JP2016102252A - Steel sheet for vessel - Google Patents

Steel sheet for vessel Download PDF

Info

Publication number
JP2016102252A
JP2016102252A JP2014242123A JP2014242123A JP2016102252A JP 2016102252 A JP2016102252 A JP 2016102252A JP 2014242123 A JP2014242123 A JP 2014242123A JP 2014242123 A JP2014242123 A JP 2014242123A JP 2016102252 A JP2016102252 A JP 2016102252A
Authority
JP
Japan
Prior art keywords
film
steel plate
layer
adhesion
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014242123A
Other languages
Japanese (ja)
Other versions
JP6146402B2 (en
Inventor
安秀 大島
Yasuhide Oshima
安秀 大島
威 鈴木
Takeshi Suzuki
威 鈴木
幹人 須藤
Mikihito Sudo
幹人 須藤
祐介 中川
Yusuke Nakagawa
祐介 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014242123A priority Critical patent/JP6146402B2/en
Publication of JP2016102252A publication Critical patent/JP2016102252A/en
Application granted granted Critical
Publication of JP6146402B2 publication Critical patent/JP6146402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel sheet for a vessel excellent in both PET film adhesion and coating film adhesion.SOLUTION: Provided is a sheet for a vessel having a plated steel sheet covering at least a part of the surface of a steel with a plating layer made of at least one layer selected from an Ni layer, an Sn layer, an Ni-Fe alloy layer, an Fe-Sn-Ni alloy layer and an Fe-Sn alloy layer and a film formed on the surface of the plating layer in the plated steel sheet, in which the film contains Ti, Ni and C, in the film, the coating weight in terms of Ti per side of the plated steel sheet is 5.0 to 60.0 mg/m, the coating weight in terms of Ni per side of the plated steel is 0.1 to 3.0 mg/m, and the film in which the mass ratio of C to Ti in the film (C/Ti) is 0.01 to 10 is formed by cathode electrolysis or the like.SELECTED DRAWING: None

Description

本発明は、容器用鋼板に関する。   The present invention relates to a steel plate for containers.

缶等の容器に用いられる鋼板(容器用鋼板)として、例えば、特許文献1には、「鋼板の少なくとも片面に、Ni層、Sn層、Fe−Ni合金層、Fe−Sn合金層およびFe−Ni−Sn合金層のうちから選ばれた少なくとも1層からなる耐食性皮膜を有し、該耐食性皮膜上に、Tiを含み、さらにCo、Fe、Ni、V、Cu、MnおよびZnのうちから選ばれた少なくとも1種をその合計でTiに対する質量比として0.01〜10含有する密着性皮膜を有することを特徴とする表面処理鋼板」が開示されている([請求項1])。   As a steel plate (container steel plate) used for a container such as a can, for example, Patent Document 1 discloses that “at least one surface of a steel plate is Ni layer, Sn layer, Fe—Ni alloy layer, Fe—Sn alloy layer and Fe— It has a corrosion-resistant film composed of at least one layer selected from Ni-Sn alloy layers, contains Ti on the corrosion-resistant film, and is further selected from Co, Fe, Ni, V, Cu, Mn and Zn. A surface-treated steel sheet having an adhesive film containing 0.01 to 10 as a total mass ratio of at least one of the above-described materials is disclosed ([Claim 1]).

特開2010−031348号公報JP 2010-031348 A

本発明者らが、特許文献1に記載された容器用鋼板(表面処理鋼板)について検討した結果、PETフィルムに対する密着性(以下、「フィルム密着性」ともいう)および塗料に対する密着性(以下、「塗料密着性」ともいう)の少なくともいずれかが不十分となる場合があることが分かった。   As a result of studying the steel plate for containers (surface-treated steel plate) described in Patent Document 1, the present inventors have found that the adhesiveness to the PET film (hereinafter also referred to as “film adhesiveness”) and the adhesiveness to the paint (hereinafter referred to as “film adhesiveness”) It was found that at least one of "paint adhesion" may be insufficient.

本発明は、以上の点を鑑みてなされたものであり、フィルム密着性および塗料密着性が共に優れる容器用鋼板を提供することを目的とする。   This invention is made | formed in view of the above point, and it aims at providing the steel plate for containers which is excellent in both film adhesiveness and paint adhesiveness.

本発明者らは、上記目的を達成するために鋭意検討を行なった結果、めっき鋼板上にTi、NiおよびCを特定量で含む皮膜を形成して得られる容器用鋼板は、フィルム密着性および塗料密着性が共に優れることを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above object, the present inventors have found that a steel plate for containers obtained by forming a coating containing a specific amount of Ti, Ni and C on a plated steel plate has film adhesion and The inventors found that the paint adhesion was excellent and completed the present invention.

すなわち、本発明は、以下の[1]〜[5]を提供する。
[1]鋼板の表面の少なくとも一部を覆うNi層、Sn層、Ni−Fe合金層、Fe−Sn−Ni合金層およびFe−Sn合金層のうちから選ばれた少なくとも1層からなるめっき層を有するめっき鋼板と、上記めっき鋼板の上記めっき層側の表面上に配置された皮膜とを有する容器用鋼板であって、上記皮膜が、Ti、NiおよびCを含有し、上記皮膜は、上記めっき鋼板の片面あたりのTi換算の付着量が5.0mg/m2以上60.0mg/m2未満であり、上記めっき鋼板の片面あたりのNi換算の付着量が0.1〜3.0mg/m2であり、上記皮膜におけるCのTiに対する質量比(C/Ti)が0.01〜10である、容器用鋼板。
[2]上記皮膜は、上記めっき鋼板の片面あたりのTi換算の付着量が10.0〜30.0mg/m2である、上記[1]に記載の容器用鋼板。
[3]後述する式(2)で定義されるT値が0.50以下である、上記[1]または[2]に記載の容器用鋼板。
[4]上記めっき層が錫めっき層であり、上記皮膜がNi−Sn合金相を含む、上記[1]〜[3]のいずれかに記載の容器用鋼板。
[5]上記皮膜が含有するCが、フェノール樹脂またはフェノール化合物に由来する、上記[1]〜[4]のいずれかに記載の容器用鋼板。
That is, the present invention provides the following [1] to [5].
[1] A plating layer comprising at least one layer selected from a Ni layer, a Sn layer, a Ni—Fe alloy layer, a Fe—Sn—Ni alloy layer, and a Fe—Sn alloy layer covering at least part of the surface of the steel sheet A steel plate for a container having a plated steel plate having a coating and a coating disposed on the surface of the plated steel plate on the plating layer side, wherein the coating contains Ti, Ni, and C, adhesion amount of Ti in terms of per side of the plated steel sheet is less than 5.0 mg / m 2 or more 60.0 mg / m 2, the adhesion amount of Ni converted per one surface of the plated steel sheet is 0.1-3.0 mg / The steel plate for containers which is m < 2 > and the mass ratio (C / Ti) with respect to Ti of C in the said film | membrane is 0.01-10.
[2] The above coating, the adhesion amount of Ti converted per one surface of the plated steel sheet is 10.0~30.0mg / m 2, the container for steel sheet according to [1].
[3] The steel plate for containers according to [1] or [2] above, wherein a T value defined by the formula (2) described later is 0.50 or less.
[4] The steel plate for containers according to any one of [1] to [3], wherein the plating layer is a tin plating layer, and the coating includes a Ni—Sn alloy phase.
[5] The steel plate for containers according to any one of [1] to [4], wherein C contained in the film is derived from a phenol resin or a phenol compound.

本発明によれば、フィルム密着性および塗料密着性が共に優れる容器用鋼板を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the steel plate for containers which is excellent in both film adhesiveness and paint adhesiveness can be provided.

180度ピール試験を説明する模式図である。It is a schematic diagram explaining a 180 degree | times peel test.

[容器用鋼板]
本発明の容器用鋼板は、概略的には、めっき鋼板、および、めっき鋼板の表面上に配置された皮膜を有する。
以下に、めっき鋼板、および、皮膜の具体的な態様について詳述する。まず、めっき鋼板の態様について詳述する。
[Steel plate for containers]
The container steel plate of the present invention generally has a plated steel plate and a film disposed on the surface of the plated steel plate.
Below, the specific aspect of a plated steel plate and a membrane | film | coat is explained in full detail. First, the aspect of a plated steel plate is explained in full detail.

〔めっき鋼板〕
めっき鋼板は、鋼板と、鋼板の表面の少なくとも一部を覆うNi層、Sn層、Ni−Fe合金層、Fe−Sn−Ni合金層およびFe−Sn合金層のうちから選ばれた少なくとも1層からなるめっき層とを有する。
素材の鋼板としては、一般的な缶用の鋼板を使用できる。めっき層は、鋼板表面上の少なくとも一部を覆う層であり、連続層であってもよいし、不連続の島状であってもよい。また、めっき層は、鋼板の少なくとも片面に設けられていればよく、両面に設けられていてもよい。めっき層の形成は、含有される元素に応じた公知の方法で行える。
以下に、鋼板およびめっき層の好適態様について詳述する。
[Plated steel sheet]
The plated steel plate is at least one layer selected from a steel plate and a Ni layer, a Sn layer, a Ni—Fe alloy layer, a Fe—Sn—Ni alloy layer and a Fe—Sn alloy layer covering at least a part of the surface of the steel plate. And a plating layer.
As a raw steel plate, a general steel plate for cans can be used. A plating layer is a layer which covers at least one part on the steel plate surface, A continuous layer may be sufficient and a discontinuous island shape may be sufficient as it. Moreover, the plating layer should just be provided in the at least single side | surface of the steel plate, and may be provided in both surfaces. The plating layer can be formed by a known method according to the contained element.
Below, the suitable aspect of a steel plate and a plating layer is explained in full detail.

