JP2016104678A - Method for manufacturing optical glass molding - Google Patents

Method for manufacturing optical glass molding Download PDF

Info

Publication number
JP2016104678A
JP2016104678A JP2014243014A JP2014243014A JP2016104678A JP 2016104678 A JP2016104678 A JP 2016104678A JP 2014243014 A JP2014243014 A JP 2014243014A JP 2014243014 A JP2014243014 A JP 2014243014A JP 2016104678 A JP2016104678 A JP 2016104678A
Authority
JP
Japan
Prior art keywords
softening
heat
glass
optical glass
dish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014243014A
Other languages
Japanese (ja)
Inventor
富美夫 小島
Tomio Kojima
富美夫 小島
遼 臼井
Ryo Usui
遼 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2014243014A priority Critical patent/JP2016104678A/en
Publication of JP2016104678A publication Critical patent/JP2016104678A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an optical glass molding, capable of obtaining an optical glass molding extremely low in poor burning and devitrification and contributing even to extension of the lifetime of a thermal resistance softening plate and the reduction of consumption energy (electric power, etc.) in a softening furnace.SOLUTION: The method for manufacturing an optical glass molding comprises softening a glass gob and press-molding the glass gob. The glass gob is softened in a state placed on a thermal resistance softening plate including metal having a melting point of 1300°C or more.SELECTED DRAWING: None

Description

本発明は、光学ガラス成形品の製造方法に関する。   The present invention relates to a method for producing an optical glass molded product.

通常、光学系を構成するレンズには、一般に球面レンズと非球面レンズがある。多くの球面レンズは、ガラス材料を研削、研磨等を行うことにより、或いはリヒートプレス成形して得られたガラス成形品を冷間加工することによって製造される。   In general, the lenses constituting the optical system generally include a spherical lens and an aspheric lens. Many spherical lenses are manufactured by grinding or polishing a glass material or by cold working a glass molded product obtained by reheat press molding.

光学ガラスのリヒートプレス成形は、ガラス材料を再加熱し軟化させた後に行う。光学ガラス成形品は、リヒートプレス成形の他に、ダイレクトプレス成形や、精密プレス成形などの製法が用いて作製されることが多く、特にリヒートプレス成形を用いる製法は、一定以上の品質を保った状態でガラスゴブをプレス成形することができるという点で、レンズ等の光学成形品として有用である。   Optical glass reheat press molding is performed after the glass material is reheated and softened. Optical glass molded products are often produced using direct press molding or precision press molding in addition to reheat press molding. In particular, the manufacturing method using reheat press molding maintains a certain level of quality. Since the glass gob can be press-molded in a state, it is useful as an optical molded product such as a lens.

例えば特許文献1(0058段落、実施例2)には、光学ガラスを研削、研磨してプレス成形用ガラス素材を作製し、次にプレス成形ガラス素材表面に窒化ホウ素粉末を均一に塗布し、耐熱性軟化皿上に載せ、加熱軟化炉内へ入れ、加熱し、プレス成形用型内に導入してプレスし、アニールし、研削、研磨してレンズを得る旨が記載されている。   For example, in Patent Document 1 (paragraph 0058, Example 2), optical glass is ground and polished to produce a glass material for press molding, and then boron nitride powder is uniformly applied to the surface of the press molded glass material. It is described that it is placed on a heat-resistant softening dish, placed in a heat softening furnace, heated, introduced into a press mold, pressed, annealed, ground and polished to obtain a lens.

