JP2016103882A - Rotor and manufacturing method of rotor - Google Patents

Rotor and manufacturing method of rotor Download PDF

Info

Publication number
JP2016103882A
JP2016103882A JP2014240177A JP2014240177A JP2016103882A JP 2016103882 A JP2016103882 A JP 2016103882A JP 2014240177 A JP2014240177 A JP 2014240177A JP 2014240177 A JP2014240177 A JP 2014240177A JP 2016103882 A JP2016103882 A JP 2016103882A
Authority
JP
Japan
Prior art keywords
core
welding
rotor
axial direction
rotor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014240177A
Other languages
Japanese (ja)
Other versions
JP6409529B2 (en
Inventor
義人 永井
Yoshito Nagai
義人 永井
英晴 牛田
Hideharu Ushida
英晴 牛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2014240177A priority Critical patent/JP6409529B2/en
Publication of JP2016103882A publication Critical patent/JP2016103882A/en
Application granted granted Critical
Publication of JP6409529B2 publication Critical patent/JP6409529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotor capable of keeping a bond strength of a rotor core while stabilizing a weld quality in an end of the rotor core.SOLUTION: In a rotor 20, a rotor core 21 includes: a core welding part 25 which is provided on an inner peripheral surface 21f of the rotor core 21 so as to extend in an axial direction and in which a plurality of electromagnetic steel sheets 22 are welded with each other in the axial direction; and a welding suppression part 26 which is provided from an end 25a (25b) of a core welding part 25 in the axial direction to a core end face 21c (21d) of the rotor core 21 in the axial direction and in which welding is suppressed more than the core welding part 25. A weld depth d3 of a hub member welding part 29 from the core end face 21c (21d) in the axial direction is equal to or more than a length L2 of the welding suppression part 26 from the core end face 21c (21d) in the axial direction.SELECTED DRAWING: Figure 1

Description

本発明は、ロータおよびロータの製造方法に関し、特に、複数の電磁鋼板同士が軸方向に沿って溶接されたコア溶接部を備えるロータおよびロータの製造方法に関する。   The present invention relates to a rotor and a method for manufacturing the rotor, and more particularly to a rotor including a core welded portion in which a plurality of electromagnetic steel sheets are welded along the axial direction and a method for manufacturing the rotor.

従来、複数の電磁鋼板同士が軸方向に沿って溶接されたコア溶接部を備えるロータが知られている(たとえば、特許文献1参照)。   Conventionally, a rotor including a core welded portion in which a plurality of electromagnetic steel plates are welded along an axial direction is known (see, for example, Patent Document 1).

上記特許文献1には、ロータとステータとを備える回転電機が開示されている。このロータのロータコアは、複数の電磁鋼板により構成されている。また、ロータコアの中央部には、回転シャフトを挿入するための貫通孔が設けられている。そして、ロータコアの貫通孔の内周面を軸方向に沿って溶接することにより、複数の電磁鋼板同士が溶接されてコア溶接部が形成される。また、このコア溶接部は、ロータコアの貫通孔の内周面の軸方向の一方端から他方端にわたって略同じ溶接深さで溶接されている。   Patent Document 1 discloses a rotating electrical machine including a rotor and a stator. The rotor core of this rotor is composed of a plurality of electromagnetic steel plates. Further, a through hole for inserting the rotating shaft is provided in the central portion of the rotor core. And by welding the inner peripheral surface of the through-hole of a rotor core along an axial direction, a some electromagnetic steel plate is welded and a core welding part is formed. The core welded portion is welded at substantially the same welding depth from one end to the other end in the axial direction of the inner peripheral surface of the through hole of the rotor core.

ここで、上記特許文献1に記載のロータ(ロータコア)では、コア溶接部が軸方向の一方端から他方端にわたって略同じ溶接深さで溶接されているため、貫通孔の軸方向の端部では溶接の熱が外部に逃げにくいことに起因して、溶接時にロータコアの端部の温度が急激に上昇する。このため、ロータコアの端部においてスパッタ(溶融金属の飛散)が発生する場合や端部が破損する場合があるので、ロータコアの端部における溶接品質が不安定になるという不都合がある。   Here, in the rotor (rotor core) described in Patent Document 1, since the core welded portion is welded at substantially the same welding depth from one end in the axial direction to the other end, at the end portion in the axial direction of the through hole. Due to the fact that the heat of welding is difficult to escape to the outside, the temperature of the end of the rotor core rises rapidly during welding. For this reason, since spatter (spattering of molten metal) may occur at the end of the rotor core or the end may be damaged, there is a disadvantage that the welding quality at the end of the rotor core becomes unstable.

また、従来では、上記のような不都合を解消するため、ロータコアの端部近傍において溶接熱源の出力を弱めるように溶接することが行なわれている。このようにロータコアの端部近傍において溶接熱源の出力を弱めることにより、ロータコアの端部の急激な温度上昇が抑制されるので、ロータコアの端部におけるスパッタの発生や端部の破損が抑制されて溶接品質の安定化を図ることが可能となる。   Conventionally, in order to eliminate the above-described inconvenience, welding is performed so as to weaken the output of the welding heat source in the vicinity of the end of the rotor core. By weakening the output of the welding heat source in the vicinity of the end portion of the rotor core in this way, a rapid temperature rise at the end portion of the rotor core is suppressed, so that the occurrence of spatter at the end portion of the rotor core and the breakage of the end portion are suppressed. It becomes possible to stabilize the welding quality.

特開2008−154436号公報JP 2008-154436 A

しかしながら、上記のように、ロータコアの端部近傍において溶接熱源の出力を弱めた場合には、ロータコアの端部における溶接品質の安定化を図ることが可能となる一方、ロータコアの端部近傍における溶接深さが小さくなるため、ロータコアの端部近傍の接合強度が低下するという問題点がある。   However, as described above, when the output of the welding heat source is weakened near the end of the rotor core, it becomes possible to stabilize the welding quality at the end of the rotor core, while welding near the end of the rotor core. Since the depth is small, there is a problem that the joint strength near the end of the rotor core is lowered.

この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、ロータコアの端部における溶接品質の安定化を図りながら、ロータコアの接合強度を確保することが可能なロータおよびロータの製造方法を提供することである。   The present invention has been made to solve the above-described problems, and one object of the present invention is to secure the joint strength of the rotor core while stabilizing the welding quality at the end of the rotor core. And a method of manufacturing the rotor.

上記目的を達成するために、この発明の第1の局面におけるロータは、回転軸線回りに回転されるとともに、複数の電磁鋼板が回転軸線の延びる方向である軸方向に積層されることにより形成され、回転中心に貫通孔を有するロータコアと、ロータコアの貫通孔に取り付けられた回転伝達部材と、ロータコアの軸方向の端部に設けられ、ロータコアの貫通孔の内周面と回転伝達部材の外周面とが互いに溶接されたコア伝達部材溶接部と、を備え、ロータコアは、ロータコアの内周面または外周面に軸方向に延びるように設けられ、複数の電磁鋼板同士が軸方向に沿って溶接されたコア溶接部と、コア溶接部の軸方向の端部からロータコアの軸方向のコア端面にわたって設けられ、コア溶接部よりも溶接が抑制された溶接抑制部とを含み、コア伝達部材溶接部のコア端面からの軸方向の溶接深さは、溶接抑制部のコア端面からの軸方向の長さ以上である。   In order to achieve the above object, the rotor according to the first aspect of the present invention is formed by rotating around a rotation axis and laminating a plurality of electromagnetic steel plates in an axial direction that is a direction in which the rotation axis extends. A rotor core having a through-hole at the center of rotation, a rotation transmission member attached to the through-hole of the rotor core, an inner peripheral surface of the through-hole of the rotor core, and an outer peripheral surface of the rotation transmission member provided at an axial end of the rotor core And a core transmission member welded portion welded to each other, and the rotor core is provided so as to extend in the axial direction on the inner peripheral surface or outer peripheral surface of the rotor core, and a plurality of electromagnetic steel sheets are welded along the axial direction. A core welded portion, and a welding suppression portion that is provided from the axial end portion of the core welded portion to the axial end surface of the rotor core and in which welding is suppressed more than the core welded portion, Axial weld depth from the core end face of the reach members weld the axial direction from the core end face of the weld suppressing portion is greater than or equal length.

この発明の第1の局面によるロータでは、上記のように、コア溶接部の軸方向の端部からロータコアの軸方向のコア端面にわたって設けられ、コア溶接部よりも溶接が抑制された溶接抑制部を含むようにロータコアを構成する。これにより、ロータコアの軸方向の端部側に設けられる溶接抑制部において溶接が抑制されるので、溶接時に端部の温度が急激に上昇するのが抑制される。その結果、溶接時のロータコアの端部におけるスパッタの発生や破損を抑制することができるので、ロータコアの端部における溶接品質の安定化を図ることができる。また、コア伝達部材溶接部のコア端面からの軸方向の溶接深さを、溶接抑制部のコア端面からの軸方向の長さ以上にすることによって、溶接抑制部を設けたことに起因して低下したロータコアの接合強度を、コア伝達部材溶接部により補填することができる。これにより、ロータコアの接合強度の低下を抑制することができる。これらによって、本発明では、ロータコアの端部における溶接品質の安定化を図りながら、ロータコアの接合強度を確保することができる。   In the rotor according to the first aspect of the present invention, as described above, the welding suppression portion that is provided from the axial end portion of the core welding portion to the core end surface of the rotor core in the axial direction and in which welding is suppressed more than the core welding portion. The rotor core is configured to include Thereby, since welding is suppressed in the welding suppression part provided in the axial direction edge part side of a rotor core, it is suppressed that the temperature of an edge part raises rapidly at the time of welding. As a result, it is possible to suppress the occurrence of spatter and breakage at the end of the rotor core during welding, so that the welding quality at the end of the rotor core can be stabilized. Moreover, it originates in having provided the welding suppression part by making the axial welding depth from the core end surface of a core transmission member welding part more than the axial direction length from the core end surface of a welding suppression part. The reduced joint strength of the rotor core can be compensated for by the core transmission member weld. Thereby, the fall of the joint strength of a rotor core can be suppressed. By these, in this invention, the joint strength of a rotor core is securable, aiming at stabilization of the welding quality in the edge part of a rotor core.