〈鋼板〉
鋼板の種類は特に限定されるものではない。通常、容器材料として使用される鋼板(例えば、低炭素鋼板、極低炭素鋼板)を用いることができる。この鋼板の製造方法、材質なども特に限定されるものではない。通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の工程を経て製造される。
<steel sheet>
The kind of steel plate is not particularly limited. Usually, a steel plate (for example, a low carbon steel plate or an ultra low carbon steel plate) used as a container material can be used. The manufacturing method and material of the steel plate are not particularly limited. It is manufactured through processes such as hot rolling, pickling, cold rolling, annealing, temper rolling and the like from a normal billet manufacturing process.

鋼板は、必要に応じて、その表面にニッケル(Ni)含有層を形成したものを用い、このNi含有層上に後述する錫めっき層を形成してもよい。Ni含有層を有する鋼板を用いて錫めっきを施すことにより、島状Snを含む錫めっき層を形成できる。その結果、溶接性が向上する。
Ni含有層としてはニッケルが含まれていればよい。例えば、Niめっき層(Ni層)、Ni−Fe合金層などが挙げられる。
鋼板にNi含有層を付与する方法は特に限定されない。例えば、公知の電気めっきなどの方法が挙げられる。また、Ni含有層としてNi−Fe合金層を付与する場合、電気めっきなどにより鋼板表面上にNi付与後、焼鈍することにより、鋼中にNiを拡散させ、Ni−Fe合金層を形成できる。
Ni含有層中のNi付着量は特に限定されず、片面当たりのNi換算量として50〜2000mg/m2が好ましい。上記範囲内であれば、コスト面でも有利となる。
If necessary, a steel sheet having a nickel (Ni) -containing layer formed on the surface thereof may be used, and a tin plating layer to be described later may be formed on the Ni-containing layer. By performing tin plating using a steel sheet having a Ni-containing layer, a tin plating layer containing island-shaped Sn can be formed. As a result, weldability is improved.
The Ni-containing layer only needs to contain nickel. For example, a Ni plating layer (Ni layer), a Ni—Fe alloy layer, and the like can be given.
The method for applying the Ni-containing layer to the steel plate is not particularly limited. For example, a known method such as electroplating can be used. Moreover, when providing a Ni-Fe alloy layer as a Ni-containing layer, Ni can be diffused in the steel by annealing after applying Ni on the steel sheet surface by electroplating or the like, thereby forming a Ni-Fe alloy layer.
The Ni adhesion amount in the Ni-containing layer is not particularly limited, and is preferably 50 to 2000 mg / m 2 as the Ni conversion amount per one side. If it is in the said range, it will become advantageous also in terms of cost.

なお、Ni付着量は、蛍光X線により表面分析して測定できる。この場合、Ni付着量既知のNi付着サンプルを用いて、Ni付着量に関する検量線をあらかじめ特定しておき、同検量線を用いて相対的にNi付着量を特定する。
ただし、後述するように、皮膜がNiを含むため、上記の蛍光X線による表面分析によりNi含有層中のNi付着量のみを測定することは困難である。このため、Ni含有層中のNi付着量は、蛍光X線により求めたNi付着量から後述する皮膜中に含まれるNi付着量を差し引いて求めることができる。
The Ni adhesion amount can be measured by surface analysis with fluorescent X-rays. In this case, a calibration curve related to the Ni adhesion amount is specified in advance using a Ni adhesion sample with a known Ni adhesion amount, and the Ni adhesion amount is relatively specified using the calibration curve.
However, as will be described later, since the film contains Ni, it is difficult to measure only the Ni adhesion amount in the Ni-containing layer by the surface analysis using the fluorescent X-ray. For this reason, the Ni adhesion amount in the Ni-containing layer can be obtained by subtracting the Ni adhesion amount contained in the film described later from the Ni adhesion amount obtained by fluorescent X-rays.

〈めっき層〉
めっき鋼板が鋼板表面上に有するめっき層としては、Snを含有するめっき層(以下、「錫めっき層」ともいう)が好ましい。錫めっき層は鋼板の少なくとも片面に設けられていればよく、両面に設けられていてもよい。錫めっき層は、鋼板表面上の少なくとも一部を覆う層であり、連続層であってもよいし、不連続の島状であってもよい。
<Plating layer>
As a plating layer which a plated steel plate has on the steel plate surface, a plating layer containing Sn (hereinafter also referred to as “tin plating layer”) is preferable. The tin plating layer should just be provided in the at least single side | surface of the steel plate, and may be provided in both surfaces. The tin plating layer is a layer covering at least a part on the surface of the steel plate, and may be a continuous layer or a discontinuous island shape.

錫めっき層中における鋼板片面当たりのSn付着量は、0.1〜15.0g/m2が好ましい。Sn付着量が上記範囲内であれば、容器用鋼板の外観特性および耐食性に優れる。なかでも、これらの特性がより優れる点で、0.2〜15.0g/m2がより好ましく、耐食性がより優れる点で、1.0〜15.0g/m2がさらに好ましい。
Sn付着量は、蛍光X線により表面分析して測定できる。蛍光X線の場合、Sn量既知のSn付着量サンプルを用いて、Sn量に関する検量線をあらかじめ特定しておき、同検量線を用いて相対的にSn付着量を特定する。
The Sn adhesion amount per one surface of the steel sheet in the tin plating layer is preferably 0.1 to 15.0 g / m 2 . When the Sn adhesion amount is within the above range, the outer appearance characteristics and the corrosion resistance of the steel plate for containers are excellent. Among them, in that these characteristics are more excellent, more preferably 0.2~15.0g / m 2, in terms of corrosion resistance more excellent, more preferably 1.0~15.0g / m 2.
The Sn adhesion amount can be measured by surface analysis with fluorescent X-rays. In the case of fluorescent X-rays, a calibration curve relating to the Sn amount is specified in advance using a Sn deposition amount sample with a known Sn amount, and the Sn deposition amount is relatively identified using the calibration curve.

錫めっき層としては、錫をめっきして得られる錫単体のめっき層であるSn層からなる錫めっき層のほか、錫めっき後通電加熱などにより錫を加熱溶融させて得られる、Sn層の最下層(Sn層/鋼板界面)にFe−Sn合金層が一部形成した錫めっき層、または、Sn層の全Snが合金化しFe−Sn合金層を形成した錫めっき層も含む。
また、錫めっき層としては、Ni含有層を表面に有する鋼板に対して錫めっきを行い、さらに通電加熱などにより錫を加熱溶融させて得られる、Sn層の最下層(Sn層/鋼板界面)にFe−Sn−Ni合金層、Fe−Sn合金層などが一部形成した錫めっき層、または、Sn層の全Snが合金化しFe−Sn−Ni合金層、Fe−Sn合金層を形成した錫めっき層も含む。
As the tin plating layer, in addition to a tin plating layer composed of an Sn layer obtained by plating tin, the tin plating layer obtained by heating and melting tin by energization heating after tin plating, etc. It also includes a tin plating layer in which a Fe—Sn alloy layer is partially formed in the lower layer (Sn layer / steel plate interface) or a tin plating layer in which all Sn of the Sn layer is alloyed to form an Fe—Sn alloy layer.
In addition, as the tin plating layer, the lowermost layer of the Sn layer (Sn layer / steel plate interface) obtained by tin-plating a steel plate having a Ni-containing layer on the surface and further heating and melting tin by electric heating or the like A tin-plated layer in which a Fe-Sn-Ni alloy layer, a Fe-Sn alloy layer, etc. are partially formed, or all Sn in the Sn layer is alloyed to form a Fe-Sn-Ni alloy layer and a Fe-Sn alloy layer. Also includes a tin plating layer.

錫めっき層の製造方法としては、周知の方法(例えば、電気めっき法や溶融したSnに浸漬してめっきする方法)が挙げられる。
例えば、フェノールスルフォン酸錫めっき浴、メタンスルフォン酸錫めっき浴、またはハロゲン系錫めっき浴を用い、片面あたりの付着量が所定量となるように鋼板表面にSnを電気めっきする。その後、Snの融点(231.9℃)以上の温度で加熱溶融処理を行って、錫単体のめっき層(Sn層)の最下層またはSn層の全Snを合金化しFe−Sn合金層を形成した錫めっき層を製造できる。加熱溶融処理を省略した場合、錫単体のめっき層(Sn層)を製造できる。
As a manufacturing method of a tin plating layer, a known method (for example, an electroplating method or a method of plating by immersing in molten Sn) may be mentioned.
For example, a phenol sulfonate tin plating bath, a methane sulfonate tin plating bath, or a halogen-based tin plating bath is used, and Sn is electroplated on the surface of the steel sheet so that the adhesion amount per one surface becomes a predetermined amount. Then, heat melting treatment is performed at a temperature equal to or higher than the melting point of Sn (231.9 ° C.), and the lowermost layer of the tin simple substance plating layer (Sn layer) or all Sn in the Sn layer is alloyed to form an Fe—Sn alloy layer A tin-plated layer can be produced. When the heat melting treatment is omitted, a tin simple plating layer (Sn layer) can be produced.

また、鋼板がその表面上にNi含有層を有する場合、Ni含有層上に錫めっきを施して錫単体のめっき層(Sn層)を形成させ、加熱溶融処理を行うと、Sn層の最下層(Sn層/鋼板界面)またはSn層の全Snが合金化しFe−Sn−Ni合金層、Fe−Sn合金層などが形成される。   Further, when the steel sheet has a Ni-containing layer on its surface, tin plating is performed on the Ni-containing layer to form a tin simple plating layer (Sn layer), and when the heat melting treatment is performed, the bottom layer of the Sn layer (Sn layer / steel plate interface) or all Sn in the Sn layer is alloyed to form an Fe—Sn—Ni alloy layer, an Fe—Sn alloy layer, or the like.