特開2012−229135号公報JP 2012-229135 A

リヒートプレス成形は、板状のガラスやガラスブロック品を、最終的なレンズ形状などの狙いの重量に合わせて研削、研磨することにより、ガラスゴブを作製する。そして、ガラスゴブを耐熱性軟化皿へ積載し、加熱軟化炉へ投入し、ガラスゴブを加熱・軟化させた後に、個々の製品用に成形したリヒートプレス用金型へガラスゴブを移し、リヒートプレス成形を行う。   In reheat press molding, a glass gob is produced by grinding and polishing a plate-like glass or glass block product in accordance with a target weight such as a final lens shape. Then, the glass gob is loaded on a heat-resistant softening dish, put into a heating and softening furnace, and after heating and softening the glass gob, the glass gob is transferred to a reheat press mold formed for each product, and reheat press molding is performed. .

ここで、軟化炉と呼称されるガラス加熱機構内では、ガラスゴブを耐熱性軟化皿に設置し、軟化炉内の温度を上昇させ、ガラスゴブを加熱・軟化させる。耐熱性軟化皿は、珪藻土やセラミックス材質の耐熱性軟化皿(「成形皿」と呼称される場合もある)を用いる。   Here, in a glass heating mechanism called a softening furnace, the glass gob is placed in a heat-resistant softening dish, the temperature in the softening furnace is increased, and the glass gob is heated and softened. As the heat-resistant softening dish, a heat-resistant softening dish made of diatomaceous earth or a ceramic material (sometimes referred to as “molding dish”) is used.

しかしながら、これらの耐熱性軟化皿は、複数回の使用により、欠けや割れが生じてしまうため、劣化が著しく、強度が十分ではない。また、これらの耐熱軟化皿が劣化して割れた時などに発生する欠片がガラスゴブに付着されたままリヒートプレス成形されると、焼き込み不良が生じる。   However, these heat-resistant softening dishes are chipped and cracked by being used multiple times, so that the deterioration is remarkable and the strength is not sufficient. Moreover, if reheat press molding is performed with the fragments generated when these heat-resistant softening plates deteriorate and cracked, the defective baking occurs.

また、これらの耐熱性軟化皿の熱伝導率は低く、ガラスゴブがプレスに適した温度に昇温されるまでに長い時間を要する場合があり、失透温度領域に長く留まることにより、失透が発生しやすいという不利益が生じる。   In addition, the heat conductivity of these heat-resistant softening dishes is low, and it may take a long time for the glass gob to be heated to a temperature suitable for the press. There is a disadvantage that it is likely to occur.

また、軟化炉での消費エネルギー(電力等)をより低減させることができれば、環境負荷の抑制およびコスト面で有利となり好ましい。   In addition, if energy consumption (electric power, etc.) in the softening furnace can be further reduced, it is advantageous in terms of reducing environmental burden and cost.

本発明は、このような課題を解決することを目的とする。
すなわち、本発明の目的は、リヒートプレス成形時に焼き込み不良および失透が極めて少ない光学ガラス成形品が得られ、耐熱性軟化皿の寿命延長および軟化炉での消費エネルギー(電力等)の低減にも寄与する光学ガラス成形品の製造方法を提供することにある。
The present invention aims to solve such problems.
That is, an object of the present invention is to obtain an optical glass molded product with extremely low burn-in failure and devitrification during reheat press molding, to extend the life of a heat-resistant softening dish and to reduce energy consumption (electric power, etc.) in a softening furnace. Another object of the present invention is to provide a method for producing an optical glass molded product that contributes to the above.

本発明者らは、上記課題を解決するために鋭意検討し、耐熱性軟化皿を、従来の珪藻土やセラミックスから、特定の金属製のものとすることにより、耐熱性軟化皿自体から発生する欠片が原因となる焼き込み不良の発生を抑制し、加えて、軟化炉設定温度を低下させ、さらに、ガラスの失透の成長を抑制することに成功し、本発明を完成させた。   The present inventors have intensively studied to solve the above problems, and by making the heat-resistant softening dish made of a specific metal from conventional diatomaceous earth and ceramics, fragments generated from the heat-resistant softening dish itself In addition to suppressing the occurrence of poor baking due to the above, in addition to lowering the softening furnace set temperature, and succeeding in suppressing the growth of glass devitrification, the present invention was completed.

