producing a negative characteristic thermistor using a semiconductor porcelain composed of a spinel-based composite oxide containing at least Mn and AI, the average primary particle diameter: 0.05 to 0. 3 m, specific surface area: by using 1 0~ 80m 2 Zg AI 2 0 3 powder as part of the starting material, is to blend the AI.
なお、 本発明におけるスピネル系複合酸化物半導体磁器では、 M nを主成 分とし、 A Iを含む限り、 上記のように他の元素が添加されていてもよい。 従って、 半導体磁器としては、 Mn— N i - A I系、 Mn— Ν ί — C o— A I系、 Mn— N i — C u— A I系、 M n— N i 一 F e— A l系、 M n— C o — A I系、 1\11")ー00—〇 リ一 1系、 Mn -C o— F e—A I系などの半 導体磁器が挙げられる。 また、 上記半導体磁器は、 これらの各半導体磁器 1 種のみから構成されていてもよく、 これらの固溶体であってもよく、 さらに は、 1種以上の半導体磁器の混晶であってもよい。 In the spinel-based composite oxide semiconductor porcelain of the present invention, Mn may be the main component and other elements may be added as described above as long as it contains AI. Therefore, as semiconductor porcelain, Mn-N i -AI system, Mn- Ν ί-Co-A I system, Mn—Ni—Cu—AI system, Mn—Ni—Fe—Al system, Mn—Co—AI system, 1 \ 1 1 ") ー 00—〇 Li-1 system , Mn-Co-Fe-AI-based semiconductor porcelain, etc. Further, the semiconductor porcelain may be composed of only one kind of each of these semiconductor porcelains, or may be a solid solution thereof. Alternatively, it may be a mixed crystal of one or more semiconductor porcelains.
本発明においては、 その出発原料として、 M n化合物粉末を M n量に換算 して 1 0〜95mo l %、 A I 203粉末を A I量に換算して 0. 05〜30 mo I %含有していることが好ましい。 また、 副成分として N ίを含んでい ることが好ましく、 その含有量は 0〜45mo l %が好ましい。 さらに、 副 成分として、 F e, C o, C u , T i , V, Mg, Ζ η , Z rを含んでいる ことが好ましく、 その含有量は、 F eが 0〜 35 m o I %、 C oが 0 ~ 65 mo l %、 C uが 0〜25mo l %、 T iが 0~ 1 0mo l %、 Vが 0~ 1 0 m o I %、 M gが 0〜 1 0 m o I %、 Z nが 0〜 "! 0 m o I 0/o、 Ζ r力 0 〜 1 0mo I %が好ましい。 これらの各成分が上述した範囲で含有されてい ると、 A I 203粉末を上述した範囲で微粒子化し、 N a含有量を上述した範 囲となるように低含有量としたときの効果が顕著に表れる。 In the present invention, as a starting material, M n compound powder M n amount converted to 1 0~95mo l%, AI 2 0 3 powder converted to 0. 05~30 mo I% contained in AI amount Preferably. Further, it is preferable to contain N as an accessory component, and the content thereof is preferably 0 to 45 mol%. Further, it is preferable that Fe, Co, Cu, Ti, V, Mg, Ζη, and Zr are contained as accessory components, and the content of Fe is 0 to 35 moI%, Co is 0 to 65 mol%, Cu is 0 to 25 mol%, Ti is 0 to 10 mol%, V is 0 to 10 mol%, Mg is 0 to 10 mol%, Z n is 0~ "! 0 mo I 0 / o, Ζ r force 0 ~ 1 0mo I% is preferred. ranges each of these components when that is contained in the range described above, the above-described the AI 2 0 3 powder The effect when the Na content is reduced so that the Na content is in the above-mentioned range is remarkably exhibited.
本発明では、 上記のように特定の平均粒子径及び特定の比表面積の A I 2 o3粉末を出発原料の一部として用いることにより、焼成前の成形体において A Iが高分散され得る。 さらに、 焼結体中において、 A Iがスピネル相の B サイ卜に均一に固溶する。 従って、 従来の負特性サーミスタに比べて、 電気 的特性の初期ばらつきが小さくなり、 よリ熱履歴変化を小さくすることがで きる。 また、 高湿度環境下及び高温環境下における特性変化も小さくなリ、 信頼性に優れた負特性サーミスタを得ることができる。 In the present invention, by using the AI 2 o 3 powder specific average particle diameter and the specific specific surface area as described above as part of the starting material, AI in molded body before firing can be highly dispersed. Furthermore, in the sintered body, the AI is uniformly dissolved in the B site of the spinel phase. Therefore, compared to the conventional negative temperature coefficient thermistor, the initial variation of the electric characteristics is reduced, and the change in the reheat history can be further reduced. In addition, it is possible to obtain a highly reliable negative-characteristic thermistor with a small change in characteristics under a high humidity environment and a high temperature environment.
さらに、 A I 203粉末の粒径が小さく、 かつ比表面積が大きいため、 A I 203粉末の焼結性が高められる。従って、上記 A I 203が分散されている成 形体は、 1 1 00〜 1 200°Cの低温において焼結されることができ、 しか も高密度な焼結体を得ることが可能となる。 なお、 1 200°C以上の温度で 焼成した場合であっても、 従来の M nを主成分とするスピネル系複合酸化物 半導体磁器に比べて空隙率を大幅に少なくすることができ、 密度を高めるこ とができる。 Furthermore, AI 2 0 3 particle size of the powder is small and since the specific surface area is large, sinterability of AI 2 0 3 powder is enhanced. Therefore, features that the AI 2 0 3 are dispersed, 1 1 00~ 1 200 ° C in can be sintered at low temperatures, it is possible to deer also obtain a high-density sintered body . Even when firing at a temperature of 1200 ° C or higher, the porosity can be significantly reduced and the density can be reduced as compared with the conventional spinel-based composite oxide semiconductor porcelain containing Mn as a main component. Can be enhanced.