この発明の第2の局面におけるロータの製造方法は、回転軸線回りに回転されるとともに、複数の電磁鋼板が回転軸線の延びる方向である軸方向に積層されることにより形成され、回転中心に貫通孔を有するロータコアと、ロータコアの貫通孔に取り付けられた回転伝達部材とを備えたロータの製造方法であって、ロータコアの内周面または外周面において、積層された複数の電磁鋼板同士を軸方向に沿って溶接することにより、軸方向に延びるコア溶接部を形成するとともに、コア溶接部の軸方向の端部からロータコアの軸方向のコア端面にわたって、コア溶接部よりも溶接が抑制された溶接抑制部を形成する工程と、その後、ロータコアの貫通孔に回転伝達部材を挿入する工程と、ロータコアの軸方向の端部において、ロータコアの内周面と、貫通孔に挿入された回転伝達部材の外周面とを、溶接抑制部のコア端面からの軸方向の長さ以上のコア端面からの軸方向の溶接深さで互いに溶接することにより、コア伝達部材溶接部を形成する工程と、を備える。   The rotor manufacturing method according to the second aspect of the present invention is formed by laminating a plurality of electromagnetic steel plates in the axial direction, which is a direction in which the rotation axis extends, while being rotated around the rotation axis. A rotor manufacturing method comprising a rotor core having a hole and a rotation transmission member attached to a through-hole of the rotor core, wherein a plurality of laminated electromagnetic steel sheets are axially arranged on the inner peripheral surface or outer peripheral surface of the rotor core. Welding along which the core welded portion extending in the axial direction is formed, and welding is suppressed from the core welded portion over the core end surface in the axial direction of the rotor core from the axial end portion of the core welded portion. A step of forming the suppressing portion, a step of inserting the rotation transmitting member into the through hole of the rotor core, and an inner periphery of the rotor core at the axial end portion of the rotor core. And the outer peripheral surface of the rotation transmitting member inserted into the through hole are welded to each other at an axial welding depth from the core end surface that is equal to or longer than the axial length from the core end surface of the welding suppression portion. Forming a transmission member weld.

この発明の第2の局面によるロータの製造方法では、上記のように、コア溶接部の軸方向の端部からロータコアの軸方向のコア端面にわたって、コア溶接部よりも溶接が抑制された溶接抑制部を形成する工程を備える。これにより、ロータコアの軸方向の端部側に設けられる溶接抑制部において溶接が抑制されるので、溶接時に端部の温度が急激に上昇するのが抑制される。その結果、溶接時のロータコアの端部におけるスパッタの発生や破損を抑制することができるので、ロータコアの端部における溶接品質の安定化を図ることができる。また、ロータコアの軸方向の端部において、ロータコアの内周面と、貫通孔に挿入された回転伝達部材の外周面とを、溶接抑制部のコア端面からの軸方向の長さ以上のコア端面からの軸方向の溶接深さで互いに溶接することにより、コア伝達部材溶接部を形成する工程を備える。その結果、溶接抑制部を設けたことに起因して低下したロータコアの接合強度を、コア伝達部材溶接部により補填することができる。これにより、ロータコアの接合強度の低下を抑制することができる。これらによって、本発明では、ロータコアの端部における溶接品質の安定化を図りながら、ロータコアの接合強度を確保することが可能なロータの製造方法を提供することができる。   In the method for manufacturing a rotor according to the second aspect of the present invention, as described above, welding suppression in which welding is suppressed from the core welded portion over the core end surface in the axial direction of the rotor core from the axial end portion of the core welded portion. Forming a portion. Thereby, since welding is suppressed in the welding suppression part provided in the axial direction edge part side of a rotor core, it is suppressed that the temperature of an edge part raises rapidly at the time of welding. As a result, it is possible to suppress the occurrence of spatter and breakage at the end of the rotor core during welding, so that the welding quality at the end of the rotor core can be stabilized. Further, at the axial end portion of the rotor core, the inner peripheral surface of the rotor core and the outer peripheral surface of the rotation transmitting member inserted into the through hole are longer than the axial end length from the core end surface of the welding suppression portion. And a step of forming a core transmission member welded portion by welding each other at a welding depth in the axial direction. As a result, the joint strength of the rotor core, which has been reduced due to the provision of the welding suppression portion, can be compensated by the core transmission member welding portion. Thereby, the fall of the joint strength of a rotor core can be suppressed. By these, in this invention, the manufacturing method of the rotor which can ensure the joint strength of a rotor core can be provided, achieving stabilization of the welding quality in the edge part of a rotor core.

本発明によれば、上記のように、ロータコアの端部における溶接品質の安定化を図りながら、ロータコアの接合強度を確保することが可能なロータおよびロータの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the rotor and the manufacturing method of a rotor which can ensure the joint strength of a rotor core can be provided, aiming at stabilization of the welding quality in the edge part of a rotor core as mentioned above.

本発明の第1実施形態による回転電機の断面図である。It is sectional drawing of the rotary electric machine by 1st Embodiment of this invention. 本発明の第1実施形態によるロータの軸方向(Z1方向側)から見た正面図である。It is the front view seen from the axial direction (Z1 direction side) of the rotor by 1st Embodiment of this invention. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 図2の200−200線に沿った拡大断面図である。It is an expanded sectional view along the 200-200 line of FIG. ロータコアの内周面にコア溶接部および溶接抑制部を形成する工程を説明するための断面図である。It is sectional drawing for demonstrating the process of forming a core welding part and a welding suppression part in the internal peripheral surface of a rotor core. ロータコアの貫通孔にハブ部材を挿入する工程を説明するための断面図である。It is sectional drawing for demonstrating the process of inserting a hub member in the through-hole of a rotor core. ハブ部材溶接部を形成する工程を説明するための断面図である。It is sectional drawing for demonstrating the process of forming a hub member welding part. 本発明の第2実施形態による回転電機のロータの断面図である。It is sectional drawing of the rotor of the rotary electric machine by 2nd Embodiment of this invention. 本発明の第1および第2実施形態の第1変形例によるロータの断面図である。It is sectional drawing of the rotor by the 1st modification of 1st and 2nd embodiment of this invention. 本発明の第1および第2実施形態の第2変形例による回転電機の断面図である。It is sectional drawing of the rotary electric machine by the 2nd modification of 1st and 2nd embodiment of this invention.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
[回転電機(ロータ)の構造]
図1〜図4を参照して、まず、第1実施形態による回転電機100の構造について説明する。
(First embodiment)
[Structure of rotating electrical machine (rotor)]
With reference to FIGS. 1-4, the structure of the rotary electric machine 100 by 1st Embodiment is demonstrated first.

図1および図2に示すように、回転電機100は、ステータ10とロータ20とを備えている。   As shown in FIGS. 1 and 2, the rotating electrical machine 100 includes a stator 10 and a rotor 20.

ステータ10は、ステータコア11と、ステータコア11に巻回される巻線12とを備えている。   The stator 10 includes a stator core 11 and a winding 12 wound around the stator core 11.

ロータ20は、ロータコア21を備えている。ロータコア21は、回転軸線回りに回転されるとともに、複数の電磁鋼板22が回転軸線の延びる方向である軸方向(Z方向)に積層されることにより形成されている。また、ロータコア21には、回転中心に貫通孔21aが設けられている。また、ロータコア21の貫通孔21aには、ハブ部材23が取り付けられている。なお、ハブ部材23は、本発明の「回転伝達部材」の一例である。また、ハブ部材23には、回転軸24が取り付けられている。また、ステータコア11とロータコア21とは、互いに対向するように配置されている。   The rotor 20 includes a rotor core 21. The rotor core 21 is formed by laminating a plurality of electromagnetic steel plates 22 in the axial direction (Z direction), which is the direction in which the rotation axis extends, while rotating around the rotation axis. Further, the rotor core 21 is provided with a through hole 21a at the center of rotation. A hub member 23 is attached to the through hole 21 a of the rotor core 21. The hub member 23 is an example of the “rotation transmission member” in the present invention. A rotating shaft 24 is attached to the hub member 23. Further, the stator core 11 and the rotor core 21 are arranged so as to face each other.

また、図1〜図4に示すように、ロータコア21には、永久磁石30が挿入される挿入孔21bが設けられている。挿入孔21bは、周方向に沿って複数設けられている。また、挿入孔21bは、ロータコア21のZ1方向側のコア端面21cからZ2方向側のコア端面21dまで貫通して延びるように形成されている。   As shown in FIGS. 1 to 4, the rotor core 21 is provided with an insertion hole 21 b into which the permanent magnet 30 is inserted. A plurality of insertion holes 21b are provided along the circumferential direction. The insertion hole 21b is formed so as to extend from the core end surface 21c on the Z1 direction side of the rotor core 21 to the core end surface 21d on the Z2 direction side.

ロータコア21の内周面21fには、軸方向から見て、ロータコア21の半径方向の外側に窪んだU字形状の溝部21eが設けられている。溝部21eは、軸方向に沿って、ロータコア21のZ1方向側のコア端面21cからZ2方向側のコア端面21dまで延びるように形成されている。また、溝部21eは、周方向に45度の等角度間隔で8箇所設けられている。   The inner circumferential surface 21f of the rotor core 21 is provided with a U-shaped groove 21e that is recessed outward in the radial direction of the rotor core 21 when viewed from the axial direction. The groove 21e is formed so as to extend from the core end surface 21c on the Z1 direction side of the rotor core 21 to the core end surface 21d on the Z2 direction side along the axial direction. In addition, eight groove portions 21e are provided at equal angular intervals of 45 degrees in the circumferential direction.