本発明は以下の(1)〜(2)である。
(1)ガラスゴブを軟化した後にプレス成形することを含む、光学ガラス成形品の製造方法であって、
前記ガラスゴブを、融点1300℃以上を有する金属を含む耐熱性軟化皿の上に載置した状態で軟化することを特徴とする、光学ガラス成形品の製造方法。
(2)前記耐熱性軟化皿がステンレスからなる、上記(1)に記載の光学ガラス成形品の製造方法。
The present invention includes the following (1) to (2).
(1) A method for producing an optical glass molded article, comprising press molding after softening a glass gob,
A method for producing an optical glass molded article, wherein the glass gob is softened in a state of being placed on a heat-resistant softening dish containing a metal having a melting point of 1300 ° C or higher.
(2) The method for producing an optical glass molded article according to (1), wherein the heat-resistant softening dish is made of stainless steel.

本発明によれば、焼き込み不良および失透が極めて少ない光学ガラス成形品が得られ、耐熱性軟化皿の寿命延長および軟化炉での消費エネルギー(電力等)の低減にも寄与する光学ガラス成形品の製造方法を提供することができる。   According to the present invention, an optical glass molded product can be obtained which has an extremely low burn-in defect and devitrification, and contributes to extending the life of a heat-resistant softening dish and reducing energy consumption (electric power, etc.) in a softening furnace. A method for manufacturing a product can be provided.

本発明について説明する。
本発明では、初めにガラスゴブを用意する。
ガラスゴブは特に限定されず、例えば従来公知のものを用いることができる。具体的には、例えば板状のガラスや、ガラスブロック品を、切断器具を用いて所定の大きさにまで切断し、必要に応じて研磨や外観検査等を行ってガラスゴブを得ることができる。
The present invention will be described.
In the present invention, a glass gob is first prepared.
A glass gob is not specifically limited, For example, a conventionally well-known thing can be used. Specifically, a glass gob can be obtained, for example, by cutting a plate-like glass or glass block product into a predetermined size using a cutting tool, and performing polishing, appearance inspection, or the like as necessary.

ガラスゴブの種類は、組成系に限定されず、例えばフツリン酸系、ランタン系、シリカチタン系を用いることができる。   The kind of glass gob is not limited to a composition system, For example, a fluoro acid type, a lanthanum type, and a silica titanium type can be used.

ガラスゴブは、その軟化温度が430〜950℃であるものを好ましく用いることができる。焼き込み不良および失透がより少ない光学ガラス成形品が得られ、さらに耐熱性軟化皿の寿命延長および軟化炉での消費エネルギー(電力等)の低減にもより寄与するからである。軟化温度の下限は、好ましくは430℃、より好ましくは450℃、最も好ましくは500℃を下限値とし、軟化温度の上限は、好ましくは950℃、より好ましくは850℃、最も好ましくは820℃を上限値とする。   A glass gob having a softening temperature of 430 to 950 ° C. can be preferably used. This is because an optical glass molded article with less baking failure and less devitrification is obtained, and further contributes to extending the life of the heat-resistant softening dish and reducing energy consumption (electric power, etc.) in the softening furnace. The lower limit of the softening temperature is preferably 430 ° C, more preferably 450 ° C, and most preferably 500 ° C. The upper limit of the softening temperature is preferably 950 ° C, more preferably 850 ° C, and most preferably 820 ° C. The upper limit is assumed.

ガラスゴブの大きさや形状も特に限定されず、例えば一辺が5〜220mmの直方体形状のものが挙げられる。ガラスゴブの外径に対し約80〜90%の対角長を持ち、且つほぼ等しい長さの長辺を2組、その2組の長辺以下の長さを持つ短辺1組より構成される直方体でもよい。重さも特に限定されず、例えば1〜3700g程度ものが挙げられる。   The size and shape of the glass gob are not particularly limited, and examples thereof include a rectangular parallelepiped shape having a side of 5 to 220 mm. Consists of two pairs of long sides of approximately 80 to 90% diagonal length with respect to the outer diameter of the glass gob, and almost equal lengths, and one short side having a length equal to or shorter than the two long sides. A rectangular parallelepiped may be sufficient. The weight is also not particularly limited, and examples include about 1 to 3700 g.