A I 203粉末の平均一次粒子怪が 0. 3 jU mよりも大きい場合には、 ある いは比表面積が 1 0m2Zgよりも小さい場合には、焼成前の成形体中で A I が偏析する。 また、 たとえ平均一次粒子径が 0. 3 m以下であっても、 比 表面積が 1 0m2Zgよりも小さい場合は、 A I 203の粒度分布が広くなリ、 粗粒が存在することとなる。 この場合も、 やはり焼成前の成形体中において A Iの偏祈が生じる。 If AI 2 0 3 powder having an average primary particle bizarre is greater than 0. 3 JU m is had when the specific surface area is less than 1 0 m 2 Zg is AI segregation in molded body before firing I do. Further, even though the average primary particle diameter of 0. 3 m or less, when the specific surface area is less than 1 0 m 2 Zg are that AI 2 0 3 of particle size distribution widely Li, coarse grains present Become. Also in this case, also in the compact before firing AI biased prayer occurs.
他方、 平均一次粒子径が 0. 05 /mよりも小さい場合、 あるいは比表面 積が 80m2 gよりも大きい場合には、一次凝集が強くなリ、焼成前の成形 体中において A Iが偏祈し、 同様の問題が生じる。 On the other hand, if the average primary particle size is smaller than 0.05 / m or the specific surface area is larger than 80 m 2 g, the primary agglomeration will be strong, and AI will be biased in the compact before firing. And a similar problem arises.
本発明では、 まず、 上記 A I 203粉末と、 M n化合物粉末とを含む組成物 が用意される。 この場合、 M n化合物としては、 M n 304などの M n酸化物、 あるいは M n酸化物以外の他の M n含有化合物を用いることができる。 In the present invention, firstly, a composition comprising the above-described AI 2 0 3 powder, and a M n compound powder is prepared. In this case, the M n compounds, can be used M n 3 0 4 M n oxide such as, or other M n-containing compounds other than M n oxide.
なお、上記 A I 203粉末を構成する A I 203は、 一A I 2o3あるいは r — A I 203のいずれを用いてもよい。 Incidentally, AI 2 0 3 that constitutes the AI 2 0 3 powder is one AI 2 o 3 or r - may be either of AI 2 0 3.
上記出発原料としての組成物中には、 A I 203粉末及び M n化合物粉末以 外に、 他の材料が添加されてもよい。 すなわち、 前述したように、 半導体磁 器が、 Mn以外の遷移金属元素や、 M g、 Z n、 Z rなどを含む場合、 これ らの化合物粉末を上記組成物に添加すればよい。 またこれらの元素を添加す る場合、 これらの元素の酸化物が好適に用いられるが、 酸化物以外の化合物 を用いてもよい。 The in the composition as a starting material, the AI 2 0 3 powder and M n compound powder other than, other materials may be added. That is, as described above, when the semiconductor ceramic contains a transition metal element other than Mn, Mg, Zn, Zr, etc., these compound powders may be added to the composition. When these elements are added, oxides of these elements are preferably used, but compounds other than oxides may be used.
なお、 A I 203粉末は、 通常、 不純物として N aを含んでいる。 この場合、 N a含有割合が、 1^ 3 20に換算して0. 01重量%以下である場合には、 後 述の実験例から明らかなように、 高湿度下における N aのイオン下によるマ ィグレーシヨンを抑制することができる。 従って、 負特性サーミスタの信頼 性を高めることができる。 Incidentally, AI 2 0 3 powder typically contains a N a as an impurity. In this case, N a content ratio, 1 ^ 3 2 when 0 is 0.01 wt% or less in terms of, as is apparent from experimental examples discussed later, ions of a N a in high humidity The migration caused by the above can be suppressed. Therefore, the reliability of the negative characteristic thermistor can be improved.
次に、 上記組成物が焼成され、 半導体磁器が得られる。 焼成温度は 1 1 0 0〜 1 200°Cの比較的低い温度とすることができる。 また、 前述したよう に、 1 200°C以上の温度でも焼成を行ってもよい。  Next, the composition is fired to obtain a semiconductor porcelain. The firing temperature can be a relatively low temperature of 110-1200 ° C. Further, as described above, firing may be performed at a temperature of 1200 ° C. or higher.
本発明において、 半導体磁器の外表面に複数の外部電極を形成する工程に ついては、 導電ペースト■焼付け、 蒸着またはスパッタリングなどの適宜の 方法を用いて行ない得る。  In the present invention, the step of forming a plurality of external electrodes on the outer surface of the semiconductor porcelain can be performed using an appropriate method such as conductive paste, baking, vapor deposition or sputtering.
本発明に係る負特性サ一ミスタは、 本発明に係る製造方法によリ得られる が、 その構造は特に限定されない。 すなわち、 半導体磁器の外表面に複数の 外部電極が形成されているサーミスタであってもよく、 あるいは複数の内部 電極が半導体磁器内に配置されている積層型のサーミスタであってもよい。 積層型のサーミスタを得る場合には、 上記半導体磁器を得る工程において、 複数の内部電極が上記組成物からなる層を介して積層されている積層体を用 意し、 該積層体を焼成することにより、 複数の内部電極が積層されている積 層型の半導体磁器を形成すればよい。 実施例 The negative characteristic thermistor according to the present invention can be obtained by the manufacturing method according to the present invention, but the structure is not particularly limited. That is, it may be a thermistor in which a plurality of external electrodes are formed on the outer surface of the semiconductor porcelain, or may be a stacked thermistor in which a plurality of internal electrodes are arranged in the semiconductor porcelain. When a laminated thermistor is obtained, in the step of obtaining the semiconductor ceramic, a laminated body in which a plurality of internal electrodes are laminated via a layer made of the composition is prepared, and the laminated body is fired. Accordingly, a stacked semiconductor ceramic in which a plurality of internal electrodes are stacked may be formed. Example
以下、 本発明に係る負特性サーミスタの製造方法の具体的な実施例を説明 することにより、 本発明を明らかにする。  Hereinafter, the present invention will be clarified by describing specific examples of a method for manufacturing a negative characteristic thermistor according to the present invention.