〔皮膜〕
次に、上述しためっき鋼板のめっき層側の表面上に配置される皮膜について説明する。皮膜は、概略的には、その成分として、Ti(チタニウム元素)、Ni(ニッケル元素)およびC(炭素元素)を含有する皮膜であり、後述する処理液を用いて形成される。
なお、皮膜中のTi、Ni、C等は、それぞれ、各種のチタン化合物、ニッケル化合物、炭素化合物として含まれ、これら化合物の種類や態様は特に限定されない。
[Coating]
Next, the film | membrane arrange | positioned on the surface by the side of the plating layer of the plated steel plate mentioned above is demonstrated. The coating is roughly a coating containing Ti (titanium element), Ni (nickel element), and C (carbon element) as its components, and is formed using a treatment liquid described later.
In addition, Ti, Ni, C, and the like in the film are included as various titanium compounds, nickel compounds, and carbon compounds, respectively, and the types and modes of these compounds are not particularly limited.

本発明者らは、上記皮膜がTi、NiおよびCを特定量で含有することにより、フィルム密着性および塗料密着性が優れることを見出した。
具体的には、皮膜中にNiおよびCは一定量必要であるが、皮膜中にNiが過剰に存在すると、フィルム密着性および塗料密着性が低下する。このメカニズム(理由)は明らかではないが、Tiを含む皮膜中に一定量以上のNiが存在しないと皮膜形成や皮膜と鋼板との接着などが不十分となるが、その一方で、過剰のNiが存在すると、Niが粒子状に析出して、皮膜とフィルムまたは塗料との密着を妨げるためと考えられる。
また、皮膜中のCのTiに対する質量比が一定範囲内であることにより、フィルム密着性および塗料密着性が優れる。このメカニズム(理由)も明らかではないが、皮膜中のCが有機樹脂であるフィルムまたは塗料と化学結合を生成して皮膜とフィルムまたは塗料に対する密着性を向上させるところ、皮膜中のCの量が少なすぎるとこの効果が小さく、一方で、多すぎると皮膜そのものの強度が低下してやはり密着性が劣るためと考えられる。
なお、上記メカニズムは推測であり、上記メカニズム以外であっても本発明の範囲内であるとする。
The present inventors have found that the film adhesion and paint adhesion are excellent when the coating contains Ti, Ni and C in specific amounts.
Specifically, a certain amount of Ni and C is required in the film, but if Ni is excessively present in the film, film adhesion and paint adhesion are deteriorated. The mechanism (reason) is not clear, but if a certain amount or more of Ni is not present in the film containing Ti, the film formation and the adhesion between the film and the steel sheet will be insufficient. It is considered that Ni is precipitated in the form of particles and prevents adhesion between the film and the film or paint.
Moreover, when the mass ratio of C to Ti in the film is within a certain range, film adhesion and paint adhesion are excellent. Although the mechanism (reason) is not clear, C in the film forms a chemical bond with the film or paint that is an organic resin to improve adhesion to the film and the film or paint. If the amount is too small, this effect is small. On the other hand, if the amount is too large, the strength of the coating itself is lowered and the adhesiveness is still poor.
Note that the above mechanism is speculative, and it is assumed that the mechanism other than the above mechanism is within the scope of the present invention.

〈Ti付着量〉
皮膜は、めっき鋼板の片面あたりのTi換算の付着量(以下、「Ti付着量」ともいう)が5.0mg/m2以上60mg/m2未満である。Ti付着量が5.0mg/m2未満または60mg/m2以上であるとフィルム密着性および塗料密着性は劣るが、5.0mg/m2以上60mg/m2未満であればフィルム密着性および塗料密着性に優れる。Ti付着量は、フィルム密着性および塗料密着性がより優れるという理由から、10〜30mg/m2が好ましく、10〜20mg/m2がより好ましい。
<Ti adhesion amount>
The coating has a Ti-equivalent adhesion amount (hereinafter also referred to as “Ti adhesion amount”) per side of the plated steel sheet of 5.0 mg / m 2 or more and less than 60 mg / m 2 . If the Ti adhesion amount is less than 5.0 mg / m 2 or 60 mg / m 2 or more, the film adhesion and paint adhesion are inferior, but if it is 5.0 mg / m 2 or more and less than 60 mg / m 2 , the film adhesion and Excellent paint adhesion. Ti adhesion amount, for the reason that the film adhesion and coating adhesion more excellent, preferably 10~30mg / m 2, 10~20mg / m 2 is more preferable.

〈Ni付着量〉
皮膜は、めっき鋼板の片面あたりのNi換算の付着量(以下、「Ni付着量」ともいう)が0.1〜3.0mg/m2である。Ni付着量が0.1〜3.0mg/m2であれば耐食性にも優れる。ここで、耐食性とは、具体的には、PETフィルムをラミネートした状態および塗料を塗装した状態で、容器用鋼板を酸性水溶液中に浸漬した際の傷部(鋼板まで到達する傷)の耐食性(それぞれ「フィルム貼付後耐食性」および「塗装後耐食性」ともいう)のことである。
耐食性がより優れるという理由から、Ni付着量は、0.1〜1.3mg/m2が好ましい。
<Ni adhesion amount>
The coating has an Ni conversion amount (hereinafter also referred to as “Ni adhesion amount”) of 0.1 to 3.0 mg / m 2 per one side of the plated steel sheet. When the Ni adhesion amount is 0.1 to 3.0 mg / m 2 , the corrosion resistance is also excellent. Here, the corrosion resistance is specifically the corrosion resistance of the scratched part (scratches reaching the steel plate) when the steel plate for containers is immersed in an acidic aqueous solution in a state where the PET film is laminated and a paint is applied ( And “corrosion resistance after film application” and “corrosion resistance after painting”, respectively).
From the reason that the corrosion resistance is more excellent, the Ni adhesion amount is preferably 0.1 to 1.3 mg / m 2 .

〈質量比(C/Ti)〉
皮膜におけるCのTiに対する質量比(C/Ti)が0.01〜10である。皮膜中のCが有機樹脂であるフィルムまたは塗料と化学結合を生成して皮膜とフィルムまたは塗料に対する密着性を向上させるが、質量比(C/Ti)が0.01未満であるとこの効果が十分に得られない。その一方で、質量比(C/Ti)が10超であると皮膜そのものの強度が低下してやはり密着性が劣る。しかし、質量比(C/Ti)が0.01〜10の範囲内であれば、フィルム密着性および塗料密着性が優れる。
質量比(C/Ti)は、フィルム密着性がより優れるという理由から、0.10〜5が好ましく、0.20〜5がより好ましく、0.20〜2がさらに好ましい。
<Mass ratio (C / Ti)>
The mass ratio of C to Ti (C / Ti) in the coating is 0.01-10. A film or paint in which C in the film is an organic resin generates a chemical bond to improve adhesion to the film and the film or paint, but this effect is achieved when the mass ratio (C / Ti) is less than 0.01. Not enough. On the other hand, if the mass ratio (C / Ti) is more than 10, the strength of the coating itself is lowered and the adhesion is also inferior. However, when the mass ratio (C / Ti) is in the range of 0.01 to 10, the film adhesion and the paint adhesion are excellent.
The mass ratio (C / Ti) is preferably 0.10 to 5, more preferably 0.20 to 5, and further preferably 0.20 to 2, because the film adhesion is more excellent.

なお、皮膜のめっき鋼板の片面あたりのC換算の付着量を「C付着量」とした場合、質量比(C/Ti)は、C付着量とTi付着量との比の値である。   In addition, when the adhesion amount in terms of C per one side of the coated steel sheet is “C adhesion amount”, the mass ratio (C / Ti) is a value of the ratio between the C adhesion amount and the Ti adhesion amount.

Ti付着量、Ni付着量およびC付着量は、蛍光X線による表面分析により測定する。
蛍光X線分析は、例えば、下記条件により実施される。
・装置:リガク社製蛍光X線分析装置System3270
・測定径:30mm
・測定雰囲気:真空
・スペクトル:Ti−Kα、Ni−Kα、C−Kα
・スリット:COARSE
・分光結晶:LiF(Ti、Ni)、RX(C)
上記条件により測定した皮膜の蛍光X線分析のTi−Kα、Ni−Kα、C−Kαのピークカウント数を用いる。
Ti adhesion amount, Ni adhesion amount, and C adhesion amount are measured by surface analysis using fluorescent X-rays.
The fluorescent X-ray analysis is performed, for example, under the following conditions.
Apparatus: X-ray fluorescence analyzer System 3270 manufactured by Rigaku Corporation
・ Measurement diameter: 30 mm
Measurement atmosphere: Vacuum Spectrum: Ti-Kα, Ni-Kα, C-Kα
・ Slit: COARSE
-Spectral crystal: LiF (Ti, Ni), RX (C)
The peak count numbers of Ti-Kα, Ni-Kα, and C-Kα in the fluorescent X-ray analysis of the film measured under the above conditions are used.