本発明では、上記のようなガラスゴブを軟化する際に、必要に応じて、ガラスゴブの表面に窒化ホウ素粉末などの離型剤を均一に塗布した後、融点1300℃以上を有する金属を含む耐熱性軟化皿の上に載置した状態で軟化する。この金属の融点の下限は、好ましくは1300℃、より好ましくは1400℃、最も好ましくは1450℃を下限値とし、融点の上限は好ましくは2700℃、より好ましくは3000℃、最も好ましくは3500℃を上限値とする。   In the present invention, when softening the glass gob as described above, if necessary, a release agent such as boron nitride powder is uniformly applied to the surface of the glass gob, and then heat resistance including a metal having a melting point of 1300 ° C. or higher. Softens while placed on a softening dish. The lower limit of the melting point of this metal is preferably 1300 ° C., more preferably 1400 ° C., most preferably 1450 ° C., and the upper limit of the melting point is preferably 2700 ° C., more preferably 3000 ° C., most preferably 3500 ° C. The upper limit is assumed.

また、耐熱性軟化皿は、融点1300℃以上を有する金属から実質的になることが好ましい。ここで「実質的になる」とは、原料や製造工程において意図せずに混入する不純物を含み得るが、それ以外の不純物は含まないことを意味する。   Moreover, it is preferable that a heat resistant softening dish consists essentially of the metal which has melting | fusing point 1300 degreeC or more. Here, “substantially” means that impurities that are unintentionally mixed in the raw material and the manufacturing process may be included, but other impurities are not included.

融点1300℃以上を有する金属は、軟化炉温度が1000℃において金属表面及びガラスゴブとの接触部位で酸化または軟化しない金属であることが好ましい。   The metal having a melting point of 1300 ° C. or higher is preferably a metal that does not oxidize or soften at the contact point with the metal surface and the glass gob at a softening furnace temperature of 1000 ° C.

融点1300℃以上を有する金属として、ステンレス、クロム、鉄、ニッケル、タングステン、モリブデン、タンタル、白金およびこれらの中の2以上を含む合金が挙げられる。
これらの中でもステンレスが好ましく、SUS304、SUS316、SUS444がより好ましい。
Examples of the metal having a melting point of 1300 ° C. or higher include stainless steel, chromium, iron, nickel, tungsten, molybdenum, tantalum, platinum, and alloys containing two or more thereof.
Among these, stainless steel is preferable, and SUS304, SUS316, and SUS444 are more preferable.

耐熱性軟化皿の大きさや形状は従来公知のものと同様であってよい。例えば軟化させるガラスゴブが目的位置以外で軟化皿上より落ちることが無いような窪みを持つ板状のものが挙げられる。   The size and shape of the heat resistant softening dish may be the same as those conventionally known. For example, the glass-shaped thing which has a hollow so that the glass gob to soften may not fall from on the softening plate | curd except a target position is mentioned.

耐熱性軟化皿は、融点1300℃以上を有する金属を含む原料を溶融した後、型に流し込み、鋳込んで得たものであることが好ましい。強度、耐熱衝撃性が向上し、破損し難くなるからである。   It is preferable that the heat-resistant softening dish is obtained by melting a raw material containing a metal having a melting point of 1300 ° C. or higher, pouring it into a mold, and casting it. This is because the strength and thermal shock resistance are improved and it is difficult to break.