(実施例 1 )  (Example 1)
M n 304粉末、 A I 203粉末、 N i O粉末を、 M n、 A I及び N i の原子 比率として、 O. 75 : 0. 05 : 0. 20の割合となるように秤量し、 ボ ールミルにより 24時間湿式混合した。 なお、 A I 203粉末としては、 平均 —次粒子径と比表面積とが異なる表 1に示した複数種の A I 203粉末を用い, 表 1の試料番号 1〜 8の各組成物を用意した。 M n 3 0 4 powder, AI 2 0 3 powder, the N i O powder, as M n, the atomic ratio of AI and N i, O. 75: 0. 05 : were weighed such that a ratio of 0.20 The mixture was wet-mixed with a ball mill for 24 hours. As the AI 2 0 3 powder, the average - using a plurality of AI 2 0 3 powder shown in Table 1 in which the following particle diameter and specific surface area different, each composition of the sample No. 1-8 of Table 1 Prepared.
但し、 各 A I 203粉末に不純物として含まれている N a量は、 N a 20に 換算して 0. 005重量%含有率となるように予め調整しておいた。 However, N a quantity which is included as an impurity in the AI 2 0 3 powder was adjusted in advance to be converted into N a 2 0 a 0.005 wt% content.
試料番号 1〜 8の各組成物を、 900°Cで 2時間仮焼し、 ポールミルによ リ再度粉砕した。 次に、 粉砕された仮焼原料に対し、 ポリカルボン酸系分散 剤を 3重量%混合し、 24時間混合した後、 アクリル系樹脂からなる有機バ インダ一を 25重量%、 可塑材としてポリオキシエチレンを 0. 75重量% 添加し、 1 5時間混合した。 このようにして、 スラリーを得た。 得られたス ラリーをドクターブレード法により成形し、 厚み 40 / mのセラミックグリ 一ンシートを得た。  Each composition of Sample Nos. 1 to 8 was calcined at 900 ° C. for 2 hours and pulverized again by a Paul mill. Next, 3% by weight of a polycarboxylic acid-based dispersant was mixed with the pulverized calcined raw material, and after mixing for 24 hours, 25% by weight of an organic binder made of an acrylic resin was used. 0.75% by weight of ethylene was added and mixed for 15 hours. Thus, a slurry was obtained. The obtained slurry was formed by a doctor blade method to obtain a ceramic green sheet having a thickness of 40 / m.
上記セラミックグリーンシ一卜を矩形形状に切断した後、 P d電極ペース トをスクリーン印刷し、 内部電極パターンを形成した。 内部電極パターンが 形成されたセラミックグリーンシートを積層し、 上下に無地の上記セラミッ クグリーンシートを積層し、 加圧し、 マザ一の積層体を得た。  After cutting the ceramic green sheet into a rectangular shape, a Pd electrode paste was screen-printed to form an internal electrode pattern. The ceramic green sheets on which the internal electrode patterns were formed were laminated, and the plain ceramic green sheets were laminated on the upper and lower sides and pressed to obtain a mother laminate.
得られたマザ一の積層体を厚み方向に切断し、 個々のサーミスタ単位の積 層体を得た。 上記積層体を大気中にて加熱し、 バインダー処理した後、 大気 中で 1 1 00°Cで 2時間維持するようにして焼成を行った。このようにして、 図 1に示す焼結体 1を得た。 焼結体 1では、 複数の内部電極 2, 3が半導体 セラミック層 1 aを介して重なり合うように配置されている。 すなわち、 積 層型の焼結体 1 (半導体磁器) が構成されている。  The obtained mother laminate was cut in the thickness direction to obtain a laminate of individual thermistor units. The laminate was heated in the air and subjected to a binder treatment, and then fired in the air at 110 ° C. for 2 hours. Thus, a sintered body 1 shown in FIG. 1 was obtained. In the sintered body 1, a plurality of internal electrodes 2 and 3 are arranged so as to overlap via the semiconductor ceramic layer 1a. That is, a laminated sintered body 1 (semiconductor porcelain) is formed.
内部電極 2, 3は、 それぞれ、 焼結体 1の端面 1 b, 1 cに引き出されて いる。 焼結体 1の端面 1 b, 1 c上に、 A gペーストを塗布し、 焼付けるこ とにより、 外部電極 4, 5を形成し、 それによつて図 1に示されている、 積 層型の負特性サーミスタ 6を得た。  The internal electrodes 2 and 3 are drawn out to end faces 1 b and 1 c of the sintered body 1, respectively. The external electrodes 4 and 5 are formed by applying and baking an Ag paste on the end surfaces 1 b and 1 c of the sintered body 1, whereby the laminated type shown in FIG. 1 is formed. The negative characteristic thermistor 6 was obtained.
上記のようにして得られた試料番号 1〜 8の各負特性サーミスタを、 それ ぞれ 1 00個ランダムにサンプリングした。 サンプリングされた 1 00個の 負特性サーミスタについて、 温度 25°Cにおける抵抗値 (R25) と、 50°C における抵抗値 (R50) とを測定し、 B定数 (B25/50) を求めた。 なお、 B定数は 25°Cにおける抵抗値 R25と 50°Cにおける抵抗値 R50とから下 記の式 (1 ) により求めた。 さらに、 抵抗値 R25と、 B定数 B 25/50の各ば らつき 3 CV (%) を式 (2) により求めた。 Each of the negative characteristic thermistors of Sample Nos. 1 to 8 obtained as described above was sampled at random 100 pieces. For 100 sampled negative thermistors, the resistance (R 25 ) at 25 ° C and 50 ° C Resistance and (R 50) were measured in to obtain the B constant (B 25/50). Incidentally, B constant was determined by the equation (1) below SL from the resistance value R 50 Metropolitan in resistance R 25 and 50 ° C at 25 ° C. Further, 3 CV (%) of each variation of the resistance value R 25 and the B constant B 25/50 was obtained by the equation (2).