ただし、めっき層がNiを含む場合は、上記の蛍光X線による表面分析により皮膜中に含まれるNi付着量のみを測定することは困難である。
その場合は、走査型電子顕微鏡(Scanning Electron Microscope:SEM)や透過型電子顕微鏡(Transmission Electron Microscope:TEM)による断面観察とグロー放電発光分析とを併用することで皮膜中に含まれるNi付着量とめっき層中に含まれるNi量とを区別できる。
具体的には、皮膜およびめっき層の断面を収束イオンビーム(Focused Ion Beam:FIB)加工により露出させ、SEMまたはTEMによる断面観察から皮膜の厚さを算出する。次いで、グロー放電発光分析によるスパッタリング深さとスパッタリング時間との関係を求める。その後、皮膜厚さに相当するスパッタリング時間までのグロー放電発光分析のNi元素による発光カウント積算値を求める。このNi元素による発光カウント積算値から、あらかじめ求めておいた検量線を用いて、Ni付着量を求めることができる。
ここで、検量線は以下の方法で作成する。
まず、Niを含まないめっき層上にNiを含む皮膜を有する、Ni付着量の異なる複数のサンプルについてグロー放電発光分析し、Ni元素による発光カウントが検出されなくなるスパッタリング時間までのカウント積算値を求める。次いでこれらのサンプルのNi付着量を蛍光X線による表面分析により求める。このようにして、グロー放電発光分析によるNiカウント積算値とNi付着量との検量線を作成する。
However, when the plating layer contains Ni, it is difficult to measure only the Ni adhesion amount contained in the film by the surface analysis using the fluorescent X-ray.
In that case, the Ni adhesion amount contained in the film can be obtained by using both the cross-sectional observation by a scanning electron microscope (SEM) and a transmission electron microscope (TEM) and the glow discharge emission analysis. The amount of Ni contained in the plating layer can be distinguished.
Specifically, the cross section of the coating and the plating layer is exposed by focused ion beam (FIB) processing, and the thickness of the coating is calculated from cross-sectional observation by SEM or TEM. Next, the relationship between the sputtering depth and the sputtering time by glow discharge emission analysis is obtained. Thereafter, the integrated emission count value by Ni element of the glow discharge emission analysis up to the sputtering time corresponding to the film thickness is obtained. From the integrated emission count value of the Ni element, the Ni adhesion amount can be obtained using a calibration curve obtained in advance.
Here, the calibration curve is created by the following method.
First, glow discharge emission analysis is performed on a plurality of samples having a coating film containing Ni on a plating layer not containing Ni and having different Ni adhesion amounts, and a count integrated value up to a sputtering time at which no emission count due to Ni element is detected is obtained. . Next, the Ni adhesion amount of these samples is obtained by surface analysis using fluorescent X-rays. In this way, a calibration curve between the Ni count integrated value and the Ni adhesion amount by glow discharge emission analysis is created.

〈厚さ〉
皮膜の厚さは、10〜120nmが好ましく、20〜60nmがより好ましい。皮膜の厚さは、皮膜の断面を収束イオンビーム(FIB)加工により露出させ、透過型電子顕微鏡(TEM)観察による断面プロファイルから測定できる。
<thickness>
10-120 nm is preferable and, as for the thickness of a film | membrane, 20-60 nm is more preferable. The thickness of the film can be measured from a cross-sectional profile obtained by observation with a transmission electron microscope (TEM) after exposing the cross section of the film by focused ion beam (FIB) processing.

〈T値〉
皮膜は、下記式(2)で定義されるT値が0.50以下であることが好ましい。
T=[Ii(F)−Ib(F)]/Ib(F)・・・(2)
式(2)中、Ii(F)は、本発明の容器用鋼板を30分間沸騰水中で浸漬する前の皮膜の蛍光X線分析のFピークカウント数を表し、Ib(F)は、本発明の容器用鋼板を30分間沸騰水中で浸漬した後の皮膜の蛍光X線分析のFピークカウント数を表す。
ここで、[Ii(F)−Ib(F)]は、沸騰水中への浸漬により溶出するF量を示し、これをIb(F)で除する式(2)で定義されるT値は、皮膜中の可溶性F量の割合を示す指標となる。このT値が0.50以下である場合に、得られる容器用鋼板のフィルム密着性がより優れる。
<T value>
The film preferably has a T value defined by the following formula (2) of 0.50 or less.
T = [Ii (F) -Ib (F)] / Ib (F) (2)
In formula (2), Ii (F) represents the F peak count number of fluorescent X-ray analysis of the film before dipping the steel plate for containers of the present invention in boiling water for 30 minutes, and Ib (F) represents the present invention. The F peak count number of the fluorescent X-ray analysis of the film | membrane after immersing the steel plate for containers of for 30 minutes in boiling water is represented.
Here, [Ii (F) -Ib (F)] indicates the F amount eluted by immersion in boiling water, and the T value defined by the equation (2) obtained by dividing this by Ib (F) is It becomes an index indicating the ratio of the soluble F amount in the film. When this T value is 0.50 or less, the film adhesion of the resulting steel plate for containers is more excellent.

なお、蛍光X線分析は、例えば、下記条件により実施される。
・装置:リガク社製蛍光X線分析装置System3270
・測定径:30mm
・測定雰囲気:真空
・スペクトル:F−Kα
・スリット:COARSE
・分光結晶:TAP
上記条件により測定した皮膜の蛍光X線分析のF−Kαのピークカウント数を用いる。
Note that the fluorescent X-ray analysis is performed, for example, under the following conditions.
Apparatus: X-ray fluorescence analyzer System 3270 manufactured by Rigaku Corporation
・ Measurement diameter: 30 mm
・ Measurement atmosphere: Vacuum ・ Spectrum: F-Kα
・ Slit: COARSE
-Spectral crystal: TAP
The peak count number of F-Kα in the fluorescent X-ray analysis of the film measured under the above conditions is used.

〈Ni−Sn合金相〉
また、めっき層が上述した錫めっき層である場合において、皮膜は、Ni−Sn合金相を含むことが好ましい。
Ni−Sn合金相における「Ni」は皮膜中のNiに由来し、「Sn」は錫めっき層中のSnに由来する。このようなNi−Sn合金相は、皮膜中において、皮膜と錫めっき層との界面に連続的な層として析出していてもよいし、皮膜中に分散した粒子として断続的に析出していてもよいし、その両方であってもよい。
錫めっき層のSnが皮膜中に入り込み表面近くまで到達すると、皮膜の色調などが劣る場合があるが、皮膜中にNi−Sn合金相が析出しているとSnの入り込みが抑制され、色調が良好となる。また、フィルム密着性および塗料密着性もより優れる。
なお、皮膜中におけるNi−Sn合金相の有無を確認する方法としては、例えば、透過型電子顕微鏡(Transmission Electron Microscope:TEM)の電子線回折またはエネルギー分散型X線分析(Energy dispersive X-ray spectrometry:EDX)を用いて、抽出レプリカ法または収束イオンビーム(Focused Ion Beam:FIB)加工により作製したサンプルの表面または断面について、点分析または線分析する方法が挙げられる。
<Ni-Sn alloy phase>
Moreover, when a plating layer is the tin plating layer mentioned above, it is preferable that a membrane | film | coat contains a Ni-Sn alloy phase.
“Ni” in the Ni—Sn alloy phase is derived from Ni in the film, and “Sn” is derived from Sn in the tin plating layer. Such a Ni—Sn alloy phase may be deposited as a continuous layer at the interface between the coating and the tin plating layer in the coating, or intermittently deposited as particles dispersed in the coating. Or both.
When Sn of the tin plating layer enters the film and reaches near the surface, the color tone of the film may be inferior. However, if the Ni—Sn alloy phase is precipitated in the film, the penetration of Sn is suppressed and the color tone is reduced. It becomes good. In addition, film adhesion and paint adhesion are also superior.
In addition, as a method of confirming the presence or absence of the Ni—Sn alloy phase in the film, for example, transmission electron microscope (TEM) electron diffraction or energy dispersive X-ray spectrometry (Energy dispersive X-ray spectrometry) : EDX), a point analysis or a line analysis may be performed on the surface or cross section of a sample produced by an extraction replica method or a focused ion beam (FIB) process.

[容器用鋼板の製造方法]
上述した本発明の容器用鋼板を製造する方法としては、例えば、後述する皮膜形成工程を少なくとも備える方法(以下、便宜的に「本発明の製造方法」ともいう)が好ましい。
[Manufacturing method of steel plate for containers]
As a method for producing the above-described steel plate for containers of the present invention, for example, a method comprising at least a film forming step described later (hereinafter also referred to as “the production method of the present invention” for convenience) is preferable.

〔皮膜形成工程〕
皮膜形成工程は、後述する処理液(以下、便宜的に「本発明の処理液」ともいう)中にめっき鋼板を浸漬する(浸漬処理)、または、本発明の処理液中に浸漬しためっき鋼板に陰極電解処理を施すことにより、めっき鋼板のめっき層側の表面上に、上述した皮膜を形成する工程である。陰極電解処理は、浸漬処理よりも、より高速に、均一な皮膜を得ることができるという理由から好ましい。なお、陰極電解処理と陽極電解処理とを交互に行う交番電解を実施してもよい。
以下に、使用される本発明の処理液や陰極電解処理の条件などについて詳述する。
[Film formation process]
The film forming step is performed by immersing the plated steel sheet in a treatment liquid (hereinafter also referred to as “treatment liquid of the present invention” for convenience) (immersion treatment) or by immersing the plated steel sheet in the treatment liquid of the present invention. This is a step of forming the above-described film on the surface of the plated steel sheet on the plated layer side by subjecting to a cathodic electrolytic treatment. Cathodic electrolytic treatment is preferable because a uniform film can be obtained at a higher speed than immersion treatment. In addition, you may implement the alternating electrolysis which performs a cathode electrolytic treatment and an anodic electrolytic treatment alternately.
Hereinafter, the treatment liquid of the present invention used, conditions for the cathodic electrolysis, and the like will be described in detail.

〈処理液〉
《処理液のTi成分》
本発明の処理液は、上記皮膜にTi(チタニウム元素)を供給するためのTi成分(Ti化合物)を含有する。
このTi成分としては、特に限定されないが、例えば、チタンアルコキシド、シュウ酸チタニルアンモニウム、シュウ酸チタニルカリウム二水和物、硫酸チタン、チタンラクテート、チタンフッ化水素酸(H2TiF6)および/またはその塩などが挙げられる。なお、チタンフッ化水素酸の塩としては、例えば、六フッ化チタン酸カリウム(K2TiF6)、六フッ化チタン酸ナトリウム(Na2TiF6)、六フッ化チタン酸アンモニウム((NH42TiF6)等が挙げられる。
これらのうち、処理液の安定性、入手の容易性などの観点から、チタンフッ化水素酸および/またはその塩が好ましい。
本発明の処理液におけるTi成分の含有量は、特に限定されないが、チタンフッ化水素酸および/またはその塩を使用する場合、六フッ化チタン酸イオン(TiF6 2-)に換算した量が、0.004〜0.4mol/Lであるのが好ましく、0.02〜0.2mol/Lがより好ましい。
<Processing liquid>
<< Ti component of treatment liquid >>
The treatment liquid of the present invention contains a Ti component (Ti compound) for supplying Ti (titanium element) to the film.
The Ti component is not particularly limited. For example, titanium alkoxide, titanyl ammonium oxalate, potassium titanyl oxalate dihydrate, titanium sulfate, titanium lactate, titanium hydrofluoric acid (H 2 TiF 6 ) and / or its Examples include salt. Examples of the salt of titanium hydrofluoric acid include potassium hexafluorotitanate (K 2 TiF 6 ), sodium hexafluorotitanate (Na 2 TiF 6 ), and ammonium hexafluorotitanate ((NH 4 ). 2 TiF 6 ) and the like.
Of these, titanium hydrofluoric acid and / or a salt thereof is preferable from the viewpoints of stability of the treatment liquid, availability, and the like.
The content of the Ti component in the treatment liquid of the present invention is not particularly limited, but when using titanium hydrofluoric acid and / or a salt thereof, the amount converted to hexafluorotitanate ion (TiF 6 2− ), 0.004 to 0.4 mol / L is preferable, and 0.02 to 0.2 mol / L is more preferable.