上記のような耐熱性軟化皿を用いてガラスゴブを軟化した場合、耐熱性軟化皿は極めて劣化し難く、また破損し難いため、得られる光学ガラス成形品における焼き込み不良は極めて少ない。
また、従来の珪藻土等からなるものと比較して、耐熱性軟化皿の熱伝導率が高いため、プレス温度(軟化炉設定温度)を低くすることができ、その結果、失透が極めて少ない光学ガラス成形品が得られる。一般的に光学ガラスは失透温度領域近傍に滞在する時間が長いほど失透が成長してしまい、そのサイズが大きければ不良となってしまうため、できるだけ失透温度領域より低い温度域にて短時間でプレスすることが望まれる。本発明によると、従来法と比較した場合に、20〜100℃程度、プレス温度を低くすることができる。
さらに、耐熱性軟化皿の寿命延長および軟化炉での消費エネルギー(電力等)の低減にも寄与する。
When the glass gob is softened using the heat-resistant softening dish as described above, the heat-resistant softening dish is hardly deteriorated and is not easily damaged. Therefore, there are very few burn-in defects in the obtained optical glass molded product.
In addition, since the heat conductivity of the heat-resistant softening dish is higher than that of conventional diatomaceous earth, the press temperature (softening furnace set temperature) can be lowered. A glass molded product is obtained. In general, as the optical glass stays in the vicinity of the devitrification temperature region, the loss of devitrification grows, and if the size is large, it becomes defective. It is desirable to press in time. According to the present invention, the press temperature can be lowered by about 20 to 100 ° C. when compared with the conventional method.
Furthermore, it contributes to extending the life of heat-resistant softening dishes and reducing energy consumption (electric power, etc.) in the softening furnace.

本発明では、上記のようにして前記ガラスゴブを、融点1300℃以上を有する金属を含む耐熱性軟化皿の上に載置した状態で軟化する。その後、プレス成形用型内に導入してリヒートプレス成形をすることができる。そして、さらに従来公知の処理、例えば、アニール処理、研削処理、研磨処理等を行って光学ガラス成形品(レンズ等)を得ることができる。   In the present invention, as described above, the glass gob is softened while being placed on a heat-resistant softening dish containing a metal having a melting point of 1300 ° C. or higher. Thereafter, it can be introduced into a press mold and reheat press molded. Further, a conventionally known process such as an annealing process, a grinding process, or a polishing process can be performed to obtain an optical glass molded product (lens or the like).

<実施例1>
フツリン酸系のガラスゴブ(硝種:S−FPL51D(オハラ社製)、軟化温度:523℃、重量:57.75g)の表面に窒化ホウ素粉末を均一に塗布した後、ステンレス製(SUS304)の耐熱性軟化皿の上に載置し、軟化炉内にて加熱して軟化させ、その後、プレス成形を行った。その結果、キズやカンがなく、また、失透がない光学ガラス成形品を得ることができた。
耐熱性軟化皿として珪藻土を用いる従来法の場合と比較して、軟化温度を90℃低下させることができたために上記のような良質な光学ガラス成形品が得られたものと考えられる。また、軟化温度を低下させることで、軟化炉での消費エネルギー(電力等)を低減させることができた。
さらに、同様の試験を合計で6回行ったが、耐熱性軟化皿が劣化して割れるようなことはなかった。よって、焼き込み不良はなかった。失透も生じることはなかった。
<Example 1>
After uniformly applying boron nitride powder to the surface of a fluorophosphate glass gob (glass type: S-FPL51D (made by OHARA), softening temperature: 523 ° C., weight: 57.75 g), heat resistance made of stainless steel (SUS304) It was placed on a softening dish and heated in a softening furnace to be softened, and then press-molded. As a result, an optical glass molded article free from scratches and cans and free from devitrification could be obtained.
Compared to the conventional method using diatomaceous earth as a heat-resistant softening dish, the softening temperature could be lowered by 90 ° C., and it is considered that the above-described high-quality optical glass molded product was obtained. Moreover, energy consumption (electric power etc.) in the softening furnace could be reduced by lowering the softening temperature.
Furthermore, although the same test was performed 6 times in total, the heat-resistant softening dish was not deteriorated and cracked. Therefore, there was no burning failure. There was no devitrification.