B定数(K) = [InR25(Q)— InR5。(Q)] (1Z298.15-1/323.15 "(1)B constant (K) = [InR 25 (Q) — InR 5 . (Q)] (1Z298.15-1 / 323.15 "(1)
3CV(%)=300x(標準偏差) Z (平均値)…(2) 3CV (%) = 300x (standard deviation) Z (mean)… (2)
次に、 1 25°Cの恒温槽の中に 1 000時間、負特性サーミスタを放置し、 自然冷却により冷却し、 25°Cにおける抵抗値を求めた。 上記 1 25°Cに放 置する前の 25°Cにおける抵抗値 R25に対する放置前後の 25°Cにおける抵 抗値の変化 Δ R25の割合、 △ R25ZR25を計算した。 Next, the negative characteristic thermistor was left in a thermostat at 125 ° C for 1,000 hours, cooled by natural cooling, and the resistance value at 25 ° C was determined. Ratio of resistance value of the change delta R 25 at 25 ° C before and after standing for a resistance value R 25 of 25 ° C before left standing in the 1 25 ° C, was calculated △ R 25 ZR 25.
また、 上記試料番号 1〜8の負特性サーミスタを、 鏡面研磨し、 研磨表面 を S EM (走査型電子顕微鏡) で観察し、 画像解析により空隙の面積の合計 を求め、 空隙率を計算した。 結果を下記の表 1に示す。 なお、 以下の表にお いて、 *が付された試料は、 平均一次粒子径: 0. 05〜0. 3〃m、 比表 面積: 1 0〜80m2Zgの範囲にある A I 203粉末を出発原料として用い ていないサンプルであることを示す。 The negative characteristic thermistors of Sample Nos. 1 to 8 were mirror-polished, the polished surface was observed with a scanning electron microscope (SEM), and the total area of the voids was obtained by image analysis to calculate the porosity. The results are shown in Table 1 below. Incidentally, have you in the following table, the samples * is attached, average primary particle diameter:. 0.05 to 0 3〃M, specific surface area: AI 2 0 3 in the range of 1 0~80m 2 Zg This indicates that the sample does not use powder as a starting material.
Figure imgf000009_0001
表 1から明らかなように、 試料番号 3〜6の各負特性サーミスタは、 平均 一次粒子径が 0. 05〜0. 3 j« mの範囲にあり、 かつ比表面積が 1 0~8 0m2Zgの範囲にある A I 203粉末を出発原料として用いているため、 初 期特性のばらつきが小さく、高温放置試験前後の抵抗値変化率 Δ R25ノ R25 が 1 %未満であり、 高温下における経時による特性の変化が非常に小さいこ とがわかる。 また、 空隙率も、 A I 203粉末の平均一次粒子径および比表面 積が上述の範囲外にある試料番号 1 , 2, 7, 8の負特性サ一ミスタに比べ て、 試料番号 3〜 6の負特性サーミスタでは低いことがわかる。
Figure imgf000009_0001
As is clear from Table 1, each of the negative characteristic thermistors of Sample Nos. 3 to 6 has an average primary particle diameter in the range of 0.05 to 0.3 j «m and a specific surface area of 10 to 80 m 2. since the AI 2 0 3 powder in the range of Zg are used as starting materials, small variations in the initial characteristics, the resistance value change rate delta R 25 Roh R 25 before and after high-temperature exposure test was less than 1%, a high temperature The change in characteristics with time under I understand. Further, the void rate, average primary particle size and specific surface area of the AI 2 0 3 powder as compared with the negative characteristics mono- thermistor of Sample No. 1, 2, 7, 8 is outside the above range, the sample No. 3 It turns out that it is low in the negative characteristic thermistor of 6.
(実施例 2)  (Example 2)
実施例 1 と同様にして、 但し、 A I 203粉末の平均一次粒子径及び比表面 積並びに焼成温度を下記の表 2に示すように変更したことを除いては、 実施 例 1 と同様にして表 2に示す試料番号 9〜 1 8の各負特性サーミスタを得た。 In the same manner as in Example 1, except, except that changing the AI 2 0 3 having an average primary particle size and specific surface area and the firing temperature of the powder as shown in Table 2 below, in the same manner as in Example 1 Thus, the negative characteristic thermistors of sample numbers 9 to 18 shown in Table 2 were obtained.
このようにして得られた各負特性サ一ミスタについて、 実施例 1の場合と 同様にして空隙率を求めた。  The porosity of each of the thus obtained negative characteristic thermistors was determined in the same manner as in Example 1.