《処理液のNi成分》
本発明の処理液は、上記皮膜にNi(ニッケル元素)を供給するためのNi成分(Ni化合物)を含有する。
このNi成分としては、特に限定されないが、硫酸ニッケル(NiSO4)、硫酸ニッケル六水和物、塩化ニッケル(NiCl2)、塩化ニッケル六水和物などが挙げられる。
本発明の処理液におけるNi成分の含有量は、特に限定されないが、Niイオン(Ni2+)に換算した量が、0.002〜0.04mol/Lであるのが好ましく、0.004〜0.02mol/Lがより好ましい。
<< Ni component of treatment liquid >>
The treatment liquid of the present invention contains a Ni component (Ni compound) for supplying Ni (nickel element) to the film.
As the Ni component is not particularly limited, nickel sulfate (NiSO 4), nickel sulfate hexahydrate, nickel chloride (NiCl 2), etc. nickel chloride hexahydrate and the like.
The content of the Ni component in the treatment liquid of the present invention is not particularly limited, but the amount converted to Ni ions (Ni 2+ ) is preferably 0.002 to 0.04 mol / L, and is preferably 0.004 to 0. 0.02 mol / L is more preferable.

《処理液のC成分》
本発明の処理液は、上記皮膜にC(炭素元素)を供給するためのC成分(C化合物)を含有する。
このC成分としては、例えば、フェノール樹脂またはフェノール化合物が挙げられる。例えば、フェノール樹脂またはフェノール化合物を添加した本発明の処理液中で、めっき鋼板に陰極電解処理を施すことにより、Ti中にC(フェノール樹脂)が析出し、Cを含有する皮膜が形成される。
<< C component of treatment liquid >>
The treatment liquid of the present invention contains a C component (C compound) for supplying C (carbon element) to the film.
As this C component, a phenol resin or a phenol compound is mentioned, for example. For example, in a treatment liquid of the present invention to which a phenol resin or a phenol compound is added, by subjecting a plated steel plate to cathodic electrolysis, C (phenol resin) is precipitated in Ti, and a film containing C is formed. .

フェノール樹脂としては、特に限定されないが、例えば、フェノール樹脂をアミノアルコール変性させることで水溶性を持たせたものが挙げられる。   Although it does not specifically limit as a phenol resin, For example, what gave water solubility by carrying out amino alcohol modification | denaturation of a phenol resin is mentioned.

また、フェノール化合物としては、例えば、タンニン酸が挙げられる。タンニン酸は、広く植物界に分布する多数のフェノール性水酸基を有する複雑な構造の芳香族化合物の総称であり、加水分解性タンニン酸であっても、縮合型タンニン酸であってもよい。タンニン酸としては、特に限定されず、例えば、ハマメリタンニン、カキタンニン、チャタンニン、五倍子タンニン、没食子タンニン、ミロバランタンニン、ジビジビタンニン、アルガロビラタンニン、バロニアタンニン、カテキンタンニン等が挙げられる。このようなタンニン酸としては、市販品を用いることができ、具体的には、例えば、富士化学工業社製の「タンニン酸」等が挙げられる。   Moreover, as a phenol compound, a tannic acid is mentioned, for example. Tannic acid is a general term for an aromatic compound having a complex structure having a large number of phenolic hydroxyl groups widely distributed in the plant kingdom, and may be hydrolyzable tannic acid or condensed tannic acid. The tannic acid is not particularly limited, and examples thereof include hameli tannin, oyster tannin, chatannin, pentaploid tannin, gallic tannin, mylobalantannin, dibidi tannin, algarobilatannin, valonia tannin, catechin tannin and the like. As such tannic acid, a commercially available product can be used, and specific examples include “tannic acid” manufactured by Fuji Chemical Industry Co., Ltd.

フェノール樹脂またはフェノール化合物の重量平均分子量は、特に限定されないが、500〜20,000が好ましく、1,000〜5,000がより好ましい。なお、重量平均分子量は、ゲルパーミエションクロマトグラフィー(GPC)により測定した重量平均分子量(ポリスチレン換算)である。   Although the weight average molecular weight of a phenol resin or a phenol compound is not specifically limited, 500-20,000 are preferable and 1,000-5,000 are more preferable. The weight average molecular weight is a weight average molecular weight (polystyrene conversion) measured by gel permeation chromatography (GPC).

本発明の処理液におけるC成分の含有量は、Tiに対するCの質量比(C/Ti)で、0.01〜10が好ましい。質量比(C/Ti)は、小さすぎると密着性が向上する効果が小さい場合があり大きすぎると皮膜が析出しにくくなる場合があるが、上記範囲内であれば皮膜が析出されて密着性が十分に向上する。
質量比(C/Ti)は、0.1〜1.0が好ましい。
The content of the C component in the treatment liquid of the present invention is preferably a mass ratio of C to Ti (C / Ti) of 0.01 to 10. If the mass ratio (C / Ti) is too small, the effect of improving the adhesion may be small, and if it is too large, the film may be difficult to precipitate. Is sufficiently improved.
The mass ratio (C / Ti) is preferably 0.1 to 1.0.

《処理液のその他の条件》
本発明の処理液中の溶媒としては、通常水が使用されるが有機溶媒を併用してもよい。
本発明の処理液のpHは、特に限定されないが、pH2.0〜5.0が好ましい。この範囲内であれば、処理時間を短くでき、かつ、処理液の安定性に優れる。pHの調整には公知の酸成分(例えば、リン酸、硫酸)・アルカリ成分(例えば、水酸化ナトリウム、アンモニア水)を使用できる。
また、本発明の処理液には、必要に応じて、ラウリル硫酸ナトリウム、アセチレングリコールなどの界面活性剤が含まれていてもよい。また、付着挙動の経時的な安定性の観点から、処理液には、ピロリン酸塩などの縮合リン酸塩が含まれていてもよい。
本発明の処理液の液温は、20〜80℃が好ましく、40〜60℃がより好ましい。
《Other conditions of processing solution》
As the solvent in the treatment liquid of the present invention, water is usually used, but an organic solvent may be used in combination.
Although the pH of the processing liquid of this invention is not specifically limited, pH 2.0-5.0 are preferable. Within this range, the treatment time can be shortened and the stability of the treatment liquid is excellent. A known acid component (for example, phosphoric acid, sulfuric acid) / alkali component (for example, sodium hydroxide, aqueous ammonia) can be used to adjust the pH.
Further, the treatment liquid of the present invention may contain a surfactant such as sodium lauryl sulfate or acetylene glycol as necessary. Further, from the viewpoint of the stability of the adhesion behavior over time, the treatment liquid may contain a condensed phosphate such as pyrophosphate.
20-80 degreeC is preferable and, as for the liquid temperature of the processing liquid of this invention, 40-60 degreeC is more preferable.

〈陰極電解処理の条件〉
皮膜形成工程において、陰極電解処理を実施する際の電解電流密度は、形成される皮膜中のTiおよびNiが適量となって、フィルム密着性および塗料密着性がより優れるという理由から、1.0〜20.0A/dm2が好ましく、3.0〜15.0A/dm2がより好ましい。
陰極電解処理の通電時間は、0.1〜5秒が好ましく、0.3〜2秒がより好ましい。
陰極電解処理の際の電気量密度は、電流密度と通電時間との積であり適宜設定される。
<Cathode electrolysis conditions>
In the film formation step, the electrolysis current density at the time of carrying out the cathodic electrolysis treatment is 1.0 because Ti and Ni in the formed film are appropriate amounts, and the film adhesion and paint adhesion are more excellent. ˜20.0 A / dm 2 is preferable, and 3.0 to 15.0 A / dm 2 is more preferable.
The energization time of the cathodic electrolysis treatment is preferably 0.1 to 5 seconds, and more preferably 0.3 to 2 seconds.
The quantity of electricity at the time of cathodic electrolysis is the product of the current density and the energization time, and is appropriately set.

皮膜中に含まれるFを低減させるという理由から、陰極電解処理の後、得られた鋼板の水洗処理を行うのが好ましい。
水洗処理の方法は特に限定されず、例えば、連続ラインで製造を行う場合、本発明の処理液のタンクの後に水洗タンクを設け、皮膜を形成する処理の後に連続して水に浸漬する方法などが挙げられる。水洗処理に用いる水の温度は、40〜90℃が好ましい。
水洗時間は、水洗処理による効果がより優れるという理由から、0.5秒超が好ましく、1.0〜5.0秒が好ましい。
さらに、水洗処理に代えて、または、水洗処理の後に、乾燥を行ってもよい。乾燥の際の温度および方式は特に限定されず、例えば、通常のドライヤーや電気炉乾燥方式が適用できる。乾燥処理の際の温度としては、100℃以下が好ましい。上記範囲内であれば、皮膜の酸化を抑制でき、皮膜組成の安定性が保たれる。なお、下限は特に限定されないが、通常室温程度である。
In order to reduce F contained in the film, it is preferable to perform a water washing treatment of the obtained steel sheet after the cathodic electrolysis treatment.
The method of the water washing treatment is not particularly limited. For example, in the case of production in a continuous line, a water washing tank is provided after the treatment liquid tank of the present invention, and a method of continuously immersing in water after the treatment for forming a film, etc. Is mentioned. The temperature of the water used for the water washing treatment is preferably 40 to 90 ° C.
The washing time is preferably more than 0.5 seconds, and more preferably 1.0 to 5.0 seconds, because the effect of the washing treatment is more excellent.
Further, drying may be performed instead of or after the washing process. The temperature and method during drying are not particularly limited, and for example, a normal dryer or an electric furnace drying method can be applied. The temperature during the drying treatment is preferably 100 ° C. or lower. If it is in the said range, the oxidation of a film | membrane can be suppressed and stability of a film | membrane composition is maintained. The lower limit is not particularly limited, but is usually about room temperature.