<実施例2>
ランタン系のガラスゴブ(硝種:L−LAM60A(オハラ社製)、軟化温度:693℃、重量:20g)の表面に窒化ホウ素粉末を均一に塗布した後、ステンレス製(SUS304)の耐熱性軟化皿の上に載置し、軟化炉内にて加熱して軟化させ、その後、プレス成形を行った。その結果、キズやカンがなく、また、失透がない光学ガラス成形品を得ることができた。
耐熱性軟化皿として珪藻土を用いる従来法の場合と比較して、軟化温度を70℃低下させることができたために上記のような良質な光学ガラス成形品が得られたものと考えられる。また、軟化温度を低下させることで、軟化炉での消費エネルギー(電力等)を低減させることができた。
さらに、同様の試験を合計で6回行ったが、耐熱性軟化皿が劣化して割れるようなことはなかった。よって、焼き込み不良はなかった。失透も生じることはなかった。
<Example 2>
After uniformly applying boron nitride powder on the surface of a lanthanum-based glass gob (glass type: L-LAM60A (Ohara), softening temperature: 693 ° C., weight: 20 g), a stainless steel (SUS304) heat-resistant softening dish It was placed on top and heated in a softening furnace for softening, and then press molding was performed. As a result, an optical glass molded article free from scratches and cans and free from devitrification could be obtained.
Compared to the conventional method using diatomaceous earth as a heat-resistant softening dish, the softening temperature could be lowered by 70 ° C., so it is considered that the above-described high-quality optical glass molded product was obtained. Moreover, energy consumption (electric power etc.) in the softening furnace could be reduced by lowering the softening temperature.
Furthermore, although the same test was performed 6 times in total, the heat-resistant softening dish was not deteriorated and cracked. Therefore, there was no burning failure. There was no devitrification.

<実施例3>
シリカチタン系のガラスゴブ(硝種:S−TIH6B(オハラ社製)、軟化温度:690℃、重量:9.4g)の表面に窒化ホウ素粉末を均一に塗布した後、ステンレス製(SUS304)の耐熱性軟化皿の上に載置し、軟化炉内にて加熱して軟化させ、その後、プレス成形を行った。その結果、キズやカンがなく、また、失透がない光学ガラス成形品を得ることができた。
耐熱性軟化皿として珪藻土を用いる従来法の場合と比較して、軟化温度を70℃低下させることができたために上記のような良質な光学ガラス成形品が得られたものと考えられる。また、軟化温度を低下させることで、軟化炉での消費エネルギー(電力等)を低減させることができた。
さらに、同様の試験を合計で6回行ったが、耐熱性軟化皿が劣化して割れるようなことはなかった。よって、焼き込み不良はなかった。失透も生じることはなかった。
<Example 3>
After uniformly applying boron nitride powder to the surface of a silica-titanium glass gob (glass type: S-TIH6B (made by OHARA), softening temperature: 690 ° C., weight: 9.4 g), heat resistance made of stainless steel (SUS304) It was placed on a softening dish and heated in a softening furnace to be softened, and then press-molded. As a result, an optical glass molded article free from scratches and cans and free from devitrification could be obtained.
Compared to the conventional method using diatomaceous earth as a heat-resistant softening dish, the softening temperature could be lowered by 70 ° C., so it is considered that the above-described high-quality optical glass molded product was obtained. Moreover, energy consumption (electric power etc.) in the softening furnace could be reduced by lowering the softening temperature.
Furthermore, although the same test was performed 6 times in total, the heat-resistant softening dish was not deteriorated and cracked. Therefore, there was no burning failure. There was no devitrification.