なお、 表 2における試料番号 9は、 表 1の試料番号 5と同じである。 表 2  The sample number 9 in Table 2 is the same as the sample number 5 in Table 1. Table 2
Figure imgf000010_0001
表 2から明らかなように、 試料番号 9, 1 1 , 1 3, 1 5, 1 7では、 平 均一次粒子径が 0. 05〜0. 3 /mの範囲にあり、 かつ比表面積が 1 0〜 80m2Zgの範囲にある A I 203粉末を出発原料として用いているため、 焼成温度が 1 1 00°C、 1 1 50°C、 1 200°C、 1 250°C及び 1 300 °C のいずれにおいても、 A I 203粉末の平均一次粒子径及ぴ比表面積が上記の 範囲外である試料番号 1 0, 1 2, 1 4, 1 6, 1 8に比べて、 空隙率を著 しく低くし得ることがわかる。 すなわち、 A I 203の焼結性が高められてい るため、 高温で焼成した場合であっても、 焼結密度の高い半導体磁器の得ら れることがわかる。
Figure imgf000010_0001
As is evident from Table 2, in Sample Nos. 9, 11, 13, 13, 15 and 17, the uniform uniform particle size was in the range of 0.05 to 0.3 / m and the specific surface area was 1 0 to 80 m 2 for the AI 2 0 3 powder in the range of Zg is used as a starting material, the baking temperature is 1 1 00 ° C, 1 1 50 ° C, 1 200 ° C, 1 250 ° C and 1 300 in either ° C also, the average primary particle径及Pi specific surface area of AI 2 0 3 powder as compared with sample No. 1 0, 1 2, 1 4, 1 6, 1 8 is outside the above range, the porosity It can be seen that can be significantly reduced. That, AI 2 0 3 in order not sinterability is improved, even when fired at a high temperature, it can be seen that are obtained these high semiconducting ceramic having a sintered density.
(実施例 3)  (Example 3)
M n , 3 O^ 4' A 2o3 T ο。、 νο e 9 2 Ο^ 3 C ο 304. Ν ί 0、M n, 3 O ^ 4 'A 2 o 3 T ο. , Νο e 9 2 Ο ^ 3 C ο 3 0 4. Ν ί 0,
C u 0、 Μ g C Ο η Ο及び Ζ r 02の各粉末を、 表 3 Αに示す原子比率 (モル) となるように秤量し、 ボールミルで 24時間湿式混合し、 試料番号 1 9〜42の各組成物を得た。 C u 0, the respective powders of Μ g C Ο η Ο and Zeta r 0 2, the atomic ratio shown in Table 3 Alpha (Mol) and wet-mixed in a ball mill for 24 hours to obtain each composition of Sample Nos. 19 to 42.
なお、 試料番号 1 9〜30で用いた A I 203粉末の平均一次粒子径は 0. であり、 比表面積は 40m2Zgである。 また、 これらの試料番号の試 料では、 A I 203中のN a量は、 N a20に換算して 0. 001重量0 /0とな るように予め調整しておいた。 The average primary particle diameter of AI 2 0 3 powder used in sample No. 1 9-30 is 0.5, a specific surface area of 40 m 2 Zg. Further, the specimen of the sample No., N a content in AI 2 0 3 was in advance adjusted to so that Do and 0.001 wt 0/0 in terms of N a 2 0.
他方、 試料番号 31〜42では、 A I 203粉末の平均一次粒子径は 0. 5 〃mであり、 比表面積は 6m2Zgとした。 また、 A I 203粉末中の a量 は、 全て N a 20に換算して 0. 005重量%となるように調整しておいた。 上記のようにして用意された試料番号 1 9〜 42の各組成物を用いたこと を除いては、 実施例 1 と同様にして負特性サーミスタを得、 評価した。 結果 を下記の表 3 Bに示す。 表 3 A On the other hand, Sample No. 31 to 42, an average primary particle diameter of AI 2 0 3 powder is 0.5 〃M, the specific surface area was 6 m 2 Zg. Further, a quantity of AI 2 0 3 powder has had adjusted to be 0.005 wt% in terms of all the N a 2 0. Negative thermistors were obtained and evaluated in the same manner as in Example 1 except that the compositions of Sample Nos. 19 to 42 prepared as described above were used. The results are shown in Table 3B below. Table 3 A
Figure imgf000011_0001
Figure imgf000011_0001
単位: mo I 表 3 B Unit: mo I Table 3 B
Figure imgf000012_0001
表 3 Aおよび表 3 Bから明らかなように、 試料番号 3 1 42の負特性サ ミスタに比べて、 試料番号 1 9 30の負特性サーミスタでは、 初期特性 のばらつきが小さく、かつ高温放置試験前後の抵抗値変化率 Δ R25ZR25が 1 %未満と小さいことがわかる。 また、 空隙率についても、 試料番号 3 "!〜 42の負特性サーミスタの場合に比べて、 試料番号 1 9~30の負特性サー ミスタでは 1 Z3 1 20まで低くなリ、 従って焼結体の緻密性が高めら れていることがわかる。
Figure imgf000012_0001
As is clear from Tables 3A and 3B, the negative characteristic thermistor of Sample No. 1930 has smaller initial characteristic variation than the negative thermistor of Sample No. 3 142, and before and after the high-temperature storage test. the resistance value change ratio Δ R 25 ZR 25 it can be seen that the less than 1% smaller. In addition, the porosity of the negative thermistors of Sample Nos. 19 to 30 is lower than that of the negative thermistors of Sample No. 3 "! It can be seen that the denseness has been improved.
(実施例 4)  (Example 4)
M n 304 N i O Co304 A l 203 F e 203及び〇 u Oを、 M n N i A し F e C o及び C uが下記の割合となるように秤量し、 ボール ミルで 24時間湿式混合し、 試料番号 67 98の各組成物を得た。 Weigh M n 3 0 4 N i O Co 3 0 4 A l 2 0 3 F e 2 0 3 and 〇 u O, as M n N i A to F e C o and C u is the following ratio The mixture was wet-mixed in a ball mill for 24 hours to obtain each composition of Sample No. 6798.
なお、 A I 203粉末の平均一次粒子径は 0. 1 m、 比表面積 3 Om2 gとした。 また、 A I 203粉末中に含まれる N a量は、 下記の表 4に示すよ うに調整しておいた。 The average primary particle diameter of AI 2 0 3 powder is 0. 1 m, a specific surface area 3 Om 2 g. Further, N a content in the AI 2 0 3 powder was allowed to urchin adjusted by shown in Table 4 below.