また、図3および図4に示すように、ロータコア21の内周面21fには、コア溶接部25が設けられている。コア溶接部25は、ロータコア21の内周面21fのU字形状の溝部21eの底部に軸方向に延びるように設けられている。また、コア溶接部25は、複数の電磁鋼板22同士を軸方向(積層方向)に沿って溶接することにより形成されている。   As shown in FIGS. 3 and 4, a core welded portion 25 is provided on the inner peripheral surface 21 f of the rotor core 21. The core welded portion 25 is provided so as to extend in the axial direction at the bottom of the U-shaped groove 21e of the inner peripheral surface 21f of the rotor core 21. Moreover, the core welding part 25 is formed by welding several electromagnetic steel plates 22 along an axial direction (lamination direction).

また、図4に示すように、コア溶接部25は、ロータコア21の半径方向(X方向)に溶接深さd1を有する。なお、コア溶接部25の溶接深さd1は、軸方向に沿って略一定で変化しない。また、コア溶接部25は、軸方向の長さL1を有する。   As shown in FIG. 4, the core welded portion 25 has a welding depth d <b> 1 in the radial direction (X direction) of the rotor core 21. In addition, the welding depth d1 of the core welding part 25 is substantially constant and does not change along an axial direction. Further, the core welded portion 25 has an axial length L1.

また、第1実施形態では、図2および図3に示すように、コア溶接部25は、ロータコア21の内周面21fにおいて周方向に所定の角度間隔を隔てた複数の箇所において設けられている。具体的には、コア溶接部25は、周方向に互いに45度の等角度間隔で8箇所設けられた溝部21eの各々に設けられている。   In the first embodiment, as shown in FIGS. 2 and 3, the core welded portion 25 is provided at a plurality of locations that are spaced apart from each other at predetermined angular intervals in the circumferential direction on the inner peripheral surface 21 f of the rotor core 21. . Specifically, the core welding part 25 is provided in each of the groove parts 21e provided at eight places at equal angular intervals of 45 degrees in the circumferential direction.

また、図4に示すように、ロータコア21には、溶接抑制部26が設けられている。溶接抑制部26は、コア溶接部25の軸方向の端部25a(25b)からロータコア21の軸方向のコア端面21c(21d)にわたって設けられている。すなわち、溶接抑制部26は、ロータコア21の軸方向の両方(Z1方向およびZ2方向)の端部に形成されている。溶接抑制部26は、コア溶接部25よりも溶接が抑制されることにより形成されている。なお、溶接の抑制は、溶接量を抑制することにより行われている。すなわち、溶接抑制部26は、軸方向に直交する面で切断した断面において、溶接抑制部26の溶接断面積をコア溶接部25の溶接断面積よりも小さくすることにより、溶接の抑制が行われている。また、溶接抑制部26は、周方向に互いに45度の等角度間隔で8箇所設けられた溝部21e(図2参照)の各々に設けられている。   Further, as shown in FIG. 4, the rotor core 21 is provided with a welding suppression portion 26. The welding suppression portion 26 is provided from the axial end portion 25 a (25 b) of the core welding portion 25 to the axial core end surface 21 c (21 d) of the rotor core 21. That is, the welding suppression part 26 is formed in the edge part of both the axial directions (Z1 direction and Z2 direction) of the rotor core 21. As shown in FIG. The welding suppression portion 26 is formed by suppressing welding more than the core welding portion 25. In addition, suppression of welding is performed by suppressing the amount of welding. That is, in the cross section cut along the plane orthogonal to the axial direction, the welding suppression portion 26 suppresses welding by making the welding cross-sectional area of the welding suppression portion 26 smaller than the welding cross-sectional area of the core welding portion 25. ing. Moreover, the welding suppression part 26 is provided in each of the groove part 21e (refer FIG. 2) provided in eight places at equal angular intervals of 45 degrees with respect to the circumferential direction.

詳細には、溶接抑制部26は、溶接スロープ部27と溶接されていないコア未溶接部28とを含んでいる。溶接スロープ部27は、コア溶接部25の軸方向の端部25a(25b)からコア端面21c(21d)に向かって半径方向の溶接深さd2が徐々に減少されることにより形成されている。すなわち、溶接スロープ部27の溶接深さd2は、コア溶接部25の溶接深さd1と等しい溶接深さから徐々に小さくなり、最終的には0になる(0≦d2≦d1)。   Specifically, the welding suppression portion 26 includes a welding slope portion 27 and a core unwelded portion 28 that is not welded. The welding slope portion 27 is formed by gradually decreasing the welding depth d2 in the radial direction from the axial end portion 25a (25b) of the core welding portion 25 toward the core end surface 21c (21d). That is, the welding depth d2 of the welding slope portion 27 gradually decreases from the welding depth equal to the welding depth d1 of the core welding portion 25 and finally becomes 0 (0 ≦ d2 ≦ d1).

また、溶接されていないコア未溶接部28は、溶接スロープ部27の軸方向の外側の端部271(272)からコア端面21c(21d)にわたって設けられている。   Moreover, the core unwelded part 28 which is not welded is provided from the outer end part 271 (272) in the axial direction of the welding slope part 27 to the core end surface 21c (21d).

また、図4に示すように、ロータコア21の軸方向の両方(Z1方向およびZ2方向)の端部21gおよび21hには、ハブ部材溶接部29が設けられている。なお、ハブ部材溶接部29は、本発明の「コア伝達部材溶接部」の一例である。ハブ部材溶接部29は、ロータコア21の貫通孔21aの内周面21fとハブ部材23の外周面23aとを互いに溶接することにより形成されている。また、ハブ部材溶接部29は、コア端面21c(21d)から軸方向に溶接深さd3を有する。   As shown in FIG. 4, hub member welded portions 29 are provided at both end portions 21 g and 21 h in the axial direction (Z1 direction and Z2 direction) of the rotor core 21. The hub member welded portion 29 is an example of the “core transmission member welded portion” in the present invention. The hub member welded portion 29 is formed by welding the inner peripheral surface 21 f of the through hole 21 a of the rotor core 21 and the outer peripheral surface 23 a of the hub member 23 to each other. The hub member welded portion 29 has a welding depth d3 in the axial direction from the core end surface 21c (21d).

また、第1実施形態では、図2に示すように、ハブ部材溶接部29は、ロータコア21の軸方向の端部21g(21h)において、ロータコア21の貫通孔21aの内周面21fに沿って周状に設けられている。すなわち、ハブ部材溶接部29は、軸方向から見て、貫通孔21aの内周面21fの略全周と、ハブ部材23の外周面23aの略全周とを溶接している。なお、貫通孔21aの内周面21fのうち、溝部21eが設けられる部分は、図3に示すように、ハブ部材23と溶接されない。   In the first embodiment, as shown in FIG. 2, the hub member welded portion 29 is formed along the inner peripheral surface 21 f of the through hole 21 a of the rotor core 21 at the axial end portion 21 g (21 h) of the rotor core 21. It is provided in a circumferential shape. That is, the hub member welded portion 29 welds substantially the entire circumference of the inner peripheral surface 21f of the through hole 21a and the substantially entire circumference of the outer peripheral surface 23a of the hub member 23 when viewed from the axial direction. In addition, the part in which the groove part 21e is provided among the internal peripheral surfaces 21f of the through-hole 21a is not welded with the hub member 23, as shown in FIG.

ここで、第1実施形態では、図4に示すように、ハブ部材溶接部29のコア端面21c(21d)からの軸方向の溶接深さd3は、溶接抑制部26のコア端面21c(21d)からの軸方向の長さL2よりも大きい(d3>L2)。すなわち、溶接深さd3は、溶接スロープ部27の軸方向の長さL3とコア未溶接部28の軸方向の長さL4との合計の長さL2よりも大きい(d3>L2=L3+L4)。   Here, in the first embodiment, as shown in FIG. 4, the axial welding depth d3 from the core end surface 21c (21d) of the hub member welded portion 29 is the core end surface 21c (21d) of the welding suppressing portion 26. Larger than the axial length L2 from (d3> L2). That is, the welding depth d3 is larger than the total length L2 of the axial length L3 of the welding slope portion 27 and the axial length L4 of the core unwelded portion 28 (d3> L2 = L3 + L4).

また、第1実施形態では、ハブ部材溶接部29のコア端面21c(21d)からの軸方向の溶接深さd3は、コア溶接部25のロータコアの半径方向(X方向)の溶接深さd1よりも大きい(d3>d1)。   In the first embodiment, the welding depth d3 in the axial direction from the core end surface 21c (21d) of the hub member welding portion 29 is greater than the welding depth d1 in the radial direction (X direction) of the rotor core of the core welding portion 25. Is also large (d3> d1).

[コア溶接部の溶接断面積]
次に、コア溶接部25の1箇所当たりの溶接断面積S(コア溶接部25を半径方向に切断した際の断面積)の設定方法について説明する。コア溶接部25の溶接断面積Sは、コア溶接部25にかかるせん断応力(=コア溶接部25にかかるせん断荷重/コア溶接部25の全体の接合面積)が、電磁鋼板22の降伏応力よりも小さくなるように設定される。ここで、コア溶接部25の全体の接合面積は、溶接断面積Sに接合箇所(ロータコア21の軸方向の両側分)の合計の数を乗算することにより求められる。また、降伏応力とは、電磁鋼板22に負荷を加えて変形させた場合において、弾性変形から塑性変形に変化する時の応力を意味する。
[Welding cross section of core weld]
Next, a method of setting the welding cross-sectional area S (cross-sectional area when the core welded portion 25 is cut in the radial direction) per location of the core welded portion 25 will be described. The welding cross-sectional area S of the core welded portion 25 is such that the shear stress applied to the core welded portion 25 (= the shear load applied to the core welded portion 25 / the entire joint area of the core welded portion 25) It is set to be smaller. Here, the entire joining area of the core welded portion 25 is obtained by multiplying the weld cross-sectional area S by the total number of joining locations (for both sides in the axial direction of the rotor core 21). The yield stress means the stress when changing from elastic deformation to plastic deformation when the electromagnetic steel sheet 22 is deformed by applying a load.