Claims (2)

ガラスゴブを軟化した後にプレス成形することを含む、光学ガラス成形品の製造方法であって、
前記ガラスゴブを、融点1300℃以上を有する金属を含む耐熱性軟化皿の上に載置した状態で軟化することを特徴とする、光学ガラス成形品の製造方法。
A method for producing an optical glass molded article comprising press molding after softening a glass gob,
A method for producing an optical glass molded article, wherein the glass gob is softened in a state of being placed on a heat-resistant softening dish containing a metal having a melting point of 1300 ° C or higher.
前記耐熱性軟化皿がステンレスからなる、請求項1に記載の光学ガラス成形品の製造方法。
The method for producing an optical glass molded article according to claim 1, wherein the heat-resistant softening dish is made of stainless steel.
JP2014243014A 2014-12-01 2014-12-01 Method for manufacturing optical glass molding Pending JP2016104678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014243014A JP2016104678A (en) 2014-12-01 2014-12-01 Method for manufacturing optical glass molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014243014A JP2016104678A (en) 2014-12-01 2014-12-01 Method for manufacturing optical glass molding

Publications (1)

Publication Number Publication Date
JP2016104678A true JP2016104678A (en) 2016-06-09

Family

ID=56102296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014243014A Pending JP2016104678A (en) 2014-12-01 2014-12-01 Method for manufacturing optical glass molding

Country Status (1)

Country Link
JP (1) JP2016104678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190132715A (en) * 2018-05-21 2019-11-29 (주)신광 Method of manufacturing optical dummy lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190132715A (en) * 2018-05-21 2019-11-29 (주)신광 Method of manufacturing optical dummy lens
KR102076983B1 (en) * 2018-05-21 2020-02-13 (주)신광 Method of manufacturing optical dummy lens

Similar Documents

Publication Publication Date Title
JP5417256B2 (en) Method for bending and thermally prestressing radiation shielding glass
JP5996124B2 (en) Method for reducing warpage generated on glass plate by chemical strengthening treatment, method for producing glass plate for chemical strengthening, and method for producing chemically strengthened glass plate
JP5008639B2 (en) Optical glass, precision press-molding preform and manufacturing method thereof, and optical element and manufacturing method thereof
JP4334523B2 (en) Optical glass, precision press-molding preform and manufacturing method thereof, and optical element and manufacturing method thereof
JP2013520385A (en) Thin lithium aluminosilicate glass for 3D precision molding
JP6685597B2 (en) Method for producing crystallized glass member having curved surface shape
JP4522392B2 (en) Optical glass and optical product using the same
JP2006306706A (en) Optical glass, press-molding preform, process for the production thereof, optical element and process for the production thereof
JP2006137645A (en) Optical glass, preform for precision press forming and its manufacturing method, and optical element and its manufacturing method
JP3155039B2 (en) Phosphate glass for glass mold
KR20230113839A (en) Tempered glass
JP2013119517A (en) Phosphate optical glass
JP2013180919A (en) Optical glass and preform for precision press molding using the same and optical element
JP2016104678A (en) Method for manufacturing optical glass molding
JP6140687B2 (en) High zirconia electroformed refractory
WO2014115789A1 (en) Glass material for chemical strengthening, chemically strengthened glass and cover glass
JP2010070432A (en) Method for processing highly homogenous material
TW200900363A (en) Method for manufacturing optical element
JP2010265124A (en) Heat-treatment method of glass optical member and method for manufacturing glass optical element
JP2018203571A (en) Glass
JP2017114718A (en) Glass sheet for chemical reinforcement and manufacturing method of glass sheet for chemical reinforcement
JP6435937B2 (en) Chemically strengthened glass plate and chemically strengthened glass
CN103242943A (en) Metal protection lubricant as well as preparation method and application thereof
JP2008214167A (en) Method of producing optical glass element and method of fine-adjusting refractive index of glass molded article
JP2012072031A (en) Method for forming optical element