上記各試料番号 67〜98の組成物を用いたことを除いては、 実施例 1 と 同様にして負特性サーミスタを得、 評価した。  A negative-characteristic thermistor was obtained and evaluated in the same manner as in Example 1, except that the compositions of Sample Nos. 67 to 98 were used.
もっとも、 実施例 4では、 評価に際して、 1 25°Cの恒温槽に代えて、 8 5°C及び相対湿度 85%の恒温恒湿槽中に 1 000時間、 負特性サーミスタ を放置し、放置前後の温度 25°Cにおける抵抗値の変化率 Δ R25 R25を求 めた。 結果を下記の表 4に示す。 However, in Example 4, in the evaluation, the negative characteristic thermistor was left for 1,000 hours in a constant temperature / humidity chamber at 85 ° C and 85% relative humidity instead of a constant temperature chamber at 125 ° C, and before and after leaving. The resistance change rate ΔR 25 R 25 at a temperature of 25 ° C. was determined. The results are shown in Table 4 below.
表 4 Table 4
Figure imgf000014_0001
表 4から明らかなように、 A I 203粉末における N a含有量が、 N a 20 に換算して 0. 0 1重量%より低い、 試料番号 67, 68, 7 1, 72, 7 5 , 76, 7 980, 83, 84, 87, 88, 9 1 , 92, 95, 96の 負特性サーミスタでは、 対応する残りの試料番号の組成物を用いた場合の負 特性サーミスタに比べて、 初期特性のばらつきが一層小さく、 湿中放置試験' 前後の抵抗値変化率厶1¾2525が10/0未満と小さく、非常に安定している ことがわかる。 もっとも、 平均一次粒子径が 0. 05〜0. 3 /mであり、 比表面積が 1 0~ 80m2Zgである A I 203粉末を用いているので、 試料 番号 69, 70, 73, 74, 77, 78, 8 1, 82, 85, 86, 89, 90, 93, 94, 97, 98の負特性サ一ミスタにおいても 25 °Cの抵抗 値のばらつき 3 CVは小さく、 空隙率も低いことがわかる。
Figure imgf000014_0001
As is clear from Table 4, N a content in AI 2 0 3 powder is less than 0 1 wt% 0.1 in terms of N a 2 0, Sample No. 67, 68, 71, 72, 7 5 , 76, 7 980, 83, 84, 87, 88, 91, 92, 95, and 96 have lower initial thermistors than the corresponding thermistors using the compositions of the remaining sample numbers. characteristics even smaller variations in, the middle shelf test 'before and after the resistance change rate厶1¾ 2525 moisture as small as less than 10/0, it is found to be very stable. However, the average primary particle size is 0.05-0.3 / m, Since specific surface area is used AI 2 0 3 powder is 1 0 ~ 80 m 2 Zg, Sample No. 69, 70, 73, 74, 77, 78, 81, 82, 85, 86, 89, 90, 93 , 94, 97, and 98, the variation in resistance at 25 ° C, 3 CV, was small, and the porosity was low.
(実施例 5)  (Example 5)
Mn 304、 A l 203、 T i 02、 V02、 C r 2Os、 F e 203、 C o304, N i O、 C u O、 Mg C03、 Z n O及ぴ Z r 02の各粉末を、 下記の表 5 A に示す原子比率 (モル) となるように秤量し、 ポールミルを用いて 24時間 湿式混合し、 試料番号 99〜 1 24の各組成物を得た。 Mn 3 0 4, A l 2 0 3, T i 0 2, V0 2, C r 2 O s, F e 2 0 3, C o 3 0 4, N i O, C u O, Mg C0 3, Z each powder of n O及Pi Z r 0 2, were weighed so that the atomic ratio shown in Table 5 a below (mol), and 24 hours wet mixing using a ball mill, each of sample No. 99-1 24 A composition was obtained.
なお、 A I 203粉末の平均一次粒子径は 0. 2 j(im、 比表面積は 25m2 Zgとした。 また、 A I 203粉末中の a含有量は、 0. 005重量%とな るように調整しておいた。 以下、 実施例 1と同様にして、 負特性サ一ミスタ を得た。 上記のようにして得られた負特性サ一ミスタの評価を実施例 4と同 様にして行った。 結果を下記の表 5 Bに示す。 The average primary particle diameter of AI 2 0 3 powder is 0. 2 j (im, specific surface area was 25 m 2 Zg. Furthermore, a content of AI 2 0 3 powder is 0.005 wt% and I Thereafter, a negative characteristic thermistor was obtained in the same manner as in Example 1. The evaluation of the negative characteristic thermistor obtained as described above was performed in the same manner as in Example 4. The results are shown in Table 5B below.