[ハブ部材溶接部の溶接深さの最小値]
次に、ハブ部材溶接部29の溶接深さd3の最小値について説明する。ハブ部材溶接部29の溶接深さd3は、ハブ部材溶接部29にかかるせん断応力(=ハブ部材溶接部29にかかるせん断荷重/ハブ部材溶接部29の全体の接合面積)が、電磁鋼板22の降伏応力よりも小さくなるような大きさに設定される。この場合、ハブ部材溶接部29の全体の接合面積は、溶接深さd3に接合箇所の長さ(ロータコア21の軸方向の両側分)を乗算することにより求められる。つまり、ハブ部材溶接部29にかかるせん断応力は、溶接深さd3に反比例するので、ハブ部材溶接部29にかかるせん断応力を電磁鋼板22の降伏応力よりも小さくするためには溶接深さd3を所定の値(最小値)よりも大きくする必要がある。すなわち、第1実施形態では、ハブ部材溶接部29の溶接深さd3を、溶接抑制部26のコア端面21c(21d)からの軸方向の長さL2よりも大きく、かつ、ハブ部材溶接部29にかかるせん断応力が電磁鋼板22の降伏応力よりも小さくなるような大きさに設定する。
[Minimum welding depth of hub member welds]
Next, the minimum value of the welding depth d3 of the hub member welded portion 29 will be described. The welding depth d3 of the hub member welded portion 29 is such that the shear stress applied to the hub member welded portion 29 (= the shear load applied to the hub member welded portion 29 / the entire joint area of the hub member welded portion 29) The size is set to be smaller than the yield stress. In this case, the entire joining area of the hub member welded portion 29 is obtained by multiplying the welding depth d3 by the length of the joining portion (for both sides in the axial direction of the rotor core 21). That is, since the shear stress applied to the hub member welded portion 29 is inversely proportional to the weld depth d3, the weld depth d3 is set to make the shear stress applied to the hub member welded portion 29 smaller than the yield stress of the electromagnetic steel sheet 22. It is necessary to make it larger than a predetermined value (minimum value). In other words, in the first embodiment, the welding depth d3 of the hub member welded portion 29 is greater than the axial length L2 from the core end surface 21c (21d) of the weld suppressing portion 26, and the hub member welded portion 29. Is set to such a magnitude that the shear stress applied to is smaller than the yield stress of the electromagnetic steel sheet 22.

[ロータの製造方法]
次に、図5〜図7を参照して、第1実施形態によるロータ20の製造方法について説明する。
[Method of manufacturing rotor]
Next, with reference to FIGS. 5-7, the manufacturing method of the rotor 20 by 1st Embodiment is demonstrated.

まず、図5および図6に示すように、複数の電磁鋼板22が軸方向に積層されることにより形成されたロータコア21の内周面21fに、コア未溶接部28およびコア溶接部25を形成する。この場合の溶接工法としては、たとえば、高エネルギービーム溶接(レーザ、電子ビームなど)や、TIG溶接(Tungsten Inert GasArc Welding)が望ましい。詳細には、まず、Z1方向側のコア未溶接部28を設けるために、溶接は、Z1方向側のコア端面21cからコア未溶接部28の軸方向の長さL4分、ロータコア21の軸方向の中心にずれた位置から開始される。これにより、Z1方向側のコア未溶接部28(図6参照)が設けられる。   First, as shown in FIGS. 5 and 6, the core unwelded portion 28 and the core welded portion 25 are formed on the inner peripheral surface 21 f of the rotor core 21 formed by laminating a plurality of electromagnetic steel plates 22 in the axial direction. To do. As a welding method in this case, for example, high energy beam welding (laser, electron beam, etc.) or TIG welding (Tungsten Inert GasArc Welding) is desirable. Specifically, first, in order to provide the core unwelded portion 28 on the Z1 direction side, welding is performed in the axial direction of the rotor core 21 by the length L4 in the axial direction of the core unwelded portion 28 from the core end surface 21c on the Z1 direction side. It starts from a position shifted to the center of. Thereby, the core unwelded part 28 (refer FIG. 6) of the Z1 direction side is provided.

Z1方向側のコア未溶接部28を設けた後、溶接熱源の出力を徐々に大きくしながら軸方向の中心に向かって溶接を行うことにより、溶接深さが徐々に大きくなるように、Z1方向側の溶接スロープ部27が形成される。Z1方向側の溶接スロープ部27は、軸方向の長さL3を有するように形成される。その後、溶接熱源の出力を一定にした状態で、Z2方向側に向かって溶接を行うことにより、コア溶接部25が形成される。コア溶接部25は、軸方向の長さL1を有するように形成される。さらに、溶接熱源の出力を徐々に小さくしながらZ2方向側のコア端面21dに向かって溶接を行うことにより、Z2方向側の溶接スロープ部27が形成される。Z2方向側の溶接スロープ部27は、軸方向の長さL3を有するように形成される。その後、Z2方向側のコア端面21dからZ1方向側に向かって長さL4の位置において、溶接が終了される。これにより、Z2方向側のコア未溶接部28が設けられる。これらによって、コア溶接部25の軸方向の両方(Z1方向およびZ2方向)の端部25aおよび25b(図4参照)からロータコア21の軸方向のコア端面21cおよび21dにわたって、溶接抑制部26が形成される。   After providing the core unwelded portion 28 on the Z1 direction side, the welding depth is gradually increased by welding toward the center in the axial direction while gradually increasing the output of the welding heat source. A welding slope portion 27 on the side is formed. The weld slope portion 27 on the Z1 direction side is formed to have an axial length L3. Then, the core welding part 25 is formed by welding toward the Z2 direction side in the state which made the output of the welding heat source constant. Core weld 25 is formed to have an axial length L1. Further, welding is performed toward the core end surface 21d on the Z2 direction side while gradually reducing the output of the welding heat source, whereby the welding slope portion 27 on the Z2 direction side is formed. The weld slope portion 27 on the Z2 direction side is formed to have an axial length L3. Thereafter, welding is terminated at a position of length L4 from the core end surface 21d on the Z2 direction side toward the Z1 direction side. Thereby, the core unwelded portion 28 on the Z2 direction side is provided. As a result, the welding suppressing portion 26 is formed from both the end portions 25a and 25b (see FIG. 4) in both the axial directions (Z1 direction and Z2 direction) of the core welded portion 25 to the core end surfaces 21c and 21d in the axial direction of the rotor core 21. Is done.

次に、図6に示すように、ロータコア21の貫通孔21aにハブ部材23を挿入する。   Next, as shown in FIG. 6, the hub member 23 is inserted into the through hole 21 a of the rotor core 21.

この後、図7に示すように、ロータコア21の軸方向の両方(Z1方向およびZ2方向)の端部21gおよび21hにおいて、ロータコア21の内周面21fと、貫通孔21aに挿入されたハブ部材23の外周面23aとを、高エネルギービーム(レーザ、電子ビームなど)などにより溶接する。これにより、ハブ部材溶接部29が形成される。なお、ロータコア21の内周面21fと、ハブ部材23の外周面23aとは、ハブ部材溶接部29のコア端面21c(21d)からの軸方向の溶接深さd3を、溶接抑制部26のコア端面21c(21d)からの軸方向の長さL2(図4参照)よりも大きく、かつ、ハブ部材溶接部29にかかるせん断応力が電磁鋼板22の降伏応力よりも小さくなるような大きさに設定して互いに溶接される。また、この溶接は、ロータコア21およびハブ部材23を軸回りに回転させながら行われ、ロータコア21の内周面21fとハブ部材23の外周面23aとの略全周が溶接される。これにより、ロータ20が完成する。   Thereafter, as shown in FIG. 7, at both end portions 21g and 21h in the axial direction (Z1 direction and Z2 direction) of the rotor core 21, the hub member inserted into the inner peripheral surface 21f of the rotor core 21 and the through hole 21a. The outer peripheral surface 23a of 23 is welded by a high energy beam (laser, electron beam, etc.) or the like. Thereby, the hub member welding part 29 is formed. The inner peripheral surface 21f of the rotor core 21 and the outer peripheral surface 23a of the hub member 23 have an axial welding depth d3 from the core end surface 21c (21d) of the hub member welded portion 29, and the core of the weld suppressing portion 26. It is set to a size that is larger than the axial length L2 (see FIG. 4) from the end face 21c (21d) and that the shear stress applied to the hub member welded portion 29 is smaller than the yield stress of the electromagnetic steel sheet 22. And welded together. Further, this welding is performed while rotating the rotor core 21 and the hub member 23 about the axis, and substantially the entire circumference of the inner peripheral surface 21f of the rotor core 21 and the outer peripheral surface 23a of the hub member 23 is welded. Thereby, the rotor 20 is completed.

[第1実施形態の効果]
第1実施形態では、以下のような効果を得ることができる。
[Effect of the first embodiment]
In the first embodiment, the following effects can be obtained.

第1実施形態では、上記のように、コア溶接部25の軸方向の端部25a(25b)からロータコア21の軸方向のコア端面21c(21d)にわたって設けられ、コア溶接部25よりも溶接が抑制された溶接抑制部26を含むようにロータコア21を構成する。これにより、ロータコア21の軸方向の端部21g(21h)側に設けられる溶接抑制部26において溶接が抑制されるので、溶接時に端部21g(21h)の温度が急激に上昇するのが抑制される。その結果、溶接時のロータコア21の端部21g(21h)におけるスパッタの発生や破損を抑制することができるので、ロータコア21の端部21g(21h)における溶接品質の安定化を図ることができる。また、ハブ部材溶接部29のコア端面21c(21d)からの軸方向の溶接深さd3を、溶接抑制部26のコア端面21c(21d)からの軸方向の長さL2よりも大きくすることによって、溶接抑制部26を設けたことに起因して低下したロータコア21の接合強度を、ハブ部材溶接部29により補填することができる。これにより、ロータコア21の接合強度の低下を抑制することができる。これらによって、第1実施形態では、ロータコア21の端部21g(21h)における溶接品質の安定化を図りながら、ロータコア21の接合強度を確保することができる。   In the first embodiment, as described above, the core welded portion 25 is provided from the axial end portion 25a (25b) to the axial core end surface 21c (21d) of the rotor core 21, and is welded more than the core welded portion 25. The rotor core 21 is configured to include the suppressed welding suppression portion 26. Thereby, since welding is suppressed in the welding suppression part 26 provided in the edge part 21g (21h) side of the axial direction of the rotor core 21, it is suppressed that the temperature of the edge part 21g (21h) rises rapidly at the time of welding. The As a result, it is possible to suppress the occurrence of spatter and breakage at the end 21g (21h) of the rotor core 21 during welding, so that the welding quality at the end 21g (21h) of the rotor core 21 can be stabilized. Further, the axial welding depth d3 from the core end surface 21c (21d) of the hub member welded portion 29 is made larger than the axial length L2 from the core end surface 21c (21d) of the welding suppressing portion 26. The hub member welded portion 29 can compensate for the reduced joint strength of the rotor core 21 due to the provision of the welding suppression portion 26. Thereby, the fall of the joint strength of the rotor core 21 can be suppressed. Accordingly, in the first embodiment, it is possible to ensure the bonding strength of the rotor core 21 while stabilizing the welding quality at the end 21g (21h) of the rotor core 21.

また、第1実施形態では、上記のように、溶接抑制部26は、軸方向に直交する面で切断した断面において、溶接抑制部26の溶接断面積をコア溶接部25の溶接断面積よりも小さくすることにより、溶接の抑制を行うように構成する。これにより、コア溶接部25に比べて溶接断面積の小さい溶接抑制部26におけるロータコア21への溶接の影響を小さくすることができるので、溶接時のスパッタの発生などを抑制することができる。   Moreover, in 1st Embodiment, as mentioned above, the welding suppression part 26 makes the welding cross-sectional area of the welding suppression part 26 larger than the welding cross-sectional area of the core welding part 25 in the cross section cut | disconnected by the surface orthogonal to an axial direction. The welding is suppressed by reducing the size. Thereby, since the influence of the welding to the rotor core 21 in the welding suppression part 26 with a small welding cross-sectional area compared with the core welding part 25 can be made small, generation | occurrence | production of the spatter | spatter at the time of welding, etc. can be suppressed.

また、第1実施形態では、上記のように、ハブ部材溶接部29および溶接抑制部26を、ロータコア21の軸方向の両方(Z1方向およびZ2方向)の端部21g(21h)に設けて、ロータコア21の軸方向の両方の端部21g(21h)において、ハブ部材溶接部29のコア端面21c(21d)からの軸方向の溶接深さd3を、溶接抑制部26のコア端面21c(21d)からの軸方向の長さL2よりも大きくする。これにより、ロータコア21の軸方向の両方の端部21g(21h)において、ロータコア21の溶接品質の安定化を図りながら、ロータコア21の接合強度を確保することができるので、ロータコア21の端部21g(21h)における溶接品質の安定化およびロータコア21の接合強度の確保をより十分に図ることができる。   Moreover, in 1st Embodiment, as mentioned above, the hub member welding part 29 and the welding suppression part 26 are provided in the edge part 21g (21h) of both the axial directions (Z1 direction and Z2 direction) of the rotor core 21, At both end portions 21g (21h) in the axial direction of the rotor core 21, the axial welding depth d3 from the core end surface 21c (21d) of the hub member welded portion 29 is set as the core end surface 21c (21d) of the welding suppressing portion 26. It is made larger than the length L2 of the axial direction from. As a result, the joint strength of the rotor core 21 can be ensured while stabilizing the welding quality of the rotor core 21 at both end portions 21g (21h) in the axial direction of the rotor core 21, so that the end portion 21g of the rotor core 21 is secured. Stabilization of the welding quality in (21h) and securing of the joint strength of the rotor core 21 can be achieved more sufficiently.

また、第1実施形態では、上記のように、コア溶接部25を、ロータコア21の内周面21fにおいて周方向に45度の等角度間隔を隔てた複数の箇所(8箇所)において軸方向に延びるように設ける。これにより、単一のコア溶接部25を設ける場合と比べて、ロータコア21の接合強度をより高めることができる。また、コア溶接部25を、ロータコア21の内周面21fにおいて周方向に等角度間隔を隔てて設けることにより、コア溶接部25が周方向に沿ってバランスよく配置されるので、ロータコア21をバランスよく回転させることができる。   Further, in the first embodiment, as described above, the core welded portion 25 is axially arranged at a plurality of locations (eight locations) spaced at equal angular intervals of 45 degrees in the circumferential direction on the inner peripheral surface 21f of the rotor core 21. Provide to extend. Thereby, compared with the case where the single core welding part 25 is provided, the joining strength of the rotor core 21 can be raised more. In addition, by providing the core welded portions 25 at equiangular intervals in the circumferential direction on the inner peripheral surface 21f of the rotor core 21, the core welded portions 25 are arranged in a balanced manner along the circumferential direction. Can rotate well.

また、第1実施形態では、上記のように、ハブ部材溶接部29を、ロータコア21の軸方向の端部21g(21h)において、ロータコア21の貫通孔21aの内周面21fに沿って周状に設ける。これにより、ハブ部材溶接部29がロータコア21の貫通孔21aの内周面21fに局所的に設けられている場合と異なり、ロータコア21とハブ部材23との接合強度を高めることができる。   In the first embodiment, as described above, the hub member welded portion 29 is formed in a circumferential shape along the inner peripheral surface 21f of the through hole 21a of the rotor core 21 at the axial end portion 21g (21h) of the rotor core 21. Provided. Thereby, unlike the case where the hub member welded portion 29 is locally provided on the inner peripheral surface 21f of the through hole 21a of the rotor core 21, the bonding strength between the rotor core 21 and the hub member 23 can be increased.

また、第1実施形態では、上記のように、コア溶接部25の軸方向の端部25a(25b)からコア端面21c(21d)に向かって溶接深さd2が徐々に減少された溶接スロープ部27と、溶接スロープ部27の軸方向の端部271(272)からコア端面21c(21d)にわたって設けられた溶接されていないコア未溶接部28とを含むように溶接抑制部26を構成する。これにより、溶接スロープ部27では溶接のためのレーザなどの照射が弱められ、コア未溶接部28では溶接のためのレーザなどの照射が停止されるので、ロータコア21の軸方向の端部21g(21h)において、溶接による温度上昇を抑制することができる。その結果、溶接時のロータコア21の端部21g(21h)におけるスパッタの発生や端部21g(21h)の破損を抑制することができる。また、コア未溶接部28では、溶接のためのレーザなどの照射が停止されるので、ロータコア21の外部にレーザなどが照射されるのを抑制することができる。また、コア端面21c(21d)側にコア未溶接部28が設けられることにより、ロータコア21の外部に溶接のためのレーザなどが照射されるのを抑制しながら、コア未溶接部28のコア端面21c(21d)とは反対側に溶接スロープ部27が設けられることにより、溶接抑制部26をコア未溶接部28のみにより構成する場合よりもロータコア21の接合強度を高めることができる。   In the first embodiment, as described above, the welding slope portion in which the welding depth d2 is gradually reduced from the axial end portion 25a (25b) of the core welding portion 25 toward the core end surface 21c (21d). 27 and the unwelded core unwelded portion 28 that is provided from the end portion 271 (272) in the axial direction of the weld slope portion 27 to the core end surface 21c (21d). As a result, the welding slope portion 27 weakens the irradiation of the laser beam for welding, and the core unwelded portion 28 stops the irradiation of the laser beam for welding, so that the axial end portion 21g ( In 21h), the temperature rise due to welding can be suppressed. As a result, it is possible to suppress the occurrence of spatter at the end 21g (21h) of the rotor core 21 and the damage to the end 21g (21h) during welding. Further, since the irradiation of the laser for welding is stopped at the core unwelded portion 28, it is possible to suppress the irradiation of the laser or the like to the outside of the rotor core 21. Further, by providing the core unwelded portion 28 on the core end surface 21c (21d) side, the core end surface of the core unwelded portion 28 is suppressed while suppressing the welding laser or the like from being irradiated to the outside of the rotor core 21. By providing the welding slope portion 27 on the side opposite to 21c (21d), the joining strength of the rotor core 21 can be increased as compared with the case where the welding suppression portion 26 is configured only by the core unwelded portion 28.

また、第1実施形態では、上記のように、ハブ部材溶接部29のコア端面21c(21d)からの軸方向の溶接深さd3を、コア溶接部25のロータコア21の半径方向の溶接深さd1よりも大きくする。これにより、ハブ部材溶接部29の溶接深さd3が大きい分、溶接抑制部26において溶接が抑制されることに起因して低下しているロータコア21の接合強度を十分に補填することができる。   In the first embodiment, as described above, the welding depth d3 in the axial direction from the core end surface 21c (21d) of the hub member welding portion 29 is set as the welding depth in the radial direction of the rotor core 21 in the core welding portion 25. It is made larger than d1. Thereby, since the welding depth d3 of the hub member welded portion 29 is large, the joint strength of the rotor core 21 that is lowered due to the welding being suppressed in the welding suppressing portion 26 can be sufficiently compensated.

また、第1実施形態では、上記のように、ロータコア21の貫通孔21aにハブ部材23を取り付ける。これにより、ハブ部材23の外周面23aとロータコア21の貫通孔21aの内周面21fとが直接溶接されるので、ロータコア21の回転を確実にハブ部材23に伝達することができる。   In the first embodiment, the hub member 23 is attached to the through hole 21a of the rotor core 21 as described above. Thereby, since the outer peripheral surface 23a of the hub member 23 and the inner peripheral surface 21f of the through hole 21a of the rotor core 21 are directly welded, the rotation of the rotor core 21 can be reliably transmitted to the hub member 23.

(第2実施形態)
[回転電機のロータの構造]
次に、図8を参照して、第2実施形態による回転電機100aのロータ40の構造について説明する。第2実施形態では、上記溶接抑制部26(図4参照)にコア未溶接部28が設けられていた第1実施形態と異なり、溶接抑制部43にコア未溶接部が設けられていない。
(Second Embodiment)
[Rotary electrical machine rotor structure]
Next, the structure of the rotor 40 of the rotating electrical machine 100a according to the second embodiment will be described with reference to FIG. In the second embodiment, unlike the first embodiment in which the core unwelded portion 28 is provided in the weld suppression portion 26 (see FIG. 4), the core suppression portion 43 is not provided in the weld suppression portion 43.

図8に示すように、ロータコア41の内周面41aのうちの溝部41bには、コア溶接部42が設けられている。コア溶接部42は、ロータコア41の内周面41aに軸方向に延びるように設けられている。また、コア溶接部42は、ロータコア41の半径方向(X方向)に溶接深さd4を有する。   As shown in FIG. 8, a core weld portion 42 is provided in the groove portion 41 b of the inner peripheral surface 41 a of the rotor core 41. The core welded portion 42 is provided on the inner peripheral surface 41 a of the rotor core 41 so as to extend in the axial direction. The core welded portion 42 has a welding depth d4 in the radial direction (X direction) of the rotor core 41.

また、ロータコア41の内周面41aには、コア溶接部42の軸方向(Z1方向)の端部42aからロータコア41の軸方向のコア端面41cにわたって、Z1方向側の溶接抑制部43が設けられている。Z1方向側の溶接抑制部43は、溶接スロープ部のみから構成されており、コア溶接部42の軸方向の端部42aからコア端面41cまで溶接深さd5が徐々に減少されることにより形成されている。すなわち、溶接深さd5は、コア溶接部42のロータコア41の半径方向の溶接深さd4と等しい溶接深さから徐々に小さくなり、最終的には0になる(0≦d5≦d4)。また、溶接抑制部43は、コア端面41cから軸方向に長さL5を有する。また、ロータコア41の内周面41aには、コア溶接部42の軸方向(Z2方向)の端部42bからロータコア41の軸方向のコア端面41dにわたって、Z2方向側の溶接抑制部43が設けられている。そして、ロータコア41の軸方向の両方(Z1方向およびZ2方向)の端部41eおよび41fにおいて、ハブ部材溶接部44のコア端面41c(41d)からの軸方向の溶接深さd6は、溶接抑制部43のコア端面41c(41d)からの軸方向の長さL5よりも大きい(d6>L5)。なお、ハブ部材溶接部44は、本発明の「コア伝達部材溶接部」の一例である。   Further, the inner circumferential surface 41a of the rotor core 41 is provided with a welding suppression portion 43 on the Z1 direction side from the end portion 42a in the axial direction (Z1 direction) of the core welding portion 42 to the core end surface 41c in the axial direction of the rotor core 41. ing. The welding suppression part 43 on the Z1 direction side is composed only of a welding slope part, and is formed by gradually reducing the welding depth d5 from the axial end part 42a of the core welding part 42 to the core end face 41c. ing. That is, the welding depth d5 gradually decreases from a welding depth equal to the radial welding depth d4 of the rotor core 41 of the core welded portion 42, and finally becomes 0 (0 ≦ d5 ≦ d4). Moreover, the welding suppression part 43 has length L5 to the axial direction from the core end surface 41c. Further, the inner circumferential surface 41a of the rotor core 41 is provided with a Z2 direction-side welding suppressing portion 43 extending from the axial end portion 42b of the core welded portion 42 to the core end surface 41d of the rotor core 41 in the axial direction. ing. In both end portions 41e and 41f in the axial direction (Z1 direction and Z2 direction) of the rotor core 41, the welding depth d6 in the axial direction from the core end surface 41c (41d) of the hub member welded portion 44 is the welding suppression portion. 43 is larger than the axial length L5 from the core end surface 41c (41d) (d6> L5). The hub member welded portion 44 is an example of the “core transmission member welded portion” in the present invention.

なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。   In addition, the other structure of 2nd Embodiment is the same as that of the said 1st Embodiment.

[第2実施形態の効果]
第2実施形態では、上記のように、溶接抑制部43にコア未溶接部を設けずに、溶接抑制部43を溶接スロープ部により構成することによって、複数の電磁鋼板22が軸方向の一方端から他方端まで溶接されるので、ロータコア41の接合強度をより高めることができる。
[Effect of the second embodiment]
In the second embodiment, as described above, the weld suppressing portion 43 is not provided with the core unwelded portion, and the welding suppressing portion 43 is configured by the weld slope portion, so that the plurality of electromagnetic steel plates 22 have one end in the axial direction. From the welding to the other end, the joint strength of the rotor core 41 can be further increased.

なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。   The remaining effects of the second embodiment are similar to those of the aforementioned first embodiment.

[変形例]
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
[Modification]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiment but by the scope of claims for patent, and further includes all modifications (modifications) within the meaning and scope equivalent to the scope of claims for patent.

たとえば、上記第1および第2実施形態では、ロータコアの軸方向の端部において、ハブ部材溶接部のコア端面からの軸方向の溶接深さが、溶接抑制部のコア端面からの軸方向の長さよりも大きい例を示したが、本発明はこれに限られない。本発明では、ハブ部材溶接部のコア端面からの軸方向の溶接深さが、溶接抑制部のコア端面からの軸方向の長さ以上(溶接深さと長さとが同じ場合も含む)であればよい。   For example, in the first and second embodiments described above, the axial welding depth from the core end surface of the hub member welded portion is the axial length from the core end surface of the welding suppression portion at the axial end portion of the rotor core. However, the present invention is not limited to this. In the present invention, if the welding depth in the axial direction from the core end surface of the hub member welded portion is equal to or greater than the axial length from the core end surface of the welding suppression portion (including the case where the welding depth and length are the same). Good.

また、上記第1実施形態では、コア未溶接部および溶接スロープ部により溶接抑制部を構成し、第2実施形態では、溶接スロープ部のみにより溶接抑制部を構成する例を示したが、本発明はこれに限られない。たとえば、溶接スロープ部を設けずにコア未溶接部のみにより溶接抑制部を構成してもよい。この場合、ハブ部材溶接部のコア端面からの軸方向の溶接深さは、コア未溶接部のコア端面からの軸方向の長さ以上に設定される。   Moreover, in the said 1st Embodiment, although the welding suppression part was comprised by the core unwelded part and the welding slope part, and the 2nd Embodiment showed the example which comprises a welding suppression part only by a welding slope part, this invention Is not limited to this. For example, you may comprise a welding suppression part only by a core unwelded part, without providing a welding slope part. In this case, the axial welding depth from the core end surface of the hub member welded portion is set to be equal to or greater than the axial length from the core end surface of the core unwelded portion.

また、上記第1実施形態では、コア未溶接部および溶接スロープ部により構成された溶接抑制部がロータコアの軸方向の両方の端部に設けられ、第2実施形態では、溶接スロープ部のみにより構成された溶接抑制部がロータコアの軸方向の両方の端部に設けられている例を示したが、本発明はこれに限られない。たとえば、ロータコアの軸方向の一方の端部の溶接抑制部をコア未溶接部および溶接スロープ部により構成し、他方の端部の溶接抑制部を溶接スロープ部のみにより構成してもよい。   Moreover, in the said 1st Embodiment, the welding suppression part comprised by the core unwelded part and the welding slope part is provided in both the edge parts of the axial direction of a rotor core, and in 2nd Embodiment, it comprises only a welding slope part. Although the example in which the made welding suppression part was provided in the both ends of the axial direction of a rotor core was shown, this invention is not limited to this. For example, the welding suppression portion at one end in the axial direction of the rotor core may be configured by the core unwelded portion and the welding slope portion, and the welding suppression portion at the other end may be configured only by the welding slope portion.

また、上記第1および第2実施形態では、溶接抑制部がロータコアの軸方向の両方の端部に設けられている例を示したが、本発明はこれに限られない。たとえば、溶接抑制部をロータコアの軸方向の一方の端部にのみ設けてもよい。   Moreover, in the said 1st and 2nd embodiment, although the welding suppression part showed the example provided in both the edge parts of the axial direction of a rotor core, this invention is not limited to this. For example, you may provide a welding suppression part only in one edge part of the axial direction of a rotor core.

また、上記第1および第2実施形態では、コア溶接部がロータコアの内周面において周方向に45度の等角度間隔を隔てて8箇所設けられている例を示したが、本発明はこれに限られない。たとえば、コア溶接部をロータコアの内周面に8箇所以外の数の箇所に等角度間隔または等角度間隔以外の間隔で設けてもよい。   In the first and second embodiments, the example in which the core welded portion is provided at eight positions at an equal angular interval of 45 degrees in the circumferential direction on the inner peripheral surface of the rotor core is shown. Not limited to. For example, the core welds may be provided on the inner peripheral surface of the rotor core at a number other than eight locations at equal angular intervals or intervals other than equal angular intervals.

また、上記第1および第2実施形態では、ハブ部材溶接部が、ロータコアの軸方向の端部において、ロータコアの貫通孔の内周面の略全周にわたって設けられている例を示したが、本発明はこれに限られない。たとえば、ロータコアの所望の接合強度が維持できるのであれば、ハブ部材溶接部を貫通孔の内周面に局所的に設けてもよい。   In the first and second embodiments, the hub member welded portion is provided at substantially the entire circumference of the inner peripheral surface of the through-hole of the rotor core at the axial end of the rotor core. The present invention is not limited to this. For example, as long as the desired joint strength of the rotor core can be maintained, the hub member welded portion may be locally provided on the inner peripheral surface of the through hole.

また、上記第1および第2実施形態では、コア溶接部がロータコアの内周面に設けられている例を示したが、本発明はこれに限られない。たとえば、図9に示す第1変形例のロータ50に示すように、コア溶接部52および溶接抑制部53をロータコア51の外周面51aに設けてもよい。なお、この場合も、図示しないハブ部材溶接部の溶接深さを溶接抑制部53の軸方向(Z方向)の長さ以上に設定する。   Moreover, in the said 1st and 2nd embodiment, although the core welding part showed the example provided in the internal peripheral surface of the rotor core, this invention is not limited to this. For example, as shown in the rotor 50 of the first modification shown in FIG. 9, the core welded portion 52 and the weld suppressing portion 53 may be provided on the outer peripheral surface 51 a of the rotor core 51. In this case as well, the welding depth of the hub member welding portion (not shown) is set to be equal to or greater than the length of the welding suppression portion 53 in the axial direction (Z direction).

また、上記第1および第2実施形態では、ロータコアの貫通孔にハブ部材が取り付けられている例を示したが、本発明はこれに限られない。たとえば、図10に示す第2変形例のロータ60に示すように、ロータコア61の貫通孔61aに回転軸62を取り付けてもよい。この場合、ロータコア61の内周面61bにコア溶接部63および溶接抑制部64が設けられるとともに、ロータコア61の内周面61bと回転軸62の外周面62aとが互いに溶接されて、回転軸溶接部65が形成される。なお、回転軸62は、本発明の「回転伝達部材」の一例である。また、回転軸溶接部65は、本発明の「コア伝達部材溶接部」の一例である。   In the first and second embodiments, the hub member is attached to the through hole of the rotor core. However, the present invention is not limited to this. For example, as shown in the rotor 60 of the second modification shown in FIG. 10, the rotating shaft 62 may be attached to the through hole 61 a of the rotor core 61. In this case, the core welded portion 63 and the welding suppression portion 64 are provided on the inner peripheral surface 61b of the rotor core 61, and the inner peripheral surface 61b of the rotor core 61 and the outer peripheral surface 62a of the rotary shaft 62 are welded to each other, thereby rotating shaft welding. Part 65 is formed. The rotating shaft 62 is an example of the “rotation transmitting member” in the present invention. The rotating shaft welded portion 65 is an example of the “core transmission member welded portion” in the present invention.

ここで、図10に示した第2変形例では、回転軸溶接部65のコア端面61c(61d)からの軸方向の溶接深さd7は、溶接抑制部64のコア端面61c(61d)からの軸方向(Z方向)の長さL6以上の大きさを有する(d7≧L6)。   Here, in the second modification shown in FIG. 10, the welding depth d7 in the axial direction from the core end surface 61c (61d) of the rotary shaft welding portion 65 is the same as that from the core end surface 61c (61d) of the welding suppression portion 64. It has a size not less than the length L6 in the axial direction (Z direction) (d7 ≧ L6).

また、上記第1および第2実施形態では、ハブ部材溶接部およびコア溶接部の溶接工法として、高エネルギービーム溶接やTIG溶接を用いる例を示したが、本発明はこれに限られない。本発明では、高エネルギービーム溶接やTIG溶接以外の溶接工法を用いてもよい。   Moreover, in the said 1st and 2nd embodiment, although the example using high energy beam welding and TIG welding was shown as a welding method of a hub member welding part and a core welding part, this invention is not limited to this. In the present invention, a welding method other than high energy beam welding or TIG welding may be used.

また、上記第1および第2実施形態では、溶接熱源の出力(ビームの出力)を小さくすることにより、溶接スロープ部を形成する例を示したが、本発明はこれに限られない。たとえば、溶接ビームの焦点をずらすことにより、溶接スロープ部を形成してもよい。   Moreover, in the said 1st and 2nd embodiment, although the example which forms a welding slope part by reducing the output (beam output) of a welding heat source was shown, this invention is not limited to this. For example, the welding slope portion may be formed by shifting the focus of the welding beam.

11 ステータコア
20、40、50、60 ロータ
21、41、51、61 ロータコア
21a、61a 貫通孔
21c、21d、41c、41d、61c、61d コア端面
21f、41a、61b 内周面
21g、21h、41e、41f 端部
22 電磁鋼板
23 ハブ部材(回転伝達部材)
23a 外周面
25、42、52、63 コア溶接部
25a、25b、42a、42b 端部
26、43、53、64 溶接抑制部
27 溶接スロープ部
28 コア未溶接部
29、44 ハブ部材溶接部(コア伝達部材溶接部)
51a 外周面
62 回転軸(回転伝達部材)
62a 外周面
65 回転軸溶接部(コア伝達部材溶接部)
271、272 端部
d1、d4 (コア溶接部の)溶接深さ
d3、d6(ハブ部材溶接部の)溶接深さ
d7 (回転軸溶接部の)溶接深さ
L2、L5、L6 (溶接抑制部の)長さ
11 Stator core 20, 40, 50, 60 Rotor 21, 41, 51, 61 Rotor core 21a, 61a Through hole 21c, 21d, 41c, 41d, 61c, 61d Core end surface 21f, 41a, 61b Inner peripheral surface 21g, 21h, 41e, 41f End 22 Electrical steel plate 23 Hub member (rotation transmission member)
23a Outer peripheral surface 25, 42, 52, 63 Core welded portion 25a, 25b, 42a, 42b End portion 26, 43, 53, 64 Weld suppressing portion 27 Weld slope portion 28 Core unwelded portion 29, 44 Hub member welded portion (core Transmission member weld)
51a Outer peripheral surface 62 Rotating shaft (Rotation transmission member)
62a Outer peripheral surface 65 Rotary shaft weld (core transmission member weld)
271, 272 End d 1, d 4 (Core welded portion) Weld depth d 3, d 6 (Hub member welded portion) Weld depth d 7 (Rotary shaft welded portion) Weld depth L 2, L 5, L 6 (Weld suppression portion Length)

Claims (10)

回転軸線回りに回転されるとともに、複数の電磁鋼板が前記回転軸線の延びる方向である軸方向に積層されることにより形成され、回転中心に貫通孔を有するロータコアと、
前記ロータコアの前記貫通孔に取り付けられた回転伝達部材と、
前記ロータコアの軸方向の端部に設けられ、前記ロータコアの前記貫通孔の内周面と前記回転伝達部材の外周面とが互いに溶接されたコア伝達部材溶接部と、を備え、
前記ロータコアは、前記ロータコアの前記内周面または外周面に軸方向に延びるように設けられ、前記複数の電磁鋼板同士が軸方向に沿って溶接されたコア溶接部と、前記コア溶接部の軸方向の端部から前記ロータコアの軸方向のコア端面にわたって設けられ、前記コア溶接部よりも溶接が抑制された溶接抑制部とを含み、
前記コア伝達部材溶接部の前記コア端面からの軸方向の溶接深さは、前記溶接抑制部の前記コア端面からの軸方向の長さ以上である、ロータ。
A rotor core that is rotated around a rotation axis and is formed by laminating a plurality of electromagnetic steel plates in an axial direction that is a direction in which the rotation axis extends, and having a through hole at the rotation center;
A rotation transmitting member attached to the through hole of the rotor core;
A core transmission member welding portion provided at an end portion in the axial direction of the rotor core, wherein an inner circumferential surface of the through hole of the rotor core and an outer circumferential surface of the rotation transmission member are welded to each other;
The rotor core is provided on the inner peripheral surface or outer peripheral surface of the rotor core so as to extend in the axial direction, and a core welded portion in which the plurality of electromagnetic steel plates are welded along the axial direction, and an axis of the core welded portion A welding suppression portion provided from the end portion in the direction to the core end surface in the axial direction of the rotor core, wherein welding is suppressed from the core welding portion,
The welding depth in the axial direction from the core end surface of the core transmission member welding portion is a rotor that is equal to or longer than the axial length from the core end surface of the welding suppression portion.
前記溶接抑制部は、軸方向に直交する面で切断した断面において、前記溶接抑制部の溶接断面積を前記コア溶接部の溶接断面積よりも小さくすることにより、溶接の抑制を行うように構成されている、請求項1に記載のロータ。   The welding suppression portion is configured to suppress welding by making a welding cross-sectional area of the welding suppression portion smaller than a welding cross-sectional area of the core welding portion in a cross section cut by a plane orthogonal to the axial direction. The rotor according to claim 1, wherein 前記溶接抑制部は、前記コア溶接部の軸方向の端部から前記コア端面に向かって溶接深さが徐々に減少された溶接スロープ部、または、前記コア溶接部の軸方向の端部側から前記コア端面にわたって設けられた溶接されていないコア未溶接部の少なくとも一方を含む、請求項1または2に記載のロータ。   The welding suppression portion is a welding slope portion in which a welding depth is gradually reduced from an axial end portion of the core welding portion toward the core end surface, or from an axial end portion side of the core welding portion. The rotor according to claim 1, comprising at least one of unwelded core unwelded portions provided over the core end surface. 前記溶接抑制部は、前記コア溶接部の軸方向の端部から前記コア端面に向かって溶接深さが徐々に減少された前記溶接スロープ部と、前記溶接スロープ部の軸方向の端部から前記コア端面にわたって設けられる溶接されていないコア未溶接部とを含み、
前記ロータコアの軸方向の端部において、前記コア伝達部材溶接部の前記コア端面からの軸方向の溶接深さは、前記溶接スロープ部と前記コア未溶接部とを含む前記溶接抑制部の前記コア端面からの軸方向の長さ以上である、請求項3に記載のロータ。
The welding suppression portion includes the welding slope portion in which the welding depth is gradually reduced from the axial end portion of the core welding portion toward the core end surface, and the axial end portion of the welding slope portion. An unwelded core unwelded portion provided over the core end face,
In the axial end portion of the rotor core, the welding depth in the axial direction from the core end surface of the core transmission member welded portion includes the weld slope portion and the core unwelded portion, and the core of the welding suppression portion. The rotor according to claim 3, wherein the rotor is at least an axial length from the end face.
前記コア伝達部材溶接部および前記溶接抑制部は、前記ロータコアの軸方向の両方の端部に設けられており、
前記ロータコアの軸方向の両方の端部において、前記コア伝達部材溶接部の前記コア端面からの軸方向の溶接深さは、前記溶接抑制部の前記コア端面からの軸方向の長さ以上である、請求項1〜4のいずれか1項に記載のロータ。
The core transmission member welded portion and the weld suppression portion are provided at both ends in the axial direction of the rotor core,
At both ends in the axial direction of the rotor core, the welding depth in the axial direction from the core end surface of the core transmission member welded portion is greater than or equal to the axial length from the core end surface of the welding suppression portion. The rotor according to any one of claims 1 to 4.
前記コア溶接部は、前記ロータコアの前記内周面または前記外周面において周方向に所定の角度間隔を隔てた複数の箇所において軸方向に延びるように設けられている、請求項1〜5のいずれか1項に記載のロータ。   The said core welding part is provided so that it may extend in an axial direction in the several location which spaced apart the predetermined angular space | interval in the circumferential direction in the said inner peripheral surface or the said outer peripheral surface of the said rotor core. The rotor according to claim 1. 前記コア伝達部材溶接部は、前記ロータコアの軸方向の端部において、前記ロータコアの前記貫通孔の内周面に沿って周状に設けられている、請求項1〜6のいずれか1項に記載のロータ。   The said core transmission member welding part is provided in any one of the Claims 1-6 provided in the circumferential form along the internal peripheral surface of the said through-hole of the said rotor core in the edge part of the axial direction of the said rotor core. The described rotor. 前記コア伝達部材溶接部の前記コア端面からの軸方向の溶接深さは、前記コア溶接部の前記ロータコアの半径方向の溶接深さよりも大きい、請求項1〜7のいずれか1項に記載のロータ。   The welding depth in the axial direction from the core end surface of the core transmission member welding portion is greater than the welding depth in the radial direction of the rotor core of the core welding portion, according to any one of claims 1 to 7. Rotor. 前記回転伝達部材は、回転軸、または、前記回転軸が取り付けられるハブ部材のいずれか一方を含む、請求項1〜8のいずれか1項に記載のロータ。   The rotor according to claim 1, wherein the rotation transmission member includes one of a rotation shaft and a hub member to which the rotation shaft is attached. 回転軸線回りに回転されるとともに、複数の電磁鋼板が回転軸線の延びる方向である軸方向に積層されることにより形成され、回転中心に貫通孔を有するロータコアと、
前記ロータコアの前記貫通孔に取り付けられた回転伝達部材とを備えたロータの製造方法であって、
前記ロータコアの内周面または外周面において、積層された前記複数の電磁鋼板同士を軸方向に沿って溶接することにより、軸方向に延びるコア溶接部を形成するとともに、前記コア溶接部の軸方向の端部から前記ロータコアの軸方向のコア端面にわたって、前記コア溶接部よりも溶接が抑制された溶接抑制部を形成する工程と、
その後、前記ロータコアの前記貫通孔に前記回転伝達部材を挿入する工程と、
前記ロータコアの軸方向の端部において、前記ロータコアの内周面と、前記貫通孔に挿入された前記回転伝達部材の外周面とを、前記溶接抑制部の前記コア端面からの軸方向の長さ以上の前記コア端面からの軸方向の溶接深さで互いに溶接することにより、コア伝達部材溶接部を形成する工程と、を備えた、ロータの製造方法。
A rotor core that is rotated around a rotation axis and is formed by laminating a plurality of electromagnetic steel plates in an axial direction that is a direction in which the rotation axis extends, and having a through hole at the rotation center;
A rotor manufacturing method comprising a rotation transmitting member attached to the through hole of the rotor core,
On the inner peripheral surface or outer peripheral surface of the rotor core, by welding the laminated electromagnetic steel sheets along the axial direction, a core welded portion extending in the axial direction is formed, and the axial direction of the core welded portion Forming a welding suppression portion in which welding is suppressed from the core welding portion over the core end surface in the axial direction of the rotor core from the end portion of the rotor core;
Thereafter, inserting the rotation transmitting member into the through hole of the rotor core;
The axial length of the inner peripheral surface of the rotor core and the outer peripheral surface of the rotation transmitting member inserted into the through hole from the core end surface of the welding suppression portion at the axial end portion of the rotor core. Forming a core transmission member welded portion by welding each other at a welding depth in the axial direction from the core end surface.
JP2014240177A 2014-11-27 2014-11-27 Rotor and method for manufacturing rotor Active JP6409529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014240177A JP6409529B2 (en) 2014-11-27 2014-11-27 Rotor and method for manufacturing rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014240177A JP6409529B2 (en) 2014-11-27 2014-11-27 Rotor and method for manufacturing rotor

Publications (2)

Publication Number Publication Date
JP2016103882A true JP2016103882A (en) 2016-06-02
JP6409529B2 JP6409529B2 (en) 2018-10-24

Family

ID=56088098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014240177A Active JP6409529B2 (en) 2014-11-27 2014-11-27 Rotor and method for manufacturing rotor

Country Status (1)

Country Link
JP (1) JP6409529B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050415A (en) * 2016-09-23 2018-03-29 日産自動車株式会社 Manufacturing method for rotor shaft
JP2018085839A (en) * 2016-11-24 2018-05-31 アイシン・エィ・ダブリュ株式会社 Rotor and manufacturing method of rotor
WO2018179923A1 (en) * 2017-03-31 2018-10-04 アイシン・エィ・ダブリュ株式会社 Core manufacturing method and core
JP2019062644A (en) * 2017-09-26 2019-04-18 アイシン・エィ・ダブリュ株式会社 Rotary electric machine
US11764654B2 (en) 2017-03-09 2023-09-19 Aisin Corporation Rotary electric machine member manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107035A (en) * 1981-12-17 1983-06-25 Toshiba Corp Rotor spider shaft
JPS624850U (en) * 1985-06-26 1987-01-13
JPH10257723A (en) * 1997-03-12 1998-09-25 Mitsubishi Electric Corp Rotor and its manufacturing method
JP2007014129A (en) * 2005-06-30 2007-01-18 Mitsui High Tec Inc Stacked stator core
JP2011114414A (en) * 2009-11-24 2011-06-09 Toshiba Corp Ultrasound probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107035A (en) * 1981-12-17 1983-06-25 Toshiba Corp Rotor spider shaft
JPS624850U (en) * 1985-06-26 1987-01-13
JPH10257723A (en) * 1997-03-12 1998-09-25 Mitsubishi Electric Corp Rotor and its manufacturing method
JP2007014129A (en) * 2005-06-30 2007-01-18 Mitsui High Tec Inc Stacked stator core
JP2011114414A (en) * 2009-11-24 2011-06-09 Toshiba Corp Ultrasound probe

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050415A (en) * 2016-09-23 2018-03-29 日産自動車株式会社 Manufacturing method for rotor shaft
JP2018085839A (en) * 2016-11-24 2018-05-31 アイシン・エィ・ダブリュ株式会社 Rotor and manufacturing method of rotor
US11764654B2 (en) 2017-03-09 2023-09-19 Aisin Corporation Rotary electric machine member manufacturing method
WO2018179923A1 (en) * 2017-03-31 2018-10-04 アイシン・エィ・ダブリュ株式会社 Core manufacturing method and core
JPWO2018179923A1 (en) * 2017-03-31 2019-11-07 アイシン・エィ・ダブリュ株式会社 Core manufacturing method and core
CN110431735A (en) * 2017-03-31 2019-11-08 爱信艾达株式会社 Core, manufacturing method and core
CN110431735B (en) * 2017-03-31 2021-06-04 爱信艾达株式会社 Core manufacturing method and core
US11296583B2 (en) 2017-03-31 2022-04-05 Aisin Corporation Core manufacturing method and core
JP2019062644A (en) * 2017-09-26 2019-04-18 アイシン・エィ・ダブリュ株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JP6409529B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP6409529B2 (en) Rotor and method for manufacturing rotor
US8698371B2 (en) Rotor and method of manufacturing the rotor
JP5126414B2 (en) Rotor and method for manufacturing the same
US20130026878A1 (en) Stator in an electric motor
WO2017170523A1 (en) Rotor production method
JP6769260B2 (en) Rotor and rotor manufacturing method
WO2018110300A1 (en) Stator core of rotating electrical machine and method for manufacturing same
CN112737166B (en) Rotary electric machine and method for manufacturing rotary electric machine
WO2015174145A1 (en) Embedded-permanent-magnet dynamoelectric device
WO2018179923A1 (en) Core manufacturing method and core
JP6451402B2 (en) Rotor for rotating electrical machines
US20200303983A1 (en) Stator and rotating electrical machine
US11764654B2 (en) Rotary electric machine member manufacturing method
JP2018148746A (en) Rotor and manufacturing method for rotor
WO2015198382A1 (en) Rotating electric machine synchronous rotor
JP5100671B2 (en) Propeller blade manufacturing method, propeller blade and blower
JP2016135063A (en) Iron core, stator and rotary electric machine
JP6926874B2 (en) Rotor
JP6923004B2 (en) Rotor manufacturing method
JP2019118214A (en) Stator for rotary electric machine and manufacturing method for stator coil
JP7205102B2 (en) Rotor for rotary electric machine
JP7479579B2 (en) Stator core and manufacturing method
JP2019057987A (en) Rotor and method for manufacturing the same
JP6696455B2 (en) Rotating electric machine rotor
JP6165383B1 (en) Rotating electrical machine frame and rotating electrical machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180910

R150 Certificate of patent or registration of utility model

Ref document number: 6409529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150