なお、上述したNi−Sn合金相は、錫めっき層を有するめっき鋼板に対して、本発明の処理液を用いて上述した皮膜形成工程を施すことにより、皮膜中に形成される。   In addition, the Ni-Sn alloy phase mentioned above is formed in a membrane | film | coat by performing the membrane | film | coat formation process mentioned above using the processing liquid of this invention with respect to the plated steel plate which has a tin plating layer.

〔前処理工程〕
本発明の製造方法は、上述した皮膜形成工程の前に、以下に説明する前処理工程を備えていてもよい。
前処理工程は、アルカリ性水溶液(特に、炭酸ナトリウム水溶液)中で、めっき鋼板に陰極電解処理を施す工程である。
めっき層が錫めっき層である場合、通常、錫めっき層の作製時にその表面は酸化されて、錫酸化物が形成される。このような錫めっき層を有するめっき鋼板に対して、陰極電解処理を施すことにより、不要な錫酸化物を除去して、錫酸化物量を調整できる。
前処理工程の陰極電解処理の際に使用される溶液としては、アルカリ性水溶液(例えば、炭酸ナトリウム水溶液)が挙げられる。アルカリ性水溶液中のアルカリ成分(例えば、炭酸ナトリウム)の濃度は特に限定されないが、錫酸化物の除去がより効率的に進行する点から、5〜15g/Lが好ましく、8〜12g/Lがより好ましい。
陰極電解処理の際のアルカリ性水溶液の液温は特に限定されないが、40〜60℃が好ましい。陰極電解処理の電解条件(電流密度、電解時間)は、適宜調整される。なお、陰極電解処理の後に、必要に応じて、水洗処理を施してもよい。
[Pretreatment process]
The manufacturing method of this invention may be equipped with the pre-processing process demonstrated below before the film formation process mentioned above.
The pretreatment step is a step of subjecting the plated steel plate to cathodic electrolysis in an alkaline aqueous solution (particularly, an aqueous sodium carbonate solution).
When the plating layer is a tin plating layer, the surface is usually oxidized during the production of the tin plating layer to form tin oxide. By subjecting the plated steel sheet having such a tin plating layer to cathodic electrolysis, unnecessary tin oxide can be removed and the amount of tin oxide can be adjusted.
Examples of the solution used for the cathodic electrolysis in the pretreatment step include an alkaline aqueous solution (for example, an aqueous sodium carbonate solution). The concentration of the alkaline component (for example, sodium carbonate) in the alkaline aqueous solution is not particularly limited, but is preferably 5 to 15 g / L, more preferably 8 to 12 g / L from the viewpoint that removal of tin oxide proceeds more efficiently. preferable.
The temperature of the alkaline aqueous solution during the cathodic electrolysis is not particularly limited, but is preferably 40 to 60 ° C. The electrolysis conditions (current density, electrolysis time) of the cathodic electrolysis are appropriately adjusted. In addition, you may perform a water washing process after a cathode electrolytic process as needed.

本発明の製造方法によって得られる本発明の容器用鋼板は、DI缶、食缶、飲料缶など種々の容器の製造に使用される。   The steel plate for containers of the present invention obtained by the manufacturing method of the present invention is used for manufacturing various containers such as DI cans, food cans, and beverage cans.

以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

〈めっき鋼板の製造〉
以下の方法によって、めっき鋼板を製造した。
まず、板厚0.22mmの鋼板(T4原板)を電解脱脂し、ワット浴を用いて第3表に示す片面当たりのNi付着量でニッケルめっき層を両面に形成後、10vol.%H2+90vol.%N2雰囲気中にて700℃で焼鈍してニッケルめっきを拡散浸透させることによりNi−Fe合金層(Ni含有層)(第3表にNi付着量を示す)を両面に形成した。
引き続き、上記表層にNi含有層を有する鋼板を、錫めっき浴を用い、第3表に示す片面当たりのSn付着量で錫めっきを両面に施した。その後、Snの融点以上で加熱溶融処理を施し、Fe−Sn−Ni合金層とその上に不連続のSn層とを形成し、めっき鋼板を製造した。このようにして、下層側から順に、Ni−Fe合金層/Fe−Sn−Ni合金層/Sn層からなるめっき層が鋼板の両面に形成された。
<Manufacture of plated steel sheets>
A plated steel sheet was produced by the following method.
First, a steel plate (T4 original plate) having a thickness of 0.22 mm is electrolytically degreased, and a nickel plating layer is formed on both sides with a Ni adhesion amount per one side shown in Table 3 using a Watt bath, and then 10 vol.% H 2 +90 vol. An Ni—Fe alloy layer (Ni-containing layer) (showing Ni adhesion amount in Table 3) was formed on both sides by annealing at 700 ° C. in a .N 2 atmosphere to diffuse and infiltrate the nickel plating.
Subsequently, the steel sheet having the Ni-containing layer as the surface layer was subjected to tin plating on both sides with a Sn adhesion amount per one side shown in Table 3 using a tin plating bath. Thereafter, heat melting treatment was performed at a melting point of Sn or higher to form a Fe—Sn—Ni alloy layer and a discontinuous Sn layer thereon, and a plated steel sheet was manufactured. Thus, the plating layer which consists of a Ni-Fe alloy layer / Fe-Sn-Ni alloy layer / Sn layer was formed in order from the lower layer side on both surfaces of the steel plate.

〈容器用鋼板の試験材の作製〉
作製しためっき鋼板を用いて、以下にようにして、容器用鋼板の試験材を作製した。
<Production of test materials for steel plates for containers>
A test material for a steel plate for containers was produced as follows using the produced plated steel plate.

《前処理工程》
液温50℃、10g/Lの炭酸ナトリウム水溶液中に上記めっき鋼板を浸漬し、第2表に示す条件にて、陰極電解処理を行った。
<< Pretreatment process >>
The plated steel sheet was immersed in a 10 g / L sodium carbonate aqueous solution at a liquid temperature of 50 ° C., and cathodic electrolysis was performed under the conditions shown in Table 2.

《皮膜形成工程》
次いで、pHを4.0に調整した第1表に示す組成の処理液(溶媒:水)を用い、第2表に示す液温(処理温度)および電解条件(電流密度、通電時間、電気量密度)で陰極電解処理を施した。その後、85℃の水槽に0.2秒間だけ浸漬させることにより水洗処理を施し、ブロアを用いて室温で乾燥を行い、両面に皮膜を形成した。
なお、処理液に含まれるフェノール樹脂としては重量平均分子量が5,000のフェノール樹脂を用い、フェノール化合物としては重量平均分子量が2,000の富士化学工業社製のタンニン酸を用いた。
<Film formation process>
Next, using the treatment liquid (solvent: water) having the composition shown in Table 1 with pH adjusted to 4.0, the liquid temperature (treatment temperature) and electrolysis conditions (current density, energization time, amount of electricity shown in Table 2) The cathode was subjected to cathodic electrolysis treatment. Thereafter, the film was washed with water by immersing it in a water bath at 85 ° C. for 0.2 seconds, and dried at room temperature using a blower to form films on both sides.
In addition, a phenol resin having a weight average molecular weight of 5,000 was used as the phenol resin contained in the treatment liquid, and tannic acid manufactured by Fuji Chemical Industry Co., Ltd. having a weight average molecular weight of 2,000 was used as the phenol compound.

その後、作製した容器用鋼板の試験材に対して、以下の方法で、フィルム密着性、塗料密着性および耐食性を評価した。各成分量および評価結果を第3表にまとめて示す。
皮膜のTi付着量、Ni付着量および質量比(C/Ti)、Ii(F)、Ib(F)およびT、皮膜の厚さ、ならびに、皮膜中のNi−Sn合金相の有無は、上述した方法により測定ないし計算した。
Thereafter, film adhesion, paint adhesion, and corrosion resistance were evaluated by the following methods for the test materials for the produced steel plates for containers. The amount of each component and the evaluation results are summarized in Table 3.
The coating amount of Ti, the coating amount of Ni and the mass ratio (C / Ti), Ii (F), Ib (F) and T, the thickness of the coating, and the presence or absence of the Ni-Sn alloy phase in the coating are described above. Measured or calculated by the method described above.

〈フィルム密着性〉
フィルム密着性の評価として、以下に示す無加工フィルム密着性および加工後フィルム密着性の評価を行った。無加工フィルム密着性および加工後フィルム密着性のいずれかが優れるものと評価されない場合には、フィルム密着性は劣るものとする。
<Film adhesion>
As evaluation of film adhesiveness, the following non-processed film adhesiveness and post-processing film adhesiveness were evaluated. If it is not evaluated that either the unprocessed film adhesion or the processed film adhesion is excellent, the film adhesion is inferior.

《無加工フィルム密着性》
作製した容器用鋼板の表面に、市販のPETフィルム(Melinex850:デュポン社製)を、ロール加圧4kg/cm、板送り速度40mpm、ロール通過後の板の表面温度が160℃となる条件で熱融着させ、次いで、バッチ炉中で後加熱(到達板温210℃で120秒保持)を行ない、ラミネート鋼板を作製した。
無加工フィルム密着性の評価は、作製したラミネート鋼板を、温度130℃、相対湿度100%のレトルト雰囲気に30分間保持した後、このレトルト雰囲気において180度ピール試験をすることにより行った。
180度ピール試験とは、図1(a)に示すようなフィルム2を残して鋼板1の一部3を切り取った試験片(サイズ:30mm×100mm)を用い、図1(b)に示すように、試験片の一端に重り4(100g)を付けてフィルム2側に180度折り返して30分間放置して行うフィルム剥離試験のことである。
図1(c)に示す剥離長5を測定した。下記基準で無加工フィルム密着性を評価した。結果が◎または○であれば無加工フィルム密着性に優れるものとして評価できる。
◎:剥離長が1mm未満
○:剥離長が1mm以上5mm未満
△:剥離長が5mm以上10mm未満
×:剥離長が10mm以上
《Unprocessed film adhesion》
A commercially available PET film (Melinex 850: manufactured by DuPont) is applied to the surface of the produced steel plate for containers under the conditions that the roll pressure is 4 kg / cm 2 , the plate feed speed is 40 mpm, and the surface temperature of the plate after passing through the roll is 160 ° C. Then, heat-sealing was carried out, followed by post-heating in a batch furnace (holding at a final plate temperature of 210 ° C. for 120 seconds) to produce a laminated steel plate.
Evaluation of unprocessed film adhesion was performed by holding the produced laminated steel sheet in a retort atmosphere at a temperature of 130 ° C. and a relative humidity of 100% for 30 minutes, and then performing a 180 ° peel test in this retort atmosphere.
The 180 degree peel test uses a test piece (size: 30 mm × 100 mm) obtained by cutting a part 3 of the steel plate 1 while leaving the film 2 as shown in FIG. 1A, as shown in FIG. In addition, it is a film peeling test performed by attaching a weight 4 (100 g) to one end of the test piece, turning it 180 degrees to the film 2 side, and allowing it to stand for 30 minutes.
The peel length 5 shown in FIG. 1 (c) was measured. The unprocessed film adhesion was evaluated according to the following criteria. If a result is (double-circle) or (circle), it can evaluate as what is excellent in unprocessed film adhesiveness.
A: Peel length is less than 1 mm B: Peel length is 1 mm or more and less than 5 mm Δ: Peel length is 5 mm or more and less than 10 mm ×: Peel length is 10 mm or more

《加工後フィルム密着性》
上記方法で作製したラミネート鋼板に対し、先端径3/16インチRのポンチを用い、1kgの錘を25cmの高さから落下させ、フィルムを貼った面の側が凸になるようデュポン衝撃加工を行った。このような加工試験片を4つ作成し、レトルト装置内に、凸面が上になるように置き、130℃のレトルト環境で30分間保持後、取り出し、加工部のフィルム剥離の程度を目視で、下記5段階で評価した。4つの試験片の評点の平均値(小数点以下1桁)を用いて、加工後フィルム密着性を評価した。実用上、結果が3.0以上であれば、加工後フィルム密着性に優れるものとして評価できる。
5:剥離なし
4:加工部の面積の5%未満で剥離発生
3:加工部の面積の5%以上20%未満で剥離発生
2:加工部の面積の20%以上50%未満で剥離発生
1:加工部の面積の50%以上で剥離発生
<Film adhesion after processing>
Using a punch with a tip diameter of 3/16 inch R, a 1 kg weight is dropped from a height of 25 cm to the laminated steel plate produced by the above method, and DuPont impact processing is performed so that the side with the film attached becomes convex. It was. Four such processed test pieces are prepared, placed in the retort device so that the convex surface is on top, held for 30 minutes in a retort environment at 130 ° C., taken out, and visually checked the degree of film peeling of the processed part, Evaluation was made according to the following 5 levels. The film adhesion after processing was evaluated using the average value (one decimal place) of the four test pieces. Practically, if the result is 3.0 or more, it can be evaluated as having excellent film adhesion after processing.
5: No peeling 4: Peeling occurs when less than 5% of the area of the processed part 3: Peeling occurs when the area of the processed part is 5% or more and less than 20% 2: Peeling occurs when the area of the processed part is 20% or more and less than 50% 1 : Peeling occurs at 50% or more of the processed area

〈塗料密着性〉
作製した容器用鋼板(幅100mm×長さ150mm)の表面に、エポキシフェノール系塗料を塗布し、210℃で10分間の焼付を行い、付着量が50mg/dm2の塗装を施した。
次いで、上記塗装を施した、同一の条件で作製した2枚の容器用鋼板を、ナイロン接着フィルムを挟んで塗装面が向かい合わせになるように積層した後、圧力2.94×105Pa、温度190℃、圧着時間30秒の圧着条件下で貼り合わせた。その後、これを5mm幅の試験片に分割した。分割した試験片の2枚の容器用鋼板を引張試験機で引き剥がし、引き剥がしたときの引張強度を測定した。各試験材で、2つの試験片の平均値を下記基準で評価した。実用上、結果が○または△であれば、塗料密着性に優れるものとして評価できる。
○:2.0kgf以上
△:1.0kgf以上2.0kgf未満
×:1.0kgf未満
<Paint adhesion>
An epoxy phenol-based paint was applied to the surface of the produced steel plate for containers (width 100 mm × length 150 mm), and baked at 210 ° C. for 10 minutes to give a coating amount of 50 mg / dm 2 .
Next, after laminating the two coated steel plates prepared under the same conditions with the above coating so that the coated surfaces face each other across the nylon adhesive film, the pressure is 2.94 × 10 5 Pa, Bonding was performed under pressure bonding conditions of a temperature of 190 ° C. and a pressure bonding time of 30 seconds. Then, this was divided into 5 mm wide test pieces. Two container steel plates of the divided test pieces were peeled off by a tensile tester, and the tensile strength when peeled off was measured. For each test material, the average value of the two test pieces was evaluated according to the following criteria. Practically, if the result is ○ or Δ, it can be evaluated as having excellent paint adhesion.
○: 2.0 kgf or more Δ: 1.0 kgf or more and less than 2.0 kgf ×: Less than 1.0 kgf

〈フィルム貼付後耐食性〉
上記方法で作製したラミネート鋼板(幅70mm×長さ40mm)のフィルム面に、カッターを用いて地鉄(鋼板)に達する深さのクロスカットを入れた。クロスカットを入れたラミネート鋼板を、1.5質量%クエン酸と1.5質量%食塩とを含有する混合水溶液からなる55℃の試験液に、96時間浸漬した。浸漬後、洗浄および乾燥をした後、フィルム面にセロハン粘着テープを貼り付け、引き剥がすテープ剥離を行った。クロスカット部中心の任意の4箇所についてフィルム剥離幅(カット部から広がる左右の合計幅)を測定し、4箇所の平均値を求めた。フィルム剥離幅の平均値を腐食幅とみなし、下記基準で評価した。実用上、結果が◎または○であれば、耐食性に優れるものとして評価できる。
◎:腐食幅0.8mm未満
○:腐食幅0.8mm以上1.5mm未満
△:腐食幅1.5mm以上2.0mm未満
×:腐食幅2.0mm以上
<Corrosion resistance after film application>
A cross-cut having a depth reaching the base iron (steel plate) was put on the film surface of the laminated steel plate (width 70 mm × length 40 mm) produced by the above method using a cutter. The laminated steel sheet with the cross cut was immersed in a test solution at 55 ° C. composed of a mixed aqueous solution containing 1.5 mass% citric acid and 1.5 mass% sodium chloride for 96 hours. After dipping, washing and drying, a cellophane adhesive tape was applied to the film surface, and the tape was peeled off. The film peeling width (total width on the left and right extending from the cut portion) was measured at any four locations at the center of the cross cut portion, and the average value of the four locations was determined. The average value of the film peeling width was regarded as the corrosion width and evaluated according to the following criteria. Practically, if the result is ま た は or ◯, it can be evaluated as having excellent corrosion resistance.
◎: Corrosion width less than 0.8 mm ○: Corrosion width 0.8 mm or more and less than 1.5 mm △: Corrosion width 1.5 mm or more and less than 2.0 mm ×: Corrosion width 2.0 mm or more

〈塗装後耐食性〉
作製した容器用鋼板(幅70mm×長さ40mm)の表面に、エポキシフェノール系塗料を塗布し、210℃で10分間の焼付を行い、付着量が50mg/dm2の塗装を施した。
次いで、上記塗装を施した容器用鋼板(塗装鋼板)の塗装面に、カッターを用いて地鉄(鋼板)に達する深さのクロスカットを入れた。クロスカットを入れた塗装鋼板を、1.5質量%クエン酸と1.5質量%食塩とを含有する混合水溶液からなる55℃の試験液に、96時間浸漬した。浸漬後、洗浄および乾燥をした後、塗膜にセロハン粘着テープを貼り付け、引き剥がすテープ剥離を行った。クロスカット部中心の任意の4箇所についてフィルム剥離幅(カット部から広がる左右の合計幅)を測定し、4箇所の平均値を求めた。フィルム剥離幅の平均値を腐食幅とみなし、下記基準で評価した。実用上、結果が◎または○であれば、耐食性に優れるものとして評価できる。
◎:腐食幅0.2mm未満
○:腐食幅0.2mm以上0.6mm未満
△:腐食幅0.6mm以上1.0mm未満
×:腐食幅1.0mm以上
<Corrosion resistance after painting>
An epoxy phenol-based paint was applied to the surface of the produced steel plate for containers (width 70 mm × length 40 mm), and baked at 210 ° C. for 10 minutes to give a coating amount of 50 mg / dm 2 .
Next, a cross-cut having a depth reaching the ground iron (steel plate) was put on the coated surface of the coated steel plate (painted steel plate) using a cutter. The coated steel sheet with the cross cut was immersed in a test solution at 55 ° C. composed of a mixed aqueous solution containing 1.5% by mass citric acid and 1.5% by mass sodium chloride for 96 hours. After immersion, after washing and drying, a cellophane adhesive tape was applied to the coating film, and the tape was peeled off. The film peeling width (total width on the left and right extending from the cut portion) was measured at any four locations at the center of the cross cut portion, and the average value of the four locations was determined. The average value of the film peeling width was regarded as the corrosion width and evaluated according to the following criteria. Practically, if the result is ま た は or ◯, it can be evaluated as having excellent corrosion resistance.
◎: Corrosion width less than 0.2 mm ○: Corrosion width 0.2 mm or more and less than 0.6 mm △: Corrosion width 0.6 mm or more and less than 1.0 mm ×: Corrosion width 1.0 mm or more

上記第1〜3表に示す結果から明らかなように、本発明例(試験材No.7〜23)は、いずれもフィルム密着性および塗料密着性が共に優れ、さらに、耐食性(フィルム貼付後耐食性および塗装後耐食性)にも優れることが確認された。
これに対して、質量比(C/Ti)が0.01未満である比較例(試験材No.1〜3)は、無加工フィルム密着性、加工後フィルム密着性および塗料密着性の少なくともいずれかが劣っていた。
また、Ni付着量が0.1mg/m2未満である比較例(試験材No.4〜6)は、無加工フィルム密着性および加工後フィルム密着性の少なくともいずれかが劣っていた。
As is clear from the results shown in Tables 1 to 3 above, all of the inventive examples (test materials No. 7 to 23) are excellent in both film adhesion and paint adhesion, and are further resistant to corrosion (corrosion resistance after film application). It was also confirmed that it was excellent in corrosion resistance after painting.
On the other hand, the comparative example (test material No. 1-3) whose mass ratio (C / Ti) is less than 0.01 is at least any of non-processed film adhesiveness, post-processed film adhesiveness, and paint adhesiveness. It was inferior.
Moreover, the comparative example (test material No. 4-6) whose Ni adhesion amount is less than 0.1 mg / m < 2 > was inferior in at least any of unprocessed film adhesiveness and post-processing film adhesiveness.

1:容器用鋼板
2:フィルム
3:鋼板の切り取った部位
4:重り
5:剥離長
1: Steel plate for container 2: Film 3: Part cut out of steel plate 4: Weight 5: Peel length

Claims (5)

鋼板の表面の少なくとも一部を覆うNi層、Sn層、Ni−Fe合金層、Fe−Sn−Ni合金層およびFe−Sn合金層のうちから選ばれた少なくとも1層からなるめっき層を有するめっき鋼板と、前記めっき鋼板の前記めっき層側の表面上に配置された皮膜とを有する容器用鋼板であって、
前記皮膜が、Ti、NiおよびCを含有し、
前記皮膜は、前記めっき鋼板の片面あたりのTi換算の付着量が5.0mg/m2以上60.0mg/m2未満であり、前記めっき鋼板の片面あたりのNi換算の付着量が0.1〜3.0mg/m2であり、
前記皮膜におけるCのTiに対する質量比(C/Ti)が0.01〜10である、容器用鋼板。
Plating having a plating layer composed of at least one layer selected from Ni layer, Sn layer, Ni—Fe alloy layer, Fe—Sn—Ni alloy layer and Fe—Sn alloy layer covering at least a part of the surface of the steel plate A steel plate for containers having a steel plate and a coating disposed on the surface of the plated steel plate on the plating layer side,
The coating contains Ti, Ni and C;
The coating, the deposition amount of Ti in terms of per side of the plated steel sheet is less than 5.0 mg / m 2 or more 60.0 mg / m 2, the adhesion amount of Ni converted per one surface of the plated steel sheet is 0.1 is a ~3.0mg / m 2,
The steel plate for containers whose mass ratio (C / Ti) of C to Ti in the film is 0.01 to 10.
前記皮膜は、前記めっき鋼板の片面あたりのTi換算の付着量が10.0〜30.0mg/m2である、請求項1に記載の容器用鋼板。 The said coating film is a steel plate for containers of Claim 1 whose adhesion amount of Ti conversion per single side | surface of the said plated steel plate is 10.0-30.0 mg / m < 2 >. 下記式(2)で定義されるT値が0.50以下である、請求項1または2に記載の容器用鋼板。
T=[Ii(F)−Ib(F)]/Ib(F)・・・(2)
(式(2)中、Ii(F)は前記皮膜の蛍光X線分析のFピークカウント数を表し、Ib(F)は前記容器用鋼板を30分間沸騰水中で浸漬した後の前記皮膜の蛍光X線分析のFピークカウント数を表す。)
The steel plate for containers according to claim 1 or 2 whose T value defined by a following formula (2) is 0.50 or less.
T = [Ii (F) -Ib (F)] / Ib (F) (2)
(In Formula (2), Ii (F) represents the F peak count number of fluorescent X-ray analysis of the film, and Ib (F) represents the fluorescence of the film after the container steel plate was immersed in boiling water for 30 minutes. Represents the F peak count of X-ray analysis.)
前記めっき層が錫めっき層であり、前記皮膜がNi−Sn合金相を含む、請求項1〜3のいずれか1項に記載の容器用鋼板。   The steel plate for containers according to any one of claims 1 to 3, wherein the plating layer is a tin plating layer, and the coating includes a Ni-Sn alloy phase. 前記皮膜が含有するCが、フェノール樹脂またはフェノール化合物に由来する、請求項1〜4のいずれか1項に記載の容器用鋼板。   The steel plate for containers according to any one of claims 1 to 4, wherein C contained in the film is derived from a phenol resin or a phenol compound.
JP2014242123A 2014-11-28 2014-11-28 Steel plate for containers Active JP6146402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014242123A JP6146402B2 (en) 2014-11-28 2014-11-28 Steel plate for containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014242123A JP6146402B2 (en) 2014-11-28 2014-11-28 Steel plate for containers

Publications (2)

Publication Number Publication Date
JP2016102252A true JP2016102252A (en) 2016-06-02
JP6146402B2 JP6146402B2 (en) 2017-06-14

Family

ID=56089058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014242123A Active JP6146402B2 (en) 2014-11-28 2014-11-28 Steel plate for containers

Country Status (1)

Country Link
JP (1) JP6146402B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355921A (en) * 2001-05-31 2002-12-10 Nippon Steel Corp Steel panel for container excellent in adhesion and corrosion resistance
JP2006009046A (en) * 2004-06-22 2006-01-12 Toyo Seikan Kaisha Ltd Surface treated metallic material and its surface treatment method, resin-coated metallic material, metallic can and metallic lid
JP2010031348A (en) * 2007-10-31 2010-02-12 Jfe Steel Corp Surface treated steel sheet and resin-coated steel sheet
JP2010255065A (en) * 2009-04-28 2010-11-11 Jfe Steel Corp Surface treated steel sheet and method of manufacturing the same
JP2012062507A (en) * 2010-09-15 2012-03-29 Jfe Steel Corp Apparatus for continuous electrolytic treatment of steel sheet and method of manufacturing surface-treated steel sheet using the same
JP2013127095A (en) * 2011-12-19 2013-06-27 Jfe Steel Corp Method for manufacturing surface-treated steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355921A (en) * 2001-05-31 2002-12-10 Nippon Steel Corp Steel panel for container excellent in adhesion and corrosion resistance
JP2006009046A (en) * 2004-06-22 2006-01-12 Toyo Seikan Kaisha Ltd Surface treated metallic material and its surface treatment method, resin-coated metallic material, metallic can and metallic lid
JP2010031348A (en) * 2007-10-31 2010-02-12 Jfe Steel Corp Surface treated steel sheet and resin-coated steel sheet
JP2010255065A (en) * 2009-04-28 2010-11-11 Jfe Steel Corp Surface treated steel sheet and method of manufacturing the same
JP2012062507A (en) * 2010-09-15 2012-03-29 Jfe Steel Corp Apparatus for continuous electrolytic treatment of steel sheet and method of manufacturing surface-treated steel sheet using the same
JP2013127095A (en) * 2011-12-19 2013-06-27 Jfe Steel Corp Method for manufacturing surface-treated steel sheet

Also Published As

Publication number Publication date
JP6146402B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
TWI500816B (en) Steel sheet for container and method for production thereof
JP5304000B2 (en) Steel plate for containers with excellent weldability, appearance, and can manufacturing process adhesion
JP2010013728A (en) Steel sheet for container which has excellent organic coating film performance, and method of manufacturing the same
JP2007239004A (en) Plated steel sheet for can
JP6146541B2 (en) Plated steel sheet and manufacturing method thereof
KR101232963B1 (en) Plated steel sheet for can and process for producing the plated steel sheet
JPWO2016056627A1 (en) Chemical conversion treated steel sheet and method for producing chemical conversion treated steel sheet
WO2015174190A1 (en) Steel plate for container
KR101803219B1 (en) Steel sheet for container and manufacturing method therefor
JP6119931B2 (en) Steel plate for container and method for producing steel plate for container
KR102088247B1 (en) Manufacturing method of container steel plate and container steel plate
JP6197778B2 (en) Steel plate for container and method for producing the same
JP6146402B2 (en) Steel plate for containers
JP6135650B2 (en) Steel plate for containers
TW201600638A (en) Steel sheet for containers
JP6003912B2 (en) Steel plate for container and method for producing the same
JP6156299B2 (en) Steel plate for container and method for producing the same
JP6052305B2 (en) Steel plate for containers
JP2014088589A (en) Steel sheet for vessel, treatment liquid used for production thereof, and production method of steel sheet for vessel
JP6048441B2 (en) Steel plate for containers
JP6003910B2 (en) Steel plate for container and method for producing the same
JP4720459B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP5338823B2 (en) Surface-treated steel sheet and manufacturing method thereof
TW202124788A (en) Sn-based plated steel sheet wherein the depth position A where the Mn element concentration is the largest is located on the surface side of the film layer relative to the depth position B where the Zr element concentration is the largest
JP2014095123A (en) Process liquid, steel sheet for container, and method of producing steel sheet for container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6146402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250