|0U1: ¾南 | 0U1: South China
Figure imgf000016_0001
Figure imgf000016_0001
V s拏 l9∑800/COOZdf/X3d 99t800請 Z OAV 表 5 B V halla l9∑800 / COOZdf / X3d 99t800 contract Z OAV Table 5 B
Figure imgf000017_0001
表 5 Aおよび表 5 Bから明らかなように、 A I 203粉末中の N a含有量が N a 20に換算して 0. 01重量%よリ低い場合には、 いずれの組成系の試料 においても初期特性のはらつきが小さく、 かつ湿中放置試験前後の抵抗値変 化率 (A R25ZR25) が 1 %未満であり、 非常に安定していることがわかる t 以上のように、 平均一次粒子径が 0. 05~0. 3〃 m、 かつ比表面積が 1 0 80m2Zgの範囲にある A I 2 O 3粉末を出発原料に添加することに より、 焼成前の成形体において A Iが高分散し、 焼成後の焼結体、 すなわち スピネル系複合酸化物半導体磁器において、 A Iがスピネル相に均一に固溶 する。 従って、 Mnを主成分とするスピネル系複合酸化物からなる半導体磁 器を用いた負特性サーミスタの製造に際し、初期特性のばらつきを低減でき、 良品率を高めることができる。 また、 比較的低温で焼成することができるた め、 負特性サ一ミスタのコストを低減することができるとともに、 電極材料 の選択範囲を広げることができ、 さらに熱履歴変化を小さくすることができ る。 さらに、 A Iが均一に分散する.ため、 焼結性が高められ、 より高密度な 焼結体を得ることができる。
Figure imgf000017_0001
Table 5 A and Table 5 B, when AI 2 0 3 N a content in the powder N a 2 0 to in terms 0.01 wt% by Li low, of any composition system small initial characteristics field with even samples, and the resistance values before and after Shimenaka shelf test change rate (AR 25 ZR 25) is less than 1%, as described above t be seen to be very stable By adding AI 2 O 3 powder having an average primary particle size of 0.05 to 0.3 μm and a specific surface area in the range of 1080 m 2 Zg to the starting material, AI is highly dispersed, and AI is uniformly dissolved in the spinel phase in the sintered body after firing, that is, in the spinel-based composite oxide semiconductor porcelain. Therefore, when manufacturing a negative-characteristic thermistor using a semiconductor ceramic made of a spinel-based composite oxide containing Mn as a main component, variation in initial characteristics can be reduced, and the yield rate can be increased. Also, it can be fired at a relatively low temperature. Therefore, the cost of the negative characteristic thermistor can be reduced, the selection range of the electrode material can be expanded, and the change in the thermal history can be further reduced. Furthermore, since the AI is uniformly dispersed, the sinterability is enhanced, and a higher density sintered body can be obtained.
さらに、 A I 2 0 3粉末中のN a含有量を 0 . 0 1重量%以下とした場合に は、 高湿度環境下におかれた場合においても、 N aのイオン化によるマイグ レーシヨンが生じ難いため、 高湿度環境下における経時による特性の変化が 少ない負特性サーミスタを提供することができる。 産業上の利用可能性 Further, the N a content of AI 2 0 3 powder 0.0 1 when the weight% or less, when placed in a high humidity environment, since it is difficult occur migrated Reshiyon by ionization of N a In addition, it is possible to provide a negative-characteristic thermistor having a small change in characteristics over time in a high-humidity environment. Industrial applicability
以上のように、 本発明にかかる負特性サーミスタの製造方法は、 温度検知 や温度補償などに用いられる負特性サーミスタを製造するために有用である。  As described above, the method for manufacturing a negative temperature coefficient thermistor according to the present invention is useful for manufacturing a negative temperature coefficient thermistor used for temperature detection and temperature compensation.

Claims

請求の範囲 The scope of the claims
1 - 平均一次粒子径が 0. 05〜0. 3 jumであり、 比表面積が 1 0〜80 m2Zgである A I 203粉末と、 M n化合物粉末とを含む組成物を用意する 工程と、 1 -. An average primary particle size of 0.05 to 0 3 is jum, and AI 2 0 3 powder having a specific surface area of 1 0 to 80 m 2 Zg, a step of preparing a composition comprising a M n compound powder When,
前記組成物を焼成し、 Mn及び A を含むスピネル系複合酸化物よりなる 半導体磁器を得る工程と、  Baking the composition to obtain a semiconductor porcelain made of a spinel-based composite oxide containing Mn and A;
前記半導体磁器の外表面に複数の外部電極を形成する工程とを備える、 負 特性サーミスタの製造方法。  Forming a plurality of external electrodes on an outer surface of the semiconductor porcelain.
2. 前記 A I 203粉末が、 不純物として、 N aを N a 20に換算して 0. 0 1重量%以下の割合で含む、 請求の範囲第 1項に記載の負特性サーミスタの 製造方法。 2. The AI 2 0 3 powder, as impurities, in terms of the N a to N a 2 0 in a proportion of 0.0 1 wt% or less, the production of negative-characteristic thermistor according to claim 1 Method.
3. 前記半導体磁器を得る工程において、 複数の内部電極が前記組成物から なる層を介して積層されている積層体を用意し、 該積層体を焼成することに より、 複数の内部電極が積層されている積層型の半導体磁器を得る、 請求の 範囲第 1項または第 2項に記載の負特性サーミスタの製造方法。 3. In the step of obtaining the semiconductor porcelain, a laminated body in which a plurality of internal electrodes are laminated via a layer made of the composition is prepared, and the laminated body is fired to laminate the plurality of internal electrodes. 3. The method for producing a negative-characteristic thermistor according to claim 1, wherein said laminated semiconductor ceramic is obtained.
4. 請求の範囲第 1項に記載の負特性サ一ミスタの製造方法によリ得られた 負特性サーミスタ。 4. A negative characteristic thermistor obtained by the method for manufacturing a negative characteristic thermistor according to claim 1.
5. 平均一次粒子径が 0. 05〜0. 3 / mであり、 比表面積が 1 0〜80 m2 gである A I 203粉末と、 M n化合物粉末とを含む組成物を用意する 工程と、 5. The average primary particle size of 0.05 to 0. A 3 / m, and AI 2 0 3 powder having a specific surface area of 1 0~80 m 2 g, providing a composition comprising a M n compound powder Process and
前記組成物を焼成し、 Mn及び A I を含むスピネル系複合酸化物よりなる 半導体磁器を得る工程と、  Baking the composition to obtain a semiconductor porcelain made of a spinel-based composite oxide containing Mn and AI;
を備える、 負の抵抗温度特性を示す半導体磁器の製造方法。 A method for producing semiconductor porcelain exhibiting negative resistance-temperature characteristics, comprising:
6. 前記 A I 2 O 3粉末が、 不純物として、 N aを N a 20に換算して 0. 0 1重量%以下の割合で含む、 請求の範囲第 5項に記載の負の抵抗温度特性を 示す半導体磁器の製造方法。 6. The AI 2 O 3 powder, as impurities, in terms of the N a to N a 2 0 in a proportion of 0.0 1 wt% or less, the negative resistance-temperature characteristic according to claim 5 The manufacturing method of the semiconductor porcelain which shows this.
PCT/JP2003/008261 2002-07-16 2003-06-30 Method for manufacturing negative temperature coefficient thermistor and negative temperature coefficient thermistor WO2004008466A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003246122A AU2003246122A1 (en) 2002-07-16 2003-06-30 Method for manufacturing negative temperature coefficient thermistor and negative temperature coefficient thermistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-206876 2002-07-16
JP2002206876 2002-07-16

Publications (1)

Publication Number Publication Date
WO2004008466A1 true WO2004008466A1 (en) 2004-01-22

Family

ID=30112807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008261 WO2004008466A1 (en) 2002-07-16 2003-06-30 Method for manufacturing negative temperature coefficient thermistor and negative temperature coefficient thermistor

Country Status (2)

Country Link
AU (1) AU2003246122A1 (en)
WO (1) WO2004008466A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972656A (en) * 2010-10-20 2011-02-16 成都理工大学 Nickel-base catalyst used for autothermal reforming of ethanol for producing hydrogen and preparation method thereof
CN112811891A (en) * 2020-12-26 2021-05-18 重庆材料研究院有限公司 Spinel phase high-entropy thermistor material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294404A (en) * 1988-09-29 1990-04-05 Tdk Corp Resistor
JPH03279252A (en) * 1990-03-29 1991-12-10 Taiyo Yuden Co Ltd Composition for thermister
JP2001220218A (en) * 2000-01-31 2001-08-14 Kyocera Corp Dielectric ceramic composition
JP2001267045A (en) * 2000-03-24 2001-09-28 Ibiden Co Ltd Manufacturing method of ceramic heater
JP2002080273A (en) * 2000-09-08 2002-03-19 Murata Mfg Co Ltd Porcelain for high frequency wave, dielectric antenna, supporting base, dielectric resonator, dielrctric filter, dielectric duplexer and communication equipment device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294404A (en) * 1988-09-29 1990-04-05 Tdk Corp Resistor
JPH03279252A (en) * 1990-03-29 1991-12-10 Taiyo Yuden Co Ltd Composition for thermister
JP2001220218A (en) * 2000-01-31 2001-08-14 Kyocera Corp Dielectric ceramic composition
JP2001267045A (en) * 2000-03-24 2001-09-28 Ibiden Co Ltd Manufacturing method of ceramic heater
JP2002080273A (en) * 2000-09-08 2002-03-19 Murata Mfg Co Ltd Porcelain for high frequency wave, dielectric antenna, supporting base, dielectric resonator, dielrctric filter, dielectric duplexer and communication equipment device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972656A (en) * 2010-10-20 2011-02-16 成都理工大学 Nickel-base catalyst used for autothermal reforming of ethanol for producing hydrogen and preparation method thereof
CN101972656B (en) * 2010-10-20 2013-04-03 成都理工大学 Nickel-base catalyst used for autothermal reforming of ethanol for producing hydrogen and preparation method thereof
CN112811891A (en) * 2020-12-26 2021-05-18 重庆材料研究院有限公司 Spinel phase high-entropy thermistor material and preparation method thereof
CN112811891B (en) * 2020-12-26 2022-08-02 重庆材料研究院有限公司 Spinel phase high-entropy thermistor material and preparation method thereof

Also Published As

Publication number Publication date
AU2003246122A1 (en) 2004-02-02

Similar Documents

Publication Publication Date Title
TWI389868B (en) Semiconductor porcelain composition and method of manufacturing the same
JP6337689B2 (en) Semiconductor porcelain composition and PTC thermistor
KR100756619B1 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body
US5248640A (en) Non-reducible dielectric ceramic composition
JP6424728B2 (en) Semiconductor porcelain composition and PTC thermistor
JP4424659B2 (en) Aluminum nitride material and member for semiconductor manufacturing equipment
JPWO2008053813A1 (en) Semiconductor porcelain composition and method for producing the same
TW201043593A (en) Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member
JP6783528B2 (en) Ceramic structure, its manufacturing method and members for semiconductor manufacturing equipment
WO2010067866A1 (en) Semiconductor ceramic and positive temperature coefficient thermistor
WO2007023512A1 (en) Semiconductor ceramic composition
TWI433827B (en) NTC thermal resistors for semiconductor porcelain compositions and NTC thermal resistors
CN106431390B (en) Semiconductor ceramic composition and PTC thermistor
JP2017143090A (en) Semiconductor ceramic composition and ptc thermistor
JP4029170B2 (en) Manufacturing method of negative characteristic thermistor
KR20130086093A (en) Lead-free piezoelectric ceramics composition
WO2004008466A1 (en) Method for manufacturing negative temperature coefficient thermistor and negative temperature coefficient thermistor
JP2020043299A (en) Dielectric composition and electronic component
JP2020043310A (en) Dielectric composition and electronic component
JP2010215418A (en) Method of manufacturing piezoelectric ceramic electronic component
JP2003238248A (en) Piezoelectric porcelain composition and piezoelectric device
WO2011002021A1 (en) Semiconductor ceramic and positive-coefficient thermistor
JP2007230839A (en) Piezoelectric ceramic composition, multilayer piezoelectric element and method of manufacturing the same
JP2014072374A (en) Barium titanate-based semiconductor porcelain composition and ptc thermistor using the same
JP6034017B2 (en) Piezoelectric ceramics and multilayer piezoelectric elements